diff options
author | David Gibson <david@gibson.dropbear.id.au> | 2007-04-30 16:30:56 +1000 |
---|---|---|
committer | Paul Mackerras <paulus@samba.org> | 2007-05-02 20:04:30 +1000 |
commit | f88df14b1f15cdeffa060580a40c1ce3e13bb79e (patch) | |
tree | 0619f32c2be79a85792537ad4410cc8d729f4f75 | |
parent | 69d48b409cac747cc0707b05b769e38488a6ad35 (diff) |
[POWERPC] Remove arch/powerpc's dependence on asm-ppc/pg{alloc,table}.h
Currently, all 32-bit powerpc platforms use asm-ppc/pgtable.h and
asm-ppc/pgalloc.h, even when otherwise compiled with ARCH=powerpc.
Those asm-ppc files are a fairly nasty tangle of #ifdefs including a
bunch of things which shouldn't be necessary any more in arch/powerpc.
Cleaning up that mess is going to take a while, but this patch is a
first step. It separates the asm-powerpc/pg{alloc,table}.h into 64
bit and 32 bit versions in asm-powerpc, which the basic .h files in
asm-powerpc select based on config. We make a few tiny tweaks to the
innards of the files along the way, making the outermost ifdefs
(double-inclusion protection and __KERNEL__) a little cleaner, and
#including asm-generic/pgtable.h from the top-level
asm-powerpc/pgtable.h (since both the old 32-bit and 64-bit versions
ended with such an #include).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
-rw-r--r-- | include/asm-powerpc/pgalloc-32.h | 41 | ||||
-rw-r--r-- | include/asm-powerpc/pgalloc-64.h | 152 | ||||
-rw-r--r-- | include/asm-powerpc/pgalloc.h | 154 | ||||
-rw-r--r-- | include/asm-powerpc/pgtable-4k.h | 3 | ||||
-rw-r--r-- | include/asm-powerpc/pgtable-64k.h | 5 | ||||
-rw-r--r-- | include/asm-powerpc/pgtable-ppc32.h | 838 | ||||
-rw-r--r-- | include/asm-powerpc/pgtable-ppc64.h | 492 | ||||
-rw-r--r-- | include/asm-powerpc/pgtable.h | 493 |
8 files changed, 1532 insertions, 646 deletions
diff --git a/include/asm-powerpc/pgalloc-32.h b/include/asm-powerpc/pgalloc-32.h new file mode 100644 index 00000000000..235aef283ed --- /dev/null +++ b/include/asm-powerpc/pgalloc-32.h @@ -0,0 +1,41 @@ +#ifndef _ASM_POWERPC_PGALLOC_32_H +#define _ASM_POWERPC_PGALLOC_32_H + +#include <linux/threads.h> + +extern void __bad_pte(pmd_t *pmd); + +extern pgd_t *pgd_alloc(struct mm_struct *mm); +extern void pgd_free(pgd_t *pgd); + +/* + * We don't have any real pmd's, and this code never triggers because + * the pgd will always be present.. + */ +#define pmd_alloc_one(mm,address) ({ BUG(); ((pmd_t *)2); }) +#define pmd_free(x) do { } while (0) +#define __pmd_free_tlb(tlb,x) do { } while (0) +#define pgd_populate(mm, pmd, pte) BUG() + +#ifndef CONFIG_BOOKE +#define pmd_populate_kernel(mm, pmd, pte) \ + (pmd_val(*(pmd)) = __pa(pte) | _PMD_PRESENT) +#define pmd_populate(mm, pmd, pte) \ + (pmd_val(*(pmd)) = (page_to_pfn(pte) << PAGE_SHIFT) | _PMD_PRESENT) +#else +#define pmd_populate_kernel(mm, pmd, pte) \ + (pmd_val(*(pmd)) = (unsigned long)pte | _PMD_PRESENT) +#define pmd_populate(mm, pmd, pte) \ + (pmd_val(*(pmd)) = (unsigned long)lowmem_page_address(pte) | _PMD_PRESENT) +#endif + +extern pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr); +extern struct page *pte_alloc_one(struct mm_struct *mm, unsigned long addr); +extern void pte_free_kernel(pte_t *pte); +extern void pte_free(struct page *pte); + +#define __pte_free_tlb(tlb, pte) pte_free((pte)) + +#define check_pgt_cache() do { } while (0) + +#endif /* _ASM_POWERPC_PGALLOC_32_H */ diff --git a/include/asm-powerpc/pgalloc-64.h b/include/asm-powerpc/pgalloc-64.h new file mode 100644 index 00000000000..30b50cf56e2 --- /dev/null +++ b/include/asm-powerpc/pgalloc-64.h @@ -0,0 +1,152 @@ +#ifndef _ASM_POWERPC_PGALLOC_64_H +#define _ASM_POWERPC_PGALLOC_64_H +/* + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/cpumask.h> +#include <linux/percpu.h> + +extern struct kmem_cache *pgtable_cache[]; + +#ifdef CONFIG_PPC_64K_PAGES +#define PTE_CACHE_NUM 0 +#define PMD_CACHE_NUM 1 +#define PGD_CACHE_NUM 2 +#define HUGEPTE_CACHE_NUM 3 +#else +#define PTE_CACHE_NUM 0 +#define PMD_CACHE_NUM 1 +#define PUD_CACHE_NUM 1 +#define PGD_CACHE_NUM 0 +#define HUGEPTE_CACHE_NUM 2 +#endif + +static inline pgd_t *pgd_alloc(struct mm_struct *mm) +{ + return kmem_cache_alloc(pgtable_cache[PGD_CACHE_NUM], GFP_KERNEL); +} + +static inline void pgd_free(pgd_t *pgd) +{ + kmem_cache_free(pgtable_cache[PGD_CACHE_NUM], pgd); +} + +#ifndef CONFIG_PPC_64K_PAGES + +#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD) + +static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) +{ + return kmem_cache_alloc(pgtable_cache[PUD_CACHE_NUM], + GFP_KERNEL|__GFP_REPEAT); +} + +static inline void pud_free(pud_t *pud) +{ + kmem_cache_free(pgtable_cache[PUD_CACHE_NUM], pud); +} + +static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) +{ + pud_set(pud, (unsigned long)pmd); +} + +#define pmd_populate(mm, pmd, pte_page) \ + pmd_populate_kernel(mm, pmd, page_address(pte_page)) +#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte)) + + +#else /* CONFIG_PPC_64K_PAGES */ + +#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd) + +static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, + pte_t *pte) +{ + pmd_set(pmd, (unsigned long)pte); +} + +#define pmd_populate(mm, pmd, pte_page) \ + pmd_populate_kernel(mm, pmd, page_address(pte_page)) + +#endif /* CONFIG_PPC_64K_PAGES */ + +static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) +{ + return kmem_cache_alloc(pgtable_cache[PMD_CACHE_NUM], + GFP_KERNEL|__GFP_REPEAT); +} + +static inline void pmd_free(pmd_t *pmd) +{ + kmem_cache_free(pgtable_cache[PMD_CACHE_NUM], pmd); +} + +static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, + unsigned long address) +{ + return kmem_cache_alloc(pgtable_cache[PTE_CACHE_NUM], + GFP_KERNEL|__GFP_REPEAT); +} + +static inline struct page *pte_alloc_one(struct mm_struct *mm, + unsigned long address) +{ + return virt_to_page(pte_alloc_one_kernel(mm, address)); +} + +static inline void pte_free_kernel(pte_t *pte) +{ + kmem_cache_free(pgtable_cache[PTE_CACHE_NUM], pte); +} + +static inline void pte_free(struct page *ptepage) +{ + pte_free_kernel(page_address(ptepage)); +} + +#define PGF_CACHENUM_MASK 0x3 + +typedef struct pgtable_free { + unsigned long val; +} pgtable_free_t; + +static inline pgtable_free_t pgtable_free_cache(void *p, int cachenum, + unsigned long mask) +{ + BUG_ON(cachenum > PGF_CACHENUM_MASK); + + return (pgtable_free_t){.val = ((unsigned long) p & ~mask) | cachenum}; +} + +static inline void pgtable_free(pgtable_free_t pgf) +{ + void *p = (void *)(pgf.val & ~PGF_CACHENUM_MASK); + int cachenum = pgf.val & PGF_CACHENUM_MASK; + + kmem_cache_free(pgtable_cache[cachenum], p); +} + +extern void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf); + +#define __pte_free_tlb(tlb, ptepage) \ + pgtable_free_tlb(tlb, pgtable_free_cache(page_address(ptepage), \ + PTE_CACHE_NUM, PTE_TABLE_SIZE-1)) +#define __pmd_free_tlb(tlb, pmd) \ + pgtable_free_tlb(tlb, pgtable_free_cache(pmd, \ + PMD_CACHE_NUM, PMD_TABLE_SIZE-1)) +#ifndef CONFIG_PPC_64K_PAGES +#define __pud_free_tlb(tlb, pud) \ + pgtable_free_tlb(tlb, pgtable_free_cache(pud, \ + PUD_CACHE_NUM, PUD_TABLE_SIZE-1)) +#endif /* CONFIG_PPC_64K_PAGES */ + +#define check_pgt_cache() do { } while (0) + +#endif /* _ASM_POWERPC_PGALLOC_64_H */ diff --git a/include/asm-powerpc/pgalloc.h b/include/asm-powerpc/pgalloc.h index b0830db68f8..b4505ed0f0f 100644 --- a/include/asm-powerpc/pgalloc.h +++ b/include/asm-powerpc/pgalloc.h @@ -2,159 +2,11 @@ #define _ASM_POWERPC_PGALLOC_H #ifdef __KERNEL__ -#ifndef CONFIG_PPC64 -#include <asm-ppc/pgalloc.h> +#ifdef CONFIG_PPC64 +#include <asm/pgalloc-64.h> #else - -#include <linux/mm.h> -#include <linux/slab.h> -#include <linux/cpumask.h> -#include <linux/percpu.h> - -extern struct kmem_cache *pgtable_cache[]; - -#ifdef CONFIG_PPC_64K_PAGES -#define PTE_CACHE_NUM 0 -#define PMD_CACHE_NUM 1 -#define PGD_CACHE_NUM 2 -#define HUGEPTE_CACHE_NUM 3 -#else -#define PTE_CACHE_NUM 0 -#define PMD_CACHE_NUM 1 -#define PUD_CACHE_NUM 1 -#define PGD_CACHE_NUM 0 -#define HUGEPTE_CACHE_NUM 2 +#include <asm/pgalloc-32.h> #endif -/* - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version - * 2 of the License, or (at your option) any later version. - */ - -static inline pgd_t *pgd_alloc(struct mm_struct *mm) -{ - return kmem_cache_alloc(pgtable_cache[PGD_CACHE_NUM], GFP_KERNEL); -} - -static inline void pgd_free(pgd_t *pgd) -{ - kmem_cache_free(pgtable_cache[PGD_CACHE_NUM], pgd); -} - -#ifndef CONFIG_PPC_64K_PAGES - -#define pgd_populate(MM, PGD, PUD) pgd_set(PGD, PUD) - -static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr) -{ - return kmem_cache_alloc(pgtable_cache[PUD_CACHE_NUM], - GFP_KERNEL|__GFP_REPEAT); -} - -static inline void pud_free(pud_t *pud) -{ - kmem_cache_free(pgtable_cache[PUD_CACHE_NUM], pud); -} - -static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) -{ - pud_set(pud, (unsigned long)pmd); -} - -#define pmd_populate(mm, pmd, pte_page) \ - pmd_populate_kernel(mm, pmd, page_address(pte_page)) -#define pmd_populate_kernel(mm, pmd, pte) pmd_set(pmd, (unsigned long)(pte)) - - -#else /* CONFIG_PPC_64K_PAGES */ - -#define pud_populate(mm, pud, pmd) pud_set(pud, (unsigned long)pmd) - -static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, - pte_t *pte) -{ - pmd_set(pmd, (unsigned long)pte); -} - -#define pmd_populate(mm, pmd, pte_page) \ - pmd_populate_kernel(mm, pmd, page_address(pte_page)) - -#endif /* CONFIG_PPC_64K_PAGES */ - -static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr) -{ - return kmem_cache_alloc(pgtable_cache[PMD_CACHE_NUM], - GFP_KERNEL|__GFP_REPEAT); -} - -static inline void pmd_free(pmd_t *pmd) -{ - kmem_cache_free(pgtable_cache[PMD_CACHE_NUM], pmd); -} - -static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, - unsigned long address) -{ - return kmem_cache_alloc(pgtable_cache[PTE_CACHE_NUM], - GFP_KERNEL|__GFP_REPEAT); -} - -static inline struct page *pte_alloc_one(struct mm_struct *mm, - unsigned long address) -{ - return virt_to_page(pte_alloc_one_kernel(mm, address)); -} - -static inline void pte_free_kernel(pte_t *pte) -{ - kmem_cache_free(pgtable_cache[PTE_CACHE_NUM], pte); -} - -static inline void pte_free(struct page *ptepage) -{ - pte_free_kernel(page_address(ptepage)); -} - -#define PGF_CACHENUM_MASK 0x3 - -typedef struct pgtable_free { - unsigned long val; -} pgtable_free_t; - -static inline pgtable_free_t pgtable_free_cache(void *p, int cachenum, - unsigned long mask) -{ - BUG_ON(cachenum > PGF_CACHENUM_MASK); - - return (pgtable_free_t){.val = ((unsigned long) p & ~mask) | cachenum}; -} - -static inline void pgtable_free(pgtable_free_t pgf) -{ - void *p = (void *)(pgf.val & ~PGF_CACHENUM_MASK); - int cachenum = pgf.val & PGF_CACHENUM_MASK; - - kmem_cache_free(pgtable_cache[cachenum], p); -} - -extern void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf); - -#define __pte_free_tlb(tlb, ptepage) \ - pgtable_free_tlb(tlb, pgtable_free_cache(page_address(ptepage), \ - PTE_CACHE_NUM, PTE_TABLE_SIZE-1)) -#define __pmd_free_tlb(tlb, pmd) \ - pgtable_free_tlb(tlb, pgtable_free_cache(pmd, \ - PMD_CACHE_NUM, PMD_TABLE_SIZE-1)) -#ifndef CONFIG_PPC_64K_PAGES -#define __pud_free_tlb(tlb, pud) \ - pgtable_free_tlb(tlb, pgtable_free_cache(pud, \ - PUD_CACHE_NUM, PUD_TABLE_SIZE-1)) -#endif /* CONFIG_PPC_64K_PAGES */ - -#define check_pgt_cache() do { } while (0) - -#endif /* CONFIG_PPC64 */ #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_PGALLOC_H */ diff --git a/include/asm-powerpc/pgtable-4k.h b/include/asm-powerpc/pgtable-4k.h index a28fa8bc01d..1744d6ac12a 100644 --- a/include/asm-powerpc/pgtable-4k.h +++ b/include/asm-powerpc/pgtable-4k.h @@ -1,3 +1,5 @@ +#ifndef _ASM_POWERPC_PGTABLE_4K_H +#define _ASM_POWERPC_PGTABLE_4K_H /* * Entries per page directory level. The PTE level must use a 64b record * for each page table entry. The PMD and PGD level use a 32b record for @@ -100,3 +102,4 @@ #define remap_4k_pfn(vma, addr, pfn, prot) \ remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, (prot)) +#endif /* _ASM_POWERPC_PGTABLE_4K_H */ diff --git a/include/asm-powerpc/pgtable-64k.h b/include/asm-powerpc/pgtable-64k.h index 5e84f070eaf..16ef4978520 100644 --- a/include/asm-powerpc/pgtable-64k.h +++ b/include/asm-powerpc/pgtable-64k.h @@ -1,6 +1,5 @@ #ifndef _ASM_POWERPC_PGTABLE_64K_H #define _ASM_POWERPC_PGTABLE_64K_H -#ifdef __KERNEL__ #include <asm-generic/pgtable-nopud.h> @@ -65,8 +64,6 @@ /* Bits to mask out from a PGD/PUD to get to the PMD page */ #define PUD_MASKED_BITS 0x1ff -#ifndef __ASSEMBLY__ - /* Manipulate "rpte" values */ #define __real_pte(e,p) ((real_pte_t) { \ (e), pte_val(*((p) + PTRS_PER_PTE)) }) @@ -98,6 +95,4 @@ remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, \ __pgprot(pgprot_val((prot)) | _PAGE_4K_PFN)) -#endif /* __ASSEMBLY__ */ -#endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_PGTABLE_64K_H */ diff --git a/include/asm-powerpc/pgtable-ppc32.h b/include/asm-powerpc/pgtable-ppc32.h new file mode 100644 index 00000000000..80c75474c65 --- /dev/null +++ b/include/asm-powerpc/pgtable-ppc32.h @@ -0,0 +1,838 @@ +#ifndef _ASM_POWERPC_PGTABLE_PPC32_H +#define _ASM_POWERPC_PGTABLE_PPC32_H + +#include <asm-generic/4level-fixup.h> + +#ifndef __ASSEMBLY__ +#include <linux/sched.h> +#include <linux/threads.h> +#include <asm/processor.h> /* For TASK_SIZE */ +#include <asm/mmu.h> +#include <asm/page.h> +#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ +struct mm_struct; + +extern unsigned long va_to_phys(unsigned long address); +extern pte_t *va_to_pte(unsigned long address); +extern unsigned long ioremap_bot, ioremap_base; +#endif /* __ASSEMBLY__ */ + +/* + * The PowerPC MMU uses a hash table containing PTEs, together with + * a set of 16 segment registers (on 32-bit implementations), to define + * the virtual to physical address mapping. + * + * We use the hash table as an extended TLB, i.e. a cache of currently + * active mappings. We maintain a two-level page table tree, much + * like that used by the i386, for the sake of the Linux memory + * management code. Low-level assembler code in hashtable.S + * (procedure hash_page) is responsible for extracting ptes from the + * tree and putting them into the hash table when necessary, and + * updating the accessed and modified bits in the page table tree. + */ + +/* + * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. + * We also use the two level tables, but we can put the real bits in them + * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, + * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has + * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit + * based upon user/super access. The TLB does not have accessed nor write + * protect. We assume that if the TLB get loaded with an entry it is + * accessed, and overload the changed bit for write protect. We use + * two bits in the software pte that are supposed to be set to zero in + * the TLB entry (24 and 25) for these indicators. Although the level 1 + * descriptor contains the guarded and writethrough/copyback bits, we can + * set these at the page level since they get copied from the Mx_TWC + * register when the TLB entry is loaded. We will use bit 27 for guard, since + * that is where it exists in the MD_TWC, and bit 26 for writethrough. + * These will get masked from the level 2 descriptor at TLB load time, and + * copied to the MD_TWC before it gets loaded. + * Large page sizes added. We currently support two sizes, 4K and 8M. + * This also allows a TLB hander optimization because we can directly + * load the PMD into MD_TWC. The 8M pages are only used for kernel + * mapping of well known areas. The PMD (PGD) entries contain control + * flags in addition to the address, so care must be taken that the + * software no longer assumes these are only pointers. + */ + +/* + * At present, all PowerPC 400-class processors share a similar TLB + * architecture. The instruction and data sides share a unified, + * 64-entry, fully-associative TLB which is maintained totally under + * software control. In addition, the instruction side has a + * hardware-managed, 4-entry, fully-associative TLB which serves as a + * first level to the shared TLB. These two TLBs are known as the UTLB + * and ITLB, respectively (see "mmu.h" for definitions). + */ + +/* + * The normal case is that PTEs are 32-bits and we have a 1-page + * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus + * + * For any >32-bit physical address platform, we can use the following + * two level page table layout where the pgdir is 8KB and the MS 13 bits + * are an index to the second level table. The combined pgdir/pmd first + * level has 2048 entries and the second level has 512 64-bit PTE entries. + * -Matt + */ +/* PMD_SHIFT determines the size of the area mapped by the PTE pages */ +#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) +#define PMD_SIZE (1UL << PMD_SHIFT) +#define PMD_MASK (~(PMD_SIZE-1)) + +/* PGDIR_SHIFT determines what a top-level page table entry can map */ +#define PGDIR_SHIFT PMD_SHIFT +#define PGDIR_SIZE (1UL << PGDIR_SHIFT) +#define PGDIR_MASK (~(PGDIR_SIZE-1)) + +/* + * entries per page directory level: our page-table tree is two-level, so + * we don't really have any PMD directory. + */ +#define PTRS_PER_PTE (1 << PTE_SHIFT) +#define PTRS_PER_PMD 1 +#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) + +#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) +#define FIRST_USER_ADDRESS 0 + +#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) +#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) + +#define pte_ERROR(e) \ + printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) +#define pmd_ERROR(e) \ + printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) +#define pgd_ERROR(e) \ + printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) + +/* + * Just any arbitrary offset to the start of the vmalloc VM area: the + * current 64MB value just means that there will be a 64MB "hole" after the + * physical memory until the kernel virtual memory starts. That means that + * any out-of-bounds memory accesses will hopefully be caught. + * The vmalloc() routines leaves a hole of 4kB between each vmalloced + * area for the same reason. ;) + * + * We no longer map larger than phys RAM with the BATs so we don't have + * to worry about the VMALLOC_OFFSET causing problems. We do have to worry + * about clashes between our early calls to ioremap() that start growing down + * from ioremap_base being run into the VM area allocations (growing upwards + * from VMALLOC_START). For this reason we have ioremap_bot to check when + * we actually run into our mappings setup in the early boot with the VM + * system. This really does become a problem for machines with good amounts + * of RAM. -- Cort + */ +#define VMALLOC_OFFSET (0x1000000) /* 16M */ +#ifdef PPC_PIN_SIZE +#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) +#else +#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) +#endif +#define VMALLOC_END ioremap_bot + +/* + * Bits in a linux-style PTE. These match the bits in the + * (hardware-defined) PowerPC PTE as closely as possible. + */ + +#if defined(CONFIG_40x) + +/* There are several potential gotchas here. The 40x hardware TLBLO + field looks like this: + + 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 + RPN..................... 0 0 EX WR ZSEL....... W I M G + + Where possible we make the Linux PTE bits match up with this + + - bits 20 and 21 must be cleared, because we use 4k pages (40x can + support down to 1k pages), this is done in the TLBMiss exception + handler. + - We use only zones 0 (for kernel pages) and 1 (for user pages) + of the 16 available. Bit 24-26 of the TLB are cleared in the TLB + miss handler. Bit 27 is PAGE_USER, thus selecting the correct + zone. + - PRESENT *must* be in the bottom two bits because swap cache + entries use the top 30 bits. Because 40x doesn't support SMP + anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 + is cleared in the TLB miss handler before the TLB entry is loaded. + - All other bits of the PTE are loaded into TLBLO without + modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for + software PTE bits. We actually use use bits 21, 24, 25, and + 30 respectively for the software bits: ACCESSED, DIRTY, RW, and + PRESENT. +*/ + +/* Definitions for 40x embedded chips. */ +#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ +#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ +#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ +#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ +#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ +#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ +#define _PAGE_RW 0x040 /* software: Writes permitted */ +#define _PAGE_DIRTY 0x080 /* software: dirty page */ +#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ +#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ +#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ + +#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ +#define _PMD_BAD 0x802 +#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ +#define _PMD_SIZE_4M 0x0c0 +#define _PMD_SIZE_16M 0x0e0 +#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) + +#elif defined(CONFIG_44x) +/* + * Definitions for PPC440 + * + * Because of the 3 word TLB entries to support 36-bit addressing, + * the attribute are difficult to map in such a fashion that they + * are easily loaded during exception processing. I decided to + * organize the entry so the ERPN is the only portion in the + * upper word of the PTE and the attribute bits below are packed + * in as sensibly as they can be in the area below a 4KB page size + * oriented RPN. This at least makes it easy to load the RPN and + * ERPN fields in the TLB. -Matt + * + * Note that these bits preclude future use of a page size + * less than 4KB. + * + * + * PPC 440 core has following TLB attribute fields; + * + * TLB1: + * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 + * RPN................................. - - - - - - ERPN....... + * + * TLB2: + * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 + * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR + * + * There are some constrains and options, to decide mapping software bits + * into TLB entry. + * + * - PRESENT *must* be in the bottom three bits because swap cache + * entries use the top 29 bits for TLB2. + * + * - FILE *must* be in the bottom three bits because swap cache + * entries use the top 29 bits for TLB2. + * + * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it + * doesn't support SMP. So we can use this as software bit, like + * DIRTY. + * + * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used + * for memory protection related functions (see PTE structure in + * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the + * above bits. Note that the bit values are CPU specific, not architecture + * specific. + * + * The kernel PTE entry holds an arch-dependent swp_entry structure under + * certain situations. In other words, in such situations some portion of + * the PTE bits are used as a swp_entry. In the PPC implementation, the + * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still + * hold protection values. That means the three protection bits are + * reserved for both PTE and SWAP entry at the most significant three + * LSBs. + * + * There are three protection bits available for SWAP entry: + * _PAGE_PRESENT + * _PAGE_FILE + * _PAGE_HASHPTE (if HW has) + * + * So those three bits have to be inside of 0-2nd LSB of PTE. + * + */ + +#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ +#define _PAGE_RW 0x00000002 /* S: Write permission */ +#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */ +#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ +#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ +#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ +#define _PAGE_USER 0x00000040 /* S: User page */ +#define _PAGE_ENDIAN 0x00000080 /* H: E bit */ +#define _PAGE_GUARDED 0x00000100 /* H: G bit */ +#define _PAGE_DIRTY 0x00000200 /* S: Page dirty */ +#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ +#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ + +/* TODO: Add large page lowmem mapping support */ +#define _PMD_PRESENT 0 +#define _PMD_PRESENT_MASK (PAGE_MASK) +#define _PMD_BAD (~PAGE_MASK) + +/* ERPN in a PTE never gets cleared, ignore it */ +#define _PTE_NONE_MASK 0xffffffff00000000ULL + +#elif defined(CONFIG_FSL_BOOKE) +/* + MMU Assist Register 3: + + 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 + RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR + + - PRESENT *must* be in the bottom three bits because swap cache + entries use the top 29 bits. + + - FILE *must* be in the bottom three bits because swap cache + entries use the top 29 bits. +*/ + +/* Definitions for FSL Book-E Cores */ +#define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */ +#define _PAGE_USER 0x00002 /* S: User page (maps to UR) */ +#define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */ +#define _PAGE_ACCESSED 0x00004 /* S: Page referenced */ +#define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */ +#define _PAGE_RW 0x00010 /* S: Write permission */ +#define _PAGE_HWEXEC 0x00020 /* H: UX permission */ + +#define _PAGE_ENDIAN 0x00040 /* H: E bit */ +#define _PAGE_GUARDED 0x00080 /* H: G bit */ +#define _PAGE_COHERENT 0x00100 /* H: M bit */ +#define _PAGE_NO_CACHE 0x00200 /* H: I bit */ +#define _PAGE_WRITETHRU 0x00400 /* H: W bit */ + +#ifdef CONFIG_PTE_64BIT +#define _PAGE_DIRTY 0x08000 /* S: Page dirty */ + +/* ERPN in a PTE never gets cleared, ignore it */ +#define _PTE_NONE_MASK 0xffffffffffff0000ULL +#else +#define _PAGE_DIRTY 0x00800 /* S: Page dirty */ +#endif + +#define _PMD_PRESENT 0 +#define _PMD_PRESENT_MASK (PAGE_MASK) +#define _PMD_BAD (~PAGE_MASK) + +#elif defined(CONFIG_8xx) +/* Definitions for 8xx embedded chips. */ +#define _PAGE_PRESENT 0x0001 /* Page is valid */ +#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ +#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ +#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ + +/* These five software bits must be masked out when the entry is loaded + * into the TLB. + */ +#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ +#define _PAGE_GUARDED 0x0010 /* software: guarded access */ +#define _PAGE_DIRTY 0x0020 /* software: page changed */ +#define _PAGE_RW 0x0040 /* software: user write access allowed */ +#define _PAGE_ACCESSED 0x0080 /* software: page referenced */ + +/* Setting any bits in the nibble with the follow two controls will + * require a TLB exception handler change. It is assumed unused bits + * are always zero. + */ +#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ +#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ + +#define _PMD_PRESENT 0x0001 +#define _PMD_BAD 0x0ff0 +#define _PMD_PAGE_MASK 0x000c +#define _PMD_PAGE_8M 0x000c + +/* + * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE + * for an address even if _PAGE_PRESENT is not set, as a performance + * optimization. This is a bug if you ever want to use swap unless + * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific + * definitions for __swp_entry etc. below, which would be gross. + * -- paulus + */ +#define _PTE_NONE_MASK _PAGE_ACCESSED + +#else /* CONFIG_6xx */ +/* Definitions for 60x, 740/750, etc. */ +#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ +#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ +#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ +#define _PAGE_USER 0x004 /* usermode access allowed */ +#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ +#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ +#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ +#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ +#define _PAGE_DIRTY 0x080 /* C: page changed */ +#define _PAGE_ACCESSED 0x100 /* R: page referenced */ +#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ +#define _PAGE_RW 0x400 /* software: user write access allowed */ + +#define _PTE_NONE_MASK _PAGE_HASHPTE + +#define _PMD_PRESENT 0 +#define _PMD_PRESENT_MASK (PAGE_MASK) +#define _PMD_BAD (~PAGE_MASK) +#endif + +/* + * Some bits are only used on some cpu families... + */ +#ifndef _PAGE_HASHPTE +#define _PAGE_HASHPTE 0 +#endif +#ifndef _PTE_NONE_MASK +#define _PTE_NONE_MASK 0 +#endif +#ifndef _PAGE_SHARED +#define _PAGE_SHARED 0 +#endif +#ifndef _PAGE_HWWRITE +#define _PAGE_HWWRITE 0 +#endif +#ifndef _PAGE_HWEXEC +#define _PAGE_HWEXEC 0 +#endif +#ifndef _PAGE_EXEC +#define _PAGE_EXEC 0 +#endif +#ifndef _PMD_PRESENT_MASK +#define _PMD_PRESENT_MASK _PMD_PRESENT +#endif +#ifndef _PMD_SIZE +#define _PMD_SIZE 0 +#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() +#endif + +#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) + +/* + * Note: the _PAGE_COHERENT bit automatically gets set in the hardware + * PTE if CONFIG_SMP is defined (hash_page does this); there is no need + * to have it in the Linux PTE, and in fact the bit could be reused for + * another purpose. -- paulus. + */ + +#ifdef CONFIG_44x +#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) +#else +#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) +#endif +#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) +#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) + +#ifdef CONFIG_PPC_STD_MMU +/* On standard PPC MMU, no user access implies kernel read/write access, + * so to write-protect kernel memory we must turn on user access */ +#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) +#else +#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) +#endif + +#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) +#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) + +#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) +/* We want the debuggers to be able to set breakpoints anywhere, so + * don't write protect the kernel text */ +#define _PAGE_RAM_TEXT _PAGE_RAM +#else +#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) +#endif + +#define PAGE_NONE __pgprot(_PAGE_BASE) +#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) +#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) +#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) +#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) +#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) +#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) + +#define PAGE_KERNEL __pgprot(_PAGE_RAM) +#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) + +/* + * The PowerPC can only do execute protection on a segment (256MB) basis, + * not on a page basis. So we consider execute permission the same as read. + * Also, write permissions imply read permissions. + * This is the closest we can get.. + */ +#define __P000 PAGE_NONE +#define __P001 PAGE_READONLY_X +#define __P010 PAGE_COPY +#define __P011 PAGE_COPY_X +#define __P100 PAGE_READONLY +#define __P101 PAGE_READONLY_X +#define __P110 PAGE_COPY +#define __P111 PAGE_COPY_X + +#define __S000 PAGE_NONE +#define __S001 PAGE_READONLY_X +#define __S010 PAGE_SHARED +#define __S011 PAGE_SHARED_X +#define __S100 PAGE_READONLY +#define __S101 PAGE_READONLY_X +#define __S110 PAGE_SHARED +#define __S111 PAGE_SHARED_X + +#ifndef __ASSEMBLY__ +/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a + * kernel without large page PMD support */ +extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); + +/* + * Conversions between PTE values and page frame numbers. + */ + +/* in some case we want to additionaly adjust where the pfn is in the pte to + * allow room for more flags */ +#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) +#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8) +#else +#define PFN_SHIFT_OFFSET (PAGE_SHIFT) +#endif + +#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) +#define pte_page(x) pfn_to_page(pte_pfn(x)) + +#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\ + pgprot_val(prot)) +#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) + +/* + * ZERO_PAGE is a global shared page that is always zero: used + * for zero-mapped memory areas etc.. + */ +extern unsigned long empty_zero_page[1024]; +#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) + +#endif /* __ASSEMBLY__ */ + +#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) +#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) +#define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) + +#define pmd_none(pmd) (!pmd_val(pmd)) +#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) +#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) +#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) + +#ifndef __ASSEMBLY__ +/* + * The "pgd_xxx()" functions here are trivial for a folded two-level + * setup: the pgd is never bad, and a pmd always exists (as it's folded + * into the pgd entry) + */ +static inline int pgd_none(pgd_t pgd) { return 0; } +static inline int pgd_bad(pgd_t pgd) { return 0; } +static inline int pgd_present(pgd_t pgd) { return 1; } +#define pgd_clear(xp) do { } while (0) + +#define pgd_page_vaddr(pgd) \ + ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) + +/* + * The following only work if pte_present() is true. + * Undefined behaviour if not.. + */ +static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } +static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } +static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } +static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } +static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } +static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } + +static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } +static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } + +static inline pte_t pte_rdprotect(pte_t pte) { + pte_val(pte) &= ~_PAGE_USER; return pte; } +static inline pte_t pte_wrprotect(pte_t pte) { + pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } +static inline pte_t pte_exprotect(pte_t pte) { + pte_val(pte) &= ~_PAGE_EXEC; return pte; } +static inline pte_t pte_mkclean(pte_t pte) { + pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } +static inline pte_t pte_mkold(pte_t pte) { + pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } + +static inline pte_t pte_mkread(pte_t pte) { + pte_val(pte) |= _PAGE_USER; return pte; } +static inline pte_t pte_mkexec(pte_t pte) { + pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } +static inline pte_t pte_mkwrite(pte_t pte) { + pte_val(pte) |= _PAGE_RW; return pte; } +static inline pte_t pte_mkdirty(pte_t pte) { + pte_val(pte) |= _PAGE_DIRTY; return pte; } +static inline pte_t pte_mkyoung(pte_t pte) { + pte_val(pte) |= _PAGE_ACCESSED; return pte; } + +static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) +{ + pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); + return pte; +} + +/* + * When flushing the tlb entry for a page, we also need to flush the hash + * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. + */ +extern int flush_hash_pages(unsigned context, unsigned long va, + unsigned long pmdval, int count); + +/* Add an HPTE to the hash table */ +extern void add_hash_page(unsigned context, unsigned long va, + unsigned long pmdval); + +/* + * Atomic PTE updates. + * + * pte_update clears and sets bit atomically, and returns + * the old pte value. In the 64-bit PTE case we lock around the + * low PTE word since we expect ALL flag bits to be there + */ +#ifndef CONFIG_PTE_64BIT +static inline unsigned long pte_update(pte_t *p, unsigned long clr, + unsigned long set) +{ + unsigned long old, tmp; + + __asm__ __volatile__("\ +1: lwarx %0,0,%3\n\ + andc %1,%0,%4\n\ + or %1,%1,%5\n" + PPC405_ERR77(0,%3) +" stwcx. %1,0,%3\n\ + bne- 1b" + : "=&r" (old), "=&r" (tmp), "=m" (*p) + : "r" (p), "r" (clr), "r" (set), "m" (*p) + : "cc" ); + return old; +} +#else +static inline unsigned long long pte_update(pte_t *p, unsigned long clr, + unsigned long set) +{ + unsigned long long old; + unsigned long tmp; + + __asm__ __volatile__("\ +1: lwarx %L0,0,%4\n\ + lwzx %0,0,%3\n\ + andc %1,%L0,%5\n\ + or %1,%1,%6\n" + PPC405_ERR77(0,%3) +" stwcx. %1,0,%4\n\ + bne- 1b" + : "=&r" (old), "=&r" (tmp), "=m" (*p) + : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) + : "cc" ); + return old; +} +#endif + +/* + * set_pte stores a linux PTE into the linux page table. + * On machines which use an MMU hash table we avoid changing the + * _PAGE_HASHPTE bit. + */ +static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, + pte_t *ptep, pte_t pte) +{ +#if _PAGE_HASHPTE != 0 + pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); +#else + *ptep = pte; +#endif +} + +/* + * 2.6 calles this without flushing the TLB entry, this is wrong + * for our hash-based implementation, we fix that up here + */ +#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG +static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) +{ + unsigned long old; + old = pte_update(ptep, _PAGE_ACCESSED, 0); +#if _PAGE_HASHPTE != 0 + if (old & _PAGE_HASHPTE) { + unsigned long ptephys = __pa(ptep) & PAGE_MASK; + flush_hash_pages(context, addr, ptephys, 1); + } +#endif + return (old & _PAGE_ACCESSED) != 0; +} +#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ + __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) + +#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY +static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, + unsigned long addr, pte_t *ptep) +{ + return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; +} + +#define __HAVE_ARCH_PTEP_GET_AND_CLEAR +static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, + pte_t *ptep) +{ + return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); +} + +#define __HAVE_ARCH_PTEP_SET_WRPROTECT +static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, + pte_t *ptep) +{ + pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); +} + +#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS +static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) +{ + unsigned long bits = pte_val(entry) & + (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); + pte_update(ptep, 0, bits); +} + +#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ + do { \ + __ptep_set_access_flags(__ptep, __entry, __dirty); \ + flush_tlb_page_nohash(__vma, __address); \ + } while(0) + +/* + * Macro to mark a page protection value as "uncacheable". + */ +#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) + +struct file; +extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t vma_prot); +#define __HAVE_PHYS_MEM_ACCESS_PROT + +#define __HAVE_ARCH_PTE_SAME +#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) + +/* + * Note that on Book E processors, the pmd contains the kernel virtual + * (lowmem) address of the pte page. The physical address is less useful + * because everything runs with translation enabled (even the TLB miss + * handler). On everything else the pmd contains the physical address + * of the pte page. -- paulus + */ +#ifndef CONFIG_BOOKE +#define pmd_page_vaddr(pmd) \ + ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) +#define pmd_page(pmd) \ + (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) +#else +#define pmd_page_vaddr(pmd) \ + ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) +#define pmd_page(pmd) \ + (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) +#endif + +/* to find an entry in a kernel page-table-directory */ +#define pgd_offset_k(address) pgd_offset(&init_mm, address) + +/* to find an entry in a page-table-directory */ +#define pgd_index(address) ((address) >> PGDIR_SHIFT) +#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) + +/* Find an entry in the second-level page table.. */ +static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) +{ + return (pmd_t *) dir; +} + +/* Find an entry in the third-level page table.. */ +#define pte_index(address) \ + (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +#define pte_offset_kernel(dir, addr) \ + ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) +#define pte_offset_map(dir, addr) \ + ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) +#define pte_offset_map_nested(dir, addr) \ + ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) + +#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) +#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) + +extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; + +extern void paging_init(void); + +/* + * Encode and decode a swap entry. + * Note that the bits we use in a PTE for representing a swap entry + * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the + *_PAGE_HASHPTE bit (if used). -- paulus + */ +#define __swp_type(entry) ((entry).val & 0x1f) +#define __swp_offset(entry) ((entry).val >> 5) +#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) +#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) +#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) + +/* Encode and decode a nonlinear file mapping entry */ +#define PTE_FILE_MAX_BITS 29 +#define pte_to_pgoff(pte) (pte_val(pte) >> 3) +#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) + +/* CONFIG_APUS */ +/* For virtual address to physical address conversion */ +extern void cache_clear(__u32 addr, int length); +extern void cache_push(__u32 addr, int length); +extern int mm_end_of_chunk (unsigned long addr, int len); +extern unsigned long iopa(unsigned long addr); +extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; + +/* Values for nocacheflag and cmode */ +/* These are not used by the APUS kernel_map, but prevents + compilation errors. */ +#define KERNELMAP_FULL_CACHING 0 +#define KERNELMAP_NOCACHE_SER 1 +#define KERNELMAP_NOCACHE_NONSER 2 +#define KERNELMAP_NO_COPYBACK 3 + +/* + * Map some physical address range into the kernel address space. + */ +extern unsigned long kernel_map(unsigned long paddr, unsigned long size, + int nocacheflag, unsigned long *memavailp ); + +/* + * Set cache mode of (kernel space) address range. + */ +extern void kernel_set_cachemode (unsigned long address, unsigned long size, + unsigned int cmode); + +/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ +#define kern_addr_valid(addr) (1) + +#ifdef CONFIG_PHYS_64BIT +extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, + unsigned long paddr, unsigned long size, pgprot_t prot); + +static inline int io_remap_pfn_range(struct vm_area_struct *vma, + unsigned long vaddr, + unsigned long pfn, + unsigned long size, + pgprot_t prot) +{ + phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); + return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); +} +#else +#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ + remap_pfn_range(vma, vaddr, pfn, size, prot) +#endif + +/* + * No page table caches to initialise + */ +#define pgtable_cache_init() do { } while (0) + +extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, + pmd_t **pmdp); + +#endif /* !__ASSEMBLY__ */ + +#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */ diff --git a/include/asm-powerpc/pgtable-ppc64.h b/include/asm-powerpc/pgtable-ppc64.h new file mode 100644 index 00000000000..704c4e669fe --- /dev/null +++ b/include/asm-powerpc/pgtable-ppc64.h @@ -0,0 +1,492 @@ +#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_ +#define _ASM_POWERPC_PGTABLE_PPC64_H_ +/* + * This file contains the functions and defines necessary to modify and use + * the ppc64 hashed page table. + */ + +#ifndef __ASSEMBLY__ +#include <linux/stddef.h> +#include <asm/processor.h> /* For TASK_SIZE */ +#include <asm/mmu.h> +#include <asm/page.h> +#include <asm/tlbflush.h> +struct mm_struct; +#endif /* __ASSEMBLY__ */ + +#ifdef CONFIG_PPC_64K_PAGES +#include <asm/pgtable-64k.h> +#else +#include <asm/pgtable-4k.h> +#endif + +#define FIRST_USER_ADDRESS 0 + +/* + * Size of EA range mapped by our pagetables. + */ +#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ + PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) +#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) + +#if TASK_SIZE_USER64 > PGTABLE_RANGE +#error TASK_SIZE_USER64 exceeds pagetable range +#endif + +#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) +#error TASK_SIZE_USER64 exceeds user VSID range +#endif + +/* + * Define the address range of the vmalloc VM area. + */ +#define VMALLOC_START ASM_CONST(0xD000000000000000) +#define VMALLOC_SIZE ASM_CONST(0x80000000000) +#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) + +/* + * Define the address range of the imalloc VM area. + */ +#define PHBS_IO_BASE VMALLOC_END +#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */ +#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE) + +/* + * Region IDs + */ +#define REGION_SHIFT 60UL +#define REGION_MASK (0xfUL << REGION_SHIFT) +#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) + +#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) +#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) +#define USER_REGION_ID (0UL) + +/* + * Common bits in a linux-style PTE. These match the bits in the + * (hardware-defined) PowerPC PTE as closely as possible. Additional + * bits may be defined in pgtable-*.h + */ +#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ +#define _PAGE_USER 0x0002 /* matches one of the PP bits */ +#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ +#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ +#define _PAGE_GUARDED 0x0008 +#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ +#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ +#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ +#define _PAGE_DIRTY 0x0080 /* C: page changed */ +#define _PAGE_ACCESSED 0x0100 /* R: page referenced */ +#define _PAGE_RW 0x0200 /* software: user write access allowed */ +#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ +#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ + +#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) + +#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) + +/* __pgprot defined in asm-powerpc/page.h */ +#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) + +#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) +#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) +#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) +#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) +#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) +#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) +#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) +#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ + _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) +#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) + +#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) +#define HAVE_PAGE_AGP + +/* PTEIDX nibble */ +#define _PTEIDX_SECONDARY 0x8 +#define _PTEIDX_GROUP_IX 0x7 + + +/* + * POWER4 and newer have per page execute protection, older chips can only + * do this on a segment (256MB) basis. + * + * Also, write permissions imply read permissions. + * This is the closest we can get.. + * + * Note due to the way vm flags are laid out, the bits are XWR + */ +#define __P000 PAGE_NONE +#define __P001 PAGE_READONLY +#define __P010 PAGE_COPY +#define __P011 PAGE_COPY +#define __P100 PAGE_READONLY_X +#define __P101 PAGE_READONLY_X +#define __P110 PAGE_COPY_X +#define __P111 PAGE_COPY_X + +#define __S000 PAGE_NONE +#define __S001 PAGE_READONLY +#define __S010 PAGE_SHARED +#define __S011 PAGE_SHARED +#define __S100 PAGE_READONLY_X +#define __S101 PAGE_READONLY_X +#define __S110 PAGE_SHARED_X +#define __S111 PAGE_SHARED_X + +#ifndef __ASSEMBLY__ + +/* + * ZERO_PAGE is a global shared page that is always zero: used + * for zero-mapped memory areas etc.. + */ +extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; +#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) +#endif /* __ASSEMBLY__ */ + +#ifdef CONFIG_HUGETLB_PAGE + +#define HAVE_ARCH_UNMAPPED_AREA +#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN + +#endif + +#ifndef __ASSEMBLY__ + +/* + * Conversion functions: convert a page and protection to a page entry, + * and a page entry and page directory to the page they refer to. + * + * mk_pte takes a (struct page *) as input + */ +#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) + +static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) +{ + pte_t pte; + + + pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); + return pte; +} + +#define pte_modify(_pte, newprot) \ + (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) + +#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) +#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) + +/* pte_clear moved to later in this file */ + +#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) +#define pte_page(x) pfn_to_page(pte_pfn(x)) + +#define PMD_BAD_BITS (PTE_TABLE_SIZE-1) +#define PUD_BAD_BITS (PMD_TABLE_SIZE-1) + +#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) +#define pmd_none(pmd) (!pmd_val(pmd)) +#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ + || (pmd_val(pmd) & PMD_BAD_BITS)) +#define pmd_present(pmd) (pmd_val(pmd) != 0) +#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) +#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) +#define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd)) + +#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) +#define pud_none(pud) (!pud_val(pud)) +#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ + || (pud_val(pud) & PUD_BAD_BITS)) +#define pud_present(pud) (pud_val(pud) != 0) +#define pud_clear(pudp) (pud_val(*(pudp)) = 0) +#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) +#define pud_page(pud) virt_to_page(pud_page_vaddr(pud)) + +#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) + +/* + * Find an entry in a page-table-directory. We combine the address region + * (the high order N bits) and the pgd portion of the address. + */ +/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ +#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) + +#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) + +#define pmd_offset(pudp,addr) \ + (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) + +#define pte_offset_kernel(dir,addr) \ + (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) + +#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) +#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) +#define pte_unmap(pte) do { } while(0) +#define pte_unmap_nested(pte) do { } while(0) + +/* to find an entry in a kernel page-table-directory */ +/* This now only contains the vmalloc pages */ +#define pgd_offset_k(address) pgd_offset(&init_mm, address) + +/* + * The following only work if pte_present() is true. + * Undefined behaviour if not.. + */ +static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} +static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} +static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} +static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} +static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} +static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} + +static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } +static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } + +static inline pte_t pte_rdprotect(pte_t pte) { + pte_val(pte) &= ~_PAGE_USER; return pte; } +static inline pte_t pte_exprotect(pte_t pte) { + pte_val(pte) &= ~_PAGE_EXEC; return pte; } +static inline pte_t pte_wrprotect(pte_t pte) { + pte_val(pte) &= ~(_PAGE_RW); return pte; } +static inline pte_t pte_mkclean(pte_t pte) { + pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } +static inline pte_t pte_mkold(pte_t pte) { + pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } +static inline pte_t pte_mkread(pte_t pte) { + pte_val(pte) |= _PAGE_USER; return pte; } +static inline pte_t pte_mkexec(pte_t pte) { + pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } +static inline pte_t pte_mkwrite(pte_t pte) { + pte_val(pte) |= _PAGE_RW; return pte; } +static inline pte_t pte_mkdirty(pte_t pte) { + pte_val(pte) |= _PAGE_DIRTY; return pte; } +static inline pte_t pte_mkyoung(pte_t pte) { + pte_val(pte) |= _PAGE_ACCESSED; return pte; } +static inline pte_t pte_mkhuge(pte_t pte) { + return pte; } + +/* Atomic PTE updates */ +static inline unsigned long pte_update(struct mm_struct *mm, + unsigned long addr, + pte_t *ptep, unsigned long clr, + int huge) +{ + unsigned long old, tmp; + + __asm__ __volatile__( + "1: ldarx %0,0,%3 # pte_update\n\ + andi. %1,%0,%6\n\ + bne- 1b \n\ + andc %1,%0,%4 \n\ + stdcx. %1,0,%3 \n\ + bne- 1b" + : "=&r" (old), "=&r" (tmp), "=m" (*ptep) + : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY) + : "cc" ); + + if (old & _PAGE_HASHPTE) + hpte_need_flush(mm, addr, ptep, old, huge); + return old; +} + +static inline int __ptep_test_and_clear_young(struct mm_struct *mm, + unsigned long addr, pte_t *ptep) +{ + unsigned long old; + + if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) + return 0; + old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0); + return (old & _PAGE_ACCESSED) != 0; +} +#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG +#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ +({ \ + int __r; \ + __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ + __r; \ +}) + +/* + * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the + * moment we always flush but we need to fix hpte_update and test if the + * optimisation is worth it. + */ +static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, + unsigned long addr, pte_t *ptep) +{ + unsigned long old; + + if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) + return 0; + old = pte_update(mm, addr, ptep, _PAGE_DIRTY, 0); + return (old & _PAGE_DIRTY) != 0; +} +#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY +#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ +({ \ + int __r; \ + __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ + __r; \ +}) + +#define __HAVE_ARCH_PTEP_SET_WRPROTECT +static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, + pte_t *ptep) +{ + unsigned long old; + + if ((pte_val(*ptep) & _PAGE_RW) == 0) + return; + old = pte_update(mm, addr, ptep, _PAGE_RW, 0); +} + +/* + * We currently remove entries from the hashtable regardless of whether + * the entry was young or dirty. The generic routines only flush if the + * entry was young or dirty which is not good enough. + * + * We should be more intelligent about this but for the moment we override + * these functions and force a tlb flush unconditionally + */ +#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH +#define ptep_clear_flush_young(__vma, __address, __ptep) \ +({ \ + int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ + __ptep); \ + __young; \ +}) + +#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH +#define ptep_clear_flush_dirty(__vma, __address, __ptep) \ +({ \ + int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ + __ptep); \ + __dirty; \ +}) + +#define __HAVE_ARCH_PTEP_GET_AND_CLEAR +static inline pte_t ptep_get_and_clear(struct mm_struct *mm, + unsigned long addr, pte_t *ptep) +{ + unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0); + return __pte(old); +} + +static inline void pte_clear(struct mm_struct *mm, unsigned long addr, + pte_t * ptep) +{ + pte_update(mm, addr, ptep, ~0UL, 0); +} + +/* + * set_pte stores a linux PTE into the linux page table. + */ +static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, + pte_t *ptep, pte_t pte) +{ + if (pte_present(*ptep)) + pte_clear(mm, addr, ptep); + pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); + *ptep = pte; +} + +/* Set the dirty and/or accessed bits atomically in a linux PTE, this + * function doesn't need to flush the hash entry + */ +#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS +static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) +{ + unsigned long bits = pte_val(entry) & + (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); + unsigned long old, tmp; + + __asm__ __volatile__( + "1: ldarx %0,0,%4\n\ + andi. %1,%0,%6\n\ + bne- 1b \n\ + or %0,%3,%0\n\ + stdcx. %0,0,%4\n\ + bne- 1b" + :"=&r" (old), "=&r" (tmp), "=m" (*ptep) + :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) + :"cc"); +} +#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ + do { \ + __ptep_set_access_flags(__ptep, __entry, __dirty); \ + flush_tlb_page_nohash(__vma, __address); \ + } while(0) + +/* + * Macro to mark a page protection value as "uncacheable". + */ +#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) + +struct file; +extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t vma_prot); +#define __HAVE_PHYS_MEM_ACCESS_PROT + +#define __HAVE_ARCH_PTE_SAME +#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) + +#define pte_ERROR(e) \ + printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) +#define pmd_ERROR(e) \ + printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) +#define pgd_ERROR(e) \ + printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) + +extern pgd_t swapper_pg_dir[]; + +extern void paging_init(void); + +/* Encode and de-code a swap entry */ +#define __swp_type(entry) (((entry).val >> 1) & 0x3f) +#define __swp_offset(entry) ((entry).val >> 8) +#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) +#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) +#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) +#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) +#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) +#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) + +/* + * kern_addr_valid is intended to indicate whether an address is a valid + * kernel address. Most 32-bit archs define it as always true (like this) + * but most 64-bit archs actually perform a test. What should we do here? + * The only use is in fs/ncpfs/dir.c + */ +#define kern_addr_valid(addr) (1) + +#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ + remap_pfn_range(vma, vaddr, pfn, size, prot) + +void pgtable_cache_init(void); + +/* + * find_linux_pte returns the address of a linux pte for a given + * effective address and directory. If not found, it returns zero. + */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) +{ + pgd_t *pg; + pud_t *pu; + pmd_t *pm; + pte_t *pt = NULL; + + pg = pgdir + pgd_index(ea); + if (!pgd_none(*pg)) { + pu = pud_offset(pg, ea); + if (!pud_none(*pu)) { + pm = pmd_offset(pu, ea); + if (pmd_present(*pm)) + pt = pte_offset_kernel(pm, ea); + } + } + return pt; +} + +#endif /* __ASSEMBLY__ */ + +#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */ diff --git a/include/asm-powerpc/pgtable.h b/include/asm-powerpc/pgtable.h index 19edb6982b8..78bf4ae712a 100644 --- a/include/asm-powerpc/pgtable.h +++ b/include/asm-powerpc/pgtable.h @@ -2,502 +2,15 @@ #define _ASM_POWERPC_PGTABLE_H #ifdef __KERNEL__ -#ifndef CONFIG_PPC64 -#include <asm-ppc/pgtable.h> +#if defined(CONFIG_PPC64) +# include <asm/pgtable-ppc64.h> #else - -/* - * This file contains the functions and defines necessary to modify and use - * the ppc64 hashed page table. - */ - -#ifndef __ASSEMBLY__ -#include <linux/stddef.h> -#include <asm/processor.h> /* For TASK_SIZE */ -#include <asm/mmu.h> -#include <asm/page.h> -#include <asm/tlbflush.h> -struct mm_struct; -#endif /* __ASSEMBLY__ */ - -#ifdef CONFIG_PPC_64K_PAGES -#include <asm/pgtable-64k.h> -#else -#include <asm/pgtable-4k.h> -#endif - -#define FIRST_USER_ADDRESS 0 - -/* - * Size of EA range mapped by our pagetables. - */ -#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ - PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) -#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) - -#if TASK_SIZE_USER64 > PGTABLE_RANGE -#error TASK_SIZE_USER64 exceeds pagetable range -#endif - -#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) -#error TASK_SIZE_USER64 exceeds user VSID range +# include <asm/pgtable-ppc32.h> #endif -/* - * Define the address range of the vmalloc VM area. - */ -#define VMALLOC_START ASM_CONST(0xD000000000000000) -#define VMALLOC_SIZE ASM_CONST(0x80000000000) -#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) - -/* - * Define the address range of the imalloc VM area. - */ -#define PHBS_IO_BASE VMALLOC_END -#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */ -#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE) - -/* - * Region IDs - */ -#define REGION_SHIFT 60UL -#define REGION_MASK (0xfUL << REGION_SHIFT) -#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) - -#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) -#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) -#define USER_REGION_ID (0UL) - -/* - * Common bits in a linux-style PTE. These match the bits in the - * (hardware-defined) PowerPC PTE as closely as possible. Additional - * bits may be defined in pgtable-*.h - */ -#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ -#define _PAGE_USER 0x0002 /* matches one of the PP bits */ -#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ -#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ -#define _PAGE_GUARDED 0x0008 -#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ -#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ -#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ -#define _PAGE_DIRTY 0x0080 /* C: page changed */ -#define _PAGE_ACCESSED 0x0100 /* R: page referenced */ -#define _PAGE_RW 0x0200 /* software: user write access allowed */ -#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ -#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ - -#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) - -#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) - -/* __pgprot defined in asm-powerpc/page.h */ -#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) - -#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) -#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) -#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) -#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) -#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) -#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) -#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) -#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ - _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) -#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) - -#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) -#define HAVE_PAGE_AGP - -/* PTEIDX nibble */ -#define _PTEIDX_SECONDARY 0x8 -#define _PTEIDX_GROUP_IX 0x7 - - -/* - * POWER4 and newer have per page execute protection, older chips can only - * do this on a segment (256MB) basis. - * - * Also, write permissions imply read permissions. - * This is the closest we can get.. - * - * Note due to the way vm flags are laid out, the bits are XWR - */ -#define __P000 PAGE_NONE -#define __P001 PAGE_READONLY -#define __P010 PAGE_COPY -#define __P011 PAGE_COPY -#define __P100 PAGE_READONLY_X -#define __P101 PAGE_READONLY_X -#define __P110 PAGE_COPY_X -#define __P111 PAGE_COPY_X - -#define __S000 PAGE_NONE -#define __S001 PAGE_READONLY -#define __S010 PAGE_SHARED -#define __S011 PAGE_SHARED -#define __S100 PAGE_READONLY_X -#define __S101 PAGE_READONLY_X -#define __S110 PAGE_SHARED_X -#define __S111 PAGE_SHARED_X - #ifndef __ASSEMBLY__ - -/* - * ZERO_PAGE is a global shared page that is always zero: used - * for zero-mapped memory areas etc.. - */ -extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; -#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) -#endif /* __ASSEMBLY__ */ - -#ifdef CONFIG_HUGETLB_PAGE - -#define HAVE_ARCH_UNMAPPED_AREA -#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN - -#endif - -#ifndef __ASSEMBLY__ - -/* - * Conversion functions: convert a page and protection to a page entry, - * and a page entry and page directory to the page they refer to. - * - * mk_pte takes a (struct page *) as input - */ -#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) - -static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) -{ - pte_t pte; - - - pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); - return pte; -} - -#define pte_modify(_pte, newprot) \ - (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) - -#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) -#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) - -/* pte_clear moved to later in this file */ - -#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) -#define pte_page(x) pfn_to_page(pte_pfn(x)) - -#define PMD_BAD_BITS (PTE_TABLE_SIZE-1) -#define PUD_BAD_BITS (PMD_TABLE_SIZE-1) - -#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) -#define pmd_none(pmd) (!pmd_val(pmd)) -#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ - || (pmd_val(pmd) & PMD_BAD_BITS)) -#define pmd_present(pmd) (pmd_val(pmd) != 0) -#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) -#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) -#define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd)) - -#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) -#define pud_none(pud) (!pud_val(pud)) -#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ - || (pud_val(pud) & PUD_BAD_BITS)) -#define pud_present(pud) (pud_val(pud) != 0) -#define pud_clear(pudp) (pud_val(*(pudp)) = 0) -#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS) -#define pud_page(pud) virt_to_page(pud_page_vaddr(pud)) - -#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) - -/* - * Find an entry in a page-table-directory. We combine the address region - * (the high order N bits) and the pgd portion of the address. - */ -/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ -#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) - -#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) - -#define pmd_offset(pudp,addr) \ - (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) - -#define pte_offset_kernel(dir,addr) \ - (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) - -#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) -#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) -#define pte_unmap(pte) do { } while(0) -#define pte_unmap_nested(pte) do { } while(0) - -/* to find an entry in a kernel page-table-directory */ -/* This now only contains the vmalloc pages */ -#define pgd_offset_k(address) pgd_offset(&init_mm, address) - -/* - * The following only work if pte_present() is true. - * Undefined behaviour if not.. - */ -static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} -static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} -static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} -static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} -static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} -static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} - -static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } -static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } - -static inline pte_t pte_rdprotect(pte_t pte) { - pte_val(pte) &= ~_PAGE_USER; return pte; } -static inline pte_t pte_exprotect(pte_t pte) { - pte_val(pte) &= ~_PAGE_EXEC; return pte; } -static inline pte_t pte_wrprotect(pte_t pte) { - pte_val(pte) &= ~(_PAGE_RW); return pte; } -static inline pte_t pte_mkclean(pte_t pte) { - pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } -static inline pte_t pte_mkold(pte_t pte) { - pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } -static inline pte_t pte_mkread(pte_t pte) { - pte_val(pte) |= _PAGE_USER; return pte; } -static inline pte_t pte_mkexec(pte_t pte) { - pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } -static inline pte_t pte_mkwrite(pte_t pte) { - pte_val(pte) |= _PAGE_RW; return pte; } -static inline pte_t pte_mkdirty(pte_t pte) { - pte_val(pte) |= _PAGE_DIRTY; return pte; } -static inline pte_t pte_mkyoung(pte_t pte) { - pte_val(pte) |= _PAGE_ACCESSED; return pte; } -static inline pte_t pte_mkhuge(pte_t pte) { - return pte; } - -/* Atomic PTE updates */ -static inline unsigned long pte_update(struct mm_struct *mm, - unsigned long addr, - pte_t *ptep, unsigned long clr, - int huge) -{ - unsigned long old, tmp; - - __asm__ __volatile__( - "1: ldarx %0,0,%3 # pte_update\n\ - andi. %1,%0,%6\n\ - bne- 1b \n\ - andc %1,%0,%4 \n\ - stdcx. %1,0,%3 \n\ - bne- 1b" - : "=&r" (old), "=&r" (tmp), "=m" (*ptep) - : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY) - : "cc" ); - - if (old & _PAGE_HASHPTE) - hpte_need_flush(mm, addr, ptep, old, huge); - return old; -} - -static inline int __ptep_test_and_clear_young(struct mm_struct *mm, - unsigned long addr, pte_t *ptep) -{ - unsigned long old; - - if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) - return 0; - old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0); - return (old & _PAGE_ACCESSED) != 0; -} -#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG -#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ -({ \ - int __r; \ - __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ - __r; \ -}) - -/* - * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the - * moment we always flush but we need to fix hpte_update and test if the - * optimisation is worth it. - */ -static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, - unsigned long addr, pte_t *ptep) -{ - unsigned long old; - - if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) - return 0; - old = pte_update(mm, addr, ptep, _PAGE_DIRTY, 0); - return (old & _PAGE_DIRTY) != 0; -} -#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY -#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ -({ \ - int __r; \ - __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ - __r; \ -}) - -#define __HAVE_ARCH_PTEP_SET_WRPROTECT -static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, - pte_t *ptep) -{ - unsigned long old; - - if ((pte_val(*ptep) & _PAGE_RW) == 0) - return; - old = pte_update(mm, addr, ptep, _PAGE_RW, 0); -} - -/* - * We currently remove entries from the hashtable regardless of whether - * the entry was young or dirty. The generic routines only flush if the - * entry was young or dirty which is not good enough. - * - * We should be more intelligent about this but for the moment we override - * these functions and force a tlb flush unconditionally - */ -#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH -#define ptep_clear_flush_young(__vma, __address, __ptep) \ -({ \ - int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ - __ptep); \ - __young; \ -}) - -#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH -#define ptep_clear_flush_dirty(__vma, __address, __ptep) \ -({ \ - int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ - __ptep); \ - __dirty; \ -}) - -#define __HAVE_ARCH_PTEP_GET_AND_CLEAR -static inline pte_t ptep_get_and_clear(struct mm_struct *mm, - unsigned long addr, pte_t *ptep) -{ - unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0); - return __pte(old); -} - -static inline void pte_clear(struct mm_struct *mm, unsigned long addr, - pte_t * ptep) -{ - pte_update(mm, addr, ptep, ~0UL, 0); -} - -/* - * set_pte stores a linux PTE into the linux page table. - */ -static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, - pte_t *ptep, pte_t pte) -{ - if (pte_present(*ptep)) - pte_clear(mm, addr, ptep); - pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); - *ptep = pte; -} - -/* Set the dirty and/or accessed bits atomically in a linux PTE, this - * function doesn't need to flush the hash entry - */ -#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS -static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) -{ - unsigned long bits = pte_val(entry) & - (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); - unsigned long old, tmp; - - __asm__ __volatile__( - "1: ldarx %0,0,%4\n\ - andi. %1,%0,%6\n\ - bne- 1b \n\ - or %0,%3,%0\n\ - stdcx. %0,0,%4\n\ - bne- 1b" - :"=&r" (old), "=&r" (tmp), "=m" (*ptep) - :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) - :"cc"); -} -#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ - do { \ - __ptep_set_access_flags(__ptep, __entry, __dirty); \ - flush_tlb_page_nohash(__vma, __address); \ - } while(0) - -/* - * Macro to mark a page protection value as "uncacheable". - */ -#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) - -struct file; -extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, - unsigned long size, pgprot_t vma_prot); -#define __HAVE_PHYS_MEM_ACCESS_PROT - -#define __HAVE_ARCH_PTE_SAME -#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) - -#define pte_ERROR(e) \ - printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) -#define pmd_ERROR(e) \ - printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) -#define pgd_ERROR(e) \ - printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) - -extern pgd_t swapper_pg_dir[]; - -extern void paging_init(void); - -/* Encode and de-code a swap entry */ -#define __swp_type(entry) (((entry).val >> 1) & 0x3f) -#define __swp_offset(entry) ((entry).val >> 8) -#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) -#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) -#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) -#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) -#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) -#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) - -/* - * kern_addr_valid is intended to indicate whether an address is a valid - * kernel address. Most 32-bit archs define it as always true (like this) - * but most 64-bit archs actually perform a test. What should we do here? - * The only use is in fs/ncpfs/dir.c - */ -#define kern_addr_valid(addr) (1) - -#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ - remap_pfn_range(vma, vaddr, pfn, size, prot) - -void pgtable_cache_init(void); - -/* - * find_linux_pte returns the address of a linux pte for a given - * effective address and directory. If not found, it returns zero. - */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) -{ - pgd_t *pg; - pud_t *pu; - pmd_t *pm; - pte_t *pt = NULL; - - pg = pgdir + pgd_index(ea); - if (!pgd_none(*pg)) { - pu = pud_offset(pg, ea); - if (!pud_none(*pu)) { - pm = pmd_offset(pu, ea); - if (pmd_present(*pm)) - pt = pte_offset_kernel(pm, ea); - } - } - return pt; -} - - #include <asm-generic/pgtable.h> - #endif /* __ASSEMBLY__ */ -#endif /* CONFIG_PPC64 */ #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_PGTABLE_H */ |