summaryrefslogtreecommitdiffstats
path: root/Documentation/cachetlb.txt
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /Documentation/cachetlb.txt
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'Documentation/cachetlb.txt')
-rw-r--r--Documentation/cachetlb.txt384
1 files changed, 384 insertions, 0 deletions
diff --git a/Documentation/cachetlb.txt b/Documentation/cachetlb.txt
new file mode 100644
index 00000000000..e132fb1163b
--- /dev/null
+++ b/Documentation/cachetlb.txt
@@ -0,0 +1,384 @@
+ Cache and TLB Flushing
+ Under Linux
+
+ David S. Miller <davem@redhat.com>
+
+This document describes the cache/tlb flushing interfaces called
+by the Linux VM subsystem. It enumerates over each interface,
+describes it's intended purpose, and what side effect is expected
+after the interface is invoked.
+
+The side effects described below are stated for a uniprocessor
+implementation, and what is to happen on that single processor. The
+SMP cases are a simple extension, in that you just extend the
+definition such that the side effect for a particular interface occurs
+on all processors in the system. Don't let this scare you into
+thinking SMP cache/tlb flushing must be so inefficient, this is in
+fact an area where many optimizations are possible. For example,
+if it can be proven that a user address space has never executed
+on a cpu (see vma->cpu_vm_mask), one need not perform a flush
+for this address space on that cpu.
+
+First, the TLB flushing interfaces, since they are the simplest. The
+"TLB" is abstracted under Linux as something the cpu uses to cache
+virtual-->physical address translations obtained from the software
+page tables. Meaning that if the software page tables change, it is
+possible for stale translations to exist in this "TLB" cache.
+Therefore when software page table changes occur, the kernel will
+invoke one of the following flush methods _after_ the page table
+changes occur:
+
+1) void flush_tlb_all(void)
+
+ The most severe flush of all. After this interface runs,
+ any previous page table modification whatsoever will be
+ visible to the cpu.
+
+ This is usually invoked when the kernel page tables are
+ changed, since such translations are "global" in nature.
+
+2) void flush_tlb_mm(struct mm_struct *mm)
+
+ This interface flushes an entire user address space from
+ the TLB. After running, this interface must make sure that
+ any previous page table modifications for the address space
+ 'mm' will be visible to the cpu. That is, after running,
+ there will be no entries in the TLB for 'mm'.
+
+ This interface is used to handle whole address space
+ page table operations such as what happens during
+ fork, and exec.
+
+ Platform developers note that generic code will always
+ invoke this interface without mm->page_table_lock held.
+
+3) void flush_tlb_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end)
+
+ Here we are flushing a specific range of (user) virtual
+ address translations from the TLB. After running, this
+ interface must make sure that any previous page table
+ modifications for the address space 'vma->vm_mm' in the range
+ 'start' to 'end-1' will be visible to the cpu. That is, after
+ running, here will be no entries in the TLB for 'mm' for
+ virtual addresses in the range 'start' to 'end-1'.
+
+ The "vma" is the backing store being used for the region.
+ Primarily, this is used for munmap() type operations.
+
+ The interface is provided in hopes that the port can find
+ a suitably efficient method for removing multiple page
+ sized translations from the TLB, instead of having the kernel
+ call flush_tlb_page (see below) for each entry which may be
+ modified.
+
+ Platform developers note that generic code will always
+ invoke this interface with mm->page_table_lock held.
+
+4) void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
+
+ This time we need to remove the PAGE_SIZE sized translation
+ from the TLB. The 'vma' is the backing structure used by
+ Linux to keep track of mmap'd regions for a process, the
+ address space is available via vma->vm_mm. Also, one may
+ test (vma->vm_flags & VM_EXEC) to see if this region is
+ executable (and thus could be in the 'instruction TLB' in
+ split-tlb type setups).
+
+ After running, this interface must make sure that any previous
+ page table modification for address space 'vma->vm_mm' for
+ user virtual address 'addr' will be visible to the cpu. That
+ is, after running, there will be no entries in the TLB for
+ 'vma->vm_mm' for virtual address 'addr'.
+
+ This is used primarily during fault processing.
+
+ Platform developers note that generic code will always
+ invoke this interface with mm->page_table_lock held.
+
+5) void flush_tlb_pgtables(struct mm_struct *mm,
+ unsigned long start, unsigned long end)
+
+ The software page tables for address space 'mm' for virtual
+ addresses in the range 'start' to 'end-1' are being torn down.
+
+ Some platforms cache the lowest level of the software page tables
+ in a linear virtually mapped array, to make TLB miss processing
+ more efficient. On such platforms, since the TLB is caching the
+ software page table structure, it needs to be flushed when parts
+ of the software page table tree are unlinked/freed.
+
+ Sparc64 is one example of a platform which does this.
+
+ Usually, when munmap()'ing an area of user virtual address
+ space, the kernel leaves the page table parts around and just
+ marks the individual pte's as invalid. However, if very large
+ portions of the address space are unmapped, the kernel frees up
+ those portions of the software page tables to prevent potential
+ excessive kernel memory usage caused by erratic mmap/mmunmap
+ sequences. It is at these times that flush_tlb_pgtables will
+ be invoked.
+
+6) void update_mmu_cache(struct vm_area_struct *vma,
+ unsigned long address, pte_t pte)
+
+ At the end of every page fault, this routine is invoked to
+ tell the architecture specific code that a translation
+ described by "pte" now exists at virtual address "address"
+ for address space "vma->vm_mm", in the software page tables.
+
+ A port may use this information in any way it so chooses.
+ For example, it could use this event to pre-load TLB
+ translations for software managed TLB configurations.
+ The sparc64 port currently does this.
+
+7) void tlb_migrate_finish(struct mm_struct *mm)
+
+ This interface is called at the end of an explicit
+ process migration. This interface provides a hook
+ to allow a platform to update TLB or context-specific
+ information for the address space.
+
+ The ia64 sn2 platform is one example of a platform
+ that uses this interface.
+
+8) void lazy_mmu_prot_update(pte_t pte)
+ This interface is called whenever the protection on
+ any user PTEs change. This interface provides a notification
+ to architecture specific code to take appropiate action.
+
+
+Next, we have the cache flushing interfaces. In general, when Linux
+is changing an existing virtual-->physical mapping to a new value,
+the sequence will be in one of the following forms:
+
+ 1) flush_cache_mm(mm);
+ change_all_page_tables_of(mm);
+ flush_tlb_mm(mm);
+
+ 2) flush_cache_range(vma, start, end);
+ change_range_of_page_tables(mm, start, end);
+ flush_tlb_range(vma, start, end);
+
+ 3) flush_cache_page(vma, addr, pfn);
+ set_pte(pte_pointer, new_pte_val);
+ flush_tlb_page(vma, addr);
+
+The cache level flush will always be first, because this allows
+us to properly handle systems whose caches are strict and require
+a virtual-->physical translation to exist for a virtual address
+when that virtual address is flushed from the cache. The HyperSparc
+cpu is one such cpu with this attribute.
+
+The cache flushing routines below need only deal with cache flushing
+to the extent that it is necessary for a particular cpu. Mostly,
+these routines must be implemented for cpus which have virtually
+indexed caches which must be flushed when virtual-->physical
+translations are changed or removed. So, for example, the physically
+indexed physically tagged caches of IA32 processors have no need to
+implement these interfaces since the caches are fully synchronized
+and have no dependency on translation information.
+
+Here are the routines, one by one:
+
+1) void flush_cache_mm(struct mm_struct *mm)
+
+ This interface flushes an entire user address space from
+ the caches. That is, after running, there will be no cache
+ lines associated with 'mm'.
+
+ This interface is used to handle whole address space
+ page table operations such as what happens during
+ fork, exit, and exec.
+
+2) void flush_cache_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end)
+
+ Here we are flushing a specific range of (user) virtual
+ addresses from the cache. After running, there will be no
+ entries in the cache for 'vma->vm_mm' for virtual addresses in
+ the range 'start' to 'end-1'.
+
+ The "vma" is the backing store being used for the region.
+ Primarily, this is used for munmap() type operations.
+
+ The interface is provided in hopes that the port can find
+ a suitably efficient method for removing multiple page
+ sized regions from the cache, instead of having the kernel
+ call flush_cache_page (see below) for each entry which may be
+ modified.
+
+3) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
+
+ This time we need to remove a PAGE_SIZE sized range
+ from the cache. The 'vma' is the backing structure used by
+ Linux to keep track of mmap'd regions for a process, the
+ address space is available via vma->vm_mm. Also, one may
+ test (vma->vm_flags & VM_EXEC) to see if this region is
+ executable (and thus could be in the 'instruction cache' in
+ "Harvard" type cache layouts).
+
+ The 'pfn' indicates the physical page frame (shift this value
+ left by PAGE_SHIFT to get the physical address) that 'addr'
+ translates to. It is this mapping which should be removed from
+ the cache.
+
+ After running, there will be no entries in the cache for
+ 'vma->vm_mm' for virtual address 'addr' which translates
+ to 'pfn'.
+
+ This is used primarily during fault processing.
+
+4) void flush_cache_kmaps(void)
+
+ This routine need only be implemented if the platform utilizes
+ highmem. It will be called right before all of the kmaps
+ are invalidated.
+
+ After running, there will be no entries in the cache for
+ the kernel virtual address range PKMAP_ADDR(0) to
+ PKMAP_ADDR(LAST_PKMAP).
+
+ This routing should be implemented in asm/highmem.h
+
+5) void flush_cache_vmap(unsigned long start, unsigned long end)
+ void flush_cache_vunmap(unsigned long start, unsigned long end)
+
+ Here in these two interfaces we are flushing a specific range
+ of (kernel) virtual addresses from the cache. After running,
+ there will be no entries in the cache for the kernel address
+ space for virtual addresses in the range 'start' to 'end-1'.
+
+ The first of these two routines is invoked after map_vm_area()
+ has installed the page table entries. The second is invoked
+ before unmap_vm_area() deletes the page table entries.
+
+There exists another whole class of cpu cache issues which currently
+require a whole different set of interfaces to handle properly.
+The biggest problem is that of virtual aliasing in the data cache
+of a processor.
+
+Is your port susceptible to virtual aliasing in it's D-cache?
+Well, if your D-cache is virtually indexed, is larger in size than
+PAGE_SIZE, and does not prevent multiple cache lines for the same
+physical address from existing at once, you have this problem.
+
+If your D-cache has this problem, first define asm/shmparam.h SHMLBA
+properly, it should essentially be the size of your virtually
+addressed D-cache (or if the size is variable, the largest possible
+size). This setting will force the SYSv IPC layer to only allow user
+processes to mmap shared memory at address which are a multiple of
+this value.
+
+NOTE: This does not fix shared mmaps, check out the sparc64 port for
+one way to solve this (in particular SPARC_FLAG_MMAPSHARED).
+
+Next, you have to solve the D-cache aliasing issue for all
+other cases. Please keep in mind that fact that, for a given page
+mapped into some user address space, there is always at least one more
+mapping, that of the kernel in it's linear mapping starting at
+PAGE_OFFSET. So immediately, once the first user maps a given
+physical page into its address space, by implication the D-cache
+aliasing problem has the potential to exist since the kernel already
+maps this page at its virtual address.
+
+ void copy_user_page(void *to, void *from, unsigned long addr, struct page *page)
+ void clear_user_page(void *to, unsigned long addr, struct page *page)
+
+ These two routines store data in user anonymous or COW
+ pages. It allows a port to efficiently avoid D-cache alias
+ issues between userspace and the kernel.
+
+ For example, a port may temporarily map 'from' and 'to' to
+ kernel virtual addresses during the copy. The virtual address
+ for these two pages is chosen in such a way that the kernel
+ load/store instructions happen to virtual addresses which are
+ of the same "color" as the user mapping of the page. Sparc64
+ for example, uses this technique.
+
+ The 'addr' parameter tells the virtual address where the
+ user will ultimately have this page mapped, and the 'page'
+ parameter gives a pointer to the struct page of the target.
+
+ If D-cache aliasing is not an issue, these two routines may
+ simply call memcpy/memset directly and do nothing more.
+
+ void flush_dcache_page(struct page *page)
+
+ Any time the kernel writes to a page cache page, _OR_
+ the kernel is about to read from a page cache page and
+ user space shared/writable mappings of this page potentially
+ exist, this routine is called.
+
+ NOTE: This routine need only be called for page cache pages
+ which can potentially ever be mapped into the address
+ space of a user process. So for example, VFS layer code
+ handling vfs symlinks in the page cache need not call
+ this interface at all.
+
+ The phrase "kernel writes to a page cache page" means,
+ specifically, that the kernel executes store instructions
+ that dirty data in that page at the page->virtual mapping
+ of that page. It is important to flush here to handle
+ D-cache aliasing, to make sure these kernel stores are
+ visible to user space mappings of that page.
+
+ The corollary case is just as important, if there are users
+ which have shared+writable mappings of this file, we must make
+ sure that kernel reads of these pages will see the most recent
+ stores done by the user.
+
+ If D-cache aliasing is not an issue, this routine may
+ simply be defined as a nop on that architecture.
+
+ There is a bit set aside in page->flags (PG_arch_1) as
+ "architecture private". The kernel guarantees that,
+ for pagecache pages, it will clear this bit when such
+ a page first enters the pagecache.
+
+ This allows these interfaces to be implemented much more
+ efficiently. It allows one to "defer" (perhaps indefinitely)
+ the actual flush if there are currently no user processes
+ mapping this page. See sparc64's flush_dcache_page and
+ update_mmu_cache implementations for an example of how to go
+ about doing this.
+
+ The idea is, first at flush_dcache_page() time, if
+ page->mapping->i_mmap is an empty tree and ->i_mmap_nonlinear
+ an empty list, just mark the architecture private page flag bit.
+ Later, in update_mmu_cache(), a check is made of this flag bit,
+ and if set the flush is done and the flag bit is cleared.
+
+ IMPORTANT NOTE: It is often important, if you defer the flush,
+ that the actual flush occurs on the same CPU
+ as did the cpu stores into the page to make it
+ dirty. Again, see sparc64 for examples of how
+ to deal with this.
+
+ void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
+ unsigned long user_vaddr,
+ void *dst, void *src, int len)
+ void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
+ unsigned long user_vaddr,
+ void *dst, void *src, int len)
+ When the kernel needs to copy arbitrary data in and out
+ of arbitrary user pages (f.e. for ptrace()) it will use
+ these two routines.
+
+ Any necessary cache flushing or other coherency operations
+ that need to occur should happen here. If the processor's
+ instruction cache does not snoop cpu stores, it is very
+ likely that you will need to flush the instruction cache
+ for copy_to_user_page().
+
+ void flush_icache_range(unsigned long start, unsigned long end)
+ When the kernel stores into addresses that it will execute
+ out of (eg when loading modules), this function is called.
+
+ If the icache does not snoop stores then this routine will need
+ to flush it.
+
+ void flush_icache_page(struct vm_area_struct *vma, struct page *page)
+ All the functionality of flush_icache_page can be implemented in
+ flush_dcache_page and update_mmu_cache. In 2.7 the hope is to
+ remove this interface completely.