diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-15 09:19:20 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-15 09:19:20 -0700 |
commit | 1aaf2e59135fd67321f47c11c64a54aac27014e9 (patch) | |
tree | 633ffa4db3ac6e8d566cba549510561ffd61d8f4 /Documentation | |
parent | 66a4fe0cb80a9fde8cb173289afb863fd279466a (diff) | |
parent | 936e894a976dd3b0f07f1f6f43c17b77b7e6146d (diff) |
Merge branch 'x86-txt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-txt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, intel_txt: clean up the impact on generic code, unbreak non-x86
x86, intel_txt: Handle ACPI_SLEEP without X86_TRAMPOLINE
x86, intel_txt: Fix typos in Kconfig help
x86, intel_txt: Factor out the code for S3 setup
x86, intel_txt: tboot.c needs <asm/fixmap.h>
intel_txt: Force IOMMU on for Intel TXT launch
x86, intel_txt: Intel TXT Sx shutdown support
x86, intel_txt: Intel TXT reboot/halt shutdown support
x86, intel_txt: Intel TXT boot support
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/intel_txt.txt | 210 | ||||
-rw-r--r-- | Documentation/x86/zero-page.txt | 1 |
2 files changed, 211 insertions, 0 deletions
diff --git a/Documentation/intel_txt.txt b/Documentation/intel_txt.txt new file mode 100644 index 00000000000..f40a1f03001 --- /dev/null +++ b/Documentation/intel_txt.txt @@ -0,0 +1,210 @@ +Intel(R) TXT Overview: +===================== + +Intel's technology for safer computing, Intel(R) Trusted Execution +Technology (Intel(R) TXT), defines platform-level enhancements that +provide the building blocks for creating trusted platforms. + +Intel TXT was formerly known by the code name LaGrande Technology (LT). + +Intel TXT in Brief: +o Provides dynamic root of trust for measurement (DRTM) +o Data protection in case of improper shutdown +o Measurement and verification of launched environment + +Intel TXT is part of the vPro(TM) brand and is also available some +non-vPro systems. It is currently available on desktop systems +based on the Q35, X38, Q45, and Q43 Express chipsets (e.g. Dell +Optiplex 755, HP dc7800, etc.) and mobile systems based on the GM45, +PM45, and GS45 Express chipsets. + +For more information, see http://www.intel.com/technology/security/. +This site also has a link to the Intel TXT MLE Developers Manual, +which has been updated for the new released platforms. + +Intel TXT has been presented at various events over the past few +years, some of which are: + LinuxTAG 2008: + http://www.linuxtag.org/2008/en/conf/events/vp-donnerstag/ + details.html?talkid=110 + TRUST2008: + http://www.trust2008.eu/downloads/Keynote-Speakers/ + 3_David-Grawrock_The-Front-Door-of-Trusted-Computing.pdf + IDF 2008, Shanghai: + http://inteldeveloperforum.com.edgesuite.net/shanghai_2008/ + aep/PROS003/index.html + IDFs 2006, 2007 (I'm not sure if/where they are online) + +Trusted Boot Project Overview: +============================= + +Trusted Boot (tboot) is an open source, pre- kernel/VMM module that +uses Intel TXT to perform a measured and verified launch of an OS +kernel/VMM. + +It is hosted on SourceForge at http://sourceforge.net/projects/tboot. +The mercurial source repo is available at http://www.bughost.org/ +repos.hg/tboot.hg. + +Tboot currently supports launching Xen (open source VMM/hypervisor +w/ TXT support since v3.2), and now Linux kernels. + + +Value Proposition for Linux or "Why should you care?" +===================================================== + +While there are many products and technologies that attempt to +measure or protect the integrity of a running kernel, they all +assume the kernel is "good" to begin with. The Integrity +Measurement Architecture (IMA) and Linux Integrity Module interface +are examples of such solutions. + +To get trust in the initial kernel without using Intel TXT, a +static root of trust must be used. This bases trust in BIOS +starting at system reset and requires measurement of all code +executed between system reset through the completion of the kernel +boot as well as data objects used by that code. In the case of a +Linux kernel, this means all of BIOS, any option ROMs, the +bootloader and the boot config. In practice, this is a lot of +code/data, much of which is subject to change from boot to boot +(e.g. changing NICs may change option ROMs). Without reference +hashes, these measurement changes are difficult to assess or +confirm as benign. This process also does not provide DMA +protection, memory configuration/alias checks and locks, crash +protection, or policy support. + +By using the hardware-based root of trust that Intel TXT provides, +many of these issues can be mitigated. Specifically: many +pre-launch components can be removed from the trust chain, DMA +protection is provided to all launched components, a large number +of platform configuration checks are performed and values locked, +protection is provided for any data in the event of an improper +shutdown, and there is support for policy-based execution/verification. +This provides a more stable measurement and a higher assurance of +system configuration and initial state than would be otherwise +possible. Since the tboot project is open source, source code for +almost all parts of the trust chain is available (excepting SMM and +Intel-provided firmware). + +How Does it Work? +================= + +o Tboot is an executable that is launched by the bootloader as + the "kernel" (the binary the bootloader executes). +o It performs all of the work necessary to determine if the + platform supports Intel TXT and, if so, executes the GETSEC[SENTER] + processor instruction that initiates the dynamic root of trust. + - If tboot determines that the system does not support Intel TXT + or is not configured correctly (e.g. the SINIT AC Module was + incorrect), it will directly launch the kernel with no changes + to any state. + - Tboot will output various information about its progress to the + terminal, serial port, and/or an in-memory log; the output + locations can be configured with a command line switch. +o The GETSEC[SENTER] instruction will return control to tboot and + tboot then verifies certain aspects of the environment (e.g. TPM NV + lock, e820 table does not have invalid entries, etc.). +o It will wake the APs from the special sleep state the GETSEC[SENTER] + instruction had put them in and place them into a wait-for-SIPI + state. + - Because the processors will not respond to an INIT or SIPI when + in the TXT environment, it is necessary to create a small VT-x + guest for the APs. When they run in this guest, they will + simply wait for the INIT-SIPI-SIPI sequence, which will cause + VMEXITs, and then disable VT and jump to the SIPI vector. This + approach seemed like a better choice than having to insert + special code into the kernel's MP wakeup sequence. +o Tboot then applies an (optional) user-defined launch policy to + verify the kernel and initrd. + - This policy is rooted in TPM NV and is described in the tboot + project. The tboot project also contains code for tools to + create and provision the policy. + - Policies are completely under user control and if not present + then any kernel will be launched. + - Policy action is flexible and can include halting on failures + or simply logging them and continuing. +o Tboot adjusts the e820 table provided by the bootloader to reserve + its own location in memory as well as to reserve certain other + TXT-related regions. +o As part of it's launch, tboot DMA protects all of RAM (using the + VT-d PMRs). Thus, the kernel must be booted with 'intel_iommu=on' + in order to remove this blanket protection and use VT-d's + page-level protection. +o Tboot will populate a shared page with some data about itself and + pass this to the Linux kernel as it transfers control. + - The location of the shared page is passed via the boot_params + struct as a physical address. +o The kernel will look for the tboot shared page address and, if it + exists, map it. +o As one of the checks/protections provided by TXT, it makes a copy + of the VT-d DMARs in a DMA-protected region of memory and verifies + them for correctness. The VT-d code will detect if the kernel was + launched with tboot and use this copy instead of the one in the + ACPI table. +o At this point, tboot and TXT are out of the picture until a + shutdown (S<n>) +o In order to put a system into any of the sleep states after a TXT + launch, TXT must first be exited. This is to prevent attacks that + attempt to crash the system to gain control on reboot and steal + data left in memory. + - The kernel will perform all of its sleep preparation and + populate the shared page with the ACPI data needed to put the + platform in the desired sleep state. + - Then the kernel jumps into tboot via the vector specified in the + shared page. + - Tboot will clean up the environment and disable TXT, then use the + kernel-provided ACPI information to actually place the platform + into the desired sleep state. + - In the case of S3, tboot will also register itself as the resume + vector. This is necessary because it must re-establish the + measured environment upon resume. Once the TXT environment + has been restored, it will restore the TPM PCRs and then + transfer control back to the kernel's S3 resume vector. + In order to preserve system integrity across S3, the kernel + provides tboot with a set of memory ranges (kernel + code/data/bss, S3 resume code, and AP trampoline) that tboot + will calculate a MAC (message authentication code) over and then + seal with the TPM. On resume and once the measured environment + has been re-established, tboot will re-calculate the MAC and + verify it against the sealed value. Tboot's policy determines + what happens if the verification fails. + +That's pretty much it for TXT support. + + +Configuring the System: +====================== + +This code works with 32bit, 32bit PAE, and 64bit (x86_64) kernels. + +In BIOS, the user must enable: TPM, TXT, VT-x, VT-d. Not all BIOSes +allow these to be individually enabled/disabled and the screens in +which to find them are BIOS-specific. + +grub.conf needs to be modified as follows: + title Linux 2.6.29-tip w/ tboot + root (hd0,0) + kernel /tboot.gz logging=serial,vga,memory + module /vmlinuz-2.6.29-tip intel_iommu=on ro + root=LABEL=/ rhgb console=ttyS0,115200 3 + module /initrd-2.6.29-tip.img + module /Q35_SINIT_17.BIN + +The kernel option for enabling Intel TXT support is found under the +Security top-level menu and is called "Enable Intel(R) Trusted +Execution Technology (TXT)". It is marked as EXPERIMENTAL and +depends on the generic x86 support (to allow maximum flexibility in +kernel build options), since the tboot code will detect whether the +platform actually supports Intel TXT and thus whether any of the +kernel code is executed. + +The Q35_SINIT_17.BIN file is what Intel TXT refers to as an +Authenticated Code Module. It is specific to the chipset in the +system and can also be found on the Trusted Boot site. It is an +(unencrypted) module signed by Intel that is used as part of the +DRTM process to verify and configure the system. It is signed +because it operates at a higher privilege level in the system than +any other macrocode and its correct operation is critical to the +establishment of the DRTM. The process for determining the correct +SINIT ACM for a system is documented in the SINIT-guide.txt file +that is on the tboot SourceForge site under the SINIT ACM downloads. diff --git a/Documentation/x86/zero-page.txt b/Documentation/x86/zero-page.txt index 4f913857b8a..feb37e17701 100644 --- a/Documentation/x86/zero-page.txt +++ b/Documentation/x86/zero-page.txt @@ -12,6 +12,7 @@ Offset Proto Name Meaning 000/040 ALL screen_info Text mode or frame buffer information (struct screen_info) 040/014 ALL apm_bios_info APM BIOS information (struct apm_bios_info) +058/008 ALL tboot_addr Physical address of tboot shared page 060/010 ALL ist_info Intel SpeedStep (IST) BIOS support information (struct ist_info) 080/010 ALL hd0_info hd0 disk parameter, OBSOLETE!! |