summaryrefslogtreecommitdiffstats
path: root/Documentation/cachetlb.txt
diff options
context:
space:
mode:
authorDmitry Torokhov <dtor@insightbb.com>2007-02-10 01:26:32 -0500
committerDmitry Torokhov <dtor@insightbb.com>2007-02-10 01:26:32 -0500
commitb22364c8eec89e6b0c081a237f3b6348df87796f (patch)
tree233a923281fb640106465d076997ff511efb6edf /Documentation/cachetlb.txt
parent2c8dc071517ec2843869024dc82be2e246f41064 (diff)
parent66efc5a7e3061c3597ac43a8bb1026488d57e66b (diff)
Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Diffstat (limited to 'Documentation/cachetlb.txt')
-rw-r--r--Documentation/cachetlb.txt28
1 files changed, 20 insertions, 8 deletions
diff --git a/Documentation/cachetlb.txt b/Documentation/cachetlb.txt
index 53245c429f7..debf6813934 100644
--- a/Documentation/cachetlb.txt
+++ b/Documentation/cachetlb.txt
@@ -179,10 +179,21 @@ Here are the routines, one by one:
lines associated with 'mm'.
This interface is used to handle whole address space
- page table operations such as what happens during
- fork, exit, and exec.
+ page table operations such as what happens during exit and exec.
+
+2) void flush_cache_dup_mm(struct mm_struct *mm)
+
+ This interface flushes an entire user address space from
+ the caches. That is, after running, there will be no cache
+ lines associated with 'mm'.
+
+ This interface is used to handle whole address space
+ page table operations such as what happens during fork.
+
+ This option is separate from flush_cache_mm to allow some
+ optimizations for VIPT caches.
-2) void flush_cache_range(struct vm_area_struct *vma,
+3) void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
Here we are flushing a specific range of (user) virtual
@@ -199,7 +210,7 @@ Here are the routines, one by one:
call flush_cache_page (see below) for each entry which may be
modified.
-3) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
+4) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
This time we need to remove a PAGE_SIZE sized range
from the cache. The 'vma' is the backing structure used by
@@ -220,7 +231,7 @@ Here are the routines, one by one:
This is used primarily during fault processing.
-4) void flush_cache_kmaps(void)
+5) void flush_cache_kmaps(void)
This routine need only be implemented if the platform utilizes
highmem. It will be called right before all of the kmaps
@@ -232,7 +243,7 @@ Here are the routines, one by one:
This routing should be implemented in asm/highmem.h
-5) void flush_cache_vmap(unsigned long start, unsigned long end)
+6) void flush_cache_vmap(unsigned long start, unsigned long end)
void flush_cache_vunmap(unsigned long start, unsigned long end)
Here in these two interfaces we are flushing a specific range
@@ -362,14 +373,15 @@ maps this page at its virtual address.
likely that you will need to flush the instruction cache
for copy_to_user_page().
- void flush_anon_page(struct page *page, unsigned long vmaddr)
+ void flush_anon_page(struct vm_area_struct *vma, struct page *page,
+ unsigned long vmaddr)
When the kernel needs to access the contents of an anonymous
page, it calls this function (currently only
get_user_pages()). Note: flush_dcache_page() deliberately
doesn't work for an anonymous page. The default
implementation is a nop (and should remain so for all coherent
architectures). For incoherent architectures, it should flush
- the cache of the page at vmaddr in the current user process.
+ the cache of the page at vmaddr.
void flush_kernel_dcache_page(struct page *page)
When the kernel needs to modify a user page is has obtained