diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ia64/mm/init.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ia64/mm/init.c')
-rw-r--r-- | arch/ia64/mm/init.c | 597 |
1 files changed, 597 insertions, 0 deletions
diff --git a/arch/ia64/mm/init.c b/arch/ia64/mm/init.c new file mode 100644 index 00000000000..65cf839573e --- /dev/null +++ b/arch/ia64/mm/init.c @@ -0,0 +1,597 @@ +/* + * Initialize MMU support. + * + * Copyright (C) 1998-2003 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + */ +#include <linux/config.h> +#include <linux/kernel.h> +#include <linux/init.h> + +#include <linux/bootmem.h> +#include <linux/efi.h> +#include <linux/elf.h> +#include <linux/mm.h> +#include <linux/mmzone.h> +#include <linux/module.h> +#include <linux/personality.h> +#include <linux/reboot.h> +#include <linux/slab.h> +#include <linux/swap.h> +#include <linux/proc_fs.h> +#include <linux/bitops.h> + +#include <asm/a.out.h> +#include <asm/dma.h> +#include <asm/ia32.h> +#include <asm/io.h> +#include <asm/machvec.h> +#include <asm/numa.h> +#include <asm/patch.h> +#include <asm/pgalloc.h> +#include <asm/sal.h> +#include <asm/sections.h> +#include <asm/system.h> +#include <asm/tlb.h> +#include <asm/uaccess.h> +#include <asm/unistd.h> +#include <asm/mca.h> + +DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); + +extern void ia64_tlb_init (void); + +unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; + +#ifdef CONFIG_VIRTUAL_MEM_MAP +unsigned long vmalloc_end = VMALLOC_END_INIT; +EXPORT_SYMBOL(vmalloc_end); +struct page *vmem_map; +EXPORT_SYMBOL(vmem_map); +#endif + +static int pgt_cache_water[2] = { 25, 50 }; + +struct page *zero_page_memmap_ptr; /* map entry for zero page */ +EXPORT_SYMBOL(zero_page_memmap_ptr); + +void +check_pgt_cache (void) +{ + int low, high; + + low = pgt_cache_water[0]; + high = pgt_cache_water[1]; + + preempt_disable(); + if (pgtable_cache_size > (u64) high) { + do { + if (pgd_quicklist) + free_page((unsigned long)pgd_alloc_one_fast(NULL)); + if (pmd_quicklist) + free_page((unsigned long)pmd_alloc_one_fast(NULL, 0)); + } while (pgtable_cache_size > (u64) low); + } + preempt_enable(); +} + +void +lazy_mmu_prot_update (pte_t pte) +{ + unsigned long addr; + struct page *page; + + if (!pte_exec(pte)) + return; /* not an executable page... */ + + page = pte_page(pte); + addr = (unsigned long) page_address(page); + + if (test_bit(PG_arch_1, &page->flags)) + return; /* i-cache is already coherent with d-cache */ + + flush_icache_range(addr, addr + PAGE_SIZE); + set_bit(PG_arch_1, &page->flags); /* mark page as clean */ +} + +inline void +ia64_set_rbs_bot (void) +{ + unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16; + + if (stack_size > MAX_USER_STACK_SIZE) + stack_size = MAX_USER_STACK_SIZE; + current->thread.rbs_bot = STACK_TOP - stack_size; +} + +/* + * This performs some platform-dependent address space initialization. + * On IA-64, we want to setup the VM area for the register backing + * store (which grows upwards) and install the gateway page which is + * used for signal trampolines, etc. + */ +void +ia64_init_addr_space (void) +{ + struct vm_area_struct *vma; + + ia64_set_rbs_bot(); + + /* + * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore + * the problem. When the process attempts to write to the register backing store + * for the first time, it will get a SEGFAULT in this case. + */ + vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); + if (vma) { + memset(vma, 0, sizeof(*vma)); + vma->vm_mm = current->mm; + vma->vm_start = current->thread.rbs_bot & PAGE_MASK; + vma->vm_end = vma->vm_start + PAGE_SIZE; + vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7]; + vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP; + down_write(¤t->mm->mmap_sem); + if (insert_vm_struct(current->mm, vma)) { + up_write(¤t->mm->mmap_sem); + kmem_cache_free(vm_area_cachep, vma); + return; + } + up_write(¤t->mm->mmap_sem); + } + + /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ + if (!(current->personality & MMAP_PAGE_ZERO)) { + vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); + if (vma) { + memset(vma, 0, sizeof(*vma)); + vma->vm_mm = current->mm; + vma->vm_end = PAGE_SIZE; + vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); + vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; + down_write(¤t->mm->mmap_sem); + if (insert_vm_struct(current->mm, vma)) { + up_write(¤t->mm->mmap_sem); + kmem_cache_free(vm_area_cachep, vma); + return; + } + up_write(¤t->mm->mmap_sem); + } + } +} + +void +free_initmem (void) +{ + unsigned long addr, eaddr; + + addr = (unsigned long) ia64_imva(__init_begin); + eaddr = (unsigned long) ia64_imva(__init_end); + while (addr < eaddr) { + ClearPageReserved(virt_to_page(addr)); + set_page_count(virt_to_page(addr), 1); + free_page(addr); + ++totalram_pages; + addr += PAGE_SIZE; + } + printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", + (__init_end - __init_begin) >> 10); +} + +void +free_initrd_mem (unsigned long start, unsigned long end) +{ + struct page *page; + /* + * EFI uses 4KB pages while the kernel can use 4KB or bigger. + * Thus EFI and the kernel may have different page sizes. It is + * therefore possible to have the initrd share the same page as + * the end of the kernel (given current setup). + * + * To avoid freeing/using the wrong page (kernel sized) we: + * - align up the beginning of initrd + * - align down the end of initrd + * + * | | + * |=============| a000 + * | | + * | | + * | | 9000 + * |/////////////| + * |/////////////| + * |=============| 8000 + * |///INITRD////| + * |/////////////| + * |/////////////| 7000 + * | | + * |KKKKKKKKKKKKK| + * |=============| 6000 + * |KKKKKKKKKKKKK| + * |KKKKKKKKKKKKK| + * K=kernel using 8KB pages + * + * In this example, we must free page 8000 ONLY. So we must align up + * initrd_start and keep initrd_end as is. + */ + start = PAGE_ALIGN(start); + end = end & PAGE_MASK; + + if (start < end) + printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); + + for (; start < end; start += PAGE_SIZE) { + if (!virt_addr_valid(start)) + continue; + page = virt_to_page(start); + ClearPageReserved(page); + set_page_count(page, 1); + free_page(start); + ++totalram_pages; + } +} + +/* + * This installs a clean page in the kernel's page table. + */ +struct page * +put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) +{ + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + if (!PageReserved(page)) + printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", + page_address(page)); + + pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ + + spin_lock(&init_mm.page_table_lock); + { + pud = pud_alloc(&init_mm, pgd, address); + if (!pud) + goto out; + + pmd = pmd_alloc(&init_mm, pud, address); + if (!pmd) + goto out; + pte = pte_alloc_map(&init_mm, pmd, address); + if (!pte) + goto out; + if (!pte_none(*pte)) { + pte_unmap(pte); + goto out; + } + set_pte(pte, mk_pte(page, pgprot)); + pte_unmap(pte); + } + out: spin_unlock(&init_mm.page_table_lock); + /* no need for flush_tlb */ + return page; +} + +static void +setup_gate (void) +{ + struct page *page; + + /* + * Map the gate page twice: once read-only to export the ELF headers etc. and once + * execute-only page to enable privilege-promotion via "epc": + */ + page = virt_to_page(ia64_imva(__start_gate_section)); + put_kernel_page(page, GATE_ADDR, PAGE_READONLY); +#ifdef HAVE_BUGGY_SEGREL + page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE)); + put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); +#else + put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); +#endif + ia64_patch_gate(); +} + +void __devinit +ia64_mmu_init (void *my_cpu_data) +{ + unsigned long psr, pta, impl_va_bits; + extern void __devinit tlb_init (void); + +#ifdef CONFIG_DISABLE_VHPT +# define VHPT_ENABLE_BIT 0 +#else +# define VHPT_ENABLE_BIT 1 +#endif + + /* Pin mapping for percpu area into TLB */ + psr = ia64_clear_ic(); + ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR, + pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)), + PERCPU_PAGE_SHIFT); + + ia64_set_psr(psr); + ia64_srlz_i(); + + /* + * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped + * address space. The IA-64 architecture guarantees that at least 50 bits of + * virtual address space are implemented but if we pick a large enough page size + * (e.g., 64KB), the mapped address space is big enough that it will overlap with + * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, + * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a + * problem in practice. Alternatively, we could truncate the top of the mapped + * address space to not permit mappings that would overlap with the VMLPT. + * --davidm 00/12/06 + */ +# define pte_bits 3 +# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) + /* + * The virtual page table has to cover the entire implemented address space within + * a region even though not all of this space may be mappable. The reason for + * this is that the Access bit and Dirty bit fault handlers perform + * non-speculative accesses to the virtual page table, so the address range of the + * virtual page table itself needs to be covered by virtual page table. + */ +# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) +# define POW2(n) (1ULL << (n)) + + impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); + + if (impl_va_bits < 51 || impl_va_bits > 61) + panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); + + /* place the VMLPT at the end of each page-table mapped region: */ + pta = POW2(61) - POW2(vmlpt_bits); + + if (POW2(mapped_space_bits) >= pta) + panic("mm/init: overlap between virtually mapped linear page table and " + "mapped kernel space!"); + /* + * Set the (virtually mapped linear) page table address. Bit + * 8 selects between the short and long format, bits 2-7 the + * size of the table, and bit 0 whether the VHPT walker is + * enabled. + */ + ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); + + ia64_tlb_init(); + +#ifdef CONFIG_HUGETLB_PAGE + ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); + ia64_srlz_d(); +#endif +} + +#ifdef CONFIG_VIRTUAL_MEM_MAP + +int +create_mem_map_page_table (u64 start, u64 end, void *arg) +{ + unsigned long address, start_page, end_page; + struct page *map_start, *map_end; + int node; + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); + map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); + + start_page = (unsigned long) map_start & PAGE_MASK; + end_page = PAGE_ALIGN((unsigned long) map_end); + node = paddr_to_nid(__pa(start)); + + for (address = start_page; address < end_page; address += PAGE_SIZE) { + pgd = pgd_offset_k(address); + if (pgd_none(*pgd)) + pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); + pud = pud_offset(pgd, address); + + if (pud_none(*pud)) + pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); + pmd = pmd_offset(pud, address); + + if (pmd_none(*pmd)) + pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); + pte = pte_offset_kernel(pmd, address); + + if (pte_none(*pte)) + set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, + PAGE_KERNEL)); + } + return 0; +} + +struct memmap_init_callback_data { + struct page *start; + struct page *end; + int nid; + unsigned long zone; +}; + +static int +virtual_memmap_init (u64 start, u64 end, void *arg) +{ + struct memmap_init_callback_data *args; + struct page *map_start, *map_end; + + args = (struct memmap_init_callback_data *) arg; + map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); + map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); + + if (map_start < args->start) + map_start = args->start; + if (map_end > args->end) + map_end = args->end; + + /* + * We have to initialize "out of bounds" struct page elements that fit completely + * on the same pages that were allocated for the "in bounds" elements because they + * may be referenced later (and found to be "reserved"). + */ + map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); + map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) + / sizeof(struct page)); + + if (map_start < map_end) + memmap_init_zone((unsigned long)(map_end - map_start), + args->nid, args->zone, page_to_pfn(map_start)); + return 0; +} + +void +memmap_init (unsigned long size, int nid, unsigned long zone, + unsigned long start_pfn) +{ + if (!vmem_map) + memmap_init_zone(size, nid, zone, start_pfn); + else { + struct page *start; + struct memmap_init_callback_data args; + + start = pfn_to_page(start_pfn); + args.start = start; + args.end = start + size; + args.nid = nid; + args.zone = zone; + + efi_memmap_walk(virtual_memmap_init, &args); + } +} + +int +ia64_pfn_valid (unsigned long pfn) +{ + char byte; + struct page *pg = pfn_to_page(pfn); + + return (__get_user(byte, (char __user *) pg) == 0) + && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) + || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); +} +EXPORT_SYMBOL(ia64_pfn_valid); + +int +find_largest_hole (u64 start, u64 end, void *arg) +{ + u64 *max_gap = arg; + + static u64 last_end = PAGE_OFFSET; + + /* NOTE: this algorithm assumes efi memmap table is ordered */ + + if (*max_gap < (start - last_end)) + *max_gap = start - last_end; + last_end = end; + return 0; +} +#endif /* CONFIG_VIRTUAL_MEM_MAP */ + +static int +count_reserved_pages (u64 start, u64 end, void *arg) +{ + unsigned long num_reserved = 0; + unsigned long *count = arg; + + for (; start < end; start += PAGE_SIZE) + if (PageReserved(virt_to_page(start))) + ++num_reserved; + *count += num_reserved; + return 0; +} + +/* + * Boot command-line option "nolwsys" can be used to disable the use of any light-weight + * system call handler. When this option is in effect, all fsyscalls will end up bubbling + * down into the kernel and calling the normal (heavy-weight) syscall handler. This is + * useful for performance testing, but conceivably could also come in handy for debugging + * purposes. + */ + +static int nolwsys; + +static int __init +nolwsys_setup (char *s) +{ + nolwsys = 1; + return 1; +} + +__setup("nolwsys", nolwsys_setup); + +void +mem_init (void) +{ + long reserved_pages, codesize, datasize, initsize; + unsigned long num_pgt_pages; + pg_data_t *pgdat; + int i; + static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel; + +#ifdef CONFIG_PCI + /* + * This needs to be called _after_ the command line has been parsed but _before_ + * any drivers that may need the PCI DMA interface are initialized or bootmem has + * been freed. + */ + platform_dma_init(); +#endif + +#ifndef CONFIG_DISCONTIGMEM + if (!mem_map) + BUG(); + max_mapnr = max_low_pfn; +#endif + + high_memory = __va(max_low_pfn * PAGE_SIZE); + + kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE); + kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); + kclist_add(&kcore_kernel, _stext, _end - _stext); + + for_each_pgdat(pgdat) + totalram_pages += free_all_bootmem_node(pgdat); + + reserved_pages = 0; + efi_memmap_walk(count_reserved_pages, &reserved_pages); + + codesize = (unsigned long) _etext - (unsigned long) _stext; + datasize = (unsigned long) _edata - (unsigned long) _etext; + initsize = (unsigned long) __init_end - (unsigned long) __init_begin; + + printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " + "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), + num_physpages << (PAGE_SHIFT - 10), codesize >> 10, + reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); + + /* + * Allow for enough (cached) page table pages so that we can map the entire memory + * at least once. Each task also needs a couple of page tables pages, so add in a + * fudge factor for that (don't use "threads-max" here; that would be wrong!). + * Don't allow the cache to be more than 10% of total memory, though. + */ +# define NUM_TASKS 500 /* typical number of tasks */ + num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS; + if (num_pgt_pages > nr_free_pages() / 10) + num_pgt_pages = nr_free_pages() / 10; + if (num_pgt_pages > (u64) pgt_cache_water[1]) + pgt_cache_water[1] = num_pgt_pages; + + /* + * For fsyscall entrpoints with no light-weight handler, use the ordinary + * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry + * code can tell them apart. + */ + for (i = 0; i < NR_syscalls; ++i) { + extern unsigned long fsyscall_table[NR_syscalls]; + extern unsigned long sys_call_table[NR_syscalls]; + + if (!fsyscall_table[i] || nolwsys) + fsyscall_table[i] = sys_call_table[i] | 1; + } + setup_gate(); + +#ifdef CONFIG_IA32_SUPPORT + ia32_mem_init(); +#endif +} |