diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 11:16:21 +0200 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 11:16:21 +0200 |
commit | 9c2019421511a1bc646981d55528334ae46464c0 (patch) | |
tree | 12bd39b5201d0afc74dccd8e06464233d3058e58 /arch/i386/crypto | |
parent | af49d41e8c0e6649b3966470aa6319585144f8e8 (diff) |
i386: move crypto
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/i386/crypto')
-rw-r--r-- | arch/i386/crypto/Makefile | 5 | ||||
-rw-r--r-- | arch/i386/crypto/Makefile_32 | 12 | ||||
-rw-r--r-- | arch/i386/crypto/aes-i586-asm_32.S | 373 | ||||
-rw-r--r-- | arch/i386/crypto/aes_32.c | 515 | ||||
-rw-r--r-- | arch/i386/crypto/twofish-i586-asm_32.S | 335 | ||||
-rw-r--r-- | arch/i386/crypto/twofish_32.c | 97 |
6 files changed, 0 insertions, 1337 deletions
diff --git a/arch/i386/crypto/Makefile b/arch/i386/crypto/Makefile deleted file mode 100644 index fbd34ac2cda..00000000000 --- a/arch/i386/crypto/Makefile +++ /dev/null @@ -1,5 +0,0 @@ -ifeq ($(CONFIG_X86_32),y) -include ${srctree}/arch/i386/crypto/Makefile_32 -else -include ${srctree}/arch/x86_64/crypto/Makefile_64 -endif diff --git a/arch/i386/crypto/Makefile_32 b/arch/i386/crypto/Makefile_32 deleted file mode 100644 index 7154b14cd95..00000000000 --- a/arch/i386/crypto/Makefile_32 +++ /dev/null @@ -1,12 +0,0 @@ -# -# i386/crypto/Makefile -# -# Arch-specific CryptoAPI modules. -# - -obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o -obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o - -aes-i586-y := aes-i586-asm_32.o aes_32.o -twofish-i586-y := twofish-i586-asm_32.o twofish_32.o - diff --git a/arch/i386/crypto/aes-i586-asm_32.S b/arch/i386/crypto/aes-i586-asm_32.S deleted file mode 100644 index f942f0c8f63..00000000000 --- a/arch/i386/crypto/aes-i586-asm_32.S +++ /dev/null @@ -1,373 +0,0 @@ -// ------------------------------------------------------------------------- -// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. -// All rights reserved. -// -// LICENSE TERMS -// -// The free distribution and use of this software in both source and binary -// form is allowed (with or without changes) provided that: -// -// 1. distributions of this source code include the above copyright -// notice, this list of conditions and the following disclaimer// -// -// 2. distributions in binary form include the above copyright -// notice, this list of conditions and the following disclaimer -// in the documentation and/or other associated materials// -// -// 3. the copyright holder's name is not used to endorse products -// built using this software without specific written permission. -// -// -// ALTERNATIVELY, provided that this notice is retained in full, this product -// may be distributed under the terms of the GNU General Public License (GPL), -// in which case the provisions of the GPL apply INSTEAD OF those given above. -// -// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org> -// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> - -// DISCLAIMER -// -// This software is provided 'as is' with no explicit or implied warranties -// in respect of its properties including, but not limited to, correctness -// and fitness for purpose. -// ------------------------------------------------------------------------- -// Issue Date: 29/07/2002 - -.file "aes-i586-asm.S" -.text - -#include <asm/asm-offsets.h> - -#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) - -/* offsets to parameters with one register pushed onto stack */ -#define tfm 8 -#define out_blk 12 -#define in_blk 16 - -/* offsets in crypto_tfm structure */ -#define ekey (crypto_tfm_ctx_offset + 0) -#define nrnd (crypto_tfm_ctx_offset + 256) -#define dkey (crypto_tfm_ctx_offset + 260) - -// register mapping for encrypt and decrypt subroutines - -#define r0 eax -#define r1 ebx -#define r2 ecx -#define r3 edx -#define r4 esi -#define r5 edi - -#define eaxl al -#define eaxh ah -#define ebxl bl -#define ebxh bh -#define ecxl cl -#define ecxh ch -#define edxl dl -#define edxh dh - -#define _h(reg) reg##h -#define h(reg) _h(reg) - -#define _l(reg) reg##l -#define l(reg) _l(reg) - -// This macro takes a 32-bit word representing a column and uses -// each of its four bytes to index into four tables of 256 32-bit -// words to obtain values that are then xored into the appropriate -// output registers r0, r1, r4 or r5. - -// Parameters: -// table table base address -// %1 out_state[0] -// %2 out_state[1] -// %3 out_state[2] -// %4 out_state[3] -// idx input register for the round (destroyed) -// tmp scratch register for the round -// sched key schedule - -#define do_col(table, a1,a2,a3,a4, idx, tmp) \ - movzx %l(idx),%tmp; \ - xor table(,%tmp,4),%a1; \ - movzx %h(idx),%tmp; \ - shr $16,%idx; \ - xor table+tlen(,%tmp,4),%a2; \ - movzx %l(idx),%tmp; \ - movzx %h(idx),%idx; \ - xor table+2*tlen(,%tmp,4),%a3; \ - xor table+3*tlen(,%idx,4),%a4; - -// initialise output registers from the key schedule -// NB1: original value of a3 is in idx on exit -// NB2: original values of a1,a2,a4 aren't used -#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ - mov 0 sched,%a1; \ - movzx %l(idx),%tmp; \ - mov 12 sched,%a2; \ - xor table(,%tmp,4),%a1; \ - mov 4 sched,%a4; \ - movzx %h(idx),%tmp; \ - shr $16,%idx; \ - xor table+tlen(,%tmp,4),%a2; \ - movzx %l(idx),%tmp; \ - movzx %h(idx),%idx; \ - xor table+3*tlen(,%idx,4),%a4; \ - mov %a3,%idx; \ - mov 8 sched,%a3; \ - xor table+2*tlen(,%tmp,4),%a3; - -// initialise output registers from the key schedule -// NB1: original value of a3 is in idx on exit -// NB2: original values of a1,a2,a4 aren't used -#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ - mov 0 sched,%a1; \ - movzx %l(idx),%tmp; \ - mov 4 sched,%a2; \ - xor table(,%tmp,4),%a1; \ - mov 12 sched,%a4; \ - movzx %h(idx),%tmp; \ - shr $16,%idx; \ - xor table+tlen(,%tmp,4),%a2; \ - movzx %l(idx),%tmp; \ - movzx %h(idx),%idx; \ - xor table+3*tlen(,%idx,4),%a4; \ - mov %a3,%idx; \ - mov 8 sched,%a3; \ - xor table+2*tlen(,%tmp,4),%a3; - - -// original Gladman had conditional saves to MMX regs. -#define save(a1, a2) \ - mov %a2,4*a1(%esp) - -#define restore(a1, a2) \ - mov 4*a2(%esp),%a1 - -// These macros perform a forward encryption cycle. They are entered with -// the first previous round column values in r0,r1,r4,r5 and -// exit with the final values in the same registers, using stack -// for temporary storage. - -// round column values -// on entry: r0,r1,r4,r5 -// on exit: r2,r1,r4,r5 -#define fwd_rnd1(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ - do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ - restore(r0,0); \ - do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ - restore(r0,1); \ - do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ - -// round column values -// on entry: r2,r1,r4,r5 -// on exit: r0,r1,r4,r5 -#define fwd_rnd2(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ - do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ - restore(r2,0); \ - do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ - restore(r2,1); \ - do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ - -// These macros performs an inverse encryption cycle. They are entered with -// the first previous round column values in r0,r1,r4,r5 and -// exit with the final values in the same registers, using stack -// for temporary storage - -// round column values -// on entry: r0,r1,r4,r5 -// on exit: r2,r1,r4,r5 -#define inv_rnd1(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ - do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ - restore(r0,0); \ - do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ - restore(r0,1); \ - do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ - -// round column values -// on entry: r2,r1,r4,r5 -// on exit: r0,r1,r4,r5 -#define inv_rnd2(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ - do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ - restore(r2,0); \ - do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ - restore(r2,1); \ - do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ - -// AES (Rijndael) Encryption Subroutine -/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ - -.global aes_enc_blk - -.extern ft_tab -.extern fl_tab - -.align 4 - -aes_enc_blk: - push %ebp - mov tfm(%esp),%ebp - -// CAUTION: the order and the values used in these assigns -// rely on the register mappings - -1: push %ebx - mov in_blk+4(%esp),%r2 - push %esi - mov nrnd(%ebp),%r3 // number of rounds - push %edi -#if ekey != 0 - lea ekey(%ebp),%ebp // key pointer -#endif - -// input four columns and xor in first round key - - mov (%r2),%r0 - mov 4(%r2),%r1 - mov 8(%r2),%r4 - mov 12(%r2),%r5 - xor (%ebp),%r0 - xor 4(%ebp),%r1 - xor 8(%ebp),%r4 - xor 12(%ebp),%r5 - - sub $8,%esp // space for register saves on stack - add $16,%ebp // increment to next round key - cmp $12,%r3 - jb 4f // 10 rounds for 128-bit key - lea 32(%ebp),%ebp - je 3f // 12 rounds for 192-bit key - lea 32(%ebp),%ebp - -2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key - fwd_rnd2( -48(%ebp) ,ft_tab) -3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key - fwd_rnd2( -16(%ebp) ,ft_tab) -4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key - fwd_rnd2( +16(%ebp) ,ft_tab) - fwd_rnd1( +32(%ebp) ,ft_tab) - fwd_rnd2( +48(%ebp) ,ft_tab) - fwd_rnd1( +64(%ebp) ,ft_tab) - fwd_rnd2( +80(%ebp) ,ft_tab) - fwd_rnd1( +96(%ebp) ,ft_tab) - fwd_rnd2(+112(%ebp) ,ft_tab) - fwd_rnd1(+128(%ebp) ,ft_tab) - fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table - -// move final values to the output array. CAUTION: the -// order of these assigns rely on the register mappings - - add $8,%esp - mov out_blk+12(%esp),%ebp - mov %r5,12(%ebp) - pop %edi - mov %r4,8(%ebp) - pop %esi - mov %r1,4(%ebp) - pop %ebx - mov %r0,(%ebp) - pop %ebp - mov $1,%eax - ret - -// AES (Rijndael) Decryption Subroutine -/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ - -.global aes_dec_blk - -.extern it_tab -.extern il_tab - -.align 4 - -aes_dec_blk: - push %ebp - mov tfm(%esp),%ebp - -// CAUTION: the order and the values used in these assigns -// rely on the register mappings - -1: push %ebx - mov in_blk+4(%esp),%r2 - push %esi - mov nrnd(%ebp),%r3 // number of rounds - push %edi -#if dkey != 0 - lea dkey(%ebp),%ebp // key pointer -#endif - mov %r3,%r0 - shl $4,%r0 - add %r0,%ebp - -// input four columns and xor in first round key - - mov (%r2),%r0 - mov 4(%r2),%r1 - mov 8(%r2),%r4 - mov 12(%r2),%r5 - xor (%ebp),%r0 - xor 4(%ebp),%r1 - xor 8(%ebp),%r4 - xor 12(%ebp),%r5 - - sub $8,%esp // space for register saves on stack - sub $16,%ebp // increment to next round key - cmp $12,%r3 - jb 4f // 10 rounds for 128-bit key - lea -32(%ebp),%ebp - je 3f // 12 rounds for 192-bit key - lea -32(%ebp),%ebp - -2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key - inv_rnd2( +48(%ebp), it_tab) -3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key - inv_rnd2( +16(%ebp), it_tab) -4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key - inv_rnd2( -16(%ebp), it_tab) - inv_rnd1( -32(%ebp), it_tab) - inv_rnd2( -48(%ebp), it_tab) - inv_rnd1( -64(%ebp), it_tab) - inv_rnd2( -80(%ebp), it_tab) - inv_rnd1( -96(%ebp), it_tab) - inv_rnd2(-112(%ebp), it_tab) - inv_rnd1(-128(%ebp), it_tab) - inv_rnd2(-144(%ebp), il_tab) // last round uses a different table - -// move final values to the output array. CAUTION: the -// order of these assigns rely on the register mappings - - add $8,%esp - mov out_blk+12(%esp),%ebp - mov %r5,12(%ebp) - pop %edi - mov %r4,8(%ebp) - pop %esi - mov %r1,4(%ebp) - pop %ebx - mov %r0,(%ebp) - pop %ebp - mov $1,%eax - ret - diff --git a/arch/i386/crypto/aes_32.c b/arch/i386/crypto/aes_32.c deleted file mode 100644 index 49aad9397f1..00000000000 --- a/arch/i386/crypto/aes_32.c +++ /dev/null @@ -1,515 +0,0 @@ -/* - * - * Glue Code for optimized 586 assembler version of AES - * - * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. - * All rights reserved. - * - * LICENSE TERMS - * - * The free distribution and use of this software in both source and binary - * form is allowed (with or without changes) provided that: - * - * 1. distributions of this source code include the above copyright - * notice, this list of conditions and the following disclaimer; - * - * 2. distributions in binary form include the above copyright - * notice, this list of conditions and the following disclaimer - * in the documentation and/or other associated materials; - * - * 3. the copyright holder's name is not used to endorse products - * built using this software without specific written permission. - * - * ALTERNATIVELY, provided that this notice is retained in full, this product - * may be distributed under the terms of the GNU General Public License (GPL), - * in which case the provisions of the GPL apply INSTEAD OF those given above. - * - * DISCLAIMER - * - * This software is provided 'as is' with no explicit or implied warranties - * in respect of its properties, including, but not limited to, correctness - * and/or fitness for purpose. - * - * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to - * 2.5 API). - * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> - * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> - * - */ - -#include <asm/byteorder.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/crypto.h> -#include <linux/linkage.h> - -asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); -asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); - -#define AES_MIN_KEY_SIZE 16 -#define AES_MAX_KEY_SIZE 32 -#define AES_BLOCK_SIZE 16 -#define AES_KS_LENGTH 4 * AES_BLOCK_SIZE -#define RC_LENGTH 29 - -struct aes_ctx { - u32 ekey[AES_KS_LENGTH]; - u32 rounds; - u32 dkey[AES_KS_LENGTH]; -}; - -#define WPOLY 0x011b -#define bytes2word(b0, b1, b2, b3) \ - (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) - -/* define the finite field multiplies required for Rijndael */ -#define f2(x) ((x) ? pow[log[x] + 0x19] : 0) -#define f3(x) ((x) ? pow[log[x] + 0x01] : 0) -#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) -#define fb(x) ((x) ? pow[log[x] + 0x68] : 0) -#define fd(x) ((x) ? pow[log[x] + 0xee] : 0) -#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) -#define fi(x) ((x) ? pow[255 - log[x]]: 0) - -static inline u32 upr(u32 x, int n) -{ - return (x << 8 * n) | (x >> (32 - 8 * n)); -} - -static inline u8 bval(u32 x, int n) -{ - return x >> 8 * n; -} - -/* The forward and inverse affine transformations used in the S-box */ -#define fwd_affine(x) \ - (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) - -#define inv_affine(x) \ - (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) - -static u32 rcon_tab[RC_LENGTH]; - -u32 ft_tab[4][256]; -u32 fl_tab[4][256]; -static u32 im_tab[4][256]; -u32 il_tab[4][256]; -u32 it_tab[4][256]; - -static void gen_tabs(void) -{ - u32 i, w; - u8 pow[512], log[256]; - - /* - * log and power tables for GF(2^8) finite field with - * WPOLY as modular polynomial - the simplest primitive - * root is 0x03, used here to generate the tables. - */ - i = 0; w = 1; - - do { - pow[i] = (u8)w; - pow[i + 255] = (u8)w; - log[w] = (u8)i++; - w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); - } while (w != 1); - - for(i = 0, w = 1; i < RC_LENGTH; ++i) { - rcon_tab[i] = bytes2word(w, 0, 0, 0); - w = f2(w); - } - - for(i = 0; i < 256; ++i) { - u8 b; - - b = fwd_affine(fi((u8)i)); - w = bytes2word(f2(b), b, b, f3(b)); - - /* tables for a normal encryption round */ - ft_tab[0][i] = w; - ft_tab[1][i] = upr(w, 1); - ft_tab[2][i] = upr(w, 2); - ft_tab[3][i] = upr(w, 3); - w = bytes2word(b, 0, 0, 0); - - /* - * tables for last encryption round - * (may also be used in the key schedule) - */ - fl_tab[0][i] = w; - fl_tab[1][i] = upr(w, 1); - fl_tab[2][i] = upr(w, 2); - fl_tab[3][i] = upr(w, 3); - - b = fi(inv_affine((u8)i)); - w = bytes2word(fe(b), f9(b), fd(b), fb(b)); - - /* tables for the inverse mix column operation */ - im_tab[0][b] = w; - im_tab[1][b] = upr(w, 1); - im_tab[2][b] = upr(w, 2); - im_tab[3][b] = upr(w, 3); - - /* tables for a normal decryption round */ - it_tab[0][i] = w; - it_tab[1][i] = upr(w,1); - it_tab[2][i] = upr(w,2); - it_tab[3][i] = upr(w,3); - - w = bytes2word(b, 0, 0, 0); - - /* tables for last decryption round */ - il_tab[0][i] = w; - il_tab[1][i] = upr(w,1); - il_tab[2][i] = upr(w,2); - il_tab[3][i] = upr(w,3); - } -} - -#define four_tables(x,tab,vf,rf,c) \ -( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \ - tab[1][bval(vf(x,1,c),rf(1,c))] ^ \ - tab[2][bval(vf(x,2,c),rf(2,c))] ^ \ - tab[3][bval(vf(x,3,c),rf(3,c))] \ -) - -#define vf1(x,r,c) (x) -#define rf1(r,c) (r) -#define rf2(r,c) ((r-c)&3) - -#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) -#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) - -#define ff(x) inv_mcol(x) - -#define ke4(k,i) \ -{ \ - k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ - k[4*(i)+5] = ss[1] ^= ss[0]; \ - k[4*(i)+6] = ss[2] ^= ss[1]; \ - k[4*(i)+7] = ss[3] ^= ss[2]; \ -} - -#define kel4(k,i) \ -{ \ - k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ - k[4*(i)+5] = ss[1] ^= ss[0]; \ - k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ -} - -#define ke6(k,i) \ -{ \ - k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 7] = ss[1] ^= ss[0]; \ - k[6*(i)+ 8] = ss[2] ^= ss[1]; \ - k[6*(i)+ 9] = ss[3] ^= ss[2]; \ - k[6*(i)+10] = ss[4] ^= ss[3]; \ - k[6*(i)+11] = ss[5] ^= ss[4]; \ -} - -#define kel6(k,i) \ -{ \ - k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 7] = ss[1] ^= ss[0]; \ - k[6*(i)+ 8] = ss[2] ^= ss[1]; \ - k[6*(i)+ 9] = ss[3] ^= ss[2]; \ -} - -#define ke8(k,i) \ -{ \ - k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 9] = ss[1] ^= ss[0]; \ - k[8*(i)+10] = ss[2] ^= ss[1]; \ - k[8*(i)+11] = ss[3] ^= ss[2]; \ - k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ - k[8*(i)+13] = ss[5] ^= ss[4]; \ - k[8*(i)+14] = ss[6] ^= ss[5]; \ - k[8*(i)+15] = ss[7] ^= ss[6]; \ -} - -#define kel8(k,i) \ -{ \ - k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 9] = ss[1] ^= ss[0]; \ - k[8*(i)+10] = ss[2] ^= ss[1]; \ - k[8*(i)+11] = ss[3] ^= ss[2]; \ -} - -#define kdf4(k,i) \ -{ \ - ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ - ss[1] = ss[1] ^ ss[3]; \ - ss[2] = ss[2] ^ ss[3]; \ - ss[3] = ss[3]; \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ - ss[i % 4] ^= ss[4]; \ - ss[4] ^= k[4*(i)]; \ - k[4*(i)+4] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+1]; \ - k[4*(i)+5] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+2]; \ - k[4*(i)+6] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+3]; \ - k[4*(i)+7] = ff(ss[4]); \ -} - -#define kd4(k,i) \ -{ \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ - ss[i % 4] ^= ss[4]; \ - ss[4] = ff(ss[4]); \ - k[4*(i)+4] = ss[4] ^= k[4*(i)]; \ - k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ - k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \ - k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ -} - -#define kdl4(k,i) \ -{ \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ - ss[i % 4] ^= ss[4]; \ - k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ - k[4*(i)+5] = ss[1] ^ ss[3]; \ - k[4*(i)+6] = ss[0]; \ - k[4*(i)+7] = ss[1]; \ -} - -#define kdf6(k,i) \ -{ \ - ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 6] = ff(ss[0]); \ - ss[1] ^= ss[0]; \ - k[6*(i)+ 7] = ff(ss[1]); \ - ss[2] ^= ss[1]; \ - k[6*(i)+ 8] = ff(ss[2]); \ - ss[3] ^= ss[2]; \ - k[6*(i)+ 9] = ff(ss[3]); \ - ss[4] ^= ss[3]; \ - k[6*(i)+10] = ff(ss[4]); \ - ss[5] ^= ss[4]; \ - k[6*(i)+11] = ff(ss[5]); \ -} - -#define kd6(k,i) \ -{ \ - ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ - ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ - k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ - ss[1] ^= ss[0]; \ - k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ - ss[2] ^= ss[1]; \ - k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ - ss[3] ^= ss[2]; \ - k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ - ss[4] ^= ss[3]; \ - k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ - ss[5] ^= ss[4]; \ - k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ -} - -#define kdl6(k,i) \ -{ \ - ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 6] = ss[0]; \ - ss[1] ^= ss[0]; \ - k[6*(i)+ 7] = ss[1]; \ - ss[2] ^= ss[1]; \ - k[6*(i)+ 8] = ss[2]; \ - ss[3] ^= ss[2]; \ - k[6*(i)+ 9] = ss[3]; \ -} - -#define kdf8(k,i) \ -{ \ - ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 8] = ff(ss[0]); \ - ss[1] ^= ss[0]; \ - k[8*(i)+ 9] = ff(ss[1]); \ - ss[2] ^= ss[1]; \ - k[8*(i)+10] = ff(ss[2]); \ - ss[3] ^= ss[2]; \ - k[8*(i)+11] = ff(ss[3]); \ - ss[4] ^= ls_box(ss[3],0); \ - k[8*(i)+12] = ff(ss[4]); \ - ss[5] ^= ss[4]; \ - k[8*(i)+13] = ff(ss[5]); \ - ss[6] ^= ss[5]; \ - k[8*(i)+14] = ff(ss[6]); \ - ss[7] ^= ss[6]; \ - k[8*(i)+15] = ff(ss[7]); \ -} - -#define kd8(k,i) \ -{ \ - u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \ - ss[0] ^= __g; \ - __g = ff(__g); \ - k[8*(i)+ 8] = __g ^= k[8*(i)]; \ - ss[1] ^= ss[0]; \ - k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \ - ss[2] ^= ss[1]; \ - k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \ - ss[3] ^= ss[2]; \ - k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \ - __g = ls_box(ss[3],0); \ - ss[4] ^= __g; \ - __g = ff(__g); \ - k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \ - ss[5] ^= ss[4]; \ - k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \ - ss[6] ^= ss[5]; \ - k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \ - ss[7] ^= ss[6]; \ - k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \ -} - -#define kdl8(k,i) \ -{ \ - ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 8] = ss[0]; \ - ss[1] ^= ss[0]; \ - k[8*(i)+ 9] = ss[1]; \ - ss[2] ^= ss[1]; \ - k[8*(i)+10] = ss[2]; \ - ss[3] ^= ss[2]; \ - k[8*(i)+11] = ss[3]; \ -} - -static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, - unsigned int key_len) -{ - int i; - u32 ss[8]; - struct aes_ctx *ctx = crypto_tfm_ctx(tfm); - const __le32 *key = (const __le32 *)in_key; - u32 *flags = &tfm->crt_flags; - - /* encryption schedule */ - - ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]); - ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]); - ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]); - ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]); - - switch(key_len) { - case 16: - for (i = 0; i < 9; i++) - ke4(ctx->ekey, i); - kel4(ctx->ekey, 9); - ctx->rounds = 10; - break; - - case 24: - ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); - ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); - for (i = 0; i < 7; i++) - ke6(ctx->ekey, i); - kel6(ctx->ekey, 7); - ctx->rounds = 12; - break; - - case 32: - ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); - ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); - ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]); - ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]); - for (i = 0; i < 6; i++) - ke8(ctx->ekey, i); - kel8(ctx->ekey, 6); - ctx->rounds = 14; - break; - - default: - *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; - return -EINVAL; - } - - /* decryption schedule */ - - ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]); - ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]); - ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]); - ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]); - - switch (key_len) { - case 16: - kdf4(ctx->dkey, 0); - for (i = 1; i < 9; i++) - kd4(ctx->dkey, i); - kdl4(ctx->dkey, 9); - break; - - case 24: - ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); - ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); - kdf6(ctx->dkey, 0); - for (i = 1; i < 7; i++) - kd6(ctx->dkey, i); - kdl6(ctx->dkey, 7); - break; - - case 32: - ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); - ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); - ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6])); - ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7])); - kdf8(ctx->dkey, 0); - for (i = 1; i < 6; i++) - kd8(ctx->dkey, i); - kdl8(ctx->dkey, 6); - break; - } - return 0; -} - -static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) -{ - aes_enc_blk(tfm, dst, src); -} - -static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) -{ - aes_dec_blk(tfm, dst, src); -} - -static struct crypto_alg aes_alg = { - .cra_name = "aes", - .cra_driver_name = "aes-i586", - .cra_priority = 200, - .cra_flags = CRYPTO_ALG_TYPE_CIPHER, - .cra_blocksize = AES_BLOCK_SIZE, - .cra_ctxsize = sizeof(struct aes_ctx), - .cra_module = THIS_MODULE, - .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), - .cra_u = { - .cipher = { - .cia_min_keysize = AES_MIN_KEY_SIZE, - .cia_max_keysize = AES_MAX_KEY_SIZE, - .cia_setkey = aes_set_key, - .cia_encrypt = aes_encrypt, - .cia_decrypt = aes_decrypt - } - } -}; - -static int __init aes_init(void) -{ - gen_tabs(); - return crypto_register_alg(&aes_alg); -} - -static void __exit aes_fini(void) -{ - crypto_unregister_alg(&aes_alg); -} - -module_init(aes_init); -module_exit(aes_fini); - -MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized"); -MODULE_LICENSE("Dual BSD/GPL"); -MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter"); -MODULE_ALIAS("aes"); diff --git a/arch/i386/crypto/twofish-i586-asm_32.S b/arch/i386/crypto/twofish-i586-asm_32.S deleted file mode 100644 index 39b98ed2c1b..00000000000 --- a/arch/i386/crypto/twofish-i586-asm_32.S +++ /dev/null @@ -1,335 +0,0 @@ -/*************************************************************************** -* Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> * -* * -* This program is free software; you can redistribute it and/or modify * -* it under the terms of the GNU General Public License as published by * -* the Free Software Foundation; either version 2 of the License, or * -* (at your option) any later version. * -* * -* This program is distributed in the hope that it will be useful, * -* but WITHOUT ANY WARRANTY; without even the implied warranty of * -* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * -* GNU General Public License for more details. * -* * -* You should have received a copy of the GNU General Public License * -* along with this program; if not, write to the * -* Free Software Foundation, Inc., * -* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * -***************************************************************************/ - -.file "twofish-i586-asm.S" -.text - -#include <asm/asm-offsets.h> - -/* return adress at 0 */ - -#define in_blk 12 /* input byte array address parameter*/ -#define out_blk 8 /* output byte array address parameter*/ -#define tfm 4 /* Twofish context structure */ - -#define a_offset 0 -#define b_offset 4 -#define c_offset 8 -#define d_offset 12 - -/* Structure of the crypto context struct*/ - -#define s0 0 /* S0 Array 256 Words each */ -#define s1 1024 /* S1 Array */ -#define s2 2048 /* S2 Array */ -#define s3 3072 /* S3 Array */ -#define w 4096 /* 8 whitening keys (word) */ -#define k 4128 /* key 1-32 ( word ) */ - -/* define a few register aliases to allow macro substitution */ - -#define R0D %eax -#define R0B %al -#define R0H %ah - -#define R1D %ebx -#define R1B %bl -#define R1H %bh - -#define R2D %ecx -#define R2B %cl -#define R2H %ch - -#define R3D %edx -#define R3B %dl -#define R3H %dh - - -/* performs input whitening */ -#define input_whitening(src,context,offset)\ - xor w+offset(context), src; - -/* performs input whitening */ -#define output_whitening(src,context,offset)\ - xor w+16+offset(context), src; - -/* - * a input register containing a (rotated 16) - * b input register containing b - * c input register containing c - * d input register containing d (already rol $1) - * operations on a and b are interleaved to increase performance - */ -#define encrypt_round(a,b,c,d,round)\ - push d ## D;\ - movzx b ## B, %edi;\ - mov s1(%ebp,%edi,4),d ## D;\ - movzx a ## B, %edi;\ - mov s2(%ebp,%edi,4),%esi;\ - movzx b ## H, %edi;\ - ror $16, b ## D;\ - xor s2(%ebp,%edi,4),d ## D;\ - movzx a ## H, %edi;\ - ror $16, a ## D;\ - xor s3(%ebp,%edi,4),%esi;\ - movzx b ## B, %edi;\ - xor s3(%ebp,%edi,4),d ## D;\ - movzx a ## B, %edi;\ - xor (%ebp,%edi,4), %esi;\ - movzx b ## H, %edi;\ - ror $15, b ## D;\ - xor (%ebp,%edi,4), d ## D;\ - movzx a ## H, %edi;\ - xor s1(%ebp,%edi,4),%esi;\ - pop %edi;\ - add d ## D, %esi;\ - add %esi, d ## D;\ - add k+round(%ebp), %esi;\ - xor %esi, c ## D;\ - rol $15, c ## D;\ - add k+4+round(%ebp),d ## D;\ - xor %edi, d ## D; - -/* - * a input register containing a (rotated 16) - * b input register containing b - * c input register containing c - * d input register containing d (already rol $1) - * operations on a and b are interleaved to increase performance - * last round has different rotations for the output preparation - */ -#define encrypt_last_round(a,b,c,d,round)\ - push d ## D;\ - movzx b ## B, %edi;\ - mov s1(%ebp,%edi,4),d ## D;\ - movzx a ## B, %edi;\ - mov s2(%ebp,%edi,4),%esi;\ - movzx b ## H, %edi;\ - ror $16, b ## D;\ - xor s2(%ebp,%edi,4),d ## D;\ - movzx a ## H, %edi;\ - ror $16, a ## D;\ - xor s3(%ebp,%edi,4),%esi;\ - movzx b ## B, %edi;\ - xor s3(%ebp,%edi,4),d ## D;\ - movzx a ## B, %edi;\ - xor (%ebp,%edi,4), %esi;\ - movzx b ## H, %edi;\ - ror $16, b ## D;\ - xor (%ebp,%edi,4), d ## D;\ - movzx a ## H, %edi;\ - xor s1(%ebp,%edi,4),%esi;\ - pop %edi;\ - add d ## D, %esi;\ - add %esi, d ## D;\ - add k+round(%ebp), %esi;\ - xor %esi, c ## D;\ - ror $1, c ## D;\ - add k+4+round(%ebp),d ## D;\ - xor %edi, d ## D; - -/* - * a input register containing a - * b input register containing b (rotated 16) - * c input register containing c - * d input register containing d (already rol $1) - * operations on a and b are interleaved to increase performance - */ -#define decrypt_round(a,b,c,d,round)\ - push c ## D;\ - movzx a ## B, %edi;\ - mov (%ebp,%edi,4), c ## D;\ - movzx b ## B, %edi;\ - mov s3(%ebp,%edi,4),%esi;\ - movzx a ## H, %edi;\ - ror $16, a ## D;\ - xor s1(%ebp,%edi,4),c ## D;\ - movzx b ## H, %edi;\ - ror $16, b ## D;\ - xor (%ebp,%edi,4), %esi;\ - movzx a ## B, %edi;\ - xor s2(%ebp,%edi,4),c ## D;\ - movzx b ## B, %edi;\ - xor s1(%ebp,%edi,4),%esi;\ - movzx a ## H, %edi;\ - ror $15, a ## D;\ - xor s3(%ebp,%edi,4),c ## D;\ - movzx b ## H, %edi;\ - xor s2(%ebp,%edi,4),%esi;\ - pop %edi;\ - add %esi, c ## D;\ - add c ## D, %esi;\ - add k+round(%ebp), c ## D;\ - xor %edi, c ## D;\ - add k+4+round(%ebp),%esi;\ - xor %esi, d ## D;\ - rol $15, d ## D; - -/* - * a input register containing a - * b input register containing b (rotated 16) - * c input register containing c - * d input register containing d (already rol $1) - * operations on a and b are interleaved to increase performance - * last round has different rotations for the output preparation - */ -#define decrypt_last_round(a,b,c,d,round)\ - push c ## D;\ - movzx a ## B, %edi;\ - mov (%ebp,%edi,4), c ## D;\ - movzx b ## B, %edi;\ - mov s3(%ebp,%edi,4),%esi;\ - movzx a ## H, %edi;\ - ror $16, a ## D;\ - xor s1(%ebp,%edi,4),c ## D;\ - movzx b ## H, %edi;\ - ror $16, b ## D;\ - xor (%ebp,%edi,4), %esi;\ - movzx a ## B, %edi;\ - xor s2(%ebp,%edi,4),c ## D;\ - movzx b ## B, %edi;\ - xor s1(%ebp,%edi,4),%esi;\ - movzx a ## H, %edi;\ - ror $16, a ## D;\ - xor s3(%ebp,%edi,4),c ## D;\ - movzx b ## H, %edi;\ - xor s2(%ebp,%edi,4),%esi;\ - pop %edi;\ - add %esi, c ## D;\ - add c ## D, %esi;\ - add k+round(%ebp), c ## D;\ - xor %edi, c ## D;\ - add k+4+round(%ebp),%esi;\ - xor %esi, d ## D;\ - ror $1, d ## D; - -.align 4 -.global twofish_enc_blk -.global twofish_dec_blk - -twofish_enc_blk: - push %ebp /* save registers according to calling convention*/ - push %ebx - push %esi - push %edi - - mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */ - add $crypto_tfm_ctx_offset, %ebp /* ctx adress */ - mov in_blk+16(%esp),%edi /* input adress in edi */ - - mov (%edi), %eax - mov b_offset(%edi), %ebx - mov c_offset(%edi), %ecx - mov d_offset(%edi), %edx - input_whitening(%eax,%ebp,a_offset) - ror $16, %eax - input_whitening(%ebx,%ebp,b_offset) - input_whitening(%ecx,%ebp,c_offset) - input_whitening(%edx,%ebp,d_offset) - rol $1, %edx - - encrypt_round(R0,R1,R2,R3,0); - encrypt_round(R2,R3,R0,R1,8); - encrypt_round(R0,R1,R2,R3,2*8); - encrypt_round(R2,R3,R0,R1,3*8); - encrypt_round(R0,R1,R2,R3,4*8); - encrypt_round(R2,R3,R0,R1,5*8); - encrypt_round(R0,R1,R2,R3,6*8); - encrypt_round(R2,R3,R0,R1,7*8); - encrypt_round(R0,R1,R2,R3,8*8); - encrypt_round(R2,R3,R0,R1,9*8); - encrypt_round(R0,R1,R2,R3,10*8); - encrypt_round(R2,R3,R0,R1,11*8); - encrypt_round(R0,R1,R2,R3,12*8); - encrypt_round(R2,R3,R0,R1,13*8); - encrypt_round(R0,R1,R2,R3,14*8); - encrypt_last_round(R2,R3,R0,R1,15*8); - - output_whitening(%eax,%ebp,c_offset) - output_whitening(%ebx,%ebp,d_offset) - output_whitening(%ecx,%ebp,a_offset) - output_whitening(%edx,%ebp,b_offset) - mov out_blk+16(%esp),%edi; - mov %eax, c_offset(%edi) - mov %ebx, d_offset(%edi) - mov %ecx, (%edi) - mov %edx, b_offset(%edi) - - pop %edi - pop %esi - pop %ebx - pop %ebp - mov $1, %eax - ret - -twofish_dec_blk: - push %ebp /* save registers according to calling convention*/ - push %ebx - push %esi - push %edi - - - mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */ - add $crypto_tfm_ctx_offset, %ebp /* ctx adress */ - mov in_blk+16(%esp),%edi /* input adress in edi */ - - mov (%edi), %eax - mov b_offset(%edi), %ebx - mov c_offset(%edi), %ecx - mov d_offset(%edi), %edx - output_whitening(%eax,%ebp,a_offset) - output_whitening(%ebx,%ebp,b_offset) - ror $16, %ebx - output_whitening(%ecx,%ebp,c_offset) - output_whitening(%edx,%ebp,d_offset) - rol $1, %ecx - - decrypt_round(R0,R1,R2,R3,15*8); - decrypt_round(R2,R3,R0,R1,14*8); - decrypt_round(R0,R1,R2,R3,13*8); - decrypt_round(R2,R3,R0,R1,12*8); - decrypt_round(R0,R1,R2,R3,11*8); - decrypt_round(R2,R3,R0,R1,10*8); - decrypt_round(R0,R1,R2,R3,9*8); - decrypt_round(R2,R3,R0,R1,8*8); - decrypt_round(R0,R1,R2,R3,7*8); - decrypt_round(R2,R3,R0,R1,6*8); - decrypt_round(R0,R1,R2,R3,5*8); - decrypt_round(R2,R3,R0,R1,4*8); - decrypt_round(R0,R1,R2,R3,3*8); - decrypt_round(R2,R3,R0,R1,2*8); - decrypt_round(R0,R1,R2,R3,1*8); - decrypt_last_round(R2,R3,R0,R1,0); - - input_whitening(%eax,%ebp,c_offset) - input_whitening(%ebx,%ebp,d_offset) - input_whitening(%ecx,%ebp,a_offset) - input_whitening(%edx,%ebp,b_offset) - mov out_blk+16(%esp),%edi; - mov %eax, c_offset(%edi) - mov %ebx, d_offset(%edi) - mov %ecx, (%edi) - mov %edx, b_offset(%edi) - - pop %edi - pop %esi - pop %ebx - pop %ebp - mov $1, %eax - ret diff --git a/arch/i386/crypto/twofish_32.c b/arch/i386/crypto/twofish_32.c deleted file mode 100644 index e3004dfe9c7..00000000000 --- a/arch/i386/crypto/twofish_32.c +++ /dev/null @@ -1,97 +0,0 @@ -/* - * Glue Code for optimized 586 assembler version of TWOFISH - * - * Originally Twofish for GPG - * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998 - * 256-bit key length added March 20, 1999 - * Some modifications to reduce the text size by Werner Koch, April, 1998 - * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com> - * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net> - * - * The original author has disclaimed all copyright interest in this - * code and thus put it in the public domain. The subsequent authors - * have put this under the GNU General Public License. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 - * USA - * - * This code is a "clean room" implementation, written from the paper - * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey, - * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available - * through http://www.counterpane.com/twofish.html - * - * For background information on multiplication in finite fields, used for - * the matrix operations in the key schedule, see the book _Contemporary - * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the - * Third Edition. - */ - -#include <crypto/twofish.h> -#include <linux/crypto.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/types.h> - - -asmlinkage void twofish_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); -asmlinkage void twofish_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); - -static void twofish_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) -{ - twofish_enc_blk(tfm, dst, src); -} - -static void twofish_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) -{ - twofish_dec_blk(tfm, dst, src); -} - -static struct crypto_alg alg = { - .cra_name = "twofish", - .cra_driver_name = "twofish-i586", - .cra_priority = 200, - .cra_flags = CRYPTO_ALG_TYPE_CIPHER, - .cra_blocksize = TF_BLOCK_SIZE, - .cra_ctxsize = sizeof(struct twofish_ctx), - .cra_alignmask = 3, - .cra_module = THIS_MODULE, - .cra_list = LIST_HEAD_INIT(alg.cra_list), - .cra_u = { - .cipher = { - .cia_min_keysize = TF_MIN_KEY_SIZE, - .cia_max_keysize = TF_MAX_KEY_SIZE, - .cia_setkey = twofish_setkey, - .cia_encrypt = twofish_encrypt, - .cia_decrypt = twofish_decrypt - } - } -}; - -static int __init init(void) -{ - return crypto_register_alg(&alg); -} - -static void __exit fini(void) -{ - crypto_unregister_alg(&alg); -} - -module_init(init); -module_exit(fini); - -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION ("Twofish Cipher Algorithm, i586 asm optimized"); -MODULE_ALIAS("twofish"); |