diff options
author | Vineet Gupta <vgupta@synopsys.com> | 2013-01-18 15:12:18 +0530 |
---|---|---|
committer | Vineet Gupta <vgupta@synopsys.com> | 2013-02-11 20:00:39 +0530 |
commit | d8005e6b95268cbb50db3773d5f180c32a9434fe (patch) | |
tree | 1e27f00970c3612521a4d29146948ef4cec05586 /arch/arc/include/asm/delay.h | |
parent | bf90e1eab682dcb79b7765989fb65835ce9d6165 (diff) |
ARC: Timers/counters/delay management
ARC700 includes 2 in-core 32bit timers TIMER0 and TIMER1.
Both have exactly same capabilies.
* programmable to count from TIMER<n>_CNT to TIMER<n>_LIMIT
* for count 0 and LIMIT ~1, provides a free-running counter by
auto-wrapping when limit is reached.
* optionally interrupt when LIMIT is reached (oneshot event semantics)
* rearming the interrupt provides periodic semantics
* run at CPU clk
ARC Linux uses TIMER0 for clockevent (periodic/oneshot) and TIMER1 for
clocksource (free-running clock).
Newer cores provide RTSC insn which gives a 64bit cpu clk snapshot hence
is more apt for clocksource when available.
SMP poses a bit of challenge for global timekeeping clocksource /
sched_clock() backend:
-TIMER1 based local clocks are out-of-sync hence can't be used
(thus we default to jiffies based cs as well as sched_clock() one/both
of which platform can override with it's specific hardware assist)
-RTSC is only allowed in SMP if it's cross-core-sync (Kconfig glue
ensures that) and thus usable for both requirements.
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'arch/arc/include/asm/delay.h')
-rw-r--r-- | arch/arc/include/asm/delay.h | 68 |
1 files changed, 68 insertions, 0 deletions
diff --git a/arch/arc/include/asm/delay.h b/arch/arc/include/asm/delay.h new file mode 100644 index 00000000000..442ce5d0f70 --- /dev/null +++ b/arch/arc/include/asm/delay.h @@ -0,0 +1,68 @@ +/* + * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Delay routines using pre computed loops_per_jiffy value. + * + * vineetg: Feb 2012 + * -Rewrote in "C" to avoid dealing with availability of H/w MPY + * -Also reduced the num of MPY operations from 3 to 2 + * + * Amit Bhor: Codito Technologies 2004 + */ + +#ifndef __ASM_ARC_UDELAY_H +#define __ASM_ARC_UDELAY_H + +#include <asm/param.h> /* HZ */ + +static inline void __delay(unsigned long loops) +{ + __asm__ __volatile__( + "1: sub.f %0, %0, 1 \n" + " jpnz 1b \n" + : "+r"(loops) + : + : "cc"); +} + +extern void __bad_udelay(void); + +/* + * Normal Math for computing loops in "N" usecs + * -we have precomputed @loops_per_jiffy + * -1 sec has HZ jiffies + * loops per "N" usecs = ((loops_per_jiffy * HZ / 1000000) * N) + * + * Approximate Division by multiplication: + * -Mathematically if we multiply and divide a number by same value the + * result remains unchanged: In this case, we use 2^32 + * -> (loops_per_N_usec * 2^32 ) / 2^32 + * -> (((loops_per_jiffy * HZ / 1000000) * N) * 2^32) / 2^32 + * -> (loops_per_jiffy * HZ * N * 4295) / 2^32 + * + * -Divide by 2^32 is very simply right shift by 32 + * -We simply need to ensure that the multiply per above eqn happens in + * 64-bit precision (if CPU doesn't support it - gcc can emaulate it) + */ + +static inline void __udelay(unsigned long usecs) +{ + unsigned long loops; + + /* (long long) cast ensures 64 bit MPY - real or emulated + * HZ * 4295 is pre-evaluated by gcc - hence only 2 mpy ops + */ + loops = ((long long)(usecs * 4295 * HZ) * + (long long)(loops_per_jiffy)) >> 32; + + __delay(loops); +} + +#define udelay(n) (__builtin_constant_p(n) ? ((n) > 20000 ? __bad_udelay() \ + : __udelay(n)) : __udelay(n)) + +#endif /* __ASM_ARC_UDELAY_H */ |