diff options
author | Pekka Enberg <penberg@kernel.org> | 2013-05-07 09:19:47 +0300 |
---|---|---|
committer | Pekka Enberg <penberg@kernel.org> | 2013-05-07 09:19:47 +0300 |
commit | 69df2ac1288b456a95aceadafbf88cd891a577c8 (patch) | |
tree | 0f2e83a8c4bc826f12d3f3871ecc1d7be0c9e4e3 | |
parent | c1be5a5b1b355d40e6cf79cc979eb66dafa24ad1 (diff) | |
parent | 8a965b3baa89ffedc73c0fbc750006c631012ced (diff) |
Merge branch 'slab/next' into slab/for-linus
-rw-r--r-- | fs/proc/stat.c | 2 | ||||
-rw-r--r-- | include/linux/kmalloc_sizes.h | 45 | ||||
-rw-r--r-- | include/linux/slab.h | 231 | ||||
-rw-r--r-- | include/linux/slab_def.h | 54 | ||||
-rw-r--r-- | include/linux/slub_def.h | 136 | ||||
-rw-r--r-- | mm/slab.c | 790 | ||||
-rw-r--r-- | mm/slab.h | 43 | ||||
-rw-r--r-- | mm/slab_common.c | 174 | ||||
-rw-r--r-- | mm/slub.c | 221 |
9 files changed, 781 insertions, 915 deletions
diff --git a/fs/proc/stat.c b/fs/proc/stat.c index e296572c73e..1cf86c0e868 100644 --- a/fs/proc/stat.c +++ b/fs/proc/stat.c @@ -184,7 +184,7 @@ static int show_stat(struct seq_file *p, void *v) static int stat_open(struct inode *inode, struct file *file) { - unsigned size = 1024 + 128 * num_possible_cpus(); + size_t size = 1024 + 128 * num_possible_cpus(); char *buf; struct seq_file *m; int res; diff --git a/include/linux/kmalloc_sizes.h b/include/linux/kmalloc_sizes.h deleted file mode 100644 index e576b848ce1..00000000000 --- a/include/linux/kmalloc_sizes.h +++ /dev/null @@ -1,45 +0,0 @@ -#if (PAGE_SIZE == 4096) - CACHE(32) -#endif - CACHE(64) -#if L1_CACHE_BYTES < 64 - CACHE(96) -#endif - CACHE(128) -#if L1_CACHE_BYTES < 128 - CACHE(192) -#endif - CACHE(256) - CACHE(512) - CACHE(1024) - CACHE(2048) - CACHE(4096) - CACHE(8192) - CACHE(16384) - CACHE(32768) - CACHE(65536) - CACHE(131072) -#if KMALLOC_MAX_SIZE >= 262144 - CACHE(262144) -#endif -#if KMALLOC_MAX_SIZE >= 524288 - CACHE(524288) -#endif -#if KMALLOC_MAX_SIZE >= 1048576 - CACHE(1048576) -#endif -#if KMALLOC_MAX_SIZE >= 2097152 - CACHE(2097152) -#endif -#if KMALLOC_MAX_SIZE >= 4194304 - CACHE(4194304) -#endif -#if KMALLOC_MAX_SIZE >= 8388608 - CACHE(8388608) -#endif -#if KMALLOC_MAX_SIZE >= 16777216 - CACHE(16777216) -#endif -#if KMALLOC_MAX_SIZE >= 33554432 - CACHE(33554432) -#endif diff --git a/include/linux/slab.h b/include/linux/slab.h index 5d168d7e0a2..0c621752caa 100644 --- a/include/linux/slab.h +++ b/include/linux/slab.h @@ -94,29 +94,6 @@ #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ (unsigned long)ZERO_SIZE_PTR) -/* - * Common fields provided in kmem_cache by all slab allocators - * This struct is either used directly by the allocator (SLOB) - * or the allocator must include definitions for all fields - * provided in kmem_cache_common in their definition of kmem_cache. - * - * Once we can do anonymous structs (C11 standard) we could put a - * anonymous struct definition in these allocators so that the - * separate allocations in the kmem_cache structure of SLAB and - * SLUB is no longer needed. - */ -#ifdef CONFIG_SLOB -struct kmem_cache { - unsigned int object_size;/* The original size of the object */ - unsigned int size; /* The aligned/padded/added on size */ - unsigned int align; /* Alignment as calculated */ - unsigned long flags; /* Active flags on the slab */ - const char *name; /* Slab name for sysfs */ - int refcount; /* Use counter */ - void (*ctor)(void *); /* Called on object slot creation */ - struct list_head list; /* List of all slab caches on the system */ -}; -#endif struct mem_cgroup; /* @@ -148,7 +125,63 @@ void kmem_cache_free(struct kmem_cache *, void *); (__flags), NULL) /* - * The largest kmalloc size supported by the slab allocators is + * Common kmalloc functions provided by all allocators + */ +void * __must_check __krealloc(const void *, size_t, gfp_t); +void * __must_check krealloc(const void *, size_t, gfp_t); +void kfree(const void *); +void kzfree(const void *); +size_t ksize(const void *); + +/* + * Some archs want to perform DMA into kmalloc caches and need a guaranteed + * alignment larger than the alignment of a 64-bit integer. + * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. + */ +#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 +#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN +#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN +#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) +#else +#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) +#endif + +#ifdef CONFIG_SLOB +/* + * Common fields provided in kmem_cache by all slab allocators + * This struct is either used directly by the allocator (SLOB) + * or the allocator must include definitions for all fields + * provided in kmem_cache_common in their definition of kmem_cache. + * + * Once we can do anonymous structs (C11 standard) we could put a + * anonymous struct definition in these allocators so that the + * separate allocations in the kmem_cache structure of SLAB and + * SLUB is no longer needed. + */ +struct kmem_cache { + unsigned int object_size;/* The original size of the object */ + unsigned int size; /* The aligned/padded/added on size */ + unsigned int align; /* Alignment as calculated */ + unsigned long flags; /* Active flags on the slab */ + const char *name; /* Slab name for sysfs */ + int refcount; /* Use counter */ + void (*ctor)(void *); /* Called on object slot creation */ + struct list_head list; /* List of all slab caches on the system */ +}; + +#define KMALLOC_MAX_SIZE (1UL << 30) + +#include <linux/slob_def.h> + +#else /* CONFIG_SLOB */ + +/* + * Kmalloc array related definitions + */ + +#ifdef CONFIG_SLAB +/* + * The largest kmalloc size supported by the SLAB allocators is * 32 megabyte (2^25) or the maximum allocatable page order if that is * less than 32 MB. * @@ -158,22 +191,120 @@ void kmem_cache_free(struct kmem_cache *, void *); */ #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ (MAX_ORDER + PAGE_SHIFT - 1) : 25) +#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH +#ifndef KMALLOC_SHIFT_LOW +#define KMALLOC_SHIFT_LOW 5 +#endif +#else +/* + * SLUB allocates up to order 2 pages directly and otherwise + * passes the request to the page allocator. + */ +#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) +#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) +#ifndef KMALLOC_SHIFT_LOW +#define KMALLOC_SHIFT_LOW 3 +#endif +#endif -#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) -#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) +/* Maximum allocatable size */ +#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) +/* Maximum size for which we actually use a slab cache */ +#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) +/* Maximum order allocatable via the slab allocagtor */ +#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* - * Some archs want to perform DMA into kmalloc caches and need a guaranteed - * alignment larger than the alignment of a 64-bit integer. - * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. + * Kmalloc subsystem. */ -#ifdef ARCH_DMA_MINALIGN -#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN +#ifndef KMALLOC_MIN_SIZE +#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) +#endif + +extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; +#ifdef CONFIG_ZONE_DMA +extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; +#endif + +/* + * Figure out which kmalloc slab an allocation of a certain size + * belongs to. + * 0 = zero alloc + * 1 = 65 .. 96 bytes + * 2 = 120 .. 192 bytes + * n = 2^(n-1) .. 2^n -1 + */ +static __always_inline int kmalloc_index(size_t size) +{ + if (!size) + return 0; + + if (size <= KMALLOC_MIN_SIZE) + return KMALLOC_SHIFT_LOW; + + if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) + return 1; + if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) + return 2; + if (size <= 8) return 3; + if (size <= 16) return 4; + if (size <= 32) return 5; + if (size <= 64) return 6; + if (size <= 128) return 7; + if (size <= 256) return 8; + if (size <= 512) return 9; + if (size <= 1024) return 10; + if (size <= 2 * 1024) return 11; + if (size <= 4 * 1024) return 12; + if (size <= 8 * 1024) return 13; + if (size <= 16 * 1024) return 14; + if (size <= 32 * 1024) return 15; + if (size <= 64 * 1024) return 16; + if (size <= 128 * 1024) return 17; + if (size <= 256 * 1024) return 18; + if (size <= 512 * 1024) return 19; + if (size <= 1024 * 1024) return 20; + if (size <= 2 * 1024 * 1024) return 21; + if (size <= 4 * 1024 * 1024) return 22; + if (size <= 8 * 1024 * 1024) return 23; + if (size <= 16 * 1024 * 1024) return 24; + if (size <= 32 * 1024 * 1024) return 25; + if (size <= 64 * 1024 * 1024) return 26; + BUG(); + + /* Will never be reached. Needed because the compiler may complain */ + return -1; +} + +#ifdef CONFIG_SLAB +#include <linux/slab_def.h> +#elif defined(CONFIG_SLUB) +#include <linux/slub_def.h> #else -#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) +#error "Unknown slab allocator" #endif /* + * Determine size used for the nth kmalloc cache. + * return size or 0 if a kmalloc cache for that + * size does not exist + */ +static __always_inline int kmalloc_size(int n) +{ + if (n > 2) + return 1 << n; + + if (n == 1 && KMALLOC_MIN_SIZE <= 32) + return 96; + + if (n == 2 && KMALLOC_MIN_SIZE <= 64) + return 192; + + return 0; +} +#endif /* !CONFIG_SLOB */ + +/* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. @@ -224,42 +355,6 @@ struct seq_file; int cache_show(struct kmem_cache *s, struct seq_file *m); void print_slabinfo_header(struct seq_file *m); -/* - * Common kmalloc functions provided by all allocators - */ -void * __must_check __krealloc(const void *, size_t, gfp_t); -void * __must_check krealloc(const void *, size_t, gfp_t); -void kfree(const void *); -void kzfree(const void *); -size_t ksize(const void *); - -/* - * Allocator specific definitions. These are mainly used to establish optimized - * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by - * selecting the appropriate general cache at compile time. - * - * Allocators must define at least: - * - * kmem_cache_alloc() - * __kmalloc() - * kmalloc() - * - * Those wishing to support NUMA must also define: - * - * kmem_cache_alloc_node() - * kmalloc_node() - * - * See each allocator definition file for additional comments and - * implementation notes. - */ -#ifdef CONFIG_SLUB -#include <linux/slub_def.h> -#elif defined(CONFIG_SLOB) -#include <linux/slob_def.h> -#else -#include <linux/slab_def.h> -#endif - /** * kmalloc_array - allocate memory for an array. * @n: number of elements. diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h index 8bb6e0eaf3c..cd401580bdd 100644 --- a/include/linux/slab_def.h +++ b/include/linux/slab_def.h @@ -11,8 +11,6 @@ */ #include <linux/init.h> -#include <asm/page.h> /* kmalloc_sizes.h needs PAGE_SIZE */ -#include <asm/cache.h> /* kmalloc_sizes.h needs L1_CACHE_BYTES */ #include <linux/compiler.h> /* @@ -97,23 +95,13 @@ struct kmem_cache { * pointer for each node since "nodelists" uses the remainder of * available pointers. */ - struct kmem_list3 **nodelists; + struct kmem_cache_node **node; struct array_cache *array[NR_CPUS + MAX_NUMNODES]; /* * Do not add fields after array[] */ }; -/* Size description struct for general caches. */ -struct cache_sizes { - size_t cs_size; - struct kmem_cache *cs_cachep; -#ifdef CONFIG_ZONE_DMA - struct kmem_cache *cs_dmacachep; -#endif -}; -extern struct cache_sizes malloc_sizes[]; - void *kmem_cache_alloc(struct kmem_cache *, gfp_t); void *__kmalloc(size_t size, gfp_t flags); @@ -133,26 +121,22 @@ static __always_inline void *kmalloc(size_t size, gfp_t flags) void *ret; if (__builtin_constant_p(size)) { - int i = 0; + int i; if (!size) return ZERO_SIZE_PTR; -#define CACHE(x) \ - if (size <= x) \ - goto found; \ - else \ - i++; -#include <linux/kmalloc_sizes.h> -#undef CACHE - return NULL; -found: + if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE)) + return NULL; + + i = kmalloc_index(size); + #ifdef CONFIG_ZONE_DMA if (flags & GFP_DMA) - cachep = malloc_sizes[i].cs_dmacachep; + cachep = kmalloc_dma_caches[i]; else #endif - cachep = malloc_sizes[i].cs_cachep; + cachep = kmalloc_caches[i]; ret = kmem_cache_alloc_trace(cachep, flags, size); @@ -186,26 +170,22 @@ static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) struct kmem_cache *cachep; if (__builtin_constant_p(size)) { - int i = 0; + int i; if (!size) return ZERO_SIZE_PTR; -#define CACHE(x) \ - if (size <= x) \ - goto found; \ - else \ - i++; -#include <linux/kmalloc_sizes.h> -#undef CACHE - return NULL; -found: + if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE)) + return NULL; + + i = kmalloc_index(size); + #ifdef CONFIG_ZONE_DMA if (flags & GFP_DMA) - cachep = malloc_sizes[i].cs_dmacachep; + cachep = kmalloc_dma_caches[i]; else #endif - cachep = malloc_sizes[i].cs_cachep; + cachep = kmalloc_caches[i]; return kmem_cache_alloc_node_trace(cachep, flags, node, size); } diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h index 9db4825cd39..027276fa871 100644 --- a/include/linux/slub_def.h +++ b/include/linux/slub_def.h @@ -53,17 +53,6 @@ struct kmem_cache_cpu { #endif }; -struct kmem_cache_node { - spinlock_t list_lock; /* Protect partial list and nr_partial */ - unsigned long nr_partial; - struct list_head partial; -#ifdef CONFIG_SLUB_DEBUG - atomic_long_t nr_slabs; - atomic_long_t total_objects; - struct list_head full; -#endif -}; - /* * Word size structure that can be atomically updated or read and that * contains both the order and the number of objects that a slab of the @@ -115,111 +104,6 @@ struct kmem_cache { struct kmem_cache_node *node[MAX_NUMNODES]; }; -/* - * Kmalloc subsystem. - */ -#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 -#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN -#else -#define KMALLOC_MIN_SIZE 8 -#endif - -#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) - -/* - * Maximum kmalloc object size handled by SLUB. Larger object allocations - * are passed through to the page allocator. The page allocator "fastpath" - * is relatively slow so we need this value sufficiently high so that - * performance critical objects are allocated through the SLUB fastpath. - * - * This should be dropped to PAGE_SIZE / 2 once the page allocator - * "fastpath" becomes competitive with the slab allocator fastpaths. - */ -#define SLUB_MAX_SIZE (2 * PAGE_SIZE) - -#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) - -#ifdef CONFIG_ZONE_DMA -#define SLUB_DMA __GFP_DMA -#else -/* Disable DMA functionality */ -#define SLUB_DMA (__force gfp_t)0 -#endif - -/* - * We keep the general caches in an array of slab caches that are used for - * 2^x bytes of allocations. - */ -extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; - -/* - * Sorry that the following has to be that ugly but some versions of GCC - * have trouble with constant propagation and loops. - */ -static __always_inline int kmalloc_index(size_t size) -{ - if (!size) - return 0; - - if (size <= KMALLOC_MIN_SIZE) - return KMALLOC_SHIFT_LOW; - - if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) - return 1; - if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) - return 2; - if (size <= 8) return 3; - if (size <= 16) return 4; - if (size <= 32) return 5; - if (size <= 64) return 6; - if (size <= 128) return 7; - if (size <= 256) return 8; - if (size <= 512) return 9; - if (size <= 1024) return 10; - if (size <= 2 * 1024) return 11; - if (size <= 4 * 1024) return 12; -/* - * The following is only needed to support architectures with a larger page - * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page - * size we would have to go up to 128k. - */ - if (size <= 8 * 1024) return 13; - if (size <= 16 * 1024) return 14; - if (size <= 32 * 1024) return 15; - if (size <= 64 * 1024) return 16; - if (size <= 128 * 1024) return 17; - if (size <= 256 * 1024) return 18; - if (size <= 512 * 1024) return 19; - if (size <= 1024 * 1024) return 20; - if (size <= 2 * 1024 * 1024) return 21; - BUG(); - return -1; /* Will never be reached */ - -/* - * What we really wanted to do and cannot do because of compiler issues is: - * int i; - * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) - * if (size <= (1 << i)) - * return i; - */ -} - -/* - * Find the slab cache for a given combination of allocation flags and size. - * - * This ought to end up with a global pointer to the right cache - * in kmalloc_caches. - */ -static __always_inline struct kmem_cache *kmalloc_slab(size_t size) -{ - int index = kmalloc_index(size); - - if (index == 0) - return NULL; - - return kmalloc_caches[index]; -} - void *kmem_cache_alloc(struct kmem_cache *, gfp_t); void *__kmalloc(size_t size, gfp_t flags); @@ -274,16 +158,17 @@ static __always_inline void *kmalloc_large(size_t size, gfp_t flags) static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { - if (size > SLUB_MAX_SIZE) + if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); - if (!(flags & SLUB_DMA)) { - struct kmem_cache *s = kmalloc_slab(size); + if (!(flags & GFP_DMA)) { + int index = kmalloc_index(size); - if (!s) + if (!index) return ZERO_SIZE_PTR; - return kmem_cache_alloc_trace(s, flags, size); + return kmem_cache_alloc_trace(kmalloc_caches[index], + flags, size); } } return __kmalloc(size, flags); @@ -310,13 +195,14 @@ kmem_cache_alloc_node_trace(struct kmem_cache *s, static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { if (__builtin_constant_p(size) && - size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { - struct kmem_cache *s = kmalloc_slab(size); + size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { + int index = kmalloc_index(size); - if (!s) + if (!index) return ZERO_SIZE_PTR; - return kmem_cache_alloc_node_trace(s, flags, node, size); + return kmem_cache_alloc_node_trace(kmalloc_caches[index], + flags, node, size); } return __kmalloc_node(size, flags, node); } diff --git a/mm/slab.c b/mm/slab.c index 856e4a192d2..a28562306d0 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -286,68 +286,27 @@ struct arraycache_init { }; /* - * The slab lists for all objects. - */ -struct kmem_list3 { - struct list_head slabs_partial; /* partial list first, better asm code */ - struct list_head slabs_full; - struct list_head slabs_free; - unsigned long free_objects; - unsigned int free_limit; - unsigned int colour_next; /* Per-node cache coloring */ - spinlock_t list_lock; - struct array_cache *shared; /* shared per node */ - struct array_cache **alien; /* on other nodes */ - unsigned long next_reap; /* updated without locking */ - int free_touched; /* updated without locking */ -}; - -/* * Need this for bootstrapping a per node allocator. */ #define NUM_INIT_LISTS (3 * MAX_NUMNODES) -static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; +static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; #define CACHE_CACHE 0 #define SIZE_AC MAX_NUMNODES -#define SIZE_L3 (2 * MAX_NUMNODES) +#define SIZE_NODE (2 * MAX_NUMNODES) static int drain_freelist(struct kmem_cache *cache, - struct kmem_list3 *l3, int tofree); + struct kmem_cache_node *n, int tofree); static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node); static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); static void cache_reap(struct work_struct *unused); -/* - * This function must be completely optimized away if a constant is passed to - * it. Mostly the same as what is in linux/slab.h except it returns an index. - */ -static __always_inline int index_of(const size_t size) -{ - extern void __bad_size(void); - - if (__builtin_constant_p(size)) { - int i = 0; - -#define CACHE(x) \ - if (size <=x) \ - return i; \ - else \ - i++; -#include <linux/kmalloc_sizes.h> -#undef CACHE - __bad_size(); - } else - __bad_size(); - return 0; -} - static int slab_early_init = 1; -#define INDEX_AC index_of(sizeof(struct arraycache_init)) -#define INDEX_L3 index_of(sizeof(struct kmem_list3)) +#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) +#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) -static void kmem_list3_init(struct kmem_list3 *parent) +static void kmem_cache_node_init(struct kmem_cache_node *parent) { INIT_LIST_HEAD(&parent->slabs_full); INIT_LIST_HEAD(&parent->slabs_partial); @@ -363,7 +322,7 @@ static void kmem_list3_init(struct kmem_list3 *parent) #define MAKE_LIST(cachep, listp, slab, nodeid) \ do { \ INIT_LIST_HEAD(listp); \ - list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ + list_splice(&(cachep->node[nodeid]->slab), listp); \ } while (0) #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ @@ -524,30 +483,6 @@ static inline unsigned int obj_to_index(const struct kmem_cache *cache, return reciprocal_divide(offset, cache->reciprocal_buffer_size); } -/* - * These are the default caches for kmalloc. Custom caches can have other sizes. - */ -struct cache_sizes malloc_sizes[] = { -#define CACHE(x) { .cs_size = (x) }, -#include <linux/kmalloc_sizes.h> - CACHE(ULONG_MAX) -#undef CACHE -}; -EXPORT_SYMBOL(malloc_sizes); - -/* Must match cache_sizes above. Out of line to keep cache footprint low. */ -struct cache_names { - char *name; - char *name_dma; -}; - -static struct cache_names __initdata cache_names[] = { -#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, -#include <linux/kmalloc_sizes.h> - {NULL,} -#undef CACHE -}; - static struct arraycache_init initarray_generic = { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; @@ -586,15 +521,15 @@ static void slab_set_lock_classes(struct kmem_cache *cachep, int q) { struct array_cache **alc; - struct kmem_list3 *l3; + struct kmem_cache_node *n; int r; - l3 = cachep->nodelists[q]; - if (!l3) + n = cachep->node[q]; + if (!n) return; - lockdep_set_class(&l3->list_lock, l3_key); - alc = l3->alien; + lockdep_set_class(&n->list_lock, l3_key); + alc = n->alien; /* * FIXME: This check for BAD_ALIEN_MAGIC * should go away when common slab code is taught to @@ -625,28 +560,30 @@ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) static void init_node_lock_keys(int q) { - struct cache_sizes *s = malloc_sizes; + int i; if (slab_state < UP) return; - for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { - struct kmem_list3 *l3; + for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) { + struct kmem_cache_node *n; + struct kmem_cache *cache = kmalloc_caches[i]; + + if (!cache) + continue; - l3 = s->cs_cachep->nodelists[q]; - if (!l3 || OFF_SLAB(s->cs_cachep)) + n = cache->node[q]; + if (!n || OFF_SLAB(cache)) continue; - slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, + slab_set_lock_classes(cache, &on_slab_l3_key, &on_slab_alc_key, q); } } static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) { - struct kmem_list3 *l3; - l3 = cachep->nodelists[q]; - if (!l3) + if (!cachep->node[q]) return; slab_set_lock_classes(cachep, &on_slab_l3_key, @@ -702,41 +639,6 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) return cachep->array[smp_processor_id()]; } -static inline struct kmem_cache *__find_general_cachep(size_t size, - gfp_t gfpflags) -{ - struct cache_sizes *csizep = malloc_sizes; - -#if DEBUG - /* This happens if someone tries to call - * kmem_cache_create(), or __kmalloc(), before - * the generic caches are initialized. - */ - BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); -#endif - if (!size) - return ZERO_SIZE_PTR; - - while (size > csizep->cs_size) - csizep++; - - /* - * Really subtle: The last entry with cs->cs_size==ULONG_MAX - * has cs_{dma,}cachep==NULL. Thus no special case - * for large kmalloc calls required. - */ -#ifdef CONFIG_ZONE_DMA - if (unlikely(gfpflags & GFP_DMA)) - return csizep->cs_dmacachep; -#endif - return csizep->cs_cachep; -} - -static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) -{ - return __find_general_cachep(size, gfpflags); -} - static size_t slab_mgmt_size(size_t nr_objs, size_t align) { return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); @@ -938,29 +840,29 @@ static inline bool is_slab_pfmemalloc(struct slab *slabp) static void recheck_pfmemalloc_active(struct kmem_cache *cachep, struct array_cache *ac) { - struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()]; + struct kmem_cache_node *n = cachep->node[numa_mem_id()]; struct slab *slabp; unsigned long flags; if (!pfmemalloc_active) return; - spin_lock_irqsave(&l3->list_lock, flags); - list_for_each_entry(slabp, &l3->slabs_full, list) + spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry(slabp, &n->slabs_full, list) if (is_slab_pfmemalloc(slabp)) goto out; - list_for_each_entry(slabp, &l3->slabs_partial, list) + list_for_each_entry(slabp, &n->slabs_partial, list) if (is_slab_pfmemalloc(slabp)) goto out; - list_for_each_entry(slabp, &l3->slabs_free, list) + list_for_each_entry(slabp, &n->slabs_free, list) if (is_slab_pfmemalloc(slabp)) goto out; pfmemalloc_active = false; out: - spin_unlock_irqrestore(&l3->list_lock, flags); + spin_unlock_irqrestore(&n->list_lock, flags); } static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, @@ -971,7 +873,7 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ if (unlikely(is_obj_pfmemalloc(objp))) { - struct kmem_list3 *l3; + struct kmem_cache_node *n; if (gfp_pfmemalloc_allowed(flags)) { clear_obj_pfmemalloc(&objp); @@ -993,8 +895,8 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, * If there are empty slabs on the slabs_free list and we are * being forced to refill the cache, mark this one !pfmemalloc. */ - l3 = cachep->nodelists[numa_mem_id()]; - if (!list_empty(&l3->slabs_free) && force_refill) { + n = cachep->node[numa_mem_id()]; + if (!list_empty(&n->slabs_free) && force_refill) { struct slab *slabp = virt_to_slab(objp); ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); clear_obj_pfmemalloc(&objp); @@ -1071,7 +973,7 @@ static int transfer_objects(struct array_cache *to, #ifndef CONFIG_NUMA #define drain_alien_cache(cachep, alien) do { } while (0) -#define reap_alien(cachep, l3) do { } while (0) +#define reap_alien(cachep, n) do { } while (0) static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) { @@ -1143,33 +1045,33 @@ static void free_alien_cache(struct array_cache **ac_ptr) static void __drain_alien_cache(struct kmem_cache *cachep, struct array_cache *ac, int node) { - struct kmem_list3 *rl3 = cachep->nodelists[node]; + struct kmem_cache_node *n = cachep->node[node]; if (ac->avail) { - spin_lock(&rl3->list_lock); + spin_lock(&n->list_lock); /* * Stuff objects into the remote nodes shared array first. * That way we could avoid the overhead of putting the objects * into the free lists and getting them back later. */ - if (rl3->shared) - transfer_objects(rl3->shared, ac, ac->limit); + if (n->shared) + transfer_objects(n->shared, ac, ac->limit); free_block(cachep, ac->entry, ac->avail, node); ac->avail = 0; - spin_unlock(&rl3->list_lock); + spin_unlock(&n->list_lock); } } /* * Called from cache_reap() to regularly drain alien caches round robin. */ -static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) +static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) { int node = __this_cpu_read(slab_reap_node); - if (l3->alien) { - struct array_cache *ac = l3->alien[node]; + if (n->alien) { + struct array_cache *ac = n->alien[node]; if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { __drain_alien_cache(cachep, ac, node); @@ -1199,7 +1101,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) { struct slab *slabp = virt_to_slab(objp); int nodeid = slabp->nodeid; - struct kmem_list3 *l3; + struct kmem_cache_node *n; struct array_cache *alien = NULL; int node; @@ -1212,10 +1114,10 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) if (likely(slabp->nodeid == node)) return 0; - l3 = cachep->nodelists[node]; + n = cachep->node[node]; STATS_INC_NODEFREES(cachep); - if (l3->alien && l3->alien[nodeid]) { - alien = l3->alien[nodeid]; + if (n->alien && n->alien[nodeid]) { + alien = n->alien[nodeid]; spin_lock(&alien->lock); if (unlikely(alien->avail == alien->limit)) { STATS_INC_ACOVERFLOW(cachep); @@ -1224,28 +1126,28 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) ac_put_obj(cachep, alien, objp); spin_unlock(&alien->lock); } else { - spin_lock(&(cachep->nodelists[nodeid])->list_lock); + spin_lock(&(cachep->node[nodeid])->list_lock); free_block(cachep, &objp, 1, nodeid); - spin_unlock(&(cachep->nodelists[nodeid])->list_lock); + spin_unlock(&(cachep->node[nodeid])->list_lock); } return 1; } #endif /* - * Allocates and initializes nodelists for a node on each slab cache, used for - * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 + * Allocates and initializes node for a node on each slab cache, used for + * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node * will be allocated off-node since memory is not yet online for the new node. - * When hotplugging memory or a cpu, existing nodelists are not replaced if + * When hotplugging memory or a cpu, existing node are not replaced if * already in use. * * Must hold slab_mutex. */ -static int init_cache_nodelists_node(int node) +static int init_cache_node_node(int node) { struct kmem_cache *cachep; - struct kmem_list3 *l3; - const int memsize = sizeof(struct kmem_list3); + struct kmem_cache_node *n; + const int memsize = sizeof(struct kmem_cache_node); list_for_each_entry(cachep, &slab_caches, list) { /* @@ -1253,12 +1155,12 @@ static int init_cache_nodelists_node(int node) * begin anything. Make sure some other cpu on this * node has not already allocated this */ - if (!cachep->nodelists[node]) { - l3 = kmalloc_node(memsize, GFP_KERNEL, node); - if (!l3) + if (!cachep->node[node]) { + n = kmalloc_node(memsize, GFP_KERNEL, node); + if (!n) return -ENOMEM; - kmem_list3_init(l3); - l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + + kmem_cache_node_init(n); + n->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; /* @@ -1266,14 +1168,14 @@ static int init_cache_nodelists_node(int node) * go. slab_mutex is sufficient * protection here. */ - cachep->nodelists[node] = l3; + cachep->node[node] = n; } - spin_lock_irq(&cachep->nodelists[node]->list_lock); - cachep->nodelists[node]->free_limit = + spin_lock_irq(&cachep->node[node]->list_lock); + cachep->node[node]->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; - spin_unlock_irq(&cachep->nodelists[node]->list_lock); + spin_unlock_irq(&cachep->node[node]->list_lock); } return 0; } @@ -1281,7 +1183,7 @@ static int init_cache_nodelists_node(int node) static void __cpuinit cpuup_canceled(long cpu) { struct kmem_cache *cachep; - struct kmem_list3 *l3 = NULL; + struct kmem_cache_node *n = NULL; int node = cpu_to_mem(cpu); const struct cpumask *mask = cpumask_of_node(node); @@ -1293,34 +1195,34 @@ static void __cpuinit cpuup_canceled(long cpu) /* cpu is dead; no one can alloc from it. */ nc = cachep->array[cpu]; cachep->array[cpu] = NULL; - l3 = cachep->nodelists[node]; + n = cachep->node[node]; - if (!l3) + if (!n) goto free_array_cache; - spin_lock_irq(&l3->list_lock); + spin_lock_irq(&n->list_lock); - /* Free limit for this kmem_list3 */ - l3->free_limit -= cachep->batchcount; + /* Free limit for this kmem_cache_node */ + n->free_limit -= cachep->batchcount; if (nc) free_block(cachep, nc->entry, nc->avail, node); if (!cpumask_empty(mask)) { - spin_unlock_irq(&l3->list_lock); + spin_unlock_irq(&n->list_lock); goto free_array_cache; } - shared = l3->shared; + shared = n->shared; if (shared) { free_block(cachep, shared->entry, shared->avail, node); - l3->shared = NULL; + n->shared = NULL; } - alien = l3->alien; - l3->alien = NULL; + alien = n->alien; + n->alien = NULL; - spin_unlock_irq(&l3->list_lock); + spin_unlock_irq(&n->list_lock); kfree(shared); if (alien) { @@ -1336,17 +1238,17 @@ free_array_cache: * shrink each nodelist to its limit. */ list_for_each_entry(cachep, &slab_caches, list) { - l3 = cachep->nodelists[node]; - if (!l3) + n = cachep->node[node]; + if (!n) continue; - drain_freelist(cachep, l3, l3->free_objects); + drain_freelist(cachep, n, n->free_objects); } } static int __cpuinit cpuup_prepare(long cpu) { struct kmem_cache *cachep; - struct kmem_list3 *l3 = NULL; + struct kmem_cache_node *n = NULL; int node = cpu_to_mem(cpu); int err; @@ -1354,9 +1256,9 @@ static int __cpuinit cpuup_prepare(long cpu) * We need to do this right in the beginning since * alloc_arraycache's are going to use this list. * kmalloc_node allows us to add the slab to the right - * kmem_list3 and not this cpu's kmem_list3 + * kmem_cache_node and not this cpu's kmem_cache_node */ - err = init_cache_nodelists_node(node); + err = init_cache_node_node(node); if (err < 0) goto bad; @@ -1391,25 +1293,25 @@ static int __cpuinit cpuup_prepare(long cpu) } } cachep->array[cpu] = nc; - l3 = cachep->nodelists[node]; - BUG_ON(!l3); + n = cachep->node[node]; + BUG_ON(!n); - spin_lock_irq(&l3->list_lock); - if (!l3->shared) { + spin_lock_irq(&n->list_lock); + if (!n->shared) { /* * We are serialised from CPU_DEAD or * CPU_UP_CANCELLED by the cpucontrol lock */ - l3->shared = shared; + n->shared = shared; shared = NULL; } #ifdef CONFIG_NUMA - if (!l3->alien) { - l3->alien = alien; + if (!n->alien) { + n->alien = alien; alien = NULL; } #endif - spin_unlock_irq(&l3->list_lock); + spin_unlock_irq(&n->list_lock); kfree(shared); free_alien_cache(alien); if (cachep->flags & SLAB_DEBUG_OBJECTS) @@ -1464,9 +1366,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb, case CPU_DEAD_FROZEN: /* * Even if all the cpus of a node are down, we don't free the - * kmem_list3 of any cache. This to avoid a race between + * kmem_cache_node of any cache. This to avoid a race between * cpu_down, and a kmalloc allocation from another cpu for - * memory from the node of the cpu going down. The list3 + * memory from the node of the cpu going down. The node * structure is usually allocated from kmem_cache_create() and * gets destroyed at kmem_cache_destroy(). */ @@ -1494,22 +1396,22 @@ static struct notifier_block __cpuinitdata cpucache_notifier = { * * Must hold slab_mutex. */ -static int __meminit drain_cache_nodelists_node(int node) +static int __meminit drain_cache_node_node(int node) { struct kmem_cache *cachep; int ret = 0; list_for_each_entry(cachep, &slab_caches, list) { - struct kmem_list3 *l3; + struct kmem_cache_node *n; - l3 = cachep->nodelists[node]; - if (!l3) + n = cachep->node[node]; + if (!n) continue; - drain_freelist(cachep, l3, l3->free_objects); + drain_freelist(cachep, n, n->free_objects); - if (!list_empty(&l3->slabs_full) || - !list_empty(&l3->slabs_partial)) { + if (!list_empty(&n->slabs_full) || + !list_empty(&n->slabs_partial)) { ret = -EBUSY; break; } @@ -1531,12 +1433,12 @@ static int __meminit slab_memory_callback(struct notifier_block *self, switch (action) { case MEM_GOING_ONLINE: mutex_lock(&slab_mutex); - ret = init_cache_nodelists_node(nid); + ret = init_cache_node_node(nid); mutex_unlock(&slab_mutex); break; case MEM_GOING_OFFLINE: mutex_lock(&slab_mutex); - ret = drain_cache_nodelists_node(nid); + ret = drain_cache_node_node(nid); mutex_unlock(&slab_mutex); break; case MEM_ONLINE: @@ -1551,37 +1453,37 @@ out: #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ /* - * swap the static kmem_list3 with kmalloced memory + * swap the static kmem_cache_node with kmalloced memory */ -static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, +static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, int nodeid) { - struct kmem_list3 *ptr; + struct kmem_cache_node *ptr; - ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); + ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); BUG_ON(!ptr); - memcpy(ptr, list, sizeof(struct kmem_list3)); + memcpy(ptr, list, sizeof(struct kmem_cache_node)); /* * Do not assume that spinlocks can be initialized via memcpy: */ spin_lock_init(&ptr->list_lock); MAKE_ALL_LISTS(cachep, ptr, nodeid); - cachep->nodelists[nodeid] = ptr; + cachep->node[nodeid] = ptr; } /* - * For setting up all the kmem_list3s for cache whose buffer_size is same as - * size of kmem_list3. + * For setting up all the kmem_cache_node for cache whose buffer_size is same as + * size of kmem_cache_node. */ -static void __init set_up_list3s(struct kmem_cache *cachep, int index) +static void __init set_up_node(struct kmem_cache *cachep, int index) { int node; for_each_online_node(node) { - cachep->nodelists[node] = &initkmem_list3[index + node]; - cachep->nodelists[node]->next_reap = jiffies + + cachep->node[node] = &init_kmem_cache_node[index + node]; + cachep->node[node]->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; } @@ -1589,11 +1491,11 @@ static void __init set_up_list3s(struct kmem_cache *cachep, int index) /* * The memory after the last cpu cache pointer is used for the - * the nodelists pointer. + * the node pointer. */ -static void setup_nodelists_pointer(struct kmem_cache *cachep) +static void setup_node_pointer(struct kmem_cache *cachep) { - cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; + cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; } /* @@ -1602,20 +1504,18 @@ static void setup_nodelists_pointer(struct kmem_cache *cachep) */ void __init kmem_cache_init(void) { - struct cache_sizes *sizes; - struct cache_names *names; int i; kmem_cache = &kmem_cache_boot; - setup_nodelists_pointer(kmem_cache); + setup_node_pointer(kmem_cache); if (num_possible_nodes() == 1) use_alien_caches = 0; for (i = 0; i < NUM_INIT_LISTS; i++) - kmem_list3_init(&initkmem_list3[i]); + kmem_cache_node_init(&init_kmem_cache_node[i]); - set_up_list3s(kmem_cache, CACHE_CACHE); + set_up_node(kmem_cache, CACHE_CACHE); /* * Fragmentation resistance on low memory - only use bigger @@ -1631,7 +1531,7 @@ void __init kmem_cache_init(void) * kmem_cache structures of all caches, except kmem_cache itself: * kmem_cache is statically allocated. * Initially an __init data area is used for the head array and the - * kmem_list3 structures, it's replaced with a kmalloc allocated + * kmem_cache_node structures, it's replaced with a kmalloc allocated * array at the end of the bootstrap. * 2) Create the first kmalloc cache. * The struct kmem_cache for the new cache is allocated normally. @@ -1640,7 +1540,7 @@ void __init kmem_cache_init(void) * head arrays. * 4) Replace the __init data head arrays for kmem_cache and the first * kmalloc cache with kmalloc allocated arrays. - * 5) Replace the __init data for kmem_list3 for kmem_cache and + * 5) Replace the __init data for kmem_cache_node for kmem_cache and * the other cache's with kmalloc allocated memory. * 6) Resize the head arrays of the kmalloc caches to their final sizes. */ @@ -1652,50 +1552,28 @@ void __init kmem_cache_init(void) */ create_boot_cache(kmem_cache, "kmem_cache", offsetof(struct kmem_cache, array[nr_cpu_ids]) + - nr_node_ids * sizeof(struct kmem_list3 *), + nr_node_ids * sizeof(struct kmem_cache_node *), SLAB_HWCACHE_ALIGN); list_add(&kmem_cache->list, &slab_caches); /* 2+3) create the kmalloc caches */ - sizes = malloc_sizes; - names = cache_names; /* * Initialize the caches that provide memory for the array cache and the - * kmem_list3 structures first. Without this, further allocations will + * kmem_cache_node structures first. Without this, further allocations will * bug. */ - sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name, - sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS); + kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", + kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); - if (INDEX_AC != INDEX_L3) - sizes[INDEX_L3].cs_cachep = - create_kmalloc_cache(names[INDEX_L3].name, - sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS); + if (INDEX_AC != INDEX_NODE) + kmalloc_caches[INDEX_NODE] = + create_kmalloc_cache("kmalloc-node", + kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); slab_early_init = 0; - while (sizes->cs_size != ULONG_MAX) { - /* - * For performance, all the general caches are L1 aligned. - * This should be particularly beneficial on SMP boxes, as it - * eliminates "false sharing". - * Note for systems short on memory removing the alignment will - * allow tighter packing of the smaller caches. - */ - if (!sizes->cs_cachep) - sizes->cs_cachep = create_kmalloc_cache(names->name, - sizes->cs_size, ARCH_KMALLOC_FLAGS); - -#ifdef CONFIG_ZONE_DMA - sizes->cs_dmacachep = create_kmalloc_cache( - names->name_dma, sizes->cs_size, - SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS); -#endif - sizes++; - names++; - } /* 4) Replace the bootstrap head arrays */ { struct array_cache *ptr; @@ -1713,36 +1591,35 @@ void __init kmem_cache_init(void) ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); - BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) + BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) != &initarray_generic.cache); - memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), + memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), sizeof(struct arraycache_init)); /* * Do not assume that spinlocks can be initialized via memcpy: */ spin_lock_init(&ptr->lock); - malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = - ptr; + kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; } - /* 5) Replace the bootstrap kmem_list3's */ + /* 5) Replace the bootstrap kmem_cache_node */ { int nid; for_each_online_node(nid) { - init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid); + init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); - init_list(malloc_sizes[INDEX_AC].cs_cachep, - &initkmem_list3[SIZE_AC + nid], nid); + init_list(kmalloc_caches[INDEX_AC], + &init_kmem_cache_node[SIZE_AC + nid], nid); - if (INDEX_AC != INDEX_L3) { - init_list(malloc_sizes[INDEX_L3].cs_cachep, - &initkmem_list3[SIZE_L3 + nid], nid); + if (INDEX_AC != INDEX_NODE) { + init_list(kmalloc_caches[INDEX_NODE], + &init_kmem_cache_node[SIZE_NODE + nid], nid); } } } - slab_state = UP; + create_kmalloc_caches(ARCH_KMALLOC_FLAGS); } void __init kmem_cache_init_late(void) @@ -1773,7 +1650,7 @@ void __init kmem_cache_init_late(void) #ifdef CONFIG_NUMA /* * Register a memory hotplug callback that initializes and frees - * nodelists. + * node. */ hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); #endif @@ -1803,7 +1680,7 @@ __initcall(cpucache_init); static noinline void slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) { - struct kmem_list3 *l3; + struct kmem_cache_node *n; struct slab *slabp; unsigned long flags; int node; @@ -1818,24 +1695,24 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) unsigned long active_objs = 0, num_objs = 0, free_objects = 0; unsigned long active_slabs = 0, num_slabs = 0; - l3 = cachep->nodelists[node]; - if (!l3) + n = cachep->node[node]; + if (!n) continue; - spin_lock_irqsave(&l3->list_lock, flags); - list_for_each_entry(slabp, &l3->slabs_full, list) { + spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry(slabp, &n->slabs_full, list) { active_objs += cachep->num; active_slabs++; } - list_for_each_entry(slabp, &l3->slabs_partial, list) { + list_for_each_entry(slabp, &n->slabs_partial, list) { active_objs += slabp->inuse; active_slabs++; } - list_for_each_entry(slabp, &l3->slabs_free, list) + list_for_each_entry(slabp, &n->slabs_free, list) num_slabs++; - free_objects += l3->free_objects; - spin_unlock_irqrestore(&l3->list_lock, flags); + free_objects += n->free_objects; + spin_unlock_irqrestore(&n->list_lock, flags); num_slabs += active_slabs; num_objs = num_slabs * cachep->num; @@ -2260,7 +2137,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) if (slab_state == DOWN) { /* * Note: Creation of first cache (kmem_cache). - * The setup_list3s is taken care + * The setup_node is taken care * of by the caller of __kmem_cache_create */ cachep->array[smp_processor_id()] = &initarray_generic.cache; @@ -2274,13 +2151,13 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) cachep->array[smp_processor_id()] = &initarray_generic.cache; /* - * If the cache that's used by kmalloc(sizeof(kmem_list3)) is - * the second cache, then we need to set up all its list3s, + * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is + * the second cache, then we need to set up all its node/, * otherwise the creation of further caches will BUG(). */ - set_up_list3s(cachep, SIZE_AC); - if (INDEX_AC == INDEX_L3) - slab_state = PARTIAL_L3; + set_up_node(cachep, SIZE_AC); + if (INDEX_AC == INDEX_NODE) + slab_state = PARTIAL_NODE; else slab_state = PARTIAL_ARRAYCACHE; } else { @@ -2289,20 +2166,20 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) kmalloc(sizeof(struct arraycache_init), gfp); if (slab_state == PARTIAL_ARRAYCACHE) { - set_up_list3s(cachep, SIZE_L3); - slab_state = PARTIAL_L3; + set_up_node(cachep, SIZE_NODE); + slab_state = PARTIAL_NODE; } else { int node; for_each_online_node(node) { - cachep->nodelists[node] = - kmalloc_node(sizeof(struct kmem_list3), + cachep->node[node] = + kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); - BUG_ON(!cachep->nodelists[node]); - kmem_list3_init(cachep->nodelists[node]); + BUG_ON(!cachep->node[node]); + kmem_cache_node_init(cachep->node[node]); } } } - cachep->nodelists[numa_mem_id()]->next_reap = + cachep->node[numa_mem_id()]->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; @@ -2405,7 +2282,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) else gfp = GFP_NOWAIT; - setup_nodelists_pointer(cachep); + setup_node_pointer(cachep); #if DEBUG /* @@ -2428,7 +2305,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) size += BYTES_PER_WORD; } #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) - if (size >= malloc_sizes[INDEX_L3 + 1].cs_size + if (size >= kmalloc_size(INDEX_NODE + 1) && cachep->object_size > cache_line_size() && ALIGN(size, cachep->align) < PAGE_SIZE) { cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); @@ -2499,7 +2376,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) cachep->reciprocal_buffer_size = reciprocal_value(size); if (flags & CFLGS_OFF_SLAB) { - cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); + cachep->slabp_cache = kmalloc_slab(slab_size, 0u); /* * This is a possibility for one of the malloc_sizes caches. * But since we go off slab only for object size greater than @@ -2545,7 +2422,7 @@ static void check_spinlock_acquired(struct kmem_cache *cachep) { #ifdef CONFIG_SMP check_irq_off(); - assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); + assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); #endif } @@ -2553,7 +2430,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) { #ifdef CONFIG_SMP check_irq_off(); - assert_spin_locked(&cachep->nodelists[node]->list_lock); + assert_spin_locked(&cachep->node[node]->list_lock); #endif } @@ -2564,7 +2441,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) #define check_spinlock_acquired_node(x, y) do { } while(0) #endif -static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, +static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, struct array_cache *ac, int force, int node); @@ -2576,29 +2453,29 @@ static void do_drain(void *arg) check_irq_off(); ac = cpu_cache_get(cachep); - spin_lock(&cachep->nodelists[node]->list_lock); + spin_lock(&cachep->node[node]->list_lock); free_block(cachep, ac->entry, ac->avail, node); - spin_unlock(&cachep->nodelists[node]->list_lock); + spin_unlock(&cachep->node[node]->list_lock); ac->avail = 0; } static void drain_cpu_caches(struct kmem_cache *cachep) { - struct kmem_list3 *l3; + struct kmem_cache_node *n; int node; on_each_cpu(do_drain, cachep, 1); check_irq_on(); for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (l3 && l3->alien) - drain_alien_cache(cachep, l3->alien); + n = cachep->node[node]; + if (n && n->alien) + drain_alien_cache(cachep, n->alien); } for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (l3) - drain_array(cachep, l3, l3->shared, 1, node); + n = cachep->node[node]; + if (n) + drain_array(cachep, n, n->shared, 1, node); } } @@ -2609,19 +2486,19 @@ static void drain_cpu_caches(struct kmem_cache *cachep) * Returns the actual number of slabs released. */ static int drain_freelist(struct kmem_cache *cache, - struct kmem_list3 *l3, int tofree) + struct kmem_cache_node *n, int tofree) { struct list_head *p; int nr_freed; struct slab *slabp; nr_freed = 0; - while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { + while (nr_freed < tofree && !list_empty(&n->slabs_free)) { - spin_lock_irq(&l3->list_lock); - p = l3->slabs_free.prev; - if (p == &l3->slabs_free) { - spin_unlock_irq(&l3->list_lock); + spin_lock_irq(&n->list_lock); + p = n->slabs_free.prev; + if (p == &n->slabs_free) { + spin_unlock_irq(&n->list_lock); goto out; } @@ -2634,8 +2511,8 @@ static int drain_freelist(struct kmem_cache *cache, * Safe to drop the lock. The slab is no longer linked * to the cache. */ - l3->free_objects -= cache->num; - spin_unlock_irq(&l3->list_lock); + n->free_objects -= cache->num; + spin_unlock_irq(&n->list_lock); slab_destroy(cache, slabp); nr_freed++; } @@ -2647,20 +2524,20 @@ out: static int __cache_shrink(struct kmem_cache *cachep) { int ret = 0, i = 0; - struct kmem_list3 *l3; + struct kmem_cache_node *n; drain_cpu_caches(cachep); check_irq_on(); for_each_online_node(i) { - l3 = cachep->nodelists[i]; - if (!l3) + n = cachep->node[i]; + if (!n) continue; - drain_freelist(cachep, l3, l3->free_objects); + drain_freelist(cachep, n, n->free_objects); - ret += !list_empty(&l3->slabs_full) || - !list_empty(&l3->slabs_partial); + ret += !list_empty(&n->slabs_full) || + !list_empty(&n->slabs_partial); } return (ret ? 1 : 0); } @@ -2689,7 +2566,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); int __kmem_cache_shutdown(struct kmem_cache *cachep) { int i; - struct kmem_list3 *l3; + struct kmem_cache_node *n; int rc = __cache_shrink(cachep); if (rc) @@ -2698,13 +2575,13 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep) for_each_online_cpu(i) kfree(cachep->array[i]); - /* NUMA: free the list3 structures */ + /* NUMA: free the node structures */ for_each_online_node(i) { - l3 = cachep->nodelists[i]; - if (l3) { - kfree(l3->shared); - free_alien_cache(l3->alien); - kfree(l3); + n = cachep->node[i]; + if (n) { + kfree(n->shared); + free_alien_cache(n->alien); + kfree(n); } } return 0; @@ -2886,7 +2763,7 @@ static int cache_grow(struct kmem_cache *cachep, struct slab *slabp; size_t offset; gfp_t local_flags; - struct kmem_list3 *l3; + struct kmem_cache_node *n; /* * Be lazy and only check for valid flags here, keeping it out of the @@ -2895,17 +2772,17 @@ static int cache_grow(struct kmem_cache *cachep, BUG_ON(flags & GFP_SLAB_BUG_MASK); local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); - /* Take the l3 list lock to change the colour_next on this node */ + /* Take the node list lock to change the colour_next on this node */ check_irq_off(); - l3 = cachep->nodelists[nodeid]; - spin_lock(&l3->list_lock); + n = cachep->node[nodeid]; + spin_lock(&n->list_lock); /* Get colour for the slab, and cal the next value. */ - offset = l3->colour_next; - l3->colour_next++; - if (l3->colour_next >= cachep->colour) - l3->colour_next = 0; - spin_unlock(&l3->list_lock); + offset = n->colour_next; + n->colour_next++; + if (n->colour_next >= cachep->colour) + n->colour_next = 0; + spin_unlock(&n->list_lock); offset *= cachep->colour_off; @@ -2942,13 +2819,13 @@ static int cache_grow(struct kmem_cache *cachep, if (local_flags & __GFP_WAIT) local_irq_disable(); check_irq_off(); - spin_lock(&l3->list_lock); + spin_lock(&n->list_lock); /* Make slab active. */ - list_add_tail(&slabp->list, &(l3->slabs_free)); + list_add_tail(&slabp->list, &(n->slabs_free)); STATS_INC_GROWN(cachep); - l3->free_objects += cachep->num; - spin_unlock(&l3->list_lock); + n->free_objects += cachep->num; + spin_unlock(&n->list_lock); return 1; opps1: kmem_freepages(cachep, objp); @@ -3076,7 +2953,7 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, bool force_refill) { int batchcount; - struct kmem_list3 *l3; + struct kmem_cache_node *n; struct array_cache *ac; int node; @@ -3095,14 +2972,14 @@ retry: */ batchcount = BATCHREFILL_LIMIT; } - l3 = cachep->nodelists[node]; + n = cachep->node[node]; - BUG_ON(ac->avail > 0 || !l3); - spin_lock(&l3->list_lock); + BUG_ON(ac->avail > 0 || !n); + spin_lock(&n->list_lock); /* See if we can refill from the shared array */ - if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { - l3->shared->touched = 1; + if (n->shared && transfer_objects(ac, n->shared, batchcount)) { + n->shared->touched = 1; goto alloc_done; } @@ -3110,11 +2987,11 @@ retry: struct list_head *entry; struct slab *slabp; /* Get slab alloc is to come from. */ - entry = l3->slabs_partial.next; - if (entry == &l3->slabs_partial) { - l3->free_touched = 1; - entry = l3->slabs_free.next; - if (entry == &l3->slabs_free) + entry = n->slabs_partial.next; + if (entry == &n->slabs_partial) { + n->free_touched = 1; + entry = n->slabs_free.next; + if (entry == &n->slabs_free) goto must_grow; } @@ -3142,15 +3019,15 @@ retry: /* move slabp to correct slabp list: */ list_del(&slabp->list); if (slabp->free == BUFCTL_END) - list_add(&slabp->list, &l3->slabs_full); + list_add(&slabp->list, &n->slabs_full); else - list_add(&slabp->list, &l3->slabs_partial); + list_add(&slabp->list, &n->slabs_partial); } must_grow: - l3->free_objects -= ac->avail; + n->free_objects -= ac->avail; alloc_done: - spin_unlock(&l3->list_lock); + spin_unlock(&n->list_lock); if (unlikely(!ac->avail)) { int x; @@ -3317,7 +3194,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) /* * Fallback function if there was no memory available and no objects on a * certain node and fall back is permitted. First we scan all the - * available nodelists for available objects. If that fails then we + * available node for available objects. If that fails then we * perform an allocation without specifying a node. This allows the page * allocator to do its reclaim / fallback magic. We then insert the * slab into the proper nodelist and then allocate from it. @@ -3351,8 +3228,8 @@ retry: nid = zone_to_nid(zone); if (cpuset_zone_allowed_hardwall(zone, flags) && - cache->nodelists[nid] && - cache->nodelists[nid]->free_objects) { + cache->node[nid] && + cache->node[nid]->free_objects) { obj = ____cache_alloc_node(cache, flags | GFP_THISNODE, nid); if (obj) @@ -3408,21 +3285,22 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, { struct list_head *entry; struct slab *slabp; - struct kmem_list3 *l3; + struct kmem_cache_node *n; void *obj; int x; - l3 = cachep->nodelists[nodeid]; - BUG_ON(!l3); + VM_BUG_ON(nodeid > num_online_nodes()); + n = cachep->node[nodeid]; + BUG_ON(!n); retry: check_irq_off(); - spin_lock(&l3->list_lock); - entry = l3->slabs_partial.next; - if (entry == &l3->slabs_partial) { - l3->free_touched = 1; - entry = l3->slabs_free.next; - if (entry == &l3->slabs_free) + spin_lock(&n->list_lock); + entry = n->slabs_partial.next; + if (entry == &n->slabs_partial) { + n->free_touched = 1; + entry = n->slabs_free.next; + if (entry == &n->slabs_free) goto must_grow; } @@ -3438,20 +3316,20 @@ retry: obj = slab_get_obj(cachep, slabp, nodeid); check_slabp(cachep, slabp); - l3->free_objects--; + n->free_objects--; /* move slabp to correct slabp list: */ list_del(&slabp->list); if (slabp->free == BUFCTL_END) - list_add(&slabp->list, &l3->slabs_full); + list_add(&slabp->list, &n->slabs_full); else - list_add(&slabp->list, &l3->slabs_partial); + list_add(&slabp->list, &n->slabs_partial); - spin_unlock(&l3->list_lock); + spin_unlock(&n->list_lock); goto done; must_grow: - spin_unlock(&l3->list_lock); + spin_unlock(&n->list_lock); x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); if (x) goto retry; @@ -3497,7 +3375,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, if (nodeid == NUMA_NO_NODE) nodeid = slab_node; - if (unlikely(!cachep->nodelists[nodeid])) { + if (unlikely(!cachep->node[nodeid])) { /* Node not bootstrapped yet */ ptr = fallback_alloc(cachep, flags); goto out; @@ -3603,7 +3481,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, int node) { int i; - struct kmem_list3 *l3; + struct kmem_cache_node *n; for (i = 0; i < nr_objects; i++) { void *objp; @@ -3613,19 +3491,19 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, objp = objpp[i]; slabp = virt_to_slab(objp); - l3 = cachep->nodelists[node]; + n = cachep->node[node]; list_del(&slabp->list); check_spinlock_acquired_node(cachep, node); check_slabp(cachep, slabp); slab_put_obj(cachep, slabp, objp, node); STATS_DEC_ACTIVE(cachep); - l3->free_objects++; + n->free_objects++; check_slabp(cachep, slabp); /* fixup slab chains */ if (slabp->inuse == 0) { - if (l3->free_objects > l3->free_limit) { - l3->free_objects -= cachep->num; + if (n->free_objects > n->free_limit) { + n->free_objects -= cachep->num; /* No need to drop any previously held * lock here, even if we have a off-slab slab * descriptor it is guaranteed to come from @@ -3634,14 +3512,14 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, */ slab_destroy(cachep, slabp); } else { - list_add(&slabp->list, &l3->slabs_free); + list_add(&slabp->list, &n->slabs_free); } } else { /* Unconditionally move a slab to the end of the * partial list on free - maximum time for the * other objects to be freed, too. */ - list_add_tail(&slabp->list, &l3->slabs_partial); + list_add_tail(&slabp->list, &n->slabs_partial); } } } @@ -3649,7 +3527,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) { int batchcount; - struct kmem_list3 *l3; + struct kmem_cache_node *n; int node = numa_mem_id(); batchcount = ac->batchcount; @@ -3657,10 +3535,10 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) BUG_ON(!batchcount || batchcount > ac->avail); #endif check_irq_off(); - l3 = cachep->nodelists[node]; - spin_lock(&l3->list_lock); - if (l3->shared) { - struct array_cache *shared_array = l3->shared; + n = cachep->node[node]; + spin_lock(&n->list_lock); + if (n->shared) { + struct array_cache *shared_array = n->shared; int max = shared_array->limit - shared_array->avail; if (max) { if (batchcount > max) @@ -3679,8 +3557,8 @@ free_done: int i = 0; struct list_head *p; - p = l3->slabs_free.next; - while (p != &(l3->slabs_free)) { + p = n->slabs_free.next; + while (p != &(n->slabs_free)) { struct slab *slabp; slabp = list_entry(p, struct slab, list); @@ -3692,7 +3570,7 @@ free_done: STATS_SET_FREEABLE(cachep, i); } #endif - spin_unlock(&l3->list_lock); + spin_unlock(&n->list_lock); ac->avail -= batchcount; memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); } @@ -3802,7 +3680,7 @@ __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) { struct kmem_cache *cachep; - cachep = kmem_find_general_cachep(size, flags); + cachep = kmalloc_slab(size, flags); if (unlikely(ZERO_OR_NULL_PTR(cachep))) return cachep; return kmem_cache_alloc_node_trace(cachep, flags, node, size); @@ -3847,7 +3725,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, * Then kmalloc uses the uninlined functions instead of the inline * functions. */ - cachep = __find_general_cachep(size, flags); + cachep = kmalloc_slab(size, flags); if (unlikely(ZERO_OR_NULL_PTR(cachep))) return cachep; ret = slab_alloc(cachep, flags, caller); @@ -3936,12 +3814,12 @@ void kfree(const void *objp) EXPORT_SYMBOL(kfree); /* - * This initializes kmem_list3 or resizes various caches for all nodes. + * This initializes kmem_cache_node or resizes various caches for all nodes. */ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) { int node; - struct kmem_list3 *l3; + struct kmem_cache_node *n; struct array_cache *new_shared; struct array_cache **new_alien = NULL; @@ -3964,43 +3842,43 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) } } - l3 = cachep->nodelists[node]; - if (l3) { - struct array_cache *shared = l3->shared; + n = cachep->node[node]; + if (n) { + struct array_cache *shared = n->shared; - spin_lock_irq(&l3->list_lock); + spin_lock_irq(&n->list_lock); if (shared) free_block(cachep, shared->entry, shared->avail, node); - l3->shared = new_shared; - if (!l3->alien) { - l3->alien = new_alien; + n->shared = new_shared; + if (!n->alien) { + n->alien = new_alien; new_alien = NULL; } - l3->free_limit = (1 + nr_cpus_node(node)) * + n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; - spin_unlock_irq(&l3->list_lock); + spin_unlock_irq(&n->list_lock); kfree(shared); free_alien_cache(new_alien); continue; } - l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); - if (!l3) { + n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); + if (!n) { free_alien_cache(new_alien); kfree(new_shared); goto fail; } - kmem_list3_init(l3); - l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + + kmem_cache_node_init(n); + n->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; - l3->shared = new_shared; - l3->alien = new_alien; - l3->free_limit = (1 + nr_cpus_node(node)) * + n->shared = new_shared; + n->alien = new_alien; + n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; - cachep->nodelists[node] = l3; + cachep->node[node] = n; } return 0; @@ -4009,13 +3887,13 @@ fail: /* Cache is not active yet. Roll back what we did */ node--; while (node >= 0) { - if (cachep->nodelists[node]) { - l3 = cachep->nodelists[node]; + if (cachep->node[node]) { + n = cachep->node[node]; - kfree(l3->shared); - free_alien_cache(l3->alien); - kfree(l3); - cachep->nodelists[node] = NULL; + kfree(n->shared); + free_alien_cache(n->alien); + kfree(n); + cachep->node[node] = NULL; } node--; } @@ -4075,9 +3953,9 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, struct array_cache *ccold = new->new[i]; if (!ccold) continue; - spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); + spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); - spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); + spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); kfree(ccold); } kfree(new); @@ -4178,11 +4056,11 @@ skip_setup: } /* - * Drain an array if it contains any elements taking the l3 lock only if - * necessary. Note that the l3 listlock also protects the array_cache + * Drain an array if it contains any elements taking the node lock only if + * necessary. Note that the node listlock also protects the array_cache * if drain_array() is used on the shared array. */ -static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, +static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, struct array_cache *ac, int force, int node) { int tofree; @@ -4192,7 +4070,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, if (ac->touched && !force) { ac->touched = 0; } else { - spin_lock_irq(&l3->list_lock); + spin_lock_irq(&n->list_lock); if (ac->avail) { tofree = force ? ac->avail : (ac->limit + 4) / 5; if (tofree > ac->avail) @@ -4202,7 +4080,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); } - spin_unlock_irq(&l3->list_lock); + spin_unlock_irq(&n->list_lock); } } @@ -4221,7 +4099,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, static void cache_reap(struct work_struct *w) { struct kmem_cache *searchp; - struct kmem_list3 *l3; + struct kmem_cache_node *n; int node = numa_mem_id(); struct delayed_work *work = to_delayed_work(w); @@ -4233,33 +4111,33 @@ static void cache_reap(struct work_struct *w) check_irq_on(); /* - * We only take the l3 lock if absolutely necessary and we + * We only take the node lock if absolutely necessary and we * have established with reasonable certainty that * we can do some work if the lock was obtained. */ - l3 = searchp->nodelists[node]; + n = searchp->node[node]; - reap_alien(searchp, l3); + reap_alien(searchp, n); - drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); + drain_array(searchp, n, cpu_cache_get(searchp), 0, node); /* * These are racy checks but it does not matter * if we skip one check or scan twice. */ - if (time_after(l3->next_reap, jiffies)) + if (time_after(n->next_reap, jiffies)) goto next; - l3->next_reap = jiffies + REAPTIMEOUT_LIST3; + n->next_reap = jiffies + REAPTIMEOUT_LIST3; - drain_array(searchp, l3, l3->shared, 0, node); + drain_array(searchp, n, n->shared, 0, node); - if (l3->free_touched) - l3->free_touched = 0; + if (n->free_touched) + n->free_touched = 0; else { int freed; - freed = drain_freelist(searchp, l3, (l3->free_limit + + freed = drain_freelist(searchp, n, (n->free_limit + 5 * searchp->num - 1) / (5 * searchp->num)); STATS_ADD_REAPED(searchp, freed); } @@ -4285,25 +4163,25 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) const char *name; char *error = NULL; int node; - struct kmem_list3 *l3; + struct kmem_cache_node *n; active_objs = 0; num_slabs = 0; for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (!l3) + n = cachep->node[node]; + if (!n) continue; check_irq_on(); - spin_lock_irq(&l3->list_lock); + spin_lock_irq(&n->list_lock); - list_for_each_entry(slabp, &l3->slabs_full, list) { + list_for_each_entry(slabp, &n->slabs_full, list) { if (slabp->inuse != cachep->num && !error) error = "slabs_full accounting error"; active_objs += cachep->num; active_slabs++; } - list_for_each_entry(slabp, &l3->slabs_partial, list) { + list_for_each_entry(slabp, &n->slabs_partial, list) { if (slabp->inuse == cachep->num && !error) error = "slabs_partial inuse accounting error"; if (!slabp->inuse && !error) @@ -4311,16 +4189,16 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) active_objs += slabp->inuse; active_slabs++; } - list_for_each_entry(slabp, &l3->slabs_free, list) { + list_for_each_entry(slabp, &n->slabs_free, list) { if (slabp->inuse && !error) error = "slabs_free/inuse accounting error"; num_slabs++; } - free_objects += l3->free_objects; - if (l3->shared) - shared_avail += l3->shared->avail; + free_objects += n->free_objects; + if (n->shared) + shared_avail += n->shared->avail; - spin_unlock_irq(&l3->list_lock); + spin_unlock_irq(&n->list_lock); } num_slabs += active_slabs; num_objs = num_slabs * cachep->num; @@ -4346,7 +4224,7 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) { #if STATS - { /* list3 stats */ + { /* node stats */ unsigned long high = cachep->high_mark; unsigned long allocs = cachep->num_allocations; unsigned long grown = cachep->grown; @@ -4499,9 +4377,9 @@ static int leaks_show(struct seq_file *m, void *p) { struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); struct slab *slabp; - struct kmem_list3 *l3; + struct kmem_cache_node *n; const char *name; - unsigned long *n = m->private; + unsigned long *x = m->private; int node; int i; @@ -4512,43 +4390,43 @@ static int leaks_show(struct seq_file *m, void *p) /* OK, we can do it */ - n[1] = 0; + x[1] = 0; for_each_online_node(node) { - l3 = cachep->nodelists[node]; - if (!l3) + n = cachep->node[node]; + if (!n) continue; check_irq_on(); - spin_lock_irq(&l3->list_lock); + spin_lock_irq(&n->list_lock); - list_for_each_entry(slabp, &l3->slabs_full, list) - handle_slab(n, cachep, slabp); - list_for_each_entry(slabp, &l3->slabs_partial, list) - handle_slab(n, cachep, slabp); - spin_unlock_irq(&l3->list_lock); + list_for_each_entry(slabp, &n->slabs_full, list) + handle_slab(x, cachep, slabp); + list_for_each_entry(slabp, &n->slabs_partial, list) + handle_slab(x, cachep, slabp); + spin_unlock_irq(&n->list_lock); } name = cachep->name; - if (n[0] == n[1]) { + if (x[0] == x[1]) { /* Increase the buffer size */ mutex_unlock(&slab_mutex); - m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); + m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); if (!m->private) { /* Too bad, we are really out */ - m->private = n; + m->private = x; mutex_lock(&slab_mutex); return -ENOMEM; } - *(unsigned long *)m->private = n[0] * 2; - kfree(n); + *(unsigned long *)m->private = x[0] * 2; + kfree(x); mutex_lock(&slab_mutex); /* Now make sure this entry will be retried */ m->count = m->size; return 0; } - for (i = 0; i < n[1]; i++) { - seq_printf(m, "%s: %lu ", name, n[2*i+3]); - show_symbol(m, n[2*i+2]); + for (i = 0; i < x[1]; i++) { + seq_printf(m, "%s: %lu ", name, x[2*i+3]); + show_symbol(m, x[2*i+2]); seq_putc(m, '\n'); } diff --git a/mm/slab.h b/mm/slab.h index 34a98d64219..f96b49e4704 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -16,7 +16,7 @@ enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */ - PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */ + PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; @@ -35,6 +35,15 @@ extern struct kmem_cache *kmem_cache; unsigned long calculate_alignment(unsigned long flags, unsigned long align, unsigned long size); +#ifndef CONFIG_SLOB +/* Kmalloc array related functions */ +void create_kmalloc_caches(unsigned long); + +/* Find the kmalloc slab corresponding for a certain size */ +struct kmem_cache *kmalloc_slab(size_t, gfp_t); +#endif + + /* Functions provided by the slab allocators */ extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); @@ -230,3 +239,35 @@ static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) return s; } #endif + + +/* + * The slab lists for all objects. + */ +struct kmem_cache_node { + spinlock_t list_lock; + +#ifdef CONFIG_SLAB + struct list_head slabs_partial; /* partial list first, better asm code */ + struct list_head slabs_full; + struct list_head slabs_free; + unsigned long free_objects; + unsigned int free_limit; + unsigned int colour_next; /* Per-node cache coloring */ + struct array_cache *shared; /* shared per node */ + struct array_cache **alien; /* on other nodes */ + unsigned long next_reap; /* updated without locking */ + int free_touched; /* updated without locking */ +#endif + +#ifdef CONFIG_SLUB + unsigned long nr_partial; + struct list_head partial; +#ifdef CONFIG_SLUB_DEBUG + atomic_long_t nr_slabs; + atomic_long_t total_objects; + struct list_head full; +#endif +#endif + +}; diff --git a/mm/slab_common.c b/mm/slab_common.c index 3f3cd97d3fd..d2517b05d5b 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -299,7 +299,7 @@ void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t siz err = __kmem_cache_create(s, flags); if (err) - panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n", + panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", name, size, err); s->refcount = -1; /* Exempt from merging for now */ @@ -319,6 +319,178 @@ struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, return s; } +struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; +EXPORT_SYMBOL(kmalloc_caches); + +#ifdef CONFIG_ZONE_DMA +struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; +EXPORT_SYMBOL(kmalloc_dma_caches); +#endif + +/* + * Conversion table for small slabs sizes / 8 to the index in the + * kmalloc array. This is necessary for slabs < 192 since we have non power + * of two cache sizes there. The size of larger slabs can be determined using + * fls. + */ +static s8 size_index[24] = { + 3, /* 8 */ + 4, /* 16 */ + 5, /* 24 */ + 5, /* 32 */ + 6, /* 40 */ + 6, /* 48 */ + 6, /* 56 */ + 6, /* 64 */ + 1, /* 72 */ + 1, /* 80 */ + 1, /* 88 */ + 1, /* 96 */ + 7, /* 104 */ + 7, /* 112 */ + 7, /* 120 */ + 7, /* 128 */ + 2, /* 136 */ + 2, /* 144 */ + 2, /* 152 */ + 2, /* 160 */ + 2, /* 168 */ + 2, /* 176 */ + 2, /* 184 */ + 2 /* 192 */ +}; + +static inline int size_index_elem(size_t bytes) +{ + return (bytes - 1) / 8; +} + +/* + * Find the kmem_cache structure that serves a given size of + * allocation + */ +struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) +{ + int index; + + if (WARN_ON_ONCE(size > KMALLOC_MAX_SIZE)) + return NULL; + + if (size <= 192) { + if (!size) + return ZERO_SIZE_PTR; + + index = size_index[size_index_elem(size)]; + } else + index = fls(size - 1); + +#ifdef CONFIG_ZONE_DMA + if (unlikely((flags & GFP_DMA))) + return kmalloc_dma_caches[index]; + +#endif + return kmalloc_caches[index]; +} + +/* + * Create the kmalloc array. Some of the regular kmalloc arrays + * may already have been created because they were needed to + * enable allocations for slab creation. + */ +void __init create_kmalloc_caches(unsigned long flags) +{ + int i; + + /* + * Patch up the size_index table if we have strange large alignment + * requirements for the kmalloc array. This is only the case for + * MIPS it seems. The standard arches will not generate any code here. + * + * Largest permitted alignment is 256 bytes due to the way we + * handle the index determination for the smaller caches. + * + * Make sure that nothing crazy happens if someone starts tinkering + * around with ARCH_KMALLOC_MINALIGN + */ + BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || + (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); + + for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { + int elem = size_index_elem(i); + + if (elem >= ARRAY_SIZE(size_index)) + break; + size_index[elem] = KMALLOC_SHIFT_LOW; + } + + if (KMALLOC_MIN_SIZE >= 64) { + /* + * The 96 byte size cache is not used if the alignment + * is 64 byte. + */ + for (i = 64 + 8; i <= 96; i += 8) + size_index[size_index_elem(i)] = 7; + + } + + if (KMALLOC_MIN_SIZE >= 128) { + /* + * The 192 byte sized cache is not used if the alignment + * is 128 byte. Redirect kmalloc to use the 256 byte cache + * instead. + */ + for (i = 128 + 8; i <= 192; i += 8) + size_index[size_index_elem(i)] = 8; + } + for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { + if (!kmalloc_caches[i]) { + kmalloc_caches[i] = create_kmalloc_cache(NULL, + 1 << i, flags); + + /* + * Caches that are not of the two-to-the-power-of size. + * These have to be created immediately after the + * earlier power of two caches + */ + if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) + kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); + + if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) + kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); + } + } + + /* Kmalloc array is now usable */ + slab_state = UP; + + for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { + struct kmem_cache *s = kmalloc_caches[i]; + char *n; + + if (s) { + n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); + + BUG_ON(!n); + s->name = n; + } + } + +#ifdef CONFIG_ZONE_DMA + for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { + struct kmem_cache *s = kmalloc_caches[i]; + + if (s) { + int size = kmalloc_size(i); + char *n = kasprintf(GFP_NOWAIT, + "dma-kmalloc-%d", size); + + BUG_ON(!n); + kmalloc_dma_caches[i] = create_kmalloc_cache(n, + size, SLAB_CACHE_DMA | flags); + } + } +#endif +} #endif /* !CONFIG_SLOB */ diff --git a/mm/slub.c b/mm/slub.c index 4aec53705e4..2f6ea01d79c 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1005,7 +1005,7 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) * dilemma by deferring the increment of the count during * bootstrap (see early_kmem_cache_node_alloc). */ - if (n) { + if (likely(n)) { atomic_long_inc(&n->nr_slabs); atomic_long_add(objects, &n->total_objects); } @@ -1493,7 +1493,7 @@ static inline void remove_partial(struct kmem_cache_node *n, */ static inline void *acquire_slab(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page, - int mode) + int mode, int *objects) { void *freelist; unsigned long counters; @@ -1507,6 +1507,7 @@ static inline void *acquire_slab(struct kmem_cache *s, freelist = page->freelist; counters = page->counters; new.counters = counters; + *objects = new.objects - new.inuse; if (mode) { new.inuse = page->objects; new.freelist = NULL; @@ -1528,7 +1529,7 @@ static inline void *acquire_slab(struct kmem_cache *s, return freelist; } -static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); +static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); /* @@ -1539,6 +1540,8 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, { struct page *page, *page2; void *object = NULL; + int available = 0; + int objects; /* * Racy check. If we mistakenly see no partial slabs then we @@ -1552,22 +1555,21 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, spin_lock(&n->list_lock); list_for_each_entry_safe(page, page2, &n->partial, lru) { void *t; - int available; if (!pfmemalloc_match(page, flags)) continue; - t = acquire_slab(s, n, page, object == NULL); + t = acquire_slab(s, n, page, object == NULL, &objects); if (!t) break; + available += objects; if (!object) { c->page = page; stat(s, ALLOC_FROM_PARTIAL); object = t; - available = page->objects - page->inuse; } else { - available = put_cpu_partial(s, page, 0); + put_cpu_partial(s, page, 0); stat(s, CPU_PARTIAL_NODE); } if (kmem_cache_debug(s) || available > s->cpu_partial / 2) @@ -1946,7 +1948,7 @@ static void unfreeze_partials(struct kmem_cache *s, * If we did not find a slot then simply move all the partials to the * per node partial list. */ -static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) +static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) { struct page *oldpage; int pages; @@ -1984,7 +1986,6 @@ static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) page->next = oldpage; } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); - return pobjects; } static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) @@ -2041,7 +2042,7 @@ static void flush_all(struct kmem_cache *s) static inline int node_match(struct page *page, int node) { #ifdef CONFIG_NUMA - if (node != NUMA_NO_NODE && page_to_nid(page) != node) + if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) return 0; #endif return 1; @@ -2331,13 +2332,18 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s, s = memcg_kmem_get_cache(s, gfpflags); redo: - /* * Must read kmem_cache cpu data via this cpu ptr. Preemption is * enabled. We may switch back and forth between cpus while * reading from one cpu area. That does not matter as long * as we end up on the original cpu again when doing the cmpxchg. + * + * Preemption is disabled for the retrieval of the tid because that + * must occur from the current processor. We cannot allow rescheduling + * on a different processor between the determination of the pointer + * and the retrieval of the tid. */ + preempt_disable(); c = __this_cpu_ptr(s->cpu_slab); /* @@ -2347,7 +2353,7 @@ redo: * linked list in between. */ tid = c->tid; - barrier(); + preempt_enable(); object = c->freelist; page = c->page; @@ -2594,10 +2600,11 @@ redo: * data is retrieved via this pointer. If we are on the same cpu * during the cmpxchg then the free will succedd. */ + preempt_disable(); c = __this_cpu_ptr(s->cpu_slab); tid = c->tid; - barrier(); + preempt_enable(); if (likely(page == c->page)) { set_freepointer(s, object, c->freelist); @@ -2775,7 +2782,7 @@ init_kmem_cache_node(struct kmem_cache_node *n) static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) { BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < - SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); + KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); /* * Must align to double word boundary for the double cmpxchg @@ -2982,7 +2989,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) s->allocflags |= __GFP_COMP; if (s->flags & SLAB_CACHE_DMA) - s->allocflags |= SLUB_DMA; + s->allocflags |= GFP_DMA; if (s->flags & SLAB_RECLAIM_ACCOUNT) s->allocflags |= __GFP_RECLAIMABLE; @@ -3174,13 +3181,6 @@ int __kmem_cache_shutdown(struct kmem_cache *s) * Kmalloc subsystem *******************************************************************/ -struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; -EXPORT_SYMBOL(kmalloc_caches); - -#ifdef CONFIG_ZONE_DMA -static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; -#endif - static int __init setup_slub_min_order(char *str) { get_option(&str, &slub_min_order); @@ -3217,73 +3217,15 @@ static int __init setup_slub_nomerge(char *str) __setup("slub_nomerge", setup_slub_nomerge); -/* - * Conversion table for small slabs sizes / 8 to the index in the - * kmalloc array. This is necessary for slabs < 192 since we have non power - * of two cache sizes there. The size of larger slabs can be determined using - * fls. - */ -static s8 size_index[24] = { - 3, /* 8 */ - 4, /* 16 */ - 5, /* 24 */ - 5, /* 32 */ - 6, /* 40 */ - 6, /* 48 */ - 6, /* 56 */ - 6, /* 64 */ - 1, /* 72 */ - 1, /* 80 */ - 1, /* 88 */ - 1, /* 96 */ - 7, /* 104 */ - 7, /* 112 */ - 7, /* 120 */ - 7, /* 128 */ - 2, /* 136 */ - 2, /* 144 */ - 2, /* 152 */ - 2, /* 160 */ - 2, /* 168 */ - 2, /* 176 */ - 2, /* 184 */ - 2 /* 192 */ -}; - -static inline int size_index_elem(size_t bytes) -{ - return (bytes - 1) / 8; -} - -static struct kmem_cache *get_slab(size_t size, gfp_t flags) -{ - int index; - - if (size <= 192) { - if (!size) - return ZERO_SIZE_PTR; - - index = size_index[size_index_elem(size)]; - } else - index = fls(size - 1); - -#ifdef CONFIG_ZONE_DMA - if (unlikely((flags & SLUB_DMA))) - return kmalloc_dma_caches[index]; - -#endif - return kmalloc_caches[index]; -} - void *__kmalloc(size_t size, gfp_t flags) { struct kmem_cache *s; void *ret; - if (unlikely(size > SLUB_MAX_SIZE)) + if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) return kmalloc_large(size, flags); - s = get_slab(size, flags); + s = kmalloc_slab(size, flags); if (unlikely(ZERO_OR_NULL_PTR(s))) return s; @@ -3316,7 +3258,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) struct kmem_cache *s; void *ret; - if (unlikely(size > SLUB_MAX_SIZE)) { + if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { ret = kmalloc_large_node(size, flags, node); trace_kmalloc_node(_RET_IP_, ret, @@ -3326,7 +3268,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) return ret; } - s = get_slab(size, flags); + s = kmalloc_slab(size, flags); if (unlikely(ZERO_OR_NULL_PTR(s))) return s; @@ -3617,6 +3559,12 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) memcpy(s, static_cache, kmem_cache->object_size); + /* + * This runs very early, and only the boot processor is supposed to be + * up. Even if it weren't true, IRQs are not up so we couldn't fire + * IPIs around. + */ + __flush_cpu_slab(s, smp_processor_id()); for_each_node_state(node, N_NORMAL_MEMORY) { struct kmem_cache_node *n = get_node(s, node); struct page *p; @@ -3639,8 +3587,6 @@ void __init kmem_cache_init(void) { static __initdata struct kmem_cache boot_kmem_cache, boot_kmem_cache_node; - int i; - int caches = 2; if (debug_guardpage_minorder()) slub_max_order = 0; @@ -3671,103 +3617,16 @@ void __init kmem_cache_init(void) kmem_cache_node = bootstrap(&boot_kmem_cache_node); /* Now we can use the kmem_cache to allocate kmalloc slabs */ - - /* - * Patch up the size_index table if we have strange large alignment - * requirements for the kmalloc array. This is only the case for - * MIPS it seems. The standard arches will not generate any code here. - * - * Largest permitted alignment is 256 bytes due to the way we - * handle the index determination for the smaller caches. - * - * Make sure that nothing crazy happens if someone starts tinkering - * around with ARCH_KMALLOC_MINALIGN - */ - BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || - (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); - - for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { - int elem = size_index_elem(i); - if (elem >= ARRAY_SIZE(size_index)) - break; - size_index[elem] = KMALLOC_SHIFT_LOW; - } - - if (KMALLOC_MIN_SIZE == 64) { - /* - * The 96 byte size cache is not used if the alignment - * is 64 byte. - */ - for (i = 64 + 8; i <= 96; i += 8) - size_index[size_index_elem(i)] = 7; - } else if (KMALLOC_MIN_SIZE == 128) { - /* - * The 192 byte sized cache is not used if the alignment - * is 128 byte. Redirect kmalloc to use the 256 byte cache - * instead. - */ - for (i = 128 + 8; i <= 192; i += 8) - size_index[size_index_elem(i)] = 8; - } - - /* Caches that are not of the two-to-the-power-of size */ - if (KMALLOC_MIN_SIZE <= 32) { - kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); - caches++; - } - - if (KMALLOC_MIN_SIZE <= 64) { - kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); - caches++; - } - - for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { - kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); - caches++; - } - - slab_state = UP; - - /* Provide the correct kmalloc names now that the caches are up */ - if (KMALLOC_MIN_SIZE <= 32) { - kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); - BUG_ON(!kmalloc_caches[1]->name); - } - - if (KMALLOC_MIN_SIZE <= 64) { - kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); - BUG_ON(!kmalloc_caches[2]->name); - } - - for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { - char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); - - BUG_ON(!s); - kmalloc_caches[i]->name = s; - } + create_kmalloc_caches(0); #ifdef CONFIG_SMP register_cpu_notifier(&slab_notifier); #endif -#ifdef CONFIG_ZONE_DMA - for (i = 0; i < SLUB_PAGE_SHIFT; i++) { - struct kmem_cache *s = kmalloc_caches[i]; - - if (s && s->size) { - char *name = kasprintf(GFP_NOWAIT, - "dma-kmalloc-%d", s->object_size); - - BUG_ON(!name); - kmalloc_dma_caches[i] = create_kmalloc_cache(name, - s->object_size, SLAB_CACHE_DMA); - } - } -#endif printk(KERN_INFO - "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," + "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d," " CPUs=%d, Nodes=%d\n", - caches, cache_line_size(), + cache_line_size(), slub_min_order, slub_max_order, slub_min_objects, nr_cpu_ids, nr_node_ids); } @@ -3930,10 +3789,10 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) struct kmem_cache *s; void *ret; - if (unlikely(size > SLUB_MAX_SIZE)) + if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) return kmalloc_large(size, gfpflags); - s = get_slab(size, gfpflags); + s = kmalloc_slab(size, gfpflags); if (unlikely(ZERO_OR_NULL_PTR(s))) return s; @@ -3953,7 +3812,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, struct kmem_cache *s; void *ret; - if (unlikely(size > SLUB_MAX_SIZE)) { + if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { ret = kmalloc_large_node(size, gfpflags, node); trace_kmalloc_node(caller, ret, @@ -3963,7 +3822,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, return ret; } - s = get_slab(size, gfpflags); + s = kmalloc_slab(size, gfpflags); if (unlikely(ZERO_OR_NULL_PTR(s))) return s; @@ -4312,7 +4171,7 @@ static void resiliency_test(void) { u8 *p; - BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); + BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); printk(KERN_ERR "SLUB resiliency testing\n"); printk(KERN_ERR "-----------------------\n"); |