summaryrefslogtreecommitdiffstats
path: root/arch/i386/crypto
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 11:16:21 +0200
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 11:16:21 +0200
commit9c2019421511a1bc646981d55528334ae46464c0 (patch)
tree12bd39b5201d0afc74dccd8e06464233d3058e58 /arch/i386/crypto
parentaf49d41e8c0e6649b3966470aa6319585144f8e8 (diff)
i386: move crypto
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/i386/crypto')
-rw-r--r--arch/i386/crypto/Makefile5
-rw-r--r--arch/i386/crypto/Makefile_3212
-rw-r--r--arch/i386/crypto/aes-i586-asm_32.S373
-rw-r--r--arch/i386/crypto/aes_32.c515
-rw-r--r--arch/i386/crypto/twofish-i586-asm_32.S335
-rw-r--r--arch/i386/crypto/twofish_32.c97
6 files changed, 0 insertions, 1337 deletions
diff --git a/arch/i386/crypto/Makefile b/arch/i386/crypto/Makefile
deleted file mode 100644
index fbd34ac2cda..00000000000
--- a/arch/i386/crypto/Makefile
+++ /dev/null
@@ -1,5 +0,0 @@
-ifeq ($(CONFIG_X86_32),y)
-include ${srctree}/arch/i386/crypto/Makefile_32
-else
-include ${srctree}/arch/x86_64/crypto/Makefile_64
-endif
diff --git a/arch/i386/crypto/Makefile_32 b/arch/i386/crypto/Makefile_32
deleted file mode 100644
index 7154b14cd95..00000000000
--- a/arch/i386/crypto/Makefile_32
+++ /dev/null
@@ -1,12 +0,0 @@
-#
-# i386/crypto/Makefile
-#
-# Arch-specific CryptoAPI modules.
-#
-
-obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o
-obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o
-
-aes-i586-y := aes-i586-asm_32.o aes_32.o
-twofish-i586-y := twofish-i586-asm_32.o twofish_32.o
-
diff --git a/arch/i386/crypto/aes-i586-asm_32.S b/arch/i386/crypto/aes-i586-asm_32.S
deleted file mode 100644
index f942f0c8f63..00000000000
--- a/arch/i386/crypto/aes-i586-asm_32.S
+++ /dev/null
@@ -1,373 +0,0 @@
-// -------------------------------------------------------------------------
-// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK.
-// All rights reserved.
-//
-// LICENSE TERMS
-//
-// The free distribution and use of this software in both source and binary
-// form is allowed (with or without changes) provided that:
-//
-// 1. distributions of this source code include the above copyright
-// notice, this list of conditions and the following disclaimer//
-//
-// 2. distributions in binary form include the above copyright
-// notice, this list of conditions and the following disclaimer
-// in the documentation and/or other associated materials//
-//
-// 3. the copyright holder's name is not used to endorse products
-// built using this software without specific written permission.
-//
-//
-// ALTERNATIVELY, provided that this notice is retained in full, this product
-// may be distributed under the terms of the GNU General Public License (GPL),
-// in which case the provisions of the GPL apply INSTEAD OF those given above.
-//
-// Copyright (c) 2004 Linus Torvalds <torvalds@osdl.org>
-// Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
-
-// DISCLAIMER
-//
-// This software is provided 'as is' with no explicit or implied warranties
-// in respect of its properties including, but not limited to, correctness
-// and fitness for purpose.
-// -------------------------------------------------------------------------
-// Issue Date: 29/07/2002
-
-.file "aes-i586-asm.S"
-.text
-
-#include <asm/asm-offsets.h>
-
-#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words)
-
-/* offsets to parameters with one register pushed onto stack */
-#define tfm 8
-#define out_blk 12
-#define in_blk 16
-
-/* offsets in crypto_tfm structure */
-#define ekey (crypto_tfm_ctx_offset + 0)
-#define nrnd (crypto_tfm_ctx_offset + 256)
-#define dkey (crypto_tfm_ctx_offset + 260)
-
-// register mapping for encrypt and decrypt subroutines
-
-#define r0 eax
-#define r1 ebx
-#define r2 ecx
-#define r3 edx
-#define r4 esi
-#define r5 edi
-
-#define eaxl al
-#define eaxh ah
-#define ebxl bl
-#define ebxh bh
-#define ecxl cl
-#define ecxh ch
-#define edxl dl
-#define edxh dh
-
-#define _h(reg) reg##h
-#define h(reg) _h(reg)
-
-#define _l(reg) reg##l
-#define l(reg) _l(reg)
-
-// This macro takes a 32-bit word representing a column and uses
-// each of its four bytes to index into four tables of 256 32-bit
-// words to obtain values that are then xored into the appropriate
-// output registers r0, r1, r4 or r5.
-
-// Parameters:
-// table table base address
-// %1 out_state[0]
-// %2 out_state[1]
-// %3 out_state[2]
-// %4 out_state[3]
-// idx input register for the round (destroyed)
-// tmp scratch register for the round
-// sched key schedule
-
-#define do_col(table, a1,a2,a3,a4, idx, tmp) \
- movzx %l(idx),%tmp; \
- xor table(,%tmp,4),%a1; \
- movzx %h(idx),%tmp; \
- shr $16,%idx; \
- xor table+tlen(,%tmp,4),%a2; \
- movzx %l(idx),%tmp; \
- movzx %h(idx),%idx; \
- xor table+2*tlen(,%tmp,4),%a3; \
- xor table+3*tlen(,%idx,4),%a4;
-
-// initialise output registers from the key schedule
-// NB1: original value of a3 is in idx on exit
-// NB2: original values of a1,a2,a4 aren't used
-#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \
- mov 0 sched,%a1; \
- movzx %l(idx),%tmp; \
- mov 12 sched,%a2; \
- xor table(,%tmp,4),%a1; \
- mov 4 sched,%a4; \
- movzx %h(idx),%tmp; \
- shr $16,%idx; \
- xor table+tlen(,%tmp,4),%a2; \
- movzx %l(idx),%tmp; \
- movzx %h(idx),%idx; \
- xor table+3*tlen(,%idx,4),%a4; \
- mov %a3,%idx; \
- mov 8 sched,%a3; \
- xor table+2*tlen(,%tmp,4),%a3;
-
-// initialise output registers from the key schedule
-// NB1: original value of a3 is in idx on exit
-// NB2: original values of a1,a2,a4 aren't used
-#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \
- mov 0 sched,%a1; \
- movzx %l(idx),%tmp; \
- mov 4 sched,%a2; \
- xor table(,%tmp,4),%a1; \
- mov 12 sched,%a4; \
- movzx %h(idx),%tmp; \
- shr $16,%idx; \
- xor table+tlen(,%tmp,4),%a2; \
- movzx %l(idx),%tmp; \
- movzx %h(idx),%idx; \
- xor table+3*tlen(,%idx,4),%a4; \
- mov %a3,%idx; \
- mov 8 sched,%a3; \
- xor table+2*tlen(,%tmp,4),%a3;
-
-
-// original Gladman had conditional saves to MMX regs.
-#define save(a1, a2) \
- mov %a2,4*a1(%esp)
-
-#define restore(a1, a2) \
- mov 4*a2(%esp),%a1
-
-// These macros perform a forward encryption cycle. They are entered with
-// the first previous round column values in r0,r1,r4,r5 and
-// exit with the final values in the same registers, using stack
-// for temporary storage.
-
-// round column values
-// on entry: r0,r1,r4,r5
-// on exit: r2,r1,r4,r5
-#define fwd_rnd1(arg, table) \
- save (0,r1); \
- save (1,r5); \
- \
- /* compute new column values */ \
- do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \
- do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \
- restore(r0,0); \
- do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \
- restore(r0,1); \
- do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */
-
-// round column values
-// on entry: r2,r1,r4,r5
-// on exit: r0,r1,r4,r5
-#define fwd_rnd2(arg, table) \
- save (0,r1); \
- save (1,r5); \
- \
- /* compute new column values */ \
- do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \
- do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \
- restore(r2,0); \
- do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \
- restore(r2,1); \
- do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */
-
-// These macros performs an inverse encryption cycle. They are entered with
-// the first previous round column values in r0,r1,r4,r5 and
-// exit with the final values in the same registers, using stack
-// for temporary storage
-
-// round column values
-// on entry: r0,r1,r4,r5
-// on exit: r2,r1,r4,r5
-#define inv_rnd1(arg, table) \
- save (0,r1); \
- save (1,r5); \
- \
- /* compute new column values */ \
- do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \
- do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \
- restore(r0,0); \
- do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \
- restore(r0,1); \
- do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */
-
-// round column values
-// on entry: r2,r1,r4,r5
-// on exit: r0,r1,r4,r5
-#define inv_rnd2(arg, table) \
- save (0,r1); \
- save (1,r5); \
- \
- /* compute new column values */ \
- do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \
- do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \
- restore(r2,0); \
- do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \
- restore(r2,1); \
- do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */
-
-// AES (Rijndael) Encryption Subroutine
-/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */
-
-.global aes_enc_blk
-
-.extern ft_tab
-.extern fl_tab
-
-.align 4
-
-aes_enc_blk:
- push %ebp
- mov tfm(%esp),%ebp
-
-// CAUTION: the order and the values used in these assigns
-// rely on the register mappings
-
-1: push %ebx
- mov in_blk+4(%esp),%r2
- push %esi
- mov nrnd(%ebp),%r3 // number of rounds
- push %edi
-#if ekey != 0
- lea ekey(%ebp),%ebp // key pointer
-#endif
-
-// input four columns and xor in first round key
-
- mov (%r2),%r0
- mov 4(%r2),%r1
- mov 8(%r2),%r4
- mov 12(%r2),%r5
- xor (%ebp),%r0
- xor 4(%ebp),%r1
- xor 8(%ebp),%r4
- xor 12(%ebp),%r5
-
- sub $8,%esp // space for register saves on stack
- add $16,%ebp // increment to next round key
- cmp $12,%r3
- jb 4f // 10 rounds for 128-bit key
- lea 32(%ebp),%ebp
- je 3f // 12 rounds for 192-bit key
- lea 32(%ebp),%ebp
-
-2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key
- fwd_rnd2( -48(%ebp) ,ft_tab)
-3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key
- fwd_rnd2( -16(%ebp) ,ft_tab)
-4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key
- fwd_rnd2( +16(%ebp) ,ft_tab)
- fwd_rnd1( +32(%ebp) ,ft_tab)
- fwd_rnd2( +48(%ebp) ,ft_tab)
- fwd_rnd1( +64(%ebp) ,ft_tab)
- fwd_rnd2( +80(%ebp) ,ft_tab)
- fwd_rnd1( +96(%ebp) ,ft_tab)
- fwd_rnd2(+112(%ebp) ,ft_tab)
- fwd_rnd1(+128(%ebp) ,ft_tab)
- fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table
-
-// move final values to the output array. CAUTION: the
-// order of these assigns rely on the register mappings
-
- add $8,%esp
- mov out_blk+12(%esp),%ebp
- mov %r5,12(%ebp)
- pop %edi
- mov %r4,8(%ebp)
- pop %esi
- mov %r1,4(%ebp)
- pop %ebx
- mov %r0,(%ebp)
- pop %ebp
- mov $1,%eax
- ret
-
-// AES (Rijndael) Decryption Subroutine
-/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */
-
-.global aes_dec_blk
-
-.extern it_tab
-.extern il_tab
-
-.align 4
-
-aes_dec_blk:
- push %ebp
- mov tfm(%esp),%ebp
-
-// CAUTION: the order and the values used in these assigns
-// rely on the register mappings
-
-1: push %ebx
- mov in_blk+4(%esp),%r2
- push %esi
- mov nrnd(%ebp),%r3 // number of rounds
- push %edi
-#if dkey != 0
- lea dkey(%ebp),%ebp // key pointer
-#endif
- mov %r3,%r0
- shl $4,%r0
- add %r0,%ebp
-
-// input four columns and xor in first round key
-
- mov (%r2),%r0
- mov 4(%r2),%r1
- mov 8(%r2),%r4
- mov 12(%r2),%r5
- xor (%ebp),%r0
- xor 4(%ebp),%r1
- xor 8(%ebp),%r4
- xor 12(%ebp),%r5
-
- sub $8,%esp // space for register saves on stack
- sub $16,%ebp // increment to next round key
- cmp $12,%r3
- jb 4f // 10 rounds for 128-bit key
- lea -32(%ebp),%ebp
- je 3f // 12 rounds for 192-bit key
- lea -32(%ebp),%ebp
-
-2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key
- inv_rnd2( +48(%ebp), it_tab)
-3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key
- inv_rnd2( +16(%ebp), it_tab)
-4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key
- inv_rnd2( -16(%ebp), it_tab)
- inv_rnd1( -32(%ebp), it_tab)
- inv_rnd2( -48(%ebp), it_tab)
- inv_rnd1( -64(%ebp), it_tab)
- inv_rnd2( -80(%ebp), it_tab)
- inv_rnd1( -96(%ebp), it_tab)
- inv_rnd2(-112(%ebp), it_tab)
- inv_rnd1(-128(%ebp), it_tab)
- inv_rnd2(-144(%ebp), il_tab) // last round uses a different table
-
-// move final values to the output array. CAUTION: the
-// order of these assigns rely on the register mappings
-
- add $8,%esp
- mov out_blk+12(%esp),%ebp
- mov %r5,12(%ebp)
- pop %edi
- mov %r4,8(%ebp)
- pop %esi
- mov %r1,4(%ebp)
- pop %ebx
- mov %r0,(%ebp)
- pop %ebp
- mov $1,%eax
- ret
-
diff --git a/arch/i386/crypto/aes_32.c b/arch/i386/crypto/aes_32.c
deleted file mode 100644
index 49aad9397f1..00000000000
--- a/arch/i386/crypto/aes_32.c
+++ /dev/null
@@ -1,515 +0,0 @@
-/*
- *
- * Glue Code for optimized 586 assembler version of AES
- *
- * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- * 1. distributions of this source code include the above copyright
- * notice, this list of conditions and the following disclaimer;
- *
- * 2. distributions in binary form include the above copyright
- * notice, this list of conditions and the following disclaimer
- * in the documentation and/or other associated materials;
- *
- * 3. the copyright holder's name is not used to endorse products
- * built using this software without specific written permission.
- *
- * ALTERNATIVELY, provided that this notice is retained in full, this product
- * may be distributed under the terms of the GNU General Public License (GPL),
- * in which case the provisions of the GPL apply INSTEAD OF those given above.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explicit or implied warranties
- * in respect of its properties, including, but not limited to, correctness
- * and/or fitness for purpose.
- *
- * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to
- * 2.5 API).
- * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org>
- * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
- *
- */
-
-#include <asm/byteorder.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/init.h>
-#include <linux/types.h>
-#include <linux/crypto.h>
-#include <linux/linkage.h>
-
-asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
-asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
-
-#define AES_MIN_KEY_SIZE 16
-#define AES_MAX_KEY_SIZE 32
-#define AES_BLOCK_SIZE 16
-#define AES_KS_LENGTH 4 * AES_BLOCK_SIZE
-#define RC_LENGTH 29
-
-struct aes_ctx {
- u32 ekey[AES_KS_LENGTH];
- u32 rounds;
- u32 dkey[AES_KS_LENGTH];
-};
-
-#define WPOLY 0x011b
-#define bytes2word(b0, b1, b2, b3) \
- (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0))
-
-/* define the finite field multiplies required for Rijndael */
-#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
-#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
-#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
-#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
-#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
-#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
-#define fi(x) ((x) ? pow[255 - log[x]]: 0)
-
-static inline u32 upr(u32 x, int n)
-{
- return (x << 8 * n) | (x >> (32 - 8 * n));
-}
-
-static inline u8 bval(u32 x, int n)
-{
- return x >> 8 * n;
-}
-
-/* The forward and inverse affine transformations used in the S-box */
-#define fwd_affine(x) \
- (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8)))
-
-#define inv_affine(x) \
- (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8)))
-
-static u32 rcon_tab[RC_LENGTH];
-
-u32 ft_tab[4][256];
-u32 fl_tab[4][256];
-static u32 im_tab[4][256];
-u32 il_tab[4][256];
-u32 it_tab[4][256];
-
-static void gen_tabs(void)
-{
- u32 i, w;
- u8 pow[512], log[256];
-
- /*
- * log and power tables for GF(2^8) finite field with
- * WPOLY as modular polynomial - the simplest primitive
- * root is 0x03, used here to generate the tables.
- */
- i = 0; w = 1;
-
- do {
- pow[i] = (u8)w;
- pow[i + 255] = (u8)w;
- log[w] = (u8)i++;
- w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
- } while (w != 1);
-
- for(i = 0, w = 1; i < RC_LENGTH; ++i) {
- rcon_tab[i] = bytes2word(w, 0, 0, 0);
- w = f2(w);
- }
-
- for(i = 0; i < 256; ++i) {
- u8 b;
-
- b = fwd_affine(fi((u8)i));
- w = bytes2word(f2(b), b, b, f3(b));
-
- /* tables for a normal encryption round */
- ft_tab[0][i] = w;
- ft_tab[1][i] = upr(w, 1);
- ft_tab[2][i] = upr(w, 2);
- ft_tab[3][i] = upr(w, 3);
- w = bytes2word(b, 0, 0, 0);
-
- /*
- * tables for last encryption round
- * (may also be used in the key schedule)
- */
- fl_tab[0][i] = w;
- fl_tab[1][i] = upr(w, 1);
- fl_tab[2][i] = upr(w, 2);
- fl_tab[3][i] = upr(w, 3);
-
- b = fi(inv_affine((u8)i));
- w = bytes2word(fe(b), f9(b), fd(b), fb(b));
-
- /* tables for the inverse mix column operation */
- im_tab[0][b] = w;
- im_tab[1][b] = upr(w, 1);
- im_tab[2][b] = upr(w, 2);
- im_tab[3][b] = upr(w, 3);
-
- /* tables for a normal decryption round */
- it_tab[0][i] = w;
- it_tab[1][i] = upr(w,1);
- it_tab[2][i] = upr(w,2);
- it_tab[3][i] = upr(w,3);
-
- w = bytes2word(b, 0, 0, 0);
-
- /* tables for last decryption round */
- il_tab[0][i] = w;
- il_tab[1][i] = upr(w,1);
- il_tab[2][i] = upr(w,2);
- il_tab[3][i] = upr(w,3);
- }
-}
-
-#define four_tables(x,tab,vf,rf,c) \
-( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \
- tab[1][bval(vf(x,1,c),rf(1,c))] ^ \
- tab[2][bval(vf(x,2,c),rf(2,c))] ^ \
- tab[3][bval(vf(x,3,c),rf(3,c))] \
-)
-
-#define vf1(x,r,c) (x)
-#define rf1(r,c) (r)
-#define rf2(r,c) ((r-c)&3)
-
-#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0)
-#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c)
-
-#define ff(x) inv_mcol(x)
-
-#define ke4(k,i) \
-{ \
- k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \
- k[4*(i)+5] = ss[1] ^= ss[0]; \
- k[4*(i)+6] = ss[2] ^= ss[1]; \
- k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-
-#define kel4(k,i) \
-{ \
- k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \
- k[4*(i)+5] = ss[1] ^= ss[0]; \
- k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-
-#define ke6(k,i) \
-{ \
- k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
- k[6*(i)+ 7] = ss[1] ^= ss[0]; \
- k[6*(i)+ 8] = ss[2] ^= ss[1]; \
- k[6*(i)+ 9] = ss[3] ^= ss[2]; \
- k[6*(i)+10] = ss[4] ^= ss[3]; \
- k[6*(i)+11] = ss[5] ^= ss[4]; \
-}
-
-#define kel6(k,i) \
-{ \
- k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
- k[6*(i)+ 7] = ss[1] ^= ss[0]; \
- k[6*(i)+ 8] = ss[2] ^= ss[1]; \
- k[6*(i)+ 9] = ss[3] ^= ss[2]; \
-}
-
-#define ke8(k,i) \
-{ \
- k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
- k[8*(i)+ 9] = ss[1] ^= ss[0]; \
- k[8*(i)+10] = ss[2] ^= ss[1]; \
- k[8*(i)+11] = ss[3] ^= ss[2]; \
- k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
- k[8*(i)+13] = ss[5] ^= ss[4]; \
- k[8*(i)+14] = ss[6] ^= ss[5]; \
- k[8*(i)+15] = ss[7] ^= ss[6]; \
-}
-
-#define kel8(k,i) \
-{ \
- k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
- k[8*(i)+ 9] = ss[1] ^= ss[0]; \
- k[8*(i)+10] = ss[2] ^= ss[1]; \
- k[8*(i)+11] = ss[3] ^= ss[2]; \
-}
-
-#define kdf4(k,i) \
-{ \
- ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
- ss[1] = ss[1] ^ ss[3]; \
- ss[2] = ss[2] ^ ss[3]; \
- ss[3] = ss[3]; \
- ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \
- ss[i % 4] ^= ss[4]; \
- ss[4] ^= k[4*(i)]; \
- k[4*(i)+4] = ff(ss[4]); \
- ss[4] ^= k[4*(i)+1]; \
- k[4*(i)+5] = ff(ss[4]); \
- ss[4] ^= k[4*(i)+2]; \
- k[4*(i)+6] = ff(ss[4]); \
- ss[4] ^= k[4*(i)+3]; \
- k[4*(i)+7] = ff(ss[4]); \
-}
-
-#define kd4(k,i) \
-{ \
- ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \
- ss[i % 4] ^= ss[4]; \
- ss[4] = ff(ss[4]); \
- k[4*(i)+4] = ss[4] ^= k[4*(i)]; \
- k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \
- k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \
- k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \
-}
-
-#define kdl4(k,i) \
-{ \
- ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \
- ss[i % 4] ^= ss[4]; \
- k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
- k[4*(i)+5] = ss[1] ^ ss[3]; \
- k[4*(i)+6] = ss[0]; \
- k[4*(i)+7] = ss[1]; \
-}
-
-#define kdf6(k,i) \
-{ \
- ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
- k[6*(i)+ 6] = ff(ss[0]); \
- ss[1] ^= ss[0]; \
- k[6*(i)+ 7] = ff(ss[1]); \
- ss[2] ^= ss[1]; \
- k[6*(i)+ 8] = ff(ss[2]); \
- ss[3] ^= ss[2]; \
- k[6*(i)+ 9] = ff(ss[3]); \
- ss[4] ^= ss[3]; \
- k[6*(i)+10] = ff(ss[4]); \
- ss[5] ^= ss[4]; \
- k[6*(i)+11] = ff(ss[5]); \
-}
-
-#define kd6(k,i) \
-{ \
- ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \
- ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \
- k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \
- ss[1] ^= ss[0]; \
- k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \
- ss[2] ^= ss[1]; \
- k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \
- ss[3] ^= ss[2]; \
- k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \
- ss[4] ^= ss[3]; \
- k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \
- ss[5] ^= ss[4]; \
- k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \
-}
-
-#define kdl6(k,i) \
-{ \
- ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \
- k[6*(i)+ 6] = ss[0]; \
- ss[1] ^= ss[0]; \
- k[6*(i)+ 7] = ss[1]; \
- ss[2] ^= ss[1]; \
- k[6*(i)+ 8] = ss[2]; \
- ss[3] ^= ss[2]; \
- k[6*(i)+ 9] = ss[3]; \
-}
-
-#define kdf8(k,i) \
-{ \
- ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
- k[8*(i)+ 8] = ff(ss[0]); \
- ss[1] ^= ss[0]; \
- k[8*(i)+ 9] = ff(ss[1]); \
- ss[2] ^= ss[1]; \
- k[8*(i)+10] = ff(ss[2]); \
- ss[3] ^= ss[2]; \
- k[8*(i)+11] = ff(ss[3]); \
- ss[4] ^= ls_box(ss[3],0); \
- k[8*(i)+12] = ff(ss[4]); \
- ss[5] ^= ss[4]; \
- k[8*(i)+13] = ff(ss[5]); \
- ss[6] ^= ss[5]; \
- k[8*(i)+14] = ff(ss[6]); \
- ss[7] ^= ss[6]; \
- k[8*(i)+15] = ff(ss[7]); \
-}
-
-#define kd8(k,i) \
-{ \
- u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \
- ss[0] ^= __g; \
- __g = ff(__g); \
- k[8*(i)+ 8] = __g ^= k[8*(i)]; \
- ss[1] ^= ss[0]; \
- k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \
- ss[2] ^= ss[1]; \
- k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \
- ss[3] ^= ss[2]; \
- k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \
- __g = ls_box(ss[3],0); \
- ss[4] ^= __g; \
- __g = ff(__g); \
- k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \
- ss[5] ^= ss[4]; \
- k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \
- ss[6] ^= ss[5]; \
- k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \
- ss[7] ^= ss[6]; \
- k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \
-}
-
-#define kdl8(k,i) \
-{ \
- ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \
- k[8*(i)+ 8] = ss[0]; \
- ss[1] ^= ss[0]; \
- k[8*(i)+ 9] = ss[1]; \
- ss[2] ^= ss[1]; \
- k[8*(i)+10] = ss[2]; \
- ss[3] ^= ss[2]; \
- k[8*(i)+11] = ss[3]; \
-}
-
-static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
- unsigned int key_len)
-{
- int i;
- u32 ss[8];
- struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
- const __le32 *key = (const __le32 *)in_key;
- u32 *flags = &tfm->crt_flags;
-
- /* encryption schedule */
-
- ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]);
- ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]);
- ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]);
- ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]);
-
- switch(key_len) {
- case 16:
- for (i = 0; i < 9; i++)
- ke4(ctx->ekey, i);
- kel4(ctx->ekey, 9);
- ctx->rounds = 10;
- break;
-
- case 24:
- ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]);
- ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]);
- for (i = 0; i < 7; i++)
- ke6(ctx->ekey, i);
- kel6(ctx->ekey, 7);
- ctx->rounds = 12;
- break;
-
- case 32:
- ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]);
- ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]);
- ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]);
- ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]);
- for (i = 0; i < 6; i++)
- ke8(ctx->ekey, i);
- kel8(ctx->ekey, 6);
- ctx->rounds = 14;
- break;
-
- default:
- *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
- return -EINVAL;
- }
-
- /* decryption schedule */
-
- ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]);
- ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]);
- ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]);
- ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]);
-
- switch (key_len) {
- case 16:
- kdf4(ctx->dkey, 0);
- for (i = 1; i < 9; i++)
- kd4(ctx->dkey, i);
- kdl4(ctx->dkey, 9);
- break;
-
- case 24:
- ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4]));
- ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5]));
- kdf6(ctx->dkey, 0);
- for (i = 1; i < 7; i++)
- kd6(ctx->dkey, i);
- kdl6(ctx->dkey, 7);
- break;
-
- case 32:
- ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4]));
- ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5]));
- ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6]));
- ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7]));
- kdf8(ctx->dkey, 0);
- for (i = 1; i < 6; i++)
- kd8(ctx->dkey, i);
- kdl8(ctx->dkey, 6);
- break;
- }
- return 0;
-}
-
-static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
-{
- aes_enc_blk(tfm, dst, src);
-}
-
-static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
-{
- aes_dec_blk(tfm, dst, src);
-}
-
-static struct crypto_alg aes_alg = {
- .cra_name = "aes",
- .cra_driver_name = "aes-i586",
- .cra_priority = 200,
- .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
- .cra_blocksize = AES_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct aes_ctx),
- .cra_module = THIS_MODULE,
- .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
- .cra_u = {
- .cipher = {
- .cia_min_keysize = AES_MIN_KEY_SIZE,
- .cia_max_keysize = AES_MAX_KEY_SIZE,
- .cia_setkey = aes_set_key,
- .cia_encrypt = aes_encrypt,
- .cia_decrypt = aes_decrypt
- }
- }
-};
-
-static int __init aes_init(void)
-{
- gen_tabs();
- return crypto_register_alg(&aes_alg);
-}
-
-static void __exit aes_fini(void)
-{
- crypto_unregister_alg(&aes_alg);
-}
-
-module_init(aes_init);
-module_exit(aes_fini);
-
-MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized");
-MODULE_LICENSE("Dual BSD/GPL");
-MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter");
-MODULE_ALIAS("aes");
diff --git a/arch/i386/crypto/twofish-i586-asm_32.S b/arch/i386/crypto/twofish-i586-asm_32.S
deleted file mode 100644
index 39b98ed2c1b..00000000000
--- a/arch/i386/crypto/twofish-i586-asm_32.S
+++ /dev/null
@@ -1,335 +0,0 @@
-/***************************************************************************
-* Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> *
-* *
-* This program is free software; you can redistribute it and/or modify *
-* it under the terms of the GNU General Public License as published by *
-* the Free Software Foundation; either version 2 of the License, or *
-* (at your option) any later version. *
-* *
-* This program is distributed in the hope that it will be useful, *
-* but WITHOUT ANY WARRANTY; without even the implied warranty of *
-* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
-* GNU General Public License for more details. *
-* *
-* You should have received a copy of the GNU General Public License *
-* along with this program; if not, write to the *
-* Free Software Foundation, Inc., *
-* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
-***************************************************************************/
-
-.file "twofish-i586-asm.S"
-.text
-
-#include <asm/asm-offsets.h>
-
-/* return adress at 0 */
-
-#define in_blk 12 /* input byte array address parameter*/
-#define out_blk 8 /* output byte array address parameter*/
-#define tfm 4 /* Twofish context structure */
-
-#define a_offset 0
-#define b_offset 4
-#define c_offset 8
-#define d_offset 12
-
-/* Structure of the crypto context struct*/
-
-#define s0 0 /* S0 Array 256 Words each */
-#define s1 1024 /* S1 Array */
-#define s2 2048 /* S2 Array */
-#define s3 3072 /* S3 Array */
-#define w 4096 /* 8 whitening keys (word) */
-#define k 4128 /* key 1-32 ( word ) */
-
-/* define a few register aliases to allow macro substitution */
-
-#define R0D %eax
-#define R0B %al
-#define R0H %ah
-
-#define R1D %ebx
-#define R1B %bl
-#define R1H %bh
-
-#define R2D %ecx
-#define R2B %cl
-#define R2H %ch
-
-#define R3D %edx
-#define R3B %dl
-#define R3H %dh
-
-
-/* performs input whitening */
-#define input_whitening(src,context,offset)\
- xor w+offset(context), src;
-
-/* performs input whitening */
-#define output_whitening(src,context,offset)\
- xor w+16+offset(context), src;
-
-/*
- * a input register containing a (rotated 16)
- * b input register containing b
- * c input register containing c
- * d input register containing d (already rol $1)
- * operations on a and b are interleaved to increase performance
- */
-#define encrypt_round(a,b,c,d,round)\
- push d ## D;\
- movzx b ## B, %edi;\
- mov s1(%ebp,%edi,4),d ## D;\
- movzx a ## B, %edi;\
- mov s2(%ebp,%edi,4),%esi;\
- movzx b ## H, %edi;\
- ror $16, b ## D;\
- xor s2(%ebp,%edi,4),d ## D;\
- movzx a ## H, %edi;\
- ror $16, a ## D;\
- xor s3(%ebp,%edi,4),%esi;\
- movzx b ## B, %edi;\
- xor s3(%ebp,%edi,4),d ## D;\
- movzx a ## B, %edi;\
- xor (%ebp,%edi,4), %esi;\
- movzx b ## H, %edi;\
- ror $15, b ## D;\
- xor (%ebp,%edi,4), d ## D;\
- movzx a ## H, %edi;\
- xor s1(%ebp,%edi,4),%esi;\
- pop %edi;\
- add d ## D, %esi;\
- add %esi, d ## D;\
- add k+round(%ebp), %esi;\
- xor %esi, c ## D;\
- rol $15, c ## D;\
- add k+4+round(%ebp),d ## D;\
- xor %edi, d ## D;
-
-/*
- * a input register containing a (rotated 16)
- * b input register containing b
- * c input register containing c
- * d input register containing d (already rol $1)
- * operations on a and b are interleaved to increase performance
- * last round has different rotations for the output preparation
- */
-#define encrypt_last_round(a,b,c,d,round)\
- push d ## D;\
- movzx b ## B, %edi;\
- mov s1(%ebp,%edi,4),d ## D;\
- movzx a ## B, %edi;\
- mov s2(%ebp,%edi,4),%esi;\
- movzx b ## H, %edi;\
- ror $16, b ## D;\
- xor s2(%ebp,%edi,4),d ## D;\
- movzx a ## H, %edi;\
- ror $16, a ## D;\
- xor s3(%ebp,%edi,4),%esi;\
- movzx b ## B, %edi;\
- xor s3(%ebp,%edi,4),d ## D;\
- movzx a ## B, %edi;\
- xor (%ebp,%edi,4), %esi;\
- movzx b ## H, %edi;\
- ror $16, b ## D;\
- xor (%ebp,%edi,4), d ## D;\
- movzx a ## H, %edi;\
- xor s1(%ebp,%edi,4),%esi;\
- pop %edi;\
- add d ## D, %esi;\
- add %esi, d ## D;\
- add k+round(%ebp), %esi;\
- xor %esi, c ## D;\
- ror $1, c ## D;\
- add k+4+round(%ebp),d ## D;\
- xor %edi, d ## D;
-
-/*
- * a input register containing a
- * b input register containing b (rotated 16)
- * c input register containing c
- * d input register containing d (already rol $1)
- * operations on a and b are interleaved to increase performance
- */
-#define decrypt_round(a,b,c,d,round)\
- push c ## D;\
- movzx a ## B, %edi;\
- mov (%ebp,%edi,4), c ## D;\
- movzx b ## B, %edi;\
- mov s3(%ebp,%edi,4),%esi;\
- movzx a ## H, %edi;\
- ror $16, a ## D;\
- xor s1(%ebp,%edi,4),c ## D;\
- movzx b ## H, %edi;\
- ror $16, b ## D;\
- xor (%ebp,%edi,4), %esi;\
- movzx a ## B, %edi;\
- xor s2(%ebp,%edi,4),c ## D;\
- movzx b ## B, %edi;\
- xor s1(%ebp,%edi,4),%esi;\
- movzx a ## H, %edi;\
- ror $15, a ## D;\
- xor s3(%ebp,%edi,4),c ## D;\
- movzx b ## H, %edi;\
- xor s2(%ebp,%edi,4),%esi;\
- pop %edi;\
- add %esi, c ## D;\
- add c ## D, %esi;\
- add k+round(%ebp), c ## D;\
- xor %edi, c ## D;\
- add k+4+round(%ebp),%esi;\
- xor %esi, d ## D;\
- rol $15, d ## D;
-
-/*
- * a input register containing a
- * b input register containing b (rotated 16)
- * c input register containing c
- * d input register containing d (already rol $1)
- * operations on a and b are interleaved to increase performance
- * last round has different rotations for the output preparation
- */
-#define decrypt_last_round(a,b,c,d,round)\
- push c ## D;\
- movzx a ## B, %edi;\
- mov (%ebp,%edi,4), c ## D;\
- movzx b ## B, %edi;\
- mov s3(%ebp,%edi,4),%esi;\
- movzx a ## H, %edi;\
- ror $16, a ## D;\
- xor s1(%ebp,%edi,4),c ## D;\
- movzx b ## H, %edi;\
- ror $16, b ## D;\
- xor (%ebp,%edi,4), %esi;\
- movzx a ## B, %edi;\
- xor s2(%ebp,%edi,4),c ## D;\
- movzx b ## B, %edi;\
- xor s1(%ebp,%edi,4),%esi;\
- movzx a ## H, %edi;\
- ror $16, a ## D;\
- xor s3(%ebp,%edi,4),c ## D;\
- movzx b ## H, %edi;\
- xor s2(%ebp,%edi,4),%esi;\
- pop %edi;\
- add %esi, c ## D;\
- add c ## D, %esi;\
- add k+round(%ebp), c ## D;\
- xor %edi, c ## D;\
- add k+4+round(%ebp),%esi;\
- xor %esi, d ## D;\
- ror $1, d ## D;
-
-.align 4
-.global twofish_enc_blk
-.global twofish_dec_blk
-
-twofish_enc_blk:
- push %ebp /* save registers according to calling convention*/
- push %ebx
- push %esi
- push %edi
-
- mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */
- add $crypto_tfm_ctx_offset, %ebp /* ctx adress */
- mov in_blk+16(%esp),%edi /* input adress in edi */
-
- mov (%edi), %eax
- mov b_offset(%edi), %ebx
- mov c_offset(%edi), %ecx
- mov d_offset(%edi), %edx
- input_whitening(%eax,%ebp,a_offset)
- ror $16, %eax
- input_whitening(%ebx,%ebp,b_offset)
- input_whitening(%ecx,%ebp,c_offset)
- input_whitening(%edx,%ebp,d_offset)
- rol $1, %edx
-
- encrypt_round(R0,R1,R2,R3,0);
- encrypt_round(R2,R3,R0,R1,8);
- encrypt_round(R0,R1,R2,R3,2*8);
- encrypt_round(R2,R3,R0,R1,3*8);
- encrypt_round(R0,R1,R2,R3,4*8);
- encrypt_round(R2,R3,R0,R1,5*8);
- encrypt_round(R0,R1,R2,R3,6*8);
- encrypt_round(R2,R3,R0,R1,7*8);
- encrypt_round(R0,R1,R2,R3,8*8);
- encrypt_round(R2,R3,R0,R1,9*8);
- encrypt_round(R0,R1,R2,R3,10*8);
- encrypt_round(R2,R3,R0,R1,11*8);
- encrypt_round(R0,R1,R2,R3,12*8);
- encrypt_round(R2,R3,R0,R1,13*8);
- encrypt_round(R0,R1,R2,R3,14*8);
- encrypt_last_round(R2,R3,R0,R1,15*8);
-
- output_whitening(%eax,%ebp,c_offset)
- output_whitening(%ebx,%ebp,d_offset)
- output_whitening(%ecx,%ebp,a_offset)
- output_whitening(%edx,%ebp,b_offset)
- mov out_blk+16(%esp),%edi;
- mov %eax, c_offset(%edi)
- mov %ebx, d_offset(%edi)
- mov %ecx, (%edi)
- mov %edx, b_offset(%edi)
-
- pop %edi
- pop %esi
- pop %ebx
- pop %ebp
- mov $1, %eax
- ret
-
-twofish_dec_blk:
- push %ebp /* save registers according to calling convention*/
- push %ebx
- push %esi
- push %edi
-
-
- mov tfm + 16(%esp), %ebp /* abuse the base pointer: set new base bointer to the crypto tfm */
- add $crypto_tfm_ctx_offset, %ebp /* ctx adress */
- mov in_blk+16(%esp),%edi /* input adress in edi */
-
- mov (%edi), %eax
- mov b_offset(%edi), %ebx
- mov c_offset(%edi), %ecx
- mov d_offset(%edi), %edx
- output_whitening(%eax,%ebp,a_offset)
- output_whitening(%ebx,%ebp,b_offset)
- ror $16, %ebx
- output_whitening(%ecx,%ebp,c_offset)
- output_whitening(%edx,%ebp,d_offset)
- rol $1, %ecx
-
- decrypt_round(R0,R1,R2,R3,15*8);
- decrypt_round(R2,R3,R0,R1,14*8);
- decrypt_round(R0,R1,R2,R3,13*8);
- decrypt_round(R2,R3,R0,R1,12*8);
- decrypt_round(R0,R1,R2,R3,11*8);
- decrypt_round(R2,R3,R0,R1,10*8);
- decrypt_round(R0,R1,R2,R3,9*8);
- decrypt_round(R2,R3,R0,R1,8*8);
- decrypt_round(R0,R1,R2,R3,7*8);
- decrypt_round(R2,R3,R0,R1,6*8);
- decrypt_round(R0,R1,R2,R3,5*8);
- decrypt_round(R2,R3,R0,R1,4*8);
- decrypt_round(R0,R1,R2,R3,3*8);
- decrypt_round(R2,R3,R0,R1,2*8);
- decrypt_round(R0,R1,R2,R3,1*8);
- decrypt_last_round(R2,R3,R0,R1,0);
-
- input_whitening(%eax,%ebp,c_offset)
- input_whitening(%ebx,%ebp,d_offset)
- input_whitening(%ecx,%ebp,a_offset)
- input_whitening(%edx,%ebp,b_offset)
- mov out_blk+16(%esp),%edi;
- mov %eax, c_offset(%edi)
- mov %ebx, d_offset(%edi)
- mov %ecx, (%edi)
- mov %edx, b_offset(%edi)
-
- pop %edi
- pop %esi
- pop %ebx
- pop %ebp
- mov $1, %eax
- ret
diff --git a/arch/i386/crypto/twofish_32.c b/arch/i386/crypto/twofish_32.c
deleted file mode 100644
index e3004dfe9c7..00000000000
--- a/arch/i386/crypto/twofish_32.c
+++ /dev/null
@@ -1,97 +0,0 @@
-/*
- * Glue Code for optimized 586 assembler version of TWOFISH
- *
- * Originally Twofish for GPG
- * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
- * 256-bit key length added March 20, 1999
- * Some modifications to reduce the text size by Werner Koch, April, 1998
- * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
- * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
- *
- * The original author has disclaimed all copyright interest in this
- * code and thus put it in the public domain. The subsequent authors
- * have put this under the GNU General Public License.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
- * USA
- *
- * This code is a "clean room" implementation, written from the paper
- * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
- * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
- * through http://www.counterpane.com/twofish.html
- *
- * For background information on multiplication in finite fields, used for
- * the matrix operations in the key schedule, see the book _Contemporary
- * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
- * Third Edition.
- */
-
-#include <crypto/twofish.h>
-#include <linux/crypto.h>
-#include <linux/init.h>
-#include <linux/module.h>
-#include <linux/types.h>
-
-
-asmlinkage void twofish_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
-asmlinkage void twofish_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
-
-static void twofish_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
-{
- twofish_enc_blk(tfm, dst, src);
-}
-
-static void twofish_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
-{
- twofish_dec_blk(tfm, dst, src);
-}
-
-static struct crypto_alg alg = {
- .cra_name = "twofish",
- .cra_driver_name = "twofish-i586",
- .cra_priority = 200,
- .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
- .cra_blocksize = TF_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct twofish_ctx),
- .cra_alignmask = 3,
- .cra_module = THIS_MODULE,
- .cra_list = LIST_HEAD_INIT(alg.cra_list),
- .cra_u = {
- .cipher = {
- .cia_min_keysize = TF_MIN_KEY_SIZE,
- .cia_max_keysize = TF_MAX_KEY_SIZE,
- .cia_setkey = twofish_setkey,
- .cia_encrypt = twofish_encrypt,
- .cia_decrypt = twofish_decrypt
- }
- }
-};
-
-static int __init init(void)
-{
- return crypto_register_alg(&alg);
-}
-
-static void __exit fini(void)
-{
- crypto_unregister_alg(&alg);
-}
-
-module_init(init);
-module_exit(fini);
-
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION ("Twofish Cipher Algorithm, i586 asm optimized");
-MODULE_ALIAS("twofish");