diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/m68k/ifpsp060 |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/m68k/ifpsp060')
27 files changed, 75408 insertions, 0 deletions
diff --git a/arch/m68k/ifpsp060/CHANGES b/arch/m68k/ifpsp060/CHANGES new file mode 100644 index 00000000000..c1e712dfc2e --- /dev/null +++ b/arch/m68k/ifpsp060/CHANGES @@ -0,0 +1,120 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +CHANGES SINCE LAST RELEASE: +--------------------------- + +1) "movep" emulation where data was being read from memory +was reading the intermediate bytes. Emulation now only +reads the required bytes. + +2) "flogn", "flog2", and "flog10" of "1" was setting the +Inexact FPSR bit. Emulation now does not set Inexact for +this case. + +3) For an opclass three FP instruction where the effective addressing +mode was pre-decrement or post-increment and the address register +was A0 or A1, the address register was not being updated as a result +of the operation. This has been corrected. + +4) Beta B.2 version had the following erratum: + + Scenario: + --------- + If {i,d}mem_{read,write}_{byte,word,long}() returns + a failing value to the 68060SP, the package ignores + this return value and continues with program execution + as if it never received a failing value. + + Effect: + ------- + For example, if a user executed "fsin.x ADDR,fp0" where + ADDR should cause a "segmentation violation", the memory read + requested by the package should return a failing value + to the package. Since the package currently ignores this + return value, the user program will continue to the + next instruction, and the result created in fp0 will be + undefined. + + Fix: + ---- + This has been fixed in the current release. + + Notes: + ------ + Upon receiving a non-zero (failing) return value from + a {i,d}mem_{read,write}_{byte,word,long}() "call-out", + the package creates a 16-byte access error stack frame + from the current exception stack frame and exits + through the "call-out" _real_access(). This is the process + as described in the MC68060 User's Manual. + + For instruction read access errors, the info stacked is: + SR = SR at time of exception + PC = PC of instruction being emulated + VOFF = $4008 (stack frame format type) + ADDRESS = PC of instruction being emulated + FSLW = FAULT STATUS LONGWORD + + The valid FSLW bits are: + bit 27 = 1 (misaligned bit) + bit 24 = 1 (read) + bit 23 = 0 (write) + bit 22:21 = 10 (SIZE = word) + bit 20:19 = 00 (TT) + bit 18:16 = x10 (TM; x = 1 for supervisor mode) + bit 15 = 1 (IO) + bit 0 = 1 (Software Emulation Error) + + all other bits are EQUAL TO ZERO and can be set by the _real_access() + "call-out" stub by the user as appropriate. The MC68060 User's Manual + stated that ONLY "bit 0" would be set. The 060SP attempts to set a few + other bits. + + For data read/write access errors, the info stacked is: + SR = SR at time of exception + PC = PC of instruction being emulated + VOFF = $4008 (stack frame format type) + ADDRESS = Address of source or destination operand + FSLW = FAULT STATUS LONGWORD + + The valid FSLW bits are: + bit 27 = 0 (misaligned bit) + bit 24 = x (read; 1 if read, 0 if write) + bit 23 = x (write; 1 if write, 0 if read) + bit 22:21 = xx (SIZE; see MC68060 User's Manual) + bit 20:19 = 00 (TT) + bit 18:16 = x01 (TM; x = 1 for supervisor mode) + bit 15 = 0 (IO) + bit 0 = 1 (Software Emulation Error) + + all other bits are EQUAL TO ZERO and can be set by the _real_access() + "call-out" stub by the user as appropriate. The MC68060 User's Manual + stated that ONLY "bit 0" would be set. The 060SP attempts to set a few + other bits. diff --git a/arch/m68k/ifpsp060/MISC b/arch/m68k/ifpsp060/MISC new file mode 100644 index 00000000000..b7e644b94ae --- /dev/null +++ b/arch/m68k/ifpsp060/MISC @@ -0,0 +1,201 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +RELEASE FILE VERSIONS: +----------------------- + +fpsp.sa +---------- +freal.s : 2.4 +hdr.fpu : 2.4 +x_fovfl.s : 2.16 +x_funfl.s : 2.19 +x_funsupp.s : 2.27 +x_effadd.s : 2.21 +x_foperr.s : 2.9 +x_fsnan.s : 2.12 +x_finex.s : 2.14 +x_fdz.s : 2.5 +x_fline.s : 2.5 +x_funimp.s : 2.27 +fsin.s : 2.6 +ftan.s : 2.6 +fatan.s : 2.3 +fasin.s : 2.3 +facos.s : 2.5 +fetox.s : 2.4 +fgetem.s : 2.5 +fcosh.s : 2.4 +fsinh.s : 2.5 +ftanh.s : 2.3 +flogn.s : 2.6 +fatanh.s : 2.4 +flog2.s : 2.4 +ftwotox.s : 2.4 +fmovecr.s : 2.5 +fscale.s : 2.5 +frem_mod.s : 2.6 +fkern.s : 2.6 +fkern2.s : 2.5 +fgen_except.s: 2.7 +foptbl.s : 2.3 +fmul.s : 2.5 +fin.s : 2.4 +fdiv.s : 2.5 +fneg.s : 2.4 +ftst.s : 2.3 +fint.s : 2.3 +fintrz.s : 2.3 +fabs.s : 2.4 +fcmp.s : 2.4 +fsglmul.s : 2.5 +fsgldiv.s : 2.8 +fadd.s : 2.6 +fsub.s : 2.6 +fsqrt.s : 2.4 +fmisc.s : 2.3 +fdbcc.s : 2.8 +ftrapcc.s : 2.5 +fscc.s : 2.6 +fmovm.s : 2.15 +fctrl.s : 2.6 +fcalc_ea.s : 2.7 +fmem.s : 2.9 +fout.s : 2.9 +ireg.s : 2.6 +fdenorm.s : 2.3 +fround.s : 2.4 +fnorm.s : 2.3 +foptag_set.s: 2.4 +fresult.s : 2.3 +fpack.s : 2.6 +fdecbin.s : 2.4 +fbindec.s : 2.5 +fbinstr.s : 2.3 +faccess.s : 2.3 + +pfpsp.sa +---------- +freal.s : 2.4 +hdr.fpu : 2.4 +x_fovfl.s : 2.16 +x_funfl.s : 2.19 +x_funsupp.s : 2.27 +x_effadd.s : 2.21 +x_foperr.s : 2.9 +x_fsnan.s : 2.12 +x_finex.s : 2.14 +x_fdz.s : 2.5 +x_fline2.s : 2.3 +fcalc_ea.s : 2.7 +foptbl2.s : 2.4 +fmovm.s : 2.15 +fctrl.s : 2.6 +fmisc.s : 2.3 +fdenorm.s : 2.3 +fround.s : 2.4 +fnorm.s : 2.3 +foptag_set.s: 2.4 +fresult.s : 2.3 +fout.s : 2.9 +fmul.s : 2.5 +fin.s : 2.4 +fdiv.s : 2.5 +fneg.s : 2.4 +ftst.s : 2.3 +fint.s : 2.3 +fintrz.s : 2.3 +fabs.s : 2.4 +fcmp.s : 2.4 +fsglmul.s : 2.5 +fsgldiv.s : 2.8 +fadd.s : 2.6 +fsub.s : 2.6 +fsqrt.s : 2.4 +ireg.s : 2.6 +fpack.s : 2.6 +fdecbin.s : 2.4 +fbindec.s : 2.5 +fbinstr.s : 2.3 +faccess.s : 2.3 + +fplsp.sa +---------- +lfptop.s : 2.3 +hdr.fpu : 2.4 +fsin.s : 2.6 +ftan.s : 2.6 +fatan.s : 2.3 +fasin.s : 2.3 +facos.s : 2.5 +fetox.s : 2.4 +fgetem.s : 2.5 +fcosh.s : 2.4 +fsinh.s : 2.5 +ftanh.s : 2.3 +flogn.s : 2.6 +fatanh.s : 2.4 +flog2.s : 2.4 +ftwotox.s : 2.4 +fscale.s : 2.5 +frem_mod.s : 2.6 +l_support.s : 2.15 +fnorm.s : 2.3 + +isp.sa +---------- +ireal.s : 2.4 +hdr.int : 2.4 +x_uieh.s : 2.13 +icalc_ea.s : 2.11 +imovep.s : 2.8 +ichk2cmp2.s : 2.6 +idiv64.s : 2.10 +imul64.s : +icas2.s : 2.11 +icas.s : 2.12 +icas2_core.s: 2.6 +icas_core.s : 2.6 + +ilsp.sa +---------- +litop.s : 2.2 +l_idiv64.s : 2.8 +l_imul64.s : 2.6 +l_ichk2cmp2.s: 2.5 + +ex. files +---------- +wrk/fskeleton.s: 2.2 +wrk/iskeleton.s: 2.2 +wrk/os.s : 2.1 + +tests +---------- +itest.s : 2.2 +ftest.s : 2.1 diff --git a/arch/m68k/ifpsp060/Makefile b/arch/m68k/ifpsp060/Makefile new file mode 100644 index 00000000000..2fe8472cb5e --- /dev/null +++ b/arch/m68k/ifpsp060/Makefile @@ -0,0 +1,10 @@ +# Makefile for 680x0 Linux 68060 integer/floating point support package +# +# This file is subject to the terms and conditions of the GNU General Public +# License. See the file "README.legal" in the main directory of this archive +# for more details. + +obj-y := fskeleton.o iskeleton.o os.o + +EXTRA_AFLAGS := -traditional +EXTRA_LDFLAGS := -x diff --git a/arch/m68k/ifpsp060/README b/arch/m68k/ifpsp060/README new file mode 100644 index 00000000000..e3bced429bd --- /dev/null +++ b/arch/m68k/ifpsp060/README @@ -0,0 +1,71 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Files in this directory: +------------------------- + +fpsp.sa Full FP Kernel Module - hex image +fpsp.s Full FP Kernel Module - source code +fpsp.doc Full FP Kernel Module - on-line documentation + +pfpsp.sa Partial FP Kernel Module - hex image +pfpsp.s Partial FP Kernel Module - source code + +fplsp.sa FP Library Module - hex image +fplsp.s FP Library Module - source code +fplsp.doc FP Library Module - on-line documentation + +isp.sa Integer Unimplemented Kernel Module - hex image +isp.s Integer Unimplemented Kernel Module - source code +isp.doc Integer Unimplemented Kernel Module - on-line doc + +ilsp.sa Integer Unimplemented Library Module - hex image +ilsp.s Integer Unimplemented Library Module - source code +ilsp.doc Integer Unimplemented Library Module - on-line doc + +fskeleton.s Sample Call-outs needed by fpsp.sa and pfpsp.sa + +iskeleton.s Sample Call-outs needed by isp.sa + +os.s Sample Call-outs needed by fpsp.sa, pfpsp.sa, and isp.sa + +ftest.sa Simple test program to test that {p}fpsp.sa + was connected properly; hex image +ftest.s above test; source code + +itest.sa Simple test program to test that isp.sa was + connected properly; hex image +itest.s above test; source code + +test.doc on-line documentation for {i,f}test.sa + +README This file + +ERRATA Known errata for this release + +MISC Release file version numbers diff --git a/arch/m68k/ifpsp060/TEST.DOC b/arch/m68k/ifpsp060/TEST.DOC new file mode 100644 index 00000000000..5e5900cb2dc --- /dev/null +++ b/arch/m68k/ifpsp060/TEST.DOC @@ -0,0 +1,208 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +68060 SOFTWARE PACKAGE (Kernel version) SIMPLE TESTS +----------------------------------------------------- + +The files itest.sa and ftest.sa contain simple tests to check +the state of the 68060ISP and 68060FPSP once they have been installed. + +Release file format: +-------------------- +The release files itest.sa and ftest.sa are essentially +hexadecimal images of the actual tests. This format is the +ONLY format that will be supported. The hex images were created +by assembling the source code and then converting the resulting +binary output images into ASCII text files. The hexadecimal +numbers are listed using the Motorola Assembly syntax assembler +directive "dc.l" (define constant longword). The files can be +converted to other assembly syntaxes by using any word processor +with a global search and replace function. + +To assist in assembling and linking these modules with other modules, +the installer should add symbolic labels to the top of the files. +This will allow the calling routines to access the entry points +of these packages. + +The source code itest.s and ftest.s have been included but only +for documentation purposes. + +Release file structure: +----------------------- + +(top of module) + ----------------- + | | - 128 byte-sized section + (1) | Call-Out | - 4 bytes per entry (user fills these in) + | | + ----------------- + | | - 8 bytes per entry + (2) | Entry Point | - user does "bsr" or "jsr" to this address + | | + ----------------- + | | - code section + (3) ~ ~ + | | + ----------------- +(bottom of module) + +The first section of this module is the "Call-out" section. This section +is NOT INCLUDED in {i,f}test.sa (an example "Call-out" section is provided at +the end of this file). The purpose of this section is to allow the test +routines to reference external printing functions that must be provided +by the host operating system. This section MUST be exactly 128 bytes in +size. There are 32 fields, each 4 bytes in size. Each field corresponds +to a function required by the test packages (these functions and their +location are listed in "68060{ISP,FPSP}-TEST call-outs" below). Each field +entry should contain the address of the corresponding function RELATIVE to +the starting address of the "call-out" section. The "Call-out" section must +sit adjacent to the {i,f}test.sa image in memory. Since itest.sa and ftest.sa +are individual tests, they each require their own "Call-out" sections. + +The second section, the "Entry-point" section, is used by external routines +to access the test routines. Since the {i,f}test.sa hex files contain +no symbol names, this section contains function entry points that are fixed +with respect to the top of the package. The currently defined entry-points +are listed in section "68060{ISP,FPSP}-TEST entry points" below. A calling +routine would simply execute a "bsr" or "jsr" that jumped to the selected +function entry-point. + +For example, to run the 060ISP test, write a program that includes the +itest.sa data and execute something similar to: + + bsr _060ISP_TEST+128+0 + +(_060ISP_TEST is the starting address of the "Call-out" section; the "Call-out" +section is 128 bytes long; and the 68060ISP test entry point is located +0 bytes from the top of the "Entry-point" section.) + +The third section is the code section. After entering through an "Entry-point", +the entry code jumps to the appropriate test code within the code section. + +68060ISP-TEST Call-outs: +------------------------ +0x0: _print_string() +0x4: _print_number() + +68060FPSP-TEST Call-outs: +------------------------- +0x0: _print_string() +0x4: _print_number() + +The test packages call _print_string() and _print_number() +as subroutines and expect the main program to print a string +or a number to a file or to the screen. +In "C"-like fashion, the test program calls: + + print_string("Test passed"); + + or + + print_number(20); + +For _print_string(), the test programs pass a longword address +of the string on the stack. For _print_number(), the test programs pass +a longword number to be printed. + +For debugging purposes, after the main program performs a "print" +for a test package, it should flush the output so that it's not +buffered. In this way, if the test program crashes, at least the previous +statements printed will be seen. + +68060ISP-TEST Entry-points: +--------------------------- +0x0: integer test + +68060FPSP-TEST Entry-points: +---------------------------- +0x00: main fp test +0x08: FP unimplemented test +0x10: FP enabled snan/operr/ovfl/unfl/dz/inex + +The floating-point unit test has 3 entry points which will require +3 different calls to the package if each of the three following tests +is desired: + +main fp test: tests (1) unimp effective address exception + (2) unsupported data type exceptions + (3) non-maskable overflow/underflow exceptions + +FP unimplemented: tests FP unimplemented exception. this one is + separate from the previous tests for systems that don't + want FP unimplemented instructions. + +FP enabled: tests enabled snan/operr/ovfl/unfl/dz/inex. + basically, it enables each of these exceptions and forces + each using an implemented FP instruction. this process + exercises _fpsp_{snan,operr,ovfl,unfl,dz,inex}() and + _real_{snan,operr,ovfl,unfl,dz,inex}(). the test expects + _real_XXXX() to do nothing except clear the exception + and "rte". if a system's _real_XXXX() handler creates an + alternate result, the test will print "failed" but this + is acceptable. + +Miscellaneous: +-------------- +Again, itest.sa and ftest.sa are simple tests and do not thoroughly +test all 68060SP connections. For example, they do not test connections +to _real_access(), _real_trace(), _real_trap(), etc. because these +will be system-implemented several different ways and the test packages +must remain system independent. + +Example test package set-up: +---------------------------- +_print_str: + . # provided by system + rts + +_print_num: + . # provided by system + rts + + . + . + bsr _060FPSP_TEST+128+0 + . + . + rts + +# beginning of "Call-out" section; provided by integrator. +# MUST be 128 bytes long. +_060FPSP_TEST: + long _print_str - _060FPSP_TEST + long _print_num - _060FPSP_TEST + space 120 + +# ftest.sa starts here; start of "Entry-point" section. + long 0x60ff0000, 0x00002346 + long 0x60ff0000, 0x00018766 + long 0x60ff0000, 0x00023338 + long 0x24377299, 0xab2643ea + . + . + . diff --git a/arch/m68k/ifpsp060/fplsp.doc b/arch/m68k/ifpsp060/fplsp.doc new file mode 100644 index 00000000000..fb637c43676 --- /dev/null +++ b/arch/m68k/ifpsp060/fplsp.doc @@ -0,0 +1,231 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +68060 FLOATING-POINT SOFTWARE PACKAGE (Library version) +-------------------------------------------------------- + +The file fplsp.sa contains the "Library version" of the +68060SP Floating-Point Software Package. The routines +included in this module can be used to emulate the +FP instructions not implemented in 68060 hardware. These +instructions normally take exception vector #11 +"FP Unimplemented Instruction". + +By re-compiling a program that uses these instructions, and +making subroutine calls in place of the unimplemented +instructions, a program can avoid the overhead associated +with taking the exception. + +Release file format: +-------------------- +The file fplsp.sa is essentially a hexadecimal image of the +release package. This is the ONLY format which will be supported. +The hex image was created by assembling the source code and +then converting the resulting binary output image into an +ASCII text file. The hexadecimal numbers are listed +using the Motorola Assembly Syntax assembler directive "dc.l" +(define constant longword). The file can be converted to other +assembly syntaxes by using any word processor with a global +search and replace function. + +To assist in assembling and linking this module with other modules, +the installer should add a symbolic label to the top of the file. +This will allow calling routines to access the entry points +of this package. + +The source code fplsp.s has also been included but only for +documentation purposes. + +Release file structure: +----------------------- +The file fplsp.sa contains an "Entry-Point" section and a +code section. The FPLSP has no "Call-Out" section. The first section +is the "Entry-Point" section. In order to access a function in the +package, a program must "bsr" or "jsr" to the location listed +below in "68060FPLSP entry points" that corresponds to the desired +function. A branch instruction located at the selected entry point +within the package will then enter the correct emulation code routine. + +The entry point addresses at the beginning of the package will remain +fixed so that a program calling the routines will not have to be +re-compiled with every new 68060FPLSP release. + +There are 3 entry-points for each instruction type: single precision, +double precision, and extended precision. + +As an example, the "fsin" library instruction can be passed an +extended precision operand if program executes: + +# fsin.x fp0 + + fmovm.x &0x01,-(%sp) # pass operand on stack + bsr.l _060FPLSP_TOP+0x1a8 # branch to fsin routine + add.l &0xc,%sp # clear operand from stack + +Upon return, fp0 holds the correct result. The FPSR is +set correctly. The FPCR is unchanged. The FPIAR is undefined. + +Another example. This time, a dyadic operation: + +# frem.s %fp1,%fp0 + + fmov.s %fp1,-(%sp) # pass src operand + fmov.s %fp0,-(%sp) # pass dst operand + bsr.l _060FPLSP_TOP+0x168 # branch to frem routine + addq.l &0x8,%sp # clear operands from stack + +Again, the result is returned in fp0. Note that BOTH operands +are passed in single precision format. + +Exception reporting: +-------------------- +The package takes exceptions according to the FPCR value upon subroutine +entry. If an exception should be reported, then the package forces +this exception using implemented floating-point instructions. +For example, if the instruction being emulated should cause a +floating-point Operand Error exception, then the library routine +executes an FMUL of a zero and an infinity to force the OPERR +exception. Although the FPIAR will be undefined for the enabled +Operand Error exception handler, the user will at least be able +to record that the event occurred. + +Miscellaneous: +-------------- +The package does not attempt to correctly emulate instructions +with Signalling NAN inputs. Use of SNANs should be avoided with +this package. + +The fabs/fadd/fdiv/fint/fintrz/fmul/fneg/fsqrt/fsub entry points +are provided for the convenience of older compilers that make +subroutine calls for all fp instructions. The code does NOT emulate +the instruction but rather simply executes it. + +68060FPLSP entry points: +------------------------ +_060FPLSP_TOP: +0x000: _060LSP__facoss_ +0x008: _060LSP__facosd_ +0x010: _060LSP__facosx_ +0x018: _060LSP__fasins_ +0x020: _060LSP__fasind_ +0x028: _060LSP__fasinx_ +0x030: _060LSP__fatans_ +0x038: _060LSP__fatand_ +0x040: _060LSP__fatanx_ +0x048: _060LSP__fatanhs_ +0x050: _060LSP__fatanhd_ +0x058: _060LSP__fatanhx_ +0x060: _060LSP__fcoss_ +0x068: _060LSP__fcosd_ +0x070: _060LSP__fcosx_ +0x078: _060LSP__fcoshs_ +0x080: _060LSP__fcoshd_ +0x088: _060LSP__fcoshx_ +0x090: _060LSP__fetoxs_ +0x098: _060LSP__fetoxd_ +0x0a0: _060LSP__fetoxx_ +0x0a8: _060LSP__fetoxm1s_ +0x0b0: _060LSP__fetoxm1d_ +0x0b8: _060LSP__fetoxm1x_ +0x0c0: _060LSP__fgetexps_ +0x0c8: _060LSP__fgetexpd_ +0x0d0: _060LSP__fgetexpx_ +0x0d8: _060LSP__fgetmans_ +0x0e0: _060LSP__fgetmand_ +0x0e8: _060LSP__fgetmanx_ +0x0f0: _060LSP__flog10s_ +0x0f8: _060LSP__flog10d_ +0x100: _060LSP__flog10x_ +0x108: _060LSP__flog2s_ +0x110: _060LSP__flog2d_ +0x118: _060LSP__flog2x_ +0x120: _060LSP__flogns_ +0x128: _060LSP__flognd_ +0x130: _060LSP__flognx_ +0x138: _060LSP__flognp1s_ +0x140: _060LSP__flognp1d_ +0x148: _060LSP__flognp1x_ +0x150: _060LSP__fmods_ +0x158: _060LSP__fmodd_ +0x160: _060LSP__fmodx_ +0x168: _060LSP__frems_ +0x170: _060LSP__fremd_ +0x178: _060LSP__fremx_ +0x180: _060LSP__fscales_ +0x188: _060LSP__fscaled_ +0x190: _060LSP__fscalex_ +0x198: _060LSP__fsins_ +0x1a0: _060LSP__fsind_ +0x1a8: _060LSP__fsinx_ +0x1b0: _060LSP__fsincoss_ +0x1b8: _060LSP__fsincosd_ +0x1c0: _060LSP__fsincosx_ +0x1c8: _060LSP__fsinhs_ +0x1d0: _060LSP__fsinhd_ +0x1d8: _060LSP__fsinhx_ +0x1e0: _060LSP__ftans_ +0x1e8: _060LSP__ftand_ +0x1f0: _060LSP__ftanx_ +0x1f8: _060LSP__ftanhs_ +0x200: _060LSP__ftanhd_ +0x208: _060LSP__ftanhx_ +0x210: _060LSP__ftentoxs_ +0x218: _060LSP__ftentoxd_ +0x220: _060LSP__ftentoxx_ +0x228: _060LSP__ftwotoxs_ +0x230: _060LSP__ftwotoxd_ +0x238: _060LSP__ftwotoxx_ + +0x240: _060LSP__fabss_ +0x248: _060LSP__fabsd_ +0x250: _060LSP__fabsx_ +0x258: _060LSP__fadds_ +0x260: _060LSP__faddd_ +0x268: _060LSP__faddx_ +0x270: _060LSP__fdivs_ +0x278: _060LSP__fdivd_ +0x280: _060LSP__fdivx_ +0x288: _060LSP__fints_ +0x290: _060LSP__fintd_ +0x298: _060LSP__fintx_ +0x2a0: _060LSP__fintrzs_ +0x2a8: _060LSP__fintrzd_ +0x2b0: _060LSP__fintrzx_ +0x2b8: _060LSP__fmuls_ +0x2c0: _060LSP__fmuld_ +0x2c8: _060LSP__fmulx_ +0x2d0: _060LSP__fnegs_ +0x2d8: _060LSP__fnegd_ +0x2e0: _060LSP__fnegx_ +0x2e8: _060LSP__fsqrts_ +0x2f0: _060LSP__fsqrtd_ +0x2f8: _060LSP__fsqrtx_ +0x300: _060LSP__fsubs_ +0x308: _060LSP__fsubd_ +0x310: _060LSP__fsubx_ diff --git a/arch/m68k/ifpsp060/fplsp.sa b/arch/m68k/ifpsp060/fplsp.sa new file mode 100644 index 00000000000..8826df0329e --- /dev/null +++ b/arch/m68k/ifpsp060/fplsp.sa @@ -0,0 +1,1946 @@ + dc.l $60ff0000,$238e0000,$60ff0000,$24200000 + dc.l $60ff0000,$24b60000,$60ff0000,$11060000 + dc.l $60ff0000,$11980000,$60ff0000,$122e0000 + dc.l $60ff0000,$0f160000,$60ff0000,$0fa80000 + dc.l $60ff0000,$103e0000,$60ff0000,$12ae0000 + dc.l $60ff0000,$13400000,$60ff0000,$13d60000 + dc.l $60ff0000,$05ae0000,$60ff0000,$06400000 + dc.l $60ff0000,$06d60000,$60ff0000,$213e0000 + dc.l $60ff0000,$21d00000,$60ff0000,$22660000 + dc.l $60ff0000,$16160000,$60ff0000,$16a80000 + dc.l $60ff0000,$173e0000,$60ff0000,$0aee0000 + dc.l $60ff0000,$0b800000,$60ff0000,$0c160000 + dc.l $60ff0000,$24a60000,$60ff0000,$25380000 + dc.l $60ff0000,$25ce0000,$60ff0000,$26660000 + dc.l $60ff0000,$26f80000,$60ff0000,$278e0000 + dc.l $60ff0000,$1d160000,$60ff0000,$1da80000 + dc.l $60ff0000,$1e3e0000,$60ff0000,$1ed60000 + dc.l $60ff0000,$1f680000,$60ff0000,$1ffe0000 + dc.l $60ff0000,$1b0e0000,$60ff0000,$1ba00000 + dc.l $60ff0000,$1c360000,$60ff0000,$08860000 + dc.l $60ff0000,$09180000,$60ff0000,$09ae0000 + dc.l $60ff0000,$2bf00000,$60ff0000,$2ca40000 + dc.l $60ff0000,$2d580000,$60ff0000,$29980000 + dc.l $60ff0000,$2a4c0000,$60ff0000,$2b000000 + dc.l $60ff0000,$2e000000,$60ff0000,$2eb40000 + dc.l $60ff0000,$2f680000,$60ff0000,$029e0000 + dc.l $60ff0000,$03300000,$60ff0000,$03c60000 + dc.l $60ff0000,$27660000,$60ff0000,$27fe0000 + dc.l $60ff0000,$289a0000,$60ff0000,$061e0000 + dc.l $60ff0000,$06b00000,$60ff0000,$07460000 + dc.l $60ff0000,$12ee0000,$60ff0000,$13800000 + dc.l $60ff0000,$14160000,$60ff0000,$0b760000 + dc.l $60ff0000,$0c080000,$60ff0000,$0c9e0000 + dc.l $60ff0000,$18460000,$60ff0000,$18d80000 + dc.l $60ff0000,$196e0000,$60ff0000,$16560000 + dc.l $60ff0000,$16e80000,$60ff0000,$177e0000 + dc.l $60ff0000,$72fe0000,$60ff0000,$72fe0000 + dc.l $60ff0000,$72fe0000,$60ff0000,$71be0000 + dc.l $60ff0000,$71d40000,$60ff0000,$71ea0000 + dc.l $60ff0000,$72840000,$60ff0000,$729a0000 + dc.l $60ff0000,$72b00000,$60ff0000,$72fe0000 + dc.l $60ff0000,$72fe0000,$60ff0000,$72fe0000 + dc.l $60ff0000,$72fe0000,$60ff0000,$72fe0000 + dc.l $60ff0000,$72fe0000,$60ff0000,$71f20000 + dc.l $60ff0000,$72080000,$60ff0000,$721e0000 + dc.l $60ff0000,$72860000,$60ff0000,$72860000 + dc.l $60ff0000,$72860000,$60ff0000,$72860000 + dc.l $60ff0000,$72860000,$60ff0000,$72860000 + dc.l $60ff0000,$71600000,$60ff0000,$71760000 + dc.l $60ff0000,$718c0000,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $40c62d38,$d3d64634,$3d6f90ae,$b1e75cc7 + dc.l $40000000,$c90fdaa2,$2168c235,$00000000 + dc.l $3fff0000,$c90fdaa2,$2168c235,$00000000 + dc.l $3fe45f30,$6dc9c883,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00006c76,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$2ddc6030,$0c010001 + dc.l $660861ff,$00007124,$60220c01,$00026608 + dc.l $61ff0000,$6d226014,$0c010003,$660861ff + dc.l $00006f4c,$600661ff,$00002f8e,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$6bdc1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$00002d3e,$60300c01,$00016608 + dc.l $61ff0000,$70866022,$0c010002,$660861ff + dc.l $00006c84,$60140c01,$00036608,$61ff0000 + dc.l $6eae6006,$61ff0000,$2ef04cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$6b381d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$00002c9e,$60300c01,$00016608 + dc.l $61ff0000,$6fe66022,$0c010002,$660861ff + dc.l $00006be4,$60140c01,$00036608,$61ff0000 + dc.l $6e0e6006,$61ff0000,$2e504cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $00006a9e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $2c0e6030,$0c010001,$660861ff,$00006fc8 + dc.l $60220c01,$00026608,$61ff0000,$6b4a6014 + dc.l $0c010003,$660861ff,$00006d74,$600661ff + dc.l $00002dbc,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$6a041d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00002b70 + dc.l $60300c01,$00016608,$61ff0000,$6f2a6022 + dc.l $0c010002,$660861ff,$00006aac,$60140c01 + dc.l $00036608,$61ff0000,$6cd66006,$61ff0000 + dc.l $2d1e4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $69601d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$00002ad0 + dc.l $60300c01,$00016608,$61ff0000,$6e8a6022 + dc.l $0c010002,$660861ff,$00006a0c,$60140c01 + dc.l $00036608,$61ff0000,$6c366006,$61ff0000 + dc.l $2c7e4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$000068c6,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$4e686030,$0c010001 + dc.l $660861ff,$00006d74,$60220c01,$00026608 + dc.l $61ff0000,$6d946014,$0c010003,$660861ff + dc.l $00006b9c,$600661ff,$00004f14,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$682c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$00004dca,$60300c01,$00016608 + dc.l $61ff0000,$6cd66022,$0c010002,$660861ff + dc.l $00006cf6,$60140c01,$00036608,$61ff0000 + dc.l $6afe6006,$61ff0000,$4e764cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$67881d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$00004d2a,$60300c01,$00016608 + dc.l $61ff0000,$6c366022,$0c010002,$660861ff + dc.l $00006c56,$60140c01,$00036608,$61ff0000 + dc.l $6a5e6006,$61ff0000,$4dd64cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $000066ee,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $59b26030,$0c010001,$660861ff,$00006b9c + dc.l $60220c01,$00026608,$61ff0000,$6bf26014 + dc.l $0c010003,$660861ff,$000069c4,$600661ff + dc.l $00005ad4,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$66541d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00005914 + dc.l $60300c01,$00016608,$61ff0000,$6afe6022 + dc.l $0c010002,$660861ff,$00006b54,$60140c01 + dc.l $00036608,$61ff0000,$69266006,$61ff0000 + dc.l $5a364cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $65b01d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$00005874 + dc.l $60300c01,$00016608,$61ff0000,$6a5e6022 + dc.l $0c010002,$660861ff,$00006ab4,$60140c01 + dc.l $00036608,$61ff0000,$68866006,$61ff0000 + dc.l $59964cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00006516,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$46c46030,$0c010001 + dc.l $660861ff,$000069c4,$60220c01,$00026608 + dc.l $61ff0000,$6a246014,$0c010003,$660861ff + dc.l $000067ec,$600661ff,$00004948,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$647c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$00004626,$60300c01,$00016608 + dc.l $61ff0000,$69266022,$0c010002,$660861ff + dc.l $00006986,$60140c01,$00036608,$61ff0000 + dc.l $674e6006,$61ff0000,$48aa4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$63d81d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$00004586,$60300c01,$00016608 + dc.l $61ff0000,$68866022,$0c010002,$660861ff + dc.l $000068e6,$60140c01,$00036608,$61ff0000 + dc.l $66ae6006,$61ff0000,$480a4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $0000633e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $49c46030,$0c010001,$660861ff,$000067ec + dc.l $60220c01,$00026608,$61ff0000,$68546014 + dc.l $0c010003,$660861ff,$00006614,$600661ff + dc.l $00004afa,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$62a41d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00004926 + dc.l $60300c01,$00016608,$61ff0000,$674e6022 + dc.l $0c010002,$660861ff,$000067b6,$60140c01 + dc.l $00036608,$61ff0000,$65766006,$61ff0000 + dc.l $4a5c4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $62001d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$00004886 + dc.l $60300c01,$00016608,$61ff0000,$66ae6022 + dc.l $0c010002,$660861ff,$00006716,$60140c01 + dc.l $00036608,$61ff0000,$64d66006,$61ff0000 + dc.l $49bc4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00006166,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$391c6030,$0c010001 + dc.l $660861ff,$00006614,$60220c01,$00026608 + dc.l $61ff0000,$66b86014,$0c010003,$660861ff + dc.l $0000643c,$600661ff,$00003b28,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$60cc1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$0000387e,$60300c01,$00016608 + dc.l $61ff0000,$65766022,$0c010002,$660861ff + dc.l $0000661a,$60140c01,$00036608,$61ff0000 + dc.l $639e6006,$61ff0000,$3a8a4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$60281d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$000037de,$60300c01,$00016608 + dc.l $61ff0000,$64d66022,$0c010002,$660861ff + dc.l $0000657a,$60140c01,$00036608,$61ff0000 + dc.l $62fe6006,$61ff0000,$39ea4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $00005f8e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $39886030,$0c010001,$660861ff,$0000643c + dc.l $60220c01,$00026608,$61ff0000,$603a6014 + dc.l $0c010003,$660861ff,$00006264,$600661ff + dc.l $00003a04,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$5ef41d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$000038ea + dc.l $60300c01,$00016608,$61ff0000,$639e6022 + dc.l $0c010002,$660861ff,$00005f9c,$60140c01 + dc.l $00036608,$61ff0000,$61c66006,$61ff0000 + dc.l $39664cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $5e501d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$0000384a + dc.l $60300c01,$00016608,$61ff0000,$62fe6022 + dc.l $0c010002,$660861ff,$00005efc,$60140c01 + dc.l $00036608,$61ff0000,$61266006,$61ff0000 + dc.l $38c64cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00005db6,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$51d46030,$0c010001 + dc.l $660861ff,$00006264,$60220c01,$00026608 + dc.l $61ff0000,$5e626014,$0c010003,$660861ff + dc.l $0000608c,$600661ff,$00005224,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$5d1c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$00005136,$60300c01,$00016608 + dc.l $61ff0000,$61c66022,$0c010002,$660861ff + dc.l $00005dc4,$60140c01,$00036608,$61ff0000 + dc.l $5fee6006,$61ff0000,$51864cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$5c781d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$00005096,$60300c01,$00016608 + dc.l $61ff0000,$61266022,$0c010002,$660861ff + dc.l $00005d24,$60140c01,$00036608,$61ff0000 + dc.l $5f4e6006,$61ff0000,$50e64cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $00005bde,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $28066030,$0c010001,$660861ff,$0000608c + dc.l $60220c01,$00026608,$61ff0000,$5c8a6014 + dc.l $0c010003,$660861ff,$00005eb4,$600661ff + dc.l $00002938,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$5b441d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00002768 + dc.l $60300c01,$00016608,$61ff0000,$5fee6022 + dc.l $0c010002,$660861ff,$00005bec,$60140c01 + dc.l $00036608,$61ff0000,$5e166006,$61ff0000 + dc.l $289a4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $5aa01d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$000026c8 + dc.l $60300c01,$00016608,$61ff0000,$5f4e6022 + dc.l $0c010002,$660861ff,$00005b4c,$60140c01 + dc.l $00036608,$61ff0000,$5d766006,$61ff0000 + dc.l $27fa4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00005a06,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$39e46030,$0c010001 + dc.l $660861ff,$00005f30,$60220c01,$00026608 + dc.l $61ff0000,$5f026014,$0c010003,$660861ff + dc.l $00005cdc,$600661ff,$00003b5e,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$596c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$00003946,$60300c01,$00016608 + dc.l $61ff0000,$5e926022,$0c010002,$660861ff + dc.l $00005e64,$60140c01,$00036608,$61ff0000 + dc.l $5c3e6006,$61ff0000,$3ac04cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$58c81d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$000038a6,$60300c01,$00016608 + dc.l $61ff0000,$5df26022,$0c010002,$660861ff + dc.l $00005dc4,$60140c01,$00036608,$61ff0000 + dc.l $5b9e6006,$61ff0000,$3a204cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $0000582e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $522e6030,$0c010001,$660861ff,$00005d58 + dc.l $60220c01,$00026608,$61ff0000,$5d2a6014 + dc.l $0c010003,$660861ff,$00005b04,$600661ff + dc.l $000052d6,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$57941d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00005190 + dc.l $60300c01,$00016608,$61ff0000,$5cba6022 + dc.l $0c010002,$660861ff,$00005c8c,$60140c01 + dc.l $00036608,$61ff0000,$5a666006,$61ff0000 + dc.l $52384cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $56f01d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$000050f0 + dc.l $60300c01,$00016608,$61ff0000,$5c1a6022 + dc.l $0c010002,$660861ff,$00005bec,$60140c01 + dc.l $00036608,$61ff0000,$59c66006,$61ff0000 + dc.l $51984cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00005656,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$514e6030,$0c010001 + dc.l $660861ff,$00005b80,$60220c01,$00026608 + dc.l $61ff0000,$5b526014,$0c010003,$660861ff + dc.l $0000592c,$600661ff,$0000524c,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$55bc1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$000050b0,$60300c01,$00016608 + dc.l $61ff0000,$5ae26022,$0c010002,$660861ff + dc.l $00005ab4,$60140c01,$00036608,$61ff0000 + dc.l $588e6006,$61ff0000,$51ae4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$55181d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$00005010,$60300c01,$00016608 + dc.l $61ff0000,$5a426022,$0c010002,$660861ff + dc.l $00005a14,$60140c01,$00036608,$61ff0000 + dc.l $57ee6006,$61ff0000,$510e4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $0000547e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $45026030,$0c010001,$660861ff,$000054c8 + dc.l $60220c01,$00026608,$61ff0000,$59826014 + dc.l $0c010003,$660861ff,$00005754,$600661ff + dc.l $00004682,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$53e41d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00004464 + dc.l $60300c01,$00016608,$61ff0000,$542a6022 + dc.l $0c010002,$660861ff,$000058e4,$60140c01 + dc.l $00036608,$61ff0000,$56b66006,$61ff0000 + dc.l $45e44cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $53401d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$000043c4 + dc.l $60300c01,$00016608,$61ff0000,$538a6022 + dc.l $0c010002,$660861ff,$00005844,$60140c01 + dc.l $00036608,$61ff0000,$56166006,$61ff0000 + dc.l $45444cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$000052a6,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$476c6030,$0c010001 + dc.l $660861ff,$000052f0,$60220c01,$00026608 + dc.l $61ff0000,$57aa6014,$0c010003,$660861ff + dc.l $0000557c,$600661ff,$0000476a,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$520c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$000046ce,$60300c01,$00016608 + dc.l $61ff0000,$52526022,$0c010002,$660861ff + dc.l $0000570c,$60140c01,$00036608,$61ff0000 + dc.l $54de6006,$61ff0000,$46cc4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$51681d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$0000462e,$60300c01,$00016608 + dc.l $61ff0000,$51b26022,$0c010002,$660861ff + dc.l $0000566c,$60140c01,$00036608,$61ff0000 + dc.l $543e6006,$61ff0000,$462c4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $000050ce,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $45e46030,$0c010001,$660861ff,$00005118 + dc.l $60220c01,$00026608,$61ff0000,$55d26014 + dc.l $0c010003,$660861ff,$000053a4,$600661ff + dc.l $0000460c,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$50341d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00004546 + dc.l $60300c01,$00016608,$61ff0000,$507a6022 + dc.l $0c010002,$660861ff,$00005534,$60140c01 + dc.l $00036608,$61ff0000,$53066006,$61ff0000 + dc.l $456e4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $4f901d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$000044a6 + dc.l $60300c01,$00016608,$61ff0000,$4fda6022 + dc.l $0c010002,$660861ff,$00005494,$60140c01 + dc.l $00036608,$61ff0000,$52666006,$61ff0000 + dc.l $44ce4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00004ef6,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$33da6030,$0c010001 + dc.l $660861ff,$00005420,$60220c01,$00026608 + dc.l $61ff0000,$53ca6014,$0c010003,$660861ff + dc.l $000051cc,$600661ff,$0000344c,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$4e5c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$0000333c,$60300c01,$00016608 + dc.l $61ff0000,$53826022,$0c010002,$660861ff + dc.l $0000532c,$60140c01,$00036608,$61ff0000 + dc.l $512e6006,$61ff0000,$33ae4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$4db81d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$0000329c,$60300c01,$00016608 + dc.l $61ff0000,$52e26022,$0c010002,$660861ff + dc.l $0000528c,$60140c01,$00036608,$61ff0000 + dc.l $508e6006,$61ff0000,$330e4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $00004d1e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $27cc6030,$0c010001,$660861ff,$00005284 + dc.l $60220c01,$00026608,$61ff0000,$4dca6014 + dc.l $0c010003,$660861ff,$00004ff4,$600661ff + dc.l $0000282a,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$4c841d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$0000272e + dc.l $60300c01,$00016608,$61ff0000,$51e66022 + dc.l $0c010002,$660861ff,$00004d2c,$60140c01 + dc.l $00036608,$61ff0000,$4f566006,$61ff0000 + dc.l $278c4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $4be01d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$0000268e + dc.l $60300c01,$00016608,$61ff0000,$51466022 + dc.l $0c010002,$660861ff,$00004c8c,$60140c01 + dc.l $00036608,$61ff0000,$4eb66006,$61ff0000 + dc.l $26ec4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00004b46,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$2fb06030,$0c010001 + dc.l $660861ff,$00004ff4,$60220c01,$00026608 + dc.l $61ff0000,$4bf26014,$0c010003,$660861ff + dc.l $00004e1c,$600661ff,$00002f9a,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e5400,$0008f22e,$6800ff6c,$41eeff6c + dc.l $61ff0000,$4aac1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff631d41,$ff4e4a01 + dc.l $660861ff,$00002f12,$60300c01,$00016608 + dc.l $61ff0000,$4f566022,$0c010002,$660861ff + dc.l $00004b54,$60140c01,$00036608,$61ff0000 + dc.l $4d7e6006,$61ff0000,$2efc4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$000041ee + dc.l $ff6c216e,$00080000,$216e000c,$0004216e + dc.l $00100008,$61ff0000,$4a081d40,$ff4e1200 + dc.l $02ae00ff,$00ffff64,$4280102e,$ff634a01 + dc.l $660861ff,$00002e72,$60300c01,$00016608 + dc.l $61ff0000,$4eb66022,$0c010002,$660861ff + dc.l $00004ab4,$60140c01,$00036608,$61ff0000 + dc.l $4cde6006,$61ff0000,$2e5c4cee,$0303ff9c + dc.l $f22e9800,$ff60f22e,$d040ffe8,$4e5e4e75 + dc.l $4e56ff40,$48ee0303,$ff9cf22e,$b800ff60 + dc.l $f22ef0c0,$ffdcf23c,$90000000,$0000f22e + dc.l $44000008,$f22e6800,$ff6c41ee,$ff6c61ff + dc.l $0000496e,$1d40ff4e,$120002ae,$00ff00ff + dc.l $ff644280,$102eff63,$4a016608,$61ff0000 + dc.l $2e0c6030,$0c010001,$660861ff,$00004e1c + dc.l $60220c01,$00026608,$61ff0000,$4a1a6014 + dc.l $0c010003,$660861ff,$00004c44,$600661ff + dc.l $00002e08,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$f22e5400,$0008f22e + dc.l $6800ff6c,$41eeff6c,$61ff0000,$48d41d40 + dc.l $ff4e1200,$02ae00ff,$00ffff64,$4280102e + dc.l $ff631d41,$ff4e4a01,$660861ff,$00002d6e + dc.l $60300c01,$00016608,$61ff0000,$4d7e6022 + dc.l $0c010002,$660861ff,$0000497c,$60140c01 + dc.l $00036608,$61ff0000,$4ba66006,$61ff0000 + dc.l $2d6a4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$000041ee,$ff6c216e,$00080000 + dc.l $216e000c,$0004216e,$00100008,$61ff0000 + dc.l $48301d40,$ff4e1200,$02ae00ff,$00ffff64 + dc.l $4280102e,$ff634a01,$660861ff,$00002cce + dc.l $60300c01,$00016608,$61ff0000,$4cde6022 + dc.l $0c010002,$660861ff,$000048dc,$60140c01 + dc.l $00036608,$61ff0000,$4b066006,$61ff0000 + dc.l $2cca4cee,$0303ff9c,$f22e9800,$ff60f22e + dc.l $d040ffe8,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$44000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00004796,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $4a016608,$61ff0000,$0af46030,$0c010001 + dc.l $660861ff,$00004d18,$60220c01,$00026608 + dc.l $61ff0000,$4d386014,$0c010003,$660861ff + dc.l $00004d34,$600661ff,$00000d58,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f227e003,$f21fd040 + dc.l $f21fd080,$4e5e4e75,$4e56ff40,$48ee0303 + dc.l $ff9cf22e,$b800ff60,$f22ef0c0,$ffdcf23c + dc.l $90000000,$0000f22e,$54000008,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$000046f6,$1d40ff4e + dc.l $120002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $1d41ff4e,$4a016608,$61ff0000,$0a506030 + dc.l $0c010001,$660861ff,$00004c74,$60220c01 + dc.l $00026608,$61ff0000,$4c946014,$0c010003 + dc.l $660861ff,$00004c90,$600661ff,$00000cb4 + dc.l $4cee0303,$ff9cf22e,$9800ff60,$f227e003 + dc.l $f21fd040,$f21fd080,$4e5e4e75,$4e56ff40 + dc.l $48ee0303,$ff9cf22e,$b800ff60,$f22ef0c0 + dc.l $ffdcf23c,$90000000,$000041ee,$ff6c216e + dc.l $00080000,$216e000c,$0004216e,$00100008 + dc.l $61ff0000,$464c1d40,$ff4e1200,$02ae00ff + dc.l $00ffff64,$4280102e,$ff634a01,$660861ff + dc.l $000009aa,$60300c01,$00016608,$61ff0000 + dc.l $4bce6022,$0c010002,$660861ff,$00004bee + dc.l $60140c01,$00036608,$61ff0000,$4bea6006 + dc.l $61ff0000,$0c0e4cee,$0303ff9c,$f22e9800 + dc.l $ff60f227,$e003f21f,$d040f21f,$d0804e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e4400,$0008f22e,$6800ff78,$41eeff78 + dc.l $61ff0000,$45ac1d40,$ff4ff22e,$4400000c + dc.l $f22e6800,$ff6c41ee,$ff6c61ff,$00004592 + dc.l $1d40ff4e,$220002ae,$00ff00ff,$ff644280 + dc.l $102eff63,$41eeff6c,$43eeff78,$4a016608 + dc.l $61ff0000,$4c466030,$0c010001,$660861ff + dc.l $00004c64,$60220c01,$00026608,$61ff0000 + dc.l $4c846014,$0c010003,$660861ff,$00004d16 + dc.l $600661ff,$00004c14,$4cee0303,$ff9cf22e + dc.l $9800ff60,$f22ed040,$ffe84e5e,$4e754e56 + dc.l $ff4048ee,$0303ff9c,$f22eb800,$ff60f22e + dc.l $f0c0ffdc,$f23c9000,$00000000,$f22e5400 + dc.l $0008f22e,$6800ff78,$41eeff78,$61ff0000 + dc.l $44f01d40,$ff4ff22e,$54000010,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$000044d6,$1d40ff4e + dc.l $220002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $41eeff6c,$43eeff78,$4a016608,$61ff0000 + dc.l $4b8a6030,$0c010001,$660861ff,$00004ba8 + dc.l $60220c01,$00026608,$61ff0000,$4bc86014 + dc.l $0c010003,$660861ff,$00004c5a,$600661ff + dc.l $00004b58,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$41eeff78,$216e0008 + dc.l $0000216e,$000c0004,$216e0010,$000861ff + dc.l $0000442e,$1d40ff4f,$41eeff6c,$216e0014 + dc.l $0000216e,$00180004,$216e001c,$000861ff + dc.l $0000440e,$1d40ff4e,$220002ae,$00ff00ff + dc.l $ff644280,$102eff63,$41eeff6c,$43eeff78 + dc.l $4a016608,$61ff0000,$4ac26030,$0c010001 + dc.l $660861ff,$00004ae0,$60220c01,$00026608 + dc.l $61ff0000,$4b006014,$0c010003,$660861ff + dc.l $00004b92,$600661ff,$00004a90,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e4400,$0008f22e,$6800ff78,$41eeff78 + dc.l $61ff0000,$436c1d40,$ff4ff22e,$4400000c + dc.l $f22e6800,$ff6c41ee,$ff6c61ff,$00004352 + dc.l $1d40ff4e,$220002ae,$00ff00ff,$ff644280 + dc.l $102eff63,$41eeff6c,$43eeff78,$4a016608 + dc.l $61ff0000,$491c6030,$0c010001,$660861ff + dc.l $0000493a,$60220c01,$00026608,$61ff0000 + dc.l $495a6014,$0c010003,$660861ff,$00004ad6 + dc.l $600661ff,$000048ea,$4cee0303,$ff9cf22e + dc.l $9800ff60,$f22ed040,$ffe84e5e,$4e754e56 + dc.l $ff4048ee,$0303ff9c,$f22eb800,$ff60f22e + dc.l $f0c0ffdc,$f23c9000,$00000000,$f22e5400 + dc.l $0008f22e,$6800ff78,$41eeff78,$61ff0000 + dc.l $42b01d40,$ff4ff22e,$54000010,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00004296,$1d40ff4e + dc.l $220002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $41eeff6c,$43eeff78,$4a016608,$61ff0000 + dc.l $48606030,$0c010001,$660861ff,$0000487e + dc.l $60220c01,$00026608,$61ff0000,$489e6014 + dc.l $0c010003,$660861ff,$00004a1a,$600661ff + dc.l $0000482e,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$41eeff78,$216e0008 + dc.l $0000216e,$000c0004,$216e0010,$000861ff + dc.l $000041ee,$1d40ff4f,$41eeff6c,$216e0014 + dc.l $0000216e,$00180004,$216e001c,$000861ff + dc.l $000041ce,$1d40ff4e,$220002ae,$00ff00ff + dc.l $ff644280,$102eff63,$41eeff6c,$43eeff78 + dc.l $4a016608,$61ff0000,$47986030,$0c010001 + dc.l $660861ff,$000047b6,$60220c01,$00026608 + dc.l $61ff0000,$47d66014,$0c010003,$660861ff + dc.l $00004952,$600661ff,$00004766,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e754e56,$ff4048ee,$0303ff9c,$f22eb800 + dc.l $ff60f22e,$f0c0ffdc,$f23c9000,$00000000 + dc.l $f22e4400,$0008f22e,$6800ff78,$41eeff78 + dc.l $61ff0000,$412c1d40,$ff4ff22e,$4400000c + dc.l $f22e6800,$ff6c41ee,$ff6c61ff,$00004112 + dc.l $1d40ff4e,$220002ae,$00ff00ff,$ff644280 + dc.l $102eff63,$41eeff6c,$43eeff78,$4a016608 + dc.l $61ff0000,$484a6030,$0c010001,$660861ff + dc.l $0000486a,$60220c01,$00026608,$61ff0000 + dc.l $488a6014,$0c010003,$660861ff,$00004896 + dc.l $600661ff,$00004818,$4cee0303,$ff9cf22e + dc.l $9800ff60,$f22ed040,$ffe84e5e,$4e754e56 + dc.l $ff4048ee,$0303ff9c,$f22eb800,$ff60f22e + dc.l $f0c0ffdc,$f23c9000,$00000000,$f22e5400 + dc.l $0008f22e,$6800ff78,$41eeff78,$61ff0000 + dc.l $40701d40,$ff4ff22e,$54000010,$f22e6800 + dc.l $ff6c41ee,$ff6c61ff,$00004056,$1d40ff4e + dc.l $220002ae,$00ff00ff,$ff644280,$102eff63 + dc.l $41eeff6c,$43eeff78,$4a016608,$61ff0000 + dc.l $478e6030,$0c010001,$660861ff,$000047ae + dc.l $60220c01,$00026608,$61ff0000,$47ce6014 + dc.l $0c010003,$660861ff,$000047da,$600661ff + dc.l $0000475c,$4cee0303,$ff9cf22e,$9800ff60 + dc.l $f22ed040,$ffe84e5e,$4e754e56,$ff4048ee + dc.l $0303ff9c,$f22eb800,$ff60f22e,$f0c0ffdc + dc.l $f23c9000,$00000000,$41eeff78,$216e0008 + dc.l $0000216e,$000c0004,$216e0010,$000861ff + dc.l $00003fae,$1d40ff4f,$41eeff6c,$216e0014 + dc.l $0000216e,$00180004,$216e001c,$000861ff + dc.l $00003f8e,$1d40ff4e,$220002ae,$00ff00ff + dc.l $ff644280,$102eff63,$41eeff6c,$43eeff78 + dc.l $4a016608,$61ff0000,$46c66030,$0c010001 + dc.l $660861ff,$000046e6,$60220c01,$00026608 + dc.l $61ff0000,$47066014,$0c010003,$660861ff + dc.l $00004712,$600661ff,$00004694,$4cee0303 + dc.l $ff9cf22e,$9800ff60,$f22ed040,$ffe84e5e + dc.l $4e75bd6a,$aa77ccc9,$94f53de6,$12097aae + dc.l $8da1be5a,$e6452a11,$8ae43ec7,$1de3a534 + dc.l $1531bf2a,$01a01a01,$8b590000,$00000000 + dc.l $00003ff8,$00008888,$88888888,$59af0000 + dc.l $0000bffc,$0000aaaa,$aaaaaaaa,$aa990000 + dc.l $00003d2a,$c4d0d601,$1ee3bda9,$396f9f45 + dc.l $ac193e21,$eed90612,$c972be92,$7e4fb79d + dc.l $9fcf3efa,$01a01a01,$d4230000,$00000000 + dc.l $0000bff5,$0000b60b,$60b60b61,$d4380000 + dc.l $00003ffa,$0000aaaa,$aaaaaaaa,$ab5ebf00 + dc.l $00002d7c,$00000000,$ff5c6008,$2d7c0000 + dc.l $0001ff5c,$f2104800,$f22e6800,$ff842210 + dc.l $32280004,$02817fff,$ffff0c81,$3fd78000 + dc.l $6c046000,$01780c81,$4004bc7e,$6d046000 + dc.l $0468f200,$0080f23a,$54a3d186,$43fb0170 + dc.l $00000866,$f22e6080,$ff58222e,$ff58e981 + dc.l $d3c1f219,$4828f211,$4428222e,$ff58d2ae + dc.l $ff5ce299,$0c810000,$00006d00,$0088f227 + dc.l $e00cf22e,$6800ff84,$f2000023,$f23a5580 + dc.l $fed2f23a,$5500fed4,$f2000080,$f20004a3 + dc.l $e2990281,$80000000,$b3aeff84,$f20005a3 + dc.l $f2000523,$f23a55a2,$febaf23a,$5522febc + dc.l $f20005a3,$f2000523,$f23a55a2,$feb6f23a + dc.l $4922fec0,$f2000ca3,$f2000123,$f23a48a2 + dc.l $fec2f22e,$4823ff84,$f20008a2,$f2000423 + dc.l $f21fd030,$f2009000,$f22e4822,$ff8460ff + dc.l $00004006,$f227e00c,$f2000023,$f23a5500 + dc.l $fea2f23a,$5580fea4,$f2000080,$f20004a3 + dc.l $f22e6800,$ff84e299,$02818000,$0000f200 + dc.l $0523b3ae,$ff840281,$80000000,$f20005a3 + dc.l $00813f80,$00002d41,$ff54f23a,$5522fe74 + dc.l $f23a55a2,$fe76f200,$0523f200,$05a3f23a + dc.l $5522fe70,$f23a49a2,$fe7af200,$0523f200 + dc.l $0ca3f23a,$4922fe7c,$f23a44a2,$fe82f200 + dc.l $0823f200,$0422f22e,$4823ff84,$f21fd030 + dc.l $f2009000,$f22e4422,$ff5460ff,$00003f6a + dc.l $0c813fff,$80006eff,$00000300,$222eff5c + dc.l $0c810000,$00006e14,$f2009000,$123c0003 + dc.l $f22e4800,$ff8460ff,$00003f36,$f23c4400 + dc.l $3f800000,$f2009000,$f23c4422,$80800000 + dc.l $60ff0000,$3f2c60ff,$00003f64,$f23c4400 + dc.l $3f800000,$60ff0000,$3f182d7c,$00000004 + dc.l $ff5cf210,$4800f22e,$6800ff84,$22103228 + dc.l $00040281,$7fffffff,$0c813fd7,$80006c04 + dc.l $60000240,$0c814004,$bc7e6d04,$6000027a + dc.l $f2000080,$f23a54a3,$cf9843fb,$01700000 + dc.l $0678f22e,$6080ff58,$222eff58,$e981d3c1 + dc.l $f2194828,$f2114428,$222eff58,$e2990c81 + dc.l $00000000,$6c000106,$f227e004,$f22e6800 + dc.l $ff84f200,$0023f23a,$5480fce8,$f23a5500 + dc.l $fd32f200,$00a3f200,$01232f02,$2401e29a + dc.l $02828000,$0000b382,$02828000,$0000f23a + dc.l $54a2fcc8,$f23a5522,$fd12f200,$00a3b5ae + dc.l $ff84241f,$f2000123,$e2990281,$80000000 + dc.l $2d7c3f80,$0000ff54,$b3aeff54,$f23a54a2 + dc.l $fca2f23a,$5522fcec,$f20000a3,$f2000123 + dc.l $f22e6800,$ff90f23a,$54a2fc90,$b3aeff90 + dc.l $f23a5522,$fcd6f200,$00a3f200,$0123f23a + dc.l $54a2fc80,$f23a5522,$fccaf200,$00a3f200 + dc.l $0123f23a,$48a2fc7c,$f23a4922,$fcc6f200 + dc.l $00a3f200,$0123f23a,$48a2fc78,$f23a4922 + dc.l $fcc2f200,$00a3f200,$0823f22e,$48a3ff84 + dc.l $f23a4422,$fcbaf22e,$4823ff90,$f21fd020 + dc.l $f2009000,$f22e48a2,$ff8461ff,$00003e22 + dc.l $f22e4422,$ff5460ff,$00003d9e,$f227e004 + dc.l $f22e6800,$ff84f200,$0023f23a,$5480fc34 + dc.l $f23a5500,$fbdef200,$00a3f22e,$6800ff90 + dc.l $f2000123,$e2990281,$80000000,$f23a54a2 + dc.l $fc1af23a,$5522fbc4,$b3aeff84,$b3aeff90 + dc.l $f20000a3,$00813f80,$00002d41,$ff54f200 + dc.l $0123f23a,$54a2fbfc,$f23a5522,$fba6f200 + dc.l $00a3f200,$0123f23a,$54a2fbf0,$f23a5522 + dc.l $fb9af200,$00a3f200,$0123f23a,$54a2fbe4 + dc.l $f23a5522,$fb8ef200,$00a3f200,$0123f23a + dc.l $48a2fbe0,$f23a4922,$fb8af200,$00a3f200 + dc.l $0123f23a,$48a2fbdc,$f23a4922,$fb86f200 + dc.l $00a3f200,$0823f23a,$44a2fbd4,$f22e4823 + dc.l $ff84f22e,$48a3ff90,$f21fd020,$f2009000 + dc.l $f22e44a2,$ff5461ff,$00003d36,$f22e4822 + dc.l $ff8460ff,$00003cb2,$0c813fff,$80006e00 + dc.l $0048f23c,$44803f80,$0000f200,$9000f23c + dc.l $44a80080,$000061ff,$00003d06,$f200b000 + dc.l $123c0003,$f22e4800,$ff8460ff,$00003c72 + dc.l $2f00f23c,$44803f80,$000061ff,$00003ce2 + dc.l $201f60ff,$00003ca8,$f227e03c,$2f02f23c + dc.l $44800000,$00000c81,$7ffeffff,$66523d7c + dc.l $7ffeff84,$2d7cc90f,$daa2ff88,$42aeff8c + dc.l $3d7c7fdc,$ff902d7c,$85a308d3,$ff9442ae + dc.l $ff98f200,$003af294,$000e002e,$0080ff84 + dc.l $002e0080,$ff90f22e,$4822ff84,$f2000080 + dc.l $f22e4822,$ff90f200,$00a8f22e,$48a2ff90 + dc.l $f22e6800,$ff84322e,$ff842241,$02810000 + dc.l $7fff0481,$00003fff,$0c810000,$001c6f0e + dc.l $04810000,$001b1d7c,$0000ff58,$60084281 + dc.l $1d7c0001,$ff58243c,$00003ffe,$94812d7c + dc.l $a2f9836e,$ff882d7c,$4e44152a,$ff8c3d42 + dc.l $ff84f200,$0100f22e,$4923ff84,$24094842 + dc.l $02828000,$00000082,$5f000000,$2d42ff54 + dc.l $f22e4522,$ff54f22e,$4528ff54,$24010682 + dc.l $00003fff,$3d42ff84,$2d7cc90f,$daa2ff88 + dc.l $42aeff8c,$06810000,$3fdd3d41,$ff902d7c + dc.l $85a308d3,$ff9442ae,$ff98122e,$ff58f200 + dc.l $0a00f22e,$4a23ff84,$f2000a80,$f22e4aa3 + dc.l $ff90f200,$1180f200,$15a2f200,$0e28f200 + dc.l $0c28f200,$1622f200,$0180f200,$10a8f200 + dc.l $04220c01,$00006e00,$000ef200,$01a8f200 + dc.l $0ca26000,$ff0cf22e,$6100ff58,$241ff21f + dc.l $d03c222e,$ff5c0c81,$00000004,$6d00fa4c + dc.l $6000fc36,$3ea0b759,$f50f8688,$bef2baa5 + dc.l $a8924f04,$bf346f59,$b39ba65f,$00000000 + dc.l $00000000,$3ff60000,$e073d3fc,$199c4a00 + dc.l $00000000,$3ff90000,$d23cd684,$15d95fa1 + dc.l $00000000,$bffc0000,$8895a6c5,$fb423bca + dc.l $00000000,$bffd0000,$eef57e0d,$a84bc8ce + dc.l $00000000,$3ffc0000,$a2f9836e,$4e44152a + dc.l $00000000,$40010000,$c90fdaa2,$00000000 + dc.l $00000000,$3fdf0000,$85a308d4,$00000000 + dc.l $00000000,$c0040000,$c90fdaa2,$2168c235 + dc.l $21800000,$c0040000,$c2c75bcd,$105d7c23 + dc.l $a0d00000,$c0040000,$bc7edcf7,$ff523611 + dc.l $a1e80000,$c0040000,$b6365e22,$ee46f000 + dc.l $21480000,$c0040000,$afeddf4d,$dd3ba9ee + dc.l $a1200000,$c0040000,$a9a56078,$cc3063dd + dc.l $21fc0000,$c0040000,$a35ce1a3,$bb251dcb + dc.l $21100000,$c0040000,$9d1462ce,$aa19d7b9 + dc.l $a1580000,$c0040000,$96cbe3f9,$990e91a8 + dc.l $21e00000,$c0040000,$90836524,$88034b96 + dc.l $20b00000,$c0040000,$8a3ae64f,$76f80584 + dc.l $a1880000,$c0040000,$83f2677a,$65ecbf73 + dc.l $21c40000,$c0030000,$fb53d14a,$a9c2f2c2 + dc.l $20000000,$c0030000,$eec2d3a0,$87ac669f + dc.l $21380000,$c0030000,$e231d5f6,$6595da7b + dc.l $a1300000,$c0030000,$d5a0d84c,$437f4e58 + dc.l $9fc00000,$c0030000,$c90fdaa2,$2168c235 + dc.l $21000000,$c0030000,$bc7edcf7,$ff523611 + dc.l $a1680000,$c0030000,$afeddf4d,$dd3ba9ee + dc.l $a0a00000,$c0030000,$a35ce1a3,$bb251dcb + dc.l $20900000,$c0030000,$96cbe3f9,$990e91a8 + dc.l $21600000,$c0030000,$8a3ae64f,$76f80584 + dc.l $a1080000,$c0020000,$fb53d14a,$a9c2f2c2 + dc.l $1f800000,$c0020000,$e231d5f6,$6595da7b + dc.l $a0b00000,$c0020000,$c90fdaa2,$2168c235 + dc.l $20800000,$c0020000,$afeddf4d,$dd3ba9ee + dc.l $a0200000,$c0020000,$96cbe3f9,$990e91a8 + dc.l $20e00000,$c0010000,$fb53d14a,$a9c2f2c2 + dc.l $1f000000,$c0010000,$c90fdaa2,$2168c235 + dc.l $20000000,$c0010000,$96cbe3f9,$990e91a8 + dc.l $20600000,$c0000000,$c90fdaa2,$2168c235 + dc.l $1f800000,$bfff0000,$c90fdaa2,$2168c235 + dc.l $1f000000,$00000000,$00000000,$00000000 + dc.l $00000000,$3fff0000,$c90fdaa2,$2168c235 + dc.l $9f000000,$40000000,$c90fdaa2,$2168c235 + dc.l $9f800000,$40010000,$96cbe3f9,$990e91a8 + dc.l $a0600000,$40010000,$c90fdaa2,$2168c235 + dc.l $a0000000,$40010000,$fb53d14a,$a9c2f2c2 + dc.l $9f000000,$40020000,$96cbe3f9,$990e91a8 + dc.l $a0e00000,$40020000,$afeddf4d,$dd3ba9ee + dc.l $20200000,$40020000,$c90fdaa2,$2168c235 + dc.l $a0800000,$40020000,$e231d5f6,$6595da7b + dc.l $20b00000,$40020000,$fb53d14a,$a9c2f2c2 + dc.l $9f800000,$40030000,$8a3ae64f,$76f80584 + dc.l $21080000,$40030000,$96cbe3f9,$990e91a8 + dc.l $a1600000,$40030000,$a35ce1a3,$bb251dcb + dc.l $a0900000,$40030000,$afeddf4d,$dd3ba9ee + dc.l $20a00000,$40030000,$bc7edcf7,$ff523611 + dc.l $21680000,$40030000,$c90fdaa2,$2168c235 + dc.l $a1000000,$40030000,$d5a0d84c,$437f4e58 + dc.l $1fc00000,$40030000,$e231d5f6,$6595da7b + dc.l $21300000,$40030000,$eec2d3a0,$87ac669f + dc.l $a1380000,$40030000,$fb53d14a,$a9c2f2c2 + dc.l $a0000000,$40040000,$83f2677a,$65ecbf73 + dc.l $a1c40000,$40040000,$8a3ae64f,$76f80584 + dc.l $21880000,$40040000,$90836524,$88034b96 + dc.l $a0b00000,$40040000,$96cbe3f9,$990e91a8 + dc.l $a1e00000,$40040000,$9d1462ce,$aa19d7b9 + dc.l $21580000,$40040000,$a35ce1a3,$bb251dcb + dc.l $a1100000,$40040000,$a9a56078,$cc3063dd + dc.l $a1fc0000,$40040000,$afeddf4d,$dd3ba9ee + dc.l $21200000,$40040000,$b6365e22,$ee46f000 + dc.l $a1480000,$40040000,$bc7edcf7,$ff523611 + dc.l $21e80000,$40040000,$c2c75bcd,$105d7c23 + dc.l $20d00000,$40040000,$c90fdaa2,$2168c235 + dc.l $a1800000,$f2104800,$22103228,$00040281 + dc.l $7fffffff,$0c813fd7,$80006c04,$60000134 + dc.l $0c814004,$bc7e6d04,$60000144,$f2000080 + dc.l $f23a54a3,$c6dc43fa,$fdbcf201,$6080e981 + dc.l $d3c1f219,$4828f211,$4428ea99,$02818000 + dc.l $0000f227,$e00c0c81,$00000000,$6d000072 + dc.l $f2000080,$f20004a3,$f23a5580,$faf8f23a + dc.l $5500fafa,$f20005a3,$f2000523,$f23a55a2 + dc.l $faf4f23a,$4922fafe,$f20005a3,$f2000523 + dc.l $f23a49a2,$fb00f23a,$4922fb0a,$f20005a3 + dc.l $f2000523,$f23a49a2,$fb0cf200,$0123f200 + dc.l $0ca3f200,$0822f23c,$44a23f80,$0000f21f + dc.l $d030f200,$9000f200,$042060ff,$0000357a + dc.l $f2000080,$f2000023,$f23a5580,$fa88f23a + dc.l $5500fa8a,$f20001a3,$f2000123,$f23a55a2 + dc.l $fa84f23a,$4922fa8e,$f20001a3,$f2000123 + dc.l $f23a49a2,$fa90f23a,$4922fa9a,$f20001a3 + dc.l $f2000123,$f23a49a2,$fa9cf200,$0523f200 + dc.l $0c23f200,$08a2f23c,$44223f80,$0000f21f + dc.l $d030f227,$68800a97,$80000000,$f2009000 + dc.l $f21f4820,$60ff0000,$35000c81,$3fff8000 + dc.l $6e1cf227,$6800f200,$9000123c,$0003f21f + dc.l $480060ff,$000034da,$60ff0000,$3522f227 + dc.l $e03c2f02,$f23c4480,$00000000,$0c817ffe + dc.l $ffff6652,$3d7c7ffe,$ff842d7c,$c90fdaa2 + dc.l $ff8842ae,$ff8c3d7c,$7fdcff90,$2d7c85a3 + dc.l $08d3ff94,$42aeff98,$f200003a,$f294000e + dc.l $002e0080,$ff84002e,$0080ff90,$f22e4822 + dc.l $ff84f200,$0080f22e,$4822ff90,$f20000a8 + dc.l $f22e48a2,$ff90f22e,$6800ff84,$322eff84 + dc.l $22410281,$00007fff,$04810000,$3fff0c81 + dc.l $0000001c,$6f0e0481,$0000001b,$1d7c0000 + dc.l $ff586008,$42811d7c,$0001ff58,$243c0000 + dc.l $3ffe9481,$2d7ca2f9,$836eff88,$2d7c4e44 + dc.l $152aff8c,$3d42ff84,$f2000100,$f22e4923 + dc.l $ff842409,$48420282,$80000000,$00825f00 + dc.l $00002d42,$ff54f22e,$4522ff54,$f22e4528 + dc.l $ff542401,$06820000,$3fff3d42,$ff842d7c + dc.l $c90fdaa2,$ff8842ae,$ff8c0681,$00003fdd + dc.l $3d41ff90,$2d7c85a3,$08d3ff94,$42aeff98 + dc.l $122eff58,$f2000a00,$f22e4a23,$ff84f200 + dc.l $0a80f22e,$4aa3ff90,$f2001180,$f20015a2 + dc.l $f2000e28,$f2000c28,$f2001622,$f2000180 + dc.l $f20010a8,$f2000422,$0c010000,$6e00000e + dc.l $f20001a8,$f2000ca2,$6000ff0c,$f22e6100 + dc.l $ff54241f,$f21fd03c,$222eff54,$e2996000 + dc.l $fd72bff6,$687e3149,$87d84002,$ac6934a2 + dc.l $6db3bfc2,$476f4e1d,$a28e3fb3,$44447f87 + dc.l $6989bfb7,$44ee7faf,$45db3fbc,$71c64694 + dc.l $0220bfc2,$49249218,$72f93fc9,$99999999 + dc.l $8fa9bfd5,$55555555,$5555bfb7,$0bf39853 + dc.l $9e6a3fbc,$7187962d,$1d7dbfc2,$49248271 + dc.l $07b83fc9,$99999996,$263ebfd5,$55555555 + dc.l $55363fff,$0000c90f,$daa22168,$c2350000 + dc.l $0000bfff,$0000c90f,$daa22168,$c2350000 + dc.l $00000001,$00008000,$00000000,$00000000 + dc.l $00008001,$00008000,$00000000,$00000000 + dc.l $00003ffb,$000083d1,$52c5060b,$7a510000 + dc.l $00003ffb,$00008bc8,$54456549,$8b8b0000 + dc.l $00003ffb,$000093be,$40601762,$6b0d0000 + dc.l $00003ffb,$00009bb3,$078d35ae,$c2020000 + dc.l $00003ffb,$0000a3a6,$9a525ddc,$e7de0000 + dc.l $00003ffb,$0000ab98,$e9436276,$56190000 + dc.l $00003ffb,$0000b389,$e502f9c5,$98620000 + dc.l $00003ffb,$0000bb79,$7e436b09,$e6fb0000 + dc.l $00003ffb,$0000c367,$a5c739e5,$f4460000 + dc.l $00003ffb,$0000cb54,$4c61cff7,$d5c60000 + dc.l $00003ffb,$0000d33f,$62f82488,$533e0000 + dc.l $00003ffb,$0000db28,$da816240,$4c770000 + dc.l $00003ffb,$0000e310,$a4078ad3,$4f180000 + dc.l $00003ffb,$0000eaf6,$b0a8188e,$e1eb0000 + dc.l $00003ffb,$0000f2da,$f1949dbe,$79d50000 + dc.l $00003ffb,$0000fabd,$581361d4,$7e3e0000 + dc.l $00003ffc,$00008346,$ac210959,$ecc40000 + dc.l $00003ffc,$00008b23,$2a083042,$82d80000 + dc.l $00003ffc,$000092fb,$70b8d29a,$e2f90000 + dc.l $00003ffc,$00009acf,$476f5ccd,$1cb40000 + dc.l $00003ffc,$0000a29e,$76304954,$f23f0000 + dc.l $00003ffc,$0000aa68,$c5d08ab8,$52300000 + dc.l $00003ffc,$0000b22d,$fffd9d53,$9f830000 + dc.l $00003ffc,$0000b9ed,$ef453e90,$0ea50000 + dc.l $00003ffc,$0000c1a8,$5f1cc75e,$3ea50000 + dc.l $00003ffc,$0000c95d,$1be82813,$8de60000 + dc.l $00003ffc,$0000d10b,$f300840d,$2de40000 + dc.l $00003ffc,$0000d8b4,$b2ba6bc0,$5e7a0000 + dc.l $00003ffc,$0000e057,$2a6bb423,$35f60000 + dc.l $00003ffc,$0000e7f3,$2a70ea9c,$aa8f0000 + dc.l $00003ffc,$0000ef88,$843264ec,$efaa0000 + dc.l $00003ffc,$0000f717,$0a28ecc0,$66660000 + dc.l $00003ffd,$0000812f,$d288332d,$ad320000 + dc.l $00003ffd,$000088a8,$d1b1218e,$4d640000 + dc.l $00003ffd,$00009012,$ab3f23e4,$aee80000 + dc.l $00003ffd,$0000976c,$c3d411e7,$f1b90000 + dc.l $00003ffd,$00009eb6,$89493889,$a2270000 + dc.l $00003ffd,$0000a5ef,$72c34487,$361b0000 + dc.l $00003ffd,$0000ad17,$00baf07a,$72270000 + dc.l $00003ffd,$0000b42c,$bcfafd37,$efb70000 + dc.l $00003ffd,$0000bb30,$3a940ba8,$0f890000 + dc.l $00003ffd,$0000c221,$15c6fcae,$bbaf0000 + dc.l $00003ffd,$0000c8fe,$f3e68633,$12210000 + dc.l $00003ffd,$0000cfc9,$8330b400,$0c700000 + dc.l $00003ffd,$0000d680,$7aa1102c,$5bf90000 + dc.l $00003ffd,$0000dd23,$99bc3125,$2aa30000 + dc.l $00003ffd,$0000e3b2,$a8556b8f,$c5170000 + dc.l $00003ffd,$0000ea2d,$764f6431,$59890000 + dc.l $00003ffd,$0000f3bf,$5bf8bad1,$a21d0000 + dc.l $00003ffe,$0000801c,$e39e0d20,$5c9a0000 + dc.l $00003ffe,$00008630,$a2dada1e,$d0660000 + dc.l $00003ffe,$00008c1a,$d445f3e0,$9b8c0000 + dc.l $00003ffe,$000091db,$8f1664f3,$50e20000 + dc.l $00003ffe,$00009773,$1420365e,$538c0000 + dc.l $00003ffe,$00009ce1,$c8e6a0b8,$cdba0000 + dc.l $00003ffe,$0000a228,$32dbcada,$ae090000 + dc.l $00003ffe,$0000a746,$f2ddb760,$22940000 + dc.l $00003ffe,$0000ac3e,$c0fb997d,$d6a20000 + dc.l $00003ffe,$0000b110,$688aebdc,$6f6a0000 + dc.l $00003ffe,$0000b5bc,$c49059ec,$c4b00000 + dc.l $00003ffe,$0000ba44,$bc7dd470,$782f0000 + dc.l $00003ffe,$0000bea9,$4144fd04,$9aac0000 + dc.l $00003ffe,$0000c2eb,$4abb6616,$28b60000 + dc.l $00003ffe,$0000c70b,$d54ce602,$ee140000 + dc.l $00003ffe,$0000cd00,$0549adec,$71590000 + dc.l $00003ffe,$0000d484,$57d2d8ea,$4ea30000 + dc.l $00003ffe,$0000db94,$8da712de,$ce3b0000 + dc.l $00003ffe,$0000e238,$55f969e8,$096a0000 + dc.l $00003ffe,$0000e877,$1129c435,$32590000 + dc.l $00003ffe,$0000ee57,$c16e0d37,$9c0d0000 + dc.l $00003ffe,$0000f3e1,$0211a87c,$37790000 + dc.l $00003ffe,$0000f919,$039d758b,$8d410000 + dc.l $00003ffe,$0000fe05,$8b8f6493,$5fb30000 + dc.l $00003fff,$00008155,$fb497b68,$5d040000 + dc.l $00003fff,$00008388,$9e3549d1,$08e10000 + dc.l $00003fff,$0000859c,$fa76511d,$724b0000 + dc.l $00003fff,$00008795,$2ecfff81,$31e70000 + dc.l $00003fff,$00008973,$2fd19557,$641b0000 + dc.l $00003fff,$00008b38,$cad10193,$2a350000 + dc.l $00003fff,$00008ce7,$a8d8301e,$e6b50000 + dc.l $00003fff,$00008f46,$a39e2eae,$52810000 + dc.l $00003fff,$0000922d,$a7d79188,$84870000 + dc.l $00003fff,$000094d1,$9fcbdedf,$52410000 + dc.l $00003fff,$0000973a,$b94419d2,$a08b0000 + dc.l $00003fff,$0000996f,$f00e08e1,$0b960000 + dc.l $00003fff,$00009b77,$3f951232,$1da70000 + dc.l $00003fff,$00009d55,$cc320f93,$56240000 + dc.l $00003fff,$00009f10,$0575006c,$c5710000 + dc.l $00003fff,$0000a0a9,$c290d97c,$c06c0000 + dc.l $00003fff,$0000a226,$59ebebc0,$630a0000 + dc.l $00003fff,$0000a388,$b4aff6ef,$0ec90000 + dc.l $00003fff,$0000a4d3,$5f1061d2,$92c40000 + dc.l $00003fff,$0000a608,$95dcfbe3,$187e0000 + dc.l $00003fff,$0000a72a,$51dc7367,$beac0000 + dc.l $00003fff,$0000a83a,$51530956,$168f0000 + dc.l $00003fff,$0000a93a,$20077539,$546e0000 + dc.l $00003fff,$0000aa9e,$7245023b,$26050000 + dc.l $00003fff,$0000ac4c,$84ba6fe4,$d58f0000 + dc.l $00003fff,$0000adce,$4a4a606b,$97120000 + dc.l $00003fff,$0000af2a,$2dcd8d26,$3c9c0000 + dc.l $00003fff,$0000b065,$6f81f222,$65c70000 + dc.l $00003fff,$0000b184,$65150f71,$496a0000 + dc.l $00003fff,$0000b28a,$aa156f9a,$da350000 + dc.l $00003fff,$0000b37b,$44ff3766,$b8950000 + dc.l $00003fff,$0000b458,$c3dce963,$04330000 + dc.l $00003fff,$0000b525,$529d5622,$46bd0000 + dc.l $00003fff,$0000b5e2,$cca95f9d,$88cc0000 + dc.l $00003fff,$0000b692,$cada7aca,$1ada0000 + dc.l $00003fff,$0000b736,$aea7a692,$58380000 + dc.l $00003fff,$0000b7cf,$ab287e9f,$7b360000 + dc.l $00003fff,$0000b85e,$cc66cb21,$98350000 + dc.l $00003fff,$0000b8e4,$fd5a20a5,$93da0000 + dc.l $00003fff,$0000b99f,$41f64aff,$9bb50000 + dc.l $00003fff,$0000ba7f,$1e17842b,$be7b0000 + dc.l $00003fff,$0000bb47,$12857637,$e17d0000 + dc.l $00003fff,$0000bbfa,$be8a4788,$df6f0000 + dc.l $00003fff,$0000bc9d,$0fad2b68,$9d790000 + dc.l $00003fff,$0000bd30,$6a39471e,$cd860000 + dc.l $00003fff,$0000bdb6,$c731856a,$f18a0000 + dc.l $00003fff,$0000be31,$cac502e8,$0d700000 + dc.l $00003fff,$0000bea2,$d55ce331,$94e20000 + dc.l $00003fff,$0000bf0b,$10b7c031,$28f00000 + dc.l $00003fff,$0000bf6b,$7a18dacb,$778d0000 + dc.l $00003fff,$0000bfc4,$ea4663fa,$18f60000 + dc.l $00003fff,$0000c018,$1bde8b89,$a4540000 + dc.l $00003fff,$0000c065,$b066cfbf,$64390000 + dc.l $00003fff,$0000c0ae,$345f5634,$0ae60000 + dc.l $00003fff,$0000c0f2,$22919cb9,$e6a70000 + dc.l $0000f210,$48002210,$32280004,$f22e6800 + dc.l $ff840281,$7fffffff,$0c813ffb,$80006c04 + dc.l $600000d0,$0c814002,$ffff6f04,$6000014c + dc.l $02aef800,$0000ff88,$00ae0400,$0000ff88 + dc.l $2d7c0000,$0000ff8c,$f2000080,$f22e48a3 + dc.l $ff84f22e,$4828ff84,$f23c44a2,$3f800000 + dc.l $f2000420,$2f022401,$02810000,$78000282 + dc.l $7fff0000,$04823ffb,$0000e282,$d282ee81 + dc.l $43faf780,$d3c12d59,$ff902d59,$ff942d59 + dc.l $ff98222e,$ff840281,$80000000,$83aeff90 + dc.l $241ff227,$e004f200,$0080f200,$04a3f23a + dc.l $5500f6a0,$f2000522,$f2000523,$f20000a3 + dc.l $f23a5522,$f696f23a,$54a3f698,$f20008a3 + dc.l $f2000422,$f21fd020,$f2009000,$f22e4822 + dc.l $ff9060ff,$000029d2,$0c813fff,$80006e00 + dc.l $008a0c81,$3fd78000,$6d00006c,$f227e00c + dc.l $f2000023,$f2000080,$f20004a3,$f23a5500 + dc.l $f65af23a,$5580f65c,$f2000523,$f20005a3 + dc.l $f23a5522,$f656f23a,$55a2f658,$f2000523 + dc.l $f2000ca3,$f23a5522,$f652f23a,$54a2f654 + dc.l $f2000123,$f22e4823,$ff84f200,$08a2f200 + dc.l $0423f21f,$d030f200,$9000f22e,$4822ff84 + dc.l $60ff0000,$2954f200,$9000123c,$0003f22e + dc.l $4800ff84,$60ff0000,$29380c81,$40638000 + dc.l $6e00008e,$f227e00c,$f23c4480,$bf800000 + dc.l $f20000a0,$f2000400,$f2000023,$f22e6880 + dc.l $ff84f200,$0080f200,$04a3f23a,$5580f5ec + dc.l $f23a5500,$f5eef200,$05a3f200,$0523f23a + dc.l $55a2f5e8,$f23a5522,$f5eaf200,$0ca3f200 + dc.l $0123f23a,$54a2f5e4,$f22e4823,$ff84f200 + dc.l $08a2f200,$0423f22e,$4822ff84,$f21fd030 + dc.l $f2009000,$4a106a0c,$f23a4822,$f5d660ff + dc.l $000028c6,$f23a4822,$f5ba60ff,$000028b2 + dc.l $4a106a16,$f23a4800,$f5baf200,$9000f23a + dc.l $4822f5c0,$60ff0000,$28a0f23a,$4800f594 + dc.l $f2009000,$f23a4822,$f5ba60ff,$00002882 + dc.l $60ff0000,$28baf210,$48002210,$32280004 + dc.l $02817fff,$ffff0c81,$3fff8000,$6c4e0c81 + dc.l $3fd78000,$6d00007c,$f23c4480,$3f800000 + dc.l $f20000a8,$f227e004,$f23c4500,$3f800000 + dc.l $f2000122,$f20008a3,$f21fd020,$f2000484 + dc.l $f2000420,$f227e001,$41d761ff,$fffffd66 + dc.l $dffc0000,$000c60ff,$0000280e,$f2000018 + dc.l $f23c4438,$3f800000,$f2d20000,$265af23a + dc.l $4800b8ae,$22100281,$80000000,$00813f80 + dc.l $00002f01,$f2009000,$f21f4423,$60ff0000 + dc.l $27d8f200,$9000123c,$0003f210,$480060ff + dc.l $000027be,$60ff0000,$2806f210,$48002210 + dc.l $32280004,$02817fff,$ffff0c81,$3fff8000 + dc.l $6c44f23c,$44803f80,$0000f200,$00a2f200 + dc.l $001af23c,$44223f80,$0000f200,$0420f200 + dc.l $00042f00,$4280f227,$e00141d7,$61ffffff + dc.l $fcc4dffc,$0000000c,$f21f9000,$f2000022 + dc.l $60ff0000,$276cf200,$0018f23c,$44383f80 + dc.l $0000f2d2,$000025b0,$4a106a18,$f23a4800 + dc.l $b7f0f200,$9000f23c,$44220080,$000060ff + dc.l $0000273e,$60ff0000,$2988f200,$9000f23a + dc.l $4800b7de,$60ff0000,$27283fdc,$000082e3 + dc.l $08654361,$c4c60000,$00003fa5,$55555555 + dc.l $4cc13fc5,$55555555,$4a543f81,$11111117 + dc.l $43853fa5,$55555555,$4f5a3fc5,$55555555 + dc.l $55550000,$00000000,$00003ec7,$1de3a577 + dc.l $46823efa,$01a019d7,$cb683f2a,$01a01a01 + dc.l $9df33f56,$c16c16c1,$70e23f81,$11111111 + dc.l $11113fa5,$55555555,$55553ffc,$0000aaaa + dc.l $aaaaaaaa,$aaab0000,$000048b0,$00000000 + dc.l $00003730,$00000000,$00003fff,$00008000 + dc.l $00000000,$00000000,$00003fff,$00008164 + dc.l $d1f3bc03,$07749f84,$1a9b3fff,$000082cd + dc.l $8698ac2b,$a1d89fc1,$d5b93fff,$0000843a + dc.l $28c3acde,$4048a072,$83693fff,$000085aa + dc.l $c367cc48,$7b141fc5,$c95c3fff,$0000871f + dc.l $61969e8d,$10101ee8,$5c9f3fff,$00008898 + dc.l $0e8092da,$85289fa2,$07293fff,$00008a14 + dc.l $d575496e,$fd9ca07b,$f9af3fff,$00008b95 + dc.l $c1e3ea8b,$d6e8a002,$0dcf3fff,$00008d1a + dc.l $df5b7e5b,$a9e4205a,$63da3fff,$00008ea4 + dc.l $398b45cd,$53c01eb7,$00513fff,$00009031 + dc.l $dc431466,$b1dc1f6e,$b0293fff,$000091c3 + dc.l $d373ab11,$c338a078,$14943fff,$0000935a + dc.l $2b2f13e6,$e92c9eb3,$19b03fff,$000094f4 + dc.l $efa8fef7,$09602017,$457d3fff,$00009694 + dc.l $2d372018,$5a001f11,$d5373fff,$00009837 + dc.l $f0518db8,$a9709fb9,$52dd3fff,$000099e0 + dc.l $459320b7,$fa641fe4,$30873fff,$00009b8d + dc.l $39b9d54e,$55381fa2,$a8183fff,$00009d3e + dc.l $d9a72cff,$b7501fde,$494d3fff,$00009ef5 + dc.l $326091a1,$11ac2050,$48903fff,$0000a0b0 + dc.l $510fb971,$4fc4a073,$691c3fff,$0000a270 + dc.l $43030c49,$68181f9b,$7a053fff,$0000a435 + dc.l $15ae09e6,$80a0a079,$71263fff,$0000a5fe + dc.l $d6a9b151,$38eca071,$a1403fff,$0000a7cd + dc.l $93b4e965,$3568204f,$62da3fff,$0000a9a1 + dc.l $5ab4ea7c,$0ef81f28,$3c4a3fff,$0000ab7a + dc.l $39b5a93e,$d3389f9a,$7fdc3fff,$0000ad58 + dc.l $3eea42a1,$4ac8a05b,$3fac3fff,$0000af3b + dc.l $78ad690a,$43741fdf,$26103fff,$0000b123 + dc.l $f581d2ac,$25909f70,$5f903fff,$0000b311 + dc.l $c412a911,$2488201f,$678a3fff,$0000b504 + dc.l $f333f9de,$64841f32,$fb133fff,$0000b6fd + dc.l $91e328d1,$77902003,$8b303fff,$0000b8fb + dc.l $af4762fb,$9ee8200d,$c3cc3fff,$0000baff + dc.l $5ab2133e,$45fc9f8b,$2ae63fff,$0000bd08 + dc.l $a39f580c,$36c0a02b,$bf703fff,$0000bf17 + dc.l $99b67a73,$1084a00b,$f5183fff,$0000c12c + dc.l $4cca6670,$9458a041,$dd413fff,$0000c346 + dc.l $ccda2497,$64089fdf,$137b3fff,$0000c567 + dc.l $2a115506,$dadc201f,$15683fff,$0000c78d + dc.l $74c8abb9,$b15c1fc1,$3a2e3fff,$0000c9b9 + dc.l $bd866e2f,$27a4a03f,$8f033fff,$0000cbec + dc.l $14fef272,$7c5c1ff4,$907d3fff,$0000ce24 + dc.l $8c151f84,$80e49e6e,$53e43fff,$0000d063 + dc.l $33daef2b,$25941fd6,$d45c3fff,$0000d2a8 + dc.l $1d91f12a,$e45ca076,$edb93fff,$0000d4f3 + dc.l $5aabcfed,$fa209fa6,$de213fff,$0000d744 + dc.l $fccad69d,$6af41ee6,$9a2f3fff,$0000d99d + dc.l $15c278af,$d7b4207f,$439f3fff,$0000dbfb + dc.l $b797daf2,$3754201e,$c2073fff,$0000de60 + dc.l $f4825e0e,$91249e8b,$e1753fff,$0000e0cc + dc.l $deec2a94,$e1102003,$2c4b3fff,$0000e33f + dc.l $8972be8a,$5a502004,$dff53fff,$0000e5b9 + dc.l $06e77c83,$48a81e72,$f47a3fff,$0000e839 + dc.l $6a503c4b,$dc681f72,$2f223fff,$0000eac0 + dc.l $c6e7dd24,$3930a017,$e9453fff,$0000ed4f + dc.l $301ed994,$2b841f40,$1a5b3fff,$0000efe4 + dc.l $b99bdcda,$f5cc9fb9,$a9e33fff,$0000f281 + dc.l $773c59ff,$b1382074,$4c053fff,$0000f525 + dc.l $7d152486,$cc2c1f77,$3a193fff,$0000f7d0 + dc.l $df730ad1,$3bb81ffe,$90d53fff,$0000fa83 + dc.l $b2db722a,$033ca041,$ed223fff,$0000fd3e + dc.l $0c0cf486,$c1741f85,$3f3a2210,$02817fff + dc.l $00000c81,$3fbe0000,$6c0660ff,$00000108 + dc.l $32280004,$0c81400c,$b1676d06,$60ff0000 + dc.l $010cf210,$4800f200,$0080f23c,$442342b8 + dc.l $aa3bf227,$e00c2d7c,$00000000,$ff58f201 + dc.l $600043fa,$fbb6f201,$40002d41,$ff540281 + dc.l $0000003f,$e989d3c1,$222eff54,$ec810641 + dc.l $3fff3d7a,$fb06ff54,$f2000100,$f23c4423 + dc.l $bc317218,$f23a4923,$faf2f200,$0422f200 + dc.l $0822f200,$0080f200,$04a3f23c,$45003ab6 + dc.l $0b70f200,$0523f200,$0580f23c,$45a33c08 + dc.l $8895f23a,$5522fad4,$f23a55a2,$fad6f200 + dc.l $05233d41,$ff842d7c,$80000000,$ff8842ae + dc.l $ff8cf200,$05a3f23c,$45223f00,$0000f200 + dc.l $01a3f200,$0523f200,$0c22f219,$4880f200 + dc.l $0822f200,$0423f21f,$d030f211,$4422f200 + dc.l $0422222e,$ff584a81,$6706f22e,$4823ff90 + dc.l $f2009000,$123c0000,$f22e4823,$ff8460ff + dc.l $0000216e,$f210d080,$f2009000,$f23c4422 + dc.l $3f800000,$60ff0000,$21680c81,$400cb27c + dc.l $6e66f210,$4800f200,$0080f23c,$442342b8 + dc.l $aa3bf227,$e00c2d7c,$00000001,$ff58f201 + dc.l $600043fa,$faa6f201,$40002d41,$ff540281 + dc.l $0000003f,$e989d3c1,$222eff54,$ec812d41 + dc.l $ff54e281,$93aeff54,$06413fff,$3d41ff90 + dc.l $2d7c8000,$0000ff94,$42aeff98,$222eff54 + dc.l $06413fff,$6000fed2,$4a106bff,$00001fbc + dc.l $60ff0000,$20ae2f10,$02978000,$00000097 + dc.l $00800000,$f23c4400,$3f800000,$f2009000 + dc.l $f21f4422,$60ff0000,$20c82210,$02817fff + dc.l $00000c81,$3ffd0000,$6c0660ff,$0000015e + dc.l $32280004,$0c814004,$c2156f06,$60ff0000 + dc.l $026cf210,$4800f200,$0080f23c,$442342b8 + dc.l $aa3bf227,$e00cf201,$600043fa,$f9eef201 + dc.l $40002d41,$ff540281,$0000003f,$e989d3c1 + dc.l $222eff54,$ec812d41,$ff54f200,$0100f23c + dc.l $4423bc31,$7218f23a,$4923f930,$f2000422 + dc.l $f2000822,$06413fff,$f2000080,$f20004a3 + dc.l $f23c4500,$3950097b,$f2000523,$f2000580 + dc.l $f23c45a3,$3ab60b6a,$f23a5522,$f91ef23a + dc.l $55a2f920,$3d41ff84,$2d7c8000,$0000ff88 + dc.l $42aeff8c,$f2000523,$222eff54,$4441f200 + dc.l $05a30641,$3ffff23a,$5522f900,$f23c45a2 + dc.l $3f000000,$f2000523,$00418000,$3d41ff90 + dc.l $2d7c8000,$0000ff94,$42aeff98,$f2000ca3 + dc.l $f2000123,$f2000422,$f2000822,$f21fd030 + dc.l $f2114823,$222eff54,$0c810000,$003f6f1a + dc.l $f2294480,$000cf22e,$48a2ff90,$f2000422 + dc.l $f2114822,$60ff0000,$00340c81,$fffffffd + dc.l $6c16f229,$4422000c,$f2114822,$f22e4822 + dc.l $ff9060ff,$00000016,$f2194880,$f2114422 + dc.l $f22e48a2,$ff90f200,$0422f200,$9000f22e + dc.l $4823ff84,$60ff0000,$1f500c81,$3fbe0000 + dc.l $6c6c0c81,$00330000,$6d2c2d7c,$80010000 + dc.l $ff842d7c,$80000000,$ff8842ae,$ff8cf210 + dc.l $4800f200,$9000123c,$0002f22e,$4822ff84 + dc.l $60ff0000,$1f0cf210,$4800f23a,$5423f86c + dc.l $2d7c8001,$0000ff84,$2d7c8000,$0000ff88 + dc.l $42aeff8c,$f22e4822,$ff84f200,$9000123c + dc.l $0000f23a,$5423f84c,$60ff0000,$1ed4f210 + dc.l $4800f200,$0023f227,$e00cf23c,$44802f30 + dc.l $caa8f200,$00a3f23c,$4500310f,$8290f23c + dc.l $44a232d7,$3220f200,$0123f200,$00a3f23c + dc.l $45223493,$f281f23a,$54a2f7c0,$f2000123 + dc.l $f20000a3,$f23a5522,$f7baf23a,$54a2f7bc + dc.l $f2000123,$f20000a3,$f23a5522,$f7b6f23a + dc.l $54a2f7b8,$f2000123,$f20000a3,$f23a5522 + dc.l $f7b2f23a,$48a2f7b4,$f2000123,$f20000a3 + dc.l $f2000123,$f21048a3,$f23c4423,$3f000000 + dc.l $f20008a2,$f21fd030,$f2000422,$f2009000 + dc.l $f2104822,$60ff0000,$1e302210,$0c810000 + dc.l $00006e00,$fbacf23c,$4400bf80,$0000f200 + dc.l $9000f23c,$44220080,$000060ff,$00001e1a + dc.l $60ff0000,$1e4a3028,$00000880,$000f0440 + dc.l $3ffff200,$50006d02,$4e751d7c,$0008ff64 + dc.l $4e7561ff,$00002342,$44400440,$3ffff200 + dc.l $50001d7c,$0008ff64,$4e753028,$00000040 + dc.l $7fff0880,$000e2d68,$0004ff88,$2d680008 + dc.l $ff8c3d40,$ff84f22e,$4800ff84,$6b024e75 + dc.l $1d7c0008,$ff644e75,$61ff0000,$22fc60ca + dc.l $7ffb0000,$80000000,$00000000,$00000000 + dc.l $f2104800,$22103228,$00040281,$7fffffff + dc.l $0c81400c,$b1676e42,$f2000018,$2f004280 + dc.l $f227e001,$41d761ff,$fffffad2,$dffc0000 + dc.l $000cf23c,$44233f00,$0000201f,$f23c4480 + dc.l $3e800000,$f20000a0,$f2009000,$123c0002 + dc.l $f2000422,$60ff0000,$1d280c81,$400cb2b3 + dc.l $6e3cf200,$0018f23a,$5428adb6,$f23a5428 + dc.l $adb82f00,$4280f227,$e00141d7,$61ffffff + dc.l $fa7cdffc,$0000000c,$201ff200,$9000123c + dc.l $0000f23a,$4823ff5a,$60ff0000,$1ce460ff + dc.l $00001cb0,$f23c4400,$3f800000,$f2009000 + dc.l $f23c4422,$00800000,$60ff0000,$1cd4f210 + dc.l $48002210,$32280004,$22410281,$7fffffff + dc.l $0c81400c,$b1676e62,$f2000018,$48e78040 + dc.l $f227e001,$41d74280,$61ffffff,$fbe0dffc + dc.l $0000000c,$f23c9000,$00000000,$4cdf0201 + dc.l $f2000080,$f23c44a2,$3f800000,$f2276800 + dc.l $f2000420,$22090281,$80000000,$00813f00 + dc.l $0000f21f,$48222f01,$f2009000,$123c0000 + dc.l $f21f4423,$60ff0000,$1c480c81,$400cb2b3 + dc.l $6eff0000,$1bc2f200,$0018f23a,$5428acd2 + dc.l $2f3c0000,$00002f3c,$80000000,$22090281 + dc.l $80000000,$00817ffb,$00002f01,$f23a5428 + dc.l $acb82f00,$4280f227,$e00141d7,$61ffffff + dc.l $f97cdffc,$0000000c,$201ff200,$9000123c + dc.l $0000f21f,$482360ff,$00001be6,$60ff0000 + dc.l $1c2ef210,$4800f22e,$6800ff84,$22103228 + dc.l $00042d41,$ff840281,$7fffffff,$0c813fd7 + dc.l $80006d00,$00740c81,$3fffddce,$6e00006a + dc.l $222eff84,$2d41ff5c,$02817fff,$00000681 + dc.l $00010000,$2d41ff84,$02ae8000,$0000ff5c + dc.l $f22e4800,$ff842f00,$4280f227,$e00141d7 + dc.l $61ffffff,$fac8dffc,$0000000c,$201ff200 + dc.l $0080f23c,$44a24000,$0000222e,$ff5cf22e + dc.l $6880ff84,$b3aeff84,$f2009000,$f22e4820 + dc.l $ff8460ff,$00001b52,$0c813fff,$80006d00 + dc.l $00880c81,$40048aa1,$6e000092,$222eff84 + dc.l $2d41ff5c,$02817fff,$00000681,$00010000 + dc.l $2d41ff84,$02ae8000,$0000ff5c,$222eff5c + dc.l $f22e4800,$ff842f00,$4280f227,$e00141d7 + dc.l $61ffffff,$f878dffc,$0000000c,$201f222e + dc.l $ff5cf23c,$44223f80,$00000a81,$c0000000 + dc.l $f2014480,$f20000a0,$222eff5c,$00813f80 + dc.l $0000f201,$4400f200,$9000123c,$0002f200 + dc.l $042260ff,$00001ac2,$f2009000,$123c0003 + dc.l $f22e4800,$ff8460ff,$00001aa6,$222eff84 + dc.l $02818000,$00000081,$3f800000,$f2014400 + dc.l $02818000,$00000a81,$80800000,$f2009000 + dc.l $f2014422,$60ff0000,$1a8060ff,$00001ac0 + dc.l $3ffe0000,$b17217f7,$d1cf79ac,$00000000 + dc.l $3f800000,$00000000,$7f800000,$bf800000 + dc.l $3fc2499a,$b5e4040b,$bfc555b5,$848cb7db + dc.l $3fc99999,$987d8730,$bfcfffff,$ff6f7e97 + dc.l $3fd55555,$555555a4,$bfe00000,$00000008 + dc.l $3f175496,$add7dad6,$3f3c71c2,$fe80c7e0 + dc.l $3f624924,$928bccff,$3f899999,$999995ec + dc.l $3fb55555,$55555555,$40000000,$00000000 + dc.l $3f990000,$80000000,$00000000,$00000000 + dc.l $3ffe0000,$fe03f80f,$e03f80fe,$00000000 + dc.l $3ff70000,$ff015358,$833c47e2,$00000000 + dc.l $3ffe0000,$fa232cf2,$52138ac0,$00000000 + dc.l $3ff90000,$bdc8d83e,$ad88d549,$00000000 + dc.l $3ffe0000,$f6603d98,$0f6603da,$00000000 + dc.l $3ffa0000,$9cf43dcf,$f5eafd48,$00000000 + dc.l $3ffe0000,$f2b9d648,$0f2b9d65,$00000000 + dc.l $3ffa0000,$da16eb88,$cb8df614,$00000000 + dc.l $3ffe0000,$ef2eb71f,$c4345238,$00000000 + dc.l $3ffb0000,$8b29b775,$1bd70743,$00000000 + dc.l $3ffe0000,$ebbdb2a5,$c1619c8c,$00000000 + dc.l $3ffb0000,$a8d839f8,$30c1fb49,$00000000 + dc.l $3ffe0000,$e865ac7b,$7603a197,$00000000 + dc.l $3ffb0000,$c61a2eb1,$8cd907ad,$00000000 + dc.l $3ffe0000,$e525982a,$f70c880e,$00000000 + dc.l $3ffb0000,$e2f2a47a,$de3a18af,$00000000 + dc.l $3ffe0000,$e1fc780e,$1fc780e2,$00000000 + dc.l $3ffb0000,$ff64898e,$df55d551,$00000000 + dc.l $3ffe0000,$dee95c4c,$a037ba57,$00000000 + dc.l $3ffc0000,$8db956a9,$7b3d0148,$00000000 + dc.l $3ffe0000,$dbeb61ee,$d19c5958,$00000000 + dc.l $3ffc0000,$9b8fe100,$f47ba1de,$00000000 + dc.l $3ffe0000,$d901b203,$6406c80e,$00000000 + dc.l $3ffc0000,$a9372f1d,$0da1bd17,$00000000 + dc.l $3ffe0000,$d62b80d6,$2b80d62c,$00000000 + dc.l $3ffc0000,$b6b07f38,$ce90e46b,$00000000 + dc.l $3ffe0000,$d3680d36,$80d3680d,$00000000 + dc.l $3ffc0000,$c3fd0329,$06488481,$00000000 + dc.l $3ffe0000,$d0b69fcb,$d2580d0b,$00000000 + dc.l $3ffc0000,$d11de0ff,$15ab18ca,$00000000 + dc.l $3ffe0000,$ce168a77,$25080ce1,$00000000 + dc.l $3ffc0000,$de1433a1,$6c66b150,$00000000 + dc.l $3ffe0000,$cb8727c0,$65c393e0,$00000000 + dc.l $3ffc0000,$eae10b5a,$7ddc8add,$00000000 + dc.l $3ffe0000,$c907da4e,$871146ad,$00000000 + dc.l $3ffc0000,$f7856e5e,$e2c9b291,$00000000 + dc.l $3ffe0000,$c6980c69,$80c6980c,$00000000 + dc.l $3ffd0000,$82012ca5,$a68206d7,$00000000 + dc.l $3ffe0000,$c4372f85,$5d824ca6,$00000000 + dc.l $3ffd0000,$882c5fcd,$7256a8c5,$00000000 + dc.l $3ffe0000,$c1e4bbd5,$95f6e947,$00000000 + dc.l $3ffd0000,$8e44c60b,$4ccfd7de,$00000000 + dc.l $3ffe0000,$bfa02fe8,$0bfa02ff,$00000000 + dc.l $3ffd0000,$944ad09e,$f4351af6,$00000000 + dc.l $3ffe0000,$bd691047,$07661aa3,$00000000 + dc.l $3ffd0000,$9a3eecd4,$c3eaa6b2,$00000000 + dc.l $3ffe0000,$bb3ee721,$a54d880c,$00000000 + dc.l $3ffd0000,$a0218434,$353f1de8,$00000000 + dc.l $3ffe0000,$b92143fa,$36f5e02e,$00000000 + dc.l $3ffd0000,$a5f2fcab,$bbc506da,$00000000 + dc.l $3ffe0000,$b70fbb5a,$19be3659,$00000000 + dc.l $3ffd0000,$abb3b8ba,$2ad362a5,$00000000 + dc.l $3ffe0000,$b509e68a,$9b94821f,$00000000 + dc.l $3ffd0000,$b1641795,$ce3ca97b,$00000000 + dc.l $3ffe0000,$b30f6352,$8917c80b,$00000000 + dc.l $3ffd0000,$b7047551,$5d0f1c61,$00000000 + dc.l $3ffe0000,$b11fd3b8,$0b11fd3c,$00000000 + dc.l $3ffd0000,$bc952afe,$ea3d13e1,$00000000 + dc.l $3ffe0000,$af3addc6,$80af3ade,$00000000 + dc.l $3ffd0000,$c2168ed0,$f458ba4a,$00000000 + dc.l $3ffe0000,$ad602b58,$0ad602b6,$00000000 + dc.l $3ffd0000,$c788f439,$b3163bf1,$00000000 + dc.l $3ffe0000,$ab8f69e2,$8359cd11,$00000000 + dc.l $3ffd0000,$ccecac08,$bf04565d,$00000000 + dc.l $3ffe0000,$a9c84a47,$a07f5638,$00000000 + dc.l $3ffd0000,$d2420487,$2dd85160,$00000000 + dc.l $3ffe0000,$a80a80a8,$0a80a80b,$00000000 + dc.l $3ffd0000,$d7894992,$3bc3588a,$00000000 + dc.l $3ffe0000,$a655c439,$2d7b73a8,$00000000 + dc.l $3ffd0000,$dcc2c4b4,$9887dacc,$00000000 + dc.l $3ffe0000,$a4a9cf1d,$96833751,$00000000 + dc.l $3ffd0000,$e1eebd3e,$6d6a6b9e,$00000000 + dc.l $3ffe0000,$a3065e3f,$ae7cd0e0,$00000000 + dc.l $3ffd0000,$e70d785c,$2f9f5bdc,$00000000 + dc.l $3ffe0000,$a16b312e,$a8fc377d,$00000000 + dc.l $3ffd0000,$ec1f392c,$5179f283,$00000000 + dc.l $3ffe0000,$9fd809fd,$809fd80a,$00000000 + dc.l $3ffd0000,$f12440d3,$e36130e6,$00000000 + dc.l $3ffe0000,$9e4cad23,$dd5f3a20,$00000000 + dc.l $3ffd0000,$f61cce92,$346600bb,$00000000 + dc.l $3ffe0000,$9cc8e160,$c3fb19b9,$00000000 + dc.l $3ffd0000,$fb091fd3,$8145630a,$00000000 + dc.l $3ffe0000,$9b4c6f9e,$f03a3caa,$00000000 + dc.l $3ffd0000,$ffe97042,$bfa4c2ad,$00000000 + dc.l $3ffe0000,$99d722da,$bde58f06,$00000000 + dc.l $3ffe0000,$825efced,$49369330,$00000000 + dc.l $3ffe0000,$9868c809,$868c8098,$00000000 + dc.l $3ffe0000,$84c37a7a,$b9a905c9,$00000000 + dc.l $3ffe0000,$97012e02,$5c04b809,$00000000 + dc.l $3ffe0000,$87224c2e,$8e645fb7,$00000000 + dc.l $3ffe0000,$95a02568,$095a0257,$00000000 + dc.l $3ffe0000,$897b8cac,$9f7de298,$00000000 + dc.l $3ffe0000,$94458094,$45809446,$00000000 + dc.l $3ffe0000,$8bcf55de,$c4cd05fe,$00000000 + dc.l $3ffe0000,$92f11384,$0497889c,$00000000 + dc.l $3ffe0000,$8e1dc0fb,$89e125e5,$00000000 + dc.l $3ffe0000,$91a2b3c4,$d5e6f809,$00000000 + dc.l $3ffe0000,$9066e68c,$955b6c9b,$00000000 + dc.l $3ffe0000,$905a3863,$3e06c43b,$00000000 + dc.l $3ffe0000,$92aade74,$c7be59e0,$00000000 + dc.l $3ffe0000,$8f1779d9,$fdc3a219,$00000000 + dc.l $3ffe0000,$94e9bff6,$15845643,$00000000 + dc.l $3ffe0000,$8dda5202,$37694809,$00000000 + dc.l $3ffe0000,$9723a1b7,$20134203,$00000000 + dc.l $3ffe0000,$8ca29c04,$6514e023,$00000000 + dc.l $3ffe0000,$995899c8,$90eb8990,$00000000 + dc.l $3ffe0000,$8b70344a,$139bc75a,$00000000 + dc.l $3ffe0000,$9b88bdaa,$3a3dae2f,$00000000 + dc.l $3ffe0000,$8a42f870,$5669db46,$00000000 + dc.l $3ffe0000,$9db4224f,$ffe1157c,$00000000 + dc.l $3ffe0000,$891ac73a,$e9819b50,$00000000 + dc.l $3ffe0000,$9fdadc26,$8b7a12da,$00000000 + dc.l $3ffe0000,$87f78087,$f78087f8,$00000000 + dc.l $3ffe0000,$a1fcff17,$ce733bd4,$00000000 + dc.l $3ffe0000,$86d90544,$7a34acc6,$00000000 + dc.l $3ffe0000,$a41a9e8f,$5446fb9f,$00000000 + dc.l $3ffe0000,$85bf3761,$2cee3c9b,$00000000 + dc.l $3ffe0000,$a633cd7e,$6771cd8b,$00000000 + dc.l $3ffe0000,$84a9f9c8,$084a9f9d,$00000000 + dc.l $3ffe0000,$a8489e60,$0b435a5e,$00000000 + dc.l $3ffe0000,$83993052,$3fbe3368,$00000000 + dc.l $3ffe0000,$aa59233c,$cca4bd49,$00000000 + dc.l $3ffe0000,$828cbfbe,$b9a020a3,$00000000 + dc.l $3ffe0000,$ac656dae,$6bcc4985,$00000000 + dc.l $3ffe0000,$81848da8,$faf0d277,$00000000 + dc.l $3ffe0000,$ae6d8ee3,$60bb2468,$00000000 + dc.l $3ffe0000,$80808080,$80808081,$00000000 + dc.l $3ffe0000,$b07197a2,$3c46c654,$00000000 + dc.l $f2104800,$2d7c0000,$0000ff54,$22103228 + dc.l $00042d50,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c0c81,$00000000,$6d000182,$0c813ffe + dc.l $f07d6d0a,$0c813fff,$88416f00,$00e2e081 + dc.l $e0810481,$00003fff,$d2aeff54,$41faf7b2 + dc.l $f2014080,$2d7c3fff,$0000ff84,$2d6eff88 + dc.l $ff9402ae,$fe000000,$ff9400ae,$01000000 + dc.l $ff94222e,$ff940281,$7e000000,$e081e081 + dc.l $e881d1c1,$f22e4800,$ff842d7c,$3fff0000 + dc.l $ff9042ae,$ff98f22e,$4828ff90,$f227e00c + dc.l $f2104823,$f23a48a3,$f6c8f200,$0100f200 + dc.l $0923f22e,$6880ff84,$f2000980,$f2000880 + dc.l $f23a54a3,$f6ccf23a,$5523f6ce,$f23a54a2 + dc.l $f6d0f23a,$5522f6d2,$f2000ca3,$f2000d23 + dc.l $f23a54a2,$f6ccf23a,$5522f6ce,$f2000ca3 + dc.l $d1fc0000,$0010f200,$0d23f200,$00a3f200 + dc.l $0822f210,$48a2f21f,$d030f200,$0422f200 + dc.l $9000f22e,$4822ff84,$60ff0000,$10ccf23c + dc.l $58380001,$f2c10000,$1318f200,$0080f23a + dc.l $44a8f64e,$f23a4422,$f648f200,$04a2f200 + dc.l $00a0f227,$e00cf200,$0400f200,$0023f22e + dc.l $6880ff84,$f2000080,$f20004a3,$f23a5580 + dc.l $f660f23a,$5500f662,$f20005a3,$f2000523 + dc.l $f23a55a2,$f65cf23a,$5522f65e,$f2000ca3 + dc.l $f2000123,$f23a54a2,$f658f22e,$4823ff84 + dc.l $f20008a2,$f21fd030,$f2000423,$f2009000 + dc.l $f22e4822,$ff8460ff,$0000103e,$60ff0000 + dc.l $0e962d7c,$ffffff9c,$ff5448e7,$3f002610 + dc.l $28280004,$2a280008,$42824a84,$66342805 + dc.l $42857420,$4286edc4,$6000edac,$d4862d43 + dc.l $ff842d44,$ff882d45,$ff8c4482,$2d42ff54 + dc.l $f22e4800,$ff844cdf,$00fc41ee,$ff846000 + dc.l $fe0c4286,$edc46000,$2406edac,$2e05edad + dc.l $44860686,$00000020,$ecaf8887,$2d43ff84 + dc.l $2d44ff88,$2d45ff8c,$44822d42,$ff54f22e + dc.l $4800ff84,$4cdf00fc,$41eeff84,$6000fdce + dc.l $f2104800,$f2000018,$f23a4838,$f5a4f292 + dc.l $0014f200,$9000123c,$0003f210,$480060ff + dc.l $00000f7e,$f2104800,$2d7c0000,$0000ff54 + dc.l $f2000080,$f23a4422,$f508f22e,$6800ff84 + dc.l $3d6eff88,$ff86222e,$ff840c81,$00000000 + dc.l $6f0000da,$0c813ffe,$80006d00,$fda20c81 + dc.l $3fffc000,$6e00fd98,$0c813ffe,$f07d6d00 + dc.l $001a0c81,$3fff8841,$6e000010,$f20004a2 + dc.l $f23a4422,$f4bc6000,$fe762d6e,$ff88ff94 + dc.l $02aefe00,$0000ff94,$00ae0100,$0000ff94 + dc.l $0c813fff,$80006c44,$f23a4400,$f4fc2d7c + dc.l $3fff0000,$ff9042ae,$ff98f22e,$4828ff90 + dc.l $222eff94,$02817e00,$0000e081,$e081e881 + dc.l $f20004a2,$f227e00c,$f2000422,$41faf4e2 + dc.l $d1c1f23a,$4480f466,$6000fd76,$f23a4400 + dc.l $f4502d7c,$3fff0000,$ff9042ae,$ff98f22e + dc.l $4828ff90,$222eff94,$02817e00,$0000e081 + dc.l $e081e881,$f2000422,$f227e00c,$41faf4a2 + dc.l $d1c1f23a,$4480f41e,$6000fd36,$0c810000 + dc.l $00006d10,$f23a4400,$f414f200,$900060ff + dc.l $00000c4e,$f23a4400,$f3fcf200,$900060ff + dc.l $00000cb4,$60ff0000,$0e962210,$32280004 + dc.l $02817fff,$ffff0c81,$3fff8000,$6c56f210 + dc.l $4818f200,$0080f200,$049af200,$0022f23c + dc.l $44a23f80,$0000f200,$04202210,$02818000 + dc.l $00000081,$3f000000,$2f012f00,$4280f227 + dc.l $e00141d7,$61ffffff,$fe5adffc,$0000000c + dc.l $201ff200,$9000123c,$0000f21f,$442360ff + dc.l $00000dde,$f2104818,$f23c4438,$3f800000 + dc.l $f2d20000,$0c3260ff,$00000bb6,$60ff0000 + dc.l $0e0e3ffd,$0000de5b,$d8a93728,$71950000 + dc.l $00003fff,$0000b8aa,$3b295c17,$f0bc0000 + dc.l $0000f23c,$58000001,$f2104838,$f2c10000 + dc.l $0ff02210,$6d000090,$2f004280,$61ffffff + dc.l $fba2f21f,$9000f23a,$4823ffb8,$60ff0000 + dc.l $0d782210,$6d000070,$2f004280,$61ffffff + dc.l $fd34f21f,$9000f23a,$4823ff98,$60ff0000 + dc.l $0d682210,$6d000050,$22280008,$662e2228 + dc.l $00040281,$7fffffff,$66223210,$02810000 + dc.l $7fff0481,$00003fff,$67ff0000,$0f84f200 + dc.l $9000f201,$400060ff,$00000d1e,$2f004280 + dc.l $61ffffff,$fb2ef21f,$9000f23a,$4823ff54 + dc.l $60ff0000,$0d0460ff,$00000b5c,$22106d00 + dc.l $fff62f00,$428061ff,$fffffcba,$f21f9000 + dc.l $f23a4823,$ff2e60ff,$00000cee,$406a934f + dc.l $0979a371,$3f734413,$509f8000,$bfcd0000 + dc.l $c0219dc1,$da994fd2,$00000000,$40000000 + dc.l $935d8ddd,$aaa8ac17,$00000000,$3ffe0000 + dc.l $b17217f7,$d1cf79ac,$00000000,$3f56c16d + dc.l $6f7bd0b2,$3f811112,$302c712c,$3fa55555 + dc.l $55554cc1,$3fc55555,$55554a54,$3fe00000 + dc.l $00000000,$00000000,$00000000,$3fff0000 + dc.l $80000000,$00000000,$3f738000,$3fff0000 + dc.l $8164d1f3,$bc030773,$3fbef7ca,$3fff0000 + dc.l $82cd8698,$ac2ba1d7,$3fbdf8a9,$3fff0000 + dc.l $843a28c3,$acde4046,$3fbcd7c9,$3fff0000 + dc.l $85aac367,$cc487b15,$bfbde8da,$3fff0000 + dc.l $871f6196,$9e8d1010,$3fbde85c,$3fff0000 + dc.l $88980e80,$92da8527,$3fbebbf1,$3fff0000 + dc.l $8a14d575,$496efd9a,$3fbb80ca,$3fff0000 + dc.l $8b95c1e3,$ea8bd6e7,$bfba8373,$3fff0000 + dc.l $8d1adf5b,$7e5ba9e6,$bfbe9670,$3fff0000 + dc.l $8ea4398b,$45cd53c0,$3fbdb700,$3fff0000 + dc.l $9031dc43,$1466b1dc,$3fbeeeb0,$3fff0000 + dc.l $91c3d373,$ab11c336,$3fbbfd6d,$3fff0000 + dc.l $935a2b2f,$13e6e92c,$bfbdb319,$3fff0000 + dc.l $94f4efa8,$fef70961,$3fbdba2b,$3fff0000 + dc.l $96942d37,$20185a00,$3fbe91d5,$3fff0000 + dc.l $9837f051,$8db8a96f,$3fbe8d5a,$3fff0000 + dc.l $99e04593,$20b7fa65,$bfbcde7b,$3fff0000 + dc.l $9b8d39b9,$d54e5539,$bfbebaaf,$3fff0000 + dc.l $9d3ed9a7,$2cffb751,$bfbd86da,$3fff0000 + dc.l $9ef53260,$91a111ae,$bfbebedd,$3fff0000 + dc.l $a0b0510f,$b9714fc2,$3fbcc96e,$3fff0000 + dc.l $a2704303,$0c496819,$bfbec90b,$3fff0000 + dc.l $a43515ae,$09e6809e,$3fbbd1db,$3fff0000 + dc.l $a5fed6a9,$b15138ea,$3fbce5eb,$3fff0000 + dc.l $a7cd93b4,$e965356a,$bfbec274,$3fff0000 + dc.l $a9a15ab4,$ea7c0ef8,$3fbea83c,$3fff0000 + dc.l $ab7a39b5,$a93ed337,$3fbecb00,$3fff0000 + dc.l $ad583eea,$42a14ac6,$3fbe9301,$3fff0000 + dc.l $af3b78ad,$690a4375,$bfbd8367,$3fff0000 + dc.l $b123f581,$d2ac2590,$bfbef05f,$3fff0000 + dc.l $b311c412,$a9112489,$3fbdfb3c,$3fff0000 + dc.l $b504f333,$f9de6484,$3fbeb2fb,$3fff0000 + dc.l $b6fd91e3,$28d17791,$3fbae2cb,$3fff0000 + dc.l $b8fbaf47,$62fb9ee9,$3fbcdc3c,$3fff0000 + dc.l $baff5ab2,$133e45fb,$3fbee9aa,$3fff0000 + dc.l $bd08a39f,$580c36bf,$bfbeaefd,$3fff0000 + dc.l $bf1799b6,$7a731083,$bfbcbf51,$3fff0000 + dc.l $c12c4cca,$66709456,$3fbef88a,$3fff0000 + dc.l $c346ccda,$24976407,$3fbd83b2,$3fff0000 + dc.l $c5672a11,$5506dadd,$3fbdf8ab,$3fff0000 + dc.l $c78d74c8,$abb9b15d,$bfbdfb17,$3fff0000 + dc.l $c9b9bd86,$6e2f27a3,$bfbefe3c,$3fff0000 + dc.l $cbec14fe,$f2727c5d,$bfbbb6f8,$3fff0000 + dc.l $ce248c15,$1f8480e4,$bfbcee53,$3fff0000 + dc.l $d06333da,$ef2b2595,$bfbda4ae,$3fff0000 + dc.l $d2a81d91,$f12ae45a,$3fbc9124,$3fff0000 + dc.l $d4f35aab,$cfedfa1f,$3fbeb243,$3fff0000 + dc.l $d744fcca,$d69d6af4,$3fbde69a,$3fff0000 + dc.l $d99d15c2,$78afd7b6,$bfb8bc61,$3fff0000 + dc.l $dbfbb797,$daf23755,$3fbdf610,$3fff0000 + dc.l $de60f482,$5e0e9124,$bfbd8be1,$3fff0000 + dc.l $e0ccdeec,$2a94e111,$3fbacb12,$3fff0000 + dc.l $e33f8972,$be8a5a51,$3fbb9bfe,$3fff0000 + dc.l $e5b906e7,$7c8348a8,$3fbcf2f4,$3fff0000 + dc.l $e8396a50,$3c4bdc68,$3fbef22f,$3fff0000 + dc.l $eac0c6e7,$dd24392f,$bfbdbf4a,$3fff0000 + dc.l $ed4f301e,$d9942b84,$3fbec01a,$3fff0000 + dc.l $efe4b99b,$dcdaf5cb,$3fbe8cac,$3fff0000 + dc.l $f281773c,$59ffb13a,$bfbcbb3f,$3fff0000 + dc.l $f5257d15,$2486cc2c,$3fbef73a,$3fff0000 + dc.l $f7d0df73,$0ad13bb9,$bfb8b795,$3fff0000 + dc.l $fa83b2db,$722a033a,$3fbef84b,$3fff0000 + dc.l $fd3e0c0c,$f486c175,$bfbef581,$f210d080 + dc.l $22103228,$0004f22e,$6800ff84,$02817fff + dc.l $ffff0c81,$3fb98000,$6c046000,$00880c81 + dc.l $400d80c0,$6f046000,$007cf200,$0080f23c + dc.l $44a34280,$0000f22e,$6080ff54,$2f0243fa + dc.l $fbbcf22e,$4080ff54,$222eff54,$24010281 + dc.l $0000003f,$e981d3c1,$ec822202,$e2819481 + dc.l $06820000,$3ffff227,$e00cf23c,$44a33c80 + dc.l $00002d59,$ff842d59,$ff882d59,$ff8c3d59 + dc.l $ff90f200,$04283d59,$ff94426e,$ff9642ae + dc.l $ff98d36e,$ff84f23a,$4823fb22,$d36eff90 + dc.l $60000100,$0c813fff,$80006e12,$f2009000 + dc.l $f23c4422,$3f800000,$60ff0000,$07b4222e + dc.l $ff840c81,$00000000,$6d0660ff,$00000764 + dc.l $60ff0000,$0666f200,$9000f23c,$44003f80 + dc.l $00002210,$00810080,$0001f201,$442260ff + dc.l $0000077e,$f210d080,$22103228,$0004f22e + dc.l $6800ff84,$02817fff,$ffff0c81,$3fb98000 + dc.l $6c046000,$ff900c81,$400b9b07,$6f046000 + dc.l $ff84f200,$0080f23a,$54a3fa62,$f22e6080 + dc.l $ff542f02,$43fafac6,$f22e4080,$ff54222e + dc.l $ff542401,$02810000,$003fe981,$d3c1ec82 + dc.l $2202e281,$94810682,$00003fff,$f227e00c + dc.l $f2000500,$f23a54a3,$fa2c2d59,$ff84f23a + dc.l $4923fa2a,$2d59ff88,$2d59ff8c,$f2000428 + dc.l $3d59ff90,$f2000828,$3d59ff94,$426eff96 + dc.l $42aeff98,$f23a4823,$fa14d36e,$ff84d36e + dc.l $ff90f200,$0080f200,$04a3f23a,$5500fa1e + dc.l $f23a5580,$fa20f200,$0523f200,$05a3f23a + dc.l $5522fa1a,$f23a55a2,$fa1cf200,$0523f200 + dc.l $05a3f23a,$5522fa16,$f20001a3,$f2000523 + dc.l $f2000c22,$f2000822,$f21fd030,$f22e4823 + dc.l $ff84f22e,$4822ff90,$f22e4822,$ff84f200 + dc.l $90003d42,$ff84241f,$2d7c8000,$0000ff88 + dc.l $42aeff8c,$123c0000,$f22e4823,$ff8460ff + dc.l $0000063e,$f2009000,$f23c4400,$3f800000 + dc.l $22100081,$00800001,$f2014422,$60ff0000 + dc.l $06302f00,$32290000,$5beeff54,$02810000 + dc.l $7fff3028,$00000240,$7fff0c40,$3fff6d00 + dc.l $00c00c40,$400c6e00,$00a4f228,$48030000 + dc.l $f2006000,$f23c8800,$00000000,$4a290004 + dc.l $6b5e2f00,$3d690000,$ff842d69,$0004ff88 + dc.l $2d690008,$ff8c41ee,$ff8461ff,$00000b2a + dc.l $4480d09f,$f22ed080,$ff840c40,$c0016c36 + dc.l $f21f9000,$223c8000,$00000480,$ffffc001 + dc.l $44800c00,$00206c0a,$e0a942a7,$2f0142a7 + dc.l $60280400,$0020e0a9,$2f0142a7,$42a7601a + dc.l $f229d080,$0000f21f,$90000640,$3fff4840 + dc.l $42a72f3c,$80000000,$2f00f200,$b000123c + dc.l $0000f21f,$482360ff,$0000054c,$201fc149 + dc.l $4a290000,$6bff0000,$041c60ff,$00000464 + dc.l $4a290004,$6a16201f,$f2009000,$123c0003 + dc.l $f2294800,$000060ff,$0000051c,$201f2049 + dc.l $60ff0000,$05860001,$00008000,$00000000 + dc.l $00000000,$0000422e,$ff652f00,$422eff5c + dc.l $600c422e,$ff652f00,$1d7c0001,$ff5c48e7 + dc.l $3f003628,$00003d43,$ff580283,$00007fff + dc.l $28280004,$2a280008,$4a83663c,$263c0000 + dc.l $3ffe4a84,$66162805,$42850483,$00000020 + dc.l $4286edc4,$6000edac,$96866022,$4286edc4 + dc.l $60009686,$edac2e05,$edad4486,$06860000 + dc.l $0020ecaf,$88876006,$06830000,$3ffe3029 + dc.l $00003d40,$ff5a322e,$ff58b181,$02810000 + dc.l $80003d41,$ff5e0280,$00007fff,$22290004 + dc.l $24290008,$4a80663c,$203c0000,$3ffe4a81 + dc.l $66162202,$42820480,$00000020,$4286edc1 + dc.l $6000eda9,$90866022,$4286edc1,$60009086 + dc.l $eda92e02,$edaa4486,$06860000,$0020ecaf + dc.l $82876006,$06800000,$3ffe2d43,$ff542f00 + dc.l $90834286,$4283227c,$00000000,$4a806c06 + dc.l $201f6000,$006a588f,$4a866e0e,$b2846608 + dc.l $b4856604,$60000136,$65089485,$93844286 + dc.l $52834a80,$670ed683,$d482e391,$55c65289 + dc.l $538060d4,$202eff54,$4a816616,$22024282 + dc.l $04800000,$00204286,$edc16000,$eda99086 + dc.l $601c4286,$edc16000,$6b149086,$eda92e02 + dc.l $edaa4486,$06860000,$0020ecaf,$82870c80 + dc.l $000041fe,$6c2a3d40,$ff902d41,$ff942d42 + dc.l $ff982c2e,$ff543d46,$ff842d44,$ff882d45 + dc.l $ff8cf22e,$4800ff90,$1d7c0001,$ff5d6036 + dc.l $2d41ff94,$2d42ff98,$04800000,$3ffe3d40 + dc.l $ff902c2e,$ff540486,$00003ffe,$2d46ff54 + dc.l $f22e4800,$ff903d46,$ff842d44,$ff882d45 + dc.l $ff8c422e,$ff5d4a2e,$ff5c6722,$2c2eff54 + dc.l $5386b086,$6d186e0e,$b2846608,$b4856604 + dc.l $6000007a,$6508f22e,$4828ff84,$52833c2e + dc.l $ff5a6c04,$f200001a,$42863c2e,$ff5e7e08 + dc.l $eeae0283,$0000007f,$86861d43,$ff654cdf + dc.l $00fc201f,$f2009000,$4a2eff5d,$6710123c + dc.l $0000f23a,$4823fdc0,$60ff0000,$02ca123c + dc.l $0003f200,$000060ff,$000002bc,$52830c80 + dc.l $00000008,$6c04e1ab,$60024283,$f23c4400 + dc.l $00000000,$422eff5d,$6000ff94,$2c030286 + dc.l $00000001,$4a866700,$ff865283,$3c2eff5a + dc.l $0a860000,$80003d46,$ff5a6000,$ff723028 + dc.l $00000240,$7fff0c40,$7fff6738,$08280007 + dc.l $00046706,$103c0000,$4e754a40,$66184aa8 + dc.l $0004660c,$4aa80008,$6606103c,$00014e75 + dc.l $103c0004,$4e7561ff,$000007f6,$4e75103c + dc.l $00064e75,$4aa80008,$66122028,$00040280 + dc.l $7fffffff,$6606103c,$00024e75,$103c0003 + dc.l $4e757fff,$0000ffff,$ffffffff,$ffff4a28 + dc.l $00006a38,$00ae0a00,$0410ff64,$082e0002 + dc.l $ff62660a,$f23c4400,$ff800000,$4e75f22e + dc.l $d080ffdc,$f22e9000,$ff60f23c,$4480bf80 + dc.l $0000f23c,$44a00000,$00004e75,$00ae0200 + dc.l $0410ff64,$082e0002,$ff62660a,$f23c4400 + dc.l $7f800000,$4e75f22e,$d080ffdc,$f22e9000 + dc.l $ff60f23c,$44803f80,$0000f23c,$44a00000 + dc.l $00004e75,$00ae0100,$2080ff64,$082e0005 + dc.l $ff626608,$f23ad080,$ff6a4e75,$f22ed080 + dc.l $ffdcf22e,$9000ff60,$f227e004,$f23c4500 + dc.l $7f800000,$f23c4523,$00000000,$f21fd020 + dc.l $4e757ffe,$0000ffff,$ffffffff,$fffffffe + dc.l $0000ffff,$ffffffff,$ffff0000,$00008000 + dc.l $00000000,$00008000,$00008000,$00000000 + dc.l $00004a28,$00006a26,$00ae0800,$0a28ff64 + dc.l $f22e9000,$ff60f23a,$d080ffdc,$f23a4823 + dc.l $ffcaf200,$a800e198,$1d40ff64,$4e75006e + dc.l $0a28ff66,$f22e9000,$ff60f23a,$d080ffac + dc.l $f2000023,$f200a800,$e1981d40,$ff644e75 + dc.l $00ae0000,$1048ff64,$12000201,$00c06700 + dc.l $005a3d68,$0000ff84,$2d680004,$ff882d68 + dc.l $0008ff8c,$41eeff84,$48e7c080,$61ff0000 + dc.l $06184cdf,$01030c01,$00406610,$4aa80008 + dc.l $66184a28,$00076612,$60000020,$22280008 + dc.l $02810000,$07ff6700,$001200ae,$00000200 + dc.l $ff646006,$006e1248,$ff664a28,$00006a22 + dc.l $f22e9000,$ff60f23a,$d080ff14,$f23a4823 + dc.l $ff02f200,$a800e198,$00000000,$1d40ff64 + dc.l $4e75f22e,$9000ff60,$f23ad080,$fee6f23a + dc.l $4823fee0,$f200a800,$e1981d40,$ff644e75 + dc.l $006e1248,$ff66f22e,$9000ff60,$f23ad080 + dc.l $fec2f23a,$4823febc,$f200a800,$e1981d40 + dc.l $ff644e75,$f200a800,$81aeff64,$6020f200 + dc.l $a80081ae,$ff64f294,$000ef281,$0032006e + dc.l $0208ff66,$600800ae,$08000208,$ff64082e + dc.l $0001ff62,$66024e75,$f22e9000,$ff60f23c + dc.l $44803f80,$0000f23a,$48a2fe80,$4e751d7c + dc.l $0004ff64,$006e0208,$ff664e75,$f22e9000 + dc.l $ff60f228,$48000000,$f200a800,$00800000 + dc.l $0a2881ae,$ff644e75,$f22e9000,$ff60f228 + dc.l $48000000,$f200a800,$81aeff64,$4e754e75 + dc.l $f2294800,$00004a29,$00006b08,$1d7c0001 + dc.l $ff644e75,$1d7c0009,$ff644e75,$f2284800 + dc.l $00004a28,$00006b08,$1d7c0001,$ff644e75 + dc.l $1d7c0009,$ff644e75,$f227b000,$f23c9000 + dc.l $00000000,$f22f4400,$0008f21f,$9000f22f + dc.l $44220008,$4e75f227,$b000f23c,$90000000 + dc.l $0000f22f,$54000008,$f21f9000,$f22f5422 + dc.l $000c4e75,$f22fd080,$0004f22f,$48220010 + dc.l $4e75f227,$b000f23c,$90000000,$0000f22f + dc.l $44000008,$f21f9000,$f22f4428,$00084e75 + dc.l $f227b000,$f23c9000,$00000000,$f22f5400 + dc.l $0008f21f,$9000f22f,$5428000c,$4e75f22f + dc.l $d0800004,$f22f4828,$00104e75,$f227b000 + dc.l $f23c9000,$00000000,$f22f4400,$0008f21f + dc.l $9000f22f,$44230008,$4e75f227,$b000f23c + dc.l $90000000,$0000f22f,$54000008,$f21f9000 + dc.l $f22f5423,$000c4e75,$f22fd080,$0004f22f + dc.l $48230010,$4e75f227,$b000f23c,$90000000 + dc.l $0000f22f,$44000008,$f21f9000,$f22f4420 + dc.l $00084e75,$f227b000,$f23c9000,$00000000 + dc.l $f22f5400,$0008f21f,$9000f22f,$5420000c + dc.l $4e75f22f,$d0800004,$f22f4820,$00104e75 + dc.l $f22f4418,$00044e75,$f22f5418,$00044e75 + dc.l $f22f4818,$00044e75,$f22f441a,$00044e75 + dc.l $f22f541a,$00044e75,$f22f481a,$00044e75 + dc.l $f22f4404,$00044e75,$f22f5404,$00044e75 + dc.l $f22f4804,$00044e75,$f22f4401,$00044e75 + dc.l $f22f5401,$00044e75,$f22f4801,$00044e75 + dc.l $f22f4403,$00044e75,$f22f5403,$00044e75 + dc.l $f22f4803,$00044e75,$4a280000,$6b10f23c + dc.l $44000000,$00001d7c,$0004ff64,$4e75f23c + dc.l $44008000,$00001d7c,$000cff64,$4e754a29 + dc.l $00006bea,$60d84a28,$00006b10,$f23c4400 + dc.l $7f800000,$1d7c0002,$ff644e75,$f23c4400 + dc.l $ff800000,$1d7c000a,$ff644e75,$4a290000 + dc.l $6bea60d8,$4a280000,$6ba460d0,$4a280000 + dc.l $6b00fba2,$60c64a28,$00006b16,$60be4a28 + dc.l $00006b0e,$f23c4400,$3f800000,$422eff64 + dc.l $4e75f23c,$4400bf80,$00001d7c,$0008ff64 + dc.l $4e753fff,$0000c90f,$daa22168,$c235bfff + dc.l $0000c90f,$daa22168,$c2354a28,$00006b0e + dc.l $f2009000,$f23a4800,$ffda6000,$fcf2f200 + dc.l $9000f23a,$4800ffd8,$6000fcec,$f23c4480 + dc.l $3f800000,$4a280000,$6a10f23c,$44008000 + dc.l $00001d7c,$000cff64,$4e75f23c,$44000000 + dc.l $00001d7c,$0004ff64,$4e75f23a,$4880fa84 + dc.l $6000fb02,$f2284880,$00006000,$fd30122e + dc.l $ff4f67ff,$fffff782,$0c010001,$67000078 + dc.l $0c010002,$67ffffff,$fade0c01,$000467ff + dc.l $fffff766,$60ffffff,$fcea122e,$ff4f67ff + dc.l $fffffac4,$0c010001,$67ffffff,$faba0c01 + dc.l $000267ff,$fffffab0,$0c010004,$67ffffff + dc.l $faa660ff,$fffffcbc,$122eff4f,$67ff0000 + dc.l $00440c01,$000167ff,$0000001e,$0c010002 + dc.l $67ffffff,$fa820c01,$000467ff,$00000026 + dc.l $60ffffff,$fc8e1228,$00001029,$0000b101 + dc.l $02010080,$1d41ff65,$4a006a00,$fe526000 + dc.l $fe5e422e,$ff652f00,$12280000,$10290000 + dc.l $b1010201,$00801d41,$ff650c2e,$0004ff4f + dc.l $660c41e9,$0000201f,$60ffffff,$fc2ef21f + dc.l $9000f229,$48000000,$4a290000,$6b024e75 + dc.l $1d7c0008,$ff644e75,$122eff4f,$67ffffff + dc.l $f6a40c01,$00016700,$ff8e0c01,$000267ff + dc.l $fffff9f4,$0c010004,$67ffffff,$f68860ff + dc.l $fffffc00,$122eff4f,$67ffffff,$f9da0c01 + dc.l $000167ff,$fffff9d0,$0c010002,$67ffffff + dc.l $f9c60c01,$000467ff,$fffff9bc,$60ffffff + dc.l $fbd2122e,$ff4f6700,$ff5a0c01,$00016700 + dc.l $ff360c01,$000267ff,$fffff99c,$0c010004 + dc.l $67ffffff,$ff4060ff,$fffffba8,$122eff4f + dc.l $67ffffff,$f5000c01,$000167ff,$fffffd92 + dc.l $0c010002,$67ffffff,$fdb60c01,$000467ff + dc.l $fffff4e2,$60ffffff,$fb7a122e,$ff4f67ff + dc.l $fffff4d2,$0c010001,$67ffffff,$fd640c01 + dc.l $000267ff,$fffffd88,$0c010004,$67ffffff + dc.l $f4b460ff,$fffffb4c,$122eff4f,$67ffffff + dc.l $f9260c01,$000367ff,$fffffb38,$60ffffff + dc.l $f916122e,$ff4f0c01,$000367ff,$fffffb24 + dc.l $60ffffff,$fb3a2f02,$2f032028,$00042228 + dc.l $0008edc0,$2000671a,$e5a8e9c1,$30228083 + dc.l $e5a92140,$00042141,$00082002,$261f241f + dc.l $4e75edc1,$2000e5a9,$06820000,$00202141 + dc.l $000442a8,$00082002,$261f241f,$4e75ede8 + dc.l $00000004,$660eede8,$00000008,$67000074 + dc.l $06400020,$42813228,$00000241,$7fffb041 + dc.l $6e1c9240,$30280000,$02408000,$82403141 + dc.l $000061ff,$ffffff82,$103c0000,$4e750c01 + dc.l $00206e20,$e9e80840,$00042140,$00042028 + dc.l $0008e3a8,$21400008,$02688000,$0000103c + dc.l $00044e75,$04410020,$20280008,$e3a82140 + dc.l $000442a8,$00080268,$80000000,$103c0004 + dc.l $4e750268,$80000000,$103c0001,$4e7551fc diff --git a/arch/m68k/ifpsp060/fpsp.doc b/arch/m68k/ifpsp060/fpsp.doc new file mode 100644 index 00000000000..408315209e6 --- /dev/null +++ b/arch/m68k/ifpsp060/fpsp.doc @@ -0,0 +1,295 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +68060 FLOATING-POINT SOFTWARE PACKAGE (Kernel version) +------------------------------------------------------- + +The file fpsp.sa contains the 68060 Floating-Point Software +Package. This package is essentially a set of exception handlers +that can be integrated into an operating system. +These exception handlers emulate Unimplemented FP instructions, +instructions using unimplemented data types, and instructions +using unimplemented addressing modes. In addition, this package +includes exception handlers to provide full IEEE-754 compliant +exception handling. + +Release file format: +-------------------- +The file fpsp.sa is essentially a hexadecimal image of the +release package. This is the ONLY format which will be supported. +The hex image was created by assembling the source code and +then converting the resulting binary output image into an +ASCII text file. The hexadecimal numbers are listed +using the Motorola Assembly Syntax assembler directive "dc.l" +(define constant longword). The file can be converted to other +assembly syntaxes by using any word processor with a global +search and replace function. + +To assist in assembling and linking this module with other modules, +the installer should add a symbolic label to the top of the file. +This will allow calling routines to access the entry points +of this package. + +The source code fpsp.s has also been included but only for +documentation purposes. + +Release file structure: +----------------------- + +(top of module) + ----------------- + | | - 128 byte-sized section + (1) | Call-Out | - 4 bytes per entry (user fills these in) + | | - example routines in fskeleton.s + ----------------- + | | - 8 bytes per entry + (2) | Entry Point | - user does "bra" or "jmp" to this address + | | + ----------------- + | | - code section + (3) ~ ~ + | | + ----------------- +(bottom of module) + +The first section of this module is the "Call-out" section. This section +is NOT INCLUDED in fpsp.sa (an example "Call-out" section is provided at +the end of the file fskeleton.s). The purpose of this section is to allow +the FPSP routines to reference external functions that must be provided +by the host operating system. This section MUST be exactly 128 bytes in +size. There are 32 fields, each 4 bytes in size. Each field corresponds +to a function required by the FPSP (these functions and their location are +listed in "68060FPSP call-outs" below). Each field entry should contain +the address of the corresponding function RELATIVE to the starting address +of the "call-out" section. The "Call-out" section must sit adjacent to the +fpsp.sa image in memory. + +The second section, the "Entry-point" section, is used by external routines +to access the functions within the FPSP. Since the fpsp.sa hex file contains +no symbol names, this section contains function entry points that are fixed +with respect to the top of the package. The currently defined entry-points +are listed in section "68060 FPSP entry points" below. A calling routine +would simply execute a "bra" or "jmp" that jumped to the selected function +entry-point. + +For example, if the 68060 hardware took a "Line-F Emulator" exception +(vector #11), the operating system should execute something similar to: + + bra _060FPSP_TOP+128+48 + +(_060FPSP_TOP is the starting address of the "Call-out" section; the "Call-out" +section is 128 bytes long; and the F-Line FPSP handler entry point is located +48 bytes from the top of the "Entry-point" section.) + +The third section is the code section. After entering through an "Entry-point", +the entry code jumps to the appropriate emulation code within the code section. + +68060FPSP call-outs: (details in fskeleton.s) +-------------------- +0x000: _060_real_bsun +0x004: _060_real_snan +0x008: _060_real_operr +0x00c: _060_real_ovfl +0x010: _060_real_unfl +0x014: _060_real_dz +0x018: _060_real_inex +0x01c: _060_real_fline +0x020: _060_real_fpu_disabled +0x024: _060_real_trap +0x028: _060_real_trace +0x02c: _060_real_access +0x030: _060_fpsp_done + +0x034: (Motorola reserved) +0x038: (Motorola reserved) +0x03c: (Motorola reserved) + +0x040: _060_imem_read +0x044: _060_dmem_read +0x048: _060_dmem_write +0x04c: _060_imem_read_word +0x050: _060_imem_read_long +0x054: _060_dmem_read_byte +0x058: _060_dmem_read_word +0x05c: _060_dmem_read_long +0x060: _060_dmem_write_byte +0x064: _060_dmem_write_word +0x068: _060_dmem_write_long + +0x06c: (Motorola reserved) +0x070: (Motorola reserved) +0x074: (Motorola reserved) +0x078: (Motorola reserved) +0x07c: (Motorola reserved) + +68060FPSP entry points: +----------------------- +0x000: _060_fpsp_snan +0x008: _060_fpsp_operr +0x010: _060_fpsp_ovfl +0x018: _060_fpsp_unfl +0x020: _060_fpsp_dz +0x028: _060_fpsp_inex +0x030: _060_fpsp_fline +0x038: _060_fpsp_unsupp +0x040: _060_fpsp_effadd + + + +Miscellaneous: +-------------- + +_060_fpsp_snan: +---------------- +- documented in 3.5 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_snan --| + | + always exits through _060_real_snan <---- + +_060_fpsp_operr: +---------------- +- documented in 3.5 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_operr --| + | + always exits through _060_real_operr <----- + +_060_fpsp_dz: +---------------- +- documented in 3.7 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_dz --| + | + always exits through _060_real_dz <---- + +_060_fpsp_inex: +---------------- +- documented in 3.6 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_inex --| + | + always exits through _060_real_inex <---- + + +_060_fpsp_ovfl: +---------------- +- documented in 3.4 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_ovfl --| + | + may exit through _060_real_inex <---| + or | + may exit through _060_real_ovfl <---| + or | + may exit through _060_fpsp_done <---| + +_060_fpsp_unfl: +---------------- +- documented in 3.4 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_unfl --| + | + may exit through _060_real_inex <---| + or | + may exit through _060_real_unfl <---| + or | + may exit through _060_fpsp_done <---| + + +_060_fpsp_fline: +----------------- +- not fully documented in 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_fline --| + | + ------------------------------------------- + | | | + v v v + (unimplemented (fpu disabled) (possible F-line illegal) + stack frame) | v + | v special case "fmovecr"? + | exit through | + | _060_real_fpu_disabled ------------- + | | | + | ^ v v + | | (yes) (no) + | | v v + | | fpu disabled? exit through + | | | _060_real_fline + v | ------------- + | | | | + | | v v + | |-----------(yes) (no) + | | + |----<------------------------------------| + | + | + |----> may exit through _060_real_trace + | + |----> may exit through _060_real_trap + | + |----> may exit through _060_real_bsun + | + |----> may exit through _060_fpsp_done + + +_060_fpsp_unsupp: +------------------ +- documented in 3.1 of 060SP spec. +- Basic flow: + exception taken ---> enter _060_fpsp_unsupp --| + | + | + may exit through _060_real_snan <----| + or | + may exit through _060_real_operr <----| + or | + may exit through _060_real_ovfl <----| + or | + may exit through _060_real_unfl <----| + or | + may exit through _060_real_inex <----| + or | + may exit through _060_real_trace <----| + or | + may exit through _060_fpsp_done <----| + + +_060_fpsp_effadd: +------------------ +- documented in 3.3 of 060 spec. +- Basic flow: + exception taken ---> enter _060_fpsp_effadd --| + | + | + may exit through _060_real_trace <----| + or | + may exit through _060_real_fpu_disabled <----| + or | + may exit through _060_fpsp_done <----| diff --git a/arch/m68k/ifpsp060/fpsp.sa b/arch/m68k/ifpsp060/fpsp.sa new file mode 100644 index 00000000000..d69486a44bc --- /dev/null +++ b/arch/m68k/ifpsp060/fpsp.sa @@ -0,0 +1,3401 @@ + .long 0x60ff0000,0x17400000,0x60ff0000,0x15f40000 + .long 0x60ff0000,0x02b60000,0x60ff0000,0x04700000 + .long 0x60ff0000,0x1b100000,0x60ff0000,0x19aa0000 + .long 0x60ff0000,0x1b5a0000,0x60ff0000,0x062e0000 + .long 0x60ff0000,0x102c0000,0x51fc51fc,0x51fc51fc + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x2f00203a,0xff2c487b,0x0930ffff,0xfef8202f + .long 0x00044e74,0x00042f00,0x203afef2,0x487b0930 + .long 0xfffffee2,0x202f0004,0x4e740004,0x2f00203a + .long 0xfee0487b,0x0930ffff,0xfecc202f,0x00044e74 + .long 0x00042f00,0x203afed2,0x487b0930,0xfffffeb6 + .long 0x202f0004,0x4e740004,0x2f00203a,0xfea4487b + .long 0x0930ffff,0xfea0202f,0x00044e74,0x00042f00 + .long 0x203afe96,0x487b0930,0xfffffe8a,0x202f0004 + .long 0x4e740004,0x2f00203a,0xfe7c487b,0x0930ffff + .long 0xfe74202f,0x00044e74,0x00042f00,0x203afe76 + .long 0x487b0930,0xfffffe5e,0x202f0004,0x4e740004 + .long 0x2f00203a,0xfe68487b,0x0930ffff,0xfe48202f + .long 0x00044e74,0x00042f00,0x203afe56,0x487b0930 + .long 0xfffffe32,0x202f0004,0x4e740004,0x2f00203a + .long 0xfe44487b,0x0930ffff,0xfe1c202f,0x00044e74 + .long 0x00042f00,0x203afe32,0x487b0930,0xfffffe06 + .long 0x202f0004,0x4e740004,0x2f00203a,0xfe20487b + .long 0x0930ffff,0xfdf0202f,0x00044e74,0x00042f00 + .long 0x203afe1e,0x487b0930,0xfffffdda,0x202f0004 + .long 0x4e740004,0x2f00203a,0xfe0c487b,0x0930ffff + .long 0xfdc4202f,0x00044e74,0x00042f00,0x203afdfa + .long 0x487b0930,0xfffffdae,0x202f0004,0x4e740004 + .long 0x2f00203a,0xfde8487b,0x0930ffff,0xfd98202f + .long 0x00044e74,0x00042f00,0x203afdd6,0x487b0930 + .long 0xfffffd82,0x202f0004,0x4e740004,0x2f00203a + .long 0xfdc4487b,0x0930ffff,0xfd6c202f,0x00044e74 + .long 0x00042f00,0x203afdb2,0x487b0930,0xfffffd56 + .long 0x202f0004,0x4e740004,0x2f00203a,0xfda0487b + .long 0x0930ffff,0xfd40202f,0x00044e74,0x00042f00 + .long 0x203afd8e,0x487b0930,0xfffffd2a,0x202f0004 + .long 0x4e740004,0x2f00203a,0xfd7c487b,0x0930ffff + .long 0xfd14202f,0x00044e74,0x00042f00,0x203afd6a + .long 0x487b0930,0xfffffcfe,0x202f0004,0x4e740004 + .long 0x40c62d38,0xd3d64634,0x3d6f90ae,0xb1e75cc7 + .long 0x40000000,0xc90fdaa2,0x2168c235,0x00000000 + .long 0x3fff0000,0xc90fdaa2,0x2168c235,0x00000000 + .long 0x3fe45f30,0x6dc9c883,0x4e56ff40,0xf32eff6c + .long 0x48ee0303,0xff9cf22e,0xbc00ff60,0xf22ef0c0 + .long 0xffdc2d6e,0xff68ff44,0x206eff44,0x58aeff44 + .long 0x61ffffff,0xff042d40,0xff40082e,0x0005ff42 + .long 0x66000116,0x41eeff6c,0x61ff0000,0x051c41ee + .long 0xff6c61ff,0x0000c1dc,0x1d40ff4e,0x082e0005 + .long 0xff436726,0xe9ee0183,0xff4261ff,0x0000bd22 + .long 0x41eeff78,0x61ff0000,0xc1ba0c00,0x00066606 + .long 0x61ff0000,0xc11e1d40,0xff4f4280,0x102eff63 + .long 0x122eff43,0x0241007f,0x02ae00ff,0x01ffff64 + .long 0xf23c9000,0x00000000,0xf23c8800,0x00000000 + .long 0x41eeff6c,0x43eeff78,0x223b1530,0x00007112 + .long 0x4ebb1930,0x0000710a,0xe9ee0183,0xff4261ff + .long 0x0000bd4e,0x082e0004,0xff626622,0x082e0001 + .long 0xff626644,0xf22ed0c0,0xffdcf22e,0x9c00ff60 + .long 0x4cee0303,0xff9c4e5e,0x60ffffff,0xfcc6f22e + .long 0xf040ff6c,0x3d7ce005,0xff6ef22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0xf36eff6c + .long 0x4e5e60ff,0xfffffcb2,0xf22ef040,0xff6c1d7c + .long 0x00c4000b,0x3d7ce001,0xff6ef22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0xf36eff6c + .long 0x4e5e60ff,0xfffffcae,0x1d7c0000,0xff4e4280 + .long 0x102eff63,0x02aeffff,0x00ffff64,0xf23c9000 + .long 0x00000000,0xf23c8800,0x00000000,0x41eeff6c + .long 0x61ff0000,0xb2ce082e,0x0004ff62,0x6600ff70 + .long 0x082e0001,0xff626600,0xff90f22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0x4e5e0817 + .long 0x000767ff,0xfffffc0c,0xf22fa400,0x00083f7c + .long 0x20240006,0x60ffffff,0xfcec4e56,0xff40f32e + .long 0xff6c48ee,0x0303ff9c,0xf22ebc00,0xff60f22e + .long 0xf0c0ffdc,0x2d6eff68,0xff44206e,0xff4458ae + .long 0xff4461ff,0xfffffd42,0x2d40ff40,0x082e0005 + .long 0xff426600,0x013241ee,0xff6c61ff,0x0000035a + .long 0x41eeff6c,0x61ff0000,0xc01a1d40,0xff4e082e + .long 0x0005ff43,0x672e082e,0x0004ff43,0x6626e9ee + .long 0x0183ff42,0x61ff0000,0xbb5841ee,0xff7861ff + .long 0x0000bff0,0x0c000006,0x660661ff,0x0000bf54 + .long 0x1d40ff4f,0x4280102e,0xff63122e,0xff430241 + .long 0x007f02ae,0x00ff01ff,0xff64f23c,0x90000000 + .long 0x0000f23c,0x88000000,0x000041ee,0xff6c43ee + .long 0xff78223b,0x15300000,0x6f484ebb,0x19300000 + .long 0x6f40e9ee,0x0183ff42,0x61ff0000,0xbb84082e + .long 0x0003ff62,0x6622082e,0x0001ff62,0x664ef22e + .long 0xd0c0ffdc,0xf22e9c00,0xff604cee,0x0303ff9c + .long 0x4e5e60ff,0xfffffafc,0x082e0003,0xff666700 + .long 0xffd6f22e,0xf040ff6c,0x3d7ce003,0xff6ef22e + .long 0xd0c0ffdc,0xf22e9c00,0xff604cee,0x0303ff9c + .long 0xf36eff6c,0x4e5e60ff,0xfffffaf4,0x082e0001 + .long 0xff666700,0xffaaf22e,0xf040ff6c,0x1d7c00c4 + .long 0x000b3d7c,0xe001ff6e,0xf22ed0c0,0xffdcf22e + .long 0x9c00ff60,0x4cee0303,0xff9cf36e,0xff6c4e5e + .long 0x60ffffff,0xfad01d7c,0x0000ff4e,0x4280102e + .long 0xff6302ae,0xffff00ff,0xff64f23c,0x90000000 + .long 0x0000f23c,0x88000000,0x000041ee,0xff6c61ff + .long 0x0000b0f0,0x082e0003,0xff626600,0xff66082e + .long 0x0001ff62,0x6600ff90,0xf22ed0c0,0xffdcf22e + .long 0x9c00ff60,0x4cee0303,0xff9c4e5e,0x08170007 + .long 0x67ffffff,0xfa2ef22f,0xa4000008,0x3f7c2024 + .long 0x000660ff,0xfffffb0e,0x4e56ff40,0xf32eff6c + .long 0x48ee0303,0xff9cf22e,0xbc00ff60,0xf22ef0c0 + .long 0xffdc082e,0x00050004,0x66084e68,0x2d48ffd8 + .long 0x600841ee,0x00102d48,0xffd82d6e,0xff68ff44 + .long 0x206eff44,0x58aeff44,0x61ffffff,0xfb4c2d40 + .long 0xff40422e,0xff4a082e,0x0005ff42,0x66000208 + .long 0xe9ee0006,0xff420c00,0x00136700,0x049e02ae + .long 0x00ff00ff,0xff64f23c,0x90000000,0x0000f23c + .long 0x88000000,0x000041ee,0xff6c61ff,0x0000013a + .long 0x41eeff6c,0x61ff0000,0xbdfa0c00,0x00066606 + .long 0x61ff0000,0xbd5e1d40,0xff4ee9ee,0x0183ff42 + .long 0x082e0005,0xff436728,0x0c2e003a,0xff436720 + .long 0x61ff0000,0xb92c41ee,0xff7861ff,0x0000bdc4 + .long 0x0c000006,0x660661ff,0x0000bd28,0x1d40ff4f + .long 0x4280102e,0xff63e9ee,0x1047ff43,0x41eeff6c + .long 0x43eeff78,0x223b1d30,0x00006d36,0x4ebb1930 + .long 0x00006d2e,0x102eff62,0x6634102e,0xff430200 + .long 0x00380c00,0x0038670c,0xe9ee0183,0xff4261ff + .long 0x0000b95e,0xf22ed0c0,0xffdcf22e,0x9c00ff60 + .long 0x4cee0303,0xff9c4e5e,0x60ffffff,0xf8e6c02e + .long 0xff66edc0,0x06086614,0x082e0004,0xff6667ba + .long 0x082e0001,0xff6267b2,0x60000066,0x04800000 + .long 0x00180c00,0x00066614,0x082e0003,0xff666600 + .long 0x004a082e,0x0004ff66,0x66000046,0x2f0061ff + .long 0x000007e0,0x201f3d7b,0x0222ff6e,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9cf36e + .long 0xff6c4e5e,0x60ffffff,0xf87ae000,0xe006e004 + .long 0xe005e003,0xe002e001,0xe001303c,0x000460bc + .long 0x303c0003,0x60b6e9ee,0x0006ff42,0x0c000011 + .long 0x67080c00,0x00156750,0x4e753028,0x00000240 + .long 0x7fff0c40,0x3f806708,0x0c40407f,0x672c4e75 + .long 0x02a87fff,0xffff0004,0x671861ff,0x0000bbbc + .long 0x44400640,0x3f810268,0x80000000,0x81680000 + .long 0x4e750268,0x80000000,0x4e750228,0x007f0004 + .long 0x00687fff,0x00004e75,0x30280000,0x02407fff + .long 0x0c403c00,0x67080c40,0x43ff67de,0x4e7502a8 + .long 0x7fffffff,0x00046606,0x4aa80008,0x67c461ff + .long 0x0000bb68,0x44400640,0x3c010268,0x80000000 + .long 0x81680000,0x4e75e9ee,0x00c3ff42,0x0c000003 + .long 0x670004a2,0x0c000007,0x6700049a,0x02aeffff + .long 0x00ffff64,0xf23c9000,0x00000000,0xf23c8800 + .long 0x00000000,0x302eff6c,0x02407fff,0x671041ee + .long 0xff6c61ff,0x0000bb5c,0x1d40ff4e,0x60061d7c + .long 0x0004ff4e,0x4280102e,0xff6341ee,0xff6c2d56 + .long 0xffd461ff,0x0000adec,0x102eff62,0x66000086 + .long 0x2caeffd4,0x082e0005,0x00046626,0x206effd8 + .long 0x4e60f22e,0xd0c0ffdc,0xf22e9c00,0xff604cee + .long 0x0303ff9c,0x4e5e0817,0x0007667a,0x60ffffff + .long 0xf7220c2e,0x0008ff4a,0x66d8f22e,0xf080ff6c + .long 0xf22ed0c0,0xffdcf22e,0x9c00ff60,0x4cee0303 + .long 0xff9c2c56,0x2f6f00c4,0x00b82f6f,0x00c800bc + .long 0x2f6f002c,0x00c42f6f,0x003000c8,0x2f6f0034 + .long 0x00ccdffc,0x000000b8,0x08170007,0x662860ff + .long 0xfffff6d0,0xc02eff66,0xedc00608,0x662a082e + .long 0x0004ff66,0x6700ff6a,0x082e0001,0xff626700 + .long 0xff606000,0x01663f7c,0x20240006,0xf22fa400 + .long 0x000860ff,0xfffff78e,0x04800000,0x0018303b + .long 0x020a4efb,0x00064afc,0x00080000,0x0000003a + .long 0x00640094,0x00000140,0x0000f22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0x3d7c30d8 + .long 0x000a3d7c,0xe006ff6e,0xf36eff6c,0x4e5e60ff + .long 0xfffff6d4,0xf22ed0c0,0xffdcf22e,0x9c00ff60 + .long 0x4cee0303,0xff9c3d7c,0x30d0000a,0x3d7ce004 + .long 0xff6ef36e,0xff6c4e5e,0x60ffffff,0xf694f22e + .long 0xf040ff6c,0xf22ed0c0,0xffdcf22e,0x9c00ff60 + .long 0x4cee0303,0xff9c3d7c,0x30d4000a,0x3d7ce005 + .long 0xff6ef36e,0xff6c4e5e,0x60ffffff,0xf60c2cae + .long 0xffd4082e,0x00050004,0x66000038,0x206effd8 + .long 0x4e60f22e,0xf040ff6c,0xf22ed0c0,0xffdcf22e + .long 0x9c00ff60,0x4cee0303,0xff9c3d7c,0x30cc000a + .long 0x3d7ce003,0xff6ef36e,0xff6c4e5e,0x60ffffff + .long 0xf5de0c2e,0x0008ff4a,0x66c8f22e,0xf080ff6c + .long 0xf22ef040,0xff78f22e,0xd0c0ffdc,0xf22e9c00 + .long 0xff604cee,0x0303ff9c,0x3d7c30cc,0x000a3d7c + .long 0xe003ff7a,0xf36eff78,0x2c562f6f,0x00c400b8 + .long 0x2f6f00c8,0x00bc2f6f,0x00cc00c0,0x2f6f002c + .long 0x00c42f6f,0x003000c8,0x2f6f0034,0x00ccdffc + .long 0x000000b8,0x60ffffff,0xf576f22e,0xf040ff6c + .long 0xf22ed0c0,0xffdcf22e,0x9c00ff60,0x4cee0303 + .long 0xff9c3d7c,0x30c4000a,0x3d7ce001,0xff6ef36e + .long 0xff6c4e5e,0x60ffffff,0xf55c02ae,0x00ff00ff + .long 0xff64f23c,0x90000000,0x0000f23c,0x88000000 + .long 0x000061ff,0x0000bdba,0x41eeff6c,0x61ff0000 + .long 0xb9621d40,0xff4ee9ee,0x0183ff42,0x082e0005 + .long 0xff436728,0x0c2e003a,0xff436720,0x61ff0000 + .long 0xb4a041ee,0xff7861ff,0x0000b938,0x0c000006 + .long 0x660661ff,0x0000b89c,0x1d40ff4f,0x4280102e + .long 0xff63e9ee,0x1047ff43,0x41eeff6c,0x43eeff78 + .long 0x223b1d30,0x000068aa,0x4ebb1930,0x000068a2 + .long 0x102eff62,0x6600008a,0x102eff43,0x02000038 + .long 0x0c000038,0x670ce9ee,0x0183ff42,0x61ff0000 + .long 0xb4d0082e,0x00050004,0x6600002a,0x206effd8 + .long 0x4e60f22e,0xd0c0ffdc,0xf22e9c00,0xff604cee + .long 0x0303ff9c,0x4e5e0817,0x00076600,0x012660ff + .long 0xfffff440,0x082e0002,0xff4a67d6,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9c4e5e + .long 0x2f6f0004,0x00102f6f,0x0000000c,0xdffc0000 + .long 0x000c0817,0x00076600,0x00ea60ff,0xfffff404 + .long 0xc02eff66,0xedc00608,0x6618082e,0x0004ff66 + .long 0x6700ff66,0x082e0001,0xff626700,0xff5c6000 + .long 0x006e0480,0x00000018,0x0c000006,0x6d14082e + .long 0x0003ff66,0x66000060,0x082e0004,0xff666600 + .long 0x004e082e,0x00050004,0x66000054,0x206effd8 + .long 0x4e603d7b,0x022aff6e,0xf22ed0c0,0xffdcf22e + .long 0x9c00ff60,0x4cee0303,0xff9cf36e,0xff6c4e5e + .long 0x08170007,0x6600006c,0x60ffffff,0xf386e000 + .long 0xe006e004,0xe005e003,0xe002e001,0xe001303c + .long 0x00036000,0xffae303c,0x00046000,0xffa6082e + .long 0x0002ff4a,0x67ac3d7b,0x02d6ff6e,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9cf36e + .long 0xff6c4e5e,0x2f6f0004,0x00102f6f,0x0000000c + .long 0xdffc0000,0x000c0817,0x00076606,0x60ffffff + .long 0xf3223f7c,0x20240006,0xf22fa400,0x000860ff + .long 0xfffff402,0x02aeffff,0x00ffff64,0xf23c9000 + .long 0x00000000,0xf23c8800,0x00000000,0xe9ee0183 + .long 0xff4261ff,0x0000b22a,0x41eeff6c,0x61ff0000 + .long 0xb7520c00,0x00066606,0x61ff0000,0xb6b61d40 + .long 0xff4e4280,0x102eff63,0x41eeff6c,0x2d56ffd4 + .long 0x61ff0000,0xa94e102e,0xff626600,0x00842cae + .long 0xffd4082e,0x00050004,0x6628206e,0xffd84e60 + .long 0xf22ed0c0,0xffdcf22e,0x9c00ff60,0x4cee0303 + .long 0xff9c4e5e,0x08170007,0x6600ff68,0x60ffffff + .long 0xf282082e,0x0003ff4a,0x67d6f22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0x2c562f6f + .long 0x00c400b8,0x2f6f00c8,0x00bc2f6f,0x003800c4 + .long 0x2f6f003c,0x00c82f6f,0x004000cc,0xdffc0000 + .long 0x00b80817,0x00076600,0xff1a60ff,0xfffff234 + .long 0xc02eff66,0xedc00608,0x6700ff74,0x2caeffd4 + .long 0x0c00001a,0x6e0000e8,0x67000072,0x082e0005 + .long 0x0004660a,0x206effd8,0x4e606000,0xfb8e0c2e + .long 0x0008ff4a,0x6600fb84,0xf22ed0c0,0xffdcf22e + .long 0x9c00ff60,0x4cee0303,0xff9c3d7c,0x30d8000a + .long 0x3d7ce006,0xff6ef36e,0xff6c2c56,0x2f6f00c4 + .long 0x00b82f6f,0x00c800bc,0x2f6f00cc,0x00c02f6f + .long 0x003800c4,0x2f6f003c,0x00c82f6f,0x004000cc + .long 0xdffc0000,0x00b860ff,0xfffff22c,0x082e0005 + .long 0x00046600,0x000c206e,0xffd84e60,0x6000fb46 + .long 0x0c2e0008,0xff4a6600,0xfb3cf22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0x3d7c30d0 + .long 0x000a3d7c,0xe004ff6e,0xf36eff6c,0x2c562f6f + .long 0x00c400b8,0x2f6f00c8,0x00bc2f6f,0x00cc00c0 + .long 0x2f6f0038,0x00c42f6f,0x003c00c8,0x2f6f0040 + .long 0x00ccdffc,0x000000b8,0x60ffffff,0xf1a4082e + .long 0x00050004,0x6600000c,0x206effd8,0x4e606000 + .long 0xfbda0c2e,0x0008ff4a,0x6600fbd0,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9c3d7c + .long 0x30c4000a,0x3d7ce001,0xff6ef36e,0xff6c2c56 + .long 0x2f6f00c4,0x00b82f6f,0x00c800bc,0x2f6f00cc + .long 0x00c02f6f,0x003800c4,0x2f6f003c,0x00c82f6f + .long 0x004000cc,0xdffc0000,0x00b860ff,0xfffff106 + .long 0xe9ee00c3,0xff420c00,0x00016708,0x0c000005 + .long 0x67344e75,0x302eff6c,0x02407fff,0x67260c40 + .long 0x3f806e20,0x44400640,0x3f81222e,0xff70e0a9 + .long 0x08c1001f,0x2d41ff70,0x026e8000,0xff6c006e + .long 0x3f80ff6c,0x4e75302e,0xff6c0240,0x7fff673a + .long 0x0c403c00,0x6e344a2e,0xff6c5bee,0xff6e3d40 + .long 0xff6c4280,0x41eeff6c,0x323c3c01,0x61ff0000 + .long 0xb156303c,0x3c004a2e,0xff6e6704,0x08c0000f + .long 0x08ee0007,0xff703d40,0xff6c4e75,0x082e0005 + .long 0x000467ff,0xfffff176,0x2d680000,0xff782d68 + .long 0x0004ff7c,0x2d680008,0xff804281,0x4e752f00 + .long 0x4e7a0808,0x08000001,0x66000460,0x201f4e56 + .long 0xff4048ee,0x0303ff9c,0xf22ebc00,0xff60f22e + .long 0xf0c0ffdc,0x2d6e0006,0xff44206e,0xff4458ae + .long 0xff4461ff,0xfffff152,0x2d40ff40,0x4a406b00 + .long 0x020e02ae,0x00ff00ff,0xff640800,0x000a6618 + .long 0x206eff44,0x43eeff6c,0x700c61ff,0xfffff0d2 + .long 0x4a816600,0x04926048,0x206eff44,0x43eeff6c + .long 0x700c61ff,0xfffff0ba,0x4a816600,0x047ae9ee + .long 0x004fff6c,0x0c407fff,0x6726102e,0xff6f0200 + .long 0x000f660c,0x4aaeff70,0x66064aae,0xff746710 + .long 0x41eeff6c,0x61ff0000,0xb88cf22e,0xf080ff6c + .long 0x06ae0000,0x000cff44,0x41eeff6c,0x61ff0000 + .long 0xb3c21d40,0xff4e0c00,0x0006660a,0x61ff0000 + .long 0xb3221d40,0xff4e422e,0xff53082e,0x0005ff43 + .long 0x6748082e,0x0004ff43,0x662ce9ee,0x0183ff42 + .long 0x61ff0000,0xaeec41ee,0xff7861ff,0x0000b384 + .long 0x1d40ff4f,0x0c000006,0x662061ff,0x0000b2e4 + .long 0x1d40ff4f,0x6014082e,0x0003ff43,0x670c50ee + .long 0xff53082e,0x0001ff43,0x67c04280,0x102eff63 + .long 0x122eff43,0x0241007f,0xf23c9000,0x00000000 + .long 0xf23c8800,0x00000000,0x41eeff6c,0x43eeff78 + .long 0x223b1530,0x000062ca,0x4ebb1930,0x000062c2 + .long 0x102eff62,0x66404a2e,0xff53660c,0xe9ee0183 + .long 0xff4261ff,0x0000aefa,0x2d6e0006,0xff682d6e + .long 0xff440006,0xf22ed0c0,0xffdcf22e,0x9c00ff60 + .long 0x4cee0303,0xff9c4e5e,0x08170007,0x66000096 + .long 0x60ffffff,0xee6ec02e,0xff66edc0,0x06086612 + .long 0x082e0004,0xff6667ae,0x082e0001,0xff6267ac + .long 0x60340480,0x00000018,0x0c000006,0x6610082e + .long 0x0004ff66,0x6620082e,0x0003ff66,0x66203d7b + .long 0x0206ff6e,0x601ee002,0xe006e004,0xe005e003 + .long 0xe002e001,0xe0013d7c,0xe005ff6e,0x60063d7c + .long 0xe003ff6e,0x2d6e0006,0xff682d6e,0xff440006 + .long 0xf22ed0c0,0xffdcf22e,0x9c00ff60,0x4cee0303 + .long 0xff9cf36e,0xff6c4e5e,0x08170007,0x660660ff + .long 0xffffede0,0x2f173f6f,0x00080004,0x3f7c2024 + .long 0x0006f22f,0xa4000008,0x60ffffff,0xeeb80800 + .long 0x000e6700,0x01c2082e,0x00050004,0x66164e68 + .long 0x2d48ffd8,0x61ff0000,0x9564206e,0xffd84e60 + .long 0x600001aa,0x422eff4a,0x41ee000c,0x2d48ffd8 + .long 0x61ff0000,0x95480c2e,0x0008ff4a,0x67000086 + .long 0x0c2e0004,0xff4a6600,0x0184082e,0x00070004 + .long 0x66363dae,0x00040804,0x2daeff44,0x08063dbc + .long 0x00f0080a,0x41f60804,0x2d480004,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9c4e5e + .long 0x2e5f60ff,0xffffed3c,0x3dae0004,0x08002dae + .long 0xff440802,0x3dbc2024,0x08062dae,0x00060808 + .long 0x41f60800,0x2d480004,0xf22ed0c0,0xffdcf22e + .long 0x9c00ff60,0x4cee0303,0xff9c4e5e,0x2e5f60ff + .long 0xffffedf2,0x1d41000a,0x1d40000b,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9c2f16 + .long 0x2f002f01,0x2f2eff44,0x4280102e,0x000b4480 + .long 0x082e0007,0x0004671c,0x3dae0004,0x08002dae + .long 0x00060808,0x2d9f0802,0x3dbc2024,0x08064876 + .long 0x08006014,0x3dae0004,0x08042d9f,0x08063dbc + .long 0x00f0080a,0x48760804,0x4281122e,0x000a4a01 + .long 0x6a0cf236,0xf080080c,0x06800000,0x000ce309 + .long 0x6a0cf236,0xf040080c,0x06800000,0x000ce309 + .long 0x6a0cf236,0xf020080c,0x06800000,0x000ce309 + .long 0x6a0cf236,0xf010080c,0x06800000,0x000ce309 + .long 0x6a0cf236,0xf008080c,0x06800000,0x000ce309 + .long 0x6a0cf236,0xf004080c,0x06800000,0x000ce309 + .long 0x6a0cf236,0xf002080c,0x06800000,0x000ce309 + .long 0x6a06f236,0xf001080c,0x222f0004,0x202f0008 + .long 0x2c6f000c,0x2e5f0817,0x000767ff,0xffffec04 + .long 0x60ffffff,0xecf061ff,0x00009bda,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9c082e + .long 0x00070004,0x660e2d6e,0xff440006,0x4e5e60ff + .long 0xffffebd0,0x2c563f6f,0x00c400c0,0x2f6f00c6 + .long 0x00c82f6f,0x000400c2,0x3f7c2024,0x00c6dffc + .long 0x000000c0,0x60ffffff,0xec9c201f,0x4e56ff40 + .long 0x48ee0303,0xff9c2d6e,0x0006ff44,0x206eff44 + .long 0x58aeff44,0x61ffffff,0xed002d40,0xff404a40 + .long 0x6b047010,0x60260800,0x000e6610,0xe9c014c3 + .long 0x700c0c01,0x00076614,0x58806010,0x428061ff + .long 0x0000967c,0x202eff44,0x90ae0006,0x3d40000a + .long 0x4cee0303,0xff9c4e5e,0x518f2f00,0x3f6f000c + .long 0x00042f6f,0x000e0006,0x4280302f,0x00122f6f + .long 0x00060010,0xd1af0006,0x3f7c402c,0x000a201f + .long 0x60ffffff,0xebe44e7a,0x08080800,0x0001660c + .long 0xf22e9c00,0xff60f22e,0xd0c0ffdc,0x4cee0303 + .long 0xff9c4e5e,0x514f2eaf,0x00083f6f,0x000c0004 + .long 0x3f7c4008,0x00062f6f,0x00020008,0x2f7c0942 + .long 0x8001000c,0x08170005,0x670608ef,0x0002000d + .long 0x60ffffff,0xebd64fee,0xff404e7a,0x18080801 + .long 0x0001660c,0xf22ed0c0,0xffdcf22f,0x9c000020 + .long 0x2c562f6f,0x00c400bc,0x3f6f00c8,0x00c03f7c + .long 0x400800c2,0x2f4800c4,0x3f4000c8,0x3f7c0001 + .long 0x00ca4cef,0x0303005c,0xdefc00bc,0x60a64e56 + .long 0xff40f32e,0xff6c48ee,0x0303ff9c,0xf22ebc00 + .long 0xff60f22e,0xf0c0ffdc,0x2d6eff68,0xff44206e + .long 0xff4458ae,0xff4461ff,0xffffebce,0x2d40ff40 + .long 0x0800000d,0x662841ee,0xff6c61ff,0xfffff1ea + .long 0xf22ed0c0,0xffdcf22e,0x9c00ff60,0x4cee0303 + .long 0xff9cf36e,0xff6c4e5e,0x60ffffff,0xea94322e + .long 0xff6c0241,0x7fff0c41,0x7fff661a,0x4aaeff74 + .long 0x660c222e,0xff700281,0x7fffffff,0x67082d6e + .long 0xff70ff54,0x6012223c,0x7fffffff,0x4a2eff6c + .long 0x6a025281,0x2d41ff54,0xe9c004c3,0x122eff41 + .long 0x307b0206,0x4efb8802,0x006c0000,0x0000ff98 + .long 0x003e0000,0x00100000,0x102eff54,0x0c010007 + .long 0x6f16206e,0x000c61ff,0xffffeb86,0x4a8166ff + .long 0x0000bca8,0x6000ff6a,0x02410007,0x61ff0000 + .long 0xa8046000,0xff5c302e,0xff540c01,0x00076f16 + .long 0x206e000c,0x61ffffff,0xeb6e4a81,0x66ff0000 + .long 0xbc886000,0xff3c0241,0x000761ff,0x0000a79a + .long 0x6000ff2e,0x202eff54,0x0c010007,0x6f16206e + .long 0x000c61ff,0xffffeb56,0x4a8166ff,0x0000bc68 + .long 0x6000ff0e,0x02410007,0x61ff0000,0xa7306000 + .long 0xff004e56,0xff40f32e,0xff6c48ee,0x0303ff9c + .long 0xf22ebc00,0xff60f22e,0xf0c0ffdc,0x2d6eff68 + .long 0xff44206e,0xff4458ae,0xff4461ff,0xffffea8a + .long 0x2d40ff40,0x0800000d,0x6600002a,0x41eeff6c + .long 0x61ffffff,0xf0a4f22e,0xd0c0ffdc,0xf22e9c00 + .long 0xff604cee,0x0303ff9c,0xf36eff6c,0x4e5e60ff + .long 0xffffe964,0xe9c004c3,0x122eff41,0x307b0206 + .long 0x4efb8802,0x007400a6,0x015a0000,0x00420104 + .long 0x00100000,0x102eff70,0x08c00006,0x0c010007 + .long 0x6f16206e,0x000c61ff,0xffffea76,0x4a8166ff + .long 0x0000bb98,0x6000ffa0,0x02410007,0x61ff0000 + .long 0xa6f46000,0xff92302e,0xff7008c0,0x000e0c01 + .long 0x00076f16,0x206e000c,0x61ffffff,0xea5a4a81 + .long 0x66ff0000,0xbb746000,0xff6e0241,0x000761ff + .long 0x0000a686,0x6000ff60,0x202eff70,0x08c0001e + .long 0x0c010007,0x6f16206e,0x000c61ff,0xffffea3e + .long 0x4a8166ff,0x0000bb50,0x6000ff3c,0x02410007 + .long 0x61ff0000,0xa6186000,0xff2e0c01,0x00076f2e + .long 0x202eff6c,0x02808000,0x00000080,0x7fc00000 + .long 0x222eff70,0xe0898081,0x206e000c,0x61ffffff + .long 0xe9fc4a81,0x66ff0000,0xbb0e6000,0xfefa202e + .long 0xff6c0280,0x80000000,0x00807fc0,0x00002f01 + .long 0x222eff70,0xe0898081,0x221f0241,0x000761ff + .long 0x0000a5ba,0x6000fed0,0x202eff6c,0x02808000 + .long 0x00000080,0x7ff80000,0x222eff70,0x2d40ff84 + .long 0x700be0a9,0x83aeff84,0x222eff70,0x02810000 + .long 0x07ffe0b9,0x2d41ff88,0x222eff74,0xe0a983ae + .long 0xff8841ee,0xff84226e,0x000c7008,0x61ffffff + .long 0xe8cc4a81,0x66ff0000,0xba9c6000,0xfe7a422e + .long 0xff4a3d6e,0xff6cff84,0x426eff86,0x202eff70 + .long 0x08c0001e,0x2d40ff88,0x2d6eff74,0xff8c082e + .long 0x00050004,0x66384e68,0x2d48ffd8,0x2d56ffd4 + .long 0x61ff0000,0x98922248,0x2d48000c,0x206effd8 + .long 0x4e602cae,0xffd441ee,0xff84700c,0x61ffffff + .long 0xe86c4a81,0x66ff0000,0xba4a6000,0xfe1a2d56 + .long 0xffd461ff,0x00009860,0x22482d48,0x000c2cae + .long 0xffd40c2e,0x0008ff4a,0x66ccf22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0xf36eff6c + .long 0x2c6effd4,0x2f6f00c4,0x00b82f6f,0x00c800bc + .long 0x2f6f00cc,0x00c02f6f,0x004400c4,0x2f6f0048 + .long 0x00c82f6f,0x004c00cc,0xdffc0000,0x00b860ff + .long 0xffffe734,0x4e56ff40,0xf32eff6c,0x48ee0303 + .long 0xff9cf22e,0xbc00ff60,0xf22ef0c0,0xffdc2d6e + .long 0xff68ff44,0x206eff44,0x58aeff44,0x61ffffff + .long 0xe7f82d40,0xff400800,0x000d6600,0x0106e9c0 + .long 0x04c36622,0x0c6e401e,0xff6c661a,0xf23c9000 + .long 0x00000000,0xf22e4000,0xff70f22e,0x6800ff6c + .long 0x3d7ce001,0xff6e41ee,0xff6c61ff,0xffffedea + .long 0x02ae00ff,0x01ffff64,0xf23c9000,0x00000000 + .long 0xf23c8800,0x00000000,0xe9ee1006,0xff420c01 + .long 0x00176700,0x009641ee,0xff6c61ff,0x0000aa84 + .long 0x1d40ff4e,0x082e0005,0xff43672e,0x082e0004 + .long 0xff436626,0xe9ee0183,0xff4261ff,0x0000a5c2 + .long 0x41eeff78,0x61ff0000,0xaa5a0c00,0x00066606 + .long 0x61ff0000,0xa9be1d40,0xff4f4280,0x102eff63 + .long 0x122eff43,0x0241007f,0x41eeff6c,0x43eeff78 + .long 0x223b1530,0x000059ca,0x4ebb1930,0x000059c2 + .long 0xe9ee0183,0xff4261ff,0x0000a606,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9cf36e + .long 0xff6c4e5e,0x60ffffff,0xe5cc4280,0x102eff63 + .long 0x122eff43,0x02810000,0x007f61ff,0x000043ce + .long 0x60be1d7c,0x0000ff4e,0x4280102e,0xff6302ae + .long 0xffff00ff,0xff6441ee,0xff6c61ff,0x00009be4 + .long 0x60aa4e56,0xff40f32e,0xff6c48ee,0x0303ff9c + .long 0xf22ebc00,0xff60f22e,0xf0c0ffdc,0x2d6eff68 + .long 0xff44206e,0xff4458ae,0xff4461ff,0xffffe69a + .long 0x2d40ff40,0x41eeff6c,0x61ffffff,0xecbcf22e + .long 0xd0c0ffdc,0xf22e9c00,0xff604cee,0x0303ff9c + .long 0xf36eff6c,0x4e5e60ff,0xffffe592,0x0c6f202c + .long 0x000667ff,0x000000aa,0x0c6f402c,0x000667ff + .long 0xffffe5a6,0x4e56ff40,0x48ee0303,0xff9c2d6e + .long 0x0006ff44,0x206eff44,0x58aeff44,0x61ffffff + .long 0xe638e9c0,0x100a0c41,0x03c86664,0xe9c01406 + .long 0x0c010017,0x665a4e7a,0x08080800,0x0001672a + .long 0x4cee0303,0xff9c4e5e,0x518f3eaf,0x00082f6f + .long 0x000a0002,0x3f7c402c,0x00062f6f,0x0002000c + .long 0x58af0002,0x60ffffff,0xe5404cee,0x0303ff9c + .long 0x4e5ef22f,0x84000002,0x58af0002,0x2f172f6f + .long 0x00080004,0x1f7c0020,0x000660ff,0x00000012 + .long 0x4cee0303,0xff9c4e5e,0x60ffffff,0xe4f64e56 + .long 0xff4048ee,0x0303ff9c,0xf22ebc00,0xff60f22e + .long 0xf0c0ffdc,0x082e0005,0x00046608,0x4e682d48 + .long 0xffd8600c,0x41ee0010,0x2d48ffd8,0x2d48ffd4 + .long 0x2d6eff68,0xff44206e,0xff4458ae,0xff4461ff + .long 0xffffe576,0x2d40ff40,0xf23c9000,0x00000000 + .long 0xf23c8800,0x00000000,0x422eff4a,0x08000016 + .long 0x66000182,0x422eff53,0x02ae00ff,0x00ffff64 + .long 0xe9c01406,0x0c010017,0x670000be,0x61ff0000 + .long 0x95fc4280,0x102eff63,0x122eff43,0x0241003f + .long 0xe749822e,0xff4e43ee,0xff7841ee,0xff6c323b + .long 0x132002b2,0x4ebb1120,0x02ac102e,0xff626600 + .long 0x00a2e9ee,0x0183ff42,0x61ff0000,0xa3e4f22e + .long 0xd0c0ffdc,0xf22e9c00,0xff604cee,0x0303ff9c + .long 0x0c2e0004,0xff4a672a,0x0c2e0008,0xff4a6722 + .long 0x4e5e0817,0x000767ff,0xffffe358,0xf327f22f + .long 0xa4000014,0xf35f3f7c,0x20240006,0x60ffffff + .long 0xe434082e,0x00050004,0x660c2f08,0x206effd8 + .long 0x4e60205f,0x60ca2f00,0x202effd8,0x90aeffd4 + .long 0x2dae0008,0x08082dae,0x00040804,0x3d400004 + .long 0x201f4e5e,0xded760aa,0x4280102e,0xff63122e + .long 0xff430281,0x0000007f,0x61ff0000,0x41506000 + .long 0xff5ac02e,0xff66edc0,0x06086616,0x082e0004 + .long 0xff666700,0xff4e082e,0x0001ff62,0x6700ff44 + .long 0x603e0480,0x00000018,0x0c000006,0x6610082e + .long 0x0004ff66,0x662a082e,0x0003ff66,0x66302f00 + .long 0x61ffffff,0xf1ee201f,0x3d7b0206,0xff6e602a + .long 0xe002e006,0xe004e005,0xe003e002,0xe001e001 + .long 0x61ffffff,0xf1ce3d7c,0xe005ff6e,0x600c61ff + .long 0xfffff1c0,0x3d7ce003,0xff6ef22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0xf36eff6c + .long 0x6000feee,0xe9c01283,0x0c010001,0x67000056 + .long 0x0c010007,0x66000078,0xe9c01343,0x0c010002 + .long 0x6d00006c,0x61ff0000,0x82780c2e,0x0002ff4a + .long 0x670000d2,0x0c2e0001,0xff4a6600,0x01002d6e + .long 0xff68000c,0x3d7c201c,0x000af22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0x4e5e60ff + .long 0xffffe2dc,0x206eff44,0x54aeff44,0x61ffffff + .long 0xe3524a81,0x6600047c,0x48c061ff,0x00007e60 + .long 0x0c2e0002,0xff4a6700,0x007c6000,0x00b061ff + .long 0x00008562,0x0c2e0002,0xff4a6700,0x0068082e + .long 0x00050004,0x660a206e,0xffd84e60,0x6000008e + .long 0x0c2e0008,0xff4a6600,0x0084f22e,0xd0c0ffdc + .long 0xf22e9c00,0xff604cee,0x0303ff9c,0x4e5e0817 + .long 0x00076612,0x558f2eaf,0x00022f6f,0x00060004 + .long 0x60ffffff,0xe17e558f,0x2eaf0002,0x3f6f0006 + .long 0x00043f7c,0x20240006,0xf22fa400,0x000860ff + .long 0xffffe252,0x3d7c00c0,0x000e2d6e,0xff68000a + .long 0x3d6e0004,0x00083d7c,0xe000ff6e,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9cf36e + .long 0xff6c4e5e,0x588f60ff,0xffffe180,0xf22ed0c0 + .long 0xffdcf22e,0x9c00ff60,0x4cee0303,0xff9c4e5e + .long 0x08170007,0x660660ff,0xffffe108,0xf22fa400 + .long 0x00081f7c,0x00240007,0x60ffffff,0xe1e84afc + .long 0x01c00000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x000028a4,0x4b1e4b4c,0x4f4c2982,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x000035c6,0x4b1e4b82,0x4f4c371a,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x000024b0,0x4b1e4b8c,0x4f4c2766,0x4f3c0000 + .long 0x00002988,0x4b1e4b94,0x4f4c2af0,0x4f3c0000 + .long 0x00001ab8,0x4b1e4bd0,0x4f4c1cf6,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00001cfc,0x4b1e4744,0x4f4c1daa,0x4f3c0000 + .long 0x00003720,0x4b1e4744,0x4f4c37a2,0x4f3c0000 + .long 0x00000468,0x4b1e4744,0x4f4c064c,0x4f3c0000 + .long 0x00000f2a,0x4b1e4744,0x4f4c108e,0x4f3c0000 + .long 0x000022e0,0x4b9a4b7a,0x4f4c248c,0x4f3c0000 + .long 0x00003d02,0x4b9a4b7a,0x4f4c3ddc,0x4f3c0000 + .long 0x00003dfa,0x4b9a4b7a,0x4f4c3f2a,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00003386,0x47324b82,0x4f4c3538,0x4f3c0000 + .long 0x000037c8,0x47324b82,0x4f4c37f8,0x4f3c0000 + .long 0x00003818,0x47324b82,0x4f4c3872,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x000027e6,0x4b9a4b52,0x4f4c288a,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00001db0,0x4bd64744,0x4f4c1e40,0x4f3c0000 + .long 0x00000472,0x4b9a4744,0x4f4c0652,0x4f3c0000 + .long 0x0000276c,0x4b1e4744,0x4f4c2788,0x4f3c0000 + .long 0x000027a0,0x4b1e4744,0x4f4c27ce,0x4f3c0000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00004ca4,0x4cda4d12,0x4ee24ca4,0x4ef40000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00004dac,0x4de24e1a,0x4ee24dac,0x4ef40000 + .long 0x00004e4e,0x4e864ebe,0x4ee24e4e,0x4ef40000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00000660,0x4bf24c20,0x4c3008f6,0x4c400000 + .long 0x00004cee,0x0303ff9c,0xf22e9c00,0xff60f22e + .long 0xd0c0ffdc,0x2d6eff68,0x00064e5e,0x2f173f6f + .long 0x00080004,0x3f7c4008,0x00062f6f,0x00020008 + .long 0x2f7c0942,0x8001000c,0x08170005,0x670608ef + .long 0x0002000d,0x60ffffff,0xde32bd6a,0xaa77ccc9 + .long 0x94f53de6,0x12097aae,0x8da1be5a,0xe6452a11 + .long 0x8ae43ec7,0x1de3a534,0x1531bf2a,0x01a01a01 + .long 0x8b590000,0x00000000,0x00003ff8,0x00008888 + .long 0x88888888,0x59af0000,0x0000bffc,0x0000aaaa + .long 0xaaaaaaaa,0xaa990000,0x00003d2a,0xc4d0d601 + .long 0x1ee3bda9,0x396f9f45,0xac193e21,0xeed90612 + .long 0xc972be92,0x7e4fb79d,0x9fcf3efa,0x01a01a01 + .long 0xd4230000,0x00000000,0x0000bff5,0x0000b60b + .long 0x60b60b61,0xd4380000,0x00003ffa,0x0000aaaa + .long 0xaaaaaaaa,0xab5ebf00,0x00002d7c,0x00000000 + .long 0xff5c6008,0x2d7c0000,0x0001ff5c,0xf2104800 + .long 0xf22e6800,0xff842210,0x32280004,0x02817fff + .long 0xffff0c81,0x3fd78000,0x6c046000,0x01780c81 + .long 0x4004bc7e,0x6d046000,0x0468f200,0x0080f23a + .long 0x54a3de7e,0x43fb0170,0x00000866,0xf22e6080 + .long 0xff58222e,0xff58e981,0xd3c1f219,0x4828f211 + .long 0x4428222e,0xff58d2ae,0xff5ce299,0x0c810000 + .long 0x00006d00,0x0088f227,0xe00cf22e,0x6800ff84 + .long 0xf2000023,0xf23a5580,0xfed2f23a,0x5500fed4 + .long 0xf2000080,0xf20004a3,0xe2990281,0x80000000 + .long 0xb3aeff84,0xf20005a3,0xf2000523,0xf23a55a2 + .long 0xfebaf23a,0x5522febc,0xf20005a3,0xf2000523 + .long 0xf23a55a2,0xfeb6f23a,0x4922fec0,0xf2000ca3 + .long 0xf2000123,0xf23a48a2,0xfec2f22e,0x4823ff84 + .long 0xf20008a2,0xf2000423,0xf21fd030,0xf2009000 + .long 0xf22e4822,0xff8460ff,0x00004364,0xf227e00c + .long 0xf2000023,0xf23a5500,0xfea2f23a,0x5580fea4 + .long 0xf2000080,0xf20004a3,0xf22e6800,0xff84e299 + .long 0x02818000,0x0000f200,0x0523b3ae,0xff840281 + .long 0x80000000,0xf20005a3,0x00813f80,0x00002d41 + .long 0xff54f23a,0x5522fe74,0xf23a55a2,0xfe76f200 + .long 0x0523f200,0x05a3f23a,0x5522fe70,0xf23a49a2 + .long 0xfe7af200,0x0523f200,0x0ca3f23a,0x4922fe7c + .long 0xf23a44a2,0xfe82f200,0x0823f200,0x0422f22e + .long 0x4823ff84,0xf21fd030,0xf2009000,0xf22e4422 + .long 0xff5460ff,0x000042c8,0x0c813fff,0x80006eff + .long 0x00000300,0x222eff5c,0x0c810000,0x00006e14 + .long 0xf2009000,0x123c0003,0xf22e4800,0xff8460ff + .long 0x0000428e,0xf23c4400,0x3f800000,0xf2009000 + .long 0xf23c4422,0x80800000,0x60ff0000,0x428a60ff + .long 0x00004110,0xf23c4400,0x3f800000,0x60ff0000 + .long 0x42762d7c,0x00000004,0xff5cf210,0x4800f22e + .long 0x6800ff84,0x22103228,0x00040281,0x7fffffff + .long 0x0c813fd7,0x80006c04,0x60000240,0x0c814004 + .long 0xbc7e6d04,0x6000027a,0xf2000080,0xf23a54a3 + .long 0xdc9043fb,0x01700000,0x0678f22e,0x6080ff58 + .long 0x222eff58,0xe981d3c1,0xf2194828,0xf2114428 + .long 0x222eff58,0xe2990c81,0x00000000,0x6c000106 + .long 0xf227e004,0xf22e6800,0xff84f200,0x0023f23a + .long 0x5480fce8,0xf23a5500,0xfd32f200,0x00a3f200 + .long 0x01232f02,0x2401e29a,0x02828000,0x0000b382 + .long 0x02828000,0x0000f23a,0x54a2fcc8,0xf23a5522 + .long 0xfd12f200,0x00a3b5ae,0xff84241f,0xf2000123 + .long 0xe2990281,0x80000000,0x2d7c3f80,0x0000ff54 + .long 0xb3aeff54,0xf23a54a2,0xfca2f23a,0x5522fcec + .long 0xf20000a3,0xf2000123,0xf22e6800,0xff90f23a + .long 0x54a2fc90,0xb3aeff90,0xf23a5522,0xfcd6f200 + .long 0x00a3f200,0x0123f23a,0x54a2fc80,0xf23a5522 + .long 0xfccaf200,0x00a3f200,0x0123f23a,0x48a2fc7c + .long 0xf23a4922,0xfcc6f200,0x00a3f200,0x0123f23a + .long 0x48a2fc78,0xf23a4922,0xfcc2f200,0x00a3f200 + .long 0x0823f22e,0x48a3ff84,0xf23a4422,0xfcbaf22e + .long 0x4823ff90,0xf21fd020,0xf2009000,0xf22e48a2 + .long 0xff8461ff,0x0000448e,0xf22e4422,0xff5460ff + .long 0x000040fc,0xf227e004,0xf22e6800,0xff84f200 + .long 0x0023f23a,0x5480fc34,0xf23a5500,0xfbdef200 + .long 0x00a3f22e,0x6800ff90,0xf2000123,0xe2990281 + .long 0x80000000,0xf23a54a2,0xfc1af23a,0x5522fbc4 + .long 0xb3aeff84,0xb3aeff90,0xf20000a3,0x00813f80 + .long 0x00002d41,0xff54f200,0x0123f23a,0x54a2fbfc + .long 0xf23a5522,0xfba6f200,0x00a3f200,0x0123f23a + .long 0x54a2fbf0,0xf23a5522,0xfb9af200,0x00a3f200 + .long 0x0123f23a,0x54a2fbe4,0xf23a5522,0xfb8ef200 + .long 0x00a3f200,0x0123f23a,0x48a2fbe0,0xf23a4922 + .long 0xfb8af200,0x00a3f200,0x0123f23a,0x48a2fbdc + .long 0xf23a4922,0xfb86f200,0x00a3f200,0x0823f23a + .long 0x44a2fbd4,0xf22e4823,0xff84f22e,0x48a3ff90 + .long 0xf21fd020,0xf2009000,0xf22e44a2,0xff5461ff + .long 0x000043a2,0xf22e4822,0xff8460ff,0x00004010 + .long 0x0c813fff,0x80006e00,0x0048f23c,0x44803f80 + .long 0x0000f200,0x9000f23c,0x44a80080,0x000061ff + .long 0x00004372,0xf200b000,0x123c0003,0xf22e4800 + .long 0xff8460ff,0x00003fca,0x2f00f23c,0x44803f80 + .long 0x000061ff,0x0000434e,0x201f60ff,0x00003e54 + .long 0xf227e03c,0x2f02f23c,0x44800000,0x00000c81 + .long 0x7ffeffff,0x66523d7c,0x7ffeff84,0x2d7cc90f + .long 0xdaa2ff88,0x42aeff8c,0x3d7c7fdc,0xff902d7c + .long 0x85a308d3,0xff9442ae,0xff98f200,0x003af294 + .long 0x000e002e,0x0080ff84,0x002e0080,0xff90f22e + .long 0x4822ff84,0xf2000080,0xf22e4822,0xff90f200 + .long 0x00a8f22e,0x48a2ff90,0xf22e6800,0xff84322e + .long 0xff842241,0x02810000,0x7fff0481,0x00003fff + .long 0x0c810000,0x001c6f0e,0x04810000,0x001b1d7c + .long 0x0000ff58,0x60084281,0x1d7c0001,0xff58243c + .long 0x00003ffe,0x94812d7c,0xa2f9836e,0xff882d7c + .long 0x4e44152a,0xff8c3d42,0xff84f200,0x0100f22e + .long 0x4923ff84,0x24094842,0x02828000,0x00000082 + .long 0x5f000000,0x2d42ff54,0xf22e4522,0xff54f22e + .long 0x4528ff54,0x24010682,0x00003fff,0x3d42ff84 + .long 0x2d7cc90f,0xdaa2ff88,0x42aeff8c,0x06810000 + .long 0x3fdd3d41,0xff902d7c,0x85a308d3,0xff9442ae + .long 0xff98122e,0xff58f200,0x0a00f22e,0x4a23ff84 + .long 0xf2000a80,0xf22e4aa3,0xff90f200,0x1180f200 + .long 0x15a2f200,0x0e28f200,0x0c28f200,0x1622f200 + .long 0x0180f200,0x10a8f200,0x04220c01,0x00006e00 + .long 0x000ef200,0x01a8f200,0x0ca26000,0xff0cf22e + .long 0x6100ff58,0x241ff21f,0xd03c222e,0xff5c0c81 + .long 0x00000004,0x6d00fa4c,0x6000fc36,0x3ea0b759 + .long 0xf50f8688,0xbef2baa5,0xa8924f04,0xbf346f59 + .long 0xb39ba65f,0x00000000,0x00000000,0x3ff60000 + .long 0xe073d3fc,0x199c4a00,0x00000000,0x3ff90000 + .long 0xd23cd684,0x15d95fa1,0x00000000,0xbffc0000 + .long 0x8895a6c5,0xfb423bca,0x00000000,0xbffd0000 + .long 0xeef57e0d,0xa84bc8ce,0x00000000,0x3ffc0000 + .long 0xa2f9836e,0x4e44152a,0x00000000,0x40010000 + .long 0xc90fdaa2,0x00000000,0x00000000,0x3fdf0000 + .long 0x85a308d4,0x00000000,0x00000000,0xc0040000 + .long 0xc90fdaa2,0x2168c235,0x21800000,0xc0040000 + .long 0xc2c75bcd,0x105d7c23,0xa0d00000,0xc0040000 + .long 0xbc7edcf7,0xff523611,0xa1e80000,0xc0040000 + .long 0xb6365e22,0xee46f000,0x21480000,0xc0040000 + .long 0xafeddf4d,0xdd3ba9ee,0xa1200000,0xc0040000 + .long 0xa9a56078,0xcc3063dd,0x21fc0000,0xc0040000 + .long 0xa35ce1a3,0xbb251dcb,0x21100000,0xc0040000 + .long 0x9d1462ce,0xaa19d7b9,0xa1580000,0xc0040000 + .long 0x96cbe3f9,0x990e91a8,0x21e00000,0xc0040000 + .long 0x90836524,0x88034b96,0x20b00000,0xc0040000 + .long 0x8a3ae64f,0x76f80584,0xa1880000,0xc0040000 + .long 0x83f2677a,0x65ecbf73,0x21c40000,0xc0030000 + .long 0xfb53d14a,0xa9c2f2c2,0x20000000,0xc0030000 + .long 0xeec2d3a0,0x87ac669f,0x21380000,0xc0030000 + .long 0xe231d5f6,0x6595da7b,0xa1300000,0xc0030000 + .long 0xd5a0d84c,0x437f4e58,0x9fc00000,0xc0030000 + .long 0xc90fdaa2,0x2168c235,0x21000000,0xc0030000 + .long 0xbc7edcf7,0xff523611,0xa1680000,0xc0030000 + .long 0xafeddf4d,0xdd3ba9ee,0xa0a00000,0xc0030000 + .long 0xa35ce1a3,0xbb251dcb,0x20900000,0xc0030000 + .long 0x96cbe3f9,0x990e91a8,0x21600000,0xc0030000 + .long 0x8a3ae64f,0x76f80584,0xa1080000,0xc0020000 + .long 0xfb53d14a,0xa9c2f2c2,0x1f800000,0xc0020000 + .long 0xe231d5f6,0x6595da7b,0xa0b00000,0xc0020000 + .long 0xc90fdaa2,0x2168c235,0x20800000,0xc0020000 + .long 0xafeddf4d,0xdd3ba9ee,0xa0200000,0xc0020000 + .long 0x96cbe3f9,0x990e91a8,0x20e00000,0xc0010000 + .long 0xfb53d14a,0xa9c2f2c2,0x1f000000,0xc0010000 + .long 0xc90fdaa2,0x2168c235,0x20000000,0xc0010000 + .long 0x96cbe3f9,0x990e91a8,0x20600000,0xc0000000 + .long 0xc90fdaa2,0x2168c235,0x1f800000,0xbfff0000 + .long 0xc90fdaa2,0x2168c235,0x1f000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x3fff0000 + .long 0xc90fdaa2,0x2168c235,0x9f000000,0x40000000 + .long 0xc90fdaa2,0x2168c235,0x9f800000,0x40010000 + .long 0x96cbe3f9,0x990e91a8,0xa0600000,0x40010000 + .long 0xc90fdaa2,0x2168c235,0xa0000000,0x40010000 + .long 0xfb53d14a,0xa9c2f2c2,0x9f000000,0x40020000 + .long 0x96cbe3f9,0x990e91a8,0xa0e00000,0x40020000 + .long 0xafeddf4d,0xdd3ba9ee,0x20200000,0x40020000 + .long 0xc90fdaa2,0x2168c235,0xa0800000,0x40020000 + .long 0xe231d5f6,0x6595da7b,0x20b00000,0x40020000 + .long 0xfb53d14a,0xa9c2f2c2,0x9f800000,0x40030000 + .long 0x8a3ae64f,0x76f80584,0x21080000,0x40030000 + .long 0x96cbe3f9,0x990e91a8,0xa1600000,0x40030000 + .long 0xa35ce1a3,0xbb251dcb,0xa0900000,0x40030000 + .long 0xafeddf4d,0xdd3ba9ee,0x20a00000,0x40030000 + .long 0xbc7edcf7,0xff523611,0x21680000,0x40030000 + .long 0xc90fdaa2,0x2168c235,0xa1000000,0x40030000 + .long 0xd5a0d84c,0x437f4e58,0x1fc00000,0x40030000 + .long 0xe231d5f6,0x6595da7b,0x21300000,0x40030000 + .long 0xeec2d3a0,0x87ac669f,0xa1380000,0x40030000 + .long 0xfb53d14a,0xa9c2f2c2,0xa0000000,0x40040000 + .long 0x83f2677a,0x65ecbf73,0xa1c40000,0x40040000 + .long 0x8a3ae64f,0x76f80584,0x21880000,0x40040000 + .long 0x90836524,0x88034b96,0xa0b00000,0x40040000 + .long 0x96cbe3f9,0x990e91a8,0xa1e00000,0x40040000 + .long 0x9d1462ce,0xaa19d7b9,0x21580000,0x40040000 + .long 0xa35ce1a3,0xbb251dcb,0xa1100000,0x40040000 + .long 0xa9a56078,0xcc3063dd,0xa1fc0000,0x40040000 + .long 0xafeddf4d,0xdd3ba9ee,0x21200000,0x40040000 + .long 0xb6365e22,0xee46f000,0xa1480000,0x40040000 + .long 0xbc7edcf7,0xff523611,0x21e80000,0x40040000 + .long 0xc2c75bcd,0x105d7c23,0x20d00000,0x40040000 + .long 0xc90fdaa2,0x2168c235,0xa1800000,0xf2104800 + .long 0x22103228,0x00040281,0x7fffffff,0x0c813fd7 + .long 0x80006c04,0x60000134,0x0c814004,0xbc7e6d04 + .long 0x60000144,0xf2000080,0xf23a54a3,0xd3d443fa + .long 0xfdbcf201,0x6080e981,0xd3c1f219,0x4828f211 + .long 0x4428ea99,0x02818000,0x0000f227,0xe00c0c81 + .long 0x00000000,0x6d000072,0xf2000080,0xf20004a3 + .long 0xf23a5580,0xfaf8f23a,0x5500fafa,0xf20005a3 + .long 0xf2000523,0xf23a55a2,0xfaf4f23a,0x4922fafe + .long 0xf20005a3,0xf2000523,0xf23a49a2,0xfb00f23a + .long 0x4922fb0a,0xf20005a3,0xf2000523,0xf23a49a2 + .long 0xfb0cf200,0x0123f200,0x0ca3f200,0x0822f23c + .long 0x44a23f80,0x0000f21f,0xd030f200,0x9000f200 + .long 0x042060ff,0x000038d8,0xf2000080,0xf2000023 + .long 0xf23a5580,0xfa88f23a,0x5500fa8a,0xf20001a3 + .long 0xf2000123,0xf23a55a2,0xfa84f23a,0x4922fa8e + .long 0xf20001a3,0xf2000123,0xf23a49a2,0xfa90f23a + .long 0x4922fa9a,0xf20001a3,0xf2000123,0xf23a49a2 + .long 0xfa9cf200,0x0523f200,0x0c23f200,0x08a2f23c + .long 0x44223f80,0x0000f21f,0xd030f227,0x68800a97 + .long 0x80000000,0xf2009000,0xf21f4820,0x60ff0000 + .long 0x385e0c81,0x3fff8000,0x6e1cf227,0x6800f200 + .long 0x9000123c,0x0003f21f,0x480060ff,0x00003832 + .long 0x60ff0000,0x36cef227,0xe03c2f02,0xf23c4480 + .long 0x00000000,0x0c817ffe,0xffff6652,0x3d7c7ffe + .long 0xff842d7c,0xc90fdaa2,0xff8842ae,0xff8c3d7c + .long 0x7fdcff90,0x2d7c85a3,0x08d3ff94,0x42aeff98 + .long 0xf200003a,0xf294000e,0x002e0080,0xff84002e + .long 0x0080ff90,0xf22e4822,0xff84f200,0x0080f22e + .long 0x4822ff90,0xf20000a8,0xf22e48a2,0xff90f22e + .long 0x6800ff84,0x322eff84,0x22410281,0x00007fff + .long 0x04810000,0x3fff0c81,0x0000001c,0x6f0e0481 + .long 0x0000001b,0x1d7c0000,0xff586008,0x42811d7c + .long 0x0001ff58,0x243c0000,0x3ffe9481,0x2d7ca2f9 + .long 0x836eff88,0x2d7c4e44,0x152aff8c,0x3d42ff84 + .long 0xf2000100,0xf22e4923,0xff842409,0x48420282 + .long 0x80000000,0x00825f00,0x00002d42,0xff54f22e + .long 0x4522ff54,0xf22e4528,0xff542401,0x06820000 + .long 0x3fff3d42,0xff842d7c,0xc90fdaa2,0xff8842ae + .long 0xff8c0681,0x00003fdd,0x3d41ff90,0x2d7c85a3 + .long 0x08d3ff94,0x42aeff98,0x122eff58,0xf2000a00 + .long 0xf22e4a23,0xff84f200,0x0a80f22e,0x4aa3ff90 + .long 0xf2001180,0xf20015a2,0xf2000e28,0xf2000c28 + .long 0xf2001622,0xf2000180,0xf20010a8,0xf2000422 + .long 0x0c010000,0x6e00000e,0xf20001a8,0xf2000ca2 + .long 0x6000ff0c,0xf22e6100,0xff54241f,0xf21fd03c + .long 0x222eff54,0xe2996000,0xfd72bff6,0x687e3149 + .long 0x87d84002,0xac6934a2,0x6db3bfc2,0x476f4e1d + .long 0xa28e3fb3,0x44447f87,0x6989bfb7,0x44ee7faf + .long 0x45db3fbc,0x71c64694,0x0220bfc2,0x49249218 + .long 0x72f93fc9,0x99999999,0x8fa9bfd5,0x55555555 + .long 0x5555bfb7,0x0bf39853,0x9e6a3fbc,0x7187962d + .long 0x1d7dbfc2,0x49248271,0x07b83fc9,0x99999996 + .long 0x263ebfd5,0x55555555,0x55363fff,0x0000c90f + .long 0xdaa22168,0xc2350000,0x0000bfff,0x0000c90f + .long 0xdaa22168,0xc2350000,0x00000001,0x00008000 + .long 0x00000000,0x00000000,0x00008001,0x00008000 + .long 0x00000000,0x00000000,0x00003ffb,0x000083d1 + .long 0x52c5060b,0x7a510000,0x00003ffb,0x00008bc8 + .long 0x54456549,0x8b8b0000,0x00003ffb,0x000093be + .long 0x40601762,0x6b0d0000,0x00003ffb,0x00009bb3 + .long 0x078d35ae,0xc2020000,0x00003ffb,0x0000a3a6 + .long 0x9a525ddc,0xe7de0000,0x00003ffb,0x0000ab98 + .long 0xe9436276,0x56190000,0x00003ffb,0x0000b389 + .long 0xe502f9c5,0x98620000,0x00003ffb,0x0000bb79 + .long 0x7e436b09,0xe6fb0000,0x00003ffb,0x0000c367 + .long 0xa5c739e5,0xf4460000,0x00003ffb,0x0000cb54 + .long 0x4c61cff7,0xd5c60000,0x00003ffb,0x0000d33f + .long 0x62f82488,0x533e0000,0x00003ffb,0x0000db28 + .long 0xda816240,0x4c770000,0x00003ffb,0x0000e310 + .long 0xa4078ad3,0x4f180000,0x00003ffb,0x0000eaf6 + .long 0xb0a8188e,0xe1eb0000,0x00003ffb,0x0000f2da + .long 0xf1949dbe,0x79d50000,0x00003ffb,0x0000fabd + .long 0x581361d4,0x7e3e0000,0x00003ffc,0x00008346 + .long 0xac210959,0xecc40000,0x00003ffc,0x00008b23 + .long 0x2a083042,0x82d80000,0x00003ffc,0x000092fb + .long 0x70b8d29a,0xe2f90000,0x00003ffc,0x00009acf + .long 0x476f5ccd,0x1cb40000,0x00003ffc,0x0000a29e + .long 0x76304954,0xf23f0000,0x00003ffc,0x0000aa68 + .long 0xc5d08ab8,0x52300000,0x00003ffc,0x0000b22d + .long 0xfffd9d53,0x9f830000,0x00003ffc,0x0000b9ed + .long 0xef453e90,0x0ea50000,0x00003ffc,0x0000c1a8 + .long 0x5f1cc75e,0x3ea50000,0x00003ffc,0x0000c95d + .long 0x1be82813,0x8de60000,0x00003ffc,0x0000d10b + .long 0xf300840d,0x2de40000,0x00003ffc,0x0000d8b4 + .long 0xb2ba6bc0,0x5e7a0000,0x00003ffc,0x0000e057 + .long 0x2a6bb423,0x35f60000,0x00003ffc,0x0000e7f3 + .long 0x2a70ea9c,0xaa8f0000,0x00003ffc,0x0000ef88 + .long 0x843264ec,0xefaa0000,0x00003ffc,0x0000f717 + .long 0x0a28ecc0,0x66660000,0x00003ffd,0x0000812f + .long 0xd288332d,0xad320000,0x00003ffd,0x000088a8 + .long 0xd1b1218e,0x4d640000,0x00003ffd,0x00009012 + .long 0xab3f23e4,0xaee80000,0x00003ffd,0x0000976c + .long 0xc3d411e7,0xf1b90000,0x00003ffd,0x00009eb6 + .long 0x89493889,0xa2270000,0x00003ffd,0x0000a5ef + .long 0x72c34487,0x361b0000,0x00003ffd,0x0000ad17 + .long 0x00baf07a,0x72270000,0x00003ffd,0x0000b42c + .long 0xbcfafd37,0xefb70000,0x00003ffd,0x0000bb30 + .long 0x3a940ba8,0x0f890000,0x00003ffd,0x0000c221 + .long 0x15c6fcae,0xbbaf0000,0x00003ffd,0x0000c8fe + .long 0xf3e68633,0x12210000,0x00003ffd,0x0000cfc9 + .long 0x8330b400,0x0c700000,0x00003ffd,0x0000d680 + .long 0x7aa1102c,0x5bf90000,0x00003ffd,0x0000dd23 + .long 0x99bc3125,0x2aa30000,0x00003ffd,0x0000e3b2 + .long 0xa8556b8f,0xc5170000,0x00003ffd,0x0000ea2d + .long 0x764f6431,0x59890000,0x00003ffd,0x0000f3bf + .long 0x5bf8bad1,0xa21d0000,0x00003ffe,0x0000801c + .long 0xe39e0d20,0x5c9a0000,0x00003ffe,0x00008630 + .long 0xa2dada1e,0xd0660000,0x00003ffe,0x00008c1a + .long 0xd445f3e0,0x9b8c0000,0x00003ffe,0x000091db + .long 0x8f1664f3,0x50e20000,0x00003ffe,0x00009773 + .long 0x1420365e,0x538c0000,0x00003ffe,0x00009ce1 + .long 0xc8e6a0b8,0xcdba0000,0x00003ffe,0x0000a228 + .long 0x32dbcada,0xae090000,0x00003ffe,0x0000a746 + .long 0xf2ddb760,0x22940000,0x00003ffe,0x0000ac3e + .long 0xc0fb997d,0xd6a20000,0x00003ffe,0x0000b110 + .long 0x688aebdc,0x6f6a0000,0x00003ffe,0x0000b5bc + .long 0xc49059ec,0xc4b00000,0x00003ffe,0x0000ba44 + .long 0xbc7dd470,0x782f0000,0x00003ffe,0x0000bea9 + .long 0x4144fd04,0x9aac0000,0x00003ffe,0x0000c2eb + .long 0x4abb6616,0x28b60000,0x00003ffe,0x0000c70b + .long 0xd54ce602,0xee140000,0x00003ffe,0x0000cd00 + .long 0x0549adec,0x71590000,0x00003ffe,0x0000d484 + .long 0x57d2d8ea,0x4ea30000,0x00003ffe,0x0000db94 + .long 0x8da712de,0xce3b0000,0x00003ffe,0x0000e238 + .long 0x55f969e8,0x096a0000,0x00003ffe,0x0000e877 + .long 0x1129c435,0x32590000,0x00003ffe,0x0000ee57 + .long 0xc16e0d37,0x9c0d0000,0x00003ffe,0x0000f3e1 + .long 0x0211a87c,0x37790000,0x00003ffe,0x0000f919 + .long 0x039d758b,0x8d410000,0x00003ffe,0x0000fe05 + .long 0x8b8f6493,0x5fb30000,0x00003fff,0x00008155 + .long 0xfb497b68,0x5d040000,0x00003fff,0x00008388 + .long 0x9e3549d1,0x08e10000,0x00003fff,0x0000859c + .long 0xfa76511d,0x724b0000,0x00003fff,0x00008795 + .long 0x2ecfff81,0x31e70000,0x00003fff,0x00008973 + .long 0x2fd19557,0x641b0000,0x00003fff,0x00008b38 + .long 0xcad10193,0x2a350000,0x00003fff,0x00008ce7 + .long 0xa8d8301e,0xe6b50000,0x00003fff,0x00008f46 + .long 0xa39e2eae,0x52810000,0x00003fff,0x0000922d + .long 0xa7d79188,0x84870000,0x00003fff,0x000094d1 + .long 0x9fcbdedf,0x52410000,0x00003fff,0x0000973a + .long 0xb94419d2,0xa08b0000,0x00003fff,0x0000996f + .long 0xf00e08e1,0x0b960000,0x00003fff,0x00009b77 + .long 0x3f951232,0x1da70000,0x00003fff,0x00009d55 + .long 0xcc320f93,0x56240000,0x00003fff,0x00009f10 + .long 0x0575006c,0xc5710000,0x00003fff,0x0000a0a9 + .long 0xc290d97c,0xc06c0000,0x00003fff,0x0000a226 + .long 0x59ebebc0,0x630a0000,0x00003fff,0x0000a388 + .long 0xb4aff6ef,0x0ec90000,0x00003fff,0x0000a4d3 + .long 0x5f1061d2,0x92c40000,0x00003fff,0x0000a608 + .long 0x95dcfbe3,0x187e0000,0x00003fff,0x0000a72a + .long 0x51dc7367,0xbeac0000,0x00003fff,0x0000a83a + .long 0x51530956,0x168f0000,0x00003fff,0x0000a93a + .long 0x20077539,0x546e0000,0x00003fff,0x0000aa9e + .long 0x7245023b,0x26050000,0x00003fff,0x0000ac4c + .long 0x84ba6fe4,0xd58f0000,0x00003fff,0x0000adce + .long 0x4a4a606b,0x97120000,0x00003fff,0x0000af2a + .long 0x2dcd8d26,0x3c9c0000,0x00003fff,0x0000b065 + .long 0x6f81f222,0x65c70000,0x00003fff,0x0000b184 + .long 0x65150f71,0x496a0000,0x00003fff,0x0000b28a + .long 0xaa156f9a,0xda350000,0x00003fff,0x0000b37b + .long 0x44ff3766,0xb8950000,0x00003fff,0x0000b458 + .long 0xc3dce963,0x04330000,0x00003fff,0x0000b525 + .long 0x529d5622,0x46bd0000,0x00003fff,0x0000b5e2 + .long 0xcca95f9d,0x88cc0000,0x00003fff,0x0000b692 + .long 0xcada7aca,0x1ada0000,0x00003fff,0x0000b736 + .long 0xaea7a692,0x58380000,0x00003fff,0x0000b7cf + .long 0xab287e9f,0x7b360000,0x00003fff,0x0000b85e + .long 0xcc66cb21,0x98350000,0x00003fff,0x0000b8e4 + .long 0xfd5a20a5,0x93da0000,0x00003fff,0x0000b99f + .long 0x41f64aff,0x9bb50000,0x00003fff,0x0000ba7f + .long 0x1e17842b,0xbe7b0000,0x00003fff,0x0000bb47 + .long 0x12857637,0xe17d0000,0x00003fff,0x0000bbfa + .long 0xbe8a4788,0xdf6f0000,0x00003fff,0x0000bc9d + .long 0x0fad2b68,0x9d790000,0x00003fff,0x0000bd30 + .long 0x6a39471e,0xcd860000,0x00003fff,0x0000bdb6 + .long 0xc731856a,0xf18a0000,0x00003fff,0x0000be31 + .long 0xcac502e8,0x0d700000,0x00003fff,0x0000bea2 + .long 0xd55ce331,0x94e20000,0x00003fff,0x0000bf0b + .long 0x10b7c031,0x28f00000,0x00003fff,0x0000bf6b + .long 0x7a18dacb,0x778d0000,0x00003fff,0x0000bfc4 + .long 0xea4663fa,0x18f60000,0x00003fff,0x0000c018 + .long 0x1bde8b89,0xa4540000,0x00003fff,0x0000c065 + .long 0xb066cfbf,0x64390000,0x00003fff,0x0000c0ae + .long 0x345f5634,0x0ae60000,0x00003fff,0x0000c0f2 + .long 0x22919cb9,0xe6a70000,0x0000f210,0x48002210 + .long 0x32280004,0xf22e6800,0xff840281,0x7fffffff + .long 0x0c813ffb,0x80006c04,0x600000d0,0x0c814002 + .long 0xffff6f04,0x6000014c,0x02aef800,0x0000ff88 + .long 0x00ae0400,0x0000ff88,0x2d7c0000,0x0000ff8c + .long 0xf2000080,0xf22e48a3,0xff84f22e,0x4828ff84 + .long 0xf23c44a2,0x3f800000,0xf2000420,0x2f022401 + .long 0x02810000,0x78000282,0x7fff0000,0x04823ffb + .long 0x0000e282,0xd282ee81,0x43faf780,0xd3c12d59 + .long 0xff902d59,0xff942d59,0xff98222e,0xff840281 + .long 0x80000000,0x83aeff90,0x241ff227,0xe004f200 + .long 0x0080f200,0x04a3f23a,0x5500f6a0,0xf2000522 + .long 0xf2000523,0xf20000a3,0xf23a5522,0xf696f23a + .long 0x54a3f698,0xf20008a3,0xf2000422,0xf21fd020 + .long 0xf2009000,0xf22e4822,0xff9060ff,0x00002d30 + .long 0x0c813fff,0x80006e00,0x008a0c81,0x3fd78000 + .long 0x6d00006c,0xf227e00c,0xf2000023,0xf2000080 + .long 0xf20004a3,0xf23a5500,0xf65af23a,0x5580f65c + .long 0xf2000523,0xf20005a3,0xf23a5522,0xf656f23a + .long 0x55a2f658,0xf2000523,0xf2000ca3,0xf23a5522 + .long 0xf652f23a,0x54a2f654,0xf2000123,0xf22e4823 + .long 0xff84f200,0x08a2f200,0x0423f21f,0xd030f200 + .long 0x9000f22e,0x4822ff84,0x60ff0000,0x2cb2f200 + .long 0x9000123c,0x0003f22e,0x4800ff84,0x60ff0000 + .long 0x2c900c81,0x40638000,0x6e00008e,0xf227e00c + .long 0xf23c4480,0xbf800000,0xf20000a0,0xf2000400 + .long 0xf2000023,0xf22e6880,0xff84f200,0x0080f200 + .long 0x04a3f23a,0x5580f5ec,0xf23a5500,0xf5eef200 + .long 0x05a3f200,0x0523f23a,0x55a2f5e8,0xf23a5522 + .long 0xf5eaf200,0x0ca3f200,0x0123f23a,0x54a2f5e4 + .long 0xf22e4823,0xff84f200,0x08a2f200,0x0423f22e + .long 0x4822ff84,0xf21fd030,0xf2009000,0x4a106a0c + .long 0xf23a4822,0xf5d660ff,0x00002c24,0xf23a4822 + .long 0xf5ba60ff,0x00002c10,0x4a106a16,0xf23a4800 + .long 0xf5baf200,0x9000f23a,0x4822f5c0,0x60ff0000 + .long 0x2bfef23a,0x4800f594,0xf2009000,0xf23a4822 + .long 0xf5ba60ff,0x00002be0,0x60ff0000,0x2a66f210 + .long 0x48002210,0x32280004,0x02817fff,0xffff0c81 + .long 0x3fff8000,0x6c4e0c81,0x3fd78000,0x6d00007c + .long 0xf23c4480,0x3f800000,0xf20000a8,0xf227e004 + .long 0xf23c4500,0x3f800000,0xf2000122,0xf20008a3 + .long 0xf21fd020,0xf2000484,0xf2000420,0xf227e001 + .long 0x41d761ff,0xfffffd66,0xdffc0000,0x000c60ff + .long 0x00002b6c,0xf2000018,0xf23c4438,0x3f800000 + .long 0xf2d20000,0x29d4f23a,0x4800c5a6,0x22100281 + .long 0x80000000,0x00813f80,0x00002f01,0xf2009000 + .long 0xf21f4423,0x60ff0000,0x2b36f200,0x9000123c + .long 0x0003f210,0x480060ff,0x00002b16,0x60ff0000 + .long 0x29b2f210,0x48002210,0x32280004,0x02817fff + .long 0xffff0c81,0x3fff8000,0x6c44f23c,0x44803f80 + .long 0x0000f200,0x00a2f200,0x001af23c,0x44223f80 + .long 0x0000f200,0x0420f200,0x00042f00,0x4280f227 + .long 0xe00141d7,0x61ffffff,0xfcc4dffc,0x0000000c + .long 0xf21f9000,0xf2000022,0x60ff0000,0x2acaf200 + .long 0x0018f23c,0x44383f80,0x0000f2d2,0x0000292a + .long 0x4a106a18,0xf23a4800,0xc4e8f200,0x9000f23c + .long 0x44220080,0x000060ff,0x00002a9c,0x60ff0000 + .long 0x2ce8f200,0x9000f23a,0x4800c4d6,0x60ff0000 + .long 0x2a863fdc,0x000082e3,0x08654361,0xc4c60000 + .long 0x00003fa5,0x55555555,0x4cc13fc5,0x55555555 + .long 0x4a543f81,0x11111117,0x43853fa5,0x55555555 + .long 0x4f5a3fc5,0x55555555,0x55550000,0x00000000 + .long 0x00003ec7,0x1de3a577,0x46823efa,0x01a019d7 + .long 0xcb683f2a,0x01a01a01,0x9df33f56,0xc16c16c1 + .long 0x70e23f81,0x11111111,0x11113fa5,0x55555555 + .long 0x55553ffc,0x0000aaaa,0xaaaaaaaa,0xaaab0000 + .long 0x000048b0,0x00000000,0x00003730,0x00000000 + .long 0x00003fff,0x00008000,0x00000000,0x00000000 + .long 0x00003fff,0x00008164,0xd1f3bc03,0x07749f84 + .long 0x1a9b3fff,0x000082cd,0x8698ac2b,0xa1d89fc1 + .long 0xd5b93fff,0x0000843a,0x28c3acde,0x4048a072 + .long 0x83693fff,0x000085aa,0xc367cc48,0x7b141fc5 + .long 0xc95c3fff,0x0000871f,0x61969e8d,0x10101ee8 + .long 0x5c9f3fff,0x00008898,0x0e8092da,0x85289fa2 + .long 0x07293fff,0x00008a14,0xd575496e,0xfd9ca07b + .long 0xf9af3fff,0x00008b95,0xc1e3ea8b,0xd6e8a002 + .long 0x0dcf3fff,0x00008d1a,0xdf5b7e5b,0xa9e4205a + .long 0x63da3fff,0x00008ea4,0x398b45cd,0x53c01eb7 + .long 0x00513fff,0x00009031,0xdc431466,0xb1dc1f6e + .long 0xb0293fff,0x000091c3,0xd373ab11,0xc338a078 + .long 0x14943fff,0x0000935a,0x2b2f13e6,0xe92c9eb3 + .long 0x19b03fff,0x000094f4,0xefa8fef7,0x09602017 + .long 0x457d3fff,0x00009694,0x2d372018,0x5a001f11 + .long 0xd5373fff,0x00009837,0xf0518db8,0xa9709fb9 + .long 0x52dd3fff,0x000099e0,0x459320b7,0xfa641fe4 + .long 0x30873fff,0x00009b8d,0x39b9d54e,0x55381fa2 + .long 0xa8183fff,0x00009d3e,0xd9a72cff,0xb7501fde + .long 0x494d3fff,0x00009ef5,0x326091a1,0x11ac2050 + .long 0x48903fff,0x0000a0b0,0x510fb971,0x4fc4a073 + .long 0x691c3fff,0x0000a270,0x43030c49,0x68181f9b + .long 0x7a053fff,0x0000a435,0x15ae09e6,0x80a0a079 + .long 0x71263fff,0x0000a5fe,0xd6a9b151,0x38eca071 + .long 0xa1403fff,0x0000a7cd,0x93b4e965,0x3568204f + .long 0x62da3fff,0x0000a9a1,0x5ab4ea7c,0x0ef81f28 + .long 0x3c4a3fff,0x0000ab7a,0x39b5a93e,0xd3389f9a + .long 0x7fdc3fff,0x0000ad58,0x3eea42a1,0x4ac8a05b + .long 0x3fac3fff,0x0000af3b,0x78ad690a,0x43741fdf + .long 0x26103fff,0x0000b123,0xf581d2ac,0x25909f70 + .long 0x5f903fff,0x0000b311,0xc412a911,0x2488201f + .long 0x678a3fff,0x0000b504,0xf333f9de,0x64841f32 + .long 0xfb133fff,0x0000b6fd,0x91e328d1,0x77902003 + .long 0x8b303fff,0x0000b8fb,0xaf4762fb,0x9ee8200d + .long 0xc3cc3fff,0x0000baff,0x5ab2133e,0x45fc9f8b + .long 0x2ae63fff,0x0000bd08,0xa39f580c,0x36c0a02b + .long 0xbf703fff,0x0000bf17,0x99b67a73,0x1084a00b + .long 0xf5183fff,0x0000c12c,0x4cca6670,0x9458a041 + .long 0xdd413fff,0x0000c346,0xccda2497,0x64089fdf + .long 0x137b3fff,0x0000c567,0x2a115506,0xdadc201f + .long 0x15683fff,0x0000c78d,0x74c8abb9,0xb15c1fc1 + .long 0x3a2e3fff,0x0000c9b9,0xbd866e2f,0x27a4a03f + .long 0x8f033fff,0x0000cbec,0x14fef272,0x7c5c1ff4 + .long 0x907d3fff,0x0000ce24,0x8c151f84,0x80e49e6e + .long 0x53e43fff,0x0000d063,0x33daef2b,0x25941fd6 + .long 0xd45c3fff,0x0000d2a8,0x1d91f12a,0xe45ca076 + .long 0xedb93fff,0x0000d4f3,0x5aabcfed,0xfa209fa6 + .long 0xde213fff,0x0000d744,0xfccad69d,0x6af41ee6 + .long 0x9a2f3fff,0x0000d99d,0x15c278af,0xd7b4207f + .long 0x439f3fff,0x0000dbfb,0xb797daf2,0x3754201e + .long 0xc2073fff,0x0000de60,0xf4825e0e,0x91249e8b + .long 0xe1753fff,0x0000e0cc,0xdeec2a94,0xe1102003 + .long 0x2c4b3fff,0x0000e33f,0x8972be8a,0x5a502004 + .long 0xdff53fff,0x0000e5b9,0x06e77c83,0x48a81e72 + .long 0xf47a3fff,0x0000e839,0x6a503c4b,0xdc681f72 + .long 0x2f223fff,0x0000eac0,0xc6e7dd24,0x3930a017 + .long 0xe9453fff,0x0000ed4f,0x301ed994,0x2b841f40 + .long 0x1a5b3fff,0x0000efe4,0xb99bdcda,0xf5cc9fb9 + .long 0xa9e33fff,0x0000f281,0x773c59ff,0xb1382074 + .long 0x4c053fff,0x0000f525,0x7d152486,0xcc2c1f77 + .long 0x3a193fff,0x0000f7d0,0xdf730ad1,0x3bb81ffe + .long 0x90d53fff,0x0000fa83,0xb2db722a,0x033ca041 + .long 0xed223fff,0x0000fd3e,0x0c0cf486,0xc1741f85 + .long 0x3f3a2210,0x02817fff,0x00000c81,0x3fbe0000 + .long 0x6c0660ff,0x00000108,0x32280004,0x0c81400c + .long 0xb1676d06,0x60ff0000,0x010cf210,0x4800f200 + .long 0x0080f23c,0x442342b8,0xaa3bf227,0xe00c2d7c + .long 0x00000000,0xff58f201,0x600043fa,0xfbb6f201 + .long 0x40002d41,0xff540281,0x0000003f,0xe989d3c1 + .long 0x222eff54,0xec810641,0x3fff3d7a,0xfb06ff54 + .long 0xf2000100,0xf23c4423,0xbc317218,0xf23a4923 + .long 0xfaf2f200,0x0422f200,0x0822f200,0x0080f200 + .long 0x04a3f23c,0x45003ab6,0x0b70f200,0x0523f200 + .long 0x0580f23c,0x45a33c08,0x8895f23a,0x5522fad4 + .long 0xf23a55a2,0xfad6f200,0x05233d41,0xff842d7c + .long 0x80000000,0xff8842ae,0xff8cf200,0x05a3f23c + .long 0x45223f00,0x0000f200,0x01a3f200,0x0523f200 + .long 0x0c22f219,0x4880f200,0x0822f200,0x0423f21f + .long 0xd030f211,0x4422f200,0x0422222e,0xff584a81 + .long 0x6706f22e,0x4823ff90,0xf2009000,0x123c0000 + .long 0xf22e4823,0xff8460ff,0x000024c6,0xf210d080 + .long 0xf2009000,0xf23c4422,0x3f800000,0x60ff0000 + .long 0x24c60c81,0x400cb27c,0x6e66f210,0x4800f200 + .long 0x0080f23c,0x442342b8,0xaa3bf227,0xe00c2d7c + .long 0x00000001,0xff58f201,0x600043fa,0xfaa6f201 + .long 0x40002d41,0xff540281,0x0000003f,0xe989d3c1 + .long 0x222eff54,0xec812d41,0xff54e281,0x93aeff54 + .long 0x06413fff,0x3d41ff90,0x2d7c8000,0x0000ff94 + .long 0x42aeff98,0x222eff54,0x06413fff,0x6000fed2 + .long 0x4a106bff,0x00002370,0x60ff0000,0x24122f10 + .long 0x02978000,0x00000097,0x00800000,0xf23c4400 + .long 0x3f800000,0xf2009000,0xf21f4422,0x60ff0000 + .long 0x24262210,0x02817fff,0x00000c81,0x3ffd0000 + .long 0x6c0660ff,0x0000015e,0x32280004,0x0c814004 + .long 0xc2156f06,0x60ff0000,0x026cf210,0x4800f200 + .long 0x0080f23c,0x442342b8,0xaa3bf227,0xe00cf201 + .long 0x600043fa,0xf9eef201,0x40002d41,0xff540281 + .long 0x0000003f,0xe989d3c1,0x222eff54,0xec812d41 + .long 0xff54f200,0x0100f23c,0x4423bc31,0x7218f23a + .long 0x4923f930,0xf2000422,0xf2000822,0x06413fff + .long 0xf2000080,0xf20004a3,0xf23c4500,0x3950097b + .long 0xf2000523,0xf2000580,0xf23c45a3,0x3ab60b6a + .long 0xf23a5522,0xf91ef23a,0x55a2f920,0x3d41ff84 + .long 0x2d7c8000,0x0000ff88,0x42aeff8c,0xf2000523 + .long 0x222eff54,0x4441f200,0x05a30641,0x3ffff23a + .long 0x5522f900,0xf23c45a2,0x3f000000,0xf2000523 + .long 0x00418000,0x3d41ff90,0x2d7c8000,0x0000ff94 + .long 0x42aeff98,0xf2000ca3,0xf2000123,0xf2000422 + .long 0xf2000822,0xf21fd030,0xf2114823,0x222eff54 + .long 0x0c810000,0x003f6f1a,0xf2294480,0x000cf22e + .long 0x48a2ff90,0xf2000422,0xf2114822,0x60ff0000 + .long 0x00340c81,0xfffffffd,0x6c16f229,0x4422000c + .long 0xf2114822,0xf22e4822,0xff9060ff,0x00000016 + .long 0xf2194880,0xf2114422,0xf22e48a2,0xff90f200 + .long 0x0422f200,0x9000f22e,0x4823ff84,0x60ff0000 + .long 0x22ae0c81,0x3fbe0000,0x6c6c0c81,0x00330000 + .long 0x6d2c2d7c,0x80010000,0xff842d7c,0x80000000 + .long 0xff8842ae,0xff8cf210,0x4800f200,0x9000123c + .long 0x0002f22e,0x4822ff84,0x60ff0000,0x2264f210 + .long 0x4800f23a,0x5423f86c,0x2d7c8001,0x0000ff84 + .long 0x2d7c8000,0x0000ff88,0x42aeff8c,0xf22e4822 + .long 0xff84f200,0x9000123c,0x0000f23a,0x5423f84c + .long 0x60ff0000,0x222cf210,0x4800f200,0x0023f227 + .long 0xe00cf23c,0x44802f30,0xcaa8f200,0x00a3f23c + .long 0x4500310f,0x8290f23c,0x44a232d7,0x3220f200 + .long 0x0123f200,0x00a3f23c,0x45223493,0xf281f23a + .long 0x54a2f7c0,0xf2000123,0xf20000a3,0xf23a5522 + .long 0xf7baf23a,0x54a2f7bc,0xf2000123,0xf20000a3 + .long 0xf23a5522,0xf7b6f23a,0x54a2f7b8,0xf2000123 + .long 0xf20000a3,0xf23a5522,0xf7b2f23a,0x48a2f7b4 + .long 0xf2000123,0xf20000a3,0xf2000123,0xf21048a3 + .long 0xf23c4423,0x3f000000,0xf20008a2,0xf21fd030 + .long 0xf2000422,0xf2009000,0xf2104822,0x60ff0000 + .long 0x218e2210,0x0c810000,0x00006e00,0xfbacf23c + .long 0x4400bf80,0x0000f200,0x9000f23c,0x44220080 + .long 0x000060ff,0x00002178,0x60ff0000,0x1ff63028 + .long 0x00000880,0x000f0440,0x3ffff200,0x50006d02 + .long 0x4e751d7c,0x0008ff64,0x4e7561ff,0x00007cfc + .long 0x44400440,0x3ffff200,0x50001d7c,0x0008ff64 + .long 0x4e753028,0x00000040,0x7fff0880,0x000e2d68 + .long 0x0004ff88,0x2d680008,0xff8c3d40,0xff84f22e + .long 0x4800ff84,0x6b024e75,0x1d7c0008,0xff644e75 + .long 0x61ff0000,0x7cb660ca,0x7ffb0000,0x80000000 + .long 0x00000000,0x00000000,0xf2104800,0x22103228 + .long 0x00040281,0x7fffffff,0x0c81400c,0xb1676e42 + .long 0xf2000018,0x2f004280,0xf227e001,0x41d761ff + .long 0xfffffad2,0xdffc0000,0x000cf23c,0x44233f00 + .long 0x0000201f,0xf23c4480,0x3e800000,0xf20000a0 + .long 0xf2009000,0x123c0002,0xf2000422,0x60ff0000 + .long 0x20800c81,0x400cb2b3,0x6e3cf200,0x0018f23a + .long 0x5428baae,0xf23a5428,0xbab02f00,0x4280f227 + .long 0xe00141d7,0x61ffffff,0xfa7cdffc,0x0000000c + .long 0x201ff200,0x9000123c,0x0000f23a,0x4823ff5a + .long 0x60ff0000,0x203c60ff,0x00002014,0xf23c4400 + .long 0x3f800000,0xf2009000,0xf23c4422,0x00800000 + .long 0x60ff0000,0x2032f210,0x48002210,0x32280004 + .long 0x22410281,0x7fffffff,0x0c81400c,0xb1676e62 + .long 0xf2000018,0x48e78040,0xf227e001,0x41d74280 + .long 0x61ffffff,0xfbe0dffc,0x0000000c,0xf23c9000 + .long 0x00000000,0x4cdf0201,0xf2000080,0xf23c44a2 + .long 0x3f800000,0xf2276800,0xf2000420,0x22090281 + .long 0x80000000,0x00813f00,0x0000f21f,0x48222f01 + .long 0xf2009000,0x123c0000,0xf21f4423,0x60ff0000 + .long 0x1fa00c81,0x400cb2b3,0x6eff0000,0x1f4cf200 + .long 0x0018f23a,0x5428b9ca,0x2f3c0000,0x00002f3c + .long 0x80000000,0x22090281,0x80000000,0x00817ffb + .long 0x00002f01,0xf23a5428,0xb9b02f00,0x4280f227 + .long 0xe00141d7,0x61ffffff,0xf97cdffc,0x0000000c + .long 0x201ff200,0x9000123c,0x0000f21f,0x482360ff + .long 0x00001f3e,0x60ff0000,0x1ddaf210,0x4800f22e + .long 0x6800ff84,0x22103228,0x00042d41,0xff840281 + .long 0x7fffffff,0x0c813fd7,0x80006d00,0x00740c81 + .long 0x3fffddce,0x6e00006a,0x222eff84,0x2d41ff5c + .long 0x02817fff,0x00000681,0x00010000,0x2d41ff84 + .long 0x02ae8000,0x0000ff5c,0xf22e4800,0xff842f00 + .long 0x4280f227,0xe00141d7,0x61ffffff,0xfac8dffc + .long 0x0000000c,0x201ff200,0x0080f23c,0x44a24000 + .long 0x0000222e,0xff5cf22e,0x6880ff84,0xb3aeff84 + .long 0xf2009000,0xf22e4820,0xff8460ff,0x00001eb0 + .long 0x0c813fff,0x80006d00,0x00880c81,0x40048aa1 + .long 0x6e000092,0x222eff84,0x2d41ff5c,0x02817fff + .long 0x00000681,0x00010000,0x2d41ff84,0x02ae8000 + .long 0x0000ff5c,0x222eff5c,0xf22e4800,0xff842f00 + .long 0x4280f227,0xe00141d7,0x61ffffff,0xf878dffc + .long 0x0000000c,0x201f222e,0xff5cf23c,0x44223f80 + .long 0x00000a81,0xc0000000,0xf2014480,0xf20000a0 + .long 0x222eff5c,0x00813f80,0x0000f201,0x4400f200 + .long 0x9000123c,0x0002f200,0x042260ff,0x00001e20 + .long 0xf2009000,0x123c0003,0xf22e4800,0xff8460ff + .long 0x00001dfe,0x222eff84,0x02818000,0x00000081 + .long 0x3f800000,0xf2014400,0x02818000,0x00000a81 + .long 0x80800000,0xf2009000,0xf2014422,0x60ff0000 + .long 0x1dde60ff,0x00001c6c,0x3ffe0000,0xb17217f7 + .long 0xd1cf79ac,0x00000000,0x3f800000,0x00000000 + .long 0x7f800000,0xbf800000,0x3fc2499a,0xb5e4040b + .long 0xbfc555b5,0x848cb7db,0x3fc99999,0x987d8730 + .long 0xbfcfffff,0xff6f7e97,0x3fd55555,0x555555a4 + .long 0xbfe00000,0x00000008,0x3f175496,0xadd7dad6 + .long 0x3f3c71c2,0xfe80c7e0,0x3f624924,0x928bccff + .long 0x3f899999,0x999995ec,0x3fb55555,0x55555555 + .long 0x40000000,0x00000000,0x3f990000,0x80000000 + .long 0x00000000,0x00000000,0x3ffe0000,0xfe03f80f + .long 0xe03f80fe,0x00000000,0x3ff70000,0xff015358 + .long 0x833c47e2,0x00000000,0x3ffe0000,0xfa232cf2 + .long 0x52138ac0,0x00000000,0x3ff90000,0xbdc8d83e + .long 0xad88d549,0x00000000,0x3ffe0000,0xf6603d98 + .long 0x0f6603da,0x00000000,0x3ffa0000,0x9cf43dcf + .long 0xf5eafd48,0x00000000,0x3ffe0000,0xf2b9d648 + .long 0x0f2b9d65,0x00000000,0x3ffa0000,0xda16eb88 + .long 0xcb8df614,0x00000000,0x3ffe0000,0xef2eb71f + .long 0xc4345238,0x00000000,0x3ffb0000,0x8b29b775 + .long 0x1bd70743,0x00000000,0x3ffe0000,0xebbdb2a5 + .long 0xc1619c8c,0x00000000,0x3ffb0000,0xa8d839f8 + .long 0x30c1fb49,0x00000000,0x3ffe0000,0xe865ac7b + .long 0x7603a197,0x00000000,0x3ffb0000,0xc61a2eb1 + .long 0x8cd907ad,0x00000000,0x3ffe0000,0xe525982a + .long 0xf70c880e,0x00000000,0x3ffb0000,0xe2f2a47a + .long 0xde3a18af,0x00000000,0x3ffe0000,0xe1fc780e + .long 0x1fc780e2,0x00000000,0x3ffb0000,0xff64898e + .long 0xdf55d551,0x00000000,0x3ffe0000,0xdee95c4c + .long 0xa037ba57,0x00000000,0x3ffc0000,0x8db956a9 + .long 0x7b3d0148,0x00000000,0x3ffe0000,0xdbeb61ee + .long 0xd19c5958,0x00000000,0x3ffc0000,0x9b8fe100 + .long 0xf47ba1de,0x00000000,0x3ffe0000,0xd901b203 + .long 0x6406c80e,0x00000000,0x3ffc0000,0xa9372f1d + .long 0x0da1bd17,0x00000000,0x3ffe0000,0xd62b80d6 + .long 0x2b80d62c,0x00000000,0x3ffc0000,0xb6b07f38 + .long 0xce90e46b,0x00000000,0x3ffe0000,0xd3680d36 + .long 0x80d3680d,0x00000000,0x3ffc0000,0xc3fd0329 + .long 0x06488481,0x00000000,0x3ffe0000,0xd0b69fcb + .long 0xd2580d0b,0x00000000,0x3ffc0000,0xd11de0ff + .long 0x15ab18ca,0x00000000,0x3ffe0000,0xce168a77 + .long 0x25080ce1,0x00000000,0x3ffc0000,0xde1433a1 + .long 0x6c66b150,0x00000000,0x3ffe0000,0xcb8727c0 + .long 0x65c393e0,0x00000000,0x3ffc0000,0xeae10b5a + .long 0x7ddc8add,0x00000000,0x3ffe0000,0xc907da4e + .long 0x871146ad,0x00000000,0x3ffc0000,0xf7856e5e + .long 0xe2c9b291,0x00000000,0x3ffe0000,0xc6980c69 + .long 0x80c6980c,0x00000000,0x3ffd0000,0x82012ca5 + .long 0xa68206d7,0x00000000,0x3ffe0000,0xc4372f85 + .long 0x5d824ca6,0x00000000,0x3ffd0000,0x882c5fcd + .long 0x7256a8c5,0x00000000,0x3ffe0000,0xc1e4bbd5 + .long 0x95f6e947,0x00000000,0x3ffd0000,0x8e44c60b + .long 0x4ccfd7de,0x00000000,0x3ffe0000,0xbfa02fe8 + .long 0x0bfa02ff,0x00000000,0x3ffd0000,0x944ad09e + .long 0xf4351af6,0x00000000,0x3ffe0000,0xbd691047 + .long 0x07661aa3,0x00000000,0x3ffd0000,0x9a3eecd4 + .long 0xc3eaa6b2,0x00000000,0x3ffe0000,0xbb3ee721 + .long 0xa54d880c,0x00000000,0x3ffd0000,0xa0218434 + .long 0x353f1de8,0x00000000,0x3ffe0000,0xb92143fa + .long 0x36f5e02e,0x00000000,0x3ffd0000,0xa5f2fcab + .long 0xbbc506da,0x00000000,0x3ffe0000,0xb70fbb5a + .long 0x19be3659,0x00000000,0x3ffd0000,0xabb3b8ba + .long 0x2ad362a5,0x00000000,0x3ffe0000,0xb509e68a + .long 0x9b94821f,0x00000000,0x3ffd0000,0xb1641795 + .long 0xce3ca97b,0x00000000,0x3ffe0000,0xb30f6352 + .long 0x8917c80b,0x00000000,0x3ffd0000,0xb7047551 + .long 0x5d0f1c61,0x00000000,0x3ffe0000,0xb11fd3b8 + .long 0x0b11fd3c,0x00000000,0x3ffd0000,0xbc952afe + .long 0xea3d13e1,0x00000000,0x3ffe0000,0xaf3addc6 + .long 0x80af3ade,0x00000000,0x3ffd0000,0xc2168ed0 + .long 0xf458ba4a,0x00000000,0x3ffe0000,0xad602b58 + .long 0x0ad602b6,0x00000000,0x3ffd0000,0xc788f439 + .long 0xb3163bf1,0x00000000,0x3ffe0000,0xab8f69e2 + .long 0x8359cd11,0x00000000,0x3ffd0000,0xccecac08 + .long 0xbf04565d,0x00000000,0x3ffe0000,0xa9c84a47 + .long 0xa07f5638,0x00000000,0x3ffd0000,0xd2420487 + .long 0x2dd85160,0x00000000,0x3ffe0000,0xa80a80a8 + .long 0x0a80a80b,0x00000000,0x3ffd0000,0xd7894992 + .long 0x3bc3588a,0x00000000,0x3ffe0000,0xa655c439 + .long 0x2d7b73a8,0x00000000,0x3ffd0000,0xdcc2c4b4 + .long 0x9887dacc,0x00000000,0x3ffe0000,0xa4a9cf1d + .long 0x96833751,0x00000000,0x3ffd0000,0xe1eebd3e + .long 0x6d6a6b9e,0x00000000,0x3ffe0000,0xa3065e3f + .long 0xae7cd0e0,0x00000000,0x3ffd0000,0xe70d785c + .long 0x2f9f5bdc,0x00000000,0x3ffe0000,0xa16b312e + .long 0xa8fc377d,0x00000000,0x3ffd0000,0xec1f392c + .long 0x5179f283,0x00000000,0x3ffe0000,0x9fd809fd + .long 0x809fd80a,0x00000000,0x3ffd0000,0xf12440d3 + .long 0xe36130e6,0x00000000,0x3ffe0000,0x9e4cad23 + .long 0xdd5f3a20,0x00000000,0x3ffd0000,0xf61cce92 + .long 0x346600bb,0x00000000,0x3ffe0000,0x9cc8e160 + .long 0xc3fb19b9,0x00000000,0x3ffd0000,0xfb091fd3 + .long 0x8145630a,0x00000000,0x3ffe0000,0x9b4c6f9e + .long 0xf03a3caa,0x00000000,0x3ffd0000,0xffe97042 + .long 0xbfa4c2ad,0x00000000,0x3ffe0000,0x99d722da + .long 0xbde58f06,0x00000000,0x3ffe0000,0x825efced + .long 0x49369330,0x00000000,0x3ffe0000,0x9868c809 + .long 0x868c8098,0x00000000,0x3ffe0000,0x84c37a7a + .long 0xb9a905c9,0x00000000,0x3ffe0000,0x97012e02 + .long 0x5c04b809,0x00000000,0x3ffe0000,0x87224c2e + .long 0x8e645fb7,0x00000000,0x3ffe0000,0x95a02568 + .long 0x095a0257,0x00000000,0x3ffe0000,0x897b8cac + .long 0x9f7de298,0x00000000,0x3ffe0000,0x94458094 + .long 0x45809446,0x00000000,0x3ffe0000,0x8bcf55de + .long 0xc4cd05fe,0x00000000,0x3ffe0000,0x92f11384 + .long 0x0497889c,0x00000000,0x3ffe0000,0x8e1dc0fb + .long 0x89e125e5,0x00000000,0x3ffe0000,0x91a2b3c4 + .long 0xd5e6f809,0x00000000,0x3ffe0000,0x9066e68c + .long 0x955b6c9b,0x00000000,0x3ffe0000,0x905a3863 + .long 0x3e06c43b,0x00000000,0x3ffe0000,0x92aade74 + .long 0xc7be59e0,0x00000000,0x3ffe0000,0x8f1779d9 + .long 0xfdc3a219,0x00000000,0x3ffe0000,0x94e9bff6 + .long 0x15845643,0x00000000,0x3ffe0000,0x8dda5202 + .long 0x37694809,0x00000000,0x3ffe0000,0x9723a1b7 + .long 0x20134203,0x00000000,0x3ffe0000,0x8ca29c04 + .long 0x6514e023,0x00000000,0x3ffe0000,0x995899c8 + .long 0x90eb8990,0x00000000,0x3ffe0000,0x8b70344a + .long 0x139bc75a,0x00000000,0x3ffe0000,0x9b88bdaa + .long 0x3a3dae2f,0x00000000,0x3ffe0000,0x8a42f870 + .long 0x5669db46,0x00000000,0x3ffe0000,0x9db4224f + .long 0xffe1157c,0x00000000,0x3ffe0000,0x891ac73a + .long 0xe9819b50,0x00000000,0x3ffe0000,0x9fdadc26 + .long 0x8b7a12da,0x00000000,0x3ffe0000,0x87f78087 + .long 0xf78087f8,0x00000000,0x3ffe0000,0xa1fcff17 + .long 0xce733bd4,0x00000000,0x3ffe0000,0x86d90544 + .long 0x7a34acc6,0x00000000,0x3ffe0000,0xa41a9e8f + .long 0x5446fb9f,0x00000000,0x3ffe0000,0x85bf3761 + .long 0x2cee3c9b,0x00000000,0x3ffe0000,0xa633cd7e + .long 0x6771cd8b,0x00000000,0x3ffe0000,0x84a9f9c8 + .long 0x084a9f9d,0x00000000,0x3ffe0000,0xa8489e60 + .long 0x0b435a5e,0x00000000,0x3ffe0000,0x83993052 + .long 0x3fbe3368,0x00000000,0x3ffe0000,0xaa59233c + .long 0xcca4bd49,0x00000000,0x3ffe0000,0x828cbfbe + .long 0xb9a020a3,0x00000000,0x3ffe0000,0xac656dae + .long 0x6bcc4985,0x00000000,0x3ffe0000,0x81848da8 + .long 0xfaf0d277,0x00000000,0x3ffe0000,0xae6d8ee3 + .long 0x60bb2468,0x00000000,0x3ffe0000,0x80808080 + .long 0x80808081,0x00000000,0x3ffe0000,0xb07197a2 + .long 0x3c46c654,0x00000000,0xf2104800,0x2d7c0000 + .long 0x0000ff54,0x22103228,0x00042d50,0xff842d68 + .long 0x0004ff88,0x2d680008,0xff8c0c81,0x00000000 + .long 0x6d000182,0x0c813ffe,0xf07d6d0a,0x0c813fff + .long 0x88416f00,0x00e2e081,0xe0810481,0x00003fff + .long 0xd2aeff54,0x41faf7b2,0xf2014080,0x2d7c3fff + .long 0x0000ff84,0x2d6eff88,0xff9402ae,0xfe000000 + .long 0xff9400ae,0x01000000,0xff94222e,0xff940281 + .long 0x7e000000,0xe081e081,0xe881d1c1,0xf22e4800 + .long 0xff842d7c,0x3fff0000,0xff9042ae,0xff98f22e + .long 0x4828ff90,0xf227e00c,0xf2104823,0xf23a48a3 + .long 0xf6c8f200,0x0100f200,0x0923f22e,0x6880ff84 + .long 0xf2000980,0xf2000880,0xf23a54a3,0xf6ccf23a + .long 0x5523f6ce,0xf23a54a2,0xf6d0f23a,0x5522f6d2 + .long 0xf2000ca3,0xf2000d23,0xf23a54a2,0xf6ccf23a + .long 0x5522f6ce,0xf2000ca3,0xd1fc0000,0x0010f200 + .long 0x0d23f200,0x00a3f200,0x0822f210,0x48a2f21f + .long 0xd030f200,0x0422f200,0x9000f22e,0x4822ff84 + .long 0x60ff0000,0x142af23c,0x58380001,0xf2c10000 + .long 0x1678f200,0x0080f23a,0x44a8f64e,0xf23a4422 + .long 0xf648f200,0x04a2f200,0x00a0f227,0xe00cf200 + .long 0x0400f200,0x0023f22e,0x6880ff84,0xf2000080 + .long 0xf20004a3,0xf23a5580,0xf660f23a,0x5500f662 + .long 0xf20005a3,0xf2000523,0xf23a55a2,0xf65cf23a + .long 0x5522f65e,0xf2000ca3,0xf2000123,0xf23a54a2 + .long 0xf658f22e,0x4823ff84,0xf20008a2,0xf21fd030 + .long 0xf2000423,0xf2009000,0xf22e4822,0xff8460ff + .long 0x0000139c,0x60ff0000,0x12102d7c,0xffffff9c + .long 0xff5448e7,0x3f002610,0x28280004,0x2a280008 + .long 0x42824a84,0x66342805,0x42857420,0x4286edc4 + .long 0x6000edac,0xd4862d43,0xff842d44,0xff882d45 + .long 0xff8c4482,0x2d42ff54,0xf22e4800,0xff844cdf + .long 0x00fc41ee,0xff846000,0xfe0c4286,0xedc46000 + .long 0x2406edac,0x2e05edad,0x44860686,0x00000020 + .long 0xecaf8887,0x2d43ff84,0x2d44ff88,0x2d45ff8c + .long 0x44822d42,0xff54f22e,0x4800ff84,0x4cdf00fc + .long 0x41eeff84,0x6000fdce,0xf2104800,0xf2000018 + .long 0xf23a4838,0xf5a4f292,0x0014f200,0x9000123c + .long 0x0003f210,0x480060ff,0x000012d6,0xf2104800 + .long 0x2d7c0000,0x0000ff54,0xf2000080,0xf23a4422 + .long 0xf508f22e,0x6800ff84,0x3d6eff88,0xff86222e + .long 0xff840c81,0x00000000,0x6f0000da,0x0c813ffe + .long 0x80006d00,0xfda20c81,0x3fffc000,0x6e00fd98 + .long 0x0c813ffe,0xf07d6d00,0x001a0c81,0x3fff8841 + .long 0x6e000010,0xf20004a2,0xf23a4422,0xf4bc6000 + .long 0xfe762d6e,0xff88ff94,0x02aefe00,0x0000ff94 + .long 0x00ae0100,0x0000ff94,0x0c813fff,0x80006c44 + .long 0xf23a4400,0xf4fc2d7c,0x3fff0000,0xff9042ae + .long 0xff98f22e,0x4828ff90,0x222eff94,0x02817e00 + .long 0x0000e081,0xe081e881,0xf20004a2,0xf227e00c + .long 0xf2000422,0x41faf4e2,0xd1c1f23a,0x4480f466 + .long 0x6000fd76,0xf23a4400,0xf4502d7c,0x3fff0000 + .long 0xff9042ae,0xff98f22e,0x4828ff90,0x222eff94 + .long 0x02817e00,0x0000e081,0xe081e881,0xf2000422 + .long 0xf227e00c,0x41faf4a2,0xd1c1f23a,0x4480f41e + .long 0x6000fd36,0x0c810000,0x00006d10,0xf23a4400 + .long 0xf414f200,0x900060ff,0x00001014,0xf23a4400 + .long 0xf3fcf200,0x900060ff,0x0000102e,0x60ff0000 + .long 0x10422210,0x32280004,0x02817fff,0xffff0c81 + .long 0x3fff8000,0x6c56f210,0x4818f200,0x0080f200 + .long 0x049af200,0x0022f23c,0x44a23f80,0x0000f200 + .long 0x04202210,0x02818000,0x00000081,0x3f000000 + .long 0x2f012f00,0x4280f227,0xe00141d7,0x61ffffff + .long 0xfe5adffc,0x0000000c,0x201ff200,0x9000123c + .long 0x0000f21f,0x442360ff,0x00001136,0xf2104818 + .long 0xf23c4438,0x3f800000,0xf2d20000,0x0fac60ff + .long 0x00000f7c,0x60ff0000,0x0fba3ffd,0x0000de5b + .long 0xd8a93728,0x71950000,0x00003fff,0x0000b8aa + .long 0x3b295c17,0xf0bc0000,0x0000f23c,0x58000001 + .long 0xf2104838,0xf2c10000,0x13502210,0x6d000090 + .long 0x2f004280,0x61ffffff,0xfba2f21f,0x9000f23a + .long 0x4823ffb8,0x60ff0000,0x10d62210,0x6d000070 + .long 0x2f004280,0x61ffffff,0xfd34f21f,0x9000f23a + .long 0x4823ff98,0x60ff0000,0x10c62210,0x6d000050 + .long 0x22280008,0x662e2228,0x00040281,0x7fffffff + .long 0x66223210,0x02810000,0x7fff0481,0x00003fff + .long 0x67ff0000,0x12e4f200,0x9000f201,0x400060ff + .long 0x0000107c,0x2f004280,0x61ffffff,0xfb2ef21f + .long 0x9000f23a,0x4823ff54,0x60ff0000,0x106260ff + .long 0x00000ed6,0x22106d00,0xfff62f00,0x428061ff + .long 0xfffffcba,0xf21f9000,0xf23a4823,0xff2e60ff + .long 0x0000104c,0x406a934f,0x0979a371,0x3f734413 + .long 0x509f8000,0xbfcd0000,0xc0219dc1,0xda994fd2 + .long 0x00000000,0x40000000,0x935d8ddd,0xaaa8ac17 + .long 0x00000000,0x3ffe0000,0xb17217f7,0xd1cf79ac + .long 0x00000000,0x3f56c16d,0x6f7bd0b2,0x3f811112 + .long 0x302c712c,0x3fa55555,0x55554cc1,0x3fc55555 + .long 0x55554a54,0x3fe00000,0x00000000,0x00000000 + .long 0x00000000,0x3fff0000,0x80000000,0x00000000 + .long 0x3f738000,0x3fff0000,0x8164d1f3,0xbc030773 + .long 0x3fbef7ca,0x3fff0000,0x82cd8698,0xac2ba1d7 + .long 0x3fbdf8a9,0x3fff0000,0x843a28c3,0xacde4046 + .long 0x3fbcd7c9,0x3fff0000,0x85aac367,0xcc487b15 + .long 0xbfbde8da,0x3fff0000,0x871f6196,0x9e8d1010 + .long 0x3fbde85c,0x3fff0000,0x88980e80,0x92da8527 + .long 0x3fbebbf1,0x3fff0000,0x8a14d575,0x496efd9a + .long 0x3fbb80ca,0x3fff0000,0x8b95c1e3,0xea8bd6e7 + .long 0xbfba8373,0x3fff0000,0x8d1adf5b,0x7e5ba9e6 + .long 0xbfbe9670,0x3fff0000,0x8ea4398b,0x45cd53c0 + .long 0x3fbdb700,0x3fff0000,0x9031dc43,0x1466b1dc + .long 0x3fbeeeb0,0x3fff0000,0x91c3d373,0xab11c336 + .long 0x3fbbfd6d,0x3fff0000,0x935a2b2f,0x13e6e92c + .long 0xbfbdb319,0x3fff0000,0x94f4efa8,0xfef70961 + .long 0x3fbdba2b,0x3fff0000,0x96942d37,0x20185a00 + .long 0x3fbe91d5,0x3fff0000,0x9837f051,0x8db8a96f + .long 0x3fbe8d5a,0x3fff0000,0x99e04593,0x20b7fa65 + .long 0xbfbcde7b,0x3fff0000,0x9b8d39b9,0xd54e5539 + .long 0xbfbebaaf,0x3fff0000,0x9d3ed9a7,0x2cffb751 + .long 0xbfbd86da,0x3fff0000,0x9ef53260,0x91a111ae + .long 0xbfbebedd,0x3fff0000,0xa0b0510f,0xb9714fc2 + .long 0x3fbcc96e,0x3fff0000,0xa2704303,0x0c496819 + .long 0xbfbec90b,0x3fff0000,0xa43515ae,0x09e6809e + .long 0x3fbbd1db,0x3fff0000,0xa5fed6a9,0xb15138ea + .long 0x3fbce5eb,0x3fff0000,0xa7cd93b4,0xe965356a + .long 0xbfbec274,0x3fff0000,0xa9a15ab4,0xea7c0ef8 + .long 0x3fbea83c,0x3fff0000,0xab7a39b5,0xa93ed337 + .long 0x3fbecb00,0x3fff0000,0xad583eea,0x42a14ac6 + .long 0x3fbe9301,0x3fff0000,0xaf3b78ad,0x690a4375 + .long 0xbfbd8367,0x3fff0000,0xb123f581,0xd2ac2590 + .long 0xbfbef05f,0x3fff0000,0xb311c412,0xa9112489 + .long 0x3fbdfb3c,0x3fff0000,0xb504f333,0xf9de6484 + .long 0x3fbeb2fb,0x3fff0000,0xb6fd91e3,0x28d17791 + .long 0x3fbae2cb,0x3fff0000,0xb8fbaf47,0x62fb9ee9 + .long 0x3fbcdc3c,0x3fff0000,0xbaff5ab2,0x133e45fb + .long 0x3fbee9aa,0x3fff0000,0xbd08a39f,0x580c36bf + .long 0xbfbeaefd,0x3fff0000,0xbf1799b6,0x7a731083 + .long 0xbfbcbf51,0x3fff0000,0xc12c4cca,0x66709456 + .long 0x3fbef88a,0x3fff0000,0xc346ccda,0x24976407 + .long 0x3fbd83b2,0x3fff0000,0xc5672a11,0x5506dadd + .long 0x3fbdf8ab,0x3fff0000,0xc78d74c8,0xabb9b15d + .long 0xbfbdfb17,0x3fff0000,0xc9b9bd86,0x6e2f27a3 + .long 0xbfbefe3c,0x3fff0000,0xcbec14fe,0xf2727c5d + .long 0xbfbbb6f8,0x3fff0000,0xce248c15,0x1f8480e4 + .long 0xbfbcee53,0x3fff0000,0xd06333da,0xef2b2595 + .long 0xbfbda4ae,0x3fff0000,0xd2a81d91,0xf12ae45a + .long 0x3fbc9124,0x3fff0000,0xd4f35aab,0xcfedfa1f + .long 0x3fbeb243,0x3fff0000,0xd744fcca,0xd69d6af4 + .long 0x3fbde69a,0x3fff0000,0xd99d15c2,0x78afd7b6 + .long 0xbfb8bc61,0x3fff0000,0xdbfbb797,0xdaf23755 + .long 0x3fbdf610,0x3fff0000,0xde60f482,0x5e0e9124 + .long 0xbfbd8be1,0x3fff0000,0xe0ccdeec,0x2a94e111 + .long 0x3fbacb12,0x3fff0000,0xe33f8972,0xbe8a5a51 + .long 0x3fbb9bfe,0x3fff0000,0xe5b906e7,0x7c8348a8 + .long 0x3fbcf2f4,0x3fff0000,0xe8396a50,0x3c4bdc68 + .long 0x3fbef22f,0x3fff0000,0xeac0c6e7,0xdd24392f + .long 0xbfbdbf4a,0x3fff0000,0xed4f301e,0xd9942b84 + .long 0x3fbec01a,0x3fff0000,0xefe4b99b,0xdcdaf5cb + .long 0x3fbe8cac,0x3fff0000,0xf281773c,0x59ffb13a + .long 0xbfbcbb3f,0x3fff0000,0xf5257d15,0x2486cc2c + .long 0x3fbef73a,0x3fff0000,0xf7d0df73,0x0ad13bb9 + .long 0xbfb8b795,0x3fff0000,0xfa83b2db,0x722a033a + .long 0x3fbef84b,0x3fff0000,0xfd3e0c0c,0xf486c175 + .long 0xbfbef581,0xf210d080,0x22103228,0x0004f22e + .long 0x6800ff84,0x02817fff,0xffff0c81,0x3fb98000 + .long 0x6c046000,0x00880c81,0x400d80c0,0x6f046000 + .long 0x007cf200,0x0080f23c,0x44a34280,0x0000f22e + .long 0x6080ff54,0x2f0243fa,0xfbbcf22e,0x4080ff54 + .long 0x222eff54,0x24010281,0x0000003f,0xe981d3c1 + .long 0xec822202,0xe2819481,0x06820000,0x3ffff227 + .long 0xe00cf23c,0x44a33c80,0x00002d59,0xff842d59 + .long 0xff882d59,0xff8c3d59,0xff90f200,0x04283d59 + .long 0xff94426e,0xff9642ae,0xff98d36e,0xff84f23a + .long 0x4823fb22,0xd36eff90,0x60000100,0x0c813fff + .long 0x80006e12,0xf2009000,0xf23c4422,0x3f800000 + .long 0x60ff0000,0x0b12222e,0xff840c81,0x00000000 + .long 0x6d0660ff,0x00000ac8,0x60ff0000,0x0a1af200 + .long 0x9000f23c,0x44003f80,0x00002210,0x00810080 + .long 0x0001f201,0x442260ff,0x00000adc,0xf210d080 + .long 0x22103228,0x0004f22e,0x6800ff84,0x02817fff + .long 0xffff0c81,0x3fb98000,0x6c046000,0xff900c81 + .long 0x400b9b07,0x6f046000,0xff84f200,0x0080f23a + .long 0x54a3fa62,0xf22e6080,0xff542f02,0x43fafac6 + .long 0xf22e4080,0xff54222e,0xff542401,0x02810000 + .long 0x003fe981,0xd3c1ec82,0x2202e281,0x94810682 + .long 0x00003fff,0xf227e00c,0xf2000500,0xf23a54a3 + .long 0xfa2c2d59,0xff84f23a,0x4923fa2a,0x2d59ff88 + .long 0x2d59ff8c,0xf2000428,0x3d59ff90,0xf2000828 + .long 0x3d59ff94,0x426eff96,0x42aeff98,0xf23a4823 + .long 0xfa14d36e,0xff84d36e,0xff90f200,0x0080f200 + .long 0x04a3f23a,0x5500fa1e,0xf23a5580,0xfa20f200 + .long 0x0523f200,0x05a3f23a,0x5522fa1a,0xf23a55a2 + .long 0xfa1cf200,0x0523f200,0x05a3f23a,0x5522fa16 + .long 0xf20001a3,0xf2000523,0xf2000c22,0xf2000822 + .long 0xf21fd030,0xf22e4823,0xff84f22e,0x4822ff90 + .long 0xf22e4822,0xff84f200,0x90003d42,0xff84241f + .long 0x2d7c8000,0x0000ff88,0x42aeff8c,0x123c0000 + .long 0xf22e4823,0xff8460ff,0x00000996,0xf2009000 + .long 0xf23c4400,0x3f800000,0x22100081,0x00800001 + .long 0xf2014422,0x60ff0000,0x098e2f01,0xe8082200 + .long 0x02410003,0x0240000c,0x48403001,0x221f4a01 + .long 0x671e0c01,0x000a6f12,0x0c01000e,0x6f3c0c01 + .long 0x002f6f06,0x0c01003f,0x6f6260ff,0x00000baa + .long 0x4a00660c,0x41fb0170,0x000000d6,0x60000086 + .long 0x0c000003,0x670a41fb,0x01700000,0x00d06074 + .long 0x41fb0170,0x000000d2,0x606a0401,0x000b4a00 + .long 0x661041fb,0x01700000,0x00cc0c01,0x00026f54 + .long 0x605a0c00,0x0003670a,0x41fb0170,0x000000f2 + .long 0x60e841fb,0x01700000,0x012460de,0x04010030 + .long 0x4a006616,0x41fb0170,0x0000014e,0x0c010001 + .long 0x6f220c01,0x00076f24,0x601a0c00,0x0003670a + .long 0x41fb0170,0x000001f2,0x60e241fb,0x01700000 + .long 0x02a860d8,0x00ae0000,0x0208ff64,0xc2fc000c + .long 0x48404a00,0x6608f230,0xd0801000,0x4e754840 + .long 0x3d701000,0xff902d70,0x1004ff94,0x2d701008 + .long 0xff982200,0x428041ee,0xff904268,0x000261ff + .long 0x000062c6,0xf210d080,0x4e7551fc,0x40000000 + .long 0xc90fdaa2,0x2168c235,0x40000000,0xc90fdaa2 + .long 0x2168c234,0x40000000,0xc90fdaa2,0x2168c235 + .long 0x3ffd0000,0x9a209a84,0xfbcff798,0x40000000 + .long 0xadf85458,0xa2bb4a9a,0x3fff0000,0xb8aa3b29 + .long 0x5c17f0bc,0x3ffd0000,0xde5bd8a9,0x37287195 + .long 0x00000000,0x00000000,0x00000000,0x3ffd0000 + .long 0x9a209a84,0xfbcff798,0x40000000,0xadf85458 + .long 0xa2bb4a9a,0x3fff0000,0xb8aa3b29,0x5c17f0bb + .long 0x3ffd0000,0xde5bd8a9,0x37287195,0x00000000 + .long 0x00000000,0x00000000,0x3ffd0000,0x9a209a84 + .long 0xfbcff799,0x40000000,0xadf85458,0xa2bb4a9b + .long 0x3fff0000,0xb8aa3b29,0x5c17f0bc,0x3ffd0000 + .long 0xde5bd8a9,0x37287195,0x00000000,0x00000000 + .long 0x00000000,0x3ffe0000,0xb17217f7,0xd1cf79ac + .long 0x40000000,0x935d8ddd,0xaaa8ac17,0x3fff0000 + .long 0x80000000,0x00000000,0x40020000,0xa0000000 + .long 0x00000000,0x40050000,0xc8000000,0x00000000 + .long 0x400c0000,0x9c400000,0x00000000,0x40190000 + .long 0xbebc2000,0x00000000,0x40340000,0x8e1bc9bf + .long 0x04000000,0x40690000,0x9dc5ada8,0x2b70b59e + .long 0x40d30000,0xc2781f49,0xffcfa6d5,0x41a80000 + .long 0x93ba47c9,0x80e98ce0,0x43510000,0xaa7eebfb + .long 0x9df9de8e,0x46a30000,0xe319a0ae,0xa60e91c7 + .long 0x4d480000,0xc9767586,0x81750c17,0x5a920000 + .long 0x9e8b3b5d,0xc53d5de5,0x75250000,0xc4605202 + .long 0x8a20979b,0x3ffe0000,0xb17217f7,0xd1cf79ab + .long 0x40000000,0x935d8ddd,0xaaa8ac16,0x3fff0000 + .long 0x80000000,0x00000000,0x40020000,0xa0000000 + .long 0x00000000,0x40050000,0xc8000000,0x00000000 + .long 0x400c0000,0x9c400000,0x00000000,0x40190000 + .long 0xbebc2000,0x00000000,0x40340000,0x8e1bc9bf + .long 0x04000000,0x40690000,0x9dc5ada8,0x2b70b59d + .long 0x40d30000,0xc2781f49,0xffcfa6d5,0x41a80000 + .long 0x93ba47c9,0x80e98cdf,0x43510000,0xaa7eebfb + .long 0x9df9de8d,0x46a30000,0xe319a0ae,0xa60e91c6 + .long 0x4d480000,0xc9767586,0x81750c17,0x5a920000 + .long 0x9e8b3b5d,0xc53d5de4,0x75250000,0xc4605202 + .long 0x8a20979a,0x3ffe0000,0xb17217f7,0xd1cf79ac + .long 0x40000000,0x935d8ddd,0xaaa8ac17,0x3fff0000 + .long 0x80000000,0x00000000,0x40020000,0xa0000000 + .long 0x00000000,0x40050000,0xc8000000,0x00000000 + .long 0x400c0000,0x9c400000,0x00000000,0x40190000 + .long 0xbebc2000,0x00000000,0x40340000,0x8e1bc9bf + .long 0x04000000,0x40690000,0x9dc5ada8,0x2b70b59e + .long 0x40d30000,0xc2781f49,0xffcfa6d6,0x41a80000 + .long 0x93ba47c9,0x80e98ce0,0x43510000,0xaa7eebfb + .long 0x9df9de8e,0x46a30000,0xe319a0ae,0xa60e91c7 + .long 0x4d480000,0xc9767586,0x81750c18,0x5a920000 + .long 0x9e8b3b5d,0xc53d5de5,0x75250000,0xc4605202 + .long 0x8a20979b,0x2f003229,0x00005bee,0xff540281 + .long 0x00007fff,0x30280000,0x02407fff,0x0c403fff + .long 0x6d0000c0,0x0c40400c,0x6e0000a4,0xf2284803 + .long 0x0000f200,0x6000f23c,0x88000000,0x00004a29 + .long 0x00046b5e,0x2f003d69,0x0000ff84,0x2d690004 + .long 0xff882d69,0x0008ff8c,0x41eeff84,0x61ff0000 + .long 0x60ba4480,0xd09ff22e,0xd080ff84,0x0c40c001 + .long 0x6c36f21f,0x9000223c,0x80000000,0x0480ffff + .long 0xc0014480,0x0c000020,0x6c0ae0a9,0x42a72f01 + .long 0x42a76028,0x04000020,0xe0a92f01,0x42a742a7 + .long 0x601af229,0xd0800000,0xf21f9000,0x06403fff + .long 0x484042a7,0x2f3c8000,0x00002f00,0xf200b000 + .long 0x123c0000,0xf21f4823,0x60ff0000,0x04ce201f + .long 0xc1494a29,0x00006bff,0x0000038c,0x60ff0000 + .long 0x03c44a29,0x00046a16,0x201ff200,0x9000123c + .long 0x0003f229,0x48000000,0x60ff0000,0x049e201f + .long 0x204960ff,0x000002e2,0x00010000,0x80000000 + .long 0x00000000,0x00000000,0x422eff65,0x2f00422e + .long 0xff5c600c,0x422eff65,0x2f001d7c,0x0001ff5c + .long 0x48e73f00,0x36280000,0x3d43ff58,0x02830000 + .long 0x7fff2828,0x00042a28,0x00084a83,0x663c263c + .long 0x00003ffe,0x4a846616,0x28054285,0x04830000 + .long 0x00204286,0xedc46000,0xedac9686,0x60224286 + .long 0xedc46000,0x9686edac,0x2e05edad,0x44860686 + .long 0x00000020,0xecaf8887,0x60060683,0x00003ffe + .long 0x30290000,0x3d40ff5a,0x322eff58,0xb1810281 + .long 0x00008000,0x3d41ff5e,0x02800000,0x7fff2229 + .long 0x00042429,0x00084a80,0x663c203c,0x00003ffe + .long 0x4a816616,0x22024282,0x04800000,0x00204286 + .long 0xedc16000,0xeda99086,0x60224286,0xedc16000 + .long 0x9086eda9,0x2e02edaa,0x44860686,0x00000020 + .long 0xecaf8287,0x60060680,0x00003ffe,0x2d43ff54 + .long 0x2f009083,0x42864283,0x227c0000,0x00004a80 + .long 0x6c06201f,0x6000006a,0x588f4a86,0x6e0eb284 + .long 0x6608b485,0x66046000,0x01366508,0x94859384 + .long 0x42865283,0x4a80670e,0xd683d482,0xe39155c6 + .long 0x52895380,0x60d4202e,0xff544a81,0x66162202 + .long 0x42820480,0x00000020,0x4286edc1,0x6000eda9 + .long 0x9086601c,0x4286edc1,0x60006b14,0x9086eda9 + .long 0x2e02edaa,0x44860686,0x00000020,0xecaf8287 + .long 0x0c800000,0x41fe6c2a,0x3d40ff90,0x2d41ff94 + .long 0x2d42ff98,0x2c2eff54,0x3d46ff84,0x2d44ff88 + .long 0x2d45ff8c,0xf22e4800,0xff901d7c,0x0001ff5d + .long 0x60362d41,0xff942d42,0xff980480,0x00003ffe + .long 0x3d40ff90,0x2c2eff54,0x04860000,0x3ffe2d46 + .long 0xff54f22e,0x4800ff90,0x3d46ff84,0x2d44ff88 + .long 0x2d45ff8c,0x422eff5d,0x4a2eff5c,0x67222c2e + .long 0xff545386,0xb0866d18,0x6e0eb284,0x6608b485 + .long 0x66046000,0x007a6508,0xf22e4828,0xff845283 + .long 0x3c2eff5a,0x6c04f200,0x001a4286,0x3c2eff5e + .long 0x7e08eeae,0x02830000,0x007f8686,0x1d43ff65 + .long 0x4cdf00fc,0x201ff200,0x90004a2e,0xff5d6710 + .long 0x123c0000,0xf23a4823,0xfdc060ff,0x0000024c + .long 0x123c0003,0xf2000000,0x60ff0000,0x023e5283 + .long 0x0c800000,0x00086c04,0xe1ab6002,0x4283f23c + .long 0x44000000,0x0000422e,0xff5d6000,0xff942c03 + .long 0x02860000,0x00014a86,0x6700ff86,0x52833c2e + .long 0xff5a0a86,0x00008000,0x3d46ff5a,0x6000ff72 + .long 0x7fff0000,0xffffffff,0xffffffff,0x4a280000 + .long 0x6b12f23c,0x44007f80,0x000000ae,0x02000410 + .long 0xff644e75,0xf23c4400,0xff800000,0x00ae0a00 + .long 0x0410ff64,0x4e7500ae,0x01002080,0xff64f23a + .long 0xd080ffbe,0x4e7500ae,0x00000800,0xff646008 + .long 0x00ae0000,0x0a28ff64,0x22482200,0x020100c0 + .long 0x660e4a28,0x00006a18,0x08ee0003,0xff646010 + .long 0x2f094a28,0x00005bc1,0x61ff0000,0x0196225f + .long 0xf210d080,0x102eff62,0x0200000a,0x66024e75 + .long 0x3d690000,0xff842d69,0x0004ff88,0x2d690008 + .long 0xff8c41ee,0xff8461ff,0x00005cd0,0x06800000 + .long 0x6000026e,0x8000ff84,0x816eff84,0xf22ed040 + .long 0xff844e75,0x00ae0000,0x0a28ff64,0x4a105bc1 + .long 0x61ff0000,0x013ef210,0xd080f23c,0x44800000 + .long 0x00004e75,0x00ae0000,0x0a28ff64,0x51c161ff + .long 0x00000120,0xf210d080,0xf23c4480,0x00000000 + .long 0x4e7500ae,0x00001048,0xff641200,0x020100c0 + .long 0x675c4a28,0x00046b24,0x3d680000,0xff842d68 + .long 0x0004ff88,0x2d680008,0xff8c41ee,0xff8448e7 + .long 0xc08061ff,0x00005c44,0x4cdf0103,0x0c010040 + .long 0x660e4aa8,0x00086614,0x4a280007,0x660e601e + .long 0x22280008,0x02810000,0x07ff6712,0x00ae0000 + .long 0x0200ff64,0x600800ae,0x00001248,0xff644a28 + .long 0x00005bc1,0x61ff0000,0x5f261d40,0xff64f210 + .long 0xd080f23c,0x44800000,0x00004e75,0x00ae0000 + .long 0x1248ff64,0x51c161ff,0x00005f04,0x1d40ff64 + .long 0xf210d080,0xf23c4480,0x00000000,0x4e75f327 + .long 0x4a2f0002,0x6b2edffc,0x0000000c,0xf294000e + .long 0xf2810014,0x006e0208,0xff664e75,0x00ae0800 + .long 0x0208ff64,0x4e751d7c,0x0004ff64,0x006e0208 + .long 0xff664e75,0x006e0208,0xff6661ff,0x00000bae + .long 0xdffc0000,0x000c4e75,0xf3274a2f,0x00026bea + .long 0xdffc0000,0x000cf200,0xa80081ae,0xff644e75 + .long 0x00ae0000,0x0a28ff64,0x02410010,0xe8080200 + .long 0x000f8001,0x2200e309,0x1d7b000a,0xff6441fb + .long 0x16204e75,0x04040400,0x04040400,0x04040400 + .long 0x00000000,0x0c0c080c,0x0c0c080c,0x0c0c080c + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000001,0x00000000 + .long 0x3f810000,0x00000000,0x00000000,0x00000000 + .long 0x3f810000,0x00000000,0x00000000,0x00000000 + .long 0x3f810000,0x00000000,0x00000000,0x00000000 + .long 0x3f810000,0x00000100,0x00000000,0x00000000 + .long 0x3c010000,0x00000000,0x00000000,0x00000000 + .long 0x3c010000,0x00000000,0x00000000,0x00000000 + .long 0x3c010000,0x00000000,0x00000000,0x00000000 + .long 0x3c010000,0x00000000,0x00000800,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x80000000,0x00000000,0x00000000,0x00000000 + .long 0x80000000,0x00000000,0x00000000,0x00000000 + .long 0x80000000,0x00000000,0x00000001,0x00000000 + .long 0x80000000,0x00000000,0x00000000,0x00000000 + .long 0xbf810000,0x00000000,0x00000000,0x00000000 + .long 0xbf810000,0x00000000,0x00000000,0x00000000 + .long 0xbf810000,0x00000100,0x00000000,0x00000000 + .long 0xbf810000,0x00000000,0x00000000,0x00000000 + .long 0xbc010000,0x00000000,0x00000000,0x00000000 + .long 0xbc010000,0x00000000,0x00000000,0x00000000 + .long 0xbc010000,0x00000000,0x00000800,0x00000000 + .long 0xbc010000,0x00000000,0x00000000,0x00000000 + .long 0x4a280000,0x6b10f23c,0x44000000,0x00001d7c + .long 0x0004ff64,0x4e75f23c,0x44008000,0x00001d7c + .long 0x000cff64,0x4e754a29,0x00006bea,0x60d84a28 + .long 0x00006b10,0xf23c4400,0x7f800000,0x1d7c0002 + .long 0xff644e75,0xf23c4400,0xff800000,0x1d7c000a + .long 0xff644e75,0x4a290000,0x6bea60d8,0x4a280000 + .long 0x6ba460d0,0x4a280000,0x6b00fbbc,0x60c64a28 + .long 0x00006b16,0x60be4a28,0x00006b0e,0xf23c4400 + .long 0x3f800000,0x422eff64,0x4e75f23c,0x4400bf80 + .long 0x00001d7c,0x0008ff64,0x4e753fff,0x0000c90f + .long 0xdaa22168,0xc235bfff,0x0000c90f,0xdaa22168 + .long 0xc2354a28,0x00006b0e,0xf2009000,0xf23a4800 + .long 0xffda6000,0xfcf0f200,0x9000f23a,0x4800ffd8 + .long 0x6000fcea,0xf23c4480,0x3f800000,0x4a280000 + .long 0x6a10f23c,0x44008000,0x00001d7c,0x000cff64 + .long 0x6040f23c,0x44000000,0x00001d7c,0x0004ff64 + .long 0x6030f23a,0x4880faea,0x61ff0000,0x00286000 + .long 0xfb16f228,0x48800000,0x61ff0000,0x00186000 + .long 0x030ef228,0x48800000,0x61ff0000,0x00086000 + .long 0x02ee102e,0xff430240,0x0007303b,0x02064efb + .long 0x00020010,0x00180020,0x0026002c,0x00320038 + .long 0x003ef22e,0xf040ffdc,0x4e75f22e,0xf040ffe8 + .long 0x4e75f200,0x05004e75,0xf2000580,0x4e75f200 + .long 0x06004e75,0xf2000680,0x4e75f200,0x07004e75 + .long 0xf2000780,0x4e75122e,0xff4f67ff,0xfffff7dc + .long 0x0c010001,0x67000096,0x0c010002,0x67ffffff + .long 0xfa880c01,0x000467ff,0xfffff7c0,0x0c010005 + .long 0x67ff0000,0x024060ff,0x0000024a,0x122eff4f + .long 0x67ffffff,0xfa640c01,0x000167ff,0xfffffa5a + .long 0x0c010002,0x67ffffff,0xfa500c01,0x000467ff + .long 0xfffffa46,0x0c010003,0x67ff0000,0x021860ff + .long 0x00000202,0x122eff4f,0x67ff0000,0x004e0c01 + .long 0x000167ff,0x00000028,0x0c010002,0x67ffffff + .long 0xfa180c01,0x000467ff,0x00000030,0x0c010003 + .long 0x67ff0000,0x01e060ff,0x000001ca,0x12280000 + .long 0x10290000,0xb1010201,0x00801d41,0xff654a00 + .long 0x6a00fdc4,0x6000fdd0,0x422eff65,0x2f001228 + .long 0x00001029,0x0000b101,0x02010080,0x1d41ff65 + .long 0x0c2e0004,0xff4f660c,0x41e90000,0x201f60ff + .long 0xfffff9c6,0xf21f9000,0xf2294800,0x00004a29 + .long 0x00006b02,0x4e751d7c,0x0008ff64,0x4e75122e + .long 0xff4f67ff,0xfffff6e0,0x0c010001,0x6700ff8e + .long 0x0c010002,0x67ffffff,0xf9800c01,0x000467ff + .long 0xfffff6c4,0x0c010003,0x67ff0000,0x014860ff + .long 0x00000132,0x122eff4f,0x67ffffff,0xf95c0c01 + .long 0x000167ff,0xfffff952,0x0c010002,0x67ffffff + .long 0xf9480c01,0x000467ff,0xfffff93e,0x0c010003 + .long 0x67ff0000,0x011060ff,0x000000fa,0x122eff4f + .long 0x6700ff46,0x0c010001,0x6700ff22,0x0c010002 + .long 0x67ffffff,0xf9140c01,0x000467ff,0xffffff2c + .long 0x0c010003,0x67ff0000,0x00dc60ff,0x000000c6 + .long 0x122eff4f,0x67ffffff,0xf51e0c01,0x000167ff + .long 0xfffffce6,0x0c010002,0x67ffffff,0xfd0a0c01 + .long 0x000467ff,0xfffff500,0x0c010003,0x67ff0000 + .long 0x00a460ff,0x0000008e,0x122eff4f,0x67ffffff + .long 0xf4e60c01,0x000167ff,0xfffffcae,0x0c010002 + .long 0x67ffffff,0xfcd20c01,0x000467ff,0xfffff4c8 + .long 0x0c010003,0x67ff0000,0x006c60ff,0x00000056 + .long 0x122eff4f,0x67ffffff,0xf8800c01,0x000367ff + .long 0x00000052,0x0c010005,0x67ff0000,0x003860ff + .long 0xfffff866,0x122eff4f,0x0c010003,0x67340c01 + .long 0x0005671e,0x6058122e,0xff4f0c01,0x00036708 + .long 0x0c010005,0x670c6036,0x00ae0100,0x4080ff64 + .long 0x6010f229,0x48000000,0xf200a800,0x81aeff64 + .long 0x4e75f229,0x48000000,0x4a290000,0x6b081d7c + .long 0x0001ff64,0x4e751d7c,0x0009ff64,0x4e75f228 + .long 0x48000000,0xf200a800,0x81aeff64,0x4e75f228 + .long 0x48000000,0x4a280000,0x6bdc1d7c,0x0001ff64 + .long 0x4e751d7c,0x0009ff64,0x4e75122e,0xff4e67ff + .long 0xffffd936,0x0c010001,0x67ffffff,0xfba60c01 + .long 0x000267ff,0xfffffbca,0x0c010004,0x67ffffff + .long 0xd9f60c01,0x000367ff,0xffffffb6,0x60ffffff + .long 0xffa0122e,0xff4e67ff,0xffffe620,0x0c010001 + .long 0x67ffffff,0xfb6e0c01,0x000267ff,0xfffffbc8 + .long 0x0c010004,0x67ffffff,0xe7560c01,0x000367ff + .long 0xffffff7e,0x60ffffff,0xff68122e,0xff4e67ff + .long 0xffffd4d2,0x0c010001,0x67ffffff,0xfb360c01 + .long 0x000267ff,0xfffffb9a,0x0c010004,0x67ffffff + .long 0xd76a0c01,0x000367ff,0xffffff46,0x60ffffff + .long 0xff30122e,0xff4e67ff,0xffffd972,0x0c010001 + .long 0x67ffffff,0xfafe0c01,0x000267ff,0xfffffb6a + .long 0x0c010004,0x67ffffff,0xdabc0c01,0x000367ff + .long 0xffffff0e,0x60ffffff,0xfef8122e,0xff4e67ff + .long 0xffffca6a,0x0c010001,0x67ffffff,0xfac60c01 + .long 0x000267ff,0xfffffb6e,0x0c010004,0x67ffffff + .long 0xcc8a0c01,0x000367ff,0xfffffed6,0x60ffffff + .long 0xfec0122e,0xff4e67ff,0xffffcc76,0x0c010001 + .long 0x67ffffff,0xfa8e0c01,0x000267ff,0xfffff6aa + .long 0x0c010004,0x67ffffff,0xcd060c01,0x000367ff + .long 0xfffffe9e,0x60ffffff,0xfe88122e,0xff4e67ff + .long 0xffffe662,0x0c010001,0x67ffffff,0xfa560c01 + .long 0x000267ff,0xfffff672,0x0c010004,0x67ffffff + .long 0xe6c60c01,0x000367ff,0xfffffe66,0x60ffffff + .long 0xfe50122e,0xff4e67ff,0xffffb372,0x0c010001 + .long 0x67ffffff,0xfa1e0c01,0x000267ff,0xfffff63a + .long 0x0c010004,0x67ffffff,0xb5380c01,0x000367ff + .long 0xfffffe2e,0x60ffffff,0xfe18122e,0xff4e67ff + .long 0xffffbdfc,0x0c010001,0x67ffffff,0xf9e60c01 + .long 0x000267ff,0xfffff602,0x0c010004,0x67ffffff + .long 0xbf420c01,0x000367ff,0xfffffdf6,0x60ffffff + .long 0xfde0122e,0xff4e67ff,0xffffd17a,0x0c010001 + .long 0x67ffffff,0xfa2a0c01,0x000267ff,0xfffffa00 + .long 0x0c010004,0x67ffffff,0xd3080c01,0x000367ff + .long 0xfffffdbe,0x60ffffff,0xfda8122e,0xff4e67ff + .long 0xffffeb64,0x0c010001,0x67ffffff,0xf9f20c01 + .long 0x000267ff,0xfffff9c8,0x0c010004,0x67ffffff + .long 0xec200c01,0x000367ff,0xfffffd86,0x60ffffff + .long 0xfd70122e,0xff4e67ff,0xffffec24,0x0c010001 + .long 0x67ffffff,0xf9ba0c01,0x000267ff,0xfffff990 + .long 0x0c010004,0x67ffffff,0xed360c01,0x000367ff + .long 0xfffffd4e,0x60ffffff,0xfd38122e,0xff4e67ff + .long 0xffffe178,0x0c010001,0x67ffffff,0xf51a0c01 + .long 0x000267ff,0xfffff960,0x0c010004,0x67ffffff + .long 0xe30c0c01,0x000367ff,0xfffffd16,0x60ffffff + .long 0xfd00122e,0xff4e67ff,0xffffe582,0x0c010001 + .long 0x67ffffff,0xf4e20c01,0x000267ff,0xfffff928 + .long 0x0c010004,0x67ffffff,0xe5940c01,0x000367ff + .long 0xfffffcde,0x60ffffff,0xfcc8122e,0xff4e67ff + .long 0xffffe59a,0x0c010001,0x67ffffff,0xf4aa0c01 + .long 0x000267ff,0xfffff8f0,0x0c010004,0x67ffffff + .long 0xe5d60c01,0x000367ff,0xfffffca6,0x60ffffff + .long 0xfc90122e,0xff4e67ff,0xffffd530,0x0c010001 + .long 0x67ffffff,0xf8da0c01,0x000267ff,0xfffff888 + .long 0x0c010004,0x67ffffff,0xd5b60c01,0x000367ff + .long 0xfffffc6e,0x60ffffff,0xfc58122e,0xff4e67ff + .long 0xffffcac2,0x0c010001,0x67ffffff,0xf8de0c01 + .long 0x000267ff,0xfffff442,0x0c010004,0x67ffffff + .long 0xcb340c01,0x000367ff,0xfffffc36,0x60ffffff + .long 0xfc20122e,0xff4e67ff,0xffffb14c,0x0c010001 + .long 0x67ffffff,0xf86a0c01,0x000267ff,0xfffff40a + .long 0x0c010004,0x67ffffff,0xb30e0c01,0x000367ff + .long 0xfffffbfe,0x60ffffff,0xfbe8122e,0xff4e67ff + .long 0xffffd40e,0x0c010001,0x67ffffff,0xf7b60c01 + .long 0x000267ff,0xfffff3d2,0x0c010004,0x67ffffff + .long 0xd40c0c01,0x000367ff,0xfffffbc6,0x60ffffff + .long 0xfbb0122e,0xff4e67ff,0xffffd40a,0x0c010001 + .long 0x67ffffff,0xf77e0c01,0x000267ff,0xfffff39a + .long 0x0c010004,0x67ffffff,0xd41a0c01,0x000367ff + .long 0xfffffb8e,0x60ffffff,0xfb78122e,0xff4e67ff + .long 0xffffb292,0x0c010001,0x67ffffff,0xf81a0c01 + .long 0x000267ff,0xfffff83e,0x0c010004,0x67ffffff + .long 0xb50a0c01,0x000367ff,0xfffff83a,0x60ffffff + .long 0xf844122e,0xff4e67ff,0xfffff89e,0x0c010001 + .long 0x67ffffff,0xf8ca0c01,0x000267ff,0xfffff8f8 + .long 0x0c010004,0x67ffffff,0xf8800c01,0x000367ff + .long 0xfffffab4,0x60ffffff,0xfac0122e,0xff4e67ff + .long 0xfffff96e,0x0c010001,0x67ffffff,0xf99a0c01 + .long 0x000267ff,0xfffff9c8,0x0c010004,0x67ffffff + .long 0xf9500c01,0x000367ff,0xfffffa7c,0x60ffffff + .long 0xfa88122e,0xff4e67ff,0xfffff9d8,0x0c010001 + .long 0x67ffffff,0xfa060c01,0x000267ff,0xfffffa34 + .long 0x0c010004,0x67ffffff,0xf9ba0c01,0x000367ff + .long 0xfffffa44,0x60ffffff,0xfa500c2f,0x00070003 + .long 0x673e1d7c,0x0000ff4e,0x1d7c0000,0xff4ff22e + .long 0xf080ff78,0x41ef0004,0x43eeff78,0x0c010003 + .long 0x67160c01,0x00026708,0x61ff0000,0x02004e75 + .long 0x61ff0000,0x1b9e4e75,0x61ff0000,0x05e44e75 + .long 0x1d7c0004,0xff4e60c0,0x4afc006d,0x000005d2 + .long 0x00000fc8,0xfffffa6e,0x0000106c,0x00002314 + .long 0x00000000,0xfffffaa6,0x00000000,0xfffffade + .long 0xfffffb16,0xfffffb4e,0x00000000,0xfffffb86 + .long 0xfffffbbe,0xfffffbf6,0xfffffc2e,0xfffffc66 + .long 0xfffffc9e,0xfffffcd6,0x00000000,0xfffffd0e + .long 0xfffffd46,0xfffffd7e,0x00000000,0x00001112 + .long 0xfffffdb6,0x00000ca8,0x00000000,0xfffffdee + .long 0xfffffe26,0xfffffe5e,0xfffffe96,0x0000089e + .long 0xffffff06,0x00001b84,0x000001de,0x00001854 + .long 0xffffff3e,0xffffff76,0x00001512,0x00001f4c + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0xfffffece + .long 0xfffffece,0xfffffece,0xfffffece,0xfffffece + .long 0xfffffece,0xfffffece,0xfffffece,0x000013b0 + .long 0x00000000,0x00000f56,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x000005c0 + .long 0x00002302,0x00000000,0x00000000,0x000005ca + .long 0x0000230c,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00001100 + .long 0x00000000,0x00000c96,0x00000000,0x0000110a + .long 0x00000000,0x00000ca0,0x00000000,0x0000088c + .long 0x00000000,0x00001b72,0x000001cc,0x00000896 + .long 0x00000000,0x00001b7c,0x000001d6,0x00001f3a + .long 0x00000000,0x00000000,0x00000000,0x00001f44 + .long 0xffffc001,0xffffff81,0xfffffc01,0x00004000 + .long 0x0000007f,0x000003ff,0x02000030,0x00000040 + .long 0x60080200,0x00300000,0x00802d40,0xff5c4241 + .long 0x122eff4f,0xe709822e,0xff4e6600,0x02e43d69 + .long 0x0000ff90,0x2d690004,0xff942d69,0x0008ff98 + .long 0x3d680000,0xff842d68,0x0004ff88,0x2d680008 + .long 0xff8c61ff,0x000024ce,0x2f0061ff,0x00002572 + .long 0xd197322e,0xff5eec09,0x201fb0bb,0x14846700 + .long 0x011e6d00,0x0062b0bb,0x14846700,0x021a6e00 + .long 0x014af22e,0xd080ff90,0xf22e9000,0xff5cf23c + .long 0x88000000,0x0000f22e,0x4823ff84,0xf201a800 + .long 0xf23c9000,0x00000000,0x83aeff64,0xf22ef080 + .long 0xff842f02,0x322eff84,0x24010281,0x00007fff + .long 0x02428000,0x92808242,0x3d41ff84,0x241ff22e + .long 0xd080ff84,0x4e75f22e,0xd080ff90,0xf22e9000 + .long 0xff5cf23c,0x88000000,0x0000f22e,0x4823ff84 + .long 0xf201a800,0xf23c9000,0x00000000,0x83aeff64 + .long 0x00ae0000,0x1048ff64,0x122eff62,0x02010013 + .long 0x661c082e,0x0003ff64,0x56c1202e,0xff5c61ff + .long 0x00004fcc,0x812eff64,0xf210d080,0x4e75222e + .long 0xff5c0201,0x00c06634,0xf22ef080,0xff842f02 + .long 0x322eff84,0x34010281,0x00007fff,0x92800481 + .long 0x00006000,0x02417fff,0x02428000,0x82423d41 + .long 0xff84241f,0xf22ed040,0xff8460a6,0xf22ed080 + .long 0xff90222e,0xff5c0201,0x0030f201,0x9000f22e + .long 0x4823ff84,0xf23c9000,0x00000000,0x60aaf22e + .long 0xd080ff90,0xf22e9000,0xff5cf23c,0x88000000 + .long 0x0000f22e,0x4823ff84,0xf201a800,0xf23c9000 + .long 0x00000000,0x83aeff64,0xf2000098,0xf23c58b8 + .long 0x0002f293,0xff3c6000,0xfee408ee,0x0003ff66 + .long 0xf22ed080,0xff90f23c,0x90000000,0x0010f23c + .long 0x88000000,0x0000f22e,0x4823ff84,0xf201a800 + .long 0xf23c9000,0x00000000,0x83aeff64,0x122eff62 + .long 0x0201000b,0x6620f22e,0xf080ff84,0x41eeff84 + .long 0x222eff5c,0x61ff0000,0x4dd8812e,0xff64f22e + .long 0xd080ff84,0x4e75f22e,0xd040ff90,0x222eff5c + .long 0x020100c0,0x6652f22e,0x9000ff5c,0xf23c8800 + .long 0x00000000,0xf22e48a3,0xff84f23c,0x90000000 + .long 0x0000f22e,0xf040ff84,0x2f02322e,0xff842401 + .long 0x02810000,0x7fff0242,0x80009280,0x06810000 + .long 0x60000241,0x7fff8242,0x3d41ff84,0x241ff22e + .long 0xd040ff84,0x6000ff80,0x222eff5c,0x02010030 + .long 0xf2019000,0x60a6f22e,0xd080ff90,0xf22e9000 + .long 0xff5cf23c,0x88000000,0x0000f22e,0x4823ff84 + .long 0xf201a800,0xf23c9000,0x00000000,0x83aeff64 + .long 0xf2000098,0xf23c58b8,0x0002f292,0xfde0f294 + .long 0xfefaf22e,0xd040ff90,0x222eff5c,0x020100c0 + .long 0x00010010,0xf2019000,0xf23c8800,0x00000000 + .long 0xf22e48a3,0xff84f23c,0x90000000,0x0000f200 + .long 0x0498f23c,0x58b80002,0xf293fda2,0x6000febc + .long 0x323b120a,0x4efb1006,0x4afc0030,0xfd120072 + .long 0x00cc006c,0xfd120066,0x00000000,0x00720072 + .long 0x0060006c,0x00720066,0x00000000,0x009e0060 + .long 0x009e006c,0x009e0066,0x00000000,0x006c006c + .long 0x006c006c,0x006c0066,0x00000000,0xfd120072 + .long 0x00cc006c,0xfd120066,0x00000000,0x00660066 + .long 0x00660066,0x00660066,0x00000000,0x60ff0000 + .long 0x230e60ff,0x00002284,0x60ff0000,0x227e1028 + .long 0x00001229,0x0000b101,0x6a10f23c,0x44008000 + .long 0x00001d7c,0x000cff64,0x4e75f23c,0x44000000 + .long 0x00001d7c,0x0004ff64,0x4e75f229,0xd0800000 + .long 0x10280000,0x12290000,0xb1016a10,0xf2000018 + .long 0xf200001a,0x1d7c000a,0xff644e75,0xf2000018 + .long 0x1d7c0002,0xff644e75,0xf228d080,0x00001028 + .long 0x00001229,0x0000b101,0x6ae260d0,0x02000030 + .long 0x00000040,0x60080200,0x00300000,0x00802d40 + .long 0xff5c122e,0xff4e6600,0x02620200,0x00c06600 + .long 0x007c4a28,0x00006a06,0x08ee0003,0xff64f228 + .long 0xd0800000,0x4e750200,0x00c06600,0x006008ee + .long 0x0003ff66,0x4a280000,0x6a0608ee,0x0003ff64 + .long 0xf228d080,0x0000082e,0x0003ff62,0x66024e75 + .long 0x3d680000,0xff842d68,0x0004ff88,0x2d680008 + .long 0xff8c41ee,0xff8461ff,0x00004950,0x44400640 + .long 0x6000322e,0xff840241,0x80000240,0x7fff8041 + .long 0x3d40ff84,0xf22ed040,0xff844e75,0x0c000040 + .long 0x667e3d68,0x0000ff84,0x2d680004,0xff882d68 + .long 0x0008ff8c,0x61ff0000,0x206c0c80,0x0000007f + .long 0x6c000092,0x0c80ffff,0xff816700,0x01786d00 + .long 0x00f4f23c,0x88000000,0x0000f22e,0x9000ff5c + .long 0xf22e4800,0xff84f201,0xa800f23c,0x90000000 + .long 0x000083ae,0xff642f02,0xf22ef080,0xff84322e + .long 0xff843401,0x02810000,0x7fff9280,0x02428000 + .long 0x84413d42,0xff84241f,0xf22ed080,0xff844e75 + .long 0x3d680000,0xff842d68,0x0004ff88,0x2d680008 + .long 0xff8c61ff,0x00001fee,0x0c800000,0x03ff6c00 + .long 0x00140c80,0xfffffc01,0x670000fa,0x6d000076 + .long 0x6000ff80,0x08ee0003,0xff664a2e,0xff846a06 + .long 0x08ee0003,0xff64122e,0xff620201,0x000b661a + .long 0x41eeff84,0x222eff5c,0x61ff0000,0x4a74812e + .long 0xff64f22e,0xd080ff84,0x4e752d6e,0xff88ff94 + .long 0x2d6eff8c,0xff98322e,0xff842f02,0x34010281 + .long 0x00007fff,0x92800242,0x80000681,0x00006000 + .long 0x02417fff,0x84413d42,0xff90f22e,0xd040ff90 + .long 0x241f60ac,0xf23c8800,0x00000000,0xf22e9000 + .long 0xff5cf22e,0x4800ff84,0xf23c9000,0x00000000 + .long 0xf201a800,0x83aeff64,0x00ae0000,0x1048ff64 + .long 0x122eff62,0x02010013,0x661c082e,0x0003ff64 + .long 0x56c1202e,0xff5c61ff,0x00004ae4,0x812eff64 + .long 0xf210d080,0x4e752f02,0x322eff84,0x24010281 + .long 0x00007fff,0x02428000,0x92800481,0x00006000 + .long 0x02417fff,0x82423d41,0xff84241f,0xf22ed040 + .long 0xff8460b6,0xf23c8800,0x00000000,0xf22e9000 + .long 0xff5cf22e,0x4800ff84,0xf201a800,0xf23c9000 + .long 0x00000000,0x83aeff64,0xf2000098,0xf23c58b8 + .long 0x0002f293,0xff746000,0xfe7e0c01,0x00046700 + .long 0xfdb60c01,0x000567ff,0x00001f98,0x0c010003 + .long 0x67ff0000,0x1fa2f228,0x48000000,0xf200a800 + .long 0xe1981d40,0xff644e75,0x51fc51fc,0x51fc51fc + .long 0x00003fff,0x0000007e,0x000003fe,0xffffc001 + .long 0xffffff81,0xfffffc01,0x02000030,0x00000040 + .long 0x60080200,0x00300000,0x00802d40,0xff5c4241 + .long 0x122eff4f,0xe709822e,0xff4e6600,0x02d63d69 + .long 0x0000ff90,0x2d690004,0xff942d69,0x0008ff98 + .long 0x3d680000,0xff842d68,0x0004ff88,0x2d680008 + .long 0xff8c61ff,0x00001e0e,0x2f0061ff,0x00001eb2 + .long 0x4497d197,0x322eff5e,0xec09201f,0xb0bb148e + .long 0x6f000074,0xb0bb1520,0xff7a6700,0x020c6e00 + .long 0x013cf22e,0xd080ff90,0xf22e9000,0xff5cf23c + .long 0x88000000,0x0000f22e,0x4820ff84,0xf201a800 + .long 0xf23c9000,0x00000000,0x83aeff64,0xf22ef080 + .long 0xff842f02,0x322eff84,0x24010281,0x00007fff + .long 0x02428000,0x92808242,0x3d41ff84,0x241ff22e + .long 0xd080ff84,0x4e750000,0x7fff0000,0x407f0000 + .long 0x43ff201f,0x60c62f00,0xf22ed080,0xff90f22e + .long 0x9000ff5c,0xf23c8800,0x00000000,0xf22e4820 + .long 0xff84f200,0xa800f23c,0x90000000,0x000081ae + .long 0xff64f227,0xe0013017,0xdffc0000,0x000c0280 + .long 0x00007fff,0x9097b0bb,0x14ae6db6,0x201f00ae + .long 0x00001048,0xff64122e,0xff620201,0x0013661c + .long 0x082e0003,0xff6456c1,0x202eff5c,0x61ff0000 + .long 0x48de812e,0xff64f210,0xd0804e75,0x222eff5c + .long 0x020100c0,0x6634f22e,0xf080ff84,0x2f02322e + .long 0xff843401,0x02810000,0x7fff9280,0x04810000 + .long 0x60000241,0x7fff0242,0x80008242,0x3d41ff84 + .long 0x241ff22e,0xd040ff84,0x60a6f22e,0xd080ff90 + .long 0x222eff5c,0x02010030,0xf2019000,0xf22e4820 + .long 0xff84f23c,0x90000000,0x000060aa,0x08ee0003 + .long 0xff66f22e,0xd080ff90,0xf23c9000,0x00000010 + .long 0xf23c8800,0x00000000,0xf22e4820,0xff84f201 + .long 0xa800f23c,0x90000000,0x000083ae,0xff64122e + .long 0xff620201,0x000b6620,0xf22ef080,0xff8441ee + .long 0xff84222e,0xff5c61ff,0x00004726,0x812eff64 + .long 0xf22ed080,0xff844e75,0xf22ed040,0xff90222e + .long 0xff5c0201,0x00c06652,0xf22e9000,0xff5cf23c + .long 0x88000000,0x0000f22e,0x48a0ff84,0xf23c9000 + .long 0x00000000,0xf22ef040,0xff842f02,0x322eff84 + .long 0x24010281,0x00007fff,0x02428000,0x92800681 + .long 0x00006000,0x02417fff,0x82423d41,0xff84241f + .long 0xf22ed040,0xff846000,0xff80222e,0xff5c0201 + .long 0x0030f201,0x900060a6,0xf22ed080,0xff90f22e + .long 0x9000ff5c,0xf23c8800,0x00000000,0xf22e4820 + .long 0xff84f201,0xa800f23c,0x90000000,0x000083ae + .long 0xff64f200,0x0098f23c,0x58b80001,0xf292fdee + .long 0xf294fefa,0xf22ed040,0xff90222e,0xff5c0201 + .long 0x00c00001,0x0010f201,0x9000f23c,0x88000000 + .long 0x0000f22e,0x48a0ff84,0xf23c9000,0x00000000 + .long 0xf2000498,0xf23c58b8,0x0001f293,0xfdb06000 + .long 0xfebc323b,0x120a4efb,0x10064afc,0x0030fd20 + .long 0x009e0072,0x0060fd20,0x00660000,0x00000072 + .long 0x006c0072,0x00600072,0x00660000,0x000000d0 + .long 0x00d0006c,0x006000d0,0x00660000,0x00000060 + .long 0x00600060,0x00600060,0x00660000,0x0000fd20 + .long 0x009e0072,0x0060fd20,0x00660000,0x00000066 + .long 0x00660066,0x00660066,0x00660000,0x000060ff + .long 0x00001bd8,0x60ff0000,0x1bd260ff,0x00001c50 + .long 0x10280000,0x12290000,0xb1016a10,0xf23c4400 + .long 0x80000000,0x1d7c000c,0xff644e75,0xf23c4400 + .long 0x00000000,0x1d7c0004,0xff644e75,0x006e0410 + .long 0xff661028,0x00001229,0x0000b101,0x6a10f23c + .long 0x4400ff80,0x00001d7c,0x000aff64,0x4e75f23c + .long 0x44007f80,0x00001d7c,0x0002ff64,0x4e751029 + .long 0x00001228,0x0000b101,0x6a16f229,0xd0800000 + .long 0xf2000018,0xf200001a,0x1d7c000a,0xff644e75 + .long 0xf229d080,0x0000f200,0x00181d7c,0x0002ff64 + .long 0x4e750200,0x00300000,0x00406008,0x02000030 + .long 0x00000080,0x2d40ff5c,0x122eff4e,0x66000276 + .long 0x020000c0,0x66000090,0x2d680004,0xff882d68 + .long 0x0008ff8c,0x30280000,0x0a408000,0x6a061d7c + .long 0x0008ff64,0x3d40ff84,0xf22ed080,0xff844e75 + .long 0x020000c0,0x666008ee,0x0003ff66,0x2d680004 + .long 0xff882d68,0x0008ff8c,0x30280000,0x0a408000 + .long 0x6a061d7c,0x0008ff64,0x3d40ff84,0xf22ed080 + .long 0xff84082e,0x0003ff62,0x66024e75,0x41eeff84 + .long 0x61ff0000,0x42664440,0x06406000,0x322eff84 + .long 0x02418000,0x02407fff,0x80413d40,0xff84f22e + .long 0xd040ff84,0x4e750c00,0x0040667e,0x3d680000 + .long 0xff842d68,0x0004ff88,0x2d680008,0xff8c61ff + .long 0x00001982,0x0c800000,0x007f6c00,0x00900c80 + .long 0xffffff81,0x67000178,0x6d0000f4,0xf23c8800 + .long 0x00000000,0xf22e9000,0xff5cf22e,0x481aff84 + .long 0xf201a800,0xf23c9000,0x00000000,0x83aeff64 + .long 0x2f02f22e,0xf080ff84,0x322eff84,0x34010281 + .long 0x00007fff,0x92800242,0x80008441,0x3d42ff84 + .long 0x241ff22e,0xd080ff84,0x4e753d68,0x0000ff84 + .long 0x2d680004,0xff882d68,0x0008ff8c,0x61ff0000 + .long 0x19040c80,0x000003ff,0x6c120c80,0xfffffc01 + .long 0x670000fc,0x6d000078,0x6000ff82,0x08ee0003 + .long 0xff660a2e,0x0080ff84,0x6a0608ee,0x0003ff64 + .long 0x122eff62,0x0201000b,0x661a41ee,0xff84222e + .long 0xff5c61ff,0x0000438a,0x812eff64,0xf22ed080 + .long 0xff844e75,0x2d6eff88,0xff942d6e,0xff8cff98 + .long 0x322eff84,0x2f022401,0x02810000,0x7fff0242 + .long 0x80009280,0x06810000,0x60000241,0x7fff8242 + .long 0x3d41ff90,0xf22ed040,0xff90241f,0x60acf23c + .long 0x88000000,0x0000f22e,0x9000ff5c,0xf22e481a + .long 0xff84f23c,0x90000000,0x0000f201,0xa80083ae + .long 0xff6400ae,0x00001048,0xff64122e,0xff620201 + .long 0x0013661c,0x082e0003,0xff6456c1,0x202eff5c + .long 0x61ff0000,0x43fa812e,0xff64f210,0xd0804e75 + .long 0x2f02322e,0xff842401,0x02810000,0x7fff0242 + .long 0x80009280,0x04810000,0x60000241,0x7fff8242 + .long 0x3d41ff84,0xf22ed040,0xff84241f,0x60b6f23c + .long 0x88000000,0x0000f22e,0x9000ff5c,0xf22e481a + .long 0xff84f201,0xa800f23c,0x90000000,0x000083ae + .long 0xff64f200,0x0098f23c,0x58b80002,0xf293ff74 + .long 0x6000fe7e,0x0c010004,0x6700fdb6,0x0c010005 + .long 0x67ff0000,0x18ae0c01,0x000367ff,0x000018b8 + .long 0xf228481a,0x0000f200,0xa800e198,0x1d40ff64 + .long 0x4e75122e,0xff4e6610,0x4a280000,0x6b024e75 + .long 0x1d7c0008,0xff644e75,0x0c010001,0x67400c01 + .long 0x00026724,0x0c010005,0x67ff0000,0x18660c01 + .long 0x000367ff,0x00001870,0x4a280000,0x6b024e75 + .long 0x1d7c0008,0xff644e75,0x4a280000,0x6b081d7c + .long 0x0002ff64,0x4e751d7c,0x000aff64,0x4e754a28 + .long 0x00006b08,0x1d7c0004,0xff644e75,0x1d7c000c + .long 0xff644e75,0x122eff4e,0x66280200,0x0030f200 + .long 0x9000f23c,0x88000000,0x0000f228,0x48010000 + .long 0xf23c9000,0x00000000,0xf200a800,0x81aeff64 + .long 0x4e750c01,0x0001672e,0x0c010002,0x674e0c01 + .long 0x00046710,0x0c010005,0x67ff0000,0x17d660ff + .long 0x000017e4,0x3d680000,0xff841d7c,0x0080ff88 + .long 0x41eeff84,0x60a44a28,0x00006b10,0xf23c4400 + .long 0x00000000,0x1d7c0004,0xff644e75,0xf23c4400 + .long 0x80000000,0x1d7c000c,0xff644e75,0xf228d080 + .long 0x00004a28,0x00006b08,0x1d7c0002,0xff644e75 + .long 0x1d7c000a,0xff644e75,0x122eff4e,0x6618f23c + .long 0x88000000,0x0000f228,0x48030000,0xf200a800 + .long 0x81aeff64,0x4e750c01,0x0001672e,0x0c010002 + .long 0x674e0c01,0x00046710,0x0c010005,0x67ff0000 + .long 0x174260ff,0x00001750,0x3d680000,0xff841d7c + .long 0x0080ff88,0x41eeff84,0x60b44a28,0x00006b10 + .long 0xf23c4400,0x00000000,0x1d7c0004,0xff644e75 + .long 0xf23c4400,0x80000000,0x1d7c000c,0xff644e75 + .long 0xf228d080,0x00004a28,0x00006b08,0x1d7c0002 + .long 0xff644e75,0x1d7c000a,0xff644e75,0x02000030 + .long 0x00000040,0x60080200,0x00300000,0x00802d40 + .long 0xff5c122e,0xff4e6600,0x025c0200,0x00c0667e + .long 0x2d680004,0xff882d68,0x0008ff8c,0x32280000 + .long 0x0881000f,0x3d41ff84,0xf22ed080,0xff844e75 + .long 0x020000c0,0x665808ee,0x0003ff66,0x2d680004 + .long 0xff882d68,0x0008ff8c,0x30280000,0x0880000f + .long 0x3d40ff84,0xf22ed080,0xff84082e,0x0003ff62 + .long 0x66024e75,0x41eeff84,0x61ff0000,0x3e0e4440 + .long 0x06406000,0x322eff84,0x02418000,0x02407fff + .long 0x80413d40,0xff84f22e,0xd040ff84,0x4e750c00 + .long 0x0040667e,0x3d680000,0xff842d68,0x0004ff88 + .long 0x2d680008,0xff8c61ff,0x0000152a,0x0c800000 + .long 0x007f6c00,0x00900c80,0xffffff81,0x67000170 + .long 0x6d0000ec,0xf23c8800,0x00000000,0xf22e9000 + .long 0xff5cf22e,0x4818ff84,0xf201a800,0xf23c9000 + .long 0x00000000,0x83aeff64,0x2f02f22e,0xf080ff84 + .long 0x322eff84,0x24010281,0x00007fff,0x92800242 + .long 0x80008441,0x3d42ff84,0x241ff22e,0xd080ff84 + .long 0x4e753d68,0x0000ff84,0x2d680004,0xff882d68 + .long 0x0008ff8c,0x61ff0000,0x14ac0c80,0x000003ff + .long 0x6c120c80,0xfffffc01,0x670000f4,0x6d000070 + .long 0x6000ff82,0x08ee0003,0xff6608ae,0x0007ff84 + .long 0x122eff62,0x0201000b,0x661a41ee,0xff84222e + .long 0xff5c61ff,0x00003f3a,0x812eff64,0xf22ed080 + .long 0xff844e75,0x2d6eff88,0xff942d6e,0xff8cff98 + .long 0x322eff84,0x2f022401,0x02810000,0x7fff0242 + .long 0x80009280,0x06810000,0x60000241,0x7fff8242 + .long 0x3d41ff90,0xf22ed040,0xff90241f,0x60acf23c + .long 0x88000000,0x0000f22e,0x9000ff5c,0xf22e4818 + .long 0xff84f23c,0x90000000,0x0000f201,0xa80083ae + .long 0xff6400ae,0x00001048,0xff64122e,0xff620201 + .long 0x0013661c,0x082e0003,0xff6456c1,0x202eff5c + .long 0x61ff0000,0x3faa812e,0xff64f210,0xd0804e75 + .long 0x2f02322e,0xff842401,0x02810000,0x7fff0242 + .long 0x80009280,0x04810000,0x60000241,0x7fff8242 + .long 0x3d41ff84,0xf22ed040,0xff84241f,0x60b6f23c + .long 0x88000000,0x0000f22e,0x9000ff5c,0xf22e4818 + .long 0xff84f201,0xa800f23c,0x90000000,0x000083ae + .long 0xff64f200,0x0098f23c,0x58b80002,0xf293ff74 + .long 0x6000fe86,0x0c010004,0x6700fdc6,0x0c010005 + .long 0x67ff0000,0x145e0c01,0x000367ff,0x00001468 + .long 0xf2284818,0x00000c01,0x00026708,0x1d7c0004 + .long 0xff644e75,0x1d7c0002,0xff644e75,0x4241122e + .long 0xff4fe709,0x822eff4e,0x6618f229,0xd0800000 + .long 0xf2284838,0x0000f200,0xa800e198,0x1d40ff64 + .long 0x4e75323b,0x120a4efb,0x10064afc,0x0030ffdc + .long 0xffdcffdc,0x006000f8,0x006e0000,0x0000ffdc + .long 0xffdcffdc,0x0060007c,0x006e0000,0x0000ffdc + .long 0xffdcffdc,0x0060007c,0x006e0000,0x00000060 + .long 0x00600060,0x00600060,0x006e0000,0x00000114 + .long 0x009c009c,0x006000bc,0x006e0000,0x0000006e + .long 0x006e006e,0x006e006e,0x006e0000,0x000061ff + .long 0x00001388,0x022e00f7,0xff644e75,0x61ff0000 + .long 0x137a022e,0x00f7ff64,0x4e753d68,0x0000ff84 + .long 0x20280004,0x08c0001f,0x2d40ff88,0x2d680008 + .long 0xff8c41ee,0xff846000,0xff422d69,0x0000ff84 + .long 0x20290004,0x08c0001f,0x2d40ff88,0x2d690008 + .long 0xff8c43ee,0xff846000,0xff223d69,0x0000ff90 + .long 0x3d680000,0xff842029,0x000408c0,0x001f2d40 + .long 0xff942028,0x000408c0,0x001f2d40,0xff882d69 + .long 0x0008ff98,0x2d680008,0xff8c43ee,0xff9041ee + .long 0xff846000,0xfee61028,0x00001229,0x0000b101 + .long 0x6b00ff78,0x4a006b02,0x4e751d7c,0x0008ff64 + .long 0x4e751028,0x00001229,0x0000b101,0x6b00ff7c + .long 0x4a006a02,0x4e751d7c,0x0008ff64,0x4e752d40 + .long 0xff5c4241,0x122eff4f,0xe709822e,0xff4e6600 + .long 0x02a03d69,0x0000ff90,0x2d690004,0xff942d69 + .long 0x0008ff98,0x3d680000,0xff842d68,0x0004ff88 + .long 0x2d680008,0xff8c61ff,0x0000119a,0x2f0061ff + .long 0x0000123e,0xd09f0c80,0xffffc001,0x670000f8 + .long 0x6d000064,0x0c800000,0x40006700,0x01da6e00 + .long 0x0122f22e,0xd080ff90,0xf22e9000,0xff5cf23c + .long 0x88000000,0x0000f22e,0x4827ff84,0xf201a800 + .long 0xf23c9000,0x00000000,0x83aeff64,0xf22ef080 + .long 0xff842f02,0x322eff84,0x24010281,0x00007fff + .long 0x02428000,0x92808242,0x3d41ff84,0x241ff22e + .long 0xd080ff84,0x4e75f22e,0xd080ff90,0xf22e9000 + .long 0xff5cf23c,0x88000000,0x0000f22e,0x4827ff84 + .long 0xf201a800,0xf23c9000,0x00000000,0x83aeff64 + .long 0x00ae0000,0x1048ff64,0x122eff62,0x02010013 + .long 0x6620082e,0x0003ff64,0x56c1202e,0xff5c0200 + .long 0x003061ff,0x00003c98,0x812eff64,0xf210d080 + .long 0x4e75f22e,0xf080ff84,0x2f02322e,0xff842401 + .long 0x02810000,0x7fff9280,0x04810000,0x60000241 + .long 0x7fff0242,0x80008242,0x3d41ff84,0x241ff22e + .long 0xd040ff84,0x60acf22e,0xd080ff90,0xf22e9000 + .long 0xff5cf23c,0x88000000,0x0000f22e,0x4827ff84 + .long 0xf201a800,0xf23c9000,0x00000000,0x83aeff64 + .long 0xf2000098,0xf23c58b8,0x0002f293,0xff646000 + .long 0xff0c08ee,0x0003ff66,0xf22ed080,0xff90f23c + .long 0x90000000,0x0010f23c,0x88000000,0x0000f22e + .long 0x4827ff84,0xf201a800,0xf23c9000,0x00000000 + .long 0x83aeff64,0x122eff62,0x0201000b,0x6620f22e + .long 0xf080ff84,0x41eeff84,0x222eff5c,0x61ff0000 + .long 0x3b56812e,0xff64f22e,0xd080ff84,0x4e75f22e + .long 0xd040ff90,0xf22e9000,0xff5cf23c,0x88000000 + .long 0x0000f22e,0x48a7ff84,0xf23c9000,0x00000000 + .long 0xf22ef040,0xff842f02,0x322eff84,0x24010281 + .long 0x00007fff,0x02428000,0x92800681,0x00006000 + .long 0x02417fff,0x82423d41,0xff84241f,0xf22ed040 + .long 0xff846000,0xff8af22e,0xd080ff90,0xf22e9000 + .long 0xff5cf23c,0x88000000,0x0000f22e,0x4827ff84 + .long 0xf201a800,0xf23c9000,0x00000000,0x83aeff64 + .long 0xf2000098,0xf23c58b8,0x0002f292,0xfe20f294 + .long 0xff12f22e,0xd040ff90,0x222eff5c,0x020100c0 + .long 0x00010010,0xf2019000,0xf23c8800,0x00000000 + .long 0xf22e48a7,0xff84f23c,0x90000000,0x0000f200 + .long 0x0498f23c,0x58b80002,0xf293fde2,0x6000fed4 + .long 0x323b120a,0x4efb1006,0x4afc0030,0xfd560072 + .long 0x0078006c,0xfd560066,0x00000000,0x00720072 + .long 0x0060006c,0x00720066,0x00000000,0x007e0060 + .long 0x007e006c,0x007e0066,0x00000000,0x006c006c + .long 0x006c006c,0x006c0066,0x00000000,0xfd560072 + .long 0x0078006c,0xfd560066,0x00000000,0x00660066 + .long 0x00660066,0x00660066,0x00000000,0x60ff0000 + .long 0x101e60ff,0x00000f94,0x60ff0000,0x0f8e60ff + .long 0xffffed0e,0x60ffffff,0xed6260ff,0xffffed2e + .long 0x2d40ff5c,0x4241122e,0xff4fe709,0x822eff4e + .long 0x6600027c,0x3d690000,0xff902d69,0x0004ff94 + .long 0x2d690008,0xff983d68,0x0000ff84,0x2d680004 + .long 0xff882d68,0x0008ff8c,0x61ff0000,0x0e582f00 + .long 0x61ff0000,0x0efc4497,0xd197322e,0xff5eec09 + .long 0x201f0c80,0xffffc001,0x6f000064,0x0c800000 + .long 0x3fff6700,0x01b66e00,0x0100f22e,0xd080ff90 + .long 0xf22e9000,0xff5cf23c,0x88000000,0x0000f22e + .long 0x4824ff84,0xf201a800,0xf23c9000,0x00000000 + .long 0x83aeff64,0xf22ef080,0xff842f02,0x322eff84 + .long 0x24010281,0x00007fff,0x02428000,0x92808242 + .long 0x3d41ff84,0x241ff22e,0xd080ff84,0x4e75f22e + .long 0xd080ff90,0xf22e9000,0xff5cf23c,0x88000000 + .long 0x0000f22e,0x4824ff84,0xf201a800,0xf23c9000 + .long 0x00000000,0x83aeff64,0xf227e001,0x3217dffc + .long 0x0000000c,0x02810000,0x7fff9280,0x0c810000 + .long 0x7fff6d90,0x006e1048,0xff66122e,0xff620201 + .long 0x00136620,0x082e0003,0xff6456c1,0x202eff5c + .long 0x02000030,0x61ff0000,0x3936812e,0xff64f210 + .long 0xd0804e75,0xf22ef080,0xff842f02,0x322eff84 + .long 0x24010281,0x00007fff,0x02428000,0x92800481 + .long 0x00006000,0x02417fff,0x82423d41,0xff84241f + .long 0xf22ed040,0xff8460ac,0x08ee0003,0xff66f22e + .long 0xd080ff90,0xf23c9000,0x00000010,0xf23c8800 + .long 0x00000000,0xf22e4824,0xff84f201,0xa800f23c + .long 0x90000000,0x000083ae,0xff64122e,0xff620201 + .long 0x000b6620,0xf22ef080,0xff8441ee,0xff84222e + .long 0xff5c61ff,0x00003830,0x812eff64,0xf22ed080 + .long 0xff844e75,0xf22ed040,0xff90f22e,0x9000ff5c + .long 0xf23c8800,0x00000000,0xf22e48a4,0xff84f23c + .long 0x90000000,0x0000f22e,0xf040ff84,0x2f02322e + .long 0xff842401,0x02810000,0x7fff0242,0x80009280 + .long 0x06810000,0x60000241,0x7fff8242,0x3d41ff84 + .long 0x241ff22e,0xd040ff84,0x608af22e,0xd080ff90 + .long 0xf22e9000,0xff5cf23c,0x88000000,0x0000f22e + .long 0x4824ff84,0xf201a800,0xf23c9000,0x00000000 + .long 0x83aeff64,0xf2000098,0xf23c58b8,0x0001f292 + .long 0xfe44f294,0xff14f22e,0xd040ff90,0x42810001 + .long 0x0010f201,0x9000f23c,0x88000000,0x0000f22e + .long 0x48a4ff84,0xf23c9000,0x00000000,0xf2000498 + .long 0xf23c58b8,0x0001f293,0xfe0c6000,0xfedc323b + .long 0x120a4efb,0x10064afc,0x0030fd7a,0x00720078 + .long 0x0060fd7a,0x00660000,0x00000078,0x006c0078 + .long 0x00600078,0x00660000,0x0000007e,0x007e006c + .long 0x0060007e,0x00660000,0x00000060,0x00600060 + .long 0x00600060,0x00660000,0x0000fd7a,0x00720078 + .long 0x0060fd7a,0x00660000,0x00000066,0x00660066 + .long 0x00660066,0x00660000,0x000060ff,0x00000c7c + .long 0x60ff0000,0x0c7660ff,0x00000cf4,0x60ffffff + .long 0xf0ce60ff,0xfffff09c,0x60ffffff,0xf0f40200 + .long 0x00300000,0x00406008,0x02000030,0x00000080 + .long 0x2d40ff5c,0x4241122e,0xff4fe709,0x822eff4e + .long 0x6600024c,0x61ff0000,0x0a5cf22e,0xd080ff90 + .long 0xf23c8800,0x00000000,0xf22e9000,0xff5cf22e + .long 0x4822ff84,0xf23c9000,0x00000000,0xf201a800 + .long 0x83aeff64,0xf281003c,0x2f02f227,0xe001322e + .long 0xff5eec09,0x34170282,0x00007fff,0x9480b4bb + .long 0x14246c38,0xb4bb142a,0x6d0000b8,0x67000184 + .long 0x32170241,0x80008242,0x3e81f21f,0xd080241f + .long 0x4e754e75,0x00007fff,0x0000407f,0x000043ff + .long 0x00000000,0x00003f81,0x00003c01,0x00ae0000 + .long 0x1048ff64,0x122eff62,0x02010013,0x6624dffc + .long 0x0000000c,0x082e0003,0xff6456c1,0x202eff5c + .long 0x61ff0000,0x366a812e,0xff64f210,0xd080241f + .long 0x4e75122e,0xff5c0201,0x00c0661a,0x32170241 + .long 0x80000482,0x00006000,0x02427fff,0x82423e81 + .long 0xf21fd040,0x60bef22e,0xd080ff90,0x222eff5c + .long 0x02010030,0xf2019000,0xf22e4822,0xff84f23c + .long 0x90000000,0x0000dffc,0x0000000c,0xf227e001 + .long 0x60ba08ee,0x0003ff66,0xdffc0000,0x000cf22e + .long 0xd080ff90,0xf23c9000,0x00000010,0xf23c8800 + .long 0x00000000,0xf22e4822,0xff84f23c,0x90000000 + .long 0x0000f201,0xa80083ae,0xff64122e,0xff620201 + .long 0x000b6622,0xf22ef080,0xff8441ee,0xff84222e + .long 0xff5c61ff,0x000034ba,0x812eff64,0xf22ed080 + .long 0xff84241f,0x4e75f22e,0xd040ff90,0x222eff5c + .long 0x020100c0,0x664ef22e,0x9000ff5c,0xf23c8800 + .long 0x00000000,0xf22e48a2,0xff84f23c,0x90000000 + .long 0x0000f22e,0xf040ff84,0x322eff84,0x24010281 + .long 0x00007fff,0x02428000,0x92800681,0x00006000 + .long 0x02417fff,0x82423d41,0xff84f22e,0xd040ff84 + .long 0x6000ff82,0x222eff5c,0x02010030,0xf2019000 + .long 0x60aa222e,0xff5c0201,0x00c06700,0xfe74222f + .long 0x00040c81,0x80000000,0x6600fe66,0x4aaf0008 + .long 0x6600fe5e,0x082e0001,0xff666700,0xfe54f22e + .long 0xd040ff90,0x222eff5c,0x020100c0,0x00010010 + .long 0xf2019000,0xf23c8800,0x00000000,0xf22e48a2 + .long 0xff84f23c,0x90000000,0x0000f200,0x0018f200 + .long 0x0498f200,0x0438f292,0xfeca6000,0xfe14323b + .long 0x120a4efb,0x10064afc,0x0030fdaa,0x00e4011c + .long 0x0060fdaa,0x00660000,0x000000bc,0x006c011c + .long 0x006000bc,0x00660000,0x00000130,0x0130010c + .long 0x00600130,0x00660000,0x00000060,0x00600060 + .long 0x00600060,0x00660000,0x0000fdaa,0x00e4011c + .long 0x0060fdaa,0x00660000,0x00000066,0x00660066 + .long 0x00660066,0x00660000,0x000060ff,0x0000097c + .long 0x60ff0000,0x09761028,0x00001229,0x0000b101 + .long 0x6b000016,0x4a006b2e,0xf23c4400,0x00000000 + .long 0x1d7c0004,0xff644e75,0x122eff5f,0x02010030 + .long 0x0c010020,0x6710f23c,0x44000000,0x00001d7c + .long 0x0004ff64,0x4e75f23c,0x44008000,0x00001d7c + .long 0x000cff64,0x4e753d68,0x0000ff84,0x2d680004 + .long 0xff882d68,0x0008ff8c,0x61ff0000,0x0828426e + .long 0xff9042ae,0xff9442ae,0xff986000,0xfcce3d69 + .long 0x0000ff90,0x2d690004,0xff942d69,0x0008ff98 + .long 0x61ff0000,0x08ac426e,0xff8442ae,0xff8842ae + .long 0xff8c6000,0xfca61028,0x00001229,0x0000b300 + .long 0x6bff0000,0x094af228,0xd0800000,0x4a280000 + .long 0x6a1c1d7c,0x000aff64,0x4e75f229,0xd0800000 + .long 0x4a290000,0x6a081d7c,0x000aff64,0x4e751d7c + .long 0x0002ff64,0x4e750200,0x00300000,0x00406008 + .long 0x02000030,0x00000080,0x2d40ff5c,0x4241122e + .long 0xff4fe709,0x822eff4e,0x6600024c,0x61ff0000 + .long 0x0694f22e,0xd080ff90,0xf23c8800,0x00000000 + .long 0xf22e9000,0xff5cf22e,0x4828ff84,0xf23c9000 + .long 0x00000000,0xf201a800,0x83aeff64,0xf281003c + .long 0x2f02f227,0xe001322e,0xff5eec09,0x34170282 + .long 0x00007fff,0x9480b4bb,0x14246c38,0xb4bb142a + .long 0x6d0000b8,0x67000184,0x32170241,0x80008242 + .long 0x3e81f21f,0xd080241f,0x4e754e75,0x00007fff + .long 0x0000407f,0x000043ff,0x00000000,0x00003f81 + .long 0x00003c01,0x00ae0000,0x1048ff64,0x122eff62 + .long 0x02010013,0x6624dffc,0x0000000c,0x082e0003 + .long 0xff6456c1,0x202eff5c,0x61ff0000,0x32a2812e + .long 0xff64f210,0xd080241f,0x4e75122e,0xff5c0201 + .long 0x00c0661a,0x32170241,0x80000482,0x00006000 + .long 0x02427fff,0x82423e81,0xf21fd040,0x60bef22e + .long 0xd080ff90,0x222eff5c,0x02010030,0xf2019000 + .long 0xf22e4828,0xff84f23c,0x90000000,0x0000dffc + .long 0x0000000c,0xf227e001,0x60ba08ee,0x0003ff66 + .long 0xdffc0000,0x000cf22e,0xd080ff90,0xf23c9000 + .long 0x00000010,0xf23c8800,0x00000000,0xf22e4828 + .long 0xff84f23c,0x90000000,0x0000f201,0xa80083ae + .long 0xff64122e,0xff620201,0x000b6622,0xf22ef080 + .long 0xff8441ee,0xff84222e,0xff5c61ff,0x000030f2 + .long 0x812eff64,0xf22ed080,0xff84241f,0x4e75f22e + .long 0xd040ff90,0x222eff5c,0x020100c0,0x664ef22e + .long 0x9000ff5c,0xf23c8800,0x00000000,0xf22e48a8 + .long 0xff84f23c,0x90000000,0x0000f22e,0xf040ff84 + .long 0x322eff84,0x24010281,0x00007fff,0x02428000 + .long 0x92800681,0x00006000,0x02417fff,0x82423d41 + .long 0xff84f22e,0xd040ff84,0x6000ff82,0x222eff5c + .long 0x02010030,0xf2019000,0x60aa222e,0xff5c0201 + .long 0x00c06700,0xfe74222f,0x00040c81,0x80000000 + .long 0x6600fe66,0x4aaf0008,0x6600fe5e,0x082e0001 + .long 0xff666700,0xfe54f22e,0xd040ff90,0x222eff5c + .long 0x020100c0,0x00010010,0xf2019000,0xf23c8800 + .long 0x00000000,0xf22e48a8,0xff84f23c,0x90000000 + .long 0x0000f200,0x0018f200,0x0498f200,0x0438f292 + .long 0xfeca6000,0xfe14323b,0x120a4efb,0x10064afc + .long 0x0030fdaa,0x00e2011a,0x0060fdaa,0x00660000 + .long 0x000000ba,0x006c011a,0x006000ba,0x00660000 + .long 0x00000130,0x0130010a,0x00600130,0x00660000 + .long 0x00000060,0x00600060,0x00600060,0x00660000 + .long 0x0000fdaa,0x00e2011a,0x0060fdaa,0x00660000 + .long 0x00000066,0x00660066,0x00660066,0x00660000 + .long 0x000060ff,0x000005b4,0x60ff0000,0x05ae1028 + .long 0x00001229,0x0000b300,0x6a144a00,0x6b2ef23c + .long 0x44000000,0x00001d7c,0x0004ff64,0x4e75122e + .long 0xff5f0201,0x00300c01,0x00206710,0xf23c4400 + .long 0x00000000,0x1d7c0004,0xff644e75,0xf23c4400 + .long 0x80000000,0x1d7c000c,0xff644e75,0x3d680000 + .long 0xff842d68,0x0004ff88,0x2d680008,0xff8c61ff + .long 0x00000462,0x426eff90,0x42aeff94,0x42aeff98 + .long 0x6000fcd0,0x3d690000,0xff902d69,0x0004ff94 + .long 0x2d690008,0xff9861ff,0x000004e6,0x426eff84 + .long 0x42aeff88,0x42aeff8c,0x6000fca8,0x10280000 + .long 0x12290000,0xb3006aff,0x00000584,0xf228d080 + .long 0x0000f200,0x001af293,0x001e1d7c,0x000aff64 + .long 0x4e75f229,0xd0800000,0x4a290000,0x6a081d7c + .long 0x000aff64,0x4e751d7c,0x0002ff64,0x4e750200 + .long 0x00300000,0x00406008,0x02000030,0x00000080 + .long 0x2d40ff5c,0x4241122e,0xff4e6600,0x02744a28 + .long 0x00006bff,0x00000528,0x020000c0,0x6648f22e + .long 0x9000ff5c,0xf23c8800,0x00000000,0xf2104804 + .long 0xf201a800,0x83aeff64,0x4e754a28,0x00006bff + .long 0x000004fc,0x020000c0,0x661c3d68,0x0000ff84 + .long 0x2d680004,0xff882d68,0x0008ff8c,0x61ff0000 + .long 0x03ae6000,0x003e0c00,0x00406600,0x00843d68 + .long 0x0000ff84,0x2d680004,0xff882d68,0x0008ff8c + .long 0x61ff0000,0x038a0c80,0x0000007e,0x67000098 + .long 0x6e00009e,0x0c80ffff,0xff806700,0x01a46d00 + .long 0x0120f23c,0x88000000,0x0000f22e,0x9000ff5c + .long 0xf22e4804,0xff84f201,0xa800f23c,0x90000000 + .long 0x000083ae,0xff642f02,0xf22ef080,0xff84322e + .long 0xff842401,0x02810000,0x7fff9280,0x02428000 + .long 0x84413d42,0xff84241f,0xf22ed080,0xff844e75 + .long 0x3d680000,0xff842d68,0x0004ff88,0x2d680008 + .long 0xff8c61ff,0x00000308,0x0c800000,0x03fe6700 + .long 0x00166e1c,0x0c80ffff,0xfc006700,0x01246d00 + .long 0x00a06000,0xff7e082e,0x0000ff85,0x6600ff74 + .long 0x08ee0003,0xff66f23c,0x90000000,0x0010f23c + .long 0x88000000,0x0000f22e,0x4804ff84,0xf201a800 + .long 0xf23c9000,0x00000000,0x83aeff64,0x122eff62 + .long 0x0201000b,0x6620f22e,0xf080ff84,0x41eeff84 + .long 0x222eff5c,0x61ff0000,0x2d28812e,0xff64f22e + .long 0xd080ff84,0x4e752d6e,0xff88ff94,0x2d6eff8c + .long 0xff98322e,0xff842f02,0x24010281,0x00007fff + .long 0x02428000,0x92800681,0x00006000,0x02417fff + .long 0x82423d41,0xff90f22e,0xd040ff90,0x241f60a6 + .long 0xf23c8800,0x00000000,0xf22e9000,0xff5cf22e + .long 0x4804ff84,0xf23c9000,0x00000000,0xf201a800 + .long 0x83aeff64,0x00ae0000,0x1048ff64,0x122eff62 + .long 0x02010013,0x661c082e,0x0003ff64,0x56c1202e + .long 0xff5c61ff,0x00002d98,0x812eff64,0xf210d080 + .long 0x4e752f02,0x322eff84,0x24010281,0x00007fff + .long 0x02428000,0x92800481,0x00006000,0x02417fff + .long 0x82423d41,0xff84f22e,0xd040ff84,0x241f60b6 + .long 0x082e0000,0xff856600,0xff78f23c,0x88000000 + .long 0x0000f22e,0x9000ff5c,0xf22e4804,0xff84f201 + .long 0xa800f23c,0x90000000,0x000083ae,0xff64f200 + .long 0x0080f23c,0x58b80001,0xf293ff6a,0x6000fe48 + .long 0x0c010004,0x6700fdb4,0x0c010001,0x67160c01 + .long 0x00026736,0x0c010005,0x67ff0000,0x023660ff + .long 0x00000244,0x4a280000,0x6b10f23c,0x44000000 + .long 0x00001d7c,0x0004ff64,0x4e75f23c,0x44008000 + .long 0x00001d7c,0x000cff64,0x4e754a28,0x00006bff + .long 0x0000026c,0xf228d080,0x00001d7c,0x0002ff64 + .long 0x4e752d68,0x0004ff88,0x2d690004,0xff942d68 + .long 0x0008ff8c,0x2d690008,0xff983028,0x00003229 + .long 0x00003d40,0xff843d41,0xff900240,0x7fff0241 + .long 0x7fff3d40,0xff543d41,0xff56b041,0x6cff0000 + .long 0x005c61ff,0x0000015a,0x2f000c2e,0x0004ff4e + .long 0x661041ee,0xff8461ff,0x00002940,0x44403d40 + .long 0xff54302e,0xff560440,0x0042b06e,0xff546c1a + .long 0x302eff54,0xd06f0002,0x322eff84,0x02418000 + .long 0x80413d40,0xff84201f,0x4e75026e,0x8000ff84 + .long 0x08ee0000,0xff85201f,0x4e7561ff,0x00000056 + .long 0x2f000c2e,0x0004ff4f,0x661041ee,0xff9061ff + .long 0x000028e8,0x44403d40,0xff56302e,0xff540440 + .long 0x0042b06e,0xff566c1a,0x302eff56,0xd06f0002 + .long 0x322eff90,0x02418000,0x80413d40,0xff90201f + .long 0x4e75026e,0x8000ff90,0x08ee0000,0xff91201f + .long 0x4e75322e,0xff843001,0x02810000,0x7fff0240 + .long 0x80000040,0x3fff3d40,0xff840c2e,0x0004ff4e + .long 0x670a203c,0x00003fff,0x90814e75,0x41eeff84 + .long 0x61ff0000,0x28764480,0x220060e6,0x0c2e0004 + .long 0xff4e673a,0x322eff84,0x02810000,0x7fff026e + .long 0x8000ff84,0x08010000,0x6712006e,0x3fffff84 + .long 0x203c0000,0x3fff9081,0xe2804e75,0x006e3ffe + .long 0xff84203c,0x00003ffe,0x9081e280,0x4e7541ee + .long 0xff8461ff,0x00002824,0x08000000,0x6710006e + .long 0x3fffff84,0x06800000,0x3fffe280,0x4e75006e + .long 0x3ffeff84,0x06800000,0x3ffee280,0x4e75322e + .long 0xff903001,0x02810000,0x7fff0240,0x80000040 + .long 0x3fff3d40,0xff900c2e,0x0004ff4f,0x670a203c + .long 0x00003fff,0x90814e75,0x41eeff90,0x61ff0000 + .long 0x27ca4480,0x220060e6,0x0c2e0005,0xff4f6732 + .long 0x0c2e0003,0xff4f673e,0x0c2e0003,0xff4e6714 + .long 0x08ee0006,0xff7000ae,0x01004080,0xff6441ee + .long 0xff6c6042,0x00ae0100,0x0000ff64,0x41eeff6c + .long 0x603400ae,0x01004080,0xff6408ee,0x0006ff7c + .long 0x41eeff78,0x602041ee,0xff780c2e,0x0005ff4e + .long 0x66ff0000,0x000c00ae,0x00004080,0xff6400ae + .long 0x01000000,0xff640828,0x00070000,0x670800ae + .long 0x08000000,0xff64f210,0xd0804e75,0x00ae0100 + .long 0x2080ff64,0xf23bd080,0x01700000,0x00084e75 + .long 0x7fff0000,0xffffffff,0xffffffff,0x2d40ff54 + .long 0x302eff42,0x4281122e,0xff64e099,0xf2018800 + .long 0x323b0206,0x4efb1002,0x02340040,0x02f8030c + .long 0x03200334,0x0348035c,0x03660352,0x033e032a + .long 0x03160302,0x004a0238,0x023a0276,0x0054009e + .long 0x0102014c,0x01b201fc,0x021801d8,0x018c0128 + .long 0x00de007a,0x02b6025a,0xf2810006,0x6000032a + .long 0x4e75f28e,0x00066000,0x03204e75,0xf2920022 + .long 0x082e0000,0xff646700,0x031000ae,0x00008080 + .long 0xff64082e,0x0007ff62,0x6600032c,0x600002fa + .long 0x4e75f29d,0x00066000,0x02f0082e,0x0000ff64 + .long 0x671200ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x66000304,0x4e75f293,0x0022082e,0x0000ff64 + .long 0x670002c6,0x00ae0000,0x8080ff64,0x082e0007 + .long 0xff626600,0x02e26000,0x02b0082e,0x0000ff64 + .long 0x671200ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x660002c4,0x4e75f29c,0x00066000,0x028c082e + .long 0x0000ff64,0x671200ae,0x00008080,0xff64082e + .long 0x0007ff62,0x660002a0,0x4e75f294,0x0022082e + .long 0x0000ff64,0x67000262,0x00ae0000,0x8080ff64 + .long 0x082e0007,0xff626600,0x027e6000,0x024c4e75 + .long 0xf29b0006,0x60000242,0x082e0000,0xff646712 + .long 0x00ae0000,0x8080ff64,0x082e0007,0xff626600 + .long 0x02564e75,0xf2950022,0x082e0000,0xff646700 + .long 0x021800ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x66000234,0x60000202,0x082e0000,0xff646712 + .long 0x00ae0000,0x8080ff64,0x082e0007,0xff626600 + .long 0x02164e75,0xf29a0006,0x600001de,0x082e0000 + .long 0xff646700,0x001400ae,0x00008080,0xff64082e + .long 0x0007ff62,0x660001f0,0x4e75f296,0x0022082e + .long 0x0000ff64,0x670001b2,0x00ae0000,0x8080ff64 + .long 0x082e0007,0xff626600,0x01ce6000,0x019c4e75 + .long 0xf2990006,0x60000192,0x082e0000,0xff646712 + .long 0x00ae0000,0x8080ff64,0x082e0007,0xff626600 + .long 0x01a64e75,0xf2970018,0x00ae0000,0x8080ff64 + .long 0x082e0007,0xff626600,0x018e6000,0x015c4e75 + .long 0xf2980006,0x60000152,0x00ae0000,0x8080ff64 + .long 0x082e0007,0xff626600,0x016e4e75,0x6000013a + .long 0x4e75082e,0x0000ff64,0x6700012e,0x00ae0000 + .long 0x8080ff64,0x082e0007,0xff626600,0x014a6000 + .long 0x0118082e,0x0000ff64,0x671200ae,0x00008080 + .long 0xff64082e,0x0007ff62,0x6600012c,0x4e75f291 + .long 0x0022082e,0x0000ff64,0x670000ee,0x00ae0000 + .long 0x8080ff64,0x082e0007,0xff626600,0x010a6000 + .long 0x00d8082e,0x0000ff64,0x671200ae,0x00008080 + .long 0xff64082e,0x0007ff62,0x660000ec,0x4e75f29e + .long 0x0022082e,0x0000ff64,0x670000ae,0x00ae0000 + .long 0x8080ff64,0x082e0007,0xff626600,0x00ca6000 + .long 0x0098082e,0x0000ff64,0x67000014,0x00ae0000 + .long 0x8080ff64,0x082e0007,0xff626600,0x00aa4e75 + .long 0xf2820006,0x60000072,0x4e75f28d,0x00066000 + .long 0x00684e75,0xf2830006,0x6000005e,0x4e75f28c + .long 0x00066000,0x00544e75,0xf2840006,0x6000004a + .long 0x4e75f28b,0x00066000,0x00404e75,0xf2850006 + .long 0x60000036,0x4e75f28a,0x00066000,0x002c4e75 + .long 0xf2860006,0x60000022,0x4e75f289,0x00066000 + .long 0x00184e75,0xf2870006,0x6000000e,0x4e75f288 + .long 0x00066000,0x00044e75,0x122eff41,0x02410007 + .long 0x61ff0000,0x1d665340,0x61ff0000,0x1dd00c40 + .long 0xffff6602,0x4e75202e,0xff54d0ae,0xff685880 + .long 0x2d400006,0x4e751d7c,0x0002ff4a,0x4e75302e + .long 0xff424281,0x122eff64,0xe099f201,0x8800323b + .long 0x02064efb,0x1002021e,0x004002e4,0x02f002fc + .long 0x03080314,0x03200326,0x031a030e,0x030202f6 + .long 0x02ea0046,0x02200224,0x0260004c,0x009200f8 + .long 0x013e01a4,0x01ea0202,0x01c4017e,0x011800d2 + .long 0x006c02a2,0x0240f281,0x02ea4e75,0xf28e02e4 + .long 0x4e75f292,0x02de082e,0x0000ff64,0x671200ae + .long 0x00008080,0xff64082e,0x0007ff62,0x660002cc + .long 0x4e75f29d,0x00044e75,0x082e0000,0xff646700 + .long 0x02b200ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x660002a8,0x6000029c,0xf293001e,0x082e0000 + .long 0xff646712,0x00ae0000,0x8080ff64,0x082e0007 + .long 0xff626600,0x02864e75,0x082e0000,0xff646700 + .long 0x027200ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x66000268,0x6000025c,0xf29c0004,0x4e75082e + .long 0x0000ff64,0x6700024c,0x00ae0000,0x8080ff64 + .long 0x082e0007,0xff626600,0x02426000,0x0236f294 + .long 0x0232082e,0x0000ff64,0x671200ae,0x00008080 + .long 0xff64082e,0x0007ff62,0x66000220,0x4e75f29b + .long 0x00044e75,0x082e0000,0xff646700,0x020600ae + .long 0x00008080,0xff64082e,0x0007ff62,0x660001fc + .long 0x600001f0,0xf295001e,0x082e0000,0xff646712 + .long 0x00ae0000,0x8080ff64,0x082e0007,0xff626600 + .long 0x01da4e75,0x082e0000,0xff646700,0x01c600ae + .long 0x00008080,0xff64082e,0x0007ff62,0x660001bc + .long 0x600001b0,0xf29a0004,0x4e75082e,0x0000ff64 + .long 0x670001a0,0x00ae0000,0x8080ff64,0x082e0007 + .long 0xff626600,0x01966000,0x018af296,0x0186082e + .long 0x0000ff64,0x671200ae,0x00008080,0xff64082e + .long 0x0007ff62,0x66000174,0x4e75f299,0x00044e75 + .long 0x082e0000,0xff646700,0x015a00ae,0x00008080 + .long 0xff64082e,0x0007ff62,0x66000150,0x60000144 + .long 0xf2970140,0x00ae0000,0x8080ff64,0x082e0007 + .long 0xff626600,0x01364e75,0xf2980004,0x4e7500ae + .long 0x00008080,0xff64082e,0x0007ff62,0x6600011c + .long 0x60000110,0x4e756000,0x010a082e,0x0000ff64 + .long 0x671200ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x660000f8,0x4e75082e,0x0000ff64,0x670000e4 + .long 0x00ae0000,0x8080ff64,0x082e0007,0xff626600 + .long 0x00da6000,0x00cef291,0x0020082e,0x0000ff64 + .long 0x67000014,0x00ae0000,0x8080ff64,0x082e0007 + .long 0xff626600,0x00b64e75,0x082e0000,0xff646700 + .long 0x00a200ae,0x00008080,0xff64082e,0x0007ff62 + .long 0x66000098,0x6000008c,0xf29e0020,0x082e0000 + .long 0xff646700,0x001400ae,0x00008080,0xff64082e + .long 0x0007ff62,0x66000074,0x4e75082e,0x0000ff64 + .long 0x67000060,0x00ae0000,0x8080ff64,0x082e0007 + .long 0xff626600,0x00566000,0x004af282,0x00464e75 + .long 0xf28d0040,0x4e75f283,0x003a4e75,0xf28c0034 + .long 0x4e75f284,0x002e4e75,0xf28b0028,0x4e75f285 + .long 0x00224e75,0xf28a001c,0x4e75f286,0x00164e75 + .long 0xf2890010,0x4e75f287,0x000a4e75,0xf2880004 + .long 0x4e751d7c,0x0001ff4a,0x4e751d7c,0x0002ff4a + .long 0x4e75302e,0xff424281,0x122eff64,0xe099f201 + .long 0x8800323b,0x02064efb,0x10020208,0x004002ac + .long 0x02cc02ec,0x030c032c,0x034c035c,0x033c031c + .long 0x02fc02dc,0x02bc0050,0x020e0214,0x02440060 + .long 0x00a400fa,0x013e0194,0x01d801f0,0x01b60172 + .long 0x011c00d8,0x00820278,0x022cf281,0x00084200 + .long 0x6000032e,0x50c06000,0x0328f28e,0x00084200 + .long 0x6000031e,0x50c06000,0x0318f292,0x001a4200 + .long 0x082e0000,0xff646700,0x030800ae,0x00008080 + .long 0xff646000,0x02f250c0,0x600002f6,0xf29d0008 + .long 0x42006000,0x02ec50c0,0x082e0000,0xff646700 + .long 0x02e000ae,0x00008080,0xff646000,0x02caf293 + .long 0x001a4200,0x082e0000,0xff646700,0x02c400ae + .long 0x00008080,0xff646000,0x02ae50c0,0x082e0000 + .long 0xff646700,0x02ac00ae,0x00008080,0xff646000 + .long 0x0296f29c,0x00084200,0x60000296,0x50c0082e + .long 0x0000ff64,0x6700028a,0x00ae0000,0x8080ff64 + .long 0x60000274,0xf294001a,0x4200082e,0x0000ff64 + .long 0x6700026e,0x00ae0000,0x8080ff64,0x60000258 + .long 0x50c06000,0x025cf29b,0x00084200,0x60000252 + .long 0x50c0082e,0x0000ff64,0x67000246,0x00ae0000 + .long 0x8080ff64,0x60000230,0xf295001a,0x4200082e + .long 0x0000ff64,0x6700022a,0x00ae0000,0x8080ff64 + .long 0x60000214,0x50c0082e,0x0000ff64,0x67000212 + .long 0x00ae0000,0x8080ff64,0x600001fc,0xf29a0008 + .long 0x42006000,0x01fc50c0,0x082e0000,0xff646700 + .long 0x01f000ae,0x00008080,0xff646000,0x01daf296 + .long 0x001a4200,0x082e0000,0xff646700,0x01d400ae + .long 0x00008080,0xff646000,0x01be50c0,0x600001c2 + .long 0xf2990008,0x42006000,0x01b850c0,0x082e0000 + .long 0xff646700,0x01ac00ae,0x00008080,0xff646000 + .long 0x0196f297,0x00104200,0x00ae0000,0x8080ff64 + .long 0x60000184,0x50c06000,0x0188f298,0x00084200 + .long 0x6000017e,0x50c000ae,0x00008080,0xff646000 + .long 0x01664200,0x6000016a,0x50c06000,0x01644200 + .long 0x082e0000,0xff646700,0x015800ae,0x00008080 + .long 0xff646000,0x014250c0,0x082e0000,0xff646700 + .long 0x014000ae,0x00008080,0xff646000,0x012af291 + .long 0x001a4200,0x082e0000,0xff646700,0x012400ae + .long 0x00008080,0xff646000,0x010e50c0,0x082e0000 + .long 0xff646700,0x010c00ae,0x00008080,0xff646000 + .long 0x00f6f29e,0x001a4200,0x082e0000,0xff646700 + .long 0x00f000ae,0x00008080,0xff646000,0x00da50c0 + .long 0x082e0000,0xff646700,0x00d800ae,0x00008080 + .long 0xff646000,0x00c2f282,0x00084200,0x600000c2 + .long 0x50c06000,0x00bcf28d,0x00084200,0x600000b2 + .long 0x50c06000,0x00acf283,0x00084200,0x600000a2 + .long 0x50c06000,0x009cf28c,0x00084200,0x60000092 + .long 0x50c06000,0x008cf284,0x00084200,0x60000082 + .long 0x50c06000,0x007cf28b,0x00084200,0x60000072 + .long 0x50c06000,0x006cf285,0x00084200,0x60000062 + .long 0x50c06000,0x005cf28a,0x00084200,0x60000052 + .long 0x50c06000,0x004cf286,0x00084200,0x60000042 + .long 0x50c06000,0x003cf289,0x00084200,0x60000032 + .long 0x50c06000,0x002cf287,0x00084200,0x60000022 + .long 0x50c06000,0x001cf288,0x00084200,0x60000012 + .long 0x50c06000,0x000c082e,0x0007ff62,0x66000088 + .long 0x2040122e,0xff412001,0x02010038,0x66102200 + .long 0x02410007,0x200861ff,0x0000172a,0x4e750c01 + .long 0x0018671a,0x0c010020,0x67382008,0x206e000c + .long 0x61ffffff,0x5a7c4a81,0x66000054,0x4e752008 + .long 0x206e000c,0x61ffffff,0x5a684a81,0x66000040 + .long 0x122eff41,0x02410007,0x700161ff,0x00001722 + .long 0x4e752008,0x206e000c,0x61ffffff,0x5a444a81 + .long 0x6600001c,0x122eff41,0x02410007,0x700161ff + .long 0x0000174e,0x4e751d7c,0x0002ff4a,0x4e753d7c + .long 0x00a1000a,0x60ff0000,0x2b86122e,0xff430241 + .long 0x0070e809,0x61ff0000,0x15b20280,0x000000ff + .long 0x2f00103b,0x09200148,0x2f0061ff,0x00000340 + .long 0x201f221f,0x67000134,0x082e0005,0xff426700 + .long 0x00b8082e,0x0004ff42,0x6600001a,0x123b1120 + .long 0x021e082e,0x00050004,0x670a0c2e,0x0008ff4a + .long 0x66024e75,0x22489fc0,0x41d74a01,0x6a0c20ee + .long 0xffdc20ee,0xffe020ee,0xffe4e309,0x6a0c20ee + .long 0xffe820ee,0xffec20ee,0xfff0e309,0x6a0af210 + .long 0xf020d1fc,0x0000000c,0xe3096a0a,0xf210f010 + .long 0xd1fc0000,0x000ce309,0x6a0af210,0xf008d1fc + .long 0x0000000c,0xe3096a0a,0xf210f004,0xd1fc0000 + .long 0x000ce309,0x6a0af210,0xf002d1fc,0x0000000c + .long 0xe3096a0a,0xf210f001,0xd1fc0000,0x000c2d49 + .long 0xff5441d7,0x2f0061ff,0xffff58b2,0x201fdfc0 + .long 0x4a816600,0x071e4e75,0x2d48ff54,0x9fc043d7 + .long 0x2f012f00,0x61ffffff,0x587e201f,0x4a816600 + .long 0x070e221f,0x41d74a01,0x6a0c2d58,0xffdc2d58 + .long 0xffe02d58,0xffe4e309,0x6a0c2d58,0xffe82d58 + .long 0xffec2d58,0xfff0e309,0x6a04f218,0xd020e309 + .long 0x6a04f218,0xd010e309,0x6a04f218,0xd008e309 + .long 0x6a04f218,0xd004e309,0x6a04f218,0xd002e309 + .long 0x6a04f218,0xd001dfc0,0x4e754e75,0x000c0c18 + .long 0x0c181824,0x0c181824,0x18242430,0x0c181824 + .long 0x18242430,0x18242430,0x2430303c,0x0c181824 + .long 0x18242430,0x18242430,0x2430303c,0x18242430 + .long 0x2430303c,0x2430303c,0x303c3c48,0x0c181824 + .long 0x18242430,0x18242430,0x2430303c,0x18242430 + .long 0x2430303c,0x2430303c,0x303c3c48,0x18242430 + .long 0x2430303c,0x2430303c,0x303c3c48,0x2430303c + .long 0x303c3c48,0x303c3c48,0x3c484854,0x0c181824 + .long 0x18242430,0x18242430,0x2430303c,0x18242430 + .long 0x2430303c,0x2430303c,0x303c3c48,0x18242430 + .long 0x2430303c,0x2430303c,0x303c3c48,0x2430303c + .long 0x303c3c48,0x303c3c48,0x3c484854,0x18242430 + .long 0x2430303c,0x2430303c,0x303c3c48,0x2430303c + .long 0x303c3c48,0x303c3c48,0x3c484854,0x2430303c + .long 0x303c3c48,0x303c3c48,0x3c484854,0x303c3c48 + .long 0x3c484854,0x3c484854,0x48545460,0x008040c0 + .long 0x20a060e0,0x109050d0,0x30b070f0,0x088848c8 + .long 0x28a868e8,0x189858d8,0x38b878f8,0x048444c4 + .long 0x24a464e4,0x149454d4,0x34b474f4,0x0c8c4ccc + .long 0x2cac6cec,0x1c9c5cdc,0x3cbc7cfc,0x028242c2 + .long 0x22a262e2,0x129252d2,0x32b272f2,0x0a8a4aca + .long 0x2aaa6aea,0x1a9a5ada,0x3aba7afa,0x068646c6 + .long 0x26a666e6,0x169656d6,0x36b676f6,0x0e8e4ece + .long 0x2eae6eee,0x1e9e5ede,0x3ebe7efe,0x018141c1 + .long 0x21a161e1,0x119151d1,0x31b171f1,0x098949c9 + .long 0x29a969e9,0x199959d9,0x39b979f9,0x058545c5 + .long 0x25a565e5,0x159555d5,0x35b575f5,0x0d8d4dcd + .long 0x2dad6ded,0x1d9d5ddd,0x3dbd7dfd,0x038343c3 + .long 0x23a363e3,0x139353d3,0x33b373f3,0x0b8b4bcb + .long 0x2bab6beb,0x1b9b5bdb,0x3bbb7bfb,0x078747c7 + .long 0x27a767e7,0x179757d7,0x37b777f7,0x0f8f4fcf + .long 0x2faf6fef,0x1f9f5fdf,0x3fbf7fff,0x2040302e + .long 0xff403200,0x0240003f,0x02810000,0x0007303b + .long 0x020a4efb,0x00064afc,0x00400000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000080,0x0086008c + .long 0x00900094,0x0098009c,0x00a000a6,0x00b600c6 + .long 0x00d200de,0x00ea00f6,0x01020118,0x01260134 + .long 0x013e0148,0x0152015c,0x0166017a,0x019801b6 + .long 0x01d201ee,0x020a0226,0x02420260,0x02600260 + .long 0x02600260,0x02600260,0x026002c0,0x02da02f4 + .long 0x03140000,0x00000000,0x0000206e,0xffa44e75 + .long 0x206effa8,0x4e75204a,0x4e75204b,0x4e75204c + .long 0x4e75204d,0x4e752056,0x4e75206e,0xffd84e75 + .long 0x202effa4,0x2200d288,0x2d41ffa4,0x20404e75 + .long 0x202effa8,0x2200d288,0x2d41ffa8,0x20404e75 + .long 0x200a2200,0xd2882441,0x20404e75,0x200b2200 + .long 0xd2882641,0x20404e75,0x200c2200,0xd2882841 + .long 0x20404e75,0x200d2200,0xd2882a41,0x20404e75 + .long 0x20162200,0xd2882c81,0x20404e75,0x1d7c0004 + .long 0xff4a202e,0xffd82200,0xd2882d41,0xffd82040 + .long 0x4e75202e,0xffa49088,0x2d40ffa4,0x20404e75 + .long 0x202effa8,0x90882d40,0xffa82040,0x4e75200a + .long 0x90882440,0x20404e75,0x200b9088,0x26402040 + .long 0x4e75200c,0x90882840,0x20404e75,0x200d9088 + .long 0x2a402040,0x4e752016,0x90882c80,0x20404e75 + .long 0x1d7c0008,0xff4a202e,0xffd89088,0x2d40ffd8 + .long 0x20404e75,0x206eff44,0x54aeff44,0x61ffffff + .long 0x54a24a81,0x66ffffff,0x68203040,0xd1eeffa4 + .long 0x4e75206e,0xff4454ae,0xff4461ff,0xffff5484 + .long 0x4a8166ff,0xffff6802,0x3040d1ee,0xffa84e75 + .long 0x206eff44,0x54aeff44,0x61ffffff,0x54664a81 + .long 0x66ffffff,0x67e43040,0xd1ca4e75,0x206eff44 + .long 0x54aeff44,0x61ffffff,0x544a4a81,0x66ffffff + .long 0x67c83040,0xd1cb4e75,0x206eff44,0x54aeff44 + .long 0x61ffffff,0x542e4a81,0x66ffffff,0x67ac3040 + .long 0xd1cc4e75,0x206eff44,0x54aeff44,0x61ffffff + .long 0x54124a81,0x66ffffff,0x67903040,0xd1cd4e75 + .long 0x206eff44,0x54aeff44,0x61ffffff,0x53f64a81 + .long 0x66ffffff,0x67743040,0xd1d64e75,0x206eff44 + .long 0x54aeff44,0x61ffffff,0x53da4a81,0x66ffffff + .long 0x67583040,0xd1eeffd8,0x4e755081,0x61ff0000 + .long 0x0fda2f00,0x206eff44,0x54aeff44,0x61ffffff + .long 0x53b24a81,0x66ffffff,0x6730205f,0x08000008 + .long 0x660000e6,0x2d40ff54,0x2200e959,0x0241000f + .long 0x61ff0000,0x0fa62f02,0x242eff54,0x0802000b + .long 0x660248c0,0x2202ef59,0x02810000,0x0003e3a8 + .long 0x49c2d082,0xd1c0241f,0x4e75206e,0xff4454ae + .long 0xff4461ff,0xffff535c,0x4a8166ff,0xffff66da + .long 0x30404e75,0x206eff44,0x58aeff44,0x61ffffff + .long 0x53584a81,0x66ffffff,0x66c02040,0x4e75206e + .long 0xff4454ae,0xff4461ff,0xffff5328,0x4a8166ff + .long 0xffff66a6,0x3040d1ee,0xff445588,0x4e75206e + .long 0xff4454ae,0xff4461ff,0xffff5308,0x4a8166ff + .long 0xffff6686,0x206eff44,0x55880800,0x00086600 + .long 0x00382d40,0xff542200,0xe9590241,0x000f61ff + .long 0x00000ef8,0x2f02242e,0xff540802,0x000b6602 + .long 0x48c02202,0xef590281,0x00000003,0xe3a849c2 + .long 0xd082d1c0,0x241f4e75,0x08000006,0x670c48e7 + .long 0x3c002a00,0x26084282,0x60282d40,0xff54e9c0 + .long 0x140461ff,0x00000eb4,0x48e73c00,0x24002a2e + .long 0xff542608,0x0805000b,0x660248c2,0xe9c50542 + .long 0xe1aa0805,0x00076702,0x4283e9c5,0x06820c00 + .long 0x00026d34,0x6718206e,0xff4458ae,0xff4461ff + .long 0xffff5276,0x4a8166ff,0x000000b0,0x6018206e + .long 0xff4454ae,0xff4461ff,0xffff5248,0x4a8166ff + .long 0x00000098,0x48c0d680,0xe9c50782,0x6700006e + .long 0x0c000002,0x6d346718,0x206eff44,0x58aeff44 + .long 0x61ffffff,0x52344a81,0x66ff0000,0x006e601c + .long 0x206eff44,0x54aeff44,0x61ffffff,0x52064a81 + .long 0x66ff0000,0x005648c0,0x60024280,0x28000805 + .long 0x00026714,0x204361ff,0xffff5240,0x4a816600 + .long 0x0028d082,0xd0846018,0xd6822043,0x61ffffff + .long 0x522a4a81,0x66000012,0xd0846004,0xd6822003 + .long 0x20404cdf,0x003c4e75,0x20434cdf,0x003c303c + .long 0x010160ff,0xffff6582,0x4cdf003c,0x60ffffff + .long 0x652861ff,0x000023c6,0x303c00e1,0x600a61ff + .long 0x000023ba,0x303c0161,0x206eff54,0x60ffffff + .long 0x6558102e,0xff420c00,0x009c6700,0x00b20c00 + .long 0x00986700,0x00740c00,0x00946736,0x206eff44 + .long 0x58aeff44,0x61ffffff,0x51704a81,0x66ffffff + .long 0x64d82d40,0xff64206e,0xff4458ae,0xff4461ff + .long 0xffff5156,0x4a8166ff,0xffff64be,0x2d40ff68 + .long 0x4e75206e,0xff4458ae,0xff4461ff,0xffff513a + .long 0x4a8166ff,0xffff64a2,0x2d40ff60,0x206eff44 + .long 0x58aeff44,0x61ffffff,0x51204a81,0x66ffffff + .long 0x64882d40,0xff684e75,0x206eff44,0x58aeff44 + .long 0x61ffffff,0x51044a81,0x66ffffff,0x646c2d40 + .long 0xff60206e,0xff4458ae,0xff4461ff,0xffff50ea + .long 0x4a8166ff,0xffff6452,0x2d40ff64,0x4e75206e + .long 0xff4458ae,0xff4461ff,0xffff50ce,0x4a8166ff + .long 0xffff6436,0x2d40ff60,0x206eff44,0x58aeff44 + .long 0x61ffffff,0x50b44a81,0x66ffffff,0x641c2d40 + .long 0xff64206e,0xff4458ae,0xff4461ff,0xffff509a + .long 0x4a8166ff,0xffff6402,0x2d40ff68,0x4e752040 + .long 0x102eff41,0x22000240,0x00380281,0x00000007 + .long 0x0c000018,0x67240c00,0x0020672c,0x80410c00 + .long 0x003c6706,0x206e000c,0x4e751d7c,0x0080ff4a + .long 0x41f60162,0xff680004,0x4e752008,0x61ff0000 + .long 0x0d70206e,0x000c4e75,0x200861ff,0x00000db2 + .long 0x206e000c,0x0c00000c,0x67024e75,0x51882d48 + .long 0x000c4e75,0x102eff41,0x22000240,0x00380281 + .long 0x00000007,0x0c000018,0x670e0c00,0x00206700 + .long 0x0076206e,0x000c4e75,0x323b120e,0x206e000c + .long 0x4efb1006,0x4afc0008,0x0010001a,0x0024002c + .long 0x0034003c,0x0044004e,0x06ae0000,0x000cffa4 + .long 0x4e7506ae,0x0000000c,0xffa84e75,0xd5fc0000 + .long 0x000c4e75,0xd7fc0000,0x000c4e75,0xd9fc0000 + .long 0x000c4e75,0xdbfc0000,0x000c4e75,0x06ae0000 + .long 0x000cffd4,0x4e751d7c,0x0004ff4a,0x06ae0000 + .long 0x000cffd8,0x4e75323b,0x1214206e,0x000c5188 + .long 0x51ae000c,0x4efb1006,0x4afc0008,0x00100016 + .long 0x001c0020,0x00240028,0x002c0032,0x2d48ffa4 + .long 0x4e752d48,0xffa84e75,0x24484e75,0x26484e75 + .long 0x28484e75,0x2a484e75,0x2d48ffd4,0x4e752d48 + .long 0xffd81d7c,0x0008ff4a,0x4e75082e,0x0006ff42 + .long 0x6664102e,0xff430800,0x0005672c,0x08000004 + .long 0x670a0240,0x007f0c40,0x0038661c,0xe9ee0183 + .long 0xff4261ff,0x00000d6a,0x61ff0000,0x12060c00 + .long 0x00066722,0x1d40ff4f,0xe9ee00c3,0xff4261ff + .long 0x00000cbe,0x61ff0000,0x11ea0c00,0x0006670e + .long 0x1d40ff4e,0x4e7561ff,0x00001148,0x60d661ff + .long 0x00001140,0x60ea302e,0xff420800,0x0005672c + .long 0x08000004,0x670a0240,0x007f0c40,0x0038661c + .long 0xe9ee0183,0xff4261ff,0x00000d06,0x61ff0000 + .long 0x11a20c00,0x00066726,0x1d40ff4f,0xe9ee00c3 + .long 0xff42e9ee,0x1283ff40,0x660000be,0x422eff4e + .long 0xe9ee1343,0xff40303b,0x02124efb,0x000e61ff + .long 0x000010e0,0x60d24afc,0x00080010,0x006a0000 + .long 0x0000002e,0x0000004c,0x000061ff,0x00000a5c + .long 0xf2004000,0xf22ef080,0xff6cf281,0x00044e75 + .long 0x1d7c0001,0xff4e4e75,0x61ff0000,0x0a3ef200 + .long 0x5000f22e,0xf080ff6c,0xf2810004,0x4e751d7c + .long 0x0001ff4e,0x4e7561ff,0x00000a20,0xf2005800 + .long 0xf22ef080,0xff6cf281,0x00044e75,0x1d7c0001 + .long 0xff4e4e75,0x61ff0000,0x0a022d40,0xff5441ee + .long 0xff5461ff,0x000011de,0x1d40ff4e,0x0c000005 + .long 0x670001a4,0x0c000004,0x6700015e,0xf2104400 + .long 0xf22ef080,0xff6c4e75,0x422eff4e,0x303b020a + .long 0x4efb0006,0x4afc0008,0x001000e2,0x027202b0 + .long 0x005601a0,0x009c0000,0x700461ff,0xfffffd22 + .long 0x0c2e0080,0xff4a6726,0x61ffffff,0x4dde4a81 + .long 0x66ff0000,0x1eecf200,0x4000f22e,0xf080ff6c + .long 0xf2810004,0x4e751d7c,0x0001ff4e,0x4e7561ff + .long 0xffff4d76,0x4a8166ff,0xffff6e8a,0x60d87002 + .long 0x61ffffff,0xfcdc0c2e,0x0080ff4a,0x672661ff + .long 0xffff4d82,0x4a8166ff,0x00001e98,0xf2005000 + .long 0xf22ef080,0xff6cf281,0x00044e75,0x1d7c0001 + .long 0xff4e4e75,0x61ffffff,0x4d1a4a81,0x66ffffff + .long 0x6e4460d8,0x700161ff,0xfffffc96,0x0c2e0080 + .long 0xff4a6726,0x61ffffff,0x4d264a81,0x66ff0000 + .long 0x1e42f200,0x5800f22e,0xf080ff6c,0xf2810004 + .long 0x4e751d7c,0x0001ff4e,0x4e7561ff,0xffff4cd4 + .long 0x4a8166ff,0xffff6dfe,0x60d87004,0x61ffffff + .long 0xfc500c2e,0x0080ff4a,0x673e61ff,0xffff4d0c + .long 0x2d40ff54,0x4a8166ff,0x00001e16,0x41eeff54 + .long 0x61ff0000,0x10a01d40,0xff4e0c00,0x00046700 + .long 0x00280c00,0x00056700,0x005ef22e,0x4400ff54 + .long 0xf22ef080,0xff6c4e75,0x61ffffff,0x4c8c4a81 + .long 0x66ffffff,0x6da060c4,0x426eff6c,0xe9d00257 + .long 0xe1882d40,0xff7042ae,0xff74426e,0xff6c0810 + .long 0x00076706,0x08ee0007,0xff6c41ee,0xff6c61ff + .long 0x00000e78,0x323c3f81,0x9240836e,0xff6c1d7c + .long 0x0000ff4e,0x4e753d7c,0x7fffff6c,0xe9d00257 + .long 0xe1882d40,0xff7042ae,0xff740810,0x00076706 + .long 0x08ee0007,0xff6c4e75,0x700861ff,0xfffffb92 + .long 0x0c2e0080,0xff4a6740,0x43eeff54,0x700861ff + .long 0xffff4bc4,0x4a8166ff,0x00001d64,0x41eeff54 + .long 0x61ff0000,0x0f701d40,0xff4e0c00,0x00046700 + .long 0x002e0c00,0x00056700,0x0068f22e,0x5400ff54 + .long 0xf22ef080,0xff6c4e75,0x43eeff54,0x700861ff + .long 0xffff4b6e,0x4a8166ff,0xffff6cda,0x60be426e + .long 0xff6ce9d0,0x031f2d40,0xff70e9e8,0x02d50004 + .long 0x720be3a8,0x2d40ff74,0x08100007,0x670608ee + .long 0x0007ff6c,0x41eeff6c,0x61ff0000,0x0dae323c + .long 0x3c019240,0x836eff6c,0x1d7c0000,0xff4e4e75 + .long 0x3d7c7fff,0xff6ce9d0,0x031f2d40,0xff70e9e8 + .long 0x02d50004,0x720be3a8,0x2d40ff74,0x08100007 + .long 0x670608ee,0x0007ff6c,0x4e75700c,0x61ffffff + .long 0xfac043ee,0xff6c700c,0x61ffffff,0x4afa4a81 + .long 0x66ff0000,0x1ca841ee,0xff6c61ff,0x00000e24 + .long 0x0c000006,0x67061d40,0xff4e4e75,0x61ff0000 + .long 0x0d821d40,0xff4e4e75,0x61ff0000,0x125441ee + .long 0xff6c61ff,0x00000dfc,0x0c000006,0x67061d40 + .long 0xff4e4e75,0x61ff0000,0x0d5a1d40,0xff4e4e75 + .long 0xe9ee10c3,0xff42327b,0x120a4efb,0x98064afc + .long 0x000800e0,0x01e00148,0x06200078,0x041a0010 + .long 0x06204a2e,0xff4e664c,0xf228d080,0x0000f200 + .long 0x9000f200,0x7800f23c,0x90000000,0x0000f201 + .long 0xa800836e,0xff66122e,0xff410201,0x00386714 + .long 0x206e000c,0x61ffffff,0x4ae84a81,0x66ff0000 + .long 0x1c0a4e75,0x122eff41,0x02410007,0x61ff0000 + .long 0x07644e75,0x22280000,0x02818000,0x00000081 + .long 0x00800000,0xf2014400,0x60a44a2e,0xff4e664c + .long 0xf228d080,0x0000f200,0x9000f200,0x7000f23c + .long 0x90000000,0x0000f201,0xa800836e,0xff66122e + .long 0xff410201,0x00386714,0x206e000c,0x61ffffff + .long 0x4a964a81,0x66ff0000,0x1bb04e75,0x122eff41 + .long 0x02410007,0x61ff0000,0x06c04e75,0x22280000 + .long 0x02818000,0x00000081,0x00800000,0xf2014400 + .long 0x60a44a2e,0xff4e664c,0xf228d080,0x0000f200 + .long 0x9000f200,0x6000f23c,0x90000000,0x0000f201 + .long 0xa800836e,0xff66122e,0xff410201,0x00386714 + .long 0x206e000c,0x61ffffff,0x4a444a81,0x66ff0000 + .long 0x1b564e75,0x122eff41,0x02410007,0x61ff0000 + .long 0x061c4e75,0x22280000,0x02818000,0x00000081 + .long 0x00800000,0xf2014400,0x60a43d68,0x0000ff84 + .long 0x426eff86,0x2d680004,0xff882d68,0x0008ff8c + .long 0xf228d080,0x000061ff,0xfffff94c,0x224841ee + .long 0xff84700c,0x0c2e0008,0xff4a6726,0x61ffffff + .long 0x492c4a81,0x66000052,0x4a2eff4e,0x66024e75 + .long 0x08ee0003,0xff66102e,0xff620200,0x000a6616 + .long 0x4e7561ff,0xffff5788,0x4a816600,0x002c4a2e + .long 0xff4e66dc,0x4e7541ee,0xff8461ff,0x00000b3c + .long 0x44400240,0x7fff026e,0x8000ff84,0x816eff84 + .long 0xf22ed040,0xff844e75,0x2caeffd4,0x60ff0000 + .long 0x1ab20200,0x00300000,0x00402d40,0xff5c3028 + .long 0x00000240,0x7fff0c40,0x407e6e00,0x00e66700 + .long 0x01520c40,0x3f816d00,0x0058f228,0xd0800000 + .long 0xf22e9000,0xff5cf23c,0x88000000,0x0000f200 + .long 0x6400f23c,0x90000000,0x0000f201,0xa800836e + .long 0xff66122e,0xff410201,0x00386714,0x206e000c + .long 0x61ffffff,0x49184a81,0x66ff0000,0x1a2a4e75 + .long 0x122eff41,0x02410007,0x61ff0000,0x04f04e75 + .long 0x08ee0003,0xff663d68,0x0000ff84,0x2d680004 + .long 0xff882d68,0x0008ff8c,0x2f084280,0x0c2e0004 + .long 0xff4e660a,0x41eeff84,0x61ff0000,0x0a6e41ee + .long 0xff84222e,0xff5c61ff,0x00000c86,0x41eeff84 + .long 0x61ff0000,0x034c122e,0xff410201,0x00386714 + .long 0x206e000c,0x61ffffff,0x48a44a81,0x66ff0000 + .long 0x19b6600e,0x122eff41,0x02410007,0x61ff0000 + .long 0x047c122e,0xff620201,0x000a6600,0x00b8588f + .long 0x4e754a28,0x0007660e,0x4aa80008,0x6608006e + .long 0x1048ff66,0x6006006e,0x1248ff66,0x2f084a28 + .long 0x00005bc1,0x202eff5c,0x61ff0000,0x0d12f210 + .long 0xd080f200,0x6400122e,0xff410201,0x00386714 + .long 0x206e000c,0x61ffffff,0x48344a81,0x66ff0000 + .long 0x1946600e,0x122eff41,0x02410007,0x61ff0000 + .long 0x040c122e,0xff620201,0x000a6600,0x007c588f + .long 0x4e753228,0x00000241,0x80000041,0x3fff3d41 + .long 0xff842d68,0x0004ff88,0x2d680008,0xff8cf22e + .long 0x9000ff5c,0xf22e4800,0xff84f23c,0x90000000 + .long 0x0000f200,0x0018f23c,0x58380002,0xf294fe7c + .long 0x6000ff50,0x205f3d68,0x0000ff84,0x2d680004 + .long 0xff882d68,0x0008ff8c,0x0c2e0004,0xff4e662c + .long 0x41eeff84,0x61ff0000,0x09424480,0x02407fff + .long 0xefee004f,0xff846014,0x205f3d68,0x0000ff84 + .long 0x2d680004,0xff882d68,0x0008ff8c,0x08ae0007 + .long 0xff8456ee,0xff8641ee,0xff84122e,0xff5fe809 + .long 0x0241000c,0x4841122e,0xff5fe809,0x02410003 + .long 0x428061ff,0x00000782,0x4a2eff86,0x670608ee + .long 0x0007ff84,0xf22ed040,0xff844e75,0x02000030 + .long 0x00000080,0x2d40ff5c,0x30280000,0x02407fff + .long 0x0c4043fe,0x6e0000c8,0x67000120,0x0c403c01 + .long 0x6d000046,0xf228d080,0x0000f22e,0x9000ff5c + .long 0xf23c8800,0x00000000,0xf22e7400,0xff54f23c + .long 0x90000000,0x0000f200,0xa800816e,0xff66226e + .long 0x000c41ee,0xff547008,0x61ffffff,0x46304a81 + .long 0x66ff0000,0x18004e75,0x08ee0003,0xff663d68 + .long 0x0000ff84,0x2d680004,0xff882d68,0x0008ff8c + .long 0x2f084280,0x0c2e0004,0xff4e660a,0x41eeff84 + .long 0x61ff0000,0x084641ee,0xff84222e,0xff5c61ff + .long 0x00000a5e,0x41eeff84,0x61ff0000,0x00d22d40 + .long 0xff542d41,0xff58226e,0x000c41ee,0xff547008 + .long 0x61ffffff,0x45c84a81,0x66ff0000,0x1798122e + .long 0xff620201,0x000a6600,0xfe9c588f,0x4e753028 + .long 0x000a0240,0x07ff6608,0x006e1048,0xff666006 + .long 0x006e1248,0xff662f08,0x4a280000,0x5bc1202e + .long 0xff5c61ff,0x00000af8,0xf210d080,0xf22e7400 + .long 0xff54226e,0x000c41ee,0xff547008,0x61ffffff + .long 0x456c4a81,0x66ff0000,0x173c122e,0xff620201 + .long 0x000a6600,0xfe74588f,0x4e753228,0x00000241 + .long 0x80000041,0x3fff3d41,0xff842d68,0x0004ff88 + .long 0x2d680008,0xff8cf22e,0x9000ff5c,0xf22e4800 + .long 0xff84f23c,0x90000000,0x0000f200,0x0018f23c + .long 0x58380002,0xf294feae,0x6000ff64,0x42803028 + .long 0x00000440,0x3fff0640,0x03ff4a28,0x00046b02 + .long 0x53404840,0xe9884a28,0x00006a04,0x08c0001f + .long 0x22280004,0xe9c11054,0x80812d40,0xff542228 + .long 0x00047015,0xe1a92d41,0xff582228,0x0008e9c1 + .long 0x0015222e,0xff588280,0x202eff54,0x4e754280 + .long 0x30280000,0x04403fff,0x0640007f,0x4a280004 + .long 0x6b025340,0x4840ef88,0x4a280000,0x6a0408c0 + .long 0x001f2228,0x00040281,0x7fffff00,0xe0898081 + .long 0x4e7561ff,0xfffff490,0x2f08102e,0xff4e6600 + .long 0x0082082e,0x0004ff42,0x6712122e,0xff43e809 + .long 0x02410007,0x61ff0000,0x00926004,0x102eff43 + .long 0xebc00647,0x2f0041ee,0xff6c61ff,0x00000ed0 + .long 0x02aecfff,0xf00fff84,0x201f4a2e,0xff876616 + .long 0x4aaeff88,0x66104aae,0xff8c660a,0x4a806606 + .long 0x026ef000,0xff8441ee,0xff84225f,0x700c0c2e + .long 0x0008ff4a,0x670e61ff,0xffff4412,0x4a816600 + .long 0xfb384e75,0x61ffffff,0x52864a81,0x6600fb2a + .long 0x4e750c00,0x00046700,0xff7a41ee,0xff6c426e + .long 0xff6e0c00,0x00056702,0x60c0006e,0x4080ff66 + .long 0x08ee0006,0xff7060b2,0x303b1206,0x4efb0002 + .long 0x00200026,0x002c0030,0x00340038,0x003c0040 + .long 0x0044004a,0x00500054,0x0058005c,0x00600064 + .long 0x202eff9c,0x4e75202e,0xffa04e75,0x20024e75 + .long 0x20034e75,0x20044e75,0x20054e75,0x20064e75 + .long 0x20074e75,0x202effa4,0x4e75202e,0xffa84e75 + .long 0x200a4e75,0x200b4e75,0x200c4e75,0x200d4e75 + .long 0x20164e75,0x202effd8,0x4e75323b,0x12064efb + .long 0x10020010,0x0016001c,0x00200024,0x0028002c + .long 0x00302d40,0xff9c4e75,0x2d40ffa0,0x4e752400 + .long 0x4e752600,0x4e752800,0x4e752a00,0x4e752c00 + .long 0x4e752e00,0x4e75323b,0x12064efb,0x10020010 + .long 0x0016001c,0x00200024,0x0028002c,0x00303d40 + .long 0xff9e4e75,0x3d40ffa2,0x4e753400,0x4e753600 + .long 0x4e753800,0x4e753a00,0x4e753c00,0x4e753e00 + .long 0x4e75323b,0x12064efb,0x10020010,0x0016001c + .long 0x00200024,0x0028002c,0x00301d40,0xff9f4e75 + .long 0x1d40ffa3,0x4e751400,0x4e751600,0x4e751800 + .long 0x4e751a00,0x4e751c00,0x4e751e00,0x4e75323b + .long 0x12064efb,0x10020010,0x0016001c,0x00200024 + .long 0x0028002c,0x0030d1ae,0xffa44e75,0xd1aeffa8 + .long 0x4e75d5c0,0x4e75d7c0,0x4e75d9c0,0x4e75dbc0 + .long 0x4e75d196,0x4e751d7c,0x0004ff4a,0x0c000001 + .long 0x6706d1ae,0xffd84e75,0x54aeffd8,0x4e75323b + .long 0x12064efb,0x10020010,0x0016001c,0x00200024 + .long 0x0028002c,0x003091ae,0xffa44e75,0x91aeffa8 + .long 0x4e7595c0,0x4e7597c0,0x4e7599c0,0x4e759bc0 + .long 0x4e759196,0x4e751d7c,0x0008ff4a,0x0c000001 + .long 0x670691ae,0xffd84e75,0x55aeffd8,0x4e75303b + .long 0x02064efb,0x00020010,0x00280040,0x004c0058 + .long 0x00640070,0x007c2d6e,0xffdcff6c,0x2d6effe0 + .long 0xff702d6e,0xffe4ff74,0x41eeff6c,0x4e752d6e + .long 0xffe8ff6c,0x2d6effec,0xff702d6e,0xfff0ff74 + .long 0x41eeff6c,0x4e75f22e,0xf020ff6c,0x41eeff6c + .long 0x4e75f22e,0xf010ff6c,0x41eeff6c,0x4e75f22e + .long 0xf008ff6c,0x41eeff6c,0x4e75f22e,0xf004ff6c + .long 0x41eeff6c,0x4e75f22e,0xf002ff6c,0x41eeff6c + .long 0x4e75f22e,0xf001ff6c,0x41eeff6c,0x4e75303b + .long 0x02064efb,0x00020010,0x00280040,0x004c0058 + .long 0x00640070,0x007c2d6e,0xffdcff78,0x2d6effe0 + .long 0xff7c2d6e,0xffe4ff80,0x41eeff78,0x4e752d6e + .long 0xffe8ff78,0x2d6effec,0xff7c2d6e,0xfff0ff80 + .long 0x41eeff78,0x4e75f22e,0xf020ff78,0x41eeff78 + .long 0x4e75f22e,0xf010ff78,0x41eeff78,0x4e75f22e + .long 0xf008ff78,0x41eeff78,0x4e75f22e,0xf004ff78 + .long 0x41eeff78,0x4e75f22e,0xf002ff78,0x41eeff78 + .long 0x4e75f22e,0xf001ff78,0x41eeff78,0x4e75303b + .long 0x02064efb,0x00020010,0x00180020,0x002a0034 + .long 0x003e0048,0x0052f22e,0xf080ffdc,0x4e75f22e + .long 0xf080ffe8,0x4e75f227,0xe001f21f,0xd0204e75 + .long 0xf227e001,0xf21fd010,0x4e75f227,0xe001f21f + .long 0xd0084e75,0xf227e001,0xf21fd004,0x4e75f227 + .long 0xe001f21f,0xd0024e75,0xf227e001,0xf21fd001 + .long 0x4e750000,0x3f813c01,0xe408323b,0x02f63001 + .long 0x90680000,0x0c400042,0x6a164280,0x082e0001 + .long 0xff666704,0x08c0001d,0x61ff0000,0x001a4e75 + .long 0x203c2000,0x00003141,0x000042a8,0x000442a8 + .long 0x00084e75,0x2d680008,0xff542d40,0xff582001 + .long 0x92680000,0x6f100c41,0x00206d10,0x0c410040 + .long 0x6d506000,0x009a202e,0xff584e75,0x2f023140 + .long 0x00007020,0x90410c41,0x001d6d08,0x142eff58 + .long 0x852eff57,0xe9e82020,0x0004e9e8,0x18000004 + .long 0xe9ee0800,0xff542142,0x00042141,0x0008e8c0 + .long 0x009e6704,0x08c0001d,0x0280e000,0x0000241f + .long 0x4e752f02,0x31400000,0x04410020,0x70209041 + .long 0x142eff58,0x852eff57,0xe9e82020,0x0004e9e8 + .long 0x18000004,0xe8c1009e,0x660ce8ee,0x081fff54 + .long 0x66042001,0x60062001,0x08c0001d,0x42a80004 + .long 0x21420008,0x0280e000,0x0000241f,0x4e753140 + .long 0x00000c41,0x00416d12,0x672442a8,0x000442a8 + .long 0x0008203c,0x20000000,0x4e752028,0x00042200 + .long 0x0280c000,0x00000281,0x3fffffff,0x60122028 + .long 0x00040280,0x80000000,0xe2880281,0x7fffffff + .long 0x66164aa8,0x00086610,0x4a2eff58,0x660a42a8 + .long 0x000442a8,0x00084e75,0x08c0001d,0x42a80004 + .long 0x42a80008,0x4e7561ff,0x00000110,0x4a806700 + .long 0x00fa006e,0x0208ff66,0x327b1206,0x4efb9802 + .long 0x004000ea,0x00240008,0x4a280002,0x6b0000dc + .long 0x70ff4841,0x0c010004,0x6700003e,0x6e000094 + .long 0x60000064,0x4a280002,0x6a0000c0,0x70ff4841 + .long 0x0c010004,0x67000022,0x6e000078,0x60000048 + .long 0xe3806400,0x00a64841,0x0c010004,0x6700000a + .long 0x6e000060,0x60000030,0x06a80000,0x01000004 + .long 0x640ce4e8,0x0004e4e8,0x00065268,0x00004a80 + .long 0x66060268,0xfe000006,0x02a8ffff,0xff000004 + .long 0x42a80008,0x4e7552a8,0x0008641a,0x52a80004 + .long 0x6414e4e8,0x0004e4e8,0x0006e4e8,0x0008e4e8 + .long 0x000a5268,0x00004a80,0x66060228,0x00fe000b + .long 0x4e7506a8,0x00000800,0x0008641a,0x52a80004 + .long 0x6414e4e8,0x0004e4e8,0x0006e4e8,0x0008e4e8 + .long 0x000a5268,0x00004a80,0x66060268,0xf000000a + .long 0x02a8ffff,0xf8000008,0x4e754841,0x0c010004 + .long 0x6700ff86,0x6eea4e75,0x48414a01,0x66044841 + .long 0x4e7548e7,0x30000c01,0x00046622,0xe9e83602 + .long 0x0004741e,0xe5ab2428,0x00040282,0x0000003f + .long 0x66284aa8,0x00086622,0x4a80661e,0x6020e9e8 + .long 0x35420008,0x741ee5ab,0x24280008,0x02820000 + .long 0x01ff6606,0x4a806602,0x600408c3,0x001d2003 + .long 0x4cdf000c,0x48414e75,0x2f022f03,0x20280004 + .long 0x22280008,0xedc02000,0x671ae5a8,0xe9c13022 + .long 0x8083e5a9,0x21400004,0x21410008,0x2002261f + .long 0x241f4e75,0xedc12000,0xe5a90682,0x00000020 + .long 0x21410004,0x42a80008,0x2002261f,0x241f4e75 + .long 0xede80000,0x0004660e,0xede80000,0x00086700 + .long 0x00740640,0x00204281,0x32280000,0x02417fff + .long 0xb0416e1c,0x92403028,0x00000240,0x80008240 + .long 0x31410000,0x61ffffff,0xff82103c,0x00004e75 + .long 0x0c010020,0x6e20e9e8,0x08400004,0x21400004 + .long 0x20280008,0xe3a82140,0x00080268,0x80000000 + .long 0x103c0004,0x4e750441,0x00202028,0x0008e3a8 + .long 0x21400004,0x42a80008,0x02688000,0x0000103c + .long 0x00044e75,0x02688000,0x0000103c,0x00014e75 + .long 0x30280000,0x02407fff,0x0c407fff,0x67480828 + .long 0x00070004,0x6706103c,0x00004e75,0x4a406618 + .long 0x4aa80004,0x660c4aa8,0x00086606,0x103c0001 + .long 0x4e75103c,0x00044e75,0x4aa80004,0x66124aa8 + .long 0x0008660c,0x02688000,0x0000103c,0x00014e75 + .long 0x103c0006,0x4e754aa8,0x00086612,0x20280004 + .long 0x02807fff,0xffff6606,0x103c0002,0x4e750828 + .long 0x00060004,0x6706103c,0x00034e75,0x103c0005 + .long 0x4e752028,0x00002200,0x02807ff0,0x0000670e + .long 0x0c807ff0,0x00006728,0x103c0000,0x4e750281 + .long 0x000fffff,0x66ff0000,0x00144aa8,0x000466ff + .long 0x0000000a,0x103c0001,0x4e75103c,0x00044e75 + .long 0x0281000f,0xffff66ff,0x00000014,0x4aa80004 + .long 0x66ff0000,0x000a103c,0x00024e75,0x08010013 + .long 0x66ff0000,0x000a103c,0x00054e75,0x103c0003 + .long 0x4e752028,0x00002200,0x02807f80,0x0000670e + .long 0x0c807f80,0x0000671e,0x103c0000,0x4e750281 + .long 0x007fffff,0x66ff0000,0x000a103c,0x00014e75 + .long 0x103c0004,0x4e750281,0x007fffff,0x66ff0000 + .long 0x000a103c,0x00024e75,0x08010016,0x66ff0000 + .long 0x000a103c,0x00054e75,0x103c0003,0x4e752f01 + .long 0x08280007,0x000056e8,0x00023228,0x00000241 + .long 0x7fff9240,0x31410000,0x2f08202f,0x00040240 + .long 0x00c0e848,0x61ffffff,0xfae22057,0x322f0006 + .long 0x024100c0,0xe8494841,0x322f0006,0x02410030 + .long 0xe84961ff,0xfffffc22,0x205f08a8,0x00070000 + .long 0x4a280002,0x670a08e8,0x00070000,0x42280002 + .long 0x42804aa8,0x0004660a,0x4aa80008,0x660408c0 + .long 0x0002082e,0x0001ff66,0x670608ee,0x0005ff67 + .long 0x588f4e75,0x2f010828,0x00070000,0x56e80002 + .long 0x32280000,0x02417fff,0x92403141,0x00002f08 + .long 0x428061ff,0xfffffa64,0x2057323c,0x00044841 + .long 0x322f0006,0x02410030,0xe84961ff,0xfffffbaa + .long 0x205f08a8,0x00070000,0x4a280002,0x670a08e8 + .long 0x00070000,0x42280002,0x42804aa8,0x0004660a + .long 0x4aa80008,0x660408c0,0x0002082e,0x0001ff66 + .long 0x670608ee,0x0005ff67,0x588f4e75,0x02410010 + .long 0xe8088200,0x3001e309,0x600e0241,0x00108200 + .long 0x48408200,0x3001e309,0x103b0008,0x41fb1620 + .long 0x4e750200,0x00020200,0x00020200,0x00020000 + .long 0x00000a08,0x0a080a08,0x0a080a08,0x0a087fff + .long 0x00000000,0x00000000,0x00000000,0x00007ffe + .long 0x0000ffff,0xffffffff,0xffff0000,0x00007ffe + .long 0x0000ffff,0xffffffff,0xffff0000,0x00007fff + .long 0x00000000,0x00000000,0x00000000,0x00007fff + .long 0x00000000,0x00000000,0x00000000,0x0000407e + .long 0x0000ffff,0xff000000,0x00000000,0x0000407e + .long 0x0000ffff,0xff000000,0x00000000,0x00007fff + .long 0x00000000,0x00000000,0x00000000,0x00007fff + .long 0x00000000,0x00000000,0x00000000,0x000043fe + .long 0x0000ffff,0xffffffff,0xf8000000,0x000043fe + .long 0x0000ffff,0xffffffff,0xf8000000,0x00007fff + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x0000ffff + .long 0x00000000,0x00000000,0x00000000,0x0000fffe + .long 0x0000ffff,0xffffffff,0xffff0000,0x0000ffff + .long 0x00000000,0x00000000,0x00000000,0x0000fffe + .long 0x0000ffff,0xffffffff,0xffff0000,0x0000ffff + .long 0x00000000,0x00000000,0x00000000,0x0000c07e + .long 0x0000ffff,0xff000000,0x00000000,0x0000ffff + .long 0x00000000,0x00000000,0x00000000,0x0000c07e + .long 0x0000ffff,0xff000000,0x00000000,0x0000ffff + .long 0x00000000,0x00000000,0x00000000,0x0000c3fe + .long 0x0000ffff,0xffffffff,0xf8000000,0x0000ffff + .long 0x00000000,0x00000000,0x00000000,0x0000c3fe + .long 0x0000ffff,0xffffffff,0xf8000000,0x0000700c + .long 0x61ffffff,0xe82c43ee,0xff6c700c,0x61ffffff + .long 0x38664a81,0x66ff0000,0x0a14e9ee,0x004fff6c + .long 0x0c407fff,0x66024e75,0x102eff6f,0x0200000f + .long 0x660e4aae,0xff706608,0x4aaeff74,0x66024e75 + .long 0x41eeff6c,0x61ff0000,0x001cf22e,0xf080ff6c + .long 0x4e750000,0x00000203,0x02030203,0x03020302 + .long 0x02032d68,0x0000ff84,0x2d680004,0xff882d68 + .long 0x0008ff8c,0x41eeff84,0x48e73c00,0xf227e001 + .long 0x74027604,0x28104281,0x4c3c1001,0x0000000a + .long 0xe9c408c4,0xd2805803,0x51caffee,0x0804001e + .long 0x67024481,0x04810000,0x00106c0e,0x44810084 + .long 0x40000000,0x00904000,0x00002f01,0x7201f23c + .long 0x44000000,0x0000e9d0,0x0704f200,0x58222830 + .long 0x1c007600,0x7407f23c,0x44234120,0x0000e9c4 + .long 0x08c4f200,0x58225803,0x51caffec,0x52810c81 + .long 0x00000002,0x6fd80810,0x001f6704,0xf200001a + .long 0x22170c81,0x0000001b,0x6f0000e4,0x0810001e + .long 0x66744281,0x2810e9c4,0x07046624,0x52817a01 + .long 0x28305c00,0x66085081,0x52852830,0x5c004283 + .long 0x7407e9c4,0x08c46608,0x58835281,0x51cafff4 + .long 0x20012217,0x92806c10,0x44812810,0x00844000 + .long 0x00000090,0x40000000,0x43fb0170,0x00000666 + .long 0x4283f23c,0x44803f80,0x00007403,0xe2806406 + .long 0xf23148a3,0x38000683,0x0000000c,0x4a8066ec + .long 0xf2000423,0x60684281,0x7a022830,0x5c006608 + .long 0x53855081,0x28305c00,0x761c7407,0xe9c408c4 + .long 0x66085983,0x528151ca,0xfff42001,0x22179280 + .long 0x6e104481,0x28100284,0xbfffffff,0x0290bfff + .long 0xffff43fb,0x01700000,0x05fc4283,0xf23c4480 + .long 0x3f800000,0x7403e280,0x6406f231,0x48a33800 + .long 0x06830000,0x000c4a80,0x66ecf200,0x0420262e + .long 0xff60e9c3,0x26822810,0xe582e9c4,0x0002d480 + .long 0x43fafe50,0x10312800,0x4283efc3,0x0682f203 + .long 0x9000e280,0x640a43fb,0x01700000,0x06446016 + .long 0xe280640a,0x43fb0170,0x000006d2,0x600843fb + .long 0x01700000,0x05902001,0x6a084480,0x00904000 + .long 0x00004283,0xf23c4480,0x3f800000,0xe2806406 + .long 0xf23148a3,0x38000683,0x0000000c,0x4a8066ec + .long 0x0810001e,0x6706f200,0x04206004,0xf2000423 + .long 0xf200a800,0x08800009,0x6706006e,0x0108ff66 + .long 0x588ff21f,0xd0404cdf,0x003cf23c,0x90000000 + .long 0x0000f23c,0x88000000,0x00004e75,0x3ffd0000 + .long 0x9a209a84,0xfbcff798,0x00000000,0x3ffd0000 + .long 0x9a209a84,0xfbcff799,0x00000000,0x3f800000 + .long 0x00000000,0x00000000,0x00000000,0x40000000 + .long 0x00000000,0x00000000,0x00000000,0x41200000 + .long 0x00000000,0x00000000,0x00000000,0x459a2800 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x03030202,0x03020203,0x02030302,0x48e73f20 + .long 0xf227e007,0xf23c9000,0x00000020,0x2d50ff58 + .long 0x2e00422e,0xff500c2e,0x0004ff4e,0x66000030 + .long 0x30100240,0x7fff2228,0x00042428,0x00085340 + .long 0xe38ae391,0x4a816cf6,0x4a406e04,0x50eeff50 + .long 0x02407fff,0x30802141,0x00042142,0x00082d50 + .long 0xff902d68,0x0004ff94,0x2d680008,0xff9802ae + .long 0x7fffffff,0xff904a2e,0xff506708,0x2c3cffff + .long 0xecbb6038,0x302eff90,0x3d7c3fff,0xff90f22e + .long 0x4800ff90,0x04403fff,0xf2005022,0xf23a4428 + .long 0xff1cf293,0x000ef23a,0x4823ff02,0xf2066000 + .long 0x600af23a,0x4823fee6,0xf2066000,0xf23c8800 + .long 0x00000000,0x42454a87,0x6f042807,0x60062806 + .long 0x98875284,0x4a846f18,0x0c840000,0x00116f12 + .long 0x78114a87,0x6f0c00ae,0x00002080,0xff646002 + .long 0x78014a87,0x6e06be86,0x6d022c07,0x20065280 + .long 0x90844845,0x42454242,0x4a806c14,0x52450c80 + .long 0xffffecd4,0x6e080680,0x00000018,0x74184480 + .long 0xf23a4480,0xfe98e9ee,0x1682ff60,0xe349d245 + .long 0xe3494aae,0xff586c02,0x528145fa,0xfec01632 + .long 0x1800e98b,0xf2039000,0xe88b4a03,0x660a43fb + .long 0x01700000,0x03706016,0xe20b640a,0x43fb0170 + .long 0x000003fe,0x600843fb,0x01700000,0x04904283 + .long 0xe2886406,0xf23148a3,0x38000683,0x0000000c + .long 0x4a8066ec,0xf23c8800,0x00000000,0xf23c9000 + .long 0x00000010,0xf2104800,0xf2000018,0x4a456608 + .long 0xf2000420,0x6000008e,0x4a2eff50,0x67000072 + .long 0xf227e002,0x36170243,0x7fff0050,0x8000d650 + .long 0x04433fff,0xd6690024,0x04433fff,0xd6690030 + .long 0x04433fff,0x6b000048,0x02578000,0x87570250 + .long 0x7fff2f28,0x00082f28,0x00042f3c,0x3fff0000 + .long 0xf21fd080,0xf21f4823,0x2f29002c,0x2f290028 + .long 0x2f3c3fff,0x00002f29,0x00382f29,0x00342f3c + .long 0x3fff0000,0xf21f4823,0xf21f4823,0x601660fe + .long 0x4a42670c,0xf2294823,0x0024f229,0x48230030 + .long 0xf2000423,0xf200a800,0xf22e6800,0xff9045ee + .long 0xff900800,0x0009670e,0x00aa0000,0x00010008 + .long 0xf22e4800,0xff902d6e,0xff60ff54,0x02ae0000 + .long 0x0030ff60,0x48e7c0c0,0x2f2eff54,0x2f2eff58 + .long 0x41eeff90,0xf2106800,0x4aaeff58,0x6c060090 + .long 0x80000000,0x2f2eff64,0xf22e9000,0xff60f23c + .long 0x88000000,0x0000f22e,0x4801ff90,0xf200a800 + .long 0x816eff66,0x1d57ff64,0x588f2d5f,0xff582d5f + .long 0xff544cdf,0x03032d6e,0xff58ff90,0x2d6eff54 + .long 0xff604845,0x4a4566ff,0x00000086,0xf23a4500 + .long 0xfcec2004,0x53804283,0xe2886406,0xf2314923 + .long 0x38000683,0x0000000c,0x4a8066ec,0x4a2eff50 + .long 0x670af200,0x001860ff,0x00000028,0xf2000018 + .long 0xf2000838,0xf293001a,0x53863a3c,0x0001f23c + .long 0x90000000,0x0020f23a,0x4523fcc2,0x6000fda8 + .long 0xf23a4523,0xfcb8f200,0x0838f294,0x005cf292 + .long 0x000cf23a,0x4420fca6,0x5286604c,0x52863a3c + .long 0x0001f23c,0x90000000,0x00206000,0xfd7af23a + .long 0x4500fc6a,0x20044283,0xe2886406,0xf2314923 + .long 0x38000683,0x0000000c,0x4a8066ec,0xf2000018 + .long 0xf2000838,0xf28e0012,0xf23a4420,0xfc605286 + .long 0x5284f23a,0x4523fc56,0xf23c9000,0x00000010 + .long 0xf2000820,0x41eeff84,0xf2106800,0x24280004 + .long 0x26280008,0x42a80004,0x42a80008,0x20104840 + .long 0x67140480,0x00003ffd,0x4a806e0a,0x4480e28a + .long 0xe29351c8,0xfffa4a82,0x66044a83,0x67104281 + .long 0x06830000,0x0080d581,0x0283ffff,0xff802004 + .long 0x568861ff,0x000002b0,0x4a2eff50,0x6728f200 + .long 0x003af281,0x000cf206,0x4000f200,0x0018602e + .long 0x4a876d08,0xf23a4400,0xfbe46022,0xf2064000 + .long 0xf2000018,0x6018f200,0x003af28e,0x000af23a + .long 0x4400fb9a,0x6008f206,0x4000f200,0x0018f229 + .long 0x48200018,0xf22e6800,0xff90242a,0x0004262a + .long 0x00083012,0x670e0440,0x3ffd4440,0xe28ae293 + .long 0x51c8fffa,0x42810683,0x00000080,0xd5810283 + .long 0xffffff80,0x700441ee,0xff5461ff,0x00000228 + .long 0x202eff54,0x720ce2a8,0xefee010c,0xff84e2a8 + .long 0xefee0404,0xff844a00,0x670800ae,0x00002080 + .long 0xff644280,0x022e000f,0xff844aae,0xff586c02 + .long 0x70024a86,0x6c025280,0xefee0002,0xff84f23c + .long 0x88000000,0x0000f21f,0xd0e04cdf,0x04fc4e75 + .long 0x40020000,0xa0000000,0x00000000,0x40050000 + .long 0xc8000000,0x00000000,0x400c0000,0x9c400000 + .long 0x00000000,0x40190000,0xbebc2000,0x00000000 + .long 0x40340000,0x8e1bc9bf,0x04000000,0x40690000 + .long 0x9dc5ada8,0x2b70b59e,0x40d30000,0xc2781f49 + .long 0xffcfa6d5,0x41a80000,0x93ba47c9,0x80e98ce0 + .long 0x43510000,0xaa7eebfb,0x9df9de8e,0x46a30000 + .long 0xe319a0ae,0xa60e91c7,0x4d480000,0xc9767586 + .long 0x81750c17,0x5a920000,0x9e8b3b5d,0xc53d5de5 + .long 0x75250000,0xc4605202,0x8a20979b,0x40020000 + .long 0xa0000000,0x00000000,0x40050000,0xc8000000 + .long 0x00000000,0x400c0000,0x9c400000,0x00000000 + .long 0x40190000,0xbebc2000,0x00000000,0x40340000 + .long 0x8e1bc9bf,0x04000000,0x40690000,0x9dc5ada8 + .long 0x2b70b59e,0x40d30000,0xc2781f49,0xffcfa6d6 + .long 0x41a80000,0x93ba47c9,0x80e98ce0,0x43510000 + .long 0xaa7eebfb,0x9df9de8e,0x46a30000,0xe319a0ae + .long 0xa60e91c7,0x4d480000,0xc9767586,0x81750c18 + .long 0x5a920000,0x9e8b3b5d,0xc53d5de5,0x75250000 + .long 0xc4605202,0x8a20979b,0x40020000,0xa0000000 + .long 0x00000000,0x40050000,0xc8000000,0x00000000 + .long 0x400c0000,0x9c400000,0x00000000,0x40190000 + .long 0xbebc2000,0x00000000,0x40340000,0x8e1bc9bf + .long 0x04000000,0x40690000,0x9dc5ada8,0x2b70b59d + .long 0x40d30000,0xc2781f49,0xffcfa6d5,0x41a80000 + .long 0x93ba47c9,0x80e98cdf,0x43510000,0xaa7eebfb + .long 0x9df9de8d,0x46a30000,0xe319a0ae,0xa60e91c6 + .long 0x4d480000,0xc9767586,0x81750c17,0x5a920000 + .long 0x9e8b3b5d,0xc53d5de4,0x75250000,0xc4605202 + .long 0x8a20979a,0x48e7ff00,0x7e015380,0x28022a03 + .long 0xe9c21003,0xe782e9c3,0x6003e783,0x8486e385 + .long 0xe3944846,0xd346d685,0x4e71d584,0x4e71d346 + .long 0x48464a47,0x67124847,0xe947de41,0x10c74847 + .long 0x424751c8,0xffc86012,0x48473e01,0x48475247 + .long 0x51c8ffba,0x4847e94f,0x10c74cdf,0x00ff4e75 + .long 0x70016100,0x00d63d7c,0x0121000a,0x6000007e + .long 0x70026100,0x00c63d7c,0x0141000a,0x606e7004 + .long 0x610000b8,0x3d7c0101,0x000a6060,0x70086100 + .long 0x00aa3d7c,0x0161000a,0x6052700c,0x6100009c + .long 0x3d7c0161,0x000a6044,0x70016100,0x008e3d7c + .long 0x00a1000a,0x60367002,0x61000080,0x3d7c00c1 + .long 0x000a6028,0x70046100,0x00723d7c,0x0081000a + .long 0x601a7008,0x61000064,0x3d7c00e1,0x000a600c + .long 0x700c6100,0x00563d7c,0x00e1000a,0x2d6eff68 + .long 0x0006f22e,0xd0c0ffdc,0xf22e9c00,0xff604cee + .long 0x0303ff9c,0x4e5e2f17,0x2f6f0008,0x00042f6f + .long 0x000c0008,0x2f7c0000,0x0001000c,0x3f6f0006 + .long 0x000c3f7c,0x40080006,0x08170005,0x670608ef + .long 0x0002000d,0x60ffffff,0x2d82122e,0xff410201 + .long 0x00380c01,0x00186700,0x000c0c01,0x00206700 + .long 0x00604e75,0x122eff41,0x02410007,0x323b1206 + .long 0x4efb1002,0x00100016,0x001c0020,0x00240028 + .long 0x002c0030,0x91aeffa4,0x4e7591ae,0xffa84e75 + .long 0x95c04e75,0x97c04e75,0x99c04e75,0x9bc04e75 + .long 0x91964e75,0x0c2e0030,0x000a6612,0x082e0005 + .long 0x0004660a,0x4e7a8800,0x91c04e7b,0x88004e75 + .long 0x448060a0,0x00000000,0x00000000,0x00000000 diff --git a/arch/m68k/ifpsp060/fskeleton.S b/arch/m68k/ifpsp060/fskeleton.S new file mode 100644 index 00000000000..a45a4ff9d2a --- /dev/null +++ b/arch/m68k/ifpsp060/fskeleton.S @@ -0,0 +1,342 @@ +|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +|MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +|M68000 Hi-Performance Microprocessor Division +|M68060 Software Package +|Production Release P1.00 -- October 10, 1994 +| +|M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. +| +|THE SOFTWARE is provided on an "AS IS" basis and without warranty. +|To the maximum extent permitted by applicable law, +|MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +|INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +|and any warranty against infringement with regard to the SOFTWARE +|(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. +| +|To the maximum extent permitted by applicable law, +|IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +|(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +|BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +|ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +|Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. +| +|You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +|so long as this entire notice is retained without alteration in any modified and/or +|redistributed versions, and that such modified versions are clearly identified as such. +|No licenses are granted by implication, estoppel or otherwise under any patents +|or trademarks of Motorola, Inc. +|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +| fskeleton.s +| +| This file contains: +| (1) example "Call-out"s +| (2) example package entry code +| (3) example "Call-out" table +| + +#include <linux/linkage.h> + +|################################ +| (1) EXAMPLE CALL-OUTS # +| # +| _060_fpsp_done() # +| _060_real_ovfl() # +| _060_real_unfl() # +| _060_real_operr() # +| _060_real_snan() # +| _060_real_dz() # +| _060_real_inex() # +| _060_real_bsun() # +| _060_real_fline() # +| _060_real_fpu_disabled() # +| _060_real_trap() # +|################################ + +| +| _060_fpsp_done(): +| +| This is the main exit point for the 68060 Floating-Point +| Software Package. For a normal exit, all 060FPSP routines call this +| routine. The operating system can do system dependent clean-up or +| simply execute an "rte" as with the sample code below. +| + .global _060_fpsp_done +_060_fpsp_done: + bral _060_isp_done | do the same as isp_done + +| +| _060_real_ovfl(): +| +| This is the exit point for the 060FPSP when an enabled overflow exception +| is present. The routine below should point to the operating system handler +| for enabled overflow conditions. The exception stack frame is an overflow +| stack frame. The FP state frame holds the EXCEPTIONAL OPERAND. +| +| The sample routine below simply clears the exception status bit and +| does an "rte". +| + .global _060_real_ovfl +_060_real_ovfl: + fsave -(%sp) + move.w #0x6000,0x2(%sp) + frestore (%sp)+ + bral trap | jump to trap handler + + +| +| _060_real_unfl(): +| +| This is the exit point for the 060FPSP when an enabled underflow exception +| is present. The routine below should point to the operating system handler +| for enabled underflow conditions. The exception stack frame is an underflow +| stack frame. The FP state frame holds the EXCEPTIONAL OPERAND. +| +| The sample routine below simply clears the exception status bit and +| does an "rte". +| + .global _060_real_unfl +_060_real_unfl: + fsave -(%sp) + move.w #0x6000,0x2(%sp) + frestore (%sp)+ + bral trap | jump to trap handler + +| +| _060_real_operr(): +| +| This is the exit point for the 060FPSP when an enabled operand error exception +| is present. The routine below should point to the operating system handler +| for enabled operand error exceptions. The exception stack frame is an operand error +| stack frame. The FP state frame holds the source operand of the faulting +| instruction. +| +| The sample routine below simply clears the exception status bit and +| does an "rte". +| + .global _060_real_operr +_060_real_operr: + fsave -(%sp) + move.w #0x6000,0x2(%sp) + frestore (%sp)+ + bral trap | jump to trap handler + +| +| _060_real_snan(): +| +| This is the exit point for the 060FPSP when an enabled signalling NaN exception +| is present. The routine below should point to the operating system handler +| for enabled signalling NaN exceptions. The exception stack frame is a signalling NaN +| stack frame. The FP state frame holds the source operand of the faulting +| instruction. +| +| The sample routine below simply clears the exception status bit and +| does an "rte". +| + .global _060_real_snan +_060_real_snan: + fsave -(%sp) + move.w #0x6000,0x2(%sp) + frestore (%sp)+ + bral trap | jump to trap handler + +| +| _060_real_dz(): +| +| This is the exit point for the 060FPSP when an enabled divide-by-zero exception +| is present. The routine below should point to the operating system handler +| for enabled divide-by-zero exceptions. The exception stack frame is a divide-by-zero +| stack frame. The FP state frame holds the source operand of the faulting +| instruction. +| +| The sample routine below simply clears the exception status bit and +| does an "rte". +| + .global _060_real_dz +_060_real_dz: + fsave -(%sp) + move.w #0x6000,0x2(%sp) + frestore (%sp)+ + bral trap | jump to trap handler + +| +| _060_real_inex(): +| +| This is the exit point for the 060FPSP when an enabled inexact exception +| is present. The routine below should point to the operating system handler +| for enabled inexact exceptions. The exception stack frame is an inexact +| stack frame. The FP state frame holds the source operand of the faulting +| instruction. +| +| The sample routine below simply clears the exception status bit and +| does an "rte". +| + .global _060_real_inex +_060_real_inex: + fsave -(%sp) + move.w #0x6000,0x2(%sp) + frestore (%sp)+ + bral trap | jump to trap handler + +| +| _060_real_bsun(): +| +| This is the exit point for the 060FPSP when an enabled bsun exception +| is present. The routine below should point to the operating system handler +| for enabled bsun exceptions. The exception stack frame is a bsun +| stack frame. +| +| The sample routine below clears the exception status bit, clears the NaN +| bit in the FPSR, and does an "rte". The instruction that caused the +| bsun will now be re-executed but with the NaN FPSR bit cleared. +| + .global _060_real_bsun +_060_real_bsun: +| fsave -(%sp) + + fmove.l %fpsr,-(%sp) + andi.b #0xfe,(%sp) + fmove.l (%sp)+,%fpsr + + bral trap | jump to trap handler + +| +| _060_real_fline(): +| +| This is the exit point for the 060FPSP when an F-Line Illegal exception is +| encountered. Three different types of exceptions can enter the F-Line exception +| vector number 11: FP Unimplemented Instructions, FP implemented instructions when +| the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module +| _fpsp_fline() distinguishes between the three and acts appropriately. F-Line +| Illegals branch here. +| + .global _060_real_fline +_060_real_fline: + bral trap | jump to trap handler + +| +| _060_real_fpu_disabled(): +| +| This is the exit point for the 060FPSP when an FPU disabled exception is +| encountered. Three different types of exceptions can enter the F-Line exception +| vector number 11: FP Unimplemented Instructions, FP implemented instructions when +| the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module +| _fpsp_fline() distinguishes between the three and acts appropriately. FPU disabled +| exceptions branch here. +| +| The sample code below enables the FPU, sets the PC field in the exception stack +| frame to the PC of the instruction causing the exception, and does an "rte". +| The execution of the instruction then proceeds with an enabled floating-point +| unit. +| + .global _060_real_fpu_disabled +_060_real_fpu_disabled: + move.l %d0,-(%sp) | enabled the fpu + .long 0x4E7A0808 |movec pcr,%d0 + bclr #0x1,%d0 + .long 0x4E7B0808 |movec %d0,pcr + move.l (%sp)+,%d0 + + move.l 0xc(%sp),0x2(%sp) | set "Current PC" + rte + +| +| _060_real_trap(): +| +| This is the exit point for the 060FPSP when an emulated "ftrapcc" instruction +| discovers that the trap condition is true and it should branch to the operating +| system handler for the trap exception vector number 7. +| +| The sample code below simply executes an "rte". +| + .global _060_real_trap +_060_real_trap: + bral trap | jump to trap handler + +|############################################################################ + +|################################# +| (2) EXAMPLE PACKAGE ENTRY CODE # +|################################# + + .global _060_fpsp_snan +_060_fpsp_snan: + bra.l _FP_CALL_TOP+0x80+0x00 + + .global _060_fpsp_operr +_060_fpsp_operr: + bra.l _FP_CALL_TOP+0x80+0x08 + + .global _060_fpsp_ovfl +_060_fpsp_ovfl: + bra.l _FP_CALL_TOP+0x80+0x10 + + .global _060_fpsp_unfl +_060_fpsp_unfl: + bra.l _FP_CALL_TOP+0x80+0x18 + + .global _060_fpsp_dz +_060_fpsp_dz: + bra.l _FP_CALL_TOP+0x80+0x20 + + .global _060_fpsp_inex +_060_fpsp_inex: + bra.l _FP_CALL_TOP+0x80+0x28 + + .global _060_fpsp_fline +_060_fpsp_fline: + bra.l _FP_CALL_TOP+0x80+0x30 + + .global _060_fpsp_unsupp +_060_fpsp_unsupp: + bra.l _FP_CALL_TOP+0x80+0x38 + + .global _060_fpsp_effadd +_060_fpsp_effadd: + bra.l _FP_CALL_TOP+0x80+0x40 + +|############################################################################ + +|############################### +| (3) EXAMPLE CALL-OUT SECTION # +|############################### + +| The size of this section MUST be 128 bytes!!! + +_FP_CALL_TOP: + .long _060_real_bsun - _FP_CALL_TOP + .long _060_real_snan - _FP_CALL_TOP + .long _060_real_operr - _FP_CALL_TOP + .long _060_real_ovfl - _FP_CALL_TOP + .long _060_real_unfl - _FP_CALL_TOP + .long _060_real_dz - _FP_CALL_TOP + .long _060_real_inex - _FP_CALL_TOP + .long _060_real_fline - _FP_CALL_TOP + .long _060_real_fpu_disabled - _FP_CALL_TOP + .long _060_real_trap - _FP_CALL_TOP + .long _060_real_trace - _FP_CALL_TOP + .long _060_real_access - _FP_CALL_TOP + .long _060_fpsp_done - _FP_CALL_TOP + + .long 0x00000000, 0x00000000, 0x00000000 + + .long _060_imem_read - _FP_CALL_TOP + .long _060_dmem_read - _FP_CALL_TOP + .long _060_dmem_write - _FP_CALL_TOP + .long _060_imem_read_word - _FP_CALL_TOP + .long _060_imem_read_long - _FP_CALL_TOP + .long _060_dmem_read_byte - _FP_CALL_TOP + .long _060_dmem_read_word - _FP_CALL_TOP + .long _060_dmem_read_long - _FP_CALL_TOP + .long _060_dmem_write_byte - _FP_CALL_TOP + .long _060_dmem_write_word - _FP_CALL_TOP + .long _060_dmem_write_long - _FP_CALL_TOP + + .long 0x00000000 + + .long 0x00000000, 0x00000000, 0x00000000, 0x00000000 + +|############################################################################ + +| 060 FPSP KERNEL PACKAGE NEEDS TO GO HERE!!! + +#include "fpsp.sa" diff --git a/arch/m68k/ifpsp060/ftest.sa b/arch/m68k/ifpsp060/ftest.sa new file mode 100644 index 00000000000..b365bc2fdec --- /dev/null +++ b/arch/m68k/ifpsp060/ftest.sa @@ -0,0 +1,371 @@ + dc.l $60ff0000,$00d40000,$60ff0000,$016c0000 + dc.l $60ff0000,$01a80000,$54657374,$696e6720 + dc.l $36383036,$30204650,$53502073,$74617274 + dc.l $65643a0a,$00546573,$74696e67,$20363830 + dc.l $36302046,$50535020,$756e696d,$706c656d + dc.l $656e7465,$6420696e,$73747275,$6374696f + dc.l $6e207374,$61727465,$643a0a00,$54657374 + dc.l $696e6720,$36383036,$30204650,$53502065 + dc.l $78636570,$74696f6e,$20656e61,$626c6564 + dc.l $20737461,$72746564,$3a0a0070,$61737365 + dc.l $640a0020,$6661696c,$65640a00,$4a80660e + dc.l $487affe9,$61ff0000,$1642588f,$4e752f01 + dc.l $61ff0000,$164c588f,$487affd9,$61ff0000 + dc.l $162a588f,$4e754e56,$fe8048e7,$3f3cf227 + dc.l $e0ff487a,$ff3461ff,$00001610,$588f42ae + dc.l $fea0487b,$01700000,$058061ff,$000015fc + dc.l $588f61ff,$00000588,$61ffffff,$ffa242ae + dc.l $fea0487b,$01700000,$126c61ff,$000015dc + dc.l $588f61ff,$00001280,$61ffffff,$ff8242ae + dc.l $fea0487b,$01700000,$0b6461ff,$000015bc + dc.l $61ff0000,$0b7261ff,$ffffff64,$42aefea0 + dc.l $487b0170,$00000de2,$61ff0000,$159e61ff + dc.l $00000df0,$61ffffff,$ff464cdf,$3cfcf21f + dc.l $d0ff4e5e,$4e754e56,$fe8048e7,$3f3cf227 + dc.l $e0ff487a,$feb161ff,$00001570,$588f42ae + dc.l $fea0487b,$01700000,$00fe61ff,$0000155c + dc.l $588f61ff,$00000110,$61ffffff,$ff024cdf + dc.l $3cfcf21f,$d0ff4e5e,$4e754e56,$fe8048e7 + dc.l $3f3cf227,$e0ff487a,$fea461ff,$0000152c + dc.l $588f42ae,$fea0487b,$01700000,$0f1461ff + dc.l $00001518,$61ff0000,$0f1a61ff,$fffffec0 + dc.l $42aefea0,$487b0170,$00000fd2,$61ff0000 + dc.l $14fa61ff,$00000fd8,$61ffffff,$fea242ae + dc.l $fea0487b,$01700000,$0b6061ff,$000014dc + dc.l $61ff0000,$0b6a61ff,$fffffe84,$42aefea0 + dc.l $487b0170,$00000c22,$61ff0000,$14be61ff + dc.l $00000c2c,$61ffffff,$fe6642ae,$fea0487b + dc.l $01700000,$105661ff,$000014a0,$61ff0000 + dc.l $105a61ff,$fffffe48,$42aefea0,$487b0170 + dc.l $00000da2,$61ff0000,$148261ff,$00000da8 + dc.l $61ffffff,$fe2a4cdf,$3cfcf21f,$d0ff4e5e + dc.l $4e750955,$6e696d70,$6c656d65,$6e746564 + dc.l $20465020,$696e7374,$72756374,$696f6e73 + dc.l $2e2e2e00,$52aefea0,$4cfb3fff,$01700000 + dc.l $1390f23b,$d0ff0170,$000013c6,$f23b9c00 + dc.l $01700000,$141c3d7c,$0000fea6,$48ee7fff + dc.l $ff80f22e,$f0ffff20,$f22ebc00,$feb42d7c + dc.l $40000000,$fe802d7c,$c90fdaa2,$fe842d7c + dc.l $2168c235,$fe8844fc,$0000f22e,$480efe80 + dc.l $42eefea4,$48ee7fff,$ffc0f22e,$f0fffec0 + dc.l $f22ebc00,$fea82d7c,$bfbf0000,$ff202d7c + dc.l $80000000,$ff242d7c,$00000000,$ff282d7c + dc.l $08000208,$feb841fa,$ffc22d48,$febc61ff + dc.l $00001288,$4a0066ff,$000012ae,$61ff0000 + dc.l $12b04a00,$66ff0000,$12a052ae,$fea04cfb + dc.l $3fff0170,$000012da,$f23bd0ff,$01700000 + dc.l $1310f23b,$9c000170,$00001366,$3d7c0000 + dc.l $fea648ee,$7fffff80,$f22ef0ff,$ff20f22e + dc.l $bc00feb4,$2d7c3ffe,$0000fe80,$2d7cc90f + dc.l $daa2fe84,$2d7c2168,$c235fe88,$44fc0000 + dc.l $f22e480f,$fe8042ee,$fea448ee,$7fffffc0 + dc.l $f22ef0ff,$fec0f22e,$bc00fea8,$2d7c3fff + dc.l $0000ff20,$2d7c8000,$0000ff24,$2d7c0000 + dc.l $0000ff28,$2d7c0000,$0208feb8,$41faffc2 + dc.l $2d48febc,$61ff0000,$11d24a00,$66ff0000 + dc.l $11f861ff,$000011fa,$4a0066ff,$000011ea + dc.l $52aefea0,$4cfb3fff,$01700000,$1224f23b + dc.l $d0ff0170,$0000125a,$f23b9c00,$01700000 + dc.l $12b03d7c,$0000fea6,$48ee7fff,$ff80f22e + dc.l $f0ffff20,$f22ebc00,$feb444fc,$0000f200 + dc.l $5c3142ee,$fea448ee,$7fffffc0,$f22ef0ff + dc.l $fec0f22e,$bc00fea8,$2d7c4000,$0000ff20 + dc.l $2d7c935d,$8dddff24,$2d7caaa8,$ac17ff28 + dc.l $2d7c0000,$0208feb8,$41faffc4,$2d48febc + dc.l $61ff0000,$11364a00,$66ff0000,$115c61ff + dc.l $0000115e,$4a0066ff,$0000114e,$52aefea0 + dc.l $4cfb3fff,$01700000,$1188f23b,$d0ff0170 + dc.l $000011be,$f23b9c00,$01700000,$1214f23c + dc.l $88000f00,$00007e00,$3d7c0000,$fea648ee + dc.l $7fffff80,$f22ef0ff,$ff20f22e,$bc00feb4 + dc.l $44fc0000,$f2470012,$42eefea4,$48ee7fff + dc.l $ffc0f22e,$f0fffec0,$f22ebc00,$fea82d7c + dc.l $0f008080,$feb841fa,$ffdc2d48,$febc61ff + dc.l $000010a8,$4a0066ff,$000010ce,$61ff0000 + dc.l $10d04a00,$66ff0000,$10c052ae,$fea04cfb + dc.l $3fff0170,$000010fa,$f23bd0ff,$01700000 + dc.l $1130f23b,$9c000170,$00001186,$f23c8800 + dc.l $0f000000,$7e023d7c,$0000fea6,$48ee7fff + dc.l $ff80f22e,$f0ffff20,$f22ebc00,$feb444fc + dc.l $0000f24f,$0012fffc,$42eefea4,$48ee7fff + dc.l $ffc0f22e,$f0fffec0,$f22ebc00,$fea83d7c + dc.l $ffffff9e,$2d7c0f00,$8080feb8,$41faffd4 + dc.l $2d48febc,$61ff0000,$10124a00,$66ff0000 + dc.l $103861ff,$0000103a,$4a0066ff,$0000102a + dc.l $52aefea0,$4cfb3fff,$01700000,$1064f23b + dc.l $d0ff0170,$0000109a,$f23b9c00,$01700000 + dc.l $10f0f23c,$88000f00,$00003d7c,$0000fea6 + dc.l $48ee7fff,$ff80f22e,$f0ffff20,$f22ebc00 + dc.l $feb444fc,$0000f27b,$0012abcd,$ef0142ee + dc.l $fea448ee,$7fffffc0,$f22ef0ff,$fec0f22e + dc.l $bc00fea8,$2d7c0f00,$8080feb8,$41faffd8 + dc.l $2d48febc,$61ff0000,$0f824a00,$66ff0000 + dc.l $0fa861ff,$00000faa,$4a0066ff,$00000f9a + dc.l $42804e75,$09556e69,$6d706c65,$6d656e74 + dc.l $6564203c,$65613e2e,$2e2e0000,$52aefea0 + dc.l $4cfb3fff,$01700000,$0fb8f23b,$d0ff0170 + dc.l $00000fee,$f23b9c00,$01700000,$10443d7c + dc.l $0000fea6,$48ee7fff,$ff80f22e,$f0ffff20 + dc.l $f22ebc00,$feb4f23c,$58000002,$44fc0000 + dc.l $f23c4823,$c0000000,$80000000,$00000000 + dc.l $42eefea4,$48ee7fff,$ffc0f22e,$f0fffec0 + dc.l $f22ebc00,$fea82d7c,$c0010000,$ff202d7c + dc.l $80000000,$ff242d7c,$00000000,$ff282d7c + dc.l $08000000,$feb841fa,$ffb82d48,$febc61ff + dc.l $00000eb8,$4a0066ff,$00000ede,$61ff0000 + dc.l $0ee04a00,$66ff0000,$0ed052ae,$fea04cfb + dc.l $3fff0170,$00000f0a,$f23bd0ff,$01700000 + dc.l $0f40f23b,$9c000170,$00000f96,$3d7c0000 + dc.l $fea648ee,$7fffff80,$f22ef0ff,$ff20f22e + dc.l $bc00feb4,$44fc0000,$f23c4c18,$c1230001 + dc.l $23456789,$12345678,$42eefea4,$48ee7fff + dc.l $ffc0f22e,$f0fffec0,$f22ebc00,$fea82d7c + dc.l $3e660000,$ff202d7c,$d0ed23e8,$ff242d7c + dc.l $d14035bc,$ff282d7c,$00000108,$feb841fa + dc.l $ffb82d48,$febc61ff,$00000e10,$4a0066ff + dc.l $00000e36,$61ff0000,$0e384a00,$66ff0000 + dc.l $0e2852ae,$fea04cfb,$3fff0170,$00000e62 + dc.l $f23bd0ff,$01700000,$0e98f23b,$9c000170 + dc.l $00000eee,$3d7c0000,$fea644fc,$000048ee + dc.l $7fffff80,$f22ef0ff,$ff20f22e,$bc00feb4 + dc.l $f23c9800,$ffffffff,$ffffffff,$42eefea4 + dc.l $48ee7fff,$ffc0f22e,$f0fffec0,$f22ebc00 + dc.l $fea82d7c,$0000fff0,$feb42d7c,$0ffffff8 + dc.l $feb861ff,$00000d84,$4a0066ff,$00000daa + dc.l $61ff0000,$0dac4a00,$66ff0000,$0d9c52ae + dc.l $fea04cfb,$3fff0170,$00000dd6,$f23bd0ff + dc.l $01700000,$0e0cf23b,$9c000170,$00000e62 + dc.l $3d7c0000,$fea644fc,$000048ee,$7fffff80 + dc.l $f22ef0ff,$ff20f22e,$bc00feb4,$f23c9400 + dc.l $ffffffff,$ffffffff,$42eefea4,$48ee7fff + dc.l $ffc0f22e,$f0fffec0,$f22ebc00,$fea82d7c + dc.l $0000fff0,$feb42d7c,$ffffffff,$febc61ff + dc.l $00000cf8,$4a0066ff,$00000d1e,$61ff0000 + dc.l $0d204a00,$66ff0000,$0d1052ae,$fea04cfb + dc.l $3fff0170,$00000d4a,$f23bd0ff,$01700000 + dc.l $0d80f23b,$9c000170,$00000dd6,$3d7c0000 + dc.l $fea644fc,$000048ee,$7fffff80,$f22ef0ff + dc.l $ff20f22e,$bc00feb4,$f23c8c00,$ffffffff + dc.l $ffffffff,$42eefea4,$48ee7fff,$ffc0f22e + dc.l $f0fffec0,$f22ebc00,$fea82d7c,$0ffffff8 + dc.l $feb82d7c,$ffffffff,$febc61ff,$00000c6c + dc.l $4a0066ff,$00000c92,$61ff0000,$0c944a00 + dc.l $66ff0000,$0c8452ae,$fea04cfb,$3fff0170 + dc.l $00000cbe,$f23bd0ff,$01700000,$0cf4f23b + dc.l $9c000170,$00000d4a,$3d7c0000,$fea644fc + dc.l $000048ee,$7fffff80,$f22ef0ff,$ff20f22e + dc.l $bc00feb4,$f23c9c00,$ffffffff,$ffffffff + dc.l $ffffffff,$42eefea4,$48ee7fff,$ffc0f22e + dc.l $f0fffec0,$f22ebc00,$fea82d7c,$0000fff0 + dc.l $feb42d7c,$0ffffff8,$feb82d7c,$ffffffff + dc.l $febc61ff,$00000bd4,$4a0066ff,$00000bfa + dc.l $61ff0000,$0bfc4a00,$66ff0000,$0bec52ae + dc.l $fea04cfb,$3fff0170,$00000c26,$f23bd0ff + dc.l $01700000,$0c5cf23b,$9c000170,$00000cb2 + dc.l $f23c5800,$0001f23c,$58800002,$f23c5900 + dc.l $0003f23c,$59800004,$f23c5a00,$0005f23c + dc.l $5a800006,$f23c5b00,$0007f23c,$5b800008 + dc.l $f23c8400,$00000000,$70aa3d7c,$0000fea6 + dc.l $48eeffff,$ff80f22e,$bc00feb4,$f22ef0ff + dc.l $ff2044fc,$0000f227,$e80042ee,$fea4f22e + dc.l $bc00fea8,$f23c4480,$7f800000,$f23c4580 + dc.l $7f800000,$f23c4680,$7f800000,$f23c4780 + dc.l $7f800000,$f21f4880,$f21f4980,$f21f4a80 + dc.l $f21f4b80,$48eeffff,$ffc0f22e,$f0fffec0 + dc.l $61ff0000,$0af64a00,$66ff0000,$0b1c61ff + dc.l $00000b1e,$4a0066ff,$00000b0e,$52aefea0 + dc.l $4cfb3fff,$01700000,$0b48f23b,$d0ff0170 + dc.l $00000b7e,$f23b9c00,$01700000,$0bd4f23c + dc.l $58000001,$f23c5880,$0002f23c,$59000003 + dc.l $f23c5980,$0004f23c,$5a000005,$f23c5a80 + dc.l $0006f23c,$5b000007,$f23c5b80,$0008f227 + dc.l $6b00f227,$6a00f227,$6900f227,$6800f22e + dc.l $f0ffff20,$f23c4700,$7f800000,$f23c4600 + dc.l $7f800000,$f23c4500,$7f800000,$f23c4400 + dc.l $7f800000,$f23c8400,$00000000,$f23c8800 + dc.l $00000000,$70aa3d7c,$0000fea6,$48eeffff + dc.l $ff80f22e,$bc00feb4,$44fc0000,$f21fd800 + dc.l $42eefea4,$f22ebc00,$fea848ee,$ffffffc0 + dc.l $f22ef0ff,$fec061ff,$00000a10,$4a0066ff + dc.l $00000a36,$61ff0000,$0a384a00,$66ff0000 + dc.l $0a2852ae,$fea04cfb,$3fff0170,$00000a62 + dc.l $f23bd0ff,$01700000,$0a98f23b,$9c000170 + dc.l $00000aee,$f23c5800,$0001f23c,$58800002 + dc.l $f23c5900,$0003f23c,$59800004,$f23c5a00 + dc.l $0005f23c,$5a800006,$f23c5b00,$0007f23c + dc.l $5b800008,$f23c8400,$00000000,$203cffff + dc.l $ff003d7c,$0000fea6,$48eeffff,$ff80f22e + dc.l $bc00feb4,$f22ef0ff,$ff2044fc,$0000f227 + dc.l $e80042ee,$fea4f22e,$bc00fea8,$48eeffff + dc.l $ffc0f22e,$f0fffec0,$61ff0000,$095e4a00 + dc.l $66ff0000,$098461ff,$00000986,$4a0066ff + dc.l $00000976,$42804e75,$094e6f6e,$2d6d6173 + dc.l $6b61626c,$65206f76,$6572666c,$6f772e2e + dc.l $2e0051fc,$52aefea0,$4cfb3fff,$01700000 + dc.l $0990f23b,$d0ff0170,$000009c6,$f23b9c00 + dc.l $01700000,$0a1c3d7c,$0000fea6,$48ee7fff + dc.l $ff80f22e,$f0ffff20,$f22ebc00,$feb4f23c + dc.l $58000002,$2d7c7ffe,$0000fe80,$2d7c8000 + dc.l $0000fe84,$2d7c0000,$0000fe88,$44fc0000 + dc.l $f22e4823,$fe8042ee,$fea448ee,$7fffffc0 + dc.l $f22ef0ff,$fec0f22e,$bc00fea8,$2d7c7fff + dc.l $0000ff20,$2d7c0000,$0000ff24,$2d7c0000 + dc.l $0000ff28,$2d7c0200,$1048feb8,$41faffc2 + dc.l $2d48febc,$61ff0000,$08824a00,$66ff0000 + dc.l $08a861ff,$000008aa,$4a0066ff,$0000089a + dc.l $42804e75,$09456e61,$626c6564,$206f7665 + dc.l $72666c6f,$772e2e2e,$000051fc,$52aefea0 + dc.l $4cfb3fff,$01700000,$08b8f23b,$d0ff0170 + dc.l $000008ee,$f23b9c00,$01700000,$09443d7c + dc.l $0000fea6,$48ee7fff,$ff80f22e,$f0ffff20 + dc.l $f23c9000,$00001000,$f22ebc00,$feb4f23c + dc.l $58000002,$2d7c7ffe,$0000fe80,$2d7c8000 + dc.l $0000fe84,$2d7c0000,$0000fe88,$44fc0000 + dc.l $f22e4823,$fe8042ee,$fea448ee,$7fffffc0 + dc.l $f22ef0ff,$fec0f22e,$bc00fea8,$2d7c7fff + dc.l $0000ff20,$2d7c0000,$0000ff24,$2d7c0000 + dc.l $0000ff28,$2d7c0200,$1048feb8,$41faffc2 + dc.l $2d48febc,$61ff0000,$07a24a00,$66ff0000 + dc.l $07c861ff,$000007ca,$4a0066ff,$000007ba + dc.l $42804e75,$09456e61,$626c6564,$20756e64 + dc.l $6572666c,$6f772e2e,$2e0051fc,$52aefea0 + dc.l $4cfb3fff,$01700000,$07d8f23b,$d0ff0170 + dc.l $0000080e,$f23b9c00,$01700000,$08643d7c + dc.l $0000fea6,$48ee7fff,$ff80f22e,$f0ffff20 + dc.l $f23c9000,$00000800,$f22ebc00,$feb42d7c + dc.l $00000000,$fe802d7c,$80000000,$fe842d7c + dc.l $00000000,$fe88f22e,$d080fe80,$44fc0000 + dc.l $f23c5820,$000242ee,$fea448ee,$7fffffc0 + dc.l $f22ef0ff,$fec0f22e,$bc00fea8,$2d7c0000 + dc.l $0000ff20,$2d7c4000,$0000ff24,$2d7c0000 + dc.l $0000ff28,$2d7c0000,$0800feb8,$41faffc2 + dc.l $2d48febc,$61ff0000,$06c24a00,$66ff0000 + dc.l $06e861ff,$000006ea,$4a0066ff,$000006da + dc.l $42804e75,$094e6f6e,$2d6d6173,$6b61626c + dc.l $6520756e,$64657266,$6c6f772e,$2e2e0000 + dc.l $52aefea0,$4cfb3fff,$01700000,$06f4f23b + dc.l $d0ff0170,$0000072a,$f23b9c00,$01700000 + dc.l $07803d7c,$0000fea6,$48ee7fff,$ff80f22e + dc.l $f0ffff20,$f22ebc00,$feb42d7c,$00000000 + dc.l $fe802d7c,$80000000,$fe842d7c,$00000000 + dc.l $fe88f22e,$d080fe80,$44fc0000,$f23c5820 + dc.l $000242ee,$fea448ee,$7fffffc0,$f22ef0ff + dc.l $fec0f22e,$bc00fea8,$2d7c0000,$0000ff20 + dc.l $2d7c4000,$0000ff24,$2d7c0000,$0000ff28 + dc.l $2d7c0000,$0800feb8,$41faffc2,$2d48febc + dc.l $61ff0000,$05e64a00,$66ff0000,$060c61ff + dc.l $0000060e,$4a0066ff,$000005fe,$42804e75 + dc.l $09456e61,$626c6564,$20696e65,$78616374 + dc.l $2e2e2e00,$52aefea0,$4cfb3fff,$01700000 + dc.l $0620f23b,$d0ff0170,$00000656,$f23b9c00 + dc.l $01700000,$06ac3d7c,$0000fea6,$48ee7fff + dc.l $ff80f22e,$f0ffff20,$f23c9000,$00000200 + dc.l $f22ebc00,$feb42d7c,$50000000,$fe802d7c + dc.l $80000000,$fe842d7c,$00000000,$fe88f22e + dc.l $d080fe80,$44fc0000,$f23c5822,$000242ee + dc.l $fea448ee,$7fffffc0,$f22ef0ff,$fec0f22e + dc.l $bc00fea8,$2d7c5000,$0000ff20,$2d7c8000 + dc.l $0000ff24,$2d7c0000,$0000ff28,$2d7c0000 + dc.l $0208feb8,$41faffc2,$2d48febc,$61ff0000 + dc.l $050a4a00,$66ff0000,$053061ff,$00000532 + dc.l $4a0066ff,$00000522,$42804e75,$09456e61 + dc.l $626c6564,$20534e41,$4e2e2e2e,$000051fc + dc.l $52aefea0,$4cfb3fff,$01700000,$0544f23b + dc.l $d0ff0170,$0000057a,$f23b9c00,$01700000 + dc.l $05d03d7c,$0000fea6,$48ee7fff,$ff80f22e + dc.l $f0ffff20,$f23c9000,$00004000,$f22ebc00 + dc.l $feb42d7c,$ffff0000,$fe802d7c,$00000000 + dc.l $fe842d7c,$00000001,$fe88f22e,$d080fe80 + dc.l $44fc0000,$f23c5822,$000242ee,$fea448ee + dc.l $7fffffc0,$f22ef0ff,$fec0f22e,$bc00fea8 + dc.l $2d7cffff,$0000ff20,$2d7c0000,$0000ff24 + dc.l $2d7c0000,$0001ff28,$2d7c0900,$4080feb8 + dc.l $41faffc2,$2d48febc,$61ff0000,$042e4a00 + dc.l $66ff0000,$045461ff,$00000456,$4a0066ff + dc.l $00000446,$42804e75,$09456e61,$626c6564 + dc.l $204f5045,$52522e2e,$2e0051fc,$52aefea0 + dc.l $4cfb3fff,$01700000,$0468f23b,$d0ff0170 + dc.l $0000049e,$f23b9c00,$01700000,$04f43d7c + dc.l $0000fea6,$48ee7fff,$ff80f22e,$f0ffff20 + dc.l $f23c9000,$00002000,$f22ebc00,$feb42d7c + dc.l $ffff0000,$fe802d7c,$00000000,$fe842d7c + dc.l $00000000,$fe88f22e,$d080fe80,$44fc0000 + dc.l $f23c4422,$7f800000,$42eefea4,$48ee7fff + dc.l $ffc0f22e,$f0fffec0,$f22ebc00,$fea82d7c + dc.l $ffff0000,$ff202d7c,$00000000,$ff242d7c + dc.l $00000000,$ff282d7c,$01002080,$feb841fa + dc.l $ffc02d48,$febc61ff,$00000350,$4a0066ff + dc.l $00000376,$61ff0000,$03784a00,$66ff0000 + dc.l $03684280,$4e750945,$6e61626c,$65642044 + dc.l $5a2e2e2e,$000051fc,$52aefea0,$4cfb3fff + dc.l $01700000,$038cf23b,$d0ff0170,$000003c2 + dc.l $f23b9c00,$01700000,$04183d7c,$0000fea6 + dc.l $48ee7fff,$ff80f22e,$f0ffff20,$f23c9000 + dc.l $00000400,$f22ebc00,$feb42d7c,$40000000 + dc.l $fe802d7c,$80000000,$fe842d7c,$00000000 + dc.l $fe88f22e,$d080fe80,$44fc0000,$f23c5820 + dc.l $000042ee,$fea448ee,$7fffffc0,$f22ef0ff + dc.l $fec0f22e,$bc00fea8,$2d7c4000,$0000ff20 + dc.l $2d7c8000,$0000ff24,$2d7c0000,$0000ff28 + dc.l $2d7c0200,$0410feb8,$41faffc2,$2d48febc + dc.l $61ff0000,$02764a00,$66ff0000,$029c61ff + dc.l $0000029e,$4a0066ff,$0000028e,$42804e75 + dc.l $09556e69,$6d706c65,$6d656e74,$65642064 + dc.l $61746120,$74797065,$2f666f72,$6d61742e + dc.l $2e2e0000,$52aefea0,$4cfb3fff,$01700000 + dc.l $02a0f23b,$d0ff0170,$000002d6,$f23b9c00 + dc.l $01700000,$032c3d7c,$0000fea6,$48ee7fff + dc.l $ff80f22e,$f0ffff20,$f22ebc00,$feb42d7c + dc.l $c03f0000,$fe802d7c,$00000000,$fe842d7c + dc.l $00000001,$fe88f23c,$58000002,$44fc0000 + dc.l $f22e4823,$fe8042ee,$fea448ee,$7fffffc0 + dc.l $f22ef0ff,$fec0f22e,$bc00fea8,$2d7cc001 + dc.l $0000ff20,$2d7c8000,$0000ff24,$2d7c0000 + dc.l $0000ff28,$2d7c0800,$0000feb8,$41faffc2 + dc.l $2d48febc,$61ff0000,$01924a00,$66ff0000 + dc.l $01b861ff,$000001ba,$4a0066ff,$000001aa + dc.l $52aefea0,$4cfb3fff,$01700000,$01e4f23b + dc.l $d0ff0170,$0000021a,$f23b9c00,$01700000 + dc.l $02703d7c,$0000fea6,$48ee7fff,$ff80f22e + dc.l $f0ffff20,$f22ebc00,$feb42d7c,$80000000 + dc.l $fe802d7c,$01000000,$fe842d7c,$00000000 + dc.l $fe88f23c,$40007fff,$ffff44fc,$0000f22e + dc.l $4823fe80,$42eefea4,$48ee7fff,$ffc0f22e + dc.l $f0fffec0,$f22ebc00,$fea82d7c,$80170000 + dc.l $ff202d7c,$fffffffe,$ff242d7c,$00000000 + dc.l $ff282d7c,$08000000,$feb841fa,$ffc22d48 + dc.l $febc61ff,$000000d4,$4a0066ff,$000000fa + dc.l $61ff0000,$00fc4a00,$66ff0000,$00ec52ae + dc.l $fea04cfb,$3fff0170,$00000126,$f23bd0ff + dc.l $01700000,$015cf23b,$9c000170,$000001b2 + dc.l $3d7c0000,$fea648ee,$7fffff80,$f22ef0ff + dc.l $ff20f22e,$bc00feb4,$2d7cc123,$0001fe80 + dc.l $2d7c2345,$6789fe84,$2d7c1234,$5678fe88 + dc.l $44fc0000,$f22e4c18,$fe8042ee,$fea448ee + dc.l $7fffffc0,$f22ef0ff,$fec0f22e,$bc00fea8 + dc.l $2d7c3e66,$0000ff20,$2d7cd0ed,$23e8ff24 + dc.l $2d7cd140,$35bcff28,$2d7c0000,$0108feb8 + dc.l $41faffc2,$2d48febc,$61ff0000,$001e4a00 + dc.l $66ff0000,$004461ff,$00000046,$4a0066ff + dc.l $00000036,$42804e75,$41eeff80,$43eeffc0 + dc.l $700eb189,$66ff0000,$001c51c8,$fff6302e + dc.l $fea6322e,$fea4b041,$66ff0000,$00084280 + dc.l $4e757001,$4e75222e,$fea07001,$4e7541ee + dc.l $ff2043ee,$fec07017,$b18966ff,$0000002c + dc.l $51c8fff6,$41eefeb4,$43eefea8,$b18966ff + dc.l $00000018,$b18966ff,$00000010,$b18966ff + dc.l $00000008,$42804e75,$70014e75,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$7fff0000 + dc.l $ffffffff,$ffffffff,$7fff0000,$ffffffff + dc.l $ffffffff,$7fff0000,$ffffffff,$ffffffff + dc.l $7fff0000,$ffffffff,$ffffffff,$7fff0000 + dc.l $ffffffff,$ffffffff,$7fff0000,$ffffffff + dc.l $ffffffff,$7fff0000,$ffffffff,$ffffffff + dc.l $7fff0000,$ffffffff,$ffffffff,$00000000 + dc.l $00000000,$00000000,$2f00203a,$e884487b + dc.l $0930ffff,$e880202f,$00044e74,$00042f00 + dc.l $203ae872,$487b0930,$ffffe86a,$202f0004 + dc.l $4e740004,$00000000,$00000000,$00000000 diff --git a/arch/m68k/ifpsp060/ilsp.doc b/arch/m68k/ifpsp060/ilsp.doc new file mode 100644 index 00000000000..f6fae6d900a --- /dev/null +++ b/arch/m68k/ifpsp060/ilsp.doc @@ -0,0 +1,150 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +68060 INTEGER SOFTWARE PACKAGE (Library version) +------------------------------------------------- + +The file ilsp.s contains the "Library version" of the +68060 Integer Software Package. Routines included in this +module can be used to emulate 64-bit divide and multiply, +and the "cmp2" instruction. These instructions are not +implemented in hardware on the 68060 and normally take +exception vector #61 "Unimplemented Integer Instruction". + +By re-compiling a program that uses these instructions, and +making subroutine calls in place of the unimplemented +instructions, a program can avoid the overhead associated with +taking the exception. + +Release file format: +-------------------- +The file ilsp.sa is essentially a hexadecimal image of the +release package. This is the ONLY format which will be supported. +The hex image was created by assembling the source code and +then converting the resulting binary output image into an +ASCII text file. The hexadecimal numbers are listed +using the Motorola Assembly Syntax assembler directive "dc.l" +(define constant longword). The file can be converted to other +assembly syntaxes by using any word processor with a global +search and replace function. + +To assist in assembling and linking this module with other modules, +the installer should add a symbolic label to the top of the file. +This will allow calling routines to access the entry points +of this package. + +The source code ilsp.s has also been included but only for +documentation purposes. + +Release file structure: +----------------------- +The file ilsp.sa contains an "Entry-Point" section and a +code section. The ILSP has no "Call-Out" section. The first section +is the "Entry-Point" section. In order to access a function in the +package, a program must "bsr" or "jsr" to the location listed +below in "68060ILSP Entry Points" that corresponds to the desired +function. A branch instruction located at the selected entry point +within the package will then enter the correct emulation code routine. + +The entry point addresses at the beginning of the package will remain +fixed so that a program calling the routines will not have to be +re-compiled with every new 68060ILSP release. + +For example, to use a 64-bit multiply instruction, +do a "bsr" or "jsr" to the entry point defined by +the 060ILSP entry table. A compiler generated code sequence +for unsigned multiply could look like: + +# mulu.l <ea>,Dh:Dl +# mulu.l _multiplier,%d1:%d0 + + subq.l &0x8,%sp # make room for result on stack + pea (%sp) # pass: result addr on stack + mov.l %d0,-(%sp) # pass: multiplicand on stack + mov.l _multiplier,-(%sp) # pass: multiplier on stack + bsr.l _060LISP_TOP+0x18 # branch to multiply routine + add.l &0xc,%sp # clear arguments from stack + mov.l (%sp)+,%d1 # load result[63:32] + mov.l (%sp)+,%d0 # load result[31:0] + +For a divide: + +# divu.l <ea>,Dr:Dq +# divu.l _divisor,%d1:%d0 + + subq.l &0x8,%sp # make room for result on stack + pea (%sp) # pass: result addr on stack + mov.l %d0,-(%sp) # pass: dividend hi on stack + mov.l %d1,-(%sp) # pass: dividend hi on stack + mov.l _divisor,-(%sp) # pass: divisor on stack + bsr.l _060LISP_TOP+0x08 # branch to divide routine + add.l &0xc,%sp # clear arguments from stack + mov.l (%sp)+,%d1 # load remainder + mov.l (%sp)+,%d0 # load quotient + +The library routines also return the correct condition code +register value. If this is important, then the caller of the library +routine must make sure that the value isn't lost while popping +other items off of the stack. + +An example of using the "cmp2" instruction is as follows: + +# cmp2.l <ea>,Rn +# cmp2.l _bounds,%d0 + + pea _bounds # pass ptr to bounds + mov.l %d0,-(%sp) # pass Rn + bsr.l _060LSP_TOP_+0x48 # branch to "cmp2" routine + mov.w %cc,_tmp # save off condition codes + addq.l &0x8,%sp # clear arguments from stack + +Exception reporting: +-------------------- +If the instruction being emulated is a divide and the source +operand is a zero, then the library routine, as its last +instruction, executes an implemented divide using a zero +source operand so that an "Integer Divide-by-Zero" exception +will be taken. Although the exception stack frame will not +point to the correct instruction, the user will at least be able +to record that such an event occurred if desired. + +68060ILSP entry points: +----------------------- +_060ILSP_TOP: +0x000: _060LSP__idivs64_ +0x008: _060LSP__idivu64_ + +0x010: _060LSP__imuls64_ +0x018: _060LSP__imulu64_ + +0x020: _060LSP__cmp2_Ab_ +0x028: _060LSP__cmp2_Aw_ +0x030: _060LSP__cmp2_Al_ +0x038: _060LSP__cmp2_Db_ +0x040: _060LSP__cmp2_Dw_ +0x048: _060LSP__cmp2_Dl_ diff --git a/arch/m68k/ifpsp060/ilsp.sa b/arch/m68k/ifpsp060/ilsp.sa new file mode 100644 index 00000000000..2757d502b01 --- /dev/null +++ b/arch/m68k/ifpsp060/ilsp.sa @@ -0,0 +1,101 @@ + dc.l $60ff0000,$01fe0000,$60ff0000,$02080000 + dc.l $60ff0000,$04900000,$60ff0000,$04080000 + dc.l $60ff0000,$051e0000,$60ff0000,$053c0000 + dc.l $60ff0000,$055a0000,$60ff0000,$05740000 + dc.l $60ff0000,$05940000,$60ff0000,$05b40000 + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $4e56fff0,$48e73f00,$42eefff0,$50eeffff + dc.l $60104e56,$fff048e7,$3f0042ee,$fff051ee + dc.l $ffff2e2e,$00086700,$00ae2a2e,$000c2c2e + dc.l $00104a2e,$ffff671a,$4a875dee,$fffe6a02 + dc.l $44874a85,$5deefffd,$6a0844fc,$00004086 + dc.l $40854a85,$66164a86,$67000046,$be866306 + dc.l $cb466000,$00124c47,$6005600a,$be85634c + dc.l $61ff0000,$00864a2e,$ffff6724,$4a2efffd + dc.l $67024485,$102efffe,$b12efffd,$670c0c86 + dc.l $80000000,$62264486,$60060806,$001f661c + dc.l $026e0010,$fff044ee,$fff04a86,$48f60060 + dc.l $01610014,$4cdf00fc,$4e5e4e75,$2a2e000c + dc.l $2c2e0010,$026e001c,$fff0006e,$0002fff0 + dc.l $44eefff0,$60d62dae,$000c0161,$00142dae + dc.l $00100162,$00140004,$44eefff0,$4cdf00fc + dc.l $4e5e80fc,$00004e75,$0c870000,$ffff621e + dc.l $42814845,$48463a06,$8ac73205,$48463a06 + dc.l $8ac74841,$32054245,$48452c01,$4e7542ae + dc.l $fff8422e,$fffc4281,$0807001f,$660e52ae + dc.l $fff8e38f,$e38ee395,$6000ffee,$26072405 + dc.l $48424843,$b4436606,$323cffff,$600a2205 + dc.l $82c30281,$0000ffff,$2f064246,$48462607 + dc.l $2401c4c7,$4843c6c1,$28059883,$48443004 + dc.l $38064a40,$6600000a,$b4846304,$538160de + dc.l $2f052c01,$48462a07,$61ff0000,$006a2405 + dc.l $26062a1f,$2c1f9c83,$9b8264ff,$0000001a + dc.l $53814282,$26074843,$4243dc83,$db822607 + dc.l $42434843,$da834a2e,$fffc6616,$3d41fff4 + dc.l $42814845,$48463a06,$424650ee,$fffc6000 + dc.l $ff6c3d41,$fff63c05,$48464845,$2e2efff8 + dc.l $670a5387,$e28de296,$51cffffa,$2a062c2e + dc.l $fff44e75,$24062606,$28054843,$4844ccc5 + dc.l $cac3c4c4,$c6c44284,$4846dc45,$d744dc42 + dc.l $d7444846,$42454242,$48454842,$da82da83 + dc.l $4e754e56,$fffc48e7,$380042ee,$fffc202e + dc.l $00086700,$005a222e,$000c6700,$00522400 + dc.l $26002801,$48434844,$c0c1c2c3,$c4c4c6c4 + dc.l $42844840,$d041d784,$d042d784,$48404241 + dc.l $42424841,$4842d282,$d283382e,$fffc0204 + dc.l $00104a81,$6a040004,$000844c4,$c34048f6 + dc.l $00030161,$00104cdf,$001c4e5e,$4e754280 + dc.l $4281382e,$fffc0204,$00100004,$000444c4 + dc.l $60da4e56,$fffc48e7,$3c0042ee,$fffc202e + dc.l $000867da,$222e000c,$67d44205,$4a806c06 + dc.l $44800005,$00014a81,$6c064481,$0a050001 + dc.l $24002600,$28014843,$4844c0c1,$c2c3c4c4 + dc.l $c6c44284,$4840d041,$d784d042,$d7844840 + dc.l $42414242,$48414842,$d282d283,$4a056708 + dc.l $46804681,$5280d384,$382efffc,$02040010 + dc.l $4a816a04,$00040008,$44c4c340,$48f60003 + dc.l $01610010,$4cdf003c,$4e5e4e75,$42804281 + dc.l $382efffc,$02040010,$00040004,$44c460da + dc.l $4e56fffc,$48e73800,$42eefffc,$242e0008 + dc.l $10360161,$000c1236,$0162000c,$000149c0 + dc.l $49c16000,$00b84e56,$fffc48e7,$380042ee + dc.l $fffc242e,$00083036,$0161000c,$32360162 + dc.l $000c0002,$48c048c1,$60000092,$4e56fffc + dc.l $48e73800,$42eefffc,$242e0008,$20360161 + dc.l $000c2236,$0162000c,$00046000,$00704e56 + dc.l $fffc48e7,$380042ee,$fffc242e,$00081036 + dc.l $0161000c,$12360162,$000c0001,$49c049c1 + dc.l $49c26000,$00484e56,$fffc48e7,$380042ee + dc.l $fffc242e,$00083036,$0161000c,$32360162 + dc.l $000c0002,$48c048c1,$48c26000,$00204e56 + dc.l $fffc48e7,$380042ee,$fffc242e,$00082036 + dc.l $0161000c,$22360162,$000c0004,$948042c3 + dc.l $02030004,$9280b282,$42c48604,$02030005 + dc.l $382efffc,$0204001a,$880344c4,$4cdf001c + dc.l $4e5e4e75,$00000000,$00000000,$00000000 diff --git a/arch/m68k/ifpsp060/iskeleton.S b/arch/m68k/ifpsp060/iskeleton.S new file mode 100644 index 00000000000..803a6ecdda8 --- /dev/null +++ b/arch/m68k/ifpsp060/iskeleton.S @@ -0,0 +1,349 @@ +|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +|MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +|M68000 Hi-Performance Microprocessor Division +|M68060 Software Package +|Production Release P1.00 -- October 10, 1994 +| +|M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. +| +|THE SOFTWARE is provided on an "AS IS" basis and without warranty. +|To the maximum extent permitted by applicable law, +|MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +|INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +|and any warranty against infringement with regard to the SOFTWARE +|(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. +| +|To the maximum extent permitted by applicable law, +|IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +|(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +|BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +|ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +|Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. +| +|You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +|so long as this entire notice is retained without alteration in any modified and/or +|redistributed versions, and that such modified versions are clearly identified as such. +|No licenses are granted by implication, estoppel or otherwise under any patents +|or trademarks of Motorola, Inc. +|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +| iskeleton.s +| +| This file contains: +| (1) example "Call-out"s +| (2) example package entry code +| (3) example "Call-out" table +| + +#include <linux/linkage.h> +#include <asm/entry.h> +#include <asm/offsets.h> + + +|################################ +| (1) EXAMPLE CALL-OUTS # +| # +| _060_isp_done() # +| _060_real_chk() # +| _060_real_divbyzero() # +| # +| _060_real_cas() # +| _060_real_cas2() # +| _060_real_lock_page() # +| _060_real_unlock_page() # +|################################ + +| +| _060_isp_done(): +| +| This is and example main exit point for the Unimplemented Integer +| Instruction exception handler. For a normal exit, the +| _isp_unimp() branches to here so that the operating system +| can do any clean-up desired. The stack frame is the +| Unimplemented Integer Instruction stack frame with +| the PC pointing to the instruction following the instruction +| just emulated. +| To simply continue execution at the next instruction, just +| do an "rte". +| +| Linux/68k: If returning to user space, check for needed reselections. + + .global _060_isp_done +_060_isp_done: + btst #0x5,%sp@ | supervisor bit set in saved SR? + beq .Lnotkern + rte +.Lnotkern: + SAVE_ALL_INT + GET_CURRENT(%d0) + tstb %curptr@(TASK_NEEDRESCHED) + jne ret_from_exception | deliver signals, + | reschedule etc.. + RESTORE_ALL + +| +| _060_real_chk(): +| +| This is an alternate exit point for the Unimplemented Integer +| Instruction exception handler. If the instruction was a "chk2" +| and the operand was out of bounds, then _isp_unimp() creates +| a CHK exception stack frame from the Unimplemented Integer Instrcution +| stack frame and branches to this routine. +| +| Linux/68k: commented out test for tracing + + .global _060_real_chk +_060_real_chk: +| tst.b (%sp) | is tracing enabled? +| bpls real_chk_end | no + +| +| CHK FRAME TRACE FRAME +| ***************** ***************** +| * Current PC * * Current PC * +| ***************** ***************** +| * 0x2 * 0x018 * * 0x2 * 0x024 * +| ***************** ***************** +| * Next * * Next * +| * PC * * PC * +| ***************** ***************** +| * SR * * SR * +| ***************** ***************** +| +| move.b #0x24,0x7(%sp) | set trace vecno +| bral _060_real_trace + +real_chk_end: + bral trap | jump to trap handler + +| +| _060_real_divbyzero: +| +| This is an alternate exit point for the Unimplemented Integer +| Instruction exception handler isp_unimp(). If the instruction is a 64-bit +| integer divide where the source operand is a zero, then the _isp_unimp() +| creates a Divide-by-zero exception stack frame from the Unimplemented +| Integer Instruction stack frame and branches to this routine. +| +| Remember that a trace exception may be pending. The code below performs +| no action associated with the "chk" exception. If tracing is enabled, +| then it create a Trace exception stack frame from the "chk" exception +| stack frame and branches to the _real_trace() entry point. +| +| Linux/68k: commented out test for tracing + + .global _060_real_divbyzero +_060_real_divbyzero: +| tst.b (%sp) | is tracing enabled? +| bpls real_divbyzero_end | no + +| +| DIVBYZERO FRAME TRACE FRAME +| ***************** ***************** +| * Current PC * * Current PC * +| ***************** ***************** +| * 0x2 * 0x014 * * 0x2 * 0x024 * +| ***************** ***************** +| * Next * * Next * +| * PC * * PC * +| ***************** ***************** +| * SR * * SR * +| ***************** ***************** +| +| move.b #0x24,0x7(%sp) | set trace vecno +| bral _060_real_trace + +real_divbyzero_end: + bral trap | jump to trap handler + +|########################## + +| +| _060_real_cas(): +| +| Entry point for the selected cas emulation code implementation. +| If the implementation provided by the 68060ISP is sufficient, +| then this routine simply re-enters the package through _isp_cas. +| + .global _060_real_cas +_060_real_cas: + bral _I_CALL_TOP+0x80+0x08 + +| +| _060_real_cas2(): +| +| Entry point for the selected cas2 emulation code implementation. +| If the implementation provided by the 68060ISP is sufficient, +| then this routine simply re-enters the package through _isp_cas2. +| + .global _060_real_cas2 +_060_real_cas2: + bral _I_CALL_TOP+0x80+0x10 + +| +| _060_lock_page(): +| +| Entry point for the operating system`s routine to "lock" a page +| from being paged out. This routine is needed by the cas/cas2 +| algorithms so that no page faults occur within the "core" code +| region. Note: the routine must lock two pages if the operand +| spans two pages. +| NOTE: THE ROUTINE SHOULD RETURN AN FSLW VALUE IN D0 ON FAILURE +| SO THAT THE 060SP CAN CREATE A PROPER ACCESS ERROR FRAME. +| Arguments: +| a0 = operand address +| d0 = `xxxxxxff -> supervisor; `xxxxxx00 -> user +| d1 = `xxxxxxff -> longword; `xxxxxx00 -> word +| Expected outputs: +| d0 = 0 -> success; non-zero -> failure +| +| Linux/m68k: Make sure the page is properly paged in, so we use +| plpaw and handle any exception here. The kernel must not be +| preempted until _060_unlock_page(), so that the page stays mapped. +| + .global _060_real_lock_page +_060_real_lock_page: + move.l %d2,-(%sp) + | load sfc/dfc + tst.b %d0 + jne 1f + moveq #1,%d0 + jra 2f +1: moveq #5,%d0 +2: movec.l %dfc,%d2 + movec.l %d0,%dfc + movec.l %d0,%sfc + + clr.l %d0 + | prefetch address + .chip 68060 + move.l %a0,%a1 +1: plpaw (%a1) + addq.w #1,%a0 + tst.b %d1 + jeq 2f + addq.w #2,%a0 +2: plpaw (%a0) +3: .chip 68k + + | restore sfc/dfc + movec.l %d2,%dfc + movec.l %d2,%sfc + move.l (%sp)+,%d2 + rts + +.section __ex_table,"a" + .align 4 + .long 1b,11f + .long 2b,21f +.previous +.section .fixup,"ax" + .even +11: move.l #0x020003c0,%d0 + or.l %d2,%d0 + swap %d0 + jra 3b +21: move.l #0x02000bc0,%d0 + or.l %d2,%d0 + swap %d0 + jra 3b +.previous + +| +| _060_unlock_page(): +| +| Entry point for the operating system`s routine to "unlock" a +| page that has been "locked" previously with _real_lock_page. +| Note: the routine must unlock two pages if the operand spans +| two pages. +| Arguments: +| a0 = operand address +| d0 = `xxxxxxff -> supervisor; `xxxxxx00 -> user +| d1 = `xxxxxxff -> longword; `xxxxxx00 -> word +| +| Linux/m68k: perhaps reenable preemption here... + + .global _060_real_unlock_page +_060_real_unlock_page: + clr.l %d0 + rts + +|########################################################################### + +|################################# +| (2) EXAMPLE PACKAGE ENTRY CODE # +|################################# + + .global _060_isp_unimp +_060_isp_unimp: + bral _I_CALL_TOP+0x80+0x00 + + .global _060_isp_cas +_060_isp_cas: + bral _I_CALL_TOP+0x80+0x08 + + .global _060_isp_cas2 +_060_isp_cas2: + bral _I_CALL_TOP+0x80+0x10 + + .global _060_isp_cas_finish +_060_isp_cas_finish: + bra.l _I_CALL_TOP+0x80+0x18 + + .global _060_isp_cas2_finish +_060_isp_cas2_finish: + bral _I_CALL_TOP+0x80+0x20 + + .global _060_isp_cas_inrange +_060_isp_cas_inrange: + bral _I_CALL_TOP+0x80+0x28 + + .global _060_isp_cas_terminate +_060_isp_cas_terminate: + bral _I_CALL_TOP+0x80+0x30 + + .global _060_isp_cas_restart +_060_isp_cas_restart: + bral _I_CALL_TOP+0x80+0x38 + +|########################################################################### + +|############################### +| (3) EXAMPLE CALL-OUT SECTION # +|############################### + +| The size of this section MUST be 128 bytes!!! + +_I_CALL_TOP: + .long _060_real_chk - _I_CALL_TOP + .long _060_real_divbyzero - _I_CALL_TOP + .long _060_real_trace - _I_CALL_TOP + .long _060_real_access - _I_CALL_TOP + .long _060_isp_done - _I_CALL_TOP + + .long _060_real_cas - _I_CALL_TOP + .long _060_real_cas2 - _I_CALL_TOP + .long _060_real_lock_page - _I_CALL_TOP + .long _060_real_unlock_page - _I_CALL_TOP + + .long 0x00000000, 0x00000000, 0x00000000, 0x00000000 + .long 0x00000000, 0x00000000, 0x00000000 + + .long _060_imem_read - _I_CALL_TOP + .long _060_dmem_read - _I_CALL_TOP + .long _060_dmem_write - _I_CALL_TOP + .long _060_imem_read_word - _I_CALL_TOP + .long _060_imem_read_long - _I_CALL_TOP + .long _060_dmem_read_byte - _I_CALL_TOP + .long _060_dmem_read_word - _I_CALL_TOP + .long _060_dmem_read_long - _I_CALL_TOP + .long _060_dmem_write_byte - _I_CALL_TOP + .long _060_dmem_write_word - _I_CALL_TOP + .long _060_dmem_write_long - _I_CALL_TOP + + .long 0x00000000 + .long 0x00000000, 0x00000000, 0x00000000, 0x00000000 + +|########################################################################### + +| 060 INTEGER KERNEL PACKAGE MUST GO HERE!!! +#include "isp.sa" diff --git a/arch/m68k/ifpsp060/isp.doc b/arch/m68k/ifpsp060/isp.doc new file mode 100644 index 00000000000..5a90fded3f0 --- /dev/null +++ b/arch/m68k/ifpsp060/isp.doc @@ -0,0 +1,218 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +68060 INTEGER SOFTWARE PACKAGE (Kernel version) +------------------------------------------------ + +The file isp.sa contains the 68060 Integer Software Package. +This package is essentially an exception handler that can be +integrated into an operating system to handle the "Unimplemented +Integer Instruction" exception vector #61. +This exception is taken when any of the integer instructions +not hardware implemented on the 68060 are encountered. The +isp.sa provides full emulation support for these instructions. + +The unimplemented integer instructions are: + 64-bit divide + 64-bit multiply + movep + cmp2 + chk2 + cas (w/ a misaligned effective address) + cas2 + +Release file format: +-------------------- +The file isp.sa is essentially a hexadecimal image of the +release package. This is the ONLY format which will be supported. +The hex image was created by assembling the source code and +then converting the resulting binary output image into an +ASCII text file. The hexadecimal numbers are listed +using the Motorola Assembly Syntax assembler directive "dc.l" +(define constant longword). The file can be converted to other +assembly syntaxes by using any word processor with a global +search and replace function. + +To assist in assembling and linking this module with other modules, +the installer should add a symbolic label to the top of the file. +This will allow calling routines to access the entry points +of this package. + +The source code isp.s has also been included but only for +documentation purposes. + +Release file structure: +----------------------- + +(top of module) + ----------------- + | | - 128 byte-sized section + (1) | Call-Out | - 4 bytes per entry (user fills these in) + | | - example routines in iskeleton.s + ----------------- + | | - 8 bytes per entry + (2) | Entry Point | - user does a "bra" or "jmp" to this address + | | + ----------------- + | | - code section + (3) ~ ~ + | | + ----------------- +(bottom of module) + +The first section of this module is the "Call-out" section. This section +is NOT INCLUDED in isp.sa (an example "Call-out" section is provided at +the end of the file iskeleton.s). The purpose of this section is to allow +the ISP routines to reference external functions that must be provided +by the host operating system. This section MUST be exactly 128 bytes in +size. There are 32 fields, each 4 bytes in size. Each field corresponds +to a function required by the ISP (these functions and their location are +listed in "68060ISP call-outs" below). Each field entry should contain +the address of the corresponding function RELATIVE to the starting address +of the "call-out" section. The "Call-out" section must sit adjacent to the +isp.sa image in memory. + +The second section, the "Entry-point" section, is used by external routines +to access the functions within the ISP. Since the isp.sa hex file contains +no symbol names, this section contains function entry points that are fixed +with respect to the top of the package. The currently defined entry-points +are listed in section "68060 ISP entry points" below. A calling routine +would simply execute a "bra" or "jmp" that jumped to the selected function +entry-point. + +For example, if the 68060 hardware took a "Unimplemented Integer Instruction" +exception (vector #61), the operating system should execute something +similar to: + + bra _060ISP_TOP+128+0 + +(_060ISP_TOP is the starting address of the "Call-out" section; the "Call-out" +section is 128 bytes long; and the Unimplemented Integer ISP handler entry +point is located 0 bytes from the top of the "Entry-point" section.) + +The third section is the code section. After entering through an "Entry-point", +the entry code jumps to the appropriate emulation code within the code section. + +68060ISP call-outs: (details in iskeleton.s) +-------------------- +0x000: _060_real_chk +0x004: _060_real_divbyzero +0x008: _060_real_trace +0x00c: _060_real_access +0x010: _060_isp_done + +0x014: _060_real_cas +0x018: _060_real_cas2 +0x01c: _060_real_lock_page +0x020: _060_real_unlock_page + +0x024: (Motorola reserved) +0x028: (Motorola reserved) +0x02c: (Motorola reserved) +0x030: (Motorola reserved) +0x034: (Motorola reserved) +0x038: (Motorola reserved) +0x03c: (Motorola reserved) + +0x040: _060_imem_read +0x044: _060_dmem_read +0x048: _060_dmem_write +0x04c: _060_imem_read_word +0x050: _060_imem_read_long +0x054: _060_dmem_read_byte +0x058: _060_dmem_read_word +0x05c: _060_dmem_read_long +0x060: _060_dmem_write_byte +0x064: _060_dmem_write_word +0x068: _060_dmem_write_long + +0x06c: (Motorola reserved) +0x070: (Motorola reserved) +0x074: (Motorola reserved) +0x078: (Motorola reserved) +0x07c: (Motorola reserved) + +68060ISP entry points: +----------------------- +0x000: _060_isp_unimp + +0x008: _060_isp_cas +0x010: _060_isp_cas2 +0x018: _060_isp_cas_finish +0x020: _060_isp_cas2_finish +0x028: _060_isp_cas_inrange +0x030: _060_isp_cas_terminate +0x038: _060_isp_cas_restart + +Integrating cas/cas2: +--------------------- +The instructions "cas2" and "cas" (when used with a misaligned effective +address) take the Unimplemented Integer Instruction exception. When the +060ISP is installed properly, these instructions will enter through the +_060_isp_unimp() entry point of the ISP. + +After the 060ISP decodes the instruction type and fetches the appropriate +data registers, and BEFORE the actual emulated transfers occur, the +package calls either the "Call-out" _060_real_cas() or _060_real_cas2(). +If the emulation code provided by the 060ISP is sufficient for the +host system (see isp.s source code), then these "Call-out"s should be +made, by the system integrator, to point directly back into the package +through the "Entry-point"s _060_isp_cas() or _060_isp_cas2(). + +One other necessary action by the integrator is to supply the routines +_060_real_lock_page() and _060_real_unlock_page(). These functions are +defined further in iskeleton.s and the 68060 Software Package Specification. + +If the "core" emulation routines of either "cas" or "cas2" perform some +actions which are too system-specific, then the system integrator must +supply new emulation code. This new emulation code should reside within +the functions _060_real_cas() or _060_real_cas2(). When this new emulation +code has completed, then it should re-enter the 060ISP package through the +"Entry-point" _060_isp_cas_finish() or _060_isp_cas2_finish(). +To see what the register state is upon entering _060_real_cas() or +_060_real_cas2() and what it should be upon return to the package through +_060_isp_cas_finish() or _060_isp_cas2_finish(), please refer to the +source code in isp.s. + +Miscellaneous: +-------------- + +_060_isp_unimp: +---------------- +- documented in 2.2 in spec. +- Basic flow: + exception taken ---> enter _060_isp_unimp --| + | + | + may exit through _060_real_itrace <----| + or | + may exit through _060_real_chk <----| + or | + may exit through _060_real_divbyzero <----| + or | + may exit through _060_isp_done <----| diff --git a/arch/m68k/ifpsp060/isp.sa b/arch/m68k/ifpsp060/isp.sa new file mode 100644 index 00000000000..2f88d2a7d15 --- /dev/null +++ b/arch/m68k/ifpsp060/isp.sa @@ -0,0 +1,392 @@ + .long 0x60ff0000,0x02360000,0x60ff0000,0x16260000 + .long 0x60ff0000,0x12dc0000,0x60ff0000,0x11ea0000 + .long 0x60ff0000,0x10de0000,0x60ff0000,0x12a40000 + .long 0x60ff0000,0x12560000,0x60ff0000,0x122a0000 + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x51fc51fc,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x2f00203a,0xfefc487b,0x0930ffff,0xfef8202f + .long 0x00044e74,0x00042f00,0x203afeea,0x487b0930 + .long 0xfffffee2,0x202f0004,0x4e740004,0x2f00203a + .long 0xfed8487b,0x0930ffff,0xfecc202f,0x00044e74 + .long 0x00042f00,0x203afec6,0x487b0930,0xfffffeb6 + .long 0x202f0004,0x4e740004,0x2f00203a,0xfeb4487b + .long 0x0930ffff,0xfea0202f,0x00044e74,0x00042f00 + .long 0x203afea2,0x487b0930,0xfffffe8a,0x202f0004 + .long 0x4e740004,0x2f00203a,0xfe90487b,0x0930ffff + .long 0xfe74202f,0x00044e74,0x00042f00,0x203afe7e + .long 0x487b0930,0xfffffe5e,0x202f0004,0x4e740004 + .long 0x2f00203a,0xfe6c487b,0x0930ffff,0xfe48202f + .long 0x00044e74,0x00042f00,0x203afe76,0x487b0930 + .long 0xfffffe32,0x202f0004,0x4e740004,0x2f00203a + .long 0xfe64487b,0x0930ffff,0xfe1c202f,0x00044e74 + .long 0x00042f00,0x203afe52,0x487b0930,0xfffffe06 + .long 0x202f0004,0x4e740004,0x2f00203a,0xfe40487b + .long 0x0930ffff,0xfdf0202f,0x00044e74,0x00042f00 + .long 0x203afe2e,0x487b0930,0xfffffdda,0x202f0004 + .long 0x4e740004,0x2f00203a,0xfe1c487b,0x0930ffff + .long 0xfdc4202f,0x00044e74,0x00042f00,0x203afe0a + .long 0x487b0930,0xfffffdae,0x202f0004,0x4e740004 + .long 0x2f00203a,0xfdf8487b,0x0930ffff,0xfd98202f + .long 0x00044e74,0x00042f00,0x203afde6,0x487b0930 + .long 0xfffffd82,0x202f0004,0x4e740004,0x2f00203a + .long 0xfdd4487b,0x0930ffff,0xfd6c202f,0x00044e74 + .long 0x00042f00,0x203afdc2,0x487b0930,0xfffffd56 + .long 0x202f0004,0x4e740004,0x4e56ffa0,0x48ee3fff + .long 0xffc02d56,0xfff8082e,0x00050004,0x66084e68 + .long 0x2d48fffc,0x600841ee,0x000c2d48,0xfffc422e + .long 0xffaa3d6e,0x0004ffa8,0x2d6e0006,0xffa4206e + .long 0xffa458ae,0xffa461ff,0xffffff26,0x2d40ffa0 + .long 0x0800001e,0x67680800,0x00166628,0x61ff0000 + .long 0x0cb0082e,0x00050004,0x670000ac,0x082e0002 + .long 0xffaa6700,0x00a2082e,0x00070004,0x66000186 + .long 0x600001b0,0x61ff0000,0x0a28082e,0x0002ffaa + .long 0x660e082e,0x0005ffaa,0x6600010a,0x60000078 + .long 0x082e0005,0x000467ea,0x082e0005,0xffaa6600 + .long 0x01264a2e,0x00046b00,0x014c6000,0x01760800 + .long 0x0018670a,0x61ff0000,0x07ae6000,0x004a0800 + .long 0x001b6730,0x48400c00,0x00fc670a,0x61ff0000 + .long 0x0e926000,0x0032206e,0xffa454ae,0xffa461ff + .long 0xfffffe68,0x4a816600,0x019861ff,0x00000d20 + .long 0x60000014,0x61ff0000,0x08c40c2e,0x0010ffaa + .long 0x66000004,0x605c1d6e,0xffa90005,0x082e0005 + .long 0x00046606,0x206efffc,0x4e604cee,0x3fffffc0 + .long 0x082e0007,0x00046612,0x2d6effa4,0x00062cae + .long 0xfff84e5e,0x60ffffff,0xfd622d6e,0xfff8fffc + .long 0x3d6e0004,0x00002d6e,0x00060008,0x2d6effa4 + .long 0x00023d7c,0x20240006,0x598e4e5e,0x60ffffff + .long 0xfd0e1d6e,0xffa90005,0x4cee3fff,0xffc03cae + .long 0x00042d6e,0x00060008,0x2d6effa4,0x00023d7c + .long 0x20180006,0x2c6efff8,0xdffc0000,0x006060ff + .long 0xfffffcb0,0x1d6effa9,0x00054cee,0x3fffffc0 + .long 0x3cae0004,0x2d6e0006,0x00082d6e,0xffa40002 + .long 0x3d7c2014,0x00062c6e,0xfff8dffc,0x00000060 + .long 0x60ffffff,0xfc941d6e,0xffa90005,0x4cee3fff + .long 0xffc02d6e,0x0006000c,0x3d7c2014,0x000a2d6e + .long 0xffa40006,0x2c6efff8,0xdffc0000,0x006460ff + .long 0xfffffc66,0x1d6effa9,0x00054cee,0x3fffffc0 + .long 0x2d6e0006,0x000c3d7c,0x2024000a,0x2d6effa4 + .long 0x00062c6e,0xfff8dffc,0x00000064,0x60ffffff + .long 0xfc4e1d6e,0xffa90005,0x4cee3fff,0xffc03d7c + .long 0x00f4000e,0x2d6effa4,0x000a3d6e,0x00040008 + .long 0x2c6efff8,0xdffc0000,0x006860ff,0xfffffc4c + .long 0x2c882d40,0xfffc4fee,0xffc04cdf,0x7fff2f2f + .long 0x000c2f6f,0x00040010,0x2f6f000c,0x00042f6f + .long 0x0008000c,0x2f5f0004,0x3f7c4008,0x00066028 + .long 0x4cee3fff,0xffc04e5e,0x514f2eaf,0x00083f6f + .long 0x000c0004,0x3f7c4008,0x00062f6f,0x00020008 + .long 0x2f7c0942,0x8001000c,0x08170005,0x670608ef + .long 0x0002000d,0x60ffffff,0xfbcc0c2e,0x0040ffaa + .long 0x660c4280,0x102effab,0x2daeffac,0x0ce04e75 + .long 0x2040302e,0xffa03200,0x0240003f,0x02810000 + .long 0x0007303b,0x020a4efb,0x00064afc,0x00400000 + .long 0x00000000,0x00000000,0x00000000,0x00000000 + .long 0x00000000,0x00000000,0x00000000,0x00000080 + .long 0x0086008c,0x00920098,0x009e00a4,0x00aa00b0 + .long 0x00ce00ec,0x010a0128,0x01460164,0x01820196 + .long 0x01b401d2,0x01f0020e,0x022c024a,0x0268027c + .long 0x029a02b8,0x02d602f4,0x03120330,0x034e036c + .long 0x036c036c,0x036c036c,0x036c036c,0x036c03d6 + .long 0x03f0040a,0x042a03ca,0x00000000,0x0000206e + .long 0xffe04e75,0x206effe4,0x4e75206e,0xffe84e75 + .long 0x206effec,0x4e75206e,0xfff04e75,0x206efff4 + .long 0x4e75206e,0xfff84e75,0x206efffc,0x4e752008 + .long 0x206effe0,0xd0882d40,0xffe02d48,0xffac1d7c + .long 0x0000ffab,0x1d7c0040,0xffaa4e75,0x2008206e + .long 0xffe4d088,0x2d40ffe4,0x2d48ffac,0x1d7c0001 + .long 0xffab1d7c,0x0040ffaa,0x4e752008,0x206effe8 + .long 0xd0882d40,0xffe82d48,0xffac1d7c,0x0002ffab + .long 0x1d7c0040,0xffaa4e75,0x2008206e,0xffecd088 + .long 0x2d40ffec,0x2d48ffac,0x1d7c0003,0xffab1d7c + .long 0x0040ffaa,0x4e752008,0x206efff0,0xd0882d40 + .long 0xfff02d48,0xffac1d7c,0x0004ffab,0x1d7c0040 + .long 0xffaa4e75,0x2008206e,0xfff4d088,0x2d40fff4 + .long 0x2d48ffac,0x1d7c0005,0xffab1d7c,0x0040ffaa + .long 0x4e752008,0x206efff8,0xd0882d40,0xfff82d48 + .long 0xffac1d7c,0x0006ffab,0x1d7c0040,0xffaa4e75 + .long 0x1d7c0004,0xffaa2008,0x206efffc,0xd0882d40 + .long 0xfffc4e75,0x202effe0,0x2d40ffac,0x90882d40 + .long 0xffe02040,0x1d7c0000,0xffab1d7c,0x0040ffaa + .long 0x4e75202e,0xffe42d40,0xffac9088,0x2d40ffe4 + .long 0x20401d7c,0x0001ffab,0x1d7c0040,0xffaa4e75 + .long 0x202effe8,0x2d40ffac,0x90882d40,0xffe82040 + .long 0x1d7c0002,0xffab1d7c,0x0040ffaa,0x4e75202e + .long 0xffec2d40,0xffac9088,0x2d40ffec,0x20401d7c + .long 0x0003ffab,0x1d7c0040,0xffaa4e75,0x202efff0 + .long 0x2d40ffac,0x90882d40,0xfff02040,0x1d7c0004 + .long 0xffab1d7c,0x0040ffaa,0x4e75202e,0xfff42d40 + .long 0xffac9088,0x2d40fff4,0x20401d7c,0x0005ffab + .long 0x1d7c0040,0xffaa4e75,0x202efff8,0x2d40ffac + .long 0x90882d40,0xfff82040,0x1d7c0006,0xffab1d7c + .long 0x0040ffaa,0x4e751d7c,0x0008ffaa,0x202efffc + .long 0x90882d40,0xfffc2040,0x4e75206e,0xffa454ae + .long 0xffa461ff,0xfffff9d4,0x4a8166ff,0xfffffd04 + .long 0x3040d1ee,0xffe04e75,0x206effa4,0x54aeffa4 + .long 0x61ffffff,0xf9b64a81,0x66ffffff,0xfce63040 + .long 0xd1eeffe4,0x4e75206e,0xffa454ae,0xffa461ff + .long 0xfffff998,0x4a8166ff,0xfffffcc8,0x3040d1ee + .long 0xffe84e75,0x206effa4,0x54aeffa4,0x61ffffff + .long 0xf97a4a81,0x66ffffff,0xfcaa3040,0xd1eeffec + .long 0x4e75206e,0xffa454ae,0xffa461ff,0xfffff95c + .long 0x4a8166ff,0xfffffc8c,0x3040d1ee,0xfff04e75 + .long 0x206effa4,0x54aeffa4,0x61ffffff,0xf93e4a81 + .long 0x66ffffff,0xfc6e3040,0xd1eefff4,0x4e75206e + .long 0xffa454ae,0xffa461ff,0xfffff920,0x4a8166ff + .long 0xfffffc50,0x3040d1ee,0xfff84e75,0x206effa4 + .long 0x54aeffa4,0x61ffffff,0xf9024a81,0x66ffffff + .long 0xfc323040,0xd1eefffc,0x4e752f01,0x206effa4 + .long 0x54aeffa4,0x61ffffff,0xf8e24a81,0x66ffffff + .long 0xfc12221f,0x207614e0,0x08000008,0x670e48e7 + .long 0x3c002a00,0x260860ff,0x000000ec,0x2f022200 + .long 0xe9590241,0x000f2236,0x14c00800,0x000b6602 + .long 0x48c12400,0xef5a0282,0x00000003,0xe5a949c0 + .long 0xd081d1c0,0x241f4e75,0x1d7c0080,0xffaa206e + .long 0xffa44e75,0x206effa4,0x54aeffa4,0x61ffffff + .long 0xf87a4a81,0x66ffffff,0xfbaa3040,0x4e75206e + .long 0xffa458ae,0xffa461ff,0xfffff876,0x4a8166ff + .long 0xfffffb90,0x20404e75,0x206effa4,0x54aeffa4 + .long 0x61ffffff,0xf8464a81,0x66ffffff,0xfb763040 + .long 0xd1eeffa4,0x55884e75,0x206effa4,0x54aeffa4 + .long 0x61ffffff,0xf8264a81,0x66ffffff,0xfb56206e + .long 0xffa45588,0x08000008,0x670e48e7,0x3c002a00 + .long 0x260860ff,0x00000030,0x2f022200,0xe9590241 + .long 0x000f2236,0x14c00800,0x000b6602,0x48c12400 + .long 0xef5a0282,0x00000003,0xe5a949c0,0xd081d1c0 + .long 0x241f4e75,0x08050006,0x67044282,0x6016e9c5 + .long 0x24042436,0x24c00805,0x000b6602,0x48c2e9c5 + .long 0x0542e1aa,0x08050007,0x67024283,0xe9c50682 + .long 0x0c000002,0x6d346718,0x206effa4,0x58aeffa4 + .long 0x61ffffff,0xf7ac4a81,0x66ffffff,0xfac66018 + .long 0x206effa4,0x54aeffa4,0x61ffffff,0xf77e4a81 + .long 0x66ffffff,0xfaae48c0,0xd680e9c5,0x07826700 + .long 0x006a0c00,0x00026d34,0x6718206e,0xffa458ae + .long 0xffa461ff,0xfffff76a,0x4a8166ff,0xfffffa84 + .long 0x601c206e,0xffa454ae,0xffa461ff,0xfffff73c + .long 0x4a8166ff,0xfffffa6c,0x48c06002,0x42802800 + .long 0x08050002,0x67122043,0x61ffffff,0xf7764a81 + .long 0x6624d082,0xd0846016,0xd6822043,0x61ffffff + .long 0xf7624a81,0x6610d084,0x6004d682,0x20032040 + .long 0x4cdf003c,0x4e752043,0x203c0101,0x000160ff + .long 0xfffff9f0,0x322effa0,0x10010240,0x00072076 + .long 0x04e0d0ee,0xffa20801,0x00076700,0x008c3001 + .long 0xef580240,0x00072036,0x04c00801,0x00066752 + .long 0x24002448,0xe19a2002,0x61ffffff,0xf71c4a81 + .long 0x660000fc,0x544a204a,0xe19a2002,0x61ffffff + .long 0xf7084a81,0x660000e8,0x544a204a,0xe19a2002 + .long 0x61ffffff,0xf6f44a81,0x660000d4,0x544a204a + .long 0xe19a2002,0x61ffffff,0xf6e04a81,0x660000c0 + .long 0x4e752400,0x2448e048,0x61ffffff,0xf6cc4a81 + .long 0x660000ac,0x544a204a,0x200261ff,0xfffff6ba + .long 0x4a816600,0x009a4e75,0x08010006,0x675c2448 + .long 0x61ffffff,0xf6624a81,0x66000092,0x2400544a + .long 0x204a61ff,0xfffff650,0x4a816600,0x0080e14a + .long 0x1400544a,0x204a61ff,0xfffff63c,0x4a816600 + .long 0x006ce18a,0x1400544a,0x204a61ff,0xfffff628 + .long 0x4a816600,0x0058e18a,0x1400122e,0xffa0e209 + .long 0x02410007,0x2d8214c0,0x4e752448,0x61ffffff + .long 0xf6064a81,0x66000036,0x2400544a,0x204a61ff + .long 0xfffff5f4,0x4a816600,0x0024e14a,0x1400122e + .long 0xffa0e209,0x02410007,0x3d8214c2,0x4e75204a + .long 0x203c00a1,0x000160ff,0xfffff8a8,0x204a203c + .long 0x01210001,0x60ffffff,0xf89a61ff,0xfffff914 + .long 0x102effa2,0xe9180240,0x000f2436,0x04c00c2e + .long 0x0002ffa0,0x6d506728,0x244861ff,0xfffff5c4 + .long 0x4a816600,0x009e2600,0x588a204a,0x61ffffff + .long 0xf5b24a81,0x6600008c,0x22002003,0x60000048 + .long 0x244861ff,0xfffff59c,0x4a816600,0x00763200 + .long 0x484048c0,0x48c1082e,0x0007ffa2,0x66000028 + .long 0x48c26000,0x00222448,0x61ffffff,0xf5604a81 + .long 0x6600005e,0x1200e048,0x49c049c1,0x082e0007 + .long 0xffa26602,0x49c29480,0x42c30203,0x00049280 + .long 0xb28242c4,0x86040203,0x0005382e,0xffa80204 + .long 0x001a8803,0x3d44ffa8,0x082e0003,0xffa26602 + .long 0x4e750804,0x00006602,0x4e751d7c,0x0010ffaa + .long 0x4e75204a,0x203c0101,0x000160ff,0xfffff7c4 + .long 0x204a203c,0x01410001,0x60ffffff,0xf7b6102e + .long 0xffa10200,0x00386600,0x0208102e,0xffa10240 + .long 0x00072e36,0x04c06700,0x00c0102e,0xffa3122e + .long 0xffa20240,0x0007e809,0x02410007,0x3d40ffb2 + .long 0x3d41ffb4,0x2a3604c0,0x2c3614c0,0x082e0003 + .long 0xffa2671a,0x4a875dee,0xffb06a02,0x44874a85 + .long 0x5deeffb1,0x6a0844fc,0x00004086,0x40854a85 + .long 0x66164a86,0x67000048,0xbe866306,0xcb466000 + .long 0x00124c47,0x6005600a,0xbe85634e,0x61ff0000 + .long 0x0068082e,0x0003ffa2,0x67244a2e,0xffb16702 + .long 0x4485102e,0xffb0b12e,0xffb1670c,0x0c868000 + .long 0x00006226,0x44866006,0x0806001f,0x661c44ee + .long 0xffa84a86,0x42eeffa8,0x302effb2,0x322effb4 + .long 0x2d8504c0,0x2d8614c0,0x4e7508ee,0x0001ffa9 + .long 0x08ae0000,0xffa94e75,0x022e001e,0xffa9002e + .long 0x0020ffaa,0x4e750c87,0x0000ffff,0x621e4281 + .long 0x48454846,0x3a068ac7,0x32054846,0x3a068ac7 + .long 0x48413205,0x42454845,0x2c014e75,0x42aeffbc + .long 0x422effb6,0x42810807,0x001f660e,0x52aeffbc + .long 0xe38fe38e,0xe3956000,0xffee2607,0x24054842 + .long 0x4843b443,0x6606323c,0xffff600a,0x220582c3 + .long 0x02810000,0xffff2f06,0x42464846,0x26072401 + .long 0xc4c74843,0xc6c12805,0x98834844,0x30043806 + .long 0x4a406600,0x000ab484,0x63045381,0x60de2f05 + .long 0x2c014846,0x2a0761ff,0x0000006a,0x24052606 + .long 0x2a1f2c1f,0x9c839b82,0x64ff0000,0x001a5381 + .long 0x42822607,0x48434243,0xdc83db82,0x26074243 + .long 0x4843da83,0x4a2effb6,0x66163d41,0xffb84281 + .long 0x48454846,0x3a064246,0x50eeffb6,0x6000ff6c + .long 0x3d41ffba,0x3c054846,0x48452e2e,0xffbc670a + .long 0x5387e28d,0xe29651cf,0xfffa2a06,0x2c2effb8 + .long 0x4e752406,0x26062805,0x48434844,0xccc5cac3 + .long 0xc4c4c6c4,0x42844846,0xdc45d744,0xdc42d744 + .long 0x48464245,0x42424845,0x4842da82,0xda834e75 + .long 0x700461ff,0xfffff61c,0x0c2e0080,0xffaa6712 + .long 0x244861ff,0xfffff2dc,0x4a81661e,0x2e006000 + .long 0xfde658ae,0xffa461ff,0xfffff286,0x4a8166ff + .long 0xfffff5a0,0x2e006000,0xfdce61ff,0xfffff5ce + .long 0x204a203c,0x01010001,0x60ffffff,0xf556102e + .long 0xffa10c00,0x00076e00,0x00b40240,0x00072636 + .long 0x04c0342e,0xffa24241,0x1202e95a,0x02420007 + .long 0x283624c0,0x4a846700,0x00884a83,0x67000082 + .long 0x422effb0,0x082e0003,0xffa26718,0x4a836c08 + .long 0x4483002e,0x0001ffb0,0x4a846c08,0x44840a2e + .long 0x0001ffb0,0x2a032c03,0x2e044846,0x4847c6c4 + .long 0xc8c6cac7,0xccc74287,0x4843d644,0xdd87d645 + .long 0xdd874843,0x42444245,0x48444845,0xd885d886 + .long 0x4a2effb0,0x67084683,0x46845283,0xd9872d83 + .long 0x24c044fc,0x00002d84,0x14c042c7,0x02070008 + .long 0x1c2effa9,0x02060010,0x8c071d46,0xffa94e75 + .long 0x42b624c0,0x42b614c0,0x7e0460e4,0x700461ff + .long 0xfffff510,0x0c2e0080,0xffaa6714,0x244861ff + .long 0xfffff1d0,0x4a816600,0x00202600,0x6000ff34 + .long 0x58aeffa4,0x61ffffff,0xf1784a81,0x66ffffff + .long 0xf4922600,0x6000ff1c,0x61ffffff,0xf4c0204a + .long 0x203c0101,0x000160ff,0xfffff448,0x2d40ffb4 + .long 0x2200e958,0x0240000f,0x227604c0,0x2d49ffb0 + .long 0x2001ec49,0x02410007,0x2a3614c0,0x02400007 + .long 0x263604c0,0x3d40ffba,0x302effa2,0x2200e958 + .long 0x0240000f,0x207604c0,0x2d48ffbc,0x2001ec49 + .long 0x02410007,0x283614c0,0x02400007,0x243604c0 + .long 0x3d40ffb8,0x082e0001,0xffa056c7,0x082e0005 + .long 0x000456c6,0x24482649,0x22072006,0x61ffffff + .long 0xf05c204a,0x4a8066ff,0x000001c8,0x22072006 + .long 0x204b61ff,0xfffff046,0x204b4a80,0x660a204a + .long 0x224b60ff,0xfffff020,0x2f002207,0x2006204a + .long 0x61ffffff,0xf03e201f,0x204b60ff,0x00000194 + .long 0x082e0001,0xffa06648,0x44eeffa8,0xb0426602 + .long 0xb24342ee,0xffa84a04,0x6610362e,0xffba3d81 + .long 0x34c2342e,0xffb83d80,0x24c2082e,0x00050004 + .long 0x56c22002,0x51c1206e,0xffbc61ff,0xffffeff4 + .long 0x200251c1,0x206effb0,0x61ffffff,0xefe64e75 + .long 0x44eeffa8,0xb0826602,0xb28342ee,0xffa84a04 + .long 0x6610362e,0xffba2d81,0x34c0342e,0xffb82d80 + .long 0x24c0082e,0x00050004,0x56c22002,0x50c1206e + .long 0xffbc61ff,0xffffefac,0x200250c1,0x206effb0 + .long 0x61ffffff,0xef9e4e75,0x202effb4,0x6000feae + .long 0x082e0001,0xffa06610,0x700261ff,0xfffff364 + .long 0x2d48ffb4,0x51c7600e,0x700461ff,0xfffff354 + .long 0x2d48ffb4,0x50c7302e,0xffa22200,0xec480240 + .long 0x00072436,0x04c00241,0x00072836,0x14c03d41 + .long 0xffb8082e,0x00050004,0x56c62448,0x22072006 + .long 0x61ffffff,0xef284a80,0x66000096,0x204a60ff + .long 0xffffeeee,0x082e0001,0xffa0662c,0x44eeffa8 + .long 0xb04442ee,0xffa84a01,0x6608362e,0xffb83d80 + .long 0x34c2206e,0xffb451c1,0x082e0005,0x000456c0 + .long 0x61ffffff,0xeefe4e75,0x44eeffa8,0xb08442ee + .long 0xffa84a01,0x6608362e,0xffb82d80,0x34c0206e + .long 0xffb450c1,0x082e0005,0x000456c0,0x61ffffff + .long 0xeed24e75,0x4e7b6000,0x4e7b6001,0x0c2e00fc + .long 0xffa167ff,0xffffff24,0x206effb4,0x082e0001 + .long 0xffa056c7,0x6000ff40,0x4e7b6000,0x4e7b6001 + .long 0x24482f00,0x61ffffff,0xf264201f,0x588f518f + .long 0x518e721a,0x41ef0008,0x43ef0000,0x22d851c9 + .long 0xfffc3d7c,0x4008000a,0x2d4a000c,0x2d400010 + .long 0x4cee3fff,0xffc04e5e,0x60ffffff,0xedf84280 + .long 0x43fb0170,0x000005ae,0xb3c86d0e,0x43fb0170 + .long 0x00000010,0xb1c96d02,0x4e7570ff,0x4e754a06 + .long 0x66047001,0x60027005,0x4a076700,0x01e42448 + .long 0x26492848,0x2a49568c,0x568d220a,0x40c7007c + .long 0x07004e7a,0x60004e7b,0x00004e7b,0x0001f58a + .long 0xf58cf58b,0xf58df46a,0xf46cf46b,0xf46d2441 + .long 0x56812841,0xf5caf5cc,0x247c8000,0x0000267c + .long 0xa0000000,0x287c0000,0x00002008,0x02000003 + .long 0x671c0c00,0x00026700,0x00966000,0x010251fc + .long 0x4e7ba008,0x0e911000,0x0e900000,0x6002600e + .long 0xb082661c,0xb2836618,0x0e915800,0x6002600e + .long 0x4e7bb008,0x0e904800,0x4e7bc008,0x6034600e + .long 0x4e7bb008,0x0e900800,0x4e7bc008,0x6012600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e7160b0 + .long 0x4e7b6000,0x4e7b6001,0x46c751c4,0x60ffffff + .long 0xfd424e7b,0x60004e7b,0x600146c7,0x50c460ff + .long 0xfffffd30,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x4e7ba008,0x0e911000,0x0e900000,0x6002600e + .long 0xb082662c,0xb2836628,0x0e915800,0x6002600e + .long 0x48440e58,0x48004e7b,0xb0084844,0x6002600e + .long 0x0e504800,0x4e7bc008,0x6000ffa8,0x4e71600e + .long 0x48400e58,0x08004e7b,0xb0084840,0x6002600e + .long 0x0e500800,0x4e7bc008,0x6000ff76,0x4e71600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e716090 + .long 0x4e7ba008,0x0e911000,0x0e900000,0x6002600e + .long 0xb082663c,0xb2836638,0x0e915800,0x6002600e + .long 0xe19c0e18,0x48004844,0x0e584800,0x6002600e + .long 0xe19c4e7b,0xb0080e10,0x48006004,0x4e71600e + .long 0x4e7bc008,0x6000ff2c,0x4e714e71,0x4e71600e + .long 0xe1980e18,0x08004840,0x0e580800,0x6002600e + .long 0xe1984e7b,0xb0080e10,0x08006004,0x4e71600e + .long 0x4e7bc008,0x6000feea,0x4e714e71,0x4e71600c + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x6000ff72 + .long 0x24482649,0x28482a49,0x528c528d,0x220a40c7 + .long 0x007c0700,0x4e7a6000,0x4e7b0000,0x4e7b0001 + .long 0xf58af58c,0xf58bf58d,0xf46af46c,0xf46bf46d + .long 0x24415681,0x2841f5ca,0xf5cc247c,0x80000000 + .long 0x267ca000,0x0000287c,0x00000000,0x20080800 + .long 0x00006600,0x009a6016,0x51fc51fc,0x51fc51fc + .long 0x4e7ba008,0x0e511000,0x0e500000,0x6002600e + .long 0xb042661c,0xb2436618,0x0e515800,0x6002600e + .long 0x4e7bb008,0x0e504800,0x4e7bc008,0x6034600e + .long 0x4e7bb008,0x0e500800,0x4e7bc008,0x6012600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e7160b0 + .long 0x4e7b6000,0x4e7b6001,0x46c751c4,0x60ffffff + .long 0xfb624e7b,0x60004e7b,0x600146c7,0x50c460ff + .long 0xfffffb50,0x51fc51fc,0x51fc51fc,0x51fc51fc + .long 0x4e7ba008,0x0e511000,0x0e500000,0x6002600e + .long 0xb042662c,0xb2436628,0x0e515800,0x6002600e + .long 0xe09c0e18,0x48004e7b,0xb008e19c,0x6002600e + .long 0x0e104800,0x4e7bc008,0x6000ffa8,0x4e71600e + .long 0xe0980e18,0x08004e7b,0xb008e198,0x6002600e + .long 0x0e100800,0x4e7bc008,0x6000ff76,0x4e71600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e716090 + .long 0x4a066604,0x70016002,0x70054a07,0x660000c6 + .long 0x22482448,0x528a2602,0xe04a40c7,0x007c0700 + .long 0x4e7a6000,0x4e7b0000,0x4e7b0001,0xf589f58a + .long 0xf469f46a,0x227c8000,0x0000247c,0xa0000000 + .long 0x267c0000,0x00006016,0x51fc51fc,0x51fc51fc + .long 0x4e7b9008,0x0e500000,0xb0446624,0x6002600e + .long 0x0e182800,0x4e7ba008,0x0e103800,0x6002600e + .long 0x4e7bb008,0x604c4e71,0x4e714e71,0x4e71600e + .long 0xe0980e18,0x08004e7b,0xa008e198,0x6002600e + .long 0x0e100800,0x4e7bb008,0x60164e71,0x4e71600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e7160a0 + .long 0x4e7b6000,0x4e7b6001,0x46c751c1,0x60ffffff + .long 0xfb164e7b,0x60004e7b,0x600146c7,0x50c160ff + .long 0xfffffb04,0x22482448,0x568a2208,0x08010000 + .long 0x660000c2,0x26024842,0x40c7007c,0x07004e7a + .long 0x60004e7b,0x00004e7b,0x0001f589,0xf58af469 + .long 0xf46a227c,0x80000000,0x247ca000,0x0000267c + .long 0x00000000,0x601851fc,0x51fc51fc,0x51fc51fc + .long 0x4e7b9008,0x0e900000,0xb0846624,0x6002600e + .long 0x0e582800,0x4e7ba008,0x0e503800,0x6002600e + .long 0x4e7bb008,0x604c4e71,0x4e714e71,0x4e71600e + .long 0x48400e58,0x08004840,0x4e7ba008,0x6002600e + .long 0x0e500800,0x4e7bb008,0x60164e71,0x4e71600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e7160a0 + .long 0x4e7b6000,0x4e7b6001,0x46c751c1,0x60ffffff + .long 0xfa464e7b,0x60004e7b,0x600146c7,0x50c160ff + .long 0xfffffa34,0x2a02e08a,0x26024842,0x40c7007c + .long 0x07004e7a,0x60004e7b,0x00004e7b,0x0001f589 + .long 0xf58af469,0xf46a227c,0x80000000,0x247ca000 + .long 0x0000267c,0x00000000,0x601451fc,0x51fc51fc + .long 0x4e7b9008,0x0e900000,0xb0846624,0x6002600e + .long 0x0e182800,0x0e583800,0x4e7ba008,0x6002600e + .long 0x0e105800,0x4e7bb008,0x6000ff88,0x4e71600e + .long 0xe1980e18,0x08004840,0x0e580800,0x6002600e + .long 0xe1984e7b,0xa0080e10,0x08006004,0x4e71600e + .long 0x4e7bb008,0x6000ff4a,0x4e714e71,0x4e71600e + .long 0x4e714e71,0x4e714e71,0x4e714e71,0x4e716090 diff --git a/arch/m68k/ifpsp060/itest.sa b/arch/m68k/ifpsp060/itest.sa new file mode 100644 index 00000000000..7b15eaf6380 --- /dev/null +++ b/arch/m68k/ifpsp060/itest.sa @@ -0,0 +1,1281 @@ + dc.l $60ff0000,$005c5465,$7374696e,$67203638 + dc.l $30363020,$49535020,$73746172,$7465643a + dc.l $0a007061,$73736564,$0a002066,$61696c65 + dc.l $640a0000,$4a80660e,$487affe8,$61ff0000 + dc.l $4f9a588f,$4e752f01,$61ff0000,$4fa4588f + dc.l $487affd8,$61ff0000,$4f82588f,$4e754e56 + dc.l $ff6048e7,$3f3c487a,$ff9e61ff,$00004f6c + dc.l $588f42ae,$ff78487b,$01700000,$00ea61ff + dc.l $00004f58,$588f61ff,$000000f0,$61ffffff + dc.l $ffa642ae,$ff78487b,$01700000,$0af661ff + dc.l $00004f38,$588f61ff,$00000af8,$61ffffff + dc.l $ff8642ae,$ff78487b,$01700000,$179c61ff + dc.l $00004f18,$588f61ff,$0000179c,$61ffffff + dc.l $ff6642ae,$ff78487b,$01700000,$038661ff + dc.l $00004ef8,$588f61ff,$00000380,$61ffffff + dc.l $ff4642ae,$ff78487b,$01700000,$202c61ff + dc.l $00004ed8,$588f2d7c,$00000002,$ff7461ff + dc.l $0000202c,$61ffffff,$ff1e42ae,$ff78487b + dc.l $01700000,$0d7c61ff,$00004eb0,$588f61ff + dc.l $00000d74,$61ffffff,$fefe42ae,$ff78487b + dc.l $01700000,$0f8e61ff,$00004e90,$588f61ff + dc.l $00000f88,$61ffffff,$fede4cdf,$3cfc4e5e + dc.l $4e750936,$342d6269,$74206d75,$6c746970 + dc.l $6c792e2e,$2e0051fc,$52aeff78,$4cfb3fff + dc.l $01700000,$4e184281,$243c9999,$9999263c + dc.l $88888888,$3d7c0004,$ff7c44fc,$000048ee + dc.l $7fffff80,$4c013402,$42eeff7e,$48ee7fff + dc.l $ffc042ae,$ff8842ae,$ff8c61ff,$00004da6 + dc.l $4a0066ff,$00004dcc,$52aeff78,$4cfb3fff + dc.l $01700000,$4dc8223c,$77777777,$243c9999 + dc.l $99997600,$3d7c0004,$ff7c44fc,$000048ee + dc.l $7fffff80,$4c013402,$42eeff7e,$48ee7fff + dc.l $ffc042ae,$ff8842ae,$ff8c61ff,$00004d56 + dc.l $4a0066ff,$00004d7c,$52aeff78,$4cfb3fff + dc.l $01700000,$4d787210,$243c6666,$66663d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff804c01 + dc.l $240242ee,$ff7e48ee,$7fffffc0,$2d7c0000 + dc.l $0006ff88,$61ff0000,$4d0c4a00,$66ff0000 + dc.l $4d3252ae,$ff784cfb,$3fff0170,$00004d2e + dc.l $223c5555,$55557400,$76033d7c,$0000ff7c + dc.l $44fc0000,$48ee7fff,$ff804c01,$340242ee + dc.l $ff7e48ee,$7fffffc0,$2d7c0000,$0000ff88 + dc.l $2d7cffff,$ffffff8c,$61ff0000,$4cb84a00 + dc.l $66ff0000,$4cde52ae,$ff784cfb,$3fff0170 + dc.l $00004cda,$223c4000,$00007400,$76043d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff804c01 + dc.l $340242ee,$ff7e48ee,$7fffffc0,$2d7c0000 + dc.l $0001ff88,$2d7c0000,$0000ff8c,$61ff0000 + dc.l $4c644a00,$66ff0000,$4c8a52ae,$ff784cfb + dc.l $3fff0170,$00004c86,$72ff7400,$76ff3d7c + dc.l $0008ff7c,$44fc0000,$48ee7fff,$ff804c01 + dc.l $340242ee,$ff7e48ee,$7fffffc0,$2d7cffff + dc.l $fffeff88,$2d7c0000,$0001ff8c,$61ff0000 + dc.l $4c144a00,$66ff0000,$4c3a52ae,$ff784cfb + dc.l $3fff0170,$00004c36,$223c8000,$00007400 + dc.l $76ff3d7c,$0000ff7c,$44fc0000,$48ee7fff + dc.l $ff804c01,$3c0242ee,$ff7e48ee,$7fffffc0 + dc.l $2d7c0000,$0000ff88,$2d7c8000,$0000ff8c + dc.l $61ff0000,$4bc04a00,$66ff0000,$4be652ae + dc.l $ff784cfb,$3fff0170,$00004be2,$223c8000 + dc.l $00007400,$76013d7c,$0008ff7c,$44fc0000 + dc.l $48ee7fff,$ff804c01,$3c0242ee,$ff7e48ee + dc.l $7fffffc0,$2d7cffff,$ffffff88,$2d7c8000 + dc.l $0000ff8c,$61ff0000,$4b6c4a00,$66ff0000 + dc.l $4b9252ae,$ff784cfb,$3fff0170,$00004b8e + dc.l $72017400,$263c8000,$00003d7c,$0008ff7c + dc.l $44fc0000,$48ee7fff,$ff804c01,$3c0242ee + dc.l $ff7e48ee,$7fffffc0,$2d7cffff,$ffffff88 + dc.l $2d7c8000,$0000ff8c,$61ff0000,$4b184a00 + dc.l $66ff0000,$4b3e222e,$ff784280,$4e75096d + dc.l $6f766570,$2e2e2e00,$52aeff78,$4cfb3fff + dc.l $01700000,$4b2841ee,$ff60303c,$aaaa4228 + dc.l $00004228,$00023d7c,$001fff7c,$44fc001f + dc.l $48ee7fff,$ff800188,$000042ee,$ff7e48ee + dc.l $7fffffc0,$12280002,$e1491228,$0000b041 + dc.l $66ff0000,$4ade61ff,$00004aaa,$4a0066ff + dc.l $00004ad0,$52aeff78,$4cfb3fff,$01700000 + dc.l $4acc41ee,$ff64303c,$aaaa42a8,$fffc4290 + dc.l $42a80004,$3d7c001f,$ff7c44fc,$001f48ee + dc.l $7fffff80,$01880000,$42eeff7e,$48ee7fff + dc.l $ffc04aa8,$fffc66ff,$00004a88,$4aa80004 + dc.l $66ff0000,$4a7e0c90,$aa00aa00,$66ff0000 + dc.l $4a7261ff,$00004a3e,$4a0066ff,$00004a64 + dc.l $52aeff78,$4cfb3fff,$01700000,$4a6041ee + dc.l $ff60303c,$aaaa4228,$00004228,$00023d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff800188 + dc.l $000042ee,$ff7e48ee,$7fffffc0,$12280002 + dc.l $e1491228,$0000b041,$66ff0000,$4a1661ff + dc.l $000049e2,$4a0066ff,$00004a08,$52aeff78 + dc.l $4cfb3fff,$01700000,$4a0441ee,$ff60117c + dc.l $00aa0000,$117c00aa,$00023d7c,$001fff7c + dc.l $44fc001f,$48ee7fff,$ff800108,$000042ee + dc.l $ff7e48ee,$7fffffc0,$3d7caaaa,$ff82323c + dc.l $aaaab041,$66ff0000,$49ba61ff,$00004986 + dc.l $4a0066ff,$000049ac,$52aeff78,$4cfb3fff + dc.l $01700000,$49a841ee,$ff60203c,$aaaaaaaa + dc.l $42280000,$42280002,$42280004,$42280006 + dc.l $3d7c001f,$ff7c44fc,$001f48ee,$7fffff80 + dc.l $01c80000,$42eeff7e,$48ee7fff,$ffc01228 + dc.l $0006e189,$12280004,$e1891228,$0002e189 + dc.l $12280000,$b08166ff,$00004948,$61ff0000 + dc.l $49144a00,$66ff0000,$493a52ae,$ff784cfb + dc.l $3fff0170,$00004936,$41eeff64,$203caaaa + dc.l $aaaa42a8,$fffc4290,$42a80004,$42a80008 + dc.l $3d7c001f,$ff7c44fc,$001f48ee,$7fffff80 + dc.l $01c80000,$42eeff7e,$48ee7fff,$ffc04aa8 + dc.l $fffc66ff,$000048ec,$4aa80008,$66ff0000 + dc.l $48e20c90,$aa00aa00,$66ff0000,$48d60ca8 + dc.l $aa00aa00,$000466ff,$000048c8,$61ff0000 + dc.l $48944a00,$66ff0000,$48ba52ae,$ff784cfb + dc.l $3fff0170,$000048b6,$41eeff60,$117c00aa + dc.l $0000117c,$00aa0002,$117c00aa,$0004117c + dc.l $00aa0006,$3d7c001f,$ff7c44fc,$001f48ee + dc.l $7fffff80,$01480000,$42eeff7e,$48ee7fff + dc.l $ffc02d7c,$aaaaaaaa,$ff80223c,$aaaaaaaa + dc.l $b08166ff,$0000485c,$61ff0000,$48284a00 + dc.l $66ff0000,$484e52ae,$ff784cfb,$3fff0170 + dc.l $0000484a,$41eeff60,$3e3caaaa,$42280000 + dc.l $42280002,$3d7c001f,$ff7c44fc,$001f48ee + dc.l $7fffff80,$0f880000,$42eeff7e,$48ee7fff + dc.l $ffc01228,$0002e149,$12280000,$be4166ff + dc.l $00004800,$61ff0000,$47cc4a00,$66ff0000 + dc.l $47f252ae,$ff784cfb,$3fff0170,$000047ee + dc.l $41eeff60,$117c00aa,$0000117c,$00aa0002 + dc.l $3d7c001f,$ff7c44fc,$001f48ee,$7fffff80 + dc.l $0f080000,$42eeff7e,$48ee7fff,$ffc03d7c + dc.l $aaaaff9e,$323caaaa,$be4166ff,$000047a4 + dc.l $61ff0000,$47704a00,$66ff0000,$479652ae + dc.l $ff784cfb,$3fff0170,$00004792,$41eeff60 + dc.l $303caaaa,$42280000,$42280002,$3d7c001f + dc.l $ff7c44fc,$001f48ee,$7fffff80,$01880000 + dc.l $42eeff7e,$48ee7fff,$ffc01228,$0002e149 + dc.l $12280000,$b04166ff,$00004748,$61ff0000 + dc.l $47144a00,$66ff0000,$473a52ae,$ff784cfb + dc.l $3fff0170,$00004736,$41eeff60,$303caaaa + dc.l $42280008,$4228000a,$3d7c001f,$ff7c44fc + dc.l $001f48ee,$7fffff80,$01880008,$42eeff7e + dc.l $48ee7fff,$ffc01228,$000ae149,$12280008 + dc.l $b04166ff,$000046ec,$61ff0000,$46b84a00 + dc.l $66ff0000,$46de52ae,$ff784cfb,$3fff0170 + dc.l $000046da,$41eeff60,$117c00aa,$0008117c + dc.l $00aa000a,$3d7c001f,$ff7c44fc,$001f48ee + dc.l $7fffff80,$01080008,$42eeff7e,$48ee7fff + dc.l $ffc03d7c,$aaaaff82,$323caaaa,$b04166ff + dc.l $00004690,$61ff0000,$465c4a00,$66ff0000 + dc.l $468252ae,$ff784cfb,$3fff0170,$0000467e + dc.l $41eeff60,$203caaaa,$aaaa4228,$00084228 + dc.l $000a4228,$000c4228,$000e3d7c,$001fff7c + dc.l $44fc001f,$48ee7fff,$ff8001c8,$000842ee + dc.l $ff7e48ee,$7fffffc0,$1228000e,$e1891228 + dc.l $000ce189,$1228000a,$e1891228,$0008b081 + dc.l $66ff0000,$461e61ff,$000045ea,$4a0066ff + dc.l $00004610,$52aeff78,$4cfb3fff,$01700000 + dc.l $460c41ee,$ff60117c,$00aa0008,$117c00aa + dc.l $000a117c,$00aa000c,$117c00aa,$000e3d7c + dc.l $001fff7c,$44fc001f,$48ee7fff,$ff800148 + dc.l $000842ee,$ff7e48ee,$7fffffc0,$2d7caaaa + dc.l $aaaaff80,$223caaaa,$aaaab081,$66ff0000 + dc.l $45b261ff,$0000457e,$4a0066ff,$000045a4 + dc.l $52aeff78,$4cfb3fff,$01700000,$45a041ee + dc.l $ff68303c,$aaaa4228,$fff84228,$fffa3d7c + dc.l $001fff7c,$44fc001f,$48ee7fff,$ff800188 + dc.l $fff842ee,$ff7e48ee,$7fffffc0,$1228fffa + dc.l $e1491228,$fff8b041,$66ff0000,$455661ff + dc.l $00004522,$4a0066ff,$00004548,$52aeff78 + dc.l $4cfb3fff,$01700000,$454441ee,$ff68117c + dc.l $00aafff8,$117c00aa,$fffa3d7c,$001fff7c + dc.l $44fc001f,$48ee7fff,$ff800108,$fff842ee + dc.l $ff7e48ee,$7fffffc0,$3d7caaaa,$ff82323c + dc.l $aaaab041,$66ff0000,$44fa61ff,$000044c6 + dc.l $4a0066ff,$000044ec,$52aeff78,$4cfb3fff + dc.l $01700000,$44e841ee,$ff68203c,$aaaaaaaa + dc.l $4228fff8,$4228fffa,$4228fffc,$42280000 + dc.l $3d7c001f,$ff7c44fc,$001f48ee,$7fffff80 + dc.l $01c8fff8,$42eeff7e,$48ee7fff,$ffc01228 + dc.l $fffee189,$1228fffc,$e1891228,$fffae189 + dc.l $1228fff8,$b08166ff,$00004488,$61ff0000 + dc.l $44544a00,$66ff0000,$447a52ae,$ff784cfb + dc.l $3fff0170,$00004476,$41eeff68,$117c00aa + dc.l $fff8117c,$00aafffa,$117c00aa,$fffc117c + dc.l $00aa0000,$3d7c001f,$ff7c44fc,$001f48ee + dc.l $7fffff80,$0148fff8,$42eeff7e,$48ee7fff + dc.l $ffc02d7c,$aaaaaaaa,$ff80223c,$aaaaaaaa + dc.l $b08166ff,$0000441c,$61ff0000,$43e84a00 + dc.l $66ff0000,$440e222e,$ff784280,$4e750936 + dc.l $342d6269,$74206469,$76696465,$2e2e2e00 + dc.l $52aeff78,$52aeff78,$4cfb3fff,$01700000 + dc.l $43ec7201,$74007600,$3d7c0014,$ff7c44fc + dc.l $001f48ee,$7fffff80,$4c413402,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$0000438a,$4a0066ff + dc.l $000043b0,$52aeff78,$4cfb3fff,$01700000 + dc.l $43ac223c,$44444444,$7400263c,$55555555 + dc.l $3d7c0010,$ff7c44fc,$001f48ee,$7fffff80 + dc.l $4c413402,$42eeff7e,$48ee7fff,$ffc02d7c + dc.l $11111111,$ff882d7c,$00000001,$ff8c61ff + dc.l $00004332,$4a0066ff,$00004358,$52aeff78 + dc.l $4cfb3fff,$01700000,$4354223c,$55555555 + dc.l $7400263c,$44444444,$3d7c0014,$ff7c44fc + dc.l $001f48ee,$7fffff80,$4c413402,$42eeff7e + dc.l $48ee7fff,$ffc02d7c,$44444444,$ff882d7c + dc.l $00000000,$ff8c61ff,$000042da,$4a0066ff + dc.l $00004300,$52aeff78,$4cfb3fff,$01700000 + dc.l $42fc223c,$11111111,$243c4444,$4444263c + dc.l $44444444,$3d7c001e,$ff7c44fc,$001d48ee + dc.l $7fffff80,$4c413402,$42eeff7e,$48ee7fff + dc.l $ffc061ff,$0000428e,$4a0066ff,$000042b4 + dc.l $52aeff78,$4cfb3fff,$01700000,$42b072fe + dc.l $74017602,$3d7c001e,$ff7c44fc,$001d48ee + dc.l $7fffff80,$4c413c02,$42eeff7e,$48ee7fff + dc.l $ffc061ff,$0000424e,$4a0066ff,$00004274 + dc.l $52aeff78,$4cfb3fff,$01700000,$427072fe + dc.l $74017600,$3d7c0018,$ff7c44fc,$001d48ee + dc.l $7fffff80,$4c413c02,$42eeff7e,$48ee7fff + dc.l $ffc02d7c,$00000000,$ff882d7c,$80000000 + dc.l $ff8c61ff,$000041fe,$4a0066ff,$00004224 + dc.l $52aeff78,$4cfb3fff,$01700000,$42207202 + dc.l $74017600,$3d7c001e,$ff7c44fc,$001d48ee + dc.l $7fffff80,$4c413c02,$42eeff7e,$48ee7fff + dc.l $ffc061ff,$000041be,$4a0066ff,$000041e4 + dc.l $52aeff78,$4cfb3fff,$01700000,$41e072ff + dc.l $74fe76ff,$3d7c0008,$ff7c44fc,$000048ee + dc.l $7fffff80,$4c413402,$42eeff7e,$48ee7fff + dc.l $ffc061ff,$0000417e,$4a0066ff,$000041a4 + dc.l $52aeff78,$4cfb3fff,$01700000,$41a072ff + dc.l $74fe76ff,$3d7c0008,$ff7c44fc,$000048ee + dc.l $7fffff80,$4c7c2402,$ffffffff,$42eeff7e + dc.l $48ee7fff,$ffc02d7c,$ffffffff,$ff8861ff + dc.l $00004132,$4a0066ff,$00004158,$52aeff78 + dc.l $4cfb3fff,$01700000,$4154223c,$0000ffff + dc.l $7401263c,$55555555,$3d7c0000,$ff7c44fc + dc.l $000048ee,$7fffff80,$4c413402,$42eeff7e + dc.l $48ee7fff,$ffc02d7c,$0000aaab,$ff882d7c + dc.l $00015556,$ff8c61ff,$000040da,$4a0066ff + dc.l $00004100,$222eff78,$42804e75,$09636173 + dc.l $2e2e2e00,$52aeff78,$4cfb3fff,$01700000 + dc.l $40ec41ee,$ff6130bc,$aaaa323c,$aaaa343c + dc.l $bbbb3d7c,$0014ff7c,$44fc0010,$48ee7fff + dc.l $ff800cd0,$008142ee,$ff7e3610,$3d7cbbbb + dc.l $ff8e48ee,$7fffffc0,$61ff0000,$40784a00 + dc.l $66ff0000,$409e52ae,$ff784cfb,$3fff0170 + dc.l $0000409a,$41eeff61,$30bceeee,$323caaaa + dc.l $343cbbbb,$3d7c0000,$ff7c44fc,$000048ee + dc.l $7fffff80,$0cd00081,$42eeff7e,$36103d7c + dc.l $eeeeff86,$3d7ceeee,$ff8e48ee,$7fffffc0 + dc.l $61ff0000,$40204a00,$66ff0000,$404652ae + dc.l $ff784cfb,$3fff0170,$00004042,$41eeff62 + dc.l $20bcaaaa,$aaaa223c,$aaaaaaaa,$243cbbbb + dc.l $bbbb3d7c,$0004ff7c,$44fc0000,$48ee7fff + dc.l $ff800ed0,$008142ee,$ff7e2610,$2d7cbbbb + dc.l $bbbbff8c,$48ee7fff,$ffc061ff,$00003fc6 + dc.l $4a0066ff,$00003fec,$52aeff78,$4cfb3fff + dc.l $01700000,$3fe841ee,$ff6220bc,$eeeeeeee + dc.l $223caaaa,$aaaa243c,$bbbbbbbb,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$7fffff80,$0ed00081 + dc.l $42eeff7e,$26102d7c,$eeeeeeee,$ff842d7c + dc.l $eeeeeeee,$ff8c48ee,$7fffffc0,$61ff0000 + dc.l $3f644a00,$66ff0000,$3f8a52ae,$ff784cfb + dc.l $3fff0170,$00003f86,$41eeff61,$20bcaaaa + dc.l $aaaa223c,$aaaaaaaa,$243cbbbb,$bbbb3d7c + dc.l $0004ff7c,$44fc0000,$48ee7fff,$ff800ed0 + dc.l $008142ee,$ff7e2610,$2d7cbbbb,$bbbbff8c + dc.l $48ee7fff,$ffc061ff,$00003f0a,$4a0066ff + dc.l $00003f30,$52aeff78,$4cfb3fff,$01700000 + dc.l $3f2c41ee,$ff6120bc,$7fffffff,$223c8000 + dc.l $0000243c,$bbbbbbbb,$3d7c001b,$ff7c44fc + dc.l $001048ee,$7fffff80,$0ed00081,$42eeff7e + dc.l $26102d7c,$7fffffff,$ff842d7c,$7fffffff + dc.l $ff8c48ee,$7fffffc0,$61ff0000,$3ea84a00 + dc.l $66ff0000,$3ece222e,$ff784280,$4e750963 + dc.l $6173322e,$2e2e0000,$52aeff78,$4cfb3fff + dc.l $01700000,$3eb841ee,$ff6043ee,$ff6420bc + dc.l $aaaaaaaa,$22bcbbbb,$bbbb223c,$aaaaaaaa + dc.l $243cbbbb,$bbbb263c,$cccccccc,$283cdddd + dc.l $dddd3d7c,$0014ff7c,$44fc0010,$48ee7fff + dc.l $ff800efc,$80c19102,$42eeff7e,$2a102c11 + dc.l $2d7ccccc,$ccccff94,$2d7cdddd,$ddddff98 + dc.l $48ee7fff,$ffc061ff,$00003e1a,$4a0066ff + dc.l $00003e40,$52aeff78,$4cfb3fff,$01700000 + dc.l $3e3c41ee,$ff6143ee,$ff6520bc,$aaaaaaaa + dc.l $22bcbbbb,$bbbb223c,$aaaaaaaa,$243cbbbb + dc.l $bbbb263c,$cccccccc,$283cdddd,$dddd3d7c + dc.l $0014ff7c,$44fc0010,$48ee7fff,$ff800efc + dc.l $80c19102,$42eeff7e,$2a102c11,$2d7ccccc + dc.l $ccccff94,$2d7cdddd,$ddddff98,$48ee7fff + dc.l $ffc061ff,$00003d9e,$4a0066ff,$00003dc4 + dc.l $52aeff78,$4cfb3fff,$01700000,$3dc041ee + dc.l $ff6243ee,$ff6620bc,$aaaaaaaa,$22bcbbbb + dc.l $bbbb223c,$aaaaaaaa,$243cbbbb,$bbbb263c + dc.l $cccccccc,$283cdddd,$dddd3d7c,$0014ff7c + dc.l $44fc0010,$48ee7fff,$ff800efc,$80c19102 + dc.l $42eeff7e,$2a102c11,$2d7ccccc,$ccccff94 + dc.l $2d7cdddd,$ddddff98,$48ee7fff,$ffc061ff + dc.l $00003d22,$4a0066ff,$00003d48,$52aeff78 + dc.l $4cfb3fff,$01700000,$3d4441ee,$ff6043ee + dc.l $ff6420bc,$eeeeeeee,$22bcbbbb,$bbbb223c + dc.l $aaaaaaaa,$243cbbbb,$bbbb263c,$cccccccc + dc.l $283cdddd,$dddd3d7c,$0000ff7c,$44fc0000 + dc.l $48ee7fff,$ff800efc,$80c19102,$42eeff7e + dc.l $2a102c11,$2d7ceeee,$eeeeff84,$2d7cbbbb + dc.l $bbbbff88,$2d7ceeee,$eeeeff94,$2d7cbbbb + dc.l $bbbbff98,$48ee7fff,$ffc061ff,$00003c96 + dc.l $4a0066ff,$00003cbc,$52aeff78,$4cfb3fff + dc.l $01700000,$3cb841ee,$ff6143ee,$ff6520bc + dc.l $eeeeeeee,$22bcbbbb,$bbbb223c,$aaaaaaaa + dc.l $243cbbbb,$bbbb263c,$cccccccc,$283cdddd + dc.l $dddd3d7c,$0000ff7c,$44fc0000,$48ee7fff + dc.l $ff800efc,$80c19102,$42eeff7e,$2a102c11 + dc.l $2d7ceeee,$eeeeff84,$2d7cbbbb,$bbbbff88 + dc.l $2d7ceeee,$eeeeff94,$2d7cbbbb,$bbbbff98 + dc.l $48ee7fff,$ffc061ff,$00003c0a,$4a0066ff + dc.l $00003c30,$52aeff78,$4cfb3fff,$01700000 + dc.l $3c2c41ee,$ff6243ee,$ff6620bc,$eeeeeeee + dc.l $22bcbbbb,$bbbb223c,$aaaaaaaa,$243cbbbb + dc.l $bbbb263c,$cccccccc,$283cdddd,$dddd3d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff800efc + dc.l $80c19102,$42eeff7e,$2a102c11,$2d7ceeee + dc.l $eeeeff84,$2d7cbbbb,$bbbbff88,$2d7ceeee + dc.l $eeeeff94,$2d7cbbbb,$bbbbff98,$48ee7fff + dc.l $ffc061ff,$00003b7e,$4a0066ff,$00003ba4 + dc.l $52aeff78,$4cfb3fff,$01700000,$3ba041ee + dc.l $ff6043ee,$ff6420bc,$aaaaaaaa,$22bceeee + dc.l $eeee223c,$aaaaaaaa,$243cbbbb,$bbbb263c + dc.l $cccccccc,$283cdddd,$dddd3d7c,$0000ff7c + dc.l $44fc0000,$48ee7fff,$ff800efc,$80c19102 + dc.l $42eeff7e,$2a102c11,$2d7caaaa,$aaaaff84 + dc.l $2d7ceeee,$eeeeff88,$2d7caaaa,$aaaaff94 + dc.l $2d7ceeee,$eeeeff98,$48ee7fff,$ffc061ff + dc.l $00003af2,$4a0066ff,$00003b18,$52aeff78 + dc.l $4cfb3fff,$01700000,$3b1441ee,$ff6143ee + dc.l $ff6520bc,$aaaaaaaa,$22bceeee,$eeee223c + dc.l $aaaaaaaa,$243cbbbb,$bbbb263c,$cccccccc + dc.l $283cdddd,$dddd3d7c,$0000ff7c,$44fc0000 + dc.l $48ee7fff,$ff800efc,$80c19102,$42eeff7e + dc.l $2a102c11,$2d7caaaa,$aaaaff84,$2d7ceeee + dc.l $eeeeff88,$2d7caaaa,$aaaaff94,$2d7ceeee + dc.l $eeeeff98,$48ee7fff,$ffc061ff,$00003a66 + dc.l $4a0066ff,$00003a8c,$52aeff78,$4cfb3fff + dc.l $01700000,$3a8841ee,$ff6243ee,$ff6620bc + dc.l $aaaaaaaa,$22bc7fff,$ffff223c,$aaaaaaaa + dc.l $243c8000,$0000263c,$cccccccc,$283cdddd + dc.l $dddd3d7c,$000bff7c,$44fc0000,$48ee7fff + dc.l $ff800efc,$80c19102,$42eeff7e,$2a102c11 + dc.l $2d7caaaa,$aaaaff84,$2d7c7fff,$ffffff88 + dc.l $2d7caaaa,$aaaaff94,$2d7c7fff,$ffffff98 + dc.l $48ee7fff,$ffc061ff,$000039da,$4a0066ff + dc.l $00003a00,$52aeff78,$4cfb3fff,$01700000 + dc.l $39fc41ee,$ff6043ee,$ff6430bc,$aaaa32bc + dc.l $bbbb323c,$aaaa343c,$bbbb363c,$cccc383c + dc.l $dddd3d7c,$0014ff7c,$44fc0010,$48ee7fff + dc.l $ff800cfc,$80c19102,$42eeff7e,$3a103c11 + dc.l $3d7ccccc,$ff963d7c,$ddddff9a,$48ee7fff + dc.l $ffc061ff,$0000396e,$4a0066ff,$00003994 + dc.l $52aeff78,$4cfb3fff,$01700000,$399041ee + dc.l $ff6143ee,$ff6530bc,$aaaa32bc,$bbbb323c + dc.l $aaaa343c,$bbbb363c,$cccc383c,$dddd3d7c + dc.l $0004ff7c,$44fc0000,$48ee7fff,$ff800cfc + dc.l $80c19102,$42eeff7e,$3a103c11,$3d7ccccc + dc.l $ff963d7c,$ddddff9a,$48ee7fff,$ffc061ff + dc.l $00003902,$4a0066ff,$00003928,$52aeff78 + dc.l $4cfb3fff,$01700000,$392441ee,$ff6043ee + dc.l $ff6430bc,$eeee32bc,$bbbb323c,$aaaa343c + dc.l $bbbb363c,$cccc383c,$dddd3d7c,$0000ff7c + dc.l $44fc0000,$48ee7fff,$ff800cfc,$80c19102 + dc.l $42eeff7e,$3a103c11,$3d7ceeee,$ff863d7c + dc.l $bbbbff8a,$3d7ceeee,$ff963d7c,$bbbbff9a + dc.l $48ee7fff,$ffc061ff,$0000388a,$4a0066ff + dc.l $000038b0,$52aeff78,$4cfb3fff,$01700000 + dc.l $38ac41ee,$ff6143ee,$ff6530bc,$eeee32bc + dc.l $bbbb323c,$aaaa343c,$bbbb363c,$cccc383c + dc.l $dddd3d7c,$0000ff7c,$44fc0000,$48ee7fff + dc.l $ff800cfc,$80c19102,$42eeff7e,$3a103c11 + dc.l $3d7ceeee,$ff863d7c,$bbbbff8a,$3d7ceeee + dc.l $ff963d7c,$bbbbff9a,$48ee7fff,$ffc061ff + dc.l $00003812,$4a0066ff,$00003838,$52aeff78 + dc.l $4cfb3fff,$01700000,$383441ee,$ff6043ee + dc.l $ff6430bc,$aaaa32bc,$eeee323c,$aaaa343c + dc.l $bbbb363c,$cccc383c,$dddd3d7c,$0000ff7c + dc.l $44fc0000,$48ee7fff,$ff800cfc,$80c19102 + dc.l $42eeff7e,$3a103c11,$3d7caaaa,$ff863d7c + dc.l $eeeeff8a,$3d7caaaa,$ff963d7c,$eeeeff9a + dc.l $48ee7fff,$ffc061ff,$0000379a,$4a0066ff + dc.l $000037c0,$52aeff78,$4cfb3fff,$01700000 + dc.l $37bc41ee,$ff6143ee,$ff6530bc,$aaaa32bc + dc.l $7fff323c,$aaaa343c,$8000363c,$cccc383c + dc.l $dddd3d7c,$001bff7c,$44fc0010,$48ee7fff + dc.l $ff800cfc,$80c19102,$42eeff7e,$3a103c11 + dc.l $3d7caaaa,$ff863d7c,$7fffff8a,$3d7caaaa + dc.l $ff963d7c,$7fffff9a,$48ee7fff,$ffc061ff + dc.l $00003722,$4a0066ff,$00003748,$222eff78 + dc.l $42804e75,$09636d70,$322c6368,$6b322e2e + dc.l $2e0051fc,$52aeff78,$4cfb3fff,$01700000 + dc.l $372c3d7c,$2040ff60,$223c1111,$11203d7c + dc.l $0004ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $1000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $000036c2,$4a0066ff,$000036e8,$52aeff78 + dc.l $4cfb3fff,$01700000,$36e43d7c,$2040ff60 + dc.l $227c0000,$00403d7c,$0004ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$9000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$0000367a,$4a0066ff + dc.l $000036a0,$52aeff78,$4cfb3fff,$01700000 + dc.l $369c3d7c,$2040ff60,$223c1111,$11303d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $1800ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00003632,$4a0066ff,$00003658,$52aeff78 + dc.l $4cfb3fff,$01700000,$36543d7c,$2040ff60 + dc.l $227c0000,$00103d7c,$0001ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$9000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$000035ea,$4a0066ff + dc.l $00003610,$52aeff78,$4cfb3fff,$01700000 + dc.l $360c3d7c,$2040ff60,$223c1111,$11503d7c + dc.l $0001ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $1000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $000035a2,$4a0066ff,$000035c8,$52aeff78 + dc.l $4cfb3fff,$01700000,$35c43d7c,$2040ff60 + dc.l $227c0000,$00903d7c,$0001ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$9000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$0000355a,$4a0066ff + dc.l $00003580,$52aeff78,$4cfb3fff,$01700000 + dc.l $357c2d7c,$2000a000,$ff60223c,$11112000 + dc.l $3d7c0004,$ff7c44fc,$000048ee,$7fffff80 + dc.l $02ee1000,$ff6042ee,$ff7e48ee,$7fffffc0 + dc.l $61ff0000,$35104a00,$66ff0000,$353652ae + dc.l $ff784cfb,$3fff0170,$00003532,$2d7c2000 + dc.l $a000ff60,$227cffff,$a0003d7c,$0004ff7c + dc.l $44fc0000,$48ee7fff,$ff8002ee,$9000ff60 + dc.l $42eeff7e,$48ee7fff,$ffc061ff,$000034c6 + dc.l $4a0066ff,$000034ec,$52aeff78,$4cfb3fff + dc.l $01700000,$34e82d7c,$2000a000,$ff60223c + dc.l $11113000,$3d7c0000,$ff7c44fc,$000048ee + dc.l $7fffff80,$02ee1800,$ff6042ee,$ff7e48ee + dc.l $7fffffc0,$61ff0000,$347c4a00,$66ff0000 + dc.l $34a252ae,$ff784cfb,$3fff0170,$0000349e + dc.l $2d7c2000,$a000ff60,$227cffff,$90003d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff8002ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00003432,$4a0066ff,$00003458,$52aeff78 + dc.l $4cfb3fff,$01700000,$34542d7c,$2000a000 + dc.l $ff60223c,$11111000,$3d7c0001,$ff7c44fc + dc.l $000048ee,$7fffff80,$02ee1000,$ff6042ee + dc.l $ff7e48ee,$7fffffc0,$61ff0000,$33e84a00 + dc.l $66ff0000,$340e52ae,$ff784cfb,$3fff0170 + dc.l $0000340a,$2d7c2000,$a000ff60,$227cffff + dc.l $b0003d7c,$0001ff7c,$44fc0000,$48ee7fff + dc.l $ff8002ee,$9000ff60,$42eeff7e,$48ee7fff + dc.l $ffc061ff,$0000339e,$4a0066ff,$000033c4 + dc.l $52aeff78,$4cfb3fff,$01700000,$33c02d7c + dc.l $a0000000,$ff602d7c,$c0000000,$ff64223c + dc.l $a0000000,$3d7c000c,$ff7c44fc,$000848ee + dc.l $7fffff80,$04ee1000,$ff6042ee,$ff7e48ee + dc.l $7fffffc0,$61ff0000,$334c4a00,$66ff0000 + dc.l $337252ae,$ff784cfb,$3fff0170,$0000336e + dc.l $2d7ca000,$0000ff60,$2d7cc000,$0000ff64 + dc.l $227cc000,$00003d7c,$000cff7c,$44fc0008 + dc.l $48ee7fff,$ff8004ee,$9000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$000032fa,$4a0066ff + dc.l $00003320,$52aeff78,$4cfb3fff,$01700000 + dc.l $331c2d7c,$a0000000,$ff602d7c,$c0000000 + dc.l $ff64223c,$b0000000,$3d7c0008,$ff7c44fc + dc.l $000848ee,$7fffff80,$04ee1800,$ff6042ee + dc.l $ff7e48ee,$7fffffc0,$61ff0000,$32a84a00 + dc.l $66ff0000,$32ce52ae,$ff784cfb,$3fff0170 + dc.l $000032ca,$2d7ca000,$0000ff60,$2d7cc000 + dc.l $0000ff64,$227c1000,$00003d7c,$0009ff7c + dc.l $44fc0008,$48ee7fff,$ff8004ee,$9000ff60 + dc.l $42eeff7e,$48ee7fff,$ffc061ff,$00003256 + dc.l $4a0066ff,$0000327c,$52aeff78,$4cfb3fff + dc.l $01700000,$32782d7c,$a0000000,$ff602d7c + dc.l $c0000000,$ff64223c,$90000000,$3d7c0009 + dc.l $ff7c44fc,$000848ee,$7fffff80,$04ee1000 + dc.l $ff6042ee,$ff7e48ee,$7fffffc0,$61ff0000 + dc.l $32044a00,$66ff0000,$322a52ae,$ff784cfb + dc.l $3fff0170,$00003226,$2d7ca000,$0000ff60 + dc.l $2d7cc000,$0000ff64,$227cd000,$00003d7c + dc.l $0009ff7c,$44fc0008,$48ee7fff,$ff8004ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $000031b2,$4a0066ff,$000031d8,$52aeff78 + dc.l $4cfb3fff,$01700000,$31d43d7c,$a040ff60 + dc.l $223c1111,$11a03d7c,$0004ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$1000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$0000316a,$4a0066ff + dc.l $00003190,$52aeff78,$4cfb3fff,$01700000 + dc.l $318c3d7c,$a040ff60,$227c0000,$00403d7c + dc.l $0004ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $9800ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00003122,$4a0066ff,$00003148,$52aeff78 + dc.l $4cfb3fff,$01700000,$31443d7c,$a040ff60 + dc.l $223c1111,$11b03d7c,$0000ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$1000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$000030da,$4a0066ff + dc.l $00003100,$52aeff78,$4cfb3fff,$01700000 + dc.l $30fc3d7c,$a040ff60,$227c0000,$00103d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00003092,$4a0066ff,$000030b8,$52aeff78 + dc.l $4cfb3fff,$01700000,$30b43d7c,$a040ff60 + dc.l $223c1111,$11903d7c,$0001ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$1000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$0000304a,$4a0066ff + dc.l $00003070,$52aeff78,$4cfb3fff,$01700000 + dc.l $306c3d7c,$a040ff60,$227c0000,$00503d7c + dc.l $0001ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00003002,$4a0066ff,$00003028,$52aeff78 + dc.l $4cfb3fff,$01700000,$30243d7c,$a0c0ff60 + dc.l $223c1111,$11a03d7c,$0004ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$1000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$00002fba,$4a0066ff + dc.l $00002fe0,$52aeff78,$4cfb3fff,$01700000 + dc.l $2fdc3d7c,$a0c0ff60,$227cffff,$ffc03d7c + dc.l $0004ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00002f72,$4a0066ff,$00002f98,$52aeff78 + dc.l $4cfb3fff,$01700000,$2f943d7c,$a0c0ff60 + dc.l $223c1111,$11b03d7c,$0000ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$1800ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$00002f2a,$4a0066ff + dc.l $00002f50,$52aeff78,$4cfb3fff,$01700000 + dc.l $2f4c3d7c,$a0c0ff60,$227c1111,$11903d7c + dc.l $0001ff7c,$44fc0000,$48ee7fff,$ff8000ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00002ee2,$4a0066ff,$00002f08,$52aeff78 + dc.l $4cfb3fff,$01700000,$2f043d7c,$a0c0ff60 + dc.l $223c1111,$11d03d7c,$0001ff7c,$44fc0000 + dc.l $48ee7fff,$ff8000ee,$1000ff60,$42eeff7e + dc.l $48ee7fff,$ffc061ff,$00002e9a,$4a0066ff + dc.l $00002ec0,$52aeff78,$4cfb3fff,$01700000 + dc.l $2ebc3d7c,$a0c0ff60,$227c0000,$00503d7c + dc.l $001bff7c,$44fc001f,$48ee7fff,$ff8000ee + dc.l $9000ff60,$42eeff7e,$48ee7fff,$ffc061ff + dc.l $00002e52,$4a0066ff,$00002e78,$222eff78 + dc.l $42804e75,$09456666,$65637469,$76652061 + dc.l $64647265,$73736573,$2e2e2e00,$52aeff78 + dc.l $4cfb3fff,$01700000,$2e544282,$760241ee + dc.l $ff743d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c10,$340242ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$2de84a00 + dc.l $66ff0000,$2e0e52ae,$ff784cfb,$3fff0170 + dc.l $00002e0a,$42827602,$41eeff74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c183402 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c41ee,$ff782d48,$ffa061ff,$00002d96 + dc.l $4a0066ff,$00002dbc,$52aeff78,$4cfb3fff + dc.l $01700000,$2db84282,$760241ee,$ff783d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c20 + dc.l $340242ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$41eeff74,$2d48ffa0,$61ff0000 + dc.l $2d444a00,$66ff0000,$2d6a52ae,$ff784cfb + dc.l $3fff0170,$00002d66,$42827602,$41ee0f74 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c283402,$f00042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$2cf84a00 + dc.l $66ff0000,$2d1e52ae,$ff784cfb,$3fff0170 + dc.l $00002d1a,$42827602,$41eeef74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c283402 + dc.l $100042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$2cac4a00,$66ff0000 + dc.l $2cd252ae,$ff7852ae,$ff7852ae,$ff784cfb + dc.l $3fff0170,$00002cc6,$42827602,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c3c3402 + dc.l $00000002,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$00002c5a,$4a0066ff + dc.l $00002c80,$52aeff78,$60040000,$00024cfb + dc.l $3fff0170,$00002c76,$42827602,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c3a3402 + dc.l $ffda42ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$2c0c4a00,$66ff0000 + dc.l $2c3252ae,$ff784cfb,$3fff0170,$00002c2e + dc.l $42827602,$43eeff78,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c213402,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c41ee + dc.l $ff742d48,$ffa461ff,$00002bba,$4a0066ff + dc.l $00002be0,$52aeff78,$4cfb3fff,$01700000 + dc.l $2bdc4282,$760245ee,$ff783d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c22,$340242ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $41eeff74,$2d48ffa8,$61ff0000,$2b684a00 + dc.l $66ff0000,$2b8e52ae,$ff784cfb,$3fff0170 + dc.l $00002b8a,$42827602,$47eeff78,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c233402 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c41ee,$ff742d48,$ffac61ff,$00002b16 + dc.l $4a0066ff,$00002b3c,$52aeff78,$4cfb3fff + dc.l $01700000,$2b384282,$760249ee,$ff783d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c24 + dc.l $340242ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$41eeff74,$2d48ffb0,$61ff0000 + dc.l $2ac44a00,$66ff0000,$2aea52ae,$ff784cfb + dc.l $3fff0170,$00002ae6,$42827602,$4beeff78 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c253402,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c41ee,$ff742d48,$ffb461ff + dc.l $00002a72,$4a0066ff,$00002a98,$52aeff78 + dc.l $4cfb3fff,$01700000,$2a94224e,$42827602 + dc.l $4de9ff78,$337c0000,$ff7c44fc,$000048e9 + dc.l $ffffff80,$4c263402,$42e9ff7e,$48e9ffff + dc.l $ffc0237c,$00000004,$ff8c41e9,$ff742348 + dc.l $ffb82c49,$61ff0000,$2a1c4a00,$66ff0000 + dc.l $2a4252ae,$ff784cfb,$3fff0170,$00002a3e + dc.l $42827602,$204f4fee,$ff783d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c27,$340242ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $43eeff74,$2d49ffbc,$2e4861ff,$000029c6 + dc.l $4a0066ff,$000029ec,$52aeff78,$4cfb3fff + dc.l $01700000,$29e84282,$760241ee,$ff7478f0 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c303402,$401042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$29784a00 + dc.l $66ff0000,$299e52ae,$ff784cfb,$3fff0170 + dc.l $0000299a,$42827602,$41eeff74,$78f83d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c30 + dc.l $34024210,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000292a,$4a0066ff + dc.l $00002950,$52aeff78,$4cfb3fff,$01700000 + dc.l $294c4282,$760241ee,$ff7478fc,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c303402 + dc.l $441042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$28dc4a00,$66ff0000 + dc.l $290252ae,$ff784cfb,$3fff0170,$000028fe + dc.l $42827602,$41eeff74,$78fe3d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c30,$34024610 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000288e,$4a0066ff,$000028b4 + dc.l $52aeff78,$4cfb3fff,$01700000,$28b04282 + dc.l $760241ee,$ff7478f0,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c303402,$481042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$28404a00,$66ff0000,$286652ae + dc.l $ff784cfb,$3fff0170,$00002862,$42827602 + dc.l $41eeff74,$78f83d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c30,$34024a10,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000027f2,$4a0066ff,$00002818,$52aeff78 + dc.l $4cfb3fff,$01700000,$28144282,$760241ee + dc.l $ff7478fc,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c303402,$4c1042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $27a44a00,$66ff0000,$27ca52ae,$ff784cfb + dc.l $3fff0170,$000027c6,$42827602,$41eeff74 + dc.l $78fe3d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c30,$34024e10,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00002756 + dc.l $4a0066ff,$0000277c,$52aeff78,$4cfb3fff + dc.l $01700000,$27784282,$760241ee,$ff74287c + dc.l $fffffffe,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c303402,$ce1042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $27044a00,$66ff0000,$272a52ae,$ff784cfb + dc.l $3fff0170,$00002726,$42827602,$41eeff74 + dc.l $287c0000,$00023d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c30,$3402cef0,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000026b2,$4a0066ff,$000026d8,$52aeff78 + dc.l $4cfb3fff,$01700000,$26d44282,$760243ee + dc.l $ff7478f0,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c313402,$401042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $26644a00,$66ff0000,$268a52ae,$ff784cfb + dc.l $3fff0170,$00002686,$42827602,$45eeff74 + dc.l $78f03d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c32,$34024010,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00002616 + dc.l $4a0066ff,$0000263c,$52aeff78,$4cfb3fff + dc.l $01700000,$26384282,$760247ee,$ff7478f0 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c333402,$401042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$25c84a00 + dc.l $66ff0000,$25ee52ae,$ff784cfb,$3fff0170 + dc.l $000025ea,$42827602,$49eeff74,$78f03d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c34 + dc.l $34024010,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000257a,$4a0066ff + dc.l $000025a0,$52aeff78,$4cfb3fff,$01700000 + dc.l $259c4282,$76024bee,$ff7478f0,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c353402 + dc.l $401042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$252c4a00,$66ff0000 + dc.l $255252ae,$ff784cfb,$3fff0170,$0000254e + dc.l $224e4282,$76024de9,$ff7478f0,$337c0000 + dc.l $ff7c44fc,$000048e9,$ffffff80,$4c363402 + dc.l $401042e9,$ff7e48e9,$ffffffc0,$237c0000 + dc.l $0004ff8c,$2c4961ff,$000024da,$4a0066ff + dc.l $00002500,$52aeff78,$4cfb3fff,$01700000 + dc.l $24fc4282,$7602204f,$4feeff74,$78f03d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c37 + dc.l $34024010,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c2e48,$61ff0000,$24884a00 + dc.l $66ff0000,$24ae52ae,$ff784cfb,$3fff0170 + dc.l $000024aa,$42827602,$43eeff74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c113402 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000243e,$4a0066ff,$00002464 + dc.l $52aeff78,$4cfb3fff,$01700000,$24604282 + dc.l $760245ee,$ff743d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c12,$340242ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $23f44a00,$66ff0000,$241a52ae,$ff784cfb + dc.l $3fff0170,$00002416,$42827602,$47eeff74 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c133402,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$000023aa,$4a0066ff + dc.l $000023d0,$52aeff78,$4cfb3fff,$01700000 + dc.l $23cc4282,$760249ee,$ff743d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c14,$340242ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$23604a00,$66ff0000,$238652ae + dc.l $ff784cfb,$3fff0170,$00002382,$42827602 + dc.l $4beeff74,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c153402,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00002316 + dc.l $4a0066ff,$0000233c,$52aeff78,$4cfb3fff + dc.l $01700000,$2338224e,$42827602,$4de9ff74 + dc.l $337c0000,$ff7c44fc,$000048e9,$ffffff80 + dc.l $4c163402,$42e9ff7e,$48e9ffff,$ffc0237c + dc.l $00000004,$ff8c2c49,$61ff0000,$22c84a00 + dc.l $66ff0000,$22ee52ae,$ff784cfb,$3fff0170 + dc.l $000022ea,$42827602,$204f4fee,$ff743d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c17 + dc.l $340242ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$2e4861ff,$0000227a,$4a0066ff + dc.l $000022a0,$52aeff78,$4cfb3fff,$01700000 + dc.l $229c4282,$760243ee,$ff743d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c19,$340242ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $41eeff78,$2d48ffa4,$61ff0000,$22284a00 + dc.l $66ff0000,$224e52ae,$ff784cfb,$3fff0170 + dc.l $0000224a,$42827602,$45eeff74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c1a3402 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c41ee,$ff782d48,$ffa861ff,$000021d6 + dc.l $4a0066ff,$000021fc,$52aeff78,$4cfb3fff + dc.l $01700000,$21f84282,$760247ee,$ff743d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c1b + dc.l $340242ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$41eeff78,$2d48ffac,$61ff0000 + dc.l $21844a00,$66ff0000,$21aa52ae,$ff784cfb + dc.l $3fff0170,$000021a6,$42827602,$49eeff74 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c1c3402,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c41ee,$ff782d48,$ffb061ff + dc.l $00002132,$4a0066ff,$00002158,$52aeff78 + dc.l $4cfb3fff,$01700000,$21544282,$76024bee + dc.l $ff743d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c1d,$340242ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$41eeff78,$2d48ffb4 + dc.l $61ff0000,$20e04a00,$66ff0000,$210652ae + dc.l $ff784cfb,$3fff0170,$00002102,$224e4282 + dc.l $76024de9,$ff74337c,$0000ff7c,$44fc0000 + dc.l $48e9ffff,$ff804c1e,$340242e9,$ff7e48e9 + dc.l $ffffffc0,$237c0000,$0004ff8c,$41e9ff78 + dc.l $2348ffb8,$2c4961ff,$0000208a,$4a0066ff + dc.l $000020b0,$52aeff78,$4cfb3fff,$01700000 + dc.l $20ac4282,$7602204f,$4feeff74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c1f3402 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c43ee,$ff782d49,$ffbc2e48,$61ff0000 + dc.l $20344a00,$66ff0000,$205a52ae,$ff784cfb + dc.l $3fff0170,$00002056,$42827602,$43eeef74 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c293402,$100042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$1fe84a00 + dc.l $66ff0000,$200e52ae,$ff784cfb,$3fff0170 + dc.l $0000200a,$42827602,$45eeef74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c2a3402 + dc.l $100042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$1f9c4a00,$66ff0000 + dc.l $1fc252ae,$ff784cfb,$3fff0170,$00001fbe + dc.l $42827602,$47eeef74,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c2b3402,$100042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$1f504a00,$66ff0000,$1f7652ae + dc.l $ff784cfb,$3fff0170,$00001f72,$42827602 + dc.l $49eeef74,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c2c3402,$100042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $1f044a00,$66ff0000,$1f2a52ae,$ff784cfb + dc.l $3fff0170,$00001f26,$42827602,$4beeef74 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c2d3402,$100042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$1eb84a00 + dc.l $66ff0000,$1ede52ae,$ff784cfb,$3fff0170 + dc.l $00001eda,$224e4282,$76024de9,$ef74337c + dc.l $0000ff7c,$44fc0000,$48e9ffff,$ff804c2e + dc.l $34021000,$42e9ff7e,$48e9ffff,$ffc0237c + dc.l $00000004,$ff8c2c49,$61ff0000,$1e684a00 + dc.l $66ff0000,$1e8e52ae,$ff784cfb,$3fff0170 + dc.l $00001e8a,$42827602,$204f4fee,$ef743d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c2f + dc.l $34021000,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c2e48,$61ff0000,$1e184a00 + dc.l $66ff0000,$1e3e52ae,$ff784cfb,$3fff0170 + dc.l $00001e3a,$42827602,$41ee0f74,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c283402 + dc.l $f00042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$1dcc4a00,$66ff0000 + dc.l $1df252ae,$ff786004,$00000002,$4cfb3fff + dc.l $01700000,$1de84282,$76023d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c3a,$3402ffda + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$00001d7e,$4a0066ff,$00001da4 + dc.l $52aeff78,$4cfb3fff,$01700000,$1da04282 + dc.l $760247ee,$ff7478f0,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c333402,$401042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$1d304a00,$66ff0000,$1d5652ae + dc.l $ff784cfb,$3fff0170,$00001d52,$42827602 + dc.l $47eeff74,$78f83d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c33,$34024210,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00001ce2,$4a0066ff,$00001d08,$52aeff78 + dc.l $4cfb3fff,$01700000,$1d044282,$760247ee + dc.l $ff7478fc,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c333402,$441042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $1c944a00,$66ff0000,$1cba52ae,$ff784cfb + dc.l $3fff0170,$00001cb6,$42827602,$47eeff74 + dc.l $78fe3d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c33,$34024610,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00001c46 + dc.l $4a0066ff,$00001c6c,$52aeff78,$4cfb3fff + dc.l $01700000,$1c684282,$760247ee,$ff7478f0 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c333402,$481042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$1bf84a00 + dc.l $66ff0000,$1c1e52ae,$ff784cfb,$3fff0170 + dc.l $00001c1a,$42827602,$47eeff74,$78f83d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c33 + dc.l $34024a10,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$00001baa,$4a0066ff + dc.l $00001bd0,$52aeff78,$4cfb3fff,$01700000 + dc.l $1bcc4282,$760247ee,$ff7478fc,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c333402 + dc.l $4c1042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$1b5c4a00,$66ff0000 + dc.l $1b8252ae,$ff784cfb,$3fff0170,$00001b7e + dc.l $42827602,$47eeff74,$78fe3d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c33,$34024e10 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$00001b0e,$4a0066ff,$00001b34 + dc.l $52aeff78,$4cfb3fff,$01700000,$1b304282 + dc.l $760247ee,$ff74287c,$00000002,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c333402 + dc.l $cef042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$1abc4a00,$66ff0000 + dc.l $1ae252ae,$ff784cfb,$3fff0170,$00001ade + dc.l $42827602,$47eeff74,$287c0000,$00023d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c33 + dc.l $34020750,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$00001a6a,$4a0066ff + dc.l $00001a90,$52aeff78,$4cfb3fff,$01700000 + dc.l $1a8c4282,$760247ee,$ff74284b,$d9fc0000 + dc.l $00103d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c30,$3402c9a0,$fff042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $1a144a00,$66ff0000,$1a3a52ae,$ff784cfb + dc.l $3fff0170,$00001a36,$42827602,$47eeff74 + dc.l $287c0000,$00023d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c33,$3402cef0,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000019c2,$4a0066ff,$000019e8,$52aeff78 + dc.l $60040000,$00024cfb,$3fff0170,$000019de + dc.l $42827602,$47eeff74,$78f03d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c3b,$340240e4 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000196e,$4a0066ff,$00001994 + dc.l $52aeff78,$60040000,$00024cfb,$3fff0170 + dc.l $0000198a,$42827602,$41eeff74,$78f83d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff804c3b + dc.l $340242e4,$42eeff7e,$48ee7fff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000191a,$4a0066ff + dc.l $00001940,$52aeff78,$60040000,$00024cfb + dc.l $3fff0170,$00001936,$42827602,$41eeff74 + dc.l $78fc3d7c,$0000ff7c,$44fc0000,$48ee7fff + dc.l $ff804c3b,$340244e4,$42eeff7e,$48ee7fff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$000018c6 + dc.l $4a0066ff,$000018ec,$52aeff78,$60040000 + dc.l $00024cfb,$3fff0170,$000018e2,$42827602 + dc.l $41eeff74,$78fe3d7c,$0000ff7c,$44fc0000 + dc.l $48ee7fff,$ff804c3b,$340246e4,$42eeff7e + dc.l $48ee7fff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00001872,$4a0066ff,$00001898,$52aeff78 + dc.l $60040000,$00024cfb,$3fff0170,$0000188e + dc.l $42827602,$41eeff74,$78f03d7c,$0000ff7c + dc.l $44fc0000,$48ee7fff,$ff804c3b,$340248e4 + dc.l $42eeff7e,$48ee7fff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000181e,$4a0066ff,$00001844 + dc.l $52aeff78,$60040000,$00024cfb,$3fff0170 + dc.l $0000183a,$42827602,$41eeff74,$78f83d7c + dc.l $0000ff7c,$44fc0000,$48ee7fff,$ff804c3b + dc.l $34024ae4,$42eeff7e,$48ee7fff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$000017ca,$4a0066ff + dc.l $000017f0,$52aeff78,$60040000,$00024cfb + dc.l $3fff0170,$000017e6,$42827602,$41eeff74 + dc.l $78fc3d7c,$0000ff7c,$44fc0000,$48ee7fff + dc.l $ff804c3b,$34024ce4,$42eeff7e,$48ee7fff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00001776 + dc.l $4a0066ff,$0000179c,$52aeff78,$60040000 + dc.l $00024cfb,$3fff0170,$00001792,$42827602 + dc.l $41eeff74,$78fe3d7c,$0000ff7c,$44fc0000 + dc.l $48ee7fff,$ff804c3b,$34024ee4,$42eeff7e + dc.l $48ee7fff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00001722,$4a0066ff,$00001748,$52aeff78 + dc.l $60040000,$00024cfb,$3fff0170,$0000173e + dc.l $42827602,$47eeff74,$287cffff,$fffe3d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $3402cee0,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$000016ca,$4a0066ff + dc.l $000016f0,$52aeff78,$60040000,$00024cfb + dc.l $3fff0170,$000016e6,$42827602,$47eeff74 + dc.l $287c0000,$00023d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34020760,$ffd042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$16704a00,$66ff0000,$169652ae + dc.l $ff7852ae,$ff784cfb,$3fff0170,$0000168e + dc.l $42827602,$47f9ffff,$ff74287c,$00000002 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c3b3402,$cf300000,$000a42ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$60040000 + dc.l $000261ff,$0000160e,$4a0066ff,$00001634 + dc.l $52aeff78,$60040000,$00024cfb,$3fff0170 + dc.l $0000162a,$42827602,$43eeff74,$78f03d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $340240e4,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$000015ba,$4a0066ff + dc.l $000015e0,$52aeff78,$60040000,$00024cfb + dc.l $3fff0170,$000015d6,$42827602,$41eeff74 + dc.l $78f83d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c3b,$340242e4,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00001566 + dc.l $4a0066ff,$0000158c,$52aeff78,$60040000 + dc.l $00024cfb,$3fff0170,$00001582,$42827602 + dc.l $41eeff74,$78fc3d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$340244e4,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00001512,$4a0066ff,$00001538,$52aeff78 + dc.l $60040000,$00024cfb,$3fff0170,$0000152e + dc.l $42827602,$41eeff74,$78fe3d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c3b,$340246e4 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$000014be,$4a0066ff,$000014e4 + dc.l $52aeff78,$60040000,$00024cfb,$3fff0170 + dc.l $000014da,$42827602,$41eeff74,$78f03d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $340248e4,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000146a,$4a0066ff + dc.l $00001490,$52aeff78,$60040000,$00024cfb + dc.l $3fff0170,$00001486,$42827602,$41eeff74 + dc.l $78f83d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c3b,$34024ae4,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00001416 + dc.l $4a0066ff,$0000143c,$52aeff78,$60040000 + dc.l $00024cfb,$3fff0170,$00001432,$42827602 + dc.l $41eeff74,$78fc3d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024ce4,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000013c2,$4a0066ff,$000013e8,$52aeff78 + dc.l $60040000,$00024cfb,$3fff0170,$000013de + dc.l $42827602,$41eeff74,$78fe3d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c3b,$34024ee4 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000136e,$4a0066ff,$00001394 + dc.l $52aeff78,$4cfb3fff,$01700000,$13904282 + dc.l $760241ee,$ff7478fe,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c3b3402,$4e2642ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $60040000,$000261ff,$0000131a,$4a0066ff + dc.l $00001340,$52aeff78,$4cfb3fff,$01700000 + dc.l $133c4282,$760247ee,$ef7449ee,$ff70288b + dc.l $78f03d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34024122,$00101000,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000012c2,$4a0066ff,$000012e8,$52aeff78 + dc.l $4cfb3fff,$01700000,$12e44282,$760247ee + dc.l $ef7449ee,$ff70288b,$78f83d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c34,$34024322 + dc.l $00101000,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000126a,$4a0066ff + dc.l $00001290,$52aeff78,$4cfb3fff,$01700000 + dc.l $128c4282,$760247ee,$ef7449ee,$ff70288b + dc.l $78fc3d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34024522,$00101000,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00001212,$4a0066ff,$00001238,$52aeff78 + dc.l $4cfb3fff,$01700000,$12344282,$760247ee + dc.l $ef7449ee,$ff70288b,$78fe3d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c34,$34024722 + dc.l $00101000,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$000011ba,$4a0066ff + dc.l $000011e0,$52aeff78,$4cfb3fff,$01700000 + dc.l $11dc4282,$760247ee,$ef7449ee,$ff70288b + dc.l $78f03d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34024922,$00101000,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00001162,$4a0066ff,$00001188,$52aeff78 + dc.l $4cfb3fff,$01700000,$11844282,$760247ee + dc.l $ef7449ee,$ff70288b,$78f83d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c34,$34024b22 + dc.l $00101000,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000110a,$4a0066ff + dc.l $00001130,$52aeff78,$4cfb3fff,$01700000 + dc.l $112c4282,$760247ee,$ef7449ee,$ff70288b + dc.l $78fc3d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34024d22,$00101000,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000010b2,$4a0066ff,$000010d8,$52aeff78 + dc.l $4cfb3fff,$01700000,$10d44282,$760247ee + dc.l $ef7449ee,$ff70288b,$78fe3d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c34,$34024f22 + dc.l $00101000,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000105a,$4a0066ff + dc.l $00001080,$52aeff78,$4cfb3fff,$01700000 + dc.l $107c4282,$760247ee,$ef7449ee,$ff70288b + dc.l $78fe3d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34024f33,$00000010,$00001000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$00000ffe,$4a0066ff,$00001024 + dc.l $52aeff78,$4cfb3fff,$01700000,$10204282 + dc.l $760247ee,$ef7449ee,$ff70288b,$78fe3d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c34 + dc.l $34020753,$00001000,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00000fa6 + dc.l $4a0066ff,$00000fcc,$52aeff78,$4cfb3fff + dc.l $01700000,$0fc84282,$760247ee,$ef7449ee + dc.l $ff70288b,$78fe3d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c34,$34020753,$00001000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$00000f4e,$4a0066ff,$00000f74 + dc.l $52aeff78,$4cfb3fff,$01700000,$0f704282 + dc.l $760247ee,$ef7449ee,$ff70288b,$78f0d88c + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c303402,$49b30000,$00100000,$100042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$0ef04a00,$66ff0000,$0f1652ae + dc.l $ff7852ae,$ff784cfb,$3fff0170,$00000f0e + dc.l $224e4282,$760247e9,$0f7449e9,$ff70288b + dc.l $2c7cffff,$fffe337c,$0000ff7c,$44fc0000 + dc.l $48e9ffff,$ff804c34,$3402ef22,$0010f000 + dc.l $42e9ff7e,$48e9ffff,$ffc0237c,$00000004 + dc.l $ff8c2c49,$61ff0000,$0e8c4a00,$66ff0000 + dc.l $0eb252ae,$ff784cfb,$3fff0170,$00000eae + dc.l $224e4282,$760247e9,$0f7449e9,$ff70288b + dc.l $2c7c0000,$0002337c,$0000ff7c,$44fc0000 + dc.l $48e9ffff,$ff804c34,$3402ef22,$fff0f000 + dc.l $42e9ff7e,$48e9ffff,$ffc0237c,$00000004 + dc.l $ff8c2c49,$61ff0000,$0e2c4a00,$66ff0000 + dc.l $0e5252ae,$ff784cfb,$3fff0170,$00000e4e + dc.l $42827602,$47eeff54,$49eeff70,$288b99fc + dc.l $00000010,$78103d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c34,$34024126,$00100010 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$00000dce,$4a0066ff,$00000df4 + dc.l $52aeff78,$4cfb3fff,$01700000,$0df04282 + dc.l $760247ee,$ff5449ee,$ff70288b,$99fc0000 + dc.l $00107808,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c343402,$43260010,$001042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$0d704a00,$66ff0000,$0d9652ae + dc.l $ff784cfb,$3fff0170,$00000d92,$42827602 + dc.l $47eeff54,$49eeff70,$288b99fc,$00000010 + dc.l $78043d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34024526,$00100010,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00000d12,$4a0066ff,$00000d38,$52aeff78 + dc.l $4cfb3fff,$01700000,$0d344282,$760247ee + dc.l $ff5449ee,$ff70288b,$99fc0000,$00107802 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c343402,$47260010,$001042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $0cb44a00,$66ff0000,$0cda52ae,$ff784cfb + dc.l $3fff0170,$00000cd6,$42827602,$47eeff54 + dc.l $49eeff70,$288b99fc,$00000010,$78103d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c34 + dc.l $34024926,$00100010,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00000c56 + dc.l $4a0066ff,$00000c7c,$52aeff78,$4cfb3fff + dc.l $01700000,$0c784282,$760247ee,$ff5449ee + dc.l $ff70288b,$99fc0000,$00107808,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c343402 + dc.l $43260010,$001042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$0bf84a00 + dc.l $66ff0000,$0c1e52ae,$ff784cfb,$3fff0170 + dc.l $00000c1a,$42827602,$47eeff54,$49eeff70 + dc.l $288b99fc,$00000010,$78043d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c34,$34024d26 + dc.l $00100010,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$00000b9a,$4a0066ff + dc.l $00000bc0,$52aeff78,$4cfb3fff,$01700000 + dc.l $0bbc4282,$760247ee,$ff5449ee,$ff70288b + dc.l $99fc0000,$00107802,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c343402,$4f260010 + dc.l $001042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$0b3c4a00,$66ff0000 + dc.l $0b6252ae,$ff784cfb,$3fff0170,$00000b5e + dc.l $42827602,$47eeff54,$49eeff70,$288b99fc + dc.l $00000010,$78023d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c34,$34024f37,$00000010 + dc.l $00000010,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$00000ada,$4a0066ff + dc.l $00000b00,$52aeff78,$4cfb3fff,$01700000 + dc.l $0afc4282,$760247ee,$ff5449ee,$ff70288b + dc.l $78023d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c34,$34020753,$00000020,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $00000a82,$4a0066ff,$00000aa8,$52aeff78 + dc.l $4cfb3fff,$01700000,$0aa4204f,$42827602 + dc.l $47eeff54,$4feeff70,$2e8b7820,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c373402 + dc.l $491542ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$2e4861ff,$00000a2a,$4a0066ff + dc.l $00000a50,$52aeff78,$52aeff78,$4cfb3fff + dc.l $01700000,$0a48224e,$42827602,$47e9ff74 + dc.l $4de9ff70,$2c8bddfc,$00000010,$2a7cffff + dc.l $fffe337c,$0000ff7c,$44fc0000,$48e9ffff + dc.l $ff804c36,$3402df27,$fff00000,$001042e9 + dc.l $ff7e48e9,$ffffffc0,$237c0000,$0004ff8c + dc.l $2c4961ff,$000009be,$4a0066ff,$000009e4 + dc.l $222eff78,$42804e75,$52aeff78,$4cfb3fff + dc.l $01700000,$09d84282,$760247fa,$ef7449fa + dc.l $ff70288b,$78f03d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024122,$ff801000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000095e,$4a0066ff,$00000984 + dc.l $52aeff78,$4cfb3fff,$01700000,$09804282 + dc.l $760247fa,$ef7449fa,$ff70288b,$78f83d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $34024322,$ff801000,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00000906 + dc.l $4a0066ff,$0000092c,$52aeff78,$4cfb3fff + dc.l $01700000,$09284282,$760247fa,$ef7449fa + dc.l $ff70288b,$78fc3d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024522,$ff801000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$000008ae,$4a0066ff,$000008d4 + dc.l $52aeff78,$4cfb3fff,$01700000,$08d04282 + dc.l $760247fa,$ef7449fa,$ff70288b,$78fe3d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $34024722,$ff801000,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00000856 + dc.l $4a0066ff,$0000087c,$52aeff78,$4cfb3fff + dc.l $01700000,$08784282,$760247fa,$ef7449fa + dc.l $ff70288b,$78f03d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024922,$ff801000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$000007fe,$4a0066ff,$00000824 + dc.l $52aeff78,$4cfb3fff,$01700000,$08204282 + dc.l $760247fa,$ef7449fa,$ff70288b,$78f83d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $34024b22,$ff801000,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$000007a6 + dc.l $4a0066ff,$000007cc,$52aeff78,$4cfb3fff + dc.l $01700000,$07c84282,$760247fa,$ef7449fa + dc.l $ff70288b,$78fc3d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024d22,$ff801000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000074e,$4a0066ff,$00000774 + dc.l $52aeff78,$4cfb3fff,$01700000,$07704282 + dc.l $760247fa,$ef7449fa,$ff70288b,$78fe3d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $34024f22,$ff801000,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$000006f6 + dc.l $4a0066ff,$0000071c,$52aeff78,$4cfb3fff + dc.l $01700000,$07184282,$760247fa,$ef7449fa + dc.l $ff70288b,$78fe3d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024f33,$ffffff80 + dc.l $00001000,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000069a,$4a0066ff + dc.l $000006c0,$52aeff78,$4cfb3fff,$01700000 + dc.l $06bc4282,$760247fa,$ef7449fa,$ff70288b + dc.l $78fe3d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c3b,$34020773,$ffffff70,$00001000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000063e,$4a0066ff,$00000664 + dc.l $52aeff78,$4cfb3fff,$01700000,$06604282 + dc.l $760247fa,$ef7449fa,$ff70288b,$280c3d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c30 + dc.l $34024993,$00001000,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$000005e6 + dc.l $4a0066ff,$0000060c,$52aeff78,$4cfb3fff + dc.l $01700000,$06084282,$760247fa,$ef7449fa + dc.l $ff70288b,$78f0d88c,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c303402,$49b30000 + dc.l $00100000,$100042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$05884a00 + dc.l $66ff0000,$05ae52ae,$ff784282,$760247fa + dc.l $ff7449fa,$ff70288b,$78f03d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c30,$340201f1 + dc.l $ffffff70,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000053a,$4a0066ff + dc.l $00000560,$52aeff78,$4cfb3fff,$01700000 + dc.l $055c4282,$760247fa,$0f7449fa,$ff70288b + dc.l $2c7c0000,$00023d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$3402ef22,$ff60f000 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$000004de,$4a0066ff,$00000504 + dc.l $52aeff78,$4cfb3fff,$01700000,$0500204f + dc.l $42827602,$47fa0f74,$49faff70,$288b2e7c + dc.l $00000002,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c3b3402,$ff22ff60,$f00042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $2e4861ff,$0000047e,$4a0066ff,$000004a4 + dc.l $52aeff78,$4cfb3fff,$01700000,$04a04282 + dc.l $760247fa,$ff5449fa,$ff70288b,$99fc0000 + dc.l $00107810,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c3b3402,$4126ff70,$001042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$04204a00,$66ff0000,$044652ae + dc.l $ff784cfb,$3fff0170,$00000442,$42827602 + dc.l $47faff54,$49faff70,$288b99fc,$00000010 + dc.l $78083d7c,$0000ff7c,$44fc0000,$48eeffff + dc.l $ff804c3b,$34024326,$ff700010,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c61ff + dc.l $000003c2,$4a0066ff,$000003e8,$52aeff78 + dc.l $4cfb3fff,$01700000,$03e44282,$760247fa + dc.l $ff5449fa,$ff70288b,$99fc0000,$00107804 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c3b3402,$4526ff70,$001042ee,$ff7e48ee + dc.l $ffffffc0,$2d7c0000,$0004ff8c,$61ff0000 + dc.l $03644a00,$66ff0000,$038a52ae,$ff784cfb + dc.l $3fff0170,$00000386,$42827602,$47faff54 + dc.l $49faff70,$288b99fc,$00000010,$78023d7c + dc.l $0000ff7c,$44fc0000,$48eeffff,$ff804c3b + dc.l $34024726,$ff700010,$42eeff7e,$48eeffff + dc.l $ffc02d7c,$00000004,$ff8c61ff,$00000306 + dc.l $4a0066ff,$0000032c,$52aeff78,$4cfb3fff + dc.l $01700000,$03284282,$760247fa,$ff5449fa + dc.l $ff70288b,$99fc0000,$00107810,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c3b3402 + dc.l $4926ff70,$001042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$02a84a00 + dc.l $66ff0000,$02ce52ae,$ff784cfb,$3fff0170 + dc.l $000002ca,$42827602,$47faff54,$49faff70 + dc.l $288b99fc,$00000010,$78083d7c,$0000ff7c + dc.l $44fc0000,$48eeffff,$ff804c3b,$34024326 + dc.l $ff700010,$42eeff7e,$48eeffff,$ffc02d7c + dc.l $00000004,$ff8c61ff,$0000024a,$4a0066ff + dc.l $00000270,$52aeff78,$4cfb3fff,$01700000 + dc.l $026c4282,$760247fa,$ff5449fa,$ff70288b + dc.l $99fc0000,$00107804,$3d7c0000,$ff7c44fc + dc.l $000048ee,$ffffff80,$4c3b3402,$4d26ff70 + dc.l $001042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$01ec4a00,$66ff0000 + dc.l $021252ae,$ff784cfb,$3fff0170,$0000020e + dc.l $42827602,$47faff54,$49faff70,$288b99fc + dc.l $00000010,$78023d7c,$0000ff7c,$44fc0000 + dc.l $48eeffff,$ff804c3b,$34024f26,$ff700010 + dc.l $42eeff7e,$48eeffff,$ffc02d7c,$00000004 + dc.l $ff8c61ff,$0000018e,$4a0066ff,$000001b4 + dc.l $52aeff78,$4cfb3fff,$01700000,$01b04282 + dc.l $760247fa,$ff5449fa,$ff70288b,$99fc0000 + dc.l $00107802,$3d7c0000,$ff7c44fc,$000048ee + dc.l $ffffff80,$4c3b3402,$4f37ffff,$ff700000 + dc.l $001042ee,$ff7e48ee,$ffffffc0,$2d7c0000 + dc.l $0004ff8c,$61ff0000,$012c4a00,$66ff0000 + dc.l $015252ae,$ff784cfb,$3fff0170,$0000014e + dc.l $42827602,$47faff54,$49faff70,$288b7802 + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c3b3402,$0773ffff,$ff700000,$002042ee + dc.l $ff7e48ee,$ffffffc0,$2d7c0000,$0004ff8c + dc.l $61ff0000,$00d04a00,$66ff0000,$00f652ae + dc.l $ff784cfb,$3fff0170,$000000f2,$42827602 + dc.l $47faff54,$49faff70,$288b7804,$3d7c0000 + dc.l $ff7c44fc,$000048ee,$ffffff80,$4c303402 + dc.l $4fb5ffff,$ff7042ee,$ff7e48ee,$ffffffc0 + dc.l $2d7c0000,$0004ff8c,$61ff0000,$00784a00 + dc.l $66ff0000,$009e52ae,$ff784cfb,$3fff0170 + dc.l $0000009a,$204f4282,$760247fa,$ff744dfa + dc.l $ff702c8b,$ddfc0000,$00102e7c,$fffffffe + dc.l $3d7c0000,$ff7c44fc,$000048ee,$ffffff80 + dc.l $4c3b3402,$ff27ff70,$00000010,$42eeff7e + dc.l $48eeffff,$ffc02d7c,$00000004,$ff8c2e48 + dc.l $61ff0000,$00104a00,$66ff0000,$00364280 + dc.l $4e7541ee,$ff8043ee,$ffc0700e,$b18966ff + dc.l $0000001c,$51c8fff6,$302eff7c,$322eff7e + dc.l $b04166ff,$00000008,$42804e75,$70014e75 + dc.l $222eff78,$70014e75,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$acacacac,$acacacac + dc.l $acacacac,$acacacac,$2f00203a,$afa4487b + dc.l $0930ffff,$afa0202f,$00044e74,$00042f00 + dc.l $203aaf92,$487b0930,$ffffaf8a,$202f0004 + dc.l $4e740004,$00000000,$00000000,$00000000 diff --git a/arch/m68k/ifpsp060/os.S b/arch/m68k/ifpsp060/os.S new file mode 100644 index 00000000000..aa4df87a6c4 --- /dev/null +++ b/arch/m68k/ifpsp060/os.S @@ -0,0 +1,396 @@ +|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +|MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +|M68000 Hi-Performance Microprocessor Division +|M68060 Software Package +|Production Release P1.00 -- October 10, 1994 +| +|M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. +| +|THE SOFTWARE is provided on an "AS IS" basis and without warranty. +|To the maximum extent permitted by applicable law, +|MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +|INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +|and any warranty against infringement with regard to the SOFTWARE +|(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. +| +|To the maximum extent permitted by applicable law, +|IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +|(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +|BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +|ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +|Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. +| +|You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +|so long as this entire notice is retained without alteration in any modified and/or +|redistributed versions, and that such modified versions are clearly identified as such. +|No licenses are granted by implication, estoppel or otherwise under any patents +|or trademarks of Motorola, Inc. +|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +| os.s +| +| This file contains: +| - example "Call-Out"s required by both the ISP and FPSP. +| + +#include <linux/linkage.h> + +|################################ +| EXAMPLE CALL-OUTS # +| # +| _060_dmem_write() # +| _060_dmem_read() # +| _060_imem_read() # +| _060_dmem_read_byte() # +| _060_dmem_read_word() # +| _060_dmem_read_long() # +| _060_imem_read_word() # +| _060_imem_read_long() # +| _060_dmem_write_byte() # +| _060_dmem_write_word() # +| _060_dmem_write_long() # +| # +| _060_real_trace() # +| _060_real_access() # +|################################ + +| +| Each IO routine checks to see if the memory write/read is to/from user +| or supervisor application space. The examples below use simple "move" +| instructions for supervisor mode applications and call _copyin()/_copyout() +| for user mode applications. +| When installing the 060SP, the _copyin()/_copyout() equivalents for a +| given operating system should be substituted. +| +| The addresses within the 060SP are guaranteed to be on the stack. +| The result is that Unix processes are allowed to sleep as a consequence +| of a page fault during a _copyout. +| +| Linux/68k: The _060_[id]mem_{read,write}_{byte,word,long} functions +| (i.e. all the known length <= 4) are implemented by single moves +| statements instead of (more expensive) copy{in,out} calls, if +| working in user space + +| +| _060_dmem_write(): +| +| Writes to data memory while in supervisor mode. +| +| INPUTS: +| a0 - supervisor source address +| a1 - user destination address +| d0 - number of bytes to write +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_write +_060_dmem_write: + subq.l #1,%d0 + btst #0x5,0x4(%a6) | check for supervisor state + beqs user_write +super_write: + move.b (%a0)+,(%a1)+ | copy 1 byte + dbra %d0,super_write | quit if --ctr < 0 + clr.l %d1 | return success + rts +user_write: + move.b (%a0)+,%d1 | copy 1 byte +copyoutae: + movs.b %d1,(%a1)+ + dbra %d0,user_write | quit if --ctr < 0 + clr.l %d1 | return success + rts + +| +| _060_imem_read(), _060_dmem_read(): +| +| Reads from data/instruction memory while in supervisor mode. +| +| INPUTS: +| a0 - user source address +| a1 - supervisor destination address +| d0 - number of bytes to read +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d1 - 0 = success, !0 = failure +| + .global _060_imem_read + .global _060_dmem_read +_060_imem_read: +_060_dmem_read: + subq.l #1,%d0 + btst #0x5,0x4(%a6) | check for supervisor state + beqs user_read +super_read: + move.b (%a0)+,(%a1)+ | copy 1 byte + dbra %d0,super_read | quit if --ctr < 0 + clr.l %d1 | return success + rts +user_read: +copyinae: + movs.b (%a0)+,%d1 + move.b %d1,(%a1)+ | copy 1 byte + dbra %d0,user_read | quit if --ctr < 0 + clr.l %d1 | return success + rts + +| +| _060_dmem_read_byte(): +| +| Read a data byte from user memory. +| +| INPUTS: +| a0 - user source address +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d0 - data byte in d0 +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_read_byte +_060_dmem_read_byte: + clr.l %d0 | clear whole longword + clr.l %d1 | assume success + btst #0x5,0x4(%a6) | check for supervisor state + bnes dmrbs | supervisor +dmrbuae:movs.b (%a0),%d0 | fetch user byte + rts +dmrbs: move.b (%a0),%d0 | fetch super byte + rts + +| +| _060_dmem_read_word(): +| +| Read a data word from user memory. +| +| INPUTS: +| a0 - user source address +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d0 - data word in d0 +| d1 - 0 = success, !0 = failure +| +| _060_imem_read_word(): +| +| Read an instruction word from user memory. +| +| INPUTS: +| a0 - user source address +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d0 - instruction word in d0 +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_read_word + .global _060_imem_read_word +_060_dmem_read_word: +_060_imem_read_word: + clr.l %d1 | assume success + clr.l %d0 | clear whole longword + btst #0x5,0x4(%a6) | check for supervisor state + bnes dmrws | supervisor +dmrwuae:movs.w (%a0), %d0 | fetch user word + rts +dmrws: move.w (%a0), %d0 | fetch super word + rts + +| +| _060_dmem_read_long(): +| + +| +| INPUTS: +| a0 - user source address +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d0 - data longword in d0 +| d1 - 0 = success, !0 = failure +| +| _060_imem_read_long(): +| +| Read an instruction longword from user memory. +| +| INPUTS: +| a0 - user source address +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d0 - instruction longword in d0 +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_read_long + .global _060_imem_read_long +_060_dmem_read_long: +_060_imem_read_long: + clr.l %d1 | assume success + btst #0x5,0x4(%a6) | check for supervisor state + bnes dmrls | supervisor +dmrluae:movs.l (%a0),%d0 | fetch user longword + rts +dmrls: move.l (%a0),%d0 | fetch super longword + rts + +| +| _060_dmem_write_byte(): +| +| Write a data byte to user memory. +| +| INPUTS: +| a0 - user destination address +| d0 - data byte in d0 +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_write_byte +_060_dmem_write_byte: + clr.l %d1 | assume success + btst #0x5,0x4(%a6) | check for supervisor state + bnes dmwbs | supervisor +dmwbuae:movs.b %d0,(%a0) | store user byte + rts +dmwbs: move.b %d0,(%a0) | store super byte + rts + +| +| _060_dmem_write_word(): +| +| Write a data word to user memory. +| +| INPUTS: +| a0 - user destination address +| d0 - data word in d0 +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_write_word +_060_dmem_write_word: + clr.l %d1 | assume success + btst #0x5,0x4(%a6) | check for supervisor state + bnes dmwws | supervisor +dmwwu: +dmwwuae:movs.w %d0,(%a0) | store user word + bras dmwwr +dmwws: move.w %d0,(%a0) | store super word +dmwwr: clr.l %d1 | return success + rts + +| +| _060_dmem_write_long(): +| +| Write a data longword to user memory. +| +| INPUTS: +| a0 - user destination address +| d0 - data longword in d0 +| 0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode +| OUTPUTS: +| d1 - 0 = success, !0 = failure +| + .global _060_dmem_write_long +_060_dmem_write_long: + clr.l %d1 | assume success + btst #0x5,0x4(%a6) | check for supervisor state + bnes dmwls | supervisor +dmwluae:movs.l %d0,(%a0) | store user longword + rts +dmwls: move.l %d0,(%a0) | store super longword + rts + + +#if 0 +|############################################### + +| +| Use these routines if your kernel doesn't have _copyout/_copyin equivalents. +| Assumes that D0/D1/A0/A1 are scratch registers. The _copyin/_copyout +| below assume that the SFC/DFC have been set previously. +| +| Linux/68k: These are basically non-inlined versions of +| memcpy_{to,from}fs, but without long-transfer optimization +| Note: Assumed that SFC/DFC are pointing correctly to user data +| space... Should be right, or are there any exceptions? + +| +| int _copyout(supervisor_addr, user_addr, nbytes) +| + .global _copyout +_copyout: + move.l 4(%sp),%a0 | source + move.l 8(%sp),%a1 | destination + move.l 12(%sp),%d0 | count + subq.l #1,%d0 +moreout: + move.b (%a0)+,%d1 | fetch supervisor byte +copyoutae: + movs.b %d1,(%a1)+ | store user byte + dbra %d0,moreout | are we through yet? + moveq #0,%d0 | return success + rts + +| +| int _copyin(user_addr, supervisor_addr, nbytes) +| + .global _copyin +_copyin: + move.l 4(%sp),%a0 | source + move.l 8(%sp),%a1 | destination + move.l 12(%sp),%d0 | count + subq.l #1,%d0 +morein: +copyinae: + movs.b (%a0)+,%d1 | fetch user byte + move.b %d1,(%a1)+ | write supervisor byte + dbra %d0,morein | are we through yet? + moveq #0,%d0 | return success + rts +#endif + +|########################################################################### + +| +| _060_real_trace(): +| +| This is the exit point for the 060FPSP when an instruction is being traced +| and there are no other higher priority exceptions pending for this instruction +| or they have already been processed. +| +| The sample code below simply executes an "rte". +| + .global _060_real_trace +_060_real_trace: + bral trap + +| +| _060_real_access(): +| +| This is the exit point for the 060FPSP when an access error exception +| is encountered. The routine below should point to the operating system +| handler for access error exceptions. The exception stack frame is an +| 8-word access error frame. +| +| The sample routine below simply executes an "rte" instruction which +| is most likely the incorrect thing to do and could put the system +| into an infinite loop. +| + .global _060_real_access +_060_real_access: + bral buserr + + + +| Execption handling for movs access to illegal memory + .section .fixup,#alloc,#execinstr + .even +1: moveq #-1,%d1 + rts +.section __ex_table,#alloc + .align 4 + .long dmrbuae,1b + .long dmrwuae,1b + .long dmrluae,1b + .long dmwbuae,1b + .long dmwwuae,1b + .long dmwluae,1b + .long copyoutae,1b + .long copyinae,1b + .text diff --git a/arch/m68k/ifpsp060/pfpsp.sa b/arch/m68k/ifpsp060/pfpsp.sa new file mode 100644 index 00000000000..d276b27f1f6 --- /dev/null +++ b/arch/m68k/ifpsp060/pfpsp.sa @@ -0,0 +1,1730 @@ + dc.l $60ff0000,$17400000,$60ff0000,$15f40000 + dc.l $60ff0000,$02b60000,$60ff0000,$04700000 + dc.l $60ff0000,$1b100000,$60ff0000,$19aa0000 + dc.l $60ff0000,$1b5a0000,$60ff0000,$062e0000 + dc.l $60ff0000,$102c0000,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $51fc51fc,$51fc51fc,$51fc51fc,$51fc51fc + dc.l $2f00203a,$ff2c487b,$0930ffff,$fef8202f + dc.l $00044e74,$00042f00,$203afef2,$487b0930 + dc.l $fffffee2,$202f0004,$4e740004,$2f00203a + dc.l $fee0487b,$0930ffff,$fecc202f,$00044e74 + dc.l $00042f00,$203afed2,$487b0930,$fffffeb6 + dc.l $202f0004,$4e740004,$2f00203a,$fea4487b + dc.l $0930ffff,$fea0202f,$00044e74,$00042f00 + dc.l $203afe96,$487b0930,$fffffe8a,$202f0004 + dc.l $4e740004,$2f00203a,$fe7c487b,$0930ffff + dc.l $fe74202f,$00044e74,$00042f00,$203afe76 + dc.l $487b0930,$fffffe5e,$202f0004,$4e740004 + dc.l $2f00203a,$fe68487b,$0930ffff,$fe48202f + dc.l $00044e74,$00042f00,$203afe56,$487b0930 + dc.l $fffffe32,$202f0004,$4e740004,$2f00203a + dc.l $fe44487b,$0930ffff,$fe1c202f,$00044e74 + dc.l $00042f00,$203afe32,$487b0930,$fffffe06 + dc.l $202f0004,$4e740004,$2f00203a,$fe20487b + dc.l $0930ffff,$fdf0202f,$00044e74,$00042f00 + dc.l $203afe1e,$487b0930,$fffffdda,$202f0004 + dc.l $4e740004,$2f00203a,$fe0c487b,$0930ffff + dc.l $fdc4202f,$00044e74,$00042f00,$203afdfa + dc.l $487b0930,$fffffdae,$202f0004,$4e740004 + dc.l $2f00203a,$fde8487b,$0930ffff,$fd98202f + dc.l $00044e74,$00042f00,$203afdd6,$487b0930 + dc.l $fffffd82,$202f0004,$4e740004,$2f00203a + dc.l $fdc4487b,$0930ffff,$fd6c202f,$00044e74 + dc.l $00042f00,$203afdb2,$487b0930,$fffffd56 + dc.l $202f0004,$4e740004,$2f00203a,$fda0487b + dc.l $0930ffff,$fd40202f,$00044e74,$00042f00 + dc.l $203afd8e,$487b0930,$fffffd2a,$202f0004 + dc.l $4e740004,$2f00203a,$fd7c487b,$0930ffff + dc.l $fd14202f,$00044e74,$00042f00,$203afd6a + dc.l $487b0930,$fffffcfe,$202f0004,$4e740004 + dc.l $40c62d38,$d3d64634,$3d6f90ae,$b1e75cc7 + dc.l $40000000,$c90fdaa2,$2168c235,$00000000 + dc.l $3fff0000,$c90fdaa2,$2168c235,$00000000 + dc.l $3fe45f30,$6dc9c883,$4e56ff40,$f32eff6c + dc.l $48ee0303,$ff9cf22e,$bc00ff60,$f22ef0c0 + dc.l $ffdc2d6e,$ff68ff44,$206eff44,$58aeff44 + dc.l $61ffffff,$ff042d40,$ff40082e,$0005ff42 + dc.l $66000116,$41eeff6c,$61ff0000,$051c41ee + dc.l $ff6c61ff,$00002aec,$1d40ff4e,$082e0005 + dc.l $ff436726,$e9ee0183,$ff4261ff,$00005cac + dc.l $41eeff78,$61ff0000,$2aca0c00,$00066606 + dc.l $61ff0000,$2a2e1d40,$ff4f4280,$102eff63 + dc.l $122eff43,$0241007f,$02ae00ff,$01ffff64 + dc.l $f23c9000,$00000000,$f23c8800,$00000000 + dc.l $41eeff6c,$43eeff78,$223b1530,$00001974 + dc.l $4ebb1930,$0000196c,$e9ee0183,$ff4261ff + dc.l $00005cd8,$082e0004,$ff626622,$082e0001 + dc.l $ff626644,$f22ed0c0,$ffdcf22e,$9c00ff60 + dc.l $4cee0303,$ff9c4e5e,$60ffffff,$fcc6f22e + dc.l $f040ff6c,$3d7ce005,$ff6ef22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$f36eff6c + dc.l $4e5e60ff,$fffffcb2,$f22ef040,$ff6c1d7c + dc.l $00c4000b,$3d7ce001,$ff6ef22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$f36eff6c + dc.l $4e5e60ff,$fffffcae,$1d7c0000,$ff4e4280 + dc.l $102eff63,$02aeffff,$00ffff64,$f23c9000 + dc.l $00000000,$f23c8800,$00000000,$41eeff6c + dc.l $61ff0000,$2e0c082e,$0004ff62,$6600ff70 + dc.l $082e0001,$ff626600,$ff90f22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$4e5e0817 + dc.l $000767ff,$fffffc0c,$f22fa400,$00083f7c + dc.l $20240006,$60ffffff,$fcec4e56,$ff40f32e + dc.l $ff6c48ee,$0303ff9c,$f22ebc00,$ff60f22e + dc.l $f0c0ffdc,$2d6eff68,$ff44206e,$ff4458ae + dc.l $ff4461ff,$fffffd42,$2d40ff40,$082e0005 + dc.l $ff426600,$013241ee,$ff6c61ff,$0000035a + dc.l $41eeff6c,$61ff0000,$292a1d40,$ff4e082e + dc.l $0005ff43,$672e082e,$0004ff43,$6626e9ee + dc.l $0183ff42,$61ff0000,$5ae241ee,$ff7861ff + dc.l $00002900,$0c000006,$660661ff,$00002864 + dc.l $1d40ff4f,$4280102e,$ff63122e,$ff430241 + dc.l $007f02ae,$00ff01ff,$ff64f23c,$90000000 + dc.l $0000f23c,$88000000,$000041ee,$ff6c43ee + dc.l $ff78223b,$15300000,$17aa4ebb,$19300000 + dc.l $17a2e9ee,$0183ff42,$61ff0000,$5b0e082e + dc.l $0003ff62,$6622082e,$0001ff62,$664ef22e + dc.l $d0c0ffdc,$f22e9c00,$ff604cee,$0303ff9c + dc.l $4e5e60ff,$fffffafc,$082e0003,$ff666700 + dc.l $ffd6f22e,$f040ff6c,$3d7ce003,$ff6ef22e + dc.l $d0c0ffdc,$f22e9c00,$ff604cee,$0303ff9c + dc.l $f36eff6c,$4e5e60ff,$fffffaf4,$082e0001 + dc.l $ff666700,$ffaaf22e,$f040ff6c,$1d7c00c4 + dc.l $000b3d7c,$e001ff6e,$f22ed0c0,$ffdcf22e + dc.l $9c00ff60,$4cee0303,$ff9cf36e,$ff6c4e5e + dc.l $60ffffff,$fad01d7c,$0000ff4e,$4280102e + dc.l $ff6302ae,$ffff00ff,$ff64f23c,$90000000 + dc.l $0000f23c,$88000000,$000041ee,$ff6c61ff + dc.l $00002c2e,$082e0003,$ff626600,$ff66082e + dc.l $0001ff62,$6600ff90,$f22ed0c0,$ffdcf22e + dc.l $9c00ff60,$4cee0303,$ff9c4e5e,$08170007 + dc.l $67ffffff,$fa2ef22f,$a4000008,$3f7c2024 + dc.l $000660ff,$fffffb0e,$4e56ff40,$f32eff6c + dc.l $48ee0303,$ff9cf22e,$bc00ff60,$f22ef0c0 + dc.l $ffdc082e,$00050004,$66084e68,$2d48ffd8 + dc.l $600841ee,$00102d48,$ffd82d6e,$ff68ff44 + dc.l $206eff44,$58aeff44,$61ffffff,$fb4c2d40 + dc.l $ff40422e,$ff4a082e,$0005ff42,$66000208 + dc.l $e9ee0006,$ff420c00,$00136700,$049e02ae + dc.l $00ff00ff,$ff64f23c,$90000000,$0000f23c + dc.l $88000000,$000041ee,$ff6c61ff,$0000013a + dc.l $41eeff6c,$61ff0000,$270a0c00,$00066606 + dc.l $61ff0000,$266e1d40,$ff4ee9ee,$0183ff42 + dc.l $082e0005,$ff436728,$0c2e003a,$ff436720 + dc.l $61ff0000,$58b641ee,$ff7861ff,$000026d4 + dc.l $0c000006,$660661ff,$00002638,$1d40ff4f + dc.l $4280102e,$ff63e9ee,$1047ff43,$41eeff6c + dc.l $43eeff78,$223b1d30,$00001598,$4ebb1930 + dc.l $00001590,$102eff62,$6634102e,$ff430200 + dc.l $00380c00,$0038670c,$e9ee0183,$ff4261ff + dc.l $000058e8,$f22ed0c0,$ffdcf22e,$9c00ff60 + dc.l $4cee0303,$ff9c4e5e,$60ffffff,$f8e6c02e + dc.l $ff66edc0,$06086614,$082e0004,$ff6667ba + dc.l $082e0001,$ff6267b2,$60000066,$04800000 + dc.l $00180c00,$00066614,$082e0003,$ff666600 + dc.l $004a082e,$0004ff66,$66000046,$2f0061ff + dc.l $000007e0,$201f3d7b,$0222ff6e,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9cf36e + dc.l $ff6c4e5e,$60ffffff,$f87ae000,$e006e004 + dc.l $e005e003,$e002e001,$e001303c,$000460bc + dc.l $303c0003,$60b6e9ee,$0006ff42,$0c000011 + dc.l $67080c00,$00156750,$4e753028,$00000240 + dc.l $7fff0c40,$3f806708,$0c40407f,$672c4e75 + dc.l $02a87fff,$ffff0004,$671861ff,$000024cc + dc.l $44400640,$3f810268,$80000000,$81680000 + dc.l $4e750268,$80000000,$4e750228,$007f0004 + dc.l $00687fff,$00004e75,$30280000,$02407fff + dc.l $0c403c00,$67080c40,$43ff67de,$4e7502a8 + dc.l $7fffffff,$00046606,$4aa80008,$67c461ff + dc.l $00002478,$44400640,$3c010268,$80000000 + dc.l $81680000,$4e75e9ee,$00c3ff42,$0c000003 + dc.l $670004a2,$0c000007,$6700049a,$02aeffff + dc.l $00ffff64,$f23c9000,$00000000,$f23c8800 + dc.l $00000000,$302eff6c,$02407fff,$671041ee + dc.l $ff6c61ff,$0000246c,$1d40ff4e,$60061d7c + dc.l $0004ff4e,$4280102e,$ff6341ee,$ff6c2d56 + dc.l $ffd461ff,$0000292a,$102eff62,$66000086 + dc.l $2caeffd4,$082e0005,$00046626,$206effd8 + dc.l $4e60f22e,$d0c0ffdc,$f22e9c00,$ff604cee + dc.l $0303ff9c,$4e5e0817,$0007667a,$60ffffff + dc.l $f7220c2e,$0008ff4a,$66d8f22e,$f080ff6c + dc.l $f22ed0c0,$ffdcf22e,$9c00ff60,$4cee0303 + dc.l $ff9c2c56,$2f6f00c4,$00b82f6f,$00c800bc + dc.l $2f6f002c,$00c42f6f,$003000c8,$2f6f0034 + dc.l $00ccdffc,$000000b8,$08170007,$662860ff + dc.l $fffff6d0,$c02eff66,$edc00608,$662a082e + dc.l $0004ff66,$6700ff6a,$082e0001,$ff626700 + dc.l $ff606000,$01663f7c,$20240006,$f22fa400 + dc.l $000860ff,$fffff78e,$04800000,$0018303b + dc.l $020a4efb,$00064afc,$00080000,$0000003a + dc.l $00640094,$00000140,$0000f22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$3d7c30d8 + dc.l $000a3d7c,$e006ff6e,$f36eff6c,$4e5e60ff + dc.l $fffff6d4,$f22ed0c0,$ffdcf22e,$9c00ff60 + dc.l $4cee0303,$ff9c3d7c,$30d0000a,$3d7ce004 + dc.l $ff6ef36e,$ff6c4e5e,$60ffffff,$f694f22e + dc.l $f040ff6c,$f22ed0c0,$ffdcf22e,$9c00ff60 + dc.l $4cee0303,$ff9c3d7c,$30d4000a,$3d7ce005 + dc.l $ff6ef36e,$ff6c4e5e,$60ffffff,$f60c2cae + dc.l $ffd4082e,$00050004,$66000038,$206effd8 + dc.l $4e60f22e,$f040ff6c,$f22ed0c0,$ffdcf22e + dc.l $9c00ff60,$4cee0303,$ff9c3d7c,$30cc000a + dc.l $3d7ce003,$ff6ef36e,$ff6c4e5e,$60ffffff + dc.l $f5de0c2e,$0008ff4a,$66c8f22e,$f080ff6c + dc.l $f22ef040,$ff78f22e,$d0c0ffdc,$f22e9c00 + dc.l $ff604cee,$0303ff9c,$3d7c30cc,$000a3d7c + dc.l $e003ff7a,$f36eff78,$2c562f6f,$00c400b8 + dc.l $2f6f00c8,$00bc2f6f,$00cc00c0,$2f6f002c + dc.l $00c42f6f,$003000c8,$2f6f0034,$00ccdffc + dc.l $000000b8,$60ffffff,$f576f22e,$f040ff6c + dc.l $f22ed0c0,$ffdcf22e,$9c00ff60,$4cee0303 + dc.l $ff9c3d7c,$30c4000a,$3d7ce001,$ff6ef36e + dc.l $ff6c4e5e,$60ffffff,$f55c02ae,$00ff00ff + dc.l $ff64f23c,$90000000,$0000f23c,$88000000 + dc.l $000061ff,$00005548,$41eeff6c,$61ff0000 + dc.l $22721d40,$ff4ee9ee,$0183ff42,$082e0005 + dc.l $ff436728,$0c2e003a,$ff436720,$61ff0000 + dc.l $542a41ee,$ff7861ff,$00002248,$0c000006 + dc.l $660661ff,$000021ac,$1d40ff4f,$4280102e + dc.l $ff63e9ee,$1047ff43,$41eeff6c,$43eeff78 + dc.l $223b1d30,$0000110c,$4ebb1930,$00001104 + dc.l $102eff62,$6600008a,$102eff43,$02000038 + dc.l $0c000038,$670ce9ee,$0183ff42,$61ff0000 + dc.l $545a082e,$00050004,$6600002a,$206effd8 + dc.l $4e60f22e,$d0c0ffdc,$f22e9c00,$ff604cee + dc.l $0303ff9c,$4e5e0817,$00076600,$012660ff + dc.l $fffff440,$082e0002,$ff4a67d6,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9c4e5e + dc.l $2f6f0004,$00102f6f,$0000000c,$dffc0000 + dc.l $000c0817,$00076600,$00ea60ff,$fffff404 + dc.l $c02eff66,$edc00608,$6618082e,$0004ff66 + dc.l $6700ff66,$082e0001,$ff626700,$ff5c6000 + dc.l $006e0480,$00000018,$0c000006,$6d14082e + dc.l $0003ff66,$66000060,$082e0004,$ff666600 + dc.l $004e082e,$00050004,$66000054,$206effd8 + dc.l $4e603d7b,$022aff6e,$f22ed0c0,$ffdcf22e + dc.l $9c00ff60,$4cee0303,$ff9cf36e,$ff6c4e5e + dc.l $08170007,$6600006c,$60ffffff,$f386e000 + dc.l $e006e004,$e005e003,$e002e001,$e001303c + dc.l $00036000,$ffae303c,$00046000,$ffa6082e + dc.l $0002ff4a,$67ac3d7b,$02d6ff6e,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9cf36e + dc.l $ff6c4e5e,$2f6f0004,$00102f6f,$0000000c + dc.l $dffc0000,$000c0817,$00076606,$60ffffff + dc.l $f3223f7c,$20240006,$f22fa400,$000860ff + dc.l $fffff402,$02aeffff,$00ffff64,$f23c9000 + dc.l $00000000,$f23c8800,$00000000,$e9ee0183 + dc.l $ff4261ff,$000051b4,$41eeff6c,$61ff0000 + dc.l $20620c00,$00066606,$61ff0000,$1fc61d40 + dc.l $ff4e4280,$102eff63,$41eeff6c,$2d56ffd4 + dc.l $61ff0000,$248c102e,$ff626600,$00842cae + dc.l $ffd4082e,$00050004,$6628206e,$ffd84e60 + dc.l $f22ed0c0,$ffdcf22e,$9c00ff60,$4cee0303 + dc.l $ff9c4e5e,$08170007,$6600ff68,$60ffffff + dc.l $f282082e,$0003ff4a,$67d6f22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$2c562f6f + dc.l $00c400b8,$2f6f00c8,$00bc2f6f,$003800c4 + dc.l $2f6f003c,$00c82f6f,$004000cc,$dffc0000 + dc.l $00b80817,$00076600,$ff1a60ff,$fffff234 + dc.l $c02eff66,$edc00608,$6700ff74,$2caeffd4 + dc.l $0c00001a,$6e0000e8,$67000072,$082e0005 + dc.l $0004660a,$206effd8,$4e606000,$fb8e0c2e + dc.l $0008ff4a,$6600fb84,$f22ed0c0,$ffdcf22e + dc.l $9c00ff60,$4cee0303,$ff9c3d7c,$30d8000a + dc.l $3d7ce006,$ff6ef36e,$ff6c2c56,$2f6f00c4 + dc.l $00b82f6f,$00c800bc,$2f6f00cc,$00c02f6f + dc.l $003800c4,$2f6f003c,$00c82f6f,$004000cc + dc.l $dffc0000,$00b860ff,$fffff22c,$082e0005 + dc.l $00046600,$000c206e,$ffd84e60,$6000fb46 + dc.l $0c2e0008,$ff4a6600,$fb3cf22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$3d7c30d0 + dc.l $000a3d7c,$e004ff6e,$f36eff6c,$2c562f6f + dc.l $00c400b8,$2f6f00c8,$00bc2f6f,$00cc00c0 + dc.l $2f6f0038,$00c42f6f,$003c00c8,$2f6f0040 + dc.l $00ccdffc,$000000b8,$60ffffff,$f1a4082e + dc.l $00050004,$6600000c,$206effd8,$4e606000 + dc.l $fbda0c2e,$0008ff4a,$6600fbd0,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9c3d7c + dc.l $30c4000a,$3d7ce001,$ff6ef36e,$ff6c2c56 + dc.l $2f6f00c4,$00b82f6f,$00c800bc,$2f6f00cc + dc.l $00c02f6f,$003800c4,$2f6f003c,$00c82f6f + dc.l $004000cc,$dffc0000,$00b860ff,$fffff106 + dc.l $e9ee00c3,$ff420c00,$00016708,$0c000005 + dc.l $67344e75,$302eff6c,$02407fff,$67260c40 + dc.l $3f806e20,$44400640,$3f81222e,$ff70e0a9 + dc.l $08c1001f,$2d41ff70,$026e8000,$ff6c006e + dc.l $3f80ff6c,$4e75302e,$ff6c0240,$7fff673a + dc.l $0c403c00,$6e344a2e,$ff6c5bee,$ff6e3d40 + dc.l $ff6c4280,$41eeff6c,$323c3c01,$61ff0000 + dc.l $1a66303c,$3c004a2e,$ff6e6704,$08c0000f + dc.l $08ee0007,$ff703d40,$ff6c4e75,$082e0005 + dc.l $000467ff,$fffff176,$2d680000,$ff782d68 + dc.l $0004ff7c,$2d680008,$ff804281,$4e752f00 + dc.l $4e7a0808,$08000001,$66000460,$201f4e56 + dc.l $ff4048ee,$0303ff9c,$f22ebc00,$ff60f22e + dc.l $f0c0ffdc,$2d6e0006,$ff44206e,$ff4458ae + dc.l $ff4461ff,$fffff152,$2d40ff40,$4a406b00 + dc.l $020e02ae,$00ff00ff,$ff640800,$000a6618 + dc.l $206eff44,$43eeff6c,$700c61ff,$fffff0d2 + dc.l $4a816600,$04926048,$206eff44,$43eeff6c + dc.l $700c61ff,$fffff0ba,$4a816600,$047ae9ee + dc.l $004fff6c,$0c407fff,$6726102e,$ff6f0200 + dc.l $000f660c,$4aaeff70,$66064aae,$ff746710 + dc.l $41eeff6c,$61ff0000,$501af22e,$f080ff6c + dc.l $06ae0000,$000cff44,$41eeff6c,$61ff0000 + dc.l $1cd21d40,$ff4e0c00,$0006660a,$61ff0000 + dc.l $1c321d40,$ff4e422e,$ff53082e,$0005ff43 + dc.l $6748082e,$0004ff43,$662ce9ee,$0183ff42 + dc.l $61ff0000,$4e7641ee,$ff7861ff,$00001c94 + dc.l $1d40ff4f,$0c000006,$662061ff,$00001bf4 + dc.l $1d40ff4f,$6014082e,$0003ff43,$670c50ee + dc.l $ff53082e,$0001ff43,$67c04280,$102eff63 + dc.l $122eff43,$0241007f,$f23c9000,$00000000 + dc.l $f23c8800,$00000000,$41eeff6c,$43eeff78 + dc.l $223b1530,$00000b2c,$4ebb1930,$00000b24 + dc.l $102eff62,$66404a2e,$ff53660c,$e9ee0183 + dc.l $ff4261ff,$00004e84,$2d6e0006,$ff682d6e + dc.l $ff440006,$f22ed0c0,$ffdcf22e,$9c00ff60 + dc.l $4cee0303,$ff9c4e5e,$08170007,$66000096 + dc.l $60ffffff,$ee6ec02e,$ff66edc0,$06086612 + dc.l $082e0004,$ff6667ae,$082e0001,$ff6267ac + dc.l $60340480,$00000018,$0c000006,$6610082e + dc.l $0004ff66,$6620082e,$0003ff66,$66203d7b + dc.l $0206ff6e,$601ee002,$e006e004,$e005e003 + dc.l $e002e001,$e0013d7c,$e005ff6e,$60063d7c + dc.l $e003ff6e,$2d6e0006,$ff682d6e,$ff440006 + dc.l $f22ed0c0,$ffdcf22e,$9c00ff60,$4cee0303 + dc.l $ff9cf36e,$ff6c4e5e,$08170007,$660660ff + dc.l $ffffede0,$2f173f6f,$00080004,$3f7c2024 + dc.l $0006f22f,$a4000008,$60ffffff,$eeb80800 + dc.l $000e6700,$01c2082e,$00050004,$66164e68 + dc.l $2d48ffd8,$61ff0000,$0bce206e,$ffd84e60 + dc.l $600001aa,$422eff4a,$41ee000c,$2d48ffd8 + dc.l $61ff0000,$0bb20c2e,$0008ff4a,$67000086 + dc.l $0c2e0004,$ff4a6600,$0184082e,$00070004 + dc.l $66363dae,$00040804,$2daeff44,$08063dbc + dc.l $00f0080a,$41f60804,$2d480004,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9c4e5e + dc.l $2e5f60ff,$ffffed3c,$3dae0004,$08002dae + dc.l $ff440802,$3dbc2024,$08062dae,$00060808 + dc.l $41f60800,$2d480004,$f22ed0c0,$ffdcf22e + dc.l $9c00ff60,$4cee0303,$ff9c4e5e,$2e5f60ff + dc.l $ffffedf2,$1d41000a,$1d40000b,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9c2f16 + dc.l $2f002f01,$2f2eff44,$4280102e,$000b4480 + dc.l $082e0007,$0004671c,$3dae0004,$08002dae + dc.l $00060808,$2d9f0802,$3dbc2024,$08064876 + dc.l $08006014,$3dae0004,$08042d9f,$08063dbc + dc.l $00f0080a,$48760804,$4281122e,$000a4a01 + dc.l $6a0cf236,$f080080c,$06800000,$000ce309 + dc.l $6a0cf236,$f040080c,$06800000,$000ce309 + dc.l $6a0cf236,$f020080c,$06800000,$000ce309 + dc.l $6a0cf236,$f010080c,$06800000,$000ce309 + dc.l $6a0cf236,$f008080c,$06800000,$000ce309 + dc.l $6a0cf236,$f004080c,$06800000,$000ce309 + dc.l $6a0cf236,$f002080c,$06800000,$000ce309 + dc.l $6a06f236,$f001080c,$222f0004,$202f0008 + dc.l $2c6f000c,$2e5f0817,$000767ff,$ffffec04 + dc.l $60ffffff,$ecf061ff,$00001244,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9c082e + dc.l $00070004,$660e2d6e,$ff440006,$4e5e60ff + dc.l $ffffebd0,$2c563f6f,$00c400c0,$2f6f00c6 + dc.l $00c82f6f,$000400c2,$3f7c2024,$00c6dffc + dc.l $000000c0,$60ffffff,$ec9c201f,$4e56ff40 + dc.l $48ee0303,$ff9c2d6e,$0006ff44,$206eff44 + dc.l $58aeff44,$61ffffff,$ed002d40,$ff404a40 + dc.l $6b047010,$60260800,$000e6610,$e9c014c3 + dc.l $700c0c01,$00076614,$58806010,$428061ff + dc.l $00000ce6,$202eff44,$90ae0006,$3d40000a + dc.l $4cee0303,$ff9c4e5e,$518f2f00,$3f6f000c + dc.l $00042f6f,$000e0006,$4280302f,$00122f6f + dc.l $00060010,$d1af0006,$3f7c402c,$000a201f + dc.l $60ffffff,$ebe44e7a,$08080800,$0001660c + dc.l $f22e9c00,$ff60f22e,$d0c0ffdc,$4cee0303 + dc.l $ff9c4e5e,$514f2eaf,$00083f6f,$000c0004 + dc.l $3f7c4008,$00062f6f,$00020008,$2f7c0942 + dc.l $8001000c,$08170005,$670608ef,$0002000d + dc.l $60ffffff,$ebd64fee,$ff404e7a,$18080801 + dc.l $0001660c,$f22ed0c0,$ffdcf22f,$9c000020 + dc.l $2c562f6f,$00c400bc,$3f6f00c8,$00c03f7c + dc.l $400800c2,$2f4800c4,$3f4000c8,$3f7c0001 + dc.l $00ca4cef,$0303005c,$defc00bc,$60a64e56 + dc.l $ff40f32e,$ff6c48ee,$0303ff9c,$f22ebc00 + dc.l $ff60f22e,$f0c0ffdc,$2d6eff68,$ff44206e + dc.l $ff4458ae,$ff4461ff,$ffffebce,$2d40ff40 + dc.l $0800000d,$662841ee,$ff6c61ff,$fffff1ea + dc.l $f22ed0c0,$ffdcf22e,$9c00ff60,$4cee0303 + dc.l $ff9cf36e,$ff6c4e5e,$60ffffff,$ea94322e + dc.l $ff6c0241,$7fff0c41,$7fff661a,$4aaeff74 + dc.l $660c222e,$ff700281,$7fffffff,$67082d6e + dc.l $ff70ff54,$6012223c,$7fffffff,$4a2eff6c + dc.l $6a025281,$2d41ff54,$e9c004c3,$122eff41 + dc.l $307b0206,$4efb8802,$006c0000,$0000ff98 + dc.l $003e0000,$00100000,$102eff54,$0c010007 + dc.l $6f16206e,$000c61ff,$ffffeb86,$4a8166ff + dc.l $00005436,$6000ff6a,$02410007,$61ff0000 + dc.l $478e6000,$ff5c302e,$ff540c01,$00076f16 + dc.l $206e000c,$61ffffff,$eb6e4a81,$66ff0000 + dc.l $54166000,$ff3c0241,$000761ff,$00004724 + dc.l $6000ff2e,$202eff54,$0c010007,$6f16206e + dc.l $000c61ff,$ffffeb56,$4a8166ff,$000053f6 + dc.l $6000ff0e,$02410007,$61ff0000,$46ba6000 + dc.l $ff004e56,$ff40f32e,$ff6c48ee,$0303ff9c + dc.l $f22ebc00,$ff60f22e,$f0c0ffdc,$2d6eff68 + dc.l $ff44206e,$ff4458ae,$ff4461ff,$ffffea8a + dc.l $2d40ff40,$0800000d,$6600002a,$41eeff6c + dc.l $61ffffff,$f0a4f22e,$d0c0ffdc,$f22e9c00 + dc.l $ff604cee,$0303ff9c,$f36eff6c,$4e5e60ff + dc.l $ffffe964,$e9c004c3,$122eff41,$307b0206 + dc.l $4efb8802,$007400a6,$015a0000,$00420104 + dc.l $00100000,$102eff70,$08c00006,$0c010007 + dc.l $6f16206e,$000c61ff,$ffffea76,$4a8166ff + dc.l $00005326,$6000ffa0,$02410007,$61ff0000 + dc.l $467e6000,$ff92302e,$ff7008c0,$000e0c01 + dc.l $00076f16,$206e000c,$61ffffff,$ea5a4a81 + dc.l $66ff0000,$53026000,$ff6e0241,$000761ff + dc.l $00004610,$6000ff60,$202eff70,$08c0001e + dc.l $0c010007,$6f16206e,$000c61ff,$ffffea3e + dc.l $4a8166ff,$000052de,$6000ff3c,$02410007 + dc.l $61ff0000,$45a26000,$ff2e0c01,$00076f2e + dc.l $202eff6c,$02808000,$00000080,$7fc00000 + dc.l $222eff70,$e0898081,$206e000c,$61ffffff + dc.l $e9fc4a81,$66ff0000,$529c6000,$fefa202e + dc.l $ff6c0280,$80000000,$00807fc0,$00002f01 + dc.l $222eff70,$e0898081,$221f0241,$000761ff + dc.l $00004544,$6000fed0,$202eff6c,$02808000 + dc.l $00000080,$7ff80000,$222eff70,$2d40ff84 + dc.l $700be0a9,$83aeff84,$222eff70,$02810000 + dc.l $07ffe0b9,$2d41ff88,$222eff74,$e0a983ae + dc.l $ff8841ee,$ff84226e,$000c7008,$61ffffff + dc.l $e8cc4a81,$66ff0000,$522a6000,$fe7a422e + dc.l $ff4a3d6e,$ff6cff84,$426eff86,$202eff70 + dc.l $08c0001e,$2d40ff88,$2d6eff74,$ff8c082e + dc.l $00050004,$66384e68,$2d48ffd8,$2d56ffd4 + dc.l $61ff0000,$02c22248,$2d48000c,$206effd8 + dc.l $4e602cae,$ffd441ee,$ff84700c,$61ffffff + dc.l $e86c4a81,$66ff0000,$51d86000,$fe1a2d56 + dc.l $ffd461ff,$00000290,$22482d48,$000c2cae + dc.l $ffd40c2e,$0008ff4a,$66ccf22e,$d0c0ffdc + dc.l $f22e9c00,$ff604cee,$0303ff9c,$f36eff6c + dc.l $2c6effd4,$2f6f00c4,$00b82f6f,$00c800bc + dc.l $2f6f00cc,$00c02f6f,$004400c4,$2f6f0048 + dc.l $00c82f6f,$004c00cc,$dffc0000,$00b860ff + dc.l $ffffe734,$4e56ff40,$f32eff6c,$48ee0303 + dc.l $ff9cf22e,$bc00ff60,$f22ef0c0,$ffdc2d6e + dc.l $ff68ff44,$206eff44,$58aeff44,$61ffffff + dc.l $e7f82d40,$ff400800,$000d6600,$0106e9c0 + dc.l $04c36622,$0c6e401e,$ff6c661a,$f23c9000 + dc.l $00000000,$f22e4000,$ff70f22e,$6800ff6c + dc.l $3d7ce001,$ff6e41ee,$ff6c61ff,$ffffedea + dc.l $02ae00ff,$01ffff64,$f23c9000,$00000000 + dc.l $f23c8800,$00000000,$e9ee1006,$ff420c01 + dc.l $00176700,$009641ee,$ff6c61ff,$00001394 + dc.l $1d40ff4e,$082e0005,$ff43672e,$082e0004 + dc.l $ff436626,$e9ee0183,$ff4261ff,$0000454c + dc.l $41eeff78,$61ff0000,$136a0c00,$00066606 + dc.l $61ff0000,$12ce1d40,$ff4f4280,$102eff63 + dc.l $122eff43,$0241007f,$41eeff6c,$43eeff78 + dc.l $223b1530,$0000022c,$4ebb1930,$00000224 + dc.l $e9ee0183,$ff4261ff,$00004590,$f22ed0c0 + dc.l $ffdcf22e,$9c00ff60,$4cee0303,$ff9cf36e + dc.l $ff6c4e5e,$60ffffff,$e5cc4280,$102eff63 + dc.l $122eff43,$02810000,$007f61ff,$00000396 + dc.l $60be1d7c,$0000ff4e,$4280102e,$ff6302ae + dc.l $ffff00ff,$ff6441ee,$ff6c61ff,$00001722 + dc.l $60aa4e56,$ff40f32e,$ff6c48ee,$0303ff9c + dc.l $f22ebc00,$ff60f22e,$f0c0ffdc,$2d6eff68 + dc.l $ff44206e,$ff4458ae,$ff4461ff,$ffffe69a + dc.l $2d40ff40,$41eeff6c,$61ffffff,$ecbcf22e + dc.l $d0c0ffdc,$f22e9c00,$ff604cee,$0303ff9c + dc.l $f36eff6c,$4e5e60ff,$ffffe592,$0c6f402c + dc.l $000667ff,$ffffe5b2,$60ffffff,$e5962040 + dc.l $102eff41,$22000240,$00380281,$00000007 + dc.l $0c000018,$67240c00,$0020672c,$80410c00 + dc.l $003c6706,$206e000c,$4e751d7c,$0080ff4a + dc.l $41f60162,$ff680004,$4e752008,$61ff0000 + dc.l $42ca206e,$000c4e75,$200861ff,$0000430c + dc.l $206e000c,$0c00000c,$67024e75,$51882d48 + dc.l $000c4e75,$102eff41,$22000240,$00380281 + dc.l $00000007,$0c000018,$670e0c00,$00206700 + dc.l $0076206e,$000c4e75,$323b120e,$206e000c + dc.l $4efb1006,$4afc0008,$0010001a,$0024002c + dc.l $0034003c,$0044004e,$06ae0000,$000cffa4 + dc.l $4e7506ae,$0000000c,$ffa84e75,$d5fc0000 + dc.l $000c4e75,$d7fc0000,$000c4e75,$d9fc0000 + dc.l $000c4e75,$dbfc0000,$000c4e75,$06ae0000 + dc.l $000cffd4,$4e751d7c,$0004ff4a,$06ae0000 + dc.l $000cffd8,$4e75323b,$1214206e,$000c5188 + dc.l $51ae000c,$4efb1006,$4afc0008,$00100016 + dc.l $001c0020,$00240028,$002c0032,$2d48ffa4 + dc.l $4e752d48,$ffa84e75,$24484e75,$26484e75 + dc.l $28484e75,$2a484e75,$2d48ffd4,$4e752d48 + dc.l $ffd81d7c,$0008ff4a,$4e754afc,$006d0000 + dc.l $20700000,$2a660000,$00000000,$2b0a0000 + dc.l $3db20000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $2bb00000,$00000000,$27460000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $233c0000,$00000000,$36220000,$1c7c0000 + dc.l $32f20000,$00000000,$00000000,$2fb00000 + dc.l $39ea0000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $2e4e0000,$00000000,$29f40000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $205e0000,$3da00000,$00000000,$00000000 + dc.l $20680000,$3daa0000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $2b9e0000,$00000000,$27340000,$00000000 + dc.l $2ba80000,$00000000,$273e0000,$00000000 + dc.l $232a0000,$00000000,$36100000,$1c6a0000 + dc.l $23340000,$00000000,$361a0000,$1c740000 + dc.l $39d80000,$00000000,$00000000,$00000000 + dc.l $39e260fe,$122eff43,$02410070,$e80961ff + dc.l $00003ed2,$02800000,$00ff2f00,$103b0920 + dc.l $01482f00,$61ff0000,$0340201f,$221f6700 + dc.l $0134082e,$0005ff42,$670000b8,$082e0004 + dc.l $ff426600,$001a123b,$1120021e,$082e0005 + dc.l $0004670a,$0c2e0008,$ff4a6602,$4e752248 + dc.l $9fc041d7,$4a016a0c,$20eeffdc,$20eeffe0 + dc.l $20eeffe4,$e3096a0c,$20eeffe8,$20eeffec + dc.l $20eefff0,$e3096a0a,$f210f020,$d1fc0000 + dc.l $000ce309,$6a0af210,$f010d1fc,$0000000c + dc.l $e3096a0a,$f210f008,$d1fc0000,$000ce309 + dc.l $6a0af210,$f004d1fc,$0000000c,$e3096a0a + dc.l $f210f002,$d1fc0000,$000ce309,$6a0af210 + dc.l $f001d1fc,$0000000c,$2d49ff54,$41d72f00 + dc.l $61ffffff,$e248201f,$dfc04a81,$6600071e + dc.l $4e752d48,$ff549fc0,$43d72f01,$2f0061ff + dc.l $ffffe214,$201f4a81,$6600070e,$221f41d7 + dc.l $4a016a0c,$2d58ffdc,$2d58ffe0,$2d58ffe4 + dc.l $e3096a0c,$2d58ffe8,$2d58ffec,$2d58fff0 + dc.l $e3096a04,$f218d020,$e3096a04,$f218d010 + dc.l $e3096a04,$f218d008,$e3096a04,$f218d004 + dc.l $e3096a04,$f218d002,$e3096a04,$f218d001 + dc.l $dfc04e75,$4e75000c,$0c180c18,$18240c18 + dc.l $18241824,$24300c18,$18241824,$24301824 + dc.l $24302430,$303c0c18,$18241824,$24301824 + dc.l $24302430,$303c1824,$24302430,$303c2430 + dc.l $303c303c,$3c480c18,$18241824,$24301824 + dc.l $24302430,$303c1824,$24302430,$303c2430 + dc.l $303c303c,$3c481824,$24302430,$303c2430 + dc.l $303c303c,$3c482430,$303c303c,$3c48303c + dc.l $3c483c48,$48540c18,$18241824,$24301824 + dc.l $24302430,$303c1824,$24302430,$303c2430 + dc.l $303c303c,$3c481824,$24302430,$303c2430 + dc.l $303c303c,$3c482430,$303c303c,$3c48303c + dc.l $3c483c48,$48541824,$24302430,$303c2430 + dc.l $303c303c,$3c482430,$303c303c,$3c48303c + dc.l $3c483c48,$48542430,$303c303c,$3c48303c + dc.l $3c483c48,$4854303c,$3c483c48,$48543c48 + dc.l $48544854,$54600080,$40c020a0,$60e01090 + dc.l $50d030b0,$70f00888,$48c828a8,$68e81898 + dc.l $58d838b8,$78f80484,$44c424a4,$64e41494 + dc.l $54d434b4,$74f40c8c,$4ccc2cac,$6cec1c9c + dc.l $5cdc3cbc,$7cfc0282,$42c222a2,$62e21292 + dc.l $52d232b2,$72f20a8a,$4aca2aaa,$6aea1a9a + dc.l $5ada3aba,$7afa0686,$46c626a6,$66e61696 + dc.l $56d636b6,$76f60e8e,$4ece2eae,$6eee1e9e + dc.l $5ede3ebe,$7efe0181,$41c121a1,$61e11191 + dc.l $51d131b1,$71f10989,$49c929a9,$69e91999 + dc.l $59d939b9,$79f90585,$45c525a5,$65e51595 + dc.l $55d535b5,$75f50d8d,$4dcd2dad,$6ded1d9d + dc.l $5ddd3dbd,$7dfd0383,$43c323a3,$63e31393 + dc.l $53d333b3,$73f30b8b,$4bcb2bab,$6beb1b9b + dc.l $5bdb3bbb,$7bfb0787,$47c727a7,$67e71797 + dc.l $57d737b7,$77f70f8f,$4fcf2faf,$6fef1f9f + dc.l $5fdf3fbf,$7fff2040,$302eff40,$32000240 + dc.l $003f0281,$00000007,$303b020a,$4efb0006 + dc.l $4afc0040,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00800086,$008c0090,$00940098 + dc.l $009c00a0,$00a600b6,$00c600d2,$00de00ea + dc.l $00f60102,$01180126,$0134013e,$01480152 + dc.l $015c0166,$017a0198,$01b601d2,$01ee020a + dc.l $02260242,$02600260,$02600260,$02600260 + dc.l $02600260,$02c002da,$02f40314,$00000000 + dc.l $00000000,$206effa4,$4e75206e,$ffa84e75 + dc.l $204a4e75,$204b4e75,$204c4e75,$204d4e75 + dc.l $20564e75,$206effd8,$4e75202e,$ffa42200 + dc.l $d2882d41,$ffa42040,$4e75202e,$ffa82200 + dc.l $d2882d41,$ffa82040,$4e75200a,$2200d288 + dc.l $24412040,$4e75200b,$2200d288,$26412040 + dc.l $4e75200c,$2200d288,$28412040,$4e75200d + dc.l $2200d288,$2a412040,$4e752016,$2200d288 + dc.l $2c812040,$4e751d7c,$0004ff4a,$202effd8 + dc.l $2200d288,$2d41ffd8,$20404e75,$202effa4 + dc.l $90882d40,$ffa42040,$4e75202e,$ffa89088 + dc.l $2d40ffa8,$20404e75,$200a9088,$24402040 + dc.l $4e75200b,$90882640,$20404e75,$200c9088 + dc.l $28402040,$4e75200d,$90882a40,$20404e75 + dc.l $20169088,$2c802040,$4e751d7c,$0008ff4a + dc.l $202effd8,$90882d40,$ffd82040,$4e75206e + dc.l $ff4454ae,$ff4461ff,$ffffde38,$4a8166ff + dc.l $fffff1b6,$3040d1ee,$ffa44e75,$206eff44 + dc.l $54aeff44,$61ffffff,$de1a4a81,$66ffffff + dc.l $f1983040,$d1eeffa8,$4e75206e,$ff4454ae + dc.l $ff4461ff,$ffffddfc,$4a8166ff,$fffff17a + dc.l $3040d1ca,$4e75206e,$ff4454ae,$ff4461ff + dc.l $ffffdde0,$4a8166ff,$fffff15e,$3040d1cb + dc.l $4e75206e,$ff4454ae,$ff4461ff,$ffffddc4 + dc.l $4a8166ff,$fffff142,$3040d1cc,$4e75206e + dc.l $ff4454ae,$ff4461ff,$ffffdda8,$4a8166ff + dc.l $fffff126,$3040d1cd,$4e75206e,$ff4454ae + dc.l $ff4461ff,$ffffdd8c,$4a8166ff,$fffff10a + dc.l $3040d1d6,$4e75206e,$ff4454ae,$ff4461ff + dc.l $ffffdd70,$4a8166ff,$fffff0ee,$3040d1ee + dc.l $ffd84e75,$508161ff,$000038fa,$2f00206e + dc.l $ff4454ae,$ff4461ff,$ffffdd48,$4a8166ff + dc.l $fffff0c6,$205f0800,$00086600,$00e62d40 + dc.l $ff542200,$e9590241,$000f61ff,$000038c6 + dc.l $2f02242e,$ff540802,$000b6602,$48c02202 + dc.l $ef590281,$00000003,$e3a849c2,$d082d1c0 + dc.l $241f4e75,$206eff44,$54aeff44,$61ffffff + dc.l $dcf24a81,$66ffffff,$f0703040,$4e75206e + dc.l $ff4458ae,$ff4461ff,$ffffdcee,$4a8166ff + dc.l $fffff056,$20404e75,$206eff44,$54aeff44 + dc.l $61ffffff,$dcbe4a81,$66ffffff,$f03c3040 + dc.l $d1eeff44,$55884e75,$206eff44,$54aeff44 + dc.l $61ffffff,$dc9e4a81,$66ffffff,$f01c206e + dc.l $ff445588,$08000008,$66000038,$2d40ff54 + dc.l $2200e959,$0241000f,$61ff0000,$38182f02 + dc.l $242eff54,$0802000b,$660248c0,$2202ef59 + dc.l $02810000,$0003e3a8,$49c2d082,$d1c0241f + dc.l $4e750800,$0006670c,$48e73c00,$2a002608 + dc.l $42826028,$2d40ff54,$e9c01404,$61ff0000 + dc.l $37d448e7,$3c002400,$2a2eff54,$26080805 + dc.l $000b6602,$48c2e9c5,$0542e1aa,$08050007 + dc.l $67024283,$e9c50682,$0c000002,$6d346718 + dc.l $206eff44,$58aeff44,$61ffffff,$dc0c4a81 + dc.l $66ff0000,$00b06018,$206eff44,$54aeff44 + dc.l $61ffffff,$dbde4a81,$66ff0000,$009848c0 + dc.l $d680e9c5,$07826700,$006e0c00,$00026d34 + dc.l $6718206e,$ff4458ae,$ff4461ff,$ffffdbca + dc.l $4a8166ff,$0000006e,$601c206e,$ff4454ae + dc.l $ff4461ff,$ffffdb9c,$4a8166ff,$00000056 + dc.l $48c06002,$42802800,$08050002,$67142043 + dc.l $61ffffff,$dbd64a81,$66000028,$d082d084 + dc.l $6018d682,$204361ff,$ffffdbc0,$4a816600 + dc.l $0012d084,$6004d682,$20032040,$4cdf003c + dc.l $4e752043,$4cdf003c,$303c0101,$60ffffff + dc.l $ef184cdf,$003c60ff,$ffffeebe,$61ff0000 + dc.l $44ea303c,$00e1600a,$61ff0000,$44de303c + dc.l $0161206e,$ff5460ff,$ffffeeee,$102eff42 + dc.l $0c00009c,$670000b2,$0c000098,$67000074 + dc.l $0c000094,$6736206e,$ff4458ae,$ff4461ff + dc.l $ffffdb06,$4a8166ff,$ffffee6e,$2d40ff64 + dc.l $206eff44,$58aeff44,$61ffffff,$daec4a81 + dc.l $66ffffff,$ee542d40,$ff684e75,$206eff44 + dc.l $58aeff44,$61ffffff,$dad04a81,$66ffffff + dc.l $ee382d40,$ff60206e,$ff4458ae,$ff4461ff + dc.l $ffffdab6,$4a8166ff,$ffffee1e,$2d40ff68 + dc.l $4e75206e,$ff4458ae,$ff4461ff,$ffffda9a + dc.l $4a8166ff,$ffffee02,$2d40ff60,$206eff44 + dc.l $58aeff44,$61ffffff,$da804a81,$66ffffff + dc.l $ede82d40,$ff644e75,$206eff44,$58aeff44 + dc.l $61ffffff,$da644a81,$66ffffff,$edcc2d40 + dc.l $ff60206e,$ff4458ae,$ff4461ff,$ffffda4a + dc.l $4a8166ff,$ffffedb2,$2d40ff64,$206eff44 + dc.l $58aeff44,$61ffffff,$da304a81,$66ffffff + dc.l $ed982d40,$ff684e75,$2d680004,$ff882d69 + dc.l $0004ff94,$2d680008,$ff8c2d69,$0008ff98 + dc.l $30280000,$32290000,$3d40ff84,$3d41ff90 + dc.l $02407fff,$02417fff,$3d40ff54,$3d41ff56 + dc.l $b0416cff,$0000005c,$61ff0000,$015a2f00 + dc.l $0c2e0004,$ff4e6610,$41eeff84,$61ff0000 + dc.l $04fa4440,$3d40ff54,$302eff56,$04400042 + dc.l $b06eff54,$6c1a302e,$ff54d06f,$0002322e + dc.l $ff840241,$80008041,$3d40ff84,$201f4e75 + dc.l $026e8000,$ff8408ee,$0000ff85,$201f4e75 + dc.l $61ff0000,$00562f00,$0c2e0004,$ff4f6610 + dc.l $41eeff90,$61ff0000,$04a24440,$3d40ff56 + dc.l $302eff54,$04400042,$b06eff56,$6c1a302e + dc.l $ff56d06f,$0002322e,$ff900241,$80008041 + dc.l $3d40ff90,$201f4e75,$026e8000,$ff9008ee + dc.l $0000ff91,$201f4e75,$322eff84,$30010281 + dc.l $00007fff,$02408000,$00403fff,$3d40ff84 + dc.l $0c2e0004,$ff4e670a,$203c0000,$3fff9081 + dc.l $4e7541ee,$ff8461ff,$00000430,$44802200 + dc.l $60e60c2e,$0004ff4e,$673a322e,$ff840281 + dc.l $00007fff,$026e8000,$ff840801,$00006712 + dc.l $006e3fff,$ff84203c,$00003fff,$9081e280 + dc.l $4e75006e,$3ffeff84,$203c0000,$3ffe9081 + dc.l $e2804e75,$41eeff84,$61ff0000,$03de0800 + dc.l $00006710,$006e3fff,$ff840680,$00003fff + dc.l $e2804e75,$006e3ffe,$ff840680,$00003ffe + dc.l $e2804e75,$322eff90,$30010281,$00007fff + dc.l $02408000,$00403fff,$3d40ff90,$0c2e0004 + dc.l $ff4f670a,$203c0000,$3fff9081,$4e7541ee + dc.l $ff9061ff,$00000384,$44802200,$60e60c2e + dc.l $0005ff4f,$67320c2e,$0003ff4f,$673e0c2e + dc.l $0003ff4e,$671408ee,$0006ff70,$00ae0100 + dc.l $4080ff64,$41eeff6c,$604200ae,$01000000 + dc.l $ff6441ee,$ff6c6034,$00ae0100,$4080ff64 + dc.l $08ee0006,$ff7c41ee,$ff786020,$41eeff78 + dc.l $0c2e0005,$ff4e66ff,$0000000c,$00ae0000 + dc.l $4080ff64,$00ae0100,$0000ff64,$08280007 + dc.l $00006708,$00ae0800,$0000ff64,$f210d080 + dc.l $4e7500ae,$01002080,$ff64f23b,$d0800170 + dc.l $00000008,$4e757fff,$0000ffff,$ffffffff + dc.l $ffff0000,$3f813c01,$e408323b,$02f63001 + dc.l $90680000,$0c400042,$6a164280,$082e0001 + dc.l $ff666704,$08c0001d,$61ff0000,$001a4e75 + dc.l $203c2000,$00003141,$000042a8,$000442a8 + dc.l $00084e75,$2d680008,$ff542d40,$ff582001 + dc.l $92680000,$6f100c41,$00206d10,$0c410040 + dc.l $6d506000,$009a202e,$ff584e75,$2f023140 + dc.l $00007020,$90410c41,$001d6d08,$142eff58 + dc.l $852eff57,$e9e82020,$0004e9e8,$18000004 + dc.l $e9ee0800,$ff542142,$00042141,$0008e8c0 + dc.l $009e6704,$08c0001d,$0280e000,$0000241f + dc.l $4e752f02,$31400000,$04410020,$70209041 + dc.l $142eff58,$852eff57,$e9e82020,$0004e9e8 + dc.l $18000004,$e8c1009e,$660ce8ee,$081fff54 + dc.l $66042001,$60062001,$08c0001d,$42a80004 + dc.l $21420008,$0280e000,$0000241f,$4e753140 + dc.l $00000c41,$00416d12,$672442a8,$000442a8 + dc.l $0008203c,$20000000,$4e752028,$00042200 + dc.l $0280c000,$00000281,$3fffffff,$60122028 + dc.l $00040280,$80000000,$e2880281,$7fffffff + dc.l $66164aa8,$00086610,$4a2eff58,$660a42a8 + dc.l $000442a8,$00084e75,$08c0001d,$42a80004 + dc.l $42a80008,$4e7561ff,$00000110,$4a806700 + dc.l $00fa006e,$0208ff66,$327b1206,$4efb9802 + dc.l $004000ea,$00240008,$4a280002,$6b0000dc + dc.l $70ff4841,$0c010004,$6700003e,$6e000094 + dc.l $60000064,$4a280002,$6a0000c0,$70ff4841 + dc.l $0c010004,$67000022,$6e000078,$60000048 + dc.l $e3806400,$00a64841,$0c010004,$6700000a + dc.l $6e000060,$60000030,$06a80000,$01000004 + dc.l $640ce4e8,$0004e4e8,$00065268,$00004a80 + dc.l $66060268,$fe000006,$02a8ffff,$ff000004 + dc.l $42a80008,$4e7552a8,$0008641a,$52a80004 + dc.l $6414e4e8,$0004e4e8,$0006e4e8,$0008e4e8 + dc.l $000a5268,$00004a80,$66060228,$00fe000b + dc.l $4e7506a8,$00000800,$0008641a,$52a80004 + dc.l $6414e4e8,$0004e4e8,$0006e4e8,$0008e4e8 + dc.l $000a5268,$00004a80,$66060268,$f000000a + dc.l $02a8ffff,$f8000008,$4e754841,$0c010004 + dc.l $6700ff86,$6eea4e75,$48414a01,$66044841 + dc.l $4e7548e7,$30000c01,$00046622,$e9e83602 + dc.l $0004741e,$e5ab2428,$00040282,$0000003f + dc.l $66284aa8,$00086622,$4a80661e,$6020e9e8 + dc.l $35420008,$741ee5ab,$24280008,$02820000 + dc.l $01ff6606,$4a806602,$600408c3,$001d2003 + dc.l $4cdf000c,$48414e75,$2f022f03,$20280004 + dc.l $22280008,$edc02000,$671ae5a8,$e9c13022 + dc.l $8083e5a9,$21400004,$21410008,$2002261f + dc.l $241f4e75,$edc12000,$e5a90682,$00000020 + dc.l $21410004,$42a80008,$2002261f,$241f4e75 + dc.l $ede80000,$0004660e,$ede80000,$00086700 + dc.l $00740640,$00204281,$32280000,$02417fff + dc.l $b0416e1c,$92403028,$00000240,$80008240 + dc.l $31410000,$61ffffff,$ff82103c,$00004e75 + dc.l $0c010020,$6e20e9e8,$08400004,$21400004 + dc.l $20280008,$e3a82140,$00080268,$80000000 + dc.l $103c0004,$4e750441,$00202028,$0008e3a8 + dc.l $21400004,$42a80008,$02688000,$0000103c + dc.l $00044e75,$02688000,$0000103c,$00014e75 + dc.l $30280000,$02407fff,$0c407fff,$67480828 + dc.l $00070004,$6706103c,$00004e75,$4a406618 + dc.l $4aa80004,$660c4aa8,$00086606,$103c0001 + dc.l $4e75103c,$00044e75,$4aa80004,$66124aa8 + dc.l $0008660c,$02688000,$0000103c,$00014e75 + dc.l $103c0006,$4e754aa8,$00086612,$20280004 + dc.l $02807fff,$ffff6606,$103c0002,$4e750828 + dc.l $00060004,$6706103c,$00034e75,$103c0005 + dc.l $4e752028,$00002200,$02807ff0,$0000670e + dc.l $0c807ff0,$00006728,$103c0000,$4e750281 + dc.l $000fffff,$66ff0000,$00144aa8,$000466ff + dc.l $0000000a,$103c0001,$4e75103c,$00044e75 + dc.l $0281000f,$ffff66ff,$00000014,$4aa80004 + dc.l $66ff0000,$000a103c,$00024e75,$08010013 + dc.l $66ff0000,$000a103c,$00054e75,$103c0003 + dc.l $4e752028,$00002200,$02807f80,$0000670e + dc.l $0c807f80,$0000671e,$103c0000,$4e750281 + dc.l $007fffff,$66ff0000,$000a103c,$00014e75 + dc.l $103c0004,$4e750281,$007fffff,$66ff0000 + dc.l $000a103c,$00024e75,$08010016,$66ff0000 + dc.l $000a103c,$00054e75,$103c0003,$4e752f01 + dc.l $08280007,$000056e8,$00023228,$00000241 + dc.l $7fff9240,$31410000,$2f08202f,$00040240 + dc.l $00c0e848,$61ffffff,$fae22057,$322f0006 + dc.l $024100c0,$e8494841,$322f0006,$02410030 + dc.l $e84961ff,$fffffc22,$205f08a8,$00070000 + dc.l $4a280002,$670a08e8,$00070000,$42280002 + dc.l $42804aa8,$0004660a,$4aa80008,$660408c0 + dc.l $0002082e,$0001ff66,$670608ee,$0005ff67 + dc.l $588f4e75,$2f010828,$00070000,$56e80002 + dc.l $32280000,$02417fff,$92403141,$00002f08 + dc.l $428061ff,$fffffa64,$2057323c,$00044841 + dc.l $322f0006,$02410030,$e84961ff,$fffffbaa + dc.l $205f08a8,$00070000,$4a280002,$670a08e8 + dc.l $00070000,$42280002,$42804aa8,$0004660a + dc.l $4aa80008,$660408c0,$0002082e,$0001ff66 + dc.l $670608ee,$0005ff67,$588f4e75,$02410010 + dc.l $e8088200,$3001e309,$600e0241,$00108200 + dc.l $48408200,$3001e309,$103b0008,$41fb1620 + dc.l $4e750200,$00020200,$00020200,$00020000 + dc.l $00000a08,$0a080a08,$0a080a08,$0a087fff + dc.l $00000000,$00000000,$00000000,$00007ffe + dc.l $0000ffff,$ffffffff,$ffff0000,$00007ffe + dc.l $0000ffff,$ffffffff,$ffff0000,$00007fff + dc.l $00000000,$00000000,$00000000,$00007fff + dc.l $00000000,$00000000,$00000000,$0000407e + dc.l $0000ffff,$ff000000,$00000000,$0000407e + dc.l $0000ffff,$ff000000,$00000000,$00007fff + dc.l $00000000,$00000000,$00000000,$00007fff + dc.l $00000000,$00000000,$00000000,$000043fe + dc.l $0000ffff,$ffffffff,$f8000000,$000043fe + dc.l $0000ffff,$ffffffff,$f8000000,$00007fff + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$00000000 + dc.l $00000000,$00000000,$00000000,$0000ffff + dc.l $00000000,$00000000,$00000000,$0000fffe + dc.l $0000ffff,$ffffffff,$ffff0000,$0000ffff + dc.l $00000000,$00000000,$00000000,$0000fffe + dc.l $0000ffff,$ffffffff,$ffff0000,$0000ffff + dc.l $00000000,$00000000,$00000000,$0000c07e + dc.l $0000ffff,$ff000000,$00000000,$0000ffff + dc.l $00000000,$00000000,$00000000,$0000c07e + dc.l $0000ffff,$ff000000,$00000000,$0000ffff + dc.l $00000000,$00000000,$00000000,$0000c3fe + dc.l $0000ffff,$ffffffff,$f8000000,$0000ffff + dc.l $00000000,$00000000,$00000000,$0000c3fe + dc.l $0000ffff,$ffffffff,$f8000000,$0000e9ee + dc.l $10c3ff42,$327b120a,$4efb9806,$4afc0008 + dc.l $00e001e0,$01480620,$0078041a,$00100620 + dc.l $4a2eff4e,$664cf228,$d0800000,$f2009000 + dc.l $f2007800,$f23c9000,$00000000,$f201a800 + dc.l $836eff66,$122eff41,$02010038,$6714206e + dc.l $000c61ff,$ffffcfaa,$4a8166ff,$0000385a + dc.l $4e75122e,$ff410241,$000761ff,$00002bb0 + dc.l $4e752228,$00000281,$80000000,$00810080 + dc.l $0000f201,$440060a4,$4a2eff4e,$664cf228 + dc.l $d0800000,$f2009000,$f2007000,$f23c9000 + dc.l $00000000,$f201a800,$836eff66,$122eff41 + dc.l $02010038,$6714206e,$000c61ff,$ffffcf58 + dc.l $4a8166ff,$00003800,$4e75122e,$ff410241 + dc.l $000761ff,$00002b0c,$4e752228,$00000281 + dc.l $80000000,$00810080,$0000f201,$440060a4 + dc.l $4a2eff4e,$664cf228,$d0800000,$f2009000 + dc.l $f2006000,$f23c9000,$00000000,$f201a800 + dc.l $836eff66,$122eff41,$02010038,$6714206e + dc.l $000c61ff,$ffffcf06,$4a8166ff,$000037a6 + dc.l $4e75122e,$ff410241,$000761ff,$00002a68 + dc.l $4e752228,$00000281,$80000000,$00810080 + dc.l $0000f201,$440060a4,$3d680000,$ff84426e + dc.l $ff862d68,$0004ff88,$2d680008,$ff8cf228 + dc.l $d0800000,$61ffffff,$e83e2248,$41eeff84 + dc.l $700c0c2e,$0008ff4a,$672661ff,$ffffcdee + dc.l $4a816600,$00524a2e,$ff4e6602,$4e7508ee + dc.l $0003ff66,$102eff62,$0200000a,$66164e75 + dc.l $61ffffff,$dc4a4a81,$6600002c,$4a2eff4e + dc.l $66dc4e75,$41eeff84,$61ffffff,$f90e4440 + dc.l $02407fff,$026e8000,$ff84816e,$ff84f22e + dc.l $d040ff84,$4e752cae,$ffd460ff,$00003702 + dc.l $02000030,$00000040,$2d40ff5c,$30280000 + dc.l $02407fff,$0c40407e,$6e0000e6,$67000152 + dc.l $0c403f81,$6d000058,$f228d080,$0000f22e + dc.l $9000ff5c,$f23c8800,$00000000,$f2006400 + dc.l $f23c9000,$00000000,$f201a800,$836eff66 + dc.l $122eff41,$02010038,$6714206e,$000c61ff + dc.l $ffffcdda,$4a8166ff,$0000367a,$4e75122e + dc.l $ff410241,$000761ff,$0000293c,$4e7508ee + dc.l $0003ff66,$3d680000,$ff842d68,$0004ff88 + dc.l $2d680008,$ff8c2f08,$42800c2e,$0004ff4e + dc.l $660a41ee,$ff8461ff,$fffff840,$41eeff84 + dc.l $222eff5c,$61ffffff,$fa5841ee,$ff8461ff + dc.l $0000034c,$122eff41,$02010038,$6714206e + dc.l $000c61ff,$ffffcd66,$4a8166ff,$00003606 + dc.l $600e122e,$ff410241,$000761ff,$000028c8 + dc.l $122eff62,$0201000a,$660000b8,$588f4e75 + dc.l $4a280007,$660e4aa8,$00086608,$006e1048 + dc.l $ff666006,$006e1248,$ff662f08,$4a280000 + dc.l $5bc1202e,$ff5c61ff,$fffffae4,$f210d080 + dc.l $f2006400,$122eff41,$02010038,$6714206e + dc.l $000c61ff,$ffffccf6,$4a8166ff,$00003596 + dc.l $600e122e,$ff410241,$000761ff,$00002858 + dc.l $122eff62,$0201000a,$6600007c,$588f4e75 + dc.l $32280000,$02418000,$00413fff,$3d41ff84 + dc.l $2d680004,$ff882d68,$0008ff8c,$f22e9000 + dc.l $ff5cf22e,$4800ff84,$f23c9000,$00000000 + dc.l $f2000018,$f23c5838,$0002f294,$fe7c6000 + dc.l $ff50205f,$3d680000,$ff842d68,$0004ff88 + dc.l $2d680008,$ff8c0c2e,$0004ff4e,$662c41ee + dc.l $ff8461ff,$fffff714,$44800240,$7fffefee + dc.l $004fff84,$6014205f,$3d680000,$ff842d68 + dc.l $0004ff88,$2d680008,$ff8c08ae,$0007ff84 + dc.l $56eeff86,$41eeff84,$122eff5f,$e8090241 + dc.l $000c4841,$122eff5f,$e8090241,$00034280 + dc.l $61ffffff,$f5544a2e,$ff866706,$08ee0007 + dc.l $ff84f22e,$d040ff84,$4e750200,$00300000 + dc.l $00802d40,$ff5c3028,$00000240,$7fff0c40 + dc.l $43fe6e00,$00c86700,$01200c40,$3c016d00 + dc.l $0046f228,$d0800000,$f22e9000,$ff5cf23c + dc.l $88000000,$0000f22e,$7400ff54,$f23c9000 + dc.l $00000000,$f200a800,$816eff66,$226e000c + dc.l $41eeff54,$700861ff,$ffffcaf2,$4a8166ff + dc.l $00003450,$4e7508ee,$0003ff66,$3d680000 + dc.l $ff842d68,$0004ff88,$2d680008,$ff8c2f08 + dc.l $42800c2e,$0004ff4e,$660a41ee,$ff8461ff + dc.l $fffff618,$41eeff84,$222eff5c,$61ffffff + dc.l $f83041ee,$ff8461ff,$000000d2,$2d40ff54 + dc.l $2d41ff58,$226e000c,$41eeff54,$700861ff + dc.l $ffffca8a,$4a8166ff,$000033e8,$122eff62 + dc.l $0201000a,$6600fe9c,$588f4e75,$3028000a + dc.l $024007ff,$6608006e,$1048ff66,$6006006e + dc.l $1248ff66,$2f084a28,$00005bc1,$202eff5c + dc.l $61ffffff,$f8caf210,$d080f22e,$7400ff54 + dc.l $226e000c,$41eeff54,$700861ff,$ffffca2e + dc.l $4a8166ff,$0000338c,$122eff62,$0201000a + dc.l $6600fe74,$588f4e75,$32280000,$02418000 + dc.l $00413fff,$3d41ff84,$2d680004,$ff882d68 + dc.l $0008ff8c,$f22e9000,$ff5cf22e,$4800ff84 + dc.l $f23c9000,$00000000,$f2000018,$f23c5838 + dc.l $0002f294,$feae6000,$ff644280,$30280000 + dc.l $04403fff,$064003ff,$4a280004,$6b025340 + dc.l $4840e988,$4a280000,$6a0408c0,$001f2228 + dc.l $0004e9c1,$10548081,$2d40ff54,$22280004 + dc.l $7015e1a9,$2d41ff58,$22280008,$e9c10015 + dc.l $222eff58,$8280202e,$ff544e75,$42803028 + dc.l $00000440,$3fff0640,$007f4a28,$00046b02 + dc.l $53404840,$ef884a28,$00006a04,$08c0001f + dc.l $22280004,$02817fff,$ff00e089,$80814e75 + dc.l $61ffffff,$e3822f08,$102eff4e,$66000082 + dc.l $082e0004,$ff426712,$122eff43,$e8090241 + dc.l $000761ff,$000024de,$6004102e,$ff43ebc0 + dc.l $06472f00,$41eeff6c,$61ff0000,$2b2002ae + dc.l $cffff00f,$ff84201f,$4a2eff87,$66164aae + dc.l $ff886610,$4aaeff8c,$660a4a80,$6606026e + dc.l $f000ff84,$41eeff84,$225f700c,$0c2e0008 + dc.l $ff4a670e,$61ffffff,$c8d44a81,$6600fb38 + dc.l $4e7561ff,$ffffd748,$4a816600,$fb2a4e75 + dc.l $0c000004,$6700ff7a,$41eeff6c,$426eff6e + dc.l $0c000005,$670260c0,$006e4080,$ff6608ee + dc.l $0006ff70,$60b251fc,$51fc51fc,$51fc51fc + dc.l $ffffc001,$ffffff81,$fffffc01,$00004000 + dc.l $0000007f,$000003ff,$02000030,$00000040 + dc.l $60080200,$00300000,$00802d40,$ff5c4241 + dc.l $122eff4f,$e709822e,$ff4e6600,$02e43d69 + dc.l $0000ff90,$2d690004,$ff942d69,$0008ff98 + dc.l $3d680000,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c61ff,$ffffef24,$2f0061ff,$ffffefc8 + dc.l $d197322e,$ff5eec09,$201fb0bb,$14846700 + dc.l $011e6d00,$0062b0bb,$14846700,$021a6e00 + dc.l $014af22e,$d080ff90,$f22e9000,$ff5cf23c + dc.l $88000000,$0000f22e,$4823ff84,$f201a800 + dc.l $f23c9000,$00000000,$83aeff64,$f22ef080 + dc.l $ff842f02,$322eff84,$24010281,$00007fff + dc.l $02428000,$92808242,$3d41ff84,$241ff22e + dc.l $d080ff84,$4e75f22e,$d080ff90,$f22e9000 + dc.l $ff5cf23c,$88000000,$0000f22e,$4823ff84 + dc.l $f201a800,$f23c9000,$00000000,$83aeff64 + dc.l $00ae0000,$1048ff64,$122eff62,$02010013 + dc.l $661c082e,$0003ff64,$56c1202e,$ff5c61ff + dc.l $fffff5dc,$812eff64,$f210d080,$4e75222e + dc.l $ff5c0201,$00c06634,$f22ef080,$ff842f02 + dc.l $322eff84,$34010281,$00007fff,$92800481 + dc.l $00006000,$02417fff,$02428000,$82423d41 + dc.l $ff84241f,$f22ed040,$ff8460a6,$f22ed080 + dc.l $ff90222e,$ff5c0201,$0030f201,$9000f22e + dc.l $4823ff84,$f23c9000,$00000000,$60aaf22e + dc.l $d080ff90,$f22e9000,$ff5cf23c,$88000000 + dc.l $0000f22e,$4823ff84,$f201a800,$f23c9000 + dc.l $00000000,$83aeff64,$f2000098,$f23c58b8 + dc.l $0002f293,$ff3c6000,$fee408ee,$0003ff66 + dc.l $f22ed080,$ff90f23c,$90000000,$0010f23c + dc.l $88000000,$0000f22e,$4823ff84,$f201a800 + dc.l $f23c9000,$00000000,$83aeff64,$122eff62 + dc.l $0201000b,$6620f22e,$f080ff84,$41eeff84 + dc.l $222eff5c,$61ffffff,$f3e8812e,$ff64f22e + dc.l $d080ff84,$4e75f22e,$d040ff90,$222eff5c + dc.l $020100c0,$6652f22e,$9000ff5c,$f23c8800 + dc.l $00000000,$f22e48a3,$ff84f23c,$90000000 + dc.l $0000f22e,$f040ff84,$2f02322e,$ff842401 + dc.l $02810000,$7fff0242,$80009280,$06810000 + dc.l $60000241,$7fff8242,$3d41ff84,$241ff22e + dc.l $d040ff84,$6000ff80,$222eff5c,$02010030 + dc.l $f2019000,$60a6f22e,$d080ff90,$f22e9000 + dc.l $ff5cf23c,$88000000,$0000f22e,$4823ff84 + dc.l $f201a800,$f23c9000,$00000000,$83aeff64 + dc.l $f2000098,$f23c58b8,$0002f292,$fde0f294 + dc.l $fefaf22e,$d040ff90,$222eff5c,$020100c0 + dc.l $00010010,$f2019000,$f23c8800,$00000000 + dc.l $f22e48a3,$ff84f23c,$90000000,$0000f200 + dc.l $0498f23c,$58b80002,$f293fda2,$6000febc + dc.l $323b120a,$4efb1006,$4afc0030,$fd120072 + dc.l $00cc006c,$fd120066,$00000000,$00720072 + dc.l $0060006c,$00720066,$00000000,$009e0060 + dc.l $009e006c,$009e0066,$00000000,$006c006c + dc.l $006c006c,$006c0066,$00000000,$fd120072 + dc.l $00cc006c,$fd120066,$00000000,$00660066 + dc.l $00660066,$00660066,$00000000,$60ffffff + dc.l $ed6460ff,$ffffecda,$60ffffff,$ecd41028 + dc.l $00001229,$0000b101,$6a10f23c,$44008000 + dc.l $00001d7c,$000cff64,$4e75f23c,$44000000 + dc.l $00001d7c,$0004ff64,$4e75f229,$d0800000 + dc.l $10280000,$12290000,$b1016a10,$f2000018 + dc.l $f200001a,$1d7c000a,$ff644e75,$f2000018 + dc.l $1d7c0002,$ff644e75,$f228d080,$00001028 + dc.l $00001229,$0000b101,$6ae260d0,$02000030 + dc.l $00000040,$60080200,$00300000,$00802d40 + dc.l $ff5c122e,$ff4e6600,$02620200,$00c06600 + dc.l $007c4a28,$00006a06,$08ee0003,$ff64f228 + dc.l $d0800000,$4e750200,$00c06600,$006008ee + dc.l $0003ff66,$4a280000,$6a0608ee,$0003ff64 + dc.l $f228d080,$0000082e,$0003ff62,$66024e75 + dc.l $3d680000,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c41ee,$ff8461ff,$ffffef60,$44400640 + dc.l $6000322e,$ff840241,$80000240,$7fff8041 + dc.l $3d40ff84,$f22ed040,$ff844e75,$0c000040 + dc.l $667e3d68,$0000ff84,$2d680004,$ff882d68 + dc.l $0008ff8c,$61ffffff,$eac20c80,$0000007f + dc.l $6c000092,$0c80ffff,$ff816700,$01786d00 + dc.l $00f4f23c,$88000000,$0000f22e,$9000ff5c + dc.l $f22e4800,$ff84f201,$a800f23c,$90000000 + dc.l $000083ae,$ff642f02,$f22ef080,$ff84322e + dc.l $ff843401,$02810000,$7fff9280,$02428000 + dc.l $84413d42,$ff84241f,$f22ed080,$ff844e75 + dc.l $3d680000,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c61ff,$ffffea44,$0c800000,$03ff6c00 + dc.l $00140c80,$fffffc01,$670000fa,$6d000076 + dc.l $6000ff80,$08ee0003,$ff664a2e,$ff846a06 + dc.l $08ee0003,$ff64122e,$ff620201,$000b661a + dc.l $41eeff84,$222eff5c,$61ffffff,$f084812e + dc.l $ff64f22e,$d080ff84,$4e752d6e,$ff88ff94 + dc.l $2d6eff8c,$ff98322e,$ff842f02,$34010281 + dc.l $00007fff,$92800242,$80000681,$00006000 + dc.l $02417fff,$84413d42,$ff90f22e,$d040ff90 + dc.l $241f60ac,$f23c8800,$00000000,$f22e9000 + dc.l $ff5cf22e,$4800ff84,$f23c9000,$00000000 + dc.l $f201a800,$83aeff64,$00ae0000,$1048ff64 + dc.l $122eff62,$02010013,$661c082e,$0003ff64 + dc.l $56c1202e,$ff5c61ff,$fffff0f4,$812eff64 + dc.l $f210d080,$4e752f02,$322eff84,$24010281 + dc.l $00007fff,$02428000,$92800481,$00006000 + dc.l $02417fff,$82423d41,$ff84241f,$f22ed040 + dc.l $ff8460b6,$f23c8800,$00000000,$f22e9000 + dc.l $ff5cf22e,$4800ff84,$f201a800,$f23c9000 + dc.l $00000000,$83aeff64,$f2000098,$f23c58b8 + dc.l $0002f293,$ff746000,$fe7e0c01,$00046700 + dc.l $fdb60c01,$000567ff,$ffffe9ee,$0c010003 + dc.l $67ffffff,$e9f8f228,$48000000,$f200a800 + dc.l $e1981d40,$ff644e75,$51fc51fc,$51fc51fc + dc.l $00003fff,$0000007e,$000003fe,$ffffc001 + dc.l $ffffff81,$fffffc01,$02000030,$00000040 + dc.l $60080200,$00300000,$00802d40,$ff5c4241 + dc.l $122eff4f,$e709822e,$ff4e6600,$02d63d69 + dc.l $0000ff90,$2d690004,$ff942d69,$0008ff98 + dc.l $3d680000,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c61ff,$ffffe864,$2f0061ff,$ffffe908 + dc.l $4497d197,$322eff5e,$ec09201f,$b0bb148e + dc.l $6f000074,$b0bb1520,$ff7a6700,$020c6e00 + dc.l $013cf22e,$d080ff90,$f22e9000,$ff5cf23c + dc.l $88000000,$0000f22e,$4820ff84,$f201a800 + dc.l $f23c9000,$00000000,$83aeff64,$f22ef080 + dc.l $ff842f02,$322eff84,$24010281,$00007fff + dc.l $02428000,$92808242,$3d41ff84,$241ff22e + dc.l $d080ff84,$4e750000,$7fff0000,$407f0000 + dc.l $43ff201f,$60c62f00,$f22ed080,$ff90f22e + dc.l $9000ff5c,$f23c8800,$00000000,$f22e4820 + dc.l $ff84f200,$a800f23c,$90000000,$000081ae + dc.l $ff64f227,$e0013017,$dffc0000,$000c0280 + dc.l $00007fff,$9097b0bb,$14ae6db6,$201f00ae + dc.l $00001048,$ff64122e,$ff620201,$0013661c + dc.l $082e0003,$ff6456c1,$202eff5c,$61ffffff + dc.l $eeee812e,$ff64f210,$d0804e75,$222eff5c + dc.l $020100c0,$6634f22e,$f080ff84,$2f02322e + dc.l $ff843401,$02810000,$7fff9280,$04810000 + dc.l $60000241,$7fff0242,$80008242,$3d41ff84 + dc.l $241ff22e,$d040ff84,$60a6f22e,$d080ff90 + dc.l $222eff5c,$02010030,$f2019000,$f22e4820 + dc.l $ff84f23c,$90000000,$000060aa,$08ee0003 + dc.l $ff66f22e,$d080ff90,$f23c9000,$00000010 + dc.l $f23c8800,$00000000,$f22e4820,$ff84f201 + dc.l $a800f23c,$90000000,$000083ae,$ff64122e + dc.l $ff620201,$000b6620,$f22ef080,$ff8441ee + dc.l $ff84222e,$ff5c61ff,$ffffed36,$812eff64 + dc.l $f22ed080,$ff844e75,$f22ed040,$ff90222e + dc.l $ff5c0201,$00c06652,$f22e9000,$ff5cf23c + dc.l $88000000,$0000f22e,$48a0ff84,$f23c9000 + dc.l $00000000,$f22ef040,$ff842f02,$322eff84 + dc.l $24010281,$00007fff,$02428000,$92800681 + dc.l $00006000,$02417fff,$82423d41,$ff84241f + dc.l $f22ed040,$ff846000,$ff80222e,$ff5c0201 + dc.l $0030f201,$900060a6,$f22ed080,$ff90f22e + dc.l $9000ff5c,$f23c8800,$00000000,$f22e4820 + dc.l $ff84f201,$a800f23c,$90000000,$000083ae + dc.l $ff64f200,$0098f23c,$58b80001,$f292fdee + dc.l $f294fefa,$f22ed040,$ff90222e,$ff5c0201 + dc.l $00c00001,$0010f201,$9000f23c,$88000000 + dc.l $0000f22e,$48a0ff84,$f23c9000,$00000000 + dc.l $f2000498,$f23c58b8,$0001f293,$fdb06000 + dc.l $febc323b,$120a4efb,$10064afc,$0030fd20 + dc.l $009e0072,$0060fd20,$00660000,$00000072 + dc.l $006c0072,$00600072,$00660000,$000000d0 + dc.l $00d0006c,$006000d0,$00660000,$00000060 + dc.l $00600060,$00600060,$00660000,$0000fd20 + dc.l $009e0072,$0060fd20,$00660000,$00000066 + dc.l $00660066,$00660066,$00660000,$000060ff + dc.l $ffffe62e,$60ffffff,$e62860ff,$ffffe6a6 + dc.l $10280000,$12290000,$b1016a10,$f23c4400 + dc.l $80000000,$1d7c000c,$ff644e75,$f23c4400 + dc.l $00000000,$1d7c0004,$ff644e75,$006e0410 + dc.l $ff661028,$00001229,$0000b101,$6a10f23c + dc.l $4400ff80,$00001d7c,$000aff64,$4e75f23c + dc.l $44007f80,$00001d7c,$0002ff64,$4e751029 + dc.l $00001228,$0000b101,$6a16f229,$d0800000 + dc.l $f2000018,$f200001a,$1d7c000a,$ff644e75 + dc.l $f229d080,$0000f200,$00181d7c,$0002ff64 + dc.l $4e750200,$00300000,$00406008,$02000030 + dc.l $00000080,$2d40ff5c,$122eff4e,$66000276 + dc.l $020000c0,$66000090,$2d680004,$ff882d68 + dc.l $0008ff8c,$30280000,$0a408000,$6a061d7c + dc.l $0008ff64,$3d40ff84,$f22ed080,$ff844e75 + dc.l $020000c0,$666008ee,$0003ff66,$2d680004 + dc.l $ff882d68,$0008ff8c,$30280000,$0a408000 + dc.l $6a061d7c,$0008ff64,$3d40ff84,$f22ed080 + dc.l $ff84082e,$0003ff62,$66024e75,$41eeff84 + dc.l $61ffffff,$e8764440,$06406000,$322eff84 + dc.l $02418000,$02407fff,$80413d40,$ff84f22e + dc.l $d040ff84,$4e750c00,$0040667e,$3d680000 + dc.l $ff842d68,$0004ff88,$2d680008,$ff8c61ff + dc.l $ffffe3d8,$0c800000,$007f6c00,$00900c80 + dc.l $ffffff81,$67000178,$6d0000f4,$f23c8800 + dc.l $00000000,$f22e9000,$ff5cf22e,$481aff84 + dc.l $f201a800,$f23c9000,$00000000,$83aeff64 + dc.l $2f02f22e,$f080ff84,$322eff84,$34010281 + dc.l $00007fff,$92800242,$80008441,$3d42ff84 + dc.l $241ff22e,$d080ff84,$4e753d68,$0000ff84 + dc.l $2d680004,$ff882d68,$0008ff8c,$61ffffff + dc.l $e35a0c80,$000003ff,$6c120c80,$fffffc01 + dc.l $670000fc,$6d000078,$6000ff82,$08ee0003 + dc.l $ff660a2e,$0080ff84,$6a0608ee,$0003ff64 + dc.l $122eff62,$0201000b,$661a41ee,$ff84222e + dc.l $ff5c61ff,$ffffe99a,$812eff64,$f22ed080 + dc.l $ff844e75,$2d6eff88,$ff942d6e,$ff8cff98 + dc.l $322eff84,$2f022401,$02810000,$7fff0242 + dc.l $80009280,$06810000,$60000241,$7fff8242 + dc.l $3d41ff90,$f22ed040,$ff90241f,$60acf23c + dc.l $88000000,$0000f22e,$9000ff5c,$f22e481a + dc.l $ff84f23c,$90000000,$0000f201,$a80083ae + dc.l $ff6400ae,$00001048,$ff64122e,$ff620201 + dc.l $0013661c,$082e0003,$ff6456c1,$202eff5c + dc.l $61ffffff,$ea0a812e,$ff64f210,$d0804e75 + dc.l $2f02322e,$ff842401,$02810000,$7fff0242 + dc.l $80009280,$04810000,$60000241,$7fff8242 + dc.l $3d41ff84,$f22ed040,$ff84241f,$60b6f23c + dc.l $88000000,$0000f22e,$9000ff5c,$f22e481a + dc.l $ff84f201,$a800f23c,$90000000,$000083ae + dc.l $ff64f200,$0098f23c,$58b80002,$f293ff74 + dc.l $6000fe7e,$0c010004,$6700fdb6,$0c010005 + dc.l $67ffffff,$e3040c01,$000367ff,$ffffe30e + dc.l $f228481a,$0000f200,$a800e198,$1d40ff64 + dc.l $4e75122e,$ff4e6610,$4a280000,$6b024e75 + dc.l $1d7c0008,$ff644e75,$0c010001,$67400c01 + dc.l $00026724,$0c010005,$67ffffff,$e2bc0c01 + dc.l $000367ff,$ffffe2c6,$4a280000,$6b024e75 + dc.l $1d7c0008,$ff644e75,$4a280000,$6b081d7c + dc.l $0002ff64,$4e751d7c,$000aff64,$4e754a28 + dc.l $00006b08,$1d7c0004,$ff644e75,$1d7c000c + dc.l $ff644e75,$122eff4e,$66280200,$0030f200 + dc.l $9000f23c,$88000000,$0000f228,$48010000 + dc.l $f23c9000,$00000000,$f200a800,$81aeff64 + dc.l $4e750c01,$0001672e,$0c010002,$674e0c01 + dc.l $00046710,$0c010005,$67ffffff,$e22c60ff + dc.l $ffffe23a,$3d680000,$ff841d7c,$0080ff88 + dc.l $41eeff84,$60a44a28,$00006b10,$f23c4400 + dc.l $00000000,$1d7c0004,$ff644e75,$f23c4400 + dc.l $80000000,$1d7c000c,$ff644e75,$f228d080 + dc.l $00004a28,$00006b08,$1d7c0002,$ff644e75 + dc.l $1d7c000a,$ff644e75,$122eff4e,$6618f23c + dc.l $88000000,$0000f228,$48030000,$f200a800 + dc.l $81aeff64,$4e750c01,$0001672e,$0c010002 + dc.l $674e0c01,$00046710,$0c010005,$67ffffff + dc.l $e19860ff,$ffffe1a6,$3d680000,$ff841d7c + dc.l $0080ff88,$41eeff84,$60b44a28,$00006b10 + dc.l $f23c4400,$00000000,$1d7c0004,$ff644e75 + dc.l $f23c4400,$80000000,$1d7c000c,$ff644e75 + dc.l $f228d080,$00004a28,$00006b08,$1d7c0002 + dc.l $ff644e75,$1d7c000a,$ff644e75,$02000030 + dc.l $00000040,$60080200,$00300000,$00802d40 + dc.l $ff5c122e,$ff4e6600,$025c0200,$00c0667e + dc.l $2d680004,$ff882d68,$0008ff8c,$32280000 + dc.l $0881000f,$3d41ff84,$f22ed080,$ff844e75 + dc.l $020000c0,$665808ee,$0003ff66,$2d680004 + dc.l $ff882d68,$0008ff8c,$30280000,$0880000f + dc.l $3d40ff84,$f22ed080,$ff84082e,$0003ff62 + dc.l $66024e75,$41eeff84,$61ffffff,$e41e4440 + dc.l $06406000,$322eff84,$02418000,$02407fff + dc.l $80413d40,$ff84f22e,$d040ff84,$4e750c00 + dc.l $0040667e,$3d680000,$ff842d68,$0004ff88 + dc.l $2d680008,$ff8c61ff,$ffffdf80,$0c800000 + dc.l $007f6c00,$00900c80,$ffffff81,$67000170 + dc.l $6d0000ec,$f23c8800,$00000000,$f22e9000 + dc.l $ff5cf22e,$4818ff84,$f201a800,$f23c9000 + dc.l $00000000,$83aeff64,$2f02f22e,$f080ff84 + dc.l $322eff84,$24010281,$00007fff,$92800242 + dc.l $80008441,$3d42ff84,$241ff22e,$d080ff84 + dc.l $4e753d68,$0000ff84,$2d680004,$ff882d68 + dc.l $0008ff8c,$61ffffff,$df020c80,$000003ff + dc.l $6c120c80,$fffffc01,$670000f4,$6d000070 + dc.l $6000ff82,$08ee0003,$ff6608ae,$0007ff84 + dc.l $122eff62,$0201000b,$661a41ee,$ff84222e + dc.l $ff5c61ff,$ffffe54a,$812eff64,$f22ed080 + dc.l $ff844e75,$2d6eff88,$ff942d6e,$ff8cff98 + dc.l $322eff84,$2f022401,$02810000,$7fff0242 + dc.l $80009280,$06810000,$60000241,$7fff8242 + dc.l $3d41ff90,$f22ed040,$ff90241f,$60acf23c + dc.l $88000000,$0000f22e,$9000ff5c,$f22e4818 + dc.l $ff84f23c,$90000000,$0000f201,$a80083ae + dc.l $ff6400ae,$00001048,$ff64122e,$ff620201 + dc.l $0013661c,$082e0003,$ff6456c1,$202eff5c + dc.l $61ffffff,$e5ba812e,$ff64f210,$d0804e75 + dc.l $2f02322e,$ff842401,$02810000,$7fff0242 + dc.l $80009280,$04810000,$60000241,$7fff8242 + dc.l $3d41ff84,$f22ed040,$ff84241f,$60b6f23c + dc.l $88000000,$0000f22e,$9000ff5c,$f22e4818 + dc.l $ff84f201,$a800f23c,$90000000,$000083ae + dc.l $ff64f200,$0098f23c,$58b80002,$f293ff74 + dc.l $6000fe86,$0c010004,$6700fdc6,$0c010005 + dc.l $67ffffff,$deb40c01,$000367ff,$ffffdebe + dc.l $f2284818,$00000c01,$00026708,$1d7c0004 + dc.l $ff644e75,$1d7c0002,$ff644e75,$4241122e + dc.l $ff4fe709,$822eff4e,$6618f229,$d0800000 + dc.l $f2284838,$0000f200,$a800e198,$1d40ff64 + dc.l $4e75323b,$120a4efb,$10064afc,$0030ffdc + dc.l $ffdcffdc,$006000f8,$006e0000,$0000ffdc + dc.l $ffdcffdc,$0060007c,$006e0000,$0000ffdc + dc.l $ffdcffdc,$0060007c,$006e0000,$00000060 + dc.l $00600060,$00600060,$006e0000,$00000114 + dc.l $009c009c,$006000bc,$006e0000,$0000006e + dc.l $006e006e,$006e006e,$006e0000,$000061ff + dc.l $ffffddde,$022e00f7,$ff644e75,$61ffffff + dc.l $ddd0022e,$00f7ff64,$4e753d68,$0000ff84 + dc.l $20280004,$08c0001f,$2d40ff88,$2d680008 + dc.l $ff8c41ee,$ff846000,$ff422d69,$0000ff84 + dc.l $20290004,$08c0001f,$2d40ff88,$2d690008 + dc.l $ff8c43ee,$ff846000,$ff223d69,$0000ff90 + dc.l $3d680000,$ff842029,$000408c0,$001f2d40 + dc.l $ff942028,$000408c0,$001f2d40,$ff882d69 + dc.l $0008ff98,$2d680008,$ff8c43ee,$ff9041ee + dc.l $ff846000,$fee61028,$00001229,$0000b101 + dc.l $6b00ff78,$4a006b02,$4e751d7c,$0008ff64 + dc.l $4e751028,$00001229,$0000b101,$6b00ff7c + dc.l $4a006a02,$4e751d7c,$0008ff64,$4e752d40 + dc.l $ff5c4241,$122eff4f,$e709822e,$ff4e6600 + dc.l $02a03d69,$0000ff90,$2d690004,$ff942d69 + dc.l $0008ff98,$3d680000,$ff842d68,$0004ff88 + dc.l $2d680008,$ff8c61ff,$ffffdbf0,$2f0061ff + dc.l $ffffdc94,$d09f0c80,$ffffc001,$670000f8 + dc.l $6d000064,$0c800000,$40006700,$01da6e00 + dc.l $0122f22e,$d080ff90,$f22e9000,$ff5cf23c + dc.l $88000000,$0000f22e,$4827ff84,$f201a800 + dc.l $f23c9000,$00000000,$83aeff64,$f22ef080 + dc.l $ff842f02,$322eff84,$24010281,$00007fff + dc.l $02428000,$92808242,$3d41ff84,$241ff22e + dc.l $d080ff84,$4e75f22e,$d080ff90,$f22e9000 + dc.l $ff5cf23c,$88000000,$0000f22e,$4827ff84 + dc.l $f201a800,$f23c9000,$00000000,$83aeff64 + dc.l $00ae0000,$1048ff64,$122eff62,$02010013 + dc.l $6620082e,$0003ff64,$56c1202e,$ff5c0200 + dc.l $003061ff,$ffffe2a8,$812eff64,$f210d080 + dc.l $4e75f22e,$f080ff84,$2f02322e,$ff842401 + dc.l $02810000,$7fff9280,$04810000,$60000241 + dc.l $7fff0242,$80008242,$3d41ff84,$241ff22e + dc.l $d040ff84,$60acf22e,$d080ff90,$f22e9000 + dc.l $ff5cf23c,$88000000,$0000f22e,$4827ff84 + dc.l $f201a800,$f23c9000,$00000000,$83aeff64 + dc.l $f2000098,$f23c58b8,$0002f293,$ff646000 + dc.l $ff0c08ee,$0003ff66,$f22ed080,$ff90f23c + dc.l $90000000,$0010f23c,$88000000,$0000f22e + dc.l $4827ff84,$f201a800,$f23c9000,$00000000 + dc.l $83aeff64,$122eff62,$0201000b,$6620f22e + dc.l $f080ff84,$41eeff84,$222eff5c,$61ffffff + dc.l $e166812e,$ff64f22e,$d080ff84,$4e75f22e + dc.l $d040ff90,$f22e9000,$ff5cf23c,$88000000 + dc.l $0000f22e,$48a7ff84,$f23c9000,$00000000 + dc.l $f22ef040,$ff842f02,$322eff84,$24010281 + dc.l $00007fff,$02428000,$92800681,$00006000 + dc.l $02417fff,$82423d41,$ff84241f,$f22ed040 + dc.l $ff846000,$ff8af22e,$d080ff90,$f22e9000 + dc.l $ff5cf23c,$88000000,$0000f22e,$4827ff84 + dc.l $f201a800,$f23c9000,$00000000,$83aeff64 + dc.l $f2000098,$f23c58b8,$0002f292,$fe20f294 + dc.l $ff12f22e,$d040ff90,$222eff5c,$020100c0 + dc.l $00010010,$f2019000,$f23c8800,$00000000 + dc.l $f22e48a7,$ff84f23c,$90000000,$0000f200 + dc.l $0498f23c,$58b80002,$f293fde2,$6000fed4 + dc.l $323b120a,$4efb1006,$4afc0030,$fd560072 + dc.l $0078006c,$fd560066,$00000000,$00720072 + dc.l $0060006c,$00720066,$00000000,$007e0060 + dc.l $007e006c,$007e0066,$00000000,$006c006c + dc.l $006c006c,$006c0066,$00000000,$fd560072 + dc.l $0078006c,$fd560066,$00000000,$00660066 + dc.l $00660066,$00660066,$00000000,$60ffffff + dc.l $da7460ff,$ffffd9ea,$60ffffff,$d9e460ff + dc.l $ffffed0e,$60ffffff,$ed6260ff,$ffffed2e + dc.l $2d40ff5c,$4241122e,$ff4fe709,$822eff4e + dc.l $6600027c,$3d690000,$ff902d69,$0004ff94 + dc.l $2d690008,$ff983d68,$0000ff84,$2d680004 + dc.l $ff882d68,$0008ff8c,$61ffffff,$d8ae2f00 + dc.l $61ffffff,$d9524497,$d197322e,$ff5eec09 + dc.l $201f0c80,$ffffc001,$6f000064,$0c800000 + dc.l $3fff6700,$01b66e00,$0100f22e,$d080ff90 + dc.l $f22e9000,$ff5cf23c,$88000000,$0000f22e + dc.l $4824ff84,$f201a800,$f23c9000,$00000000 + dc.l $83aeff64,$f22ef080,$ff842f02,$322eff84 + dc.l $24010281,$00007fff,$02428000,$92808242 + dc.l $3d41ff84,$241ff22e,$d080ff84,$4e75f22e + dc.l $d080ff90,$f22e9000,$ff5cf23c,$88000000 + dc.l $0000f22e,$4824ff84,$f201a800,$f23c9000 + dc.l $00000000,$83aeff64,$f227e001,$3217dffc + dc.l $0000000c,$02810000,$7fff9280,$0c810000 + dc.l $7fff6d90,$006e1048,$ff66122e,$ff620201 + dc.l $00136620,$082e0003,$ff6456c1,$202eff5c + dc.l $02000030,$61ffffff,$df46812e,$ff64f210 + dc.l $d0804e75,$f22ef080,$ff842f02,$322eff84 + dc.l $24010281,$00007fff,$02428000,$92800481 + dc.l $00006000,$02417fff,$82423d41,$ff84241f + dc.l $f22ed040,$ff8460ac,$08ee0003,$ff66f22e + dc.l $d080ff90,$f23c9000,$00000010,$f23c8800 + dc.l $00000000,$f22e4824,$ff84f201,$a800f23c + dc.l $90000000,$000083ae,$ff64122e,$ff620201 + dc.l $000b6620,$f22ef080,$ff8441ee,$ff84222e + dc.l $ff5c61ff,$ffffde40,$812eff64,$f22ed080 + dc.l $ff844e75,$f22ed040,$ff90f22e,$9000ff5c + dc.l $f23c8800,$00000000,$f22e48a4,$ff84f23c + dc.l $90000000,$0000f22e,$f040ff84,$2f02322e + dc.l $ff842401,$02810000,$7fff0242,$80009280 + dc.l $06810000,$60000241,$7fff8242,$3d41ff84 + dc.l $241ff22e,$d040ff84,$608af22e,$d080ff90 + dc.l $f22e9000,$ff5cf23c,$88000000,$0000f22e + dc.l $4824ff84,$f201a800,$f23c9000,$00000000 + dc.l $83aeff64,$f2000098,$f23c58b8,$0001f292 + dc.l $fe44f294,$ff14f22e,$d040ff90,$42810001 + dc.l $0010f201,$9000f23c,$88000000,$0000f22e + dc.l $48a4ff84,$f23c9000,$00000000,$f2000498 + dc.l $f23c58b8,$0001f293,$fe0c6000,$fedc323b + dc.l $120a4efb,$10064afc,$0030fd7a,$00720078 + dc.l $0060fd7a,$00660000,$00000078,$006c0078 + dc.l $00600078,$00660000,$0000007e,$007e006c + dc.l $0060007e,$00660000,$00000060,$00600060 + dc.l $00600060,$00660000,$0000fd7a,$00720078 + dc.l $0060fd7a,$00660000,$00000066,$00660066 + dc.l $00660066,$00660000,$000060ff,$ffffd6d2 + dc.l $60ffffff,$d6cc60ff,$ffffd74a,$60ffffff + dc.l $f0ce60ff,$fffff09c,$60ffffff,$f0f40200 + dc.l $00300000,$00406008,$02000030,$00000080 + dc.l $2d40ff5c,$4241122e,$ff4fe709,$822eff4e + dc.l $6600024c,$61ffffff,$d4b2f22e,$d080ff90 + dc.l $f23c8800,$00000000,$f22e9000,$ff5cf22e + dc.l $4822ff84,$f23c9000,$00000000,$f201a800 + dc.l $83aeff64,$f281003c,$2f02f227,$e001322e + dc.l $ff5eec09,$34170282,$00007fff,$9480b4bb + dc.l $14246c38,$b4bb142a,$6d0000b8,$67000184 + dc.l $32170241,$80008242,$3e81f21f,$d080241f + dc.l $4e754e75,$00007fff,$0000407f,$000043ff + dc.l $00000000,$00003f81,$00003c01,$00ae0000 + dc.l $1048ff64,$122eff62,$02010013,$6624dffc + dc.l $0000000c,$082e0003,$ff6456c1,$202eff5c + dc.l $61ffffff,$dc7a812e,$ff64f210,$d080241f + dc.l $4e75122e,$ff5c0201,$00c0661a,$32170241 + dc.l $80000482,$00006000,$02427fff,$82423e81 + dc.l $f21fd040,$60bef22e,$d080ff90,$222eff5c + dc.l $02010030,$f2019000,$f22e4822,$ff84f23c + dc.l $90000000,$0000dffc,$0000000c,$f227e001 + dc.l $60ba08ee,$0003ff66,$dffc0000,$000cf22e + dc.l $d080ff90,$f23c9000,$00000010,$f23c8800 + dc.l $00000000,$f22e4822,$ff84f23c,$90000000 + dc.l $0000f201,$a80083ae,$ff64122e,$ff620201 + dc.l $000b6622,$f22ef080,$ff8441ee,$ff84222e + dc.l $ff5c61ff,$ffffdaca,$812eff64,$f22ed080 + dc.l $ff84241f,$4e75f22e,$d040ff90,$222eff5c + dc.l $020100c0,$664ef22e,$9000ff5c,$f23c8800 + dc.l $00000000,$f22e48a2,$ff84f23c,$90000000 + dc.l $0000f22e,$f040ff84,$322eff84,$24010281 + dc.l $00007fff,$02428000,$92800681,$00006000 + dc.l $02417fff,$82423d41,$ff84f22e,$d040ff84 + dc.l $6000ff82,$222eff5c,$02010030,$f2019000 + dc.l $60aa222e,$ff5c0201,$00c06700,$fe74222f + dc.l $00040c81,$80000000,$6600fe66,$4aaf0008 + dc.l $6600fe5e,$082e0001,$ff666700,$fe54f22e + dc.l $d040ff90,$222eff5c,$020100c0,$00010010 + dc.l $f2019000,$f23c8800,$00000000,$f22e48a2 + dc.l $ff84f23c,$90000000,$0000f200,$0018f200 + dc.l $0498f200,$0438f292,$feca6000,$fe14323b + dc.l $120a4efb,$10064afc,$0030fdaa,$00e4011c + dc.l $0060fdaa,$00660000,$000000bc,$006c011c + dc.l $006000bc,$00660000,$00000130,$0130010c + dc.l $00600130,$00660000,$00000060,$00600060 + dc.l $00600060,$00660000,$0000fdaa,$00e4011c + dc.l $0060fdaa,$00660000,$00000066,$00660066 + dc.l $00660066,$00660000,$000060ff,$ffffd3d2 + dc.l $60ffffff,$d3cc1028,$00001229,$0000b101 + dc.l $6b000016,$4a006b2e,$f23c4400,$00000000 + dc.l $1d7c0004,$ff644e75,$122eff5f,$02010030 + dc.l $0c010020,$6710f23c,$44000000,$00001d7c + dc.l $0004ff64,$4e75f23c,$44008000,$00001d7c + dc.l $000cff64,$4e753d68,$0000ff84,$2d680004 + dc.l $ff882d68,$0008ff8c,$61ffffff,$d27e426e + dc.l $ff9042ae,$ff9442ae,$ff986000,$fcce3d69 + dc.l $0000ff90,$2d690004,$ff942d69,$0008ff98 + dc.l $61ffffff,$d302426e,$ff8442ae,$ff8842ae + dc.l $ff8c6000,$fca61028,$00001229,$0000b300 + dc.l $6bffffff,$d3a0f228,$d0800000,$4a280000 + dc.l $6a1c1d7c,$000aff64,$4e75f229,$d0800000 + dc.l $4a290000,$6a081d7c,$000aff64,$4e751d7c + dc.l $0002ff64,$4e750200,$00300000,$00406008 + dc.l $02000030,$00000080,$2d40ff5c,$4241122e + dc.l $ff4fe709,$822eff4e,$6600024c,$61ffffff + dc.l $d0eaf22e,$d080ff90,$f23c8800,$00000000 + dc.l $f22e9000,$ff5cf22e,$4828ff84,$f23c9000 + dc.l $00000000,$f201a800,$83aeff64,$f281003c + dc.l $2f02f227,$e001322e,$ff5eec09,$34170282 + dc.l $00007fff,$9480b4bb,$14246c38,$b4bb142a + dc.l $6d0000b8,$67000184,$32170241,$80008242 + dc.l $3e81f21f,$d080241f,$4e754e75,$00007fff + dc.l $0000407f,$000043ff,$00000000,$00003f81 + dc.l $00003c01,$00ae0000,$1048ff64,$122eff62 + dc.l $02010013,$6624dffc,$0000000c,$082e0003 + dc.l $ff6456c1,$202eff5c,$61ffffff,$d8b2812e + dc.l $ff64f210,$d080241f,$4e75122e,$ff5c0201 + dc.l $00c0661a,$32170241,$80000482,$00006000 + dc.l $02427fff,$82423e81,$f21fd040,$60bef22e + dc.l $d080ff90,$222eff5c,$02010030,$f2019000 + dc.l $f22e4828,$ff84f23c,$90000000,$0000dffc + dc.l $0000000c,$f227e001,$60ba08ee,$0003ff66 + dc.l $dffc0000,$000cf22e,$d080ff90,$f23c9000 + dc.l $00000010,$f23c8800,$00000000,$f22e4828 + dc.l $ff84f23c,$90000000,$0000f201,$a80083ae + dc.l $ff64122e,$ff620201,$000b6622,$f22ef080 + dc.l $ff8441ee,$ff84222e,$ff5c61ff,$ffffd702 + dc.l $812eff64,$f22ed080,$ff84241f,$4e75f22e + dc.l $d040ff90,$222eff5c,$020100c0,$664ef22e + dc.l $9000ff5c,$f23c8800,$00000000,$f22e48a8 + dc.l $ff84f23c,$90000000,$0000f22e,$f040ff84 + dc.l $322eff84,$24010281,$00007fff,$02428000 + dc.l $92800681,$00006000,$02417fff,$82423d41 + dc.l $ff84f22e,$d040ff84,$6000ff82,$222eff5c + dc.l $02010030,$f2019000,$60aa222e,$ff5c0201 + dc.l $00c06700,$fe74222f,$00040c81,$80000000 + dc.l $6600fe66,$4aaf0008,$6600fe5e,$082e0001 + dc.l $ff666700,$fe54f22e,$d040ff90,$222eff5c + dc.l $020100c0,$00010010,$f2019000,$f23c8800 + dc.l $00000000,$f22e48a8,$ff84f23c,$90000000 + dc.l $0000f200,$0018f200,$0498f200,$0438f292 + dc.l $feca6000,$fe14323b,$120a4efb,$10064afc + dc.l $0030fdaa,$00e2011a,$0060fdaa,$00660000 + dc.l $000000ba,$006c011a,$006000ba,$00660000 + dc.l $00000130,$0130010a,$00600130,$00660000 + dc.l $00000060,$00600060,$00600060,$00660000 + dc.l $0000fdaa,$00e2011a,$0060fdaa,$00660000 + dc.l $00000066,$00660066,$00660066,$00660000 + dc.l $000060ff,$ffffd00a,$60ffffff,$d0041028 + dc.l $00001229,$0000b300,$6a144a00,$6b2ef23c + dc.l $44000000,$00001d7c,$0004ff64,$4e75122e + dc.l $ff5f0201,$00300c01,$00206710,$f23c4400 + dc.l $00000000,$1d7c0004,$ff644e75,$f23c4400 + dc.l $80000000,$1d7c000c,$ff644e75,$3d680000 + dc.l $ff842d68,$0004ff88,$2d680008,$ff8c61ff + dc.l $ffffceb8,$426eff90,$42aeff94,$42aeff98 + dc.l $6000fcd0,$3d690000,$ff902d69,$0004ff94 + dc.l $2d690008,$ff9861ff,$ffffcf3c,$426eff84 + dc.l $42aeff88,$42aeff8c,$6000fca8,$10280000 + dc.l $12290000,$b3006aff,$ffffcfda,$f228d080 + dc.l $0000f200,$001af293,$001e1d7c,$000aff64 + dc.l $4e75f229,$d0800000,$4a290000,$6a081d7c + dc.l $000aff64,$4e751d7c,$0002ff64,$4e750200 + dc.l $00300000,$00406008,$02000030,$00000080 + dc.l $2d40ff5c,$4241122e,$ff4e6600,$02744a28 + dc.l $00006bff,$ffffcf7e,$020000c0,$6648f22e + dc.l $9000ff5c,$f23c8800,$00000000,$f2104804 + dc.l $f201a800,$83aeff64,$4e754a28,$00006bff + dc.l $ffffcf52,$020000c0,$661c3d68,$0000ff84 + dc.l $2d680004,$ff882d68,$0008ff8c,$61ffffff + dc.l $ce046000,$003e0c00,$00406600,$00843d68 + dc.l $0000ff84,$2d680004,$ff882d68,$0008ff8c + dc.l $61ffffff,$cde00c80,$0000007e,$67000098 + dc.l $6e00009e,$0c80ffff,$ff806700,$01a46d00 + dc.l $0120f23c,$88000000,$0000f22e,$9000ff5c + dc.l $f22e4804,$ff84f201,$a800f23c,$90000000 + dc.l $000083ae,$ff642f02,$f22ef080,$ff84322e + dc.l $ff842401,$02810000,$7fff9280,$02428000 + dc.l $84413d42,$ff84241f,$f22ed080,$ff844e75 + dc.l $3d680000,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c61ff,$ffffcd5e,$0c800000,$03fe6700 + dc.l $00166e1c,$0c80ffff,$fc006700,$01246d00 + dc.l $00a06000,$ff7e082e,$0000ff85,$6600ff74 + dc.l $08ee0003,$ff66f23c,$90000000,$0010f23c + dc.l $88000000,$0000f22e,$4804ff84,$f201a800 + dc.l $f23c9000,$00000000,$83aeff64,$122eff62 + dc.l $0201000b,$6620f22e,$f080ff84,$41eeff84 + dc.l $222eff5c,$61ffffff,$d338812e,$ff64f22e + dc.l $d080ff84,$4e752d6e,$ff88ff94,$2d6eff8c + dc.l $ff98322e,$ff842f02,$24010281,$00007fff + dc.l $02428000,$92800681,$00006000,$02417fff + dc.l $82423d41,$ff90f22e,$d040ff90,$241f60a6 + dc.l $f23c8800,$00000000,$f22e9000,$ff5cf22e + dc.l $4804ff84,$f23c9000,$00000000,$f201a800 + dc.l $83aeff64,$00ae0000,$1048ff64,$122eff62 + dc.l $02010013,$661c082e,$0003ff64,$56c1202e + dc.l $ff5c61ff,$ffffd3a8,$812eff64,$f210d080 + dc.l $4e752f02,$322eff84,$24010281,$00007fff + dc.l $02428000,$92800481,$00006000,$02417fff + dc.l $82423d41,$ff84f22e,$d040ff84,$241f60b6 + dc.l $082e0000,$ff856600,$ff78f23c,$88000000 + dc.l $0000f22e,$9000ff5c,$f22e4804,$ff84f201 + dc.l $a800f23c,$90000000,$000083ae,$ff64f200 + dc.l $0080f23c,$58b80001,$f293ff6a,$6000fe48 + dc.l $0c010004,$6700fdb4,$0c010001,$67160c01 + dc.l $00026736,$0c010005,$67ffffff,$cc8c60ff + dc.l $ffffcc9a,$4a280000,$6b10f23c,$44000000 + dc.l $00001d7c,$0004ff64,$4e75f23c,$44008000 + dc.l $00001d7c,$000cff64,$4e754a28,$00006bff + dc.l $ffffccc2,$f228d080,$00001d7c,$0002ff64 + dc.l $4e75303b,$12064efb,$00020020,$0026002c + dc.l $00300034,$0038003c,$00400044,$004a0050 + dc.l $00540058,$005c0060,$0064202e,$ff9c4e75 + dc.l $202effa0,$4e752002,$4e752003,$4e752004 + dc.l $4e752005,$4e752006,$4e752007,$4e75202e + dc.l $ffa44e75,$202effa8,$4e75200a,$4e75200b + dc.l $4e75200c,$4e75200d,$4e752016,$4e75202e + dc.l $ffd84e75,$323b1206,$4efb1002,$00100016 + dc.l $001c0020,$00240028,$002c0030,$2d40ff9c + dc.l $4e752d40,$ffa04e75,$24004e75,$26004e75 + dc.l $28004e75,$2a004e75,$2c004e75,$2e004e75 + dc.l $323b1206,$4efb1002,$00100016,$001c0020 + dc.l $00240028,$002c0030,$3d40ff9e,$4e753d40 + dc.l $ffa24e75,$34004e75,$36004e75,$38004e75 + dc.l $3a004e75,$3c004e75,$3e004e75,$323b1206 + dc.l $4efb1002,$00100016,$001c0020,$00240028 + dc.l $002c0030,$1d40ff9f,$4e751d40,$ffa34e75 + dc.l $14004e75,$16004e75,$18004e75,$1a004e75 + dc.l $1c004e75,$1e004e75,$323b1206,$4efb1002 + dc.l $00100016,$001c0020,$00240028,$002c0030 + dc.l $d1aeffa4,$4e75d1ae,$ffa84e75,$d5c04e75 + dc.l $d7c04e75,$d9c04e75,$dbc04e75,$d1964e75 + dc.l $1d7c0004,$ff4a0c00,$00016706,$d1aeffd8 + dc.l $4e7554ae,$ffd84e75,$323b1206,$4efb1002 + dc.l $00100016,$001c0020,$00240028,$002c0030 + dc.l $91aeffa4,$4e7591ae,$ffa84e75,$95c04e75 + dc.l $97c04e75,$99c04e75,$9bc04e75,$91964e75 + dc.l $1d7c0008,$ff4a0c00,$00016706,$91aeffd8 + dc.l $4e7555ae,$ffd84e75,$303b0206,$4efb0002 + dc.l $00100028,$0040004c,$00580064,$0070007c + dc.l $2d6effdc,$ff6c2d6e,$ffe0ff70,$2d6effe4 + dc.l $ff7441ee,$ff6c4e75,$2d6effe8,$ff6c2d6e + dc.l $ffecff70,$2d6efff0,$ff7441ee,$ff6c4e75 + dc.l $f22ef020,$ff6c41ee,$ff6c4e75,$f22ef010 + dc.l $ff6c41ee,$ff6c4e75,$f22ef008,$ff6c41ee + dc.l $ff6c4e75,$f22ef004,$ff6c41ee,$ff6c4e75 + dc.l $f22ef002,$ff6c41ee,$ff6c4e75,$f22ef001 + dc.l $ff6c41ee,$ff6c4e75,$303b0206,$4efb0002 + dc.l $00100028,$0040004c,$00580064,$0070007c + dc.l $2d6effdc,$ff782d6e,$ffe0ff7c,$2d6effe4 + dc.l $ff8041ee,$ff784e75,$2d6effe8,$ff782d6e + dc.l $ffecff7c,$2d6efff0,$ff8041ee,$ff784e75 + dc.l $f22ef020,$ff7841ee,$ff784e75,$f22ef010 + dc.l $ff7841ee,$ff784e75,$f22ef008,$ff7841ee + dc.l $ff784e75,$f22ef004,$ff7841ee,$ff784e75 + dc.l $f22ef002,$ff7841ee,$ff784e75,$f22ef001 + dc.l $ff7841ee,$ff784e75,$303b0206,$4efb0002 + dc.l $00100018,$0020002a,$0034003e,$00480052 + dc.l $f22ef080,$ffdc4e75,$f22ef080,$ffe84e75 + dc.l $f227e001,$f21fd020,$4e75f227,$e001f21f + dc.l $d0104e75,$f227e001,$f21fd008,$4e75f227 + dc.l $e001f21f,$d0044e75,$f227e001,$f21fd002 + dc.l $4e75f227,$e001f21f,$d0014e75,$700c61ff + dc.l $ffffbace,$43eeff6c,$700c61ff,$ffffa0d8 + dc.l $4a8166ff,$00000a14,$e9ee004f,$ff6c0c40 + dc.l $7fff6602,$4e75102e,$ff6f0200,$000f660e + dc.l $4aaeff70,$66084aae,$ff746602,$4e7541ee + dc.l $ff6c61ff,$0000001c,$f22ef080,$ff6c4e75 + dc.l $00000000,$02030203,$02030302,$03020203 + dc.l $2d680000,$ff842d68,$0004ff88,$2d680008 + dc.l $ff8c41ee,$ff8448e7,$3c00f227,$e0017402 + dc.l $76042810,$42814c3c,$10010000,$000ae9c4 + dc.l $08c4d280,$580351ca,$ffee0804,$001e6702 + dc.l $44810481,$00000010,$6c0e4481,$00844000 + dc.l $00000090,$40000000,$2f017201,$f23c4400 + dc.l $00000000,$e9d00704,$f2005822,$28301c00 + dc.l $76007407,$f23c4423,$41200000,$e9c408c4 + dc.l $f2005822,$580351ca,$ffec5281,$0c810000 + dc.l $00026fd8,$0810001f,$6704f200,$001a2217 + dc.l $0c810000,$001b6f00,$00e40810,$001e6674 + dc.l $42812810,$e9c40704,$66245281,$7a012830 + dc.l $5c006608,$50815285,$28305c00,$42837407 + dc.l $e9c408c4,$66085883,$528151ca,$fff42001 + dc.l $22179280,$6c104481,$28100084,$40000000 + dc.l $00904000,$000043fb,$01700000,$06664283 + dc.l $f23c4480,$3f800000,$7403e280,$6406f231 + dc.l $48a33800,$06830000,$000c4a80,$66ecf200 + dc.l $04236068,$42817a02,$28305c00,$66085385 + dc.l $50812830,$5c00761c,$7407e9c4,$08c46608 + dc.l $59835281,$51cafff4,$20012217,$92806e10 + dc.l $44812810,$0284bfff,$ffff0290,$bfffffff + dc.l $43fb0170,$000005fc,$4283f23c,$44803f80 + dc.l $00007403,$e2806406,$f23148a3,$38000683 + dc.l $0000000c,$4a8066ec,$f2000420,$262eff60 + dc.l $e9c32682,$2810e582,$e9c40002,$d48043fa + dc.l $fe501031,$28004283,$efc30682,$f2039000 + dc.l $e280640a,$43fb0170,$00000644,$6016e280 + dc.l $640a43fb,$01700000,$06d26008,$43fb0170 + dc.l $00000590,$20016a08,$44800090,$40000000 + dc.l $4283f23c,$44803f80,$0000e280,$6406f231 + dc.l $48a33800,$06830000,$000c4a80,$66ec0810 + dc.l $001e6706,$f2000420,$6004f200,$0423f200 + dc.l $a8000880,$00096706,$006e0108,$ff66588f + dc.l $f21fd040,$4cdf003c,$f23c9000,$00000000 + dc.l $f23c8800,$00000000,$4e753ffd,$00009a20 + dc.l $9a84fbcf,$f7980000,$00003ffd,$00009a20 + dc.l $9a84fbcf,$f7990000,$00003f80,$00000000 + dc.l $00000000,$00000000,$00004000,$00000000 + dc.l $00000000,$00000000,$00004120,$00000000 + dc.l $00000000,$00000000,$0000459a,$28000000 + dc.l $00000000,$00000000,$00000000,$00000303 + dc.l $02020302,$02030203,$030248e7,$3f20f227 + dc.l $e007f23c,$90000000,$00202d50,$ff582e00 + dc.l $422eff50,$0c2e0004,$ff4e6600,$00303010 + dc.l $02407fff,$22280004,$24280008,$5340e38a + dc.l $e3914a81,$6cf64a40,$6e0450ee,$ff500240 + dc.l $7fff3080,$21410004,$21420008,$2d50ff90 + dc.l $2d680004,$ff942d68,$0008ff98,$02ae7fff + dc.l $ffffff90,$4a2eff50,$67082c3c,$ffffecbb + dc.l $6038302e,$ff903d7c,$3fffff90,$f22e4800 + dc.l $ff900440,$3ffff200,$5022f23a,$4428ff1c + dc.l $f293000e,$f23a4823,$ff02f206,$6000600a + dc.l $f23a4823,$fee6f206,$6000f23c,$88000000 + dc.l $00004245,$4a876f04,$28076006,$28069887 + dc.l $52844a84,$6f180c84,$00000011,$6f127811 + dc.l $4a876f0c,$00ae0000,$2080ff64,$60027801 + dc.l $4a876e06,$be866d02,$2c072006,$52809084 + dc.l $48454245,$42424a80,$6c145245,$0c80ffff + dc.l $ecd46e08,$06800000,$00187418,$4480f23a + dc.l $4480fe98,$e9ee1682,$ff60e349,$d245e349 + dc.l $4aaeff58,$6c025281,$45fafec0,$16321800 + dc.l $e98bf203,$9000e88b,$4a03660a,$43fb0170 + dc.l $00000370,$6016e20b,$640a43fb,$01700000 + dc.l $03fe6008,$43fb0170,$00000490,$4283e288 + dc.l $6406f231,$48a33800,$06830000,$000c4a80 + dc.l $66ecf23c,$88000000,$0000f23c,$90000000 + dc.l $0010f210,$4800f200,$00184a45,$6608f200 + dc.l $04206000,$008e4a2e,$ff506700,$0072f227 + dc.l $e0023617,$02437fff,$00508000,$d6500443 + dc.l $3fffd669,$00240443,$3fffd669,$00300443 + dc.l $3fff6b00,$00480257,$80008757,$02507fff + dc.l $2f280008,$2f280004,$2f3c3fff,$0000f21f + dc.l $d080f21f,$48232f29,$002c2f29,$00282f3c + dc.l $3fff0000,$2f290038,$2f290034,$2f3c3fff + dc.l $0000f21f,$4823f21f,$48236016,$60fe4a42 + dc.l $670cf229,$48230024,$f2294823,$0030f200 + dc.l $0423f200,$a800f22e,$6800ff90,$45eeff90 + dc.l $08000009,$670e00aa,$00000001,$0008f22e + dc.l $4800ff90,$2d6eff60,$ff5402ae,$00000030 + dc.l $ff6048e7,$c0c02f2e,$ff542f2e,$ff5841ee + dc.l $ff90f210,$68004aae,$ff586c06,$00908000 + dc.l $00002f2e,$ff64f22e,$9000ff60,$f23c8800 + dc.l $00000000,$f22e4801,$ff90f200,$a800816e + dc.l $ff661d57,$ff64588f,$2d5fff58,$2d5fff54 + dc.l $4cdf0303,$2d6eff58,$ff902d6e,$ff54ff60 + dc.l $48454a45,$66ff0000,$0086f23a,$4500fcec + dc.l $20045380,$4283e288,$6406f231,$49233800 + dc.l $06830000,$000c4a80,$66ec4a2e,$ff50670a + dc.l $f2000018,$60ff0000,$0028f200,$0018f200 + dc.l $0838f293,$001a5386,$3a3c0001,$f23c9000 + dc.l $00000020,$f23a4523,$fcc26000,$fda8f23a + dc.l $4523fcb8,$f2000838,$f294005c,$f292000c + dc.l $f23a4420,$fca65286,$604c5286,$3a3c0001 + dc.l $f23c9000,$00000020,$6000fd7a,$f23a4500 + dc.l $fc6a2004,$4283e288,$6406f231,$49233800 + dc.l $06830000,$000c4a80,$66ecf200,$0018f200 + dc.l $0838f28e,$0012f23a,$4420fc60,$52865284 + dc.l $f23a4523,$fc56f23c,$90000000,$0010f200 + dc.l $082041ee,$ff84f210,$68002428,$00042628 + dc.l $000842a8,$000442a8,$00082010,$48406714 + dc.l $04800000,$3ffd4a80,$6e0a4480,$e28ae293 + dc.l $51c8fffa,$4a826604,$4a836710,$42810683 + dc.l $00000080,$d5810283,$ffffff80,$20045688 + dc.l $61ff0000,$02b04a2e,$ff506728,$f200003a + dc.l $f281000c,$f2064000,$f2000018,$602e4a87 + dc.l $6d08f23a,$4400fbe4,$6022f206,$4000f200 + dc.l $00186018,$f200003a,$f28e000a,$f23a4400 + dc.l $fb9a6008,$f2064000,$f2000018,$f2294820 + dc.l $0018f22e,$6800ff90,$242a0004,$262a0008 + dc.l $3012670e,$04403ffd,$4440e28a,$e29351c8 + dc.l $fffa4281,$06830000,$0080d581,$0283ffff + dc.l $ff807004,$41eeff54,$61ff0000,$0228202e + dc.l $ff54720c,$e2a8efee,$010cff84,$e2a8efee + dc.l $0404ff84,$4a006708,$00ae0000,$2080ff64 + dc.l $4280022e,$000fff84,$4aaeff58,$6c027002 + dc.l $4a866c02,$5280efee,$0002ff84,$f23c8800 + dc.l $00000000,$f21fd0e0,$4cdf04fc,$4e754002 + dc.l $0000a000,$00000000,$00004005,$0000c800 + dc.l $00000000,$0000400c,$00009c40,$00000000 + dc.l $00004019,$0000bebc,$20000000,$00004034 + dc.l $00008e1b,$c9bf0400,$00004069,$00009dc5 + dc.l $ada82b70,$b59e40d3,$0000c278,$1f49ffcf + dc.l $a6d541a8,$000093ba,$47c980e9,$8ce04351 + dc.l $0000aa7e,$ebfb9df9,$de8e46a3,$0000e319 + dc.l $a0aea60e,$91c74d48,$0000c976,$75868175 + dc.l $0c175a92,$00009e8b,$3b5dc53d,$5de57525 + dc.l $0000c460,$52028a20,$979b4002,$0000a000 + dc.l $00000000,$00004005,$0000c800,$00000000 + dc.l $0000400c,$00009c40,$00000000,$00004019 + dc.l $0000bebc,$20000000,$00004034,$00008e1b + dc.l $c9bf0400,$00004069,$00009dc5,$ada82b70 + dc.l $b59e40d3,$0000c278,$1f49ffcf,$a6d641a8 + dc.l $000093ba,$47c980e9,$8ce04351,$0000aa7e + dc.l $ebfb9df9,$de8e46a3,$0000e319,$a0aea60e + dc.l $91c74d48,$0000c976,$75868175,$0c185a92 + dc.l $00009e8b,$3b5dc53d,$5de57525,$0000c460 + dc.l $52028a20,$979b4002,$0000a000,$00000000 + dc.l $00004005,$0000c800,$00000000,$0000400c + dc.l $00009c40,$00000000,$00004019,$0000bebc + dc.l $20000000,$00004034,$00008e1b,$c9bf0400 + dc.l $00004069,$00009dc5,$ada82b70,$b59d40d3 + dc.l $0000c278,$1f49ffcf,$a6d541a8,$000093ba + dc.l $47c980e9,$8cdf4351,$0000aa7e,$ebfb9df9 + dc.l $de8d46a3,$0000e319,$a0aea60e,$91c64d48 + dc.l $0000c976,$75868175,$0c175a92,$00009e8b + dc.l $3b5dc53d,$5de47525,$0000c460,$52028a20 + dc.l $979a48e7,$ff007e01,$53802802,$2a03e9c2 + dc.l $1003e782,$e9c36003,$e7838486,$e385e394 + dc.l $4846d346,$d6854e71,$d5844e71,$d3464846 + dc.l $4a476712,$4847e947,$de4110c7,$48474247 + dc.l $51c8ffc8,$60124847,$3e014847,$524751c8 + dc.l $ffba4847,$e94f10c7,$4cdf00ff,$4e757001 + dc.l $610000d6,$3d7c0121,$000a6000,$007e7002 + dc.l $610000c6,$3d7c0141,$000a606e,$70046100 + dc.l $00b83d7c,$0101000a,$60607008,$610000aa + dc.l $3d7c0161,$000a6052,$700c6100,$009c3d7c + dc.l $0161000a,$60447001,$6100008e,$3d7c00a1 + dc.l $000a6036,$70026100,$00803d7c,$00c1000a + dc.l $60287004,$61000072,$3d7c0081,$000a601a + dc.l $70086100,$00643d7c,$00e1000a,$600c700c + dc.l $61000056,$3d7c00e1,$000a2d6e,$ff680006 + dc.l $f22ed0c0,$ffdcf22e,$9c00ff60,$4cee0303 + dc.l $ff9c4e5e,$2f172f6f,$00080004,$2f6f000c + dc.l $00082f7c,$00000001,$000c3f6f,$0006000c + dc.l $3f7c4008,$00060817,$00056706,$08ef0002 + dc.l $000d60ff,$ffff95f4,$122eff41,$02010038 + dc.l $0c010018,$6700000c,$0c010020,$67000060 + dc.l $4e75122e,$ff410241,$0007323b,$12064efb + dc.l $10020010,$0016001c,$00200024,$0028002c + dc.l $003091ae,$ffa44e75,$91aeffa8,$4e7595c0 + dc.l $4e7597c0,$4e7599c0,$4e759bc0,$4e759196 + dc.l $4e750c2e,$0030000a,$6612082e,$00050004 + dc.l $660a4e7a,$880091c0,$4e7b8800,$4e754480 + dc.l $60a051fc,$00000000,$00000000,$00000000 diff --git a/arch/m68k/ifpsp060/src/README-SRC b/arch/m68k/ifpsp060/src/README-SRC new file mode 100644 index 00000000000..6be5cff2a6a --- /dev/null +++ b/arch/m68k/ifpsp060/src/README-SRC @@ -0,0 +1,12 @@ +This is the original source code from Motorola for the 68060 processor +support code, providing emulation for rarely used m68k instructions +not implemented in the 68060 silicon. + +The code provided here will not assemble out of the box using the GNU +assembler, however it is being included in order to comply with the +GNU General Public License. + +You don't need to actually assemble these files in order to compile a +workin m68k kernel, the precompiled .sa files in arch/m68k/ifpsp060 +are sufficient and were generated from these source files by +Motorola. diff --git a/arch/m68k/ifpsp060/src/fplsp.S b/arch/m68k/ifpsp060/src/fplsp.S new file mode 100644 index 00000000000..fdb79b927ef --- /dev/null +++ b/arch/m68k/ifpsp060/src/fplsp.S @@ -0,0 +1,10980 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# +# lfptop.s: +# This file is appended to the top of the 060ILSP package +# and contains the entry points into the package. The user, in +# effect, branches to one of the branch table entries located here. +# + + bra.l _facoss_ + short 0x0000 + bra.l _facosd_ + short 0x0000 + bra.l _facosx_ + short 0x0000 + + bra.l _fasins_ + short 0x0000 + bra.l _fasind_ + short 0x0000 + bra.l _fasinx_ + short 0x0000 + + bra.l _fatans_ + short 0x0000 + bra.l _fatand_ + short 0x0000 + bra.l _fatanx_ + short 0x0000 + + bra.l _fatanhs_ + short 0x0000 + bra.l _fatanhd_ + short 0x0000 + bra.l _fatanhx_ + short 0x0000 + + bra.l _fcoss_ + short 0x0000 + bra.l _fcosd_ + short 0x0000 + bra.l _fcosx_ + short 0x0000 + + bra.l _fcoshs_ + short 0x0000 + bra.l _fcoshd_ + short 0x0000 + bra.l _fcoshx_ + short 0x0000 + + bra.l _fetoxs_ + short 0x0000 + bra.l _fetoxd_ + short 0x0000 + bra.l _fetoxx_ + short 0x0000 + + bra.l _fetoxm1s_ + short 0x0000 + bra.l _fetoxm1d_ + short 0x0000 + bra.l _fetoxm1x_ + short 0x0000 + + bra.l _fgetexps_ + short 0x0000 + bra.l _fgetexpd_ + short 0x0000 + bra.l _fgetexpx_ + short 0x0000 + + bra.l _fgetmans_ + short 0x0000 + bra.l _fgetmand_ + short 0x0000 + bra.l _fgetmanx_ + short 0x0000 + + bra.l _flog10s_ + short 0x0000 + bra.l _flog10d_ + short 0x0000 + bra.l _flog10x_ + short 0x0000 + + bra.l _flog2s_ + short 0x0000 + bra.l _flog2d_ + short 0x0000 + bra.l _flog2x_ + short 0x0000 + + bra.l _flogns_ + short 0x0000 + bra.l _flognd_ + short 0x0000 + bra.l _flognx_ + short 0x0000 + + bra.l _flognp1s_ + short 0x0000 + bra.l _flognp1d_ + short 0x0000 + bra.l _flognp1x_ + short 0x0000 + + bra.l _fmods_ + short 0x0000 + bra.l _fmodd_ + short 0x0000 + bra.l _fmodx_ + short 0x0000 + + bra.l _frems_ + short 0x0000 + bra.l _fremd_ + short 0x0000 + bra.l _fremx_ + short 0x0000 + + bra.l _fscales_ + short 0x0000 + bra.l _fscaled_ + short 0x0000 + bra.l _fscalex_ + short 0x0000 + + bra.l _fsins_ + short 0x0000 + bra.l _fsind_ + short 0x0000 + bra.l _fsinx_ + short 0x0000 + + bra.l _fsincoss_ + short 0x0000 + bra.l _fsincosd_ + short 0x0000 + bra.l _fsincosx_ + short 0x0000 + + bra.l _fsinhs_ + short 0x0000 + bra.l _fsinhd_ + short 0x0000 + bra.l _fsinhx_ + short 0x0000 + + bra.l _ftans_ + short 0x0000 + bra.l _ftand_ + short 0x0000 + bra.l _ftanx_ + short 0x0000 + + bra.l _ftanhs_ + short 0x0000 + bra.l _ftanhd_ + short 0x0000 + bra.l _ftanhx_ + short 0x0000 + + bra.l _ftentoxs_ + short 0x0000 + bra.l _ftentoxd_ + short 0x0000 + bra.l _ftentoxx_ + short 0x0000 + + bra.l _ftwotoxs_ + short 0x0000 + bra.l _ftwotoxd_ + short 0x0000 + bra.l _ftwotoxx_ + short 0x0000 + + bra.l _fabss_ + short 0x0000 + bra.l _fabsd_ + short 0x0000 + bra.l _fabsx_ + short 0x0000 + + bra.l _fadds_ + short 0x0000 + bra.l _faddd_ + short 0x0000 + bra.l _faddx_ + short 0x0000 + + bra.l _fdivs_ + short 0x0000 + bra.l _fdivd_ + short 0x0000 + bra.l _fdivx_ + short 0x0000 + + bra.l _fints_ + short 0x0000 + bra.l _fintd_ + short 0x0000 + bra.l _fintx_ + short 0x0000 + + bra.l _fintrzs_ + short 0x0000 + bra.l _fintrzd_ + short 0x0000 + bra.l _fintrzx_ + short 0x0000 + + bra.l _fmuls_ + short 0x0000 + bra.l _fmuld_ + short 0x0000 + bra.l _fmulx_ + short 0x0000 + + bra.l _fnegs_ + short 0x0000 + bra.l _fnegd_ + short 0x0000 + bra.l _fnegx_ + short 0x0000 + + bra.l _fsqrts_ + short 0x0000 + bra.l _fsqrtd_ + short 0x0000 + bra.l _fsqrtx_ + short 0x0000 + + bra.l _fsubs_ + short 0x0000 + bra.l _fsubd_ + short 0x0000 + bra.l _fsubx_ + short 0x0000 + +# leave room for future possible additions + align 0x400 + +# +# This file contains a set of define statements for constants +# in order to promote readability within the corecode itself. +# + +set LOCAL_SIZE, 192 # stack frame size(bytes) +set LV, -LOCAL_SIZE # stack offset + +set EXC_SR, 0x4 # stack status register +set EXC_PC, 0x6 # stack pc +set EXC_VOFF, 0xa # stacked vector offset +set EXC_EA, 0xc # stacked <ea> + +set EXC_FP, 0x0 # frame pointer + +set EXC_AREGS, -68 # offset of all address regs +set EXC_DREGS, -100 # offset of all data regs +set EXC_FPREGS, -36 # offset of all fp regs + +set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 +set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 +set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 +set EXC_A5, EXC_AREGS+(5*4) +set EXC_A4, EXC_AREGS+(4*4) +set EXC_A3, EXC_AREGS+(3*4) +set EXC_A2, EXC_AREGS+(2*4) +set EXC_A1, EXC_AREGS+(1*4) +set EXC_A0, EXC_AREGS+(0*4) +set EXC_D7, EXC_DREGS+(7*4) +set EXC_D6, EXC_DREGS+(6*4) +set EXC_D5, EXC_DREGS+(5*4) +set EXC_D4, EXC_DREGS+(4*4) +set EXC_D3, EXC_DREGS+(3*4) +set EXC_D2, EXC_DREGS+(2*4) +set EXC_D1, EXC_DREGS+(1*4) +set EXC_D0, EXC_DREGS+(0*4) + +set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 +set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 +set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) + +set FP_SCR1, LV+80 # fp scratch 1 +set FP_SCR1_EX, FP_SCR1+0 +set FP_SCR1_SGN, FP_SCR1+2 +set FP_SCR1_HI, FP_SCR1+4 +set FP_SCR1_LO, FP_SCR1+8 + +set FP_SCR0, LV+68 # fp scratch 0 +set FP_SCR0_EX, FP_SCR0+0 +set FP_SCR0_SGN, FP_SCR0+2 +set FP_SCR0_HI, FP_SCR0+4 +set FP_SCR0_LO, FP_SCR0+8 + +set FP_DST, LV+56 # fp destination operand +set FP_DST_EX, FP_DST+0 +set FP_DST_SGN, FP_DST+2 +set FP_DST_HI, FP_DST+4 +set FP_DST_LO, FP_DST+8 + +set FP_SRC, LV+44 # fp source operand +set FP_SRC_EX, FP_SRC+0 +set FP_SRC_SGN, FP_SRC+2 +set FP_SRC_HI, FP_SRC+4 +set FP_SRC_LO, FP_SRC+8 + +set USER_FPIAR, LV+40 # FP instr address register + +set USER_FPSR, LV+36 # FP status register +set FPSR_CC, USER_FPSR+0 # FPSR condition codes +set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte +set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte +set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte + +set USER_FPCR, LV+32 # FP control register +set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable +set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control + +set L_SCR3, LV+28 # integer scratch 3 +set L_SCR2, LV+24 # integer scratch 2 +set L_SCR1, LV+20 # integer scratch 1 + +set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) + +set EXC_TEMP2, LV+24 # temporary space +set EXC_TEMP, LV+16 # temporary space + +set DTAG, LV+15 # destination operand type +set STAG, LV+14 # source operand type + +set SPCOND_FLG, LV+10 # flag: special case (see below) + +set EXC_CC, LV+8 # saved condition codes +set EXC_EXTWPTR, LV+4 # saved current PC (active) +set EXC_EXTWORD, LV+2 # saved extension word +set EXC_CMDREG, LV+2 # saved extension word +set EXC_OPWORD, LV+0 # saved operation word + +################################ + +# Helpful macros + +set FTEMP, 0 # offsets within an +set FTEMP_EX, 0 # extended precision +set FTEMP_SGN, 2 # value saved in memory. +set FTEMP_HI, 4 +set FTEMP_LO, 8 +set FTEMP_GRS, 12 + +set LOCAL, 0 # offsets within an +set LOCAL_EX, 0 # extended precision +set LOCAL_SGN, 2 # value saved in memory. +set LOCAL_HI, 4 +set LOCAL_LO, 8 +set LOCAL_GRS, 12 + +set DST, 0 # offsets within an +set DST_EX, 0 # extended precision +set DST_HI, 4 # value saved in memory. +set DST_LO, 8 + +set SRC, 0 # offsets within an +set SRC_EX, 0 # extended precision +set SRC_HI, 4 # value saved in memory. +set SRC_LO, 8 + +set SGL_LO, 0x3f81 # min sgl prec exponent +set SGL_HI, 0x407e # max sgl prec exponent +set DBL_LO, 0x3c01 # min dbl prec exponent +set DBL_HI, 0x43fe # max dbl prec exponent +set EXT_LO, 0x0 # min ext prec exponent +set EXT_HI, 0x7ffe # max ext prec exponent + +set EXT_BIAS, 0x3fff # extended precision bias +set SGL_BIAS, 0x007f # single precision bias +set DBL_BIAS, 0x03ff # double precision bias + +set NORM, 0x00 # operand type for STAG/DTAG +set ZERO, 0x01 # operand type for STAG/DTAG +set INF, 0x02 # operand type for STAG/DTAG +set QNAN, 0x03 # operand type for STAG/DTAG +set DENORM, 0x04 # operand type for STAG/DTAG +set SNAN, 0x05 # operand type for STAG/DTAG +set UNNORM, 0x06 # operand type for STAG/DTAG + +################## +# FPSR/FPCR bits # +################## +set neg_bit, 0x3 # negative result +set z_bit, 0x2 # zero result +set inf_bit, 0x1 # infinite result +set nan_bit, 0x0 # NAN result + +set q_sn_bit, 0x7 # sign bit of quotient byte + +set bsun_bit, 7 # branch on unordered +set snan_bit, 6 # signalling NAN +set operr_bit, 5 # operand error +set ovfl_bit, 4 # overflow +set unfl_bit, 3 # underflow +set dz_bit, 2 # divide by zero +set inex2_bit, 1 # inexact result 2 +set inex1_bit, 0 # inexact result 1 + +set aiop_bit, 7 # accrued inexact operation bit +set aovfl_bit, 6 # accrued overflow bit +set aunfl_bit, 5 # accrued underflow bit +set adz_bit, 4 # accrued dz bit +set ainex_bit, 3 # accrued inexact bit + +############################# +# FPSR individual bit masks # +############################# +set neg_mask, 0x08000000 # negative bit mask (lw) +set inf_mask, 0x02000000 # infinity bit mask (lw) +set z_mask, 0x04000000 # zero bit mask (lw) +set nan_mask, 0x01000000 # nan bit mask (lw) + +set neg_bmask, 0x08 # negative bit mask (byte) +set inf_bmask, 0x02 # infinity bit mask (byte) +set z_bmask, 0x04 # zero bit mask (byte) +set nan_bmask, 0x01 # nan bit mask (byte) + +set bsun_mask, 0x00008000 # bsun exception mask +set snan_mask, 0x00004000 # snan exception mask +set operr_mask, 0x00002000 # operr exception mask +set ovfl_mask, 0x00001000 # overflow exception mask +set unfl_mask, 0x00000800 # underflow exception mask +set dz_mask, 0x00000400 # dz exception mask +set inex2_mask, 0x00000200 # inex2 exception mask +set inex1_mask, 0x00000100 # inex1 exception mask + +set aiop_mask, 0x00000080 # accrued illegal operation +set aovfl_mask, 0x00000040 # accrued overflow +set aunfl_mask, 0x00000020 # accrued underflow +set adz_mask, 0x00000010 # accrued divide by zero +set ainex_mask, 0x00000008 # accrued inexact + +###################################### +# FPSR combinations used in the FPSP # +###################################### +set dzinf_mask, inf_mask+dz_mask+adz_mask +set opnan_mask, nan_mask+operr_mask+aiop_mask +set nzi_mask, 0x01ffffff #clears N, Z, and I +set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask +set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask +set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask +set inx1a_mask, inex1_mask+ainex_mask +set inx2a_mask, inex2_mask+ainex_mask +set snaniop_mask, nan_mask+snan_mask+aiop_mask +set snaniop2_mask, snan_mask+aiop_mask +set naniop_mask, nan_mask+aiop_mask +set neginf_mask, neg_mask+inf_mask +set infaiop_mask, inf_mask+aiop_mask +set negz_mask, neg_mask+z_mask +set opaop_mask, operr_mask+aiop_mask +set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask +set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask + +######### +# misc. # +######### +set rnd_stky_bit, 29 # stky bit pos in longword + +set sign_bit, 0x7 # sign bit +set signan_bit, 0x6 # signalling nan bit + +set sgl_thresh, 0x3f81 # minimum sgl exponent +set dbl_thresh, 0x3c01 # minimum dbl exponent + +set x_mode, 0x0 # extended precision +set s_mode, 0x4 # single precision +set d_mode, 0x8 # double precision + +set rn_mode, 0x0 # round-to-nearest +set rz_mode, 0x1 # round-to-zero +set rm_mode, 0x2 # round-tp-minus-infinity +set rp_mode, 0x3 # round-to-plus-infinity + +set mantissalen, 64 # length of mantissa in bits + +set BYTE, 1 # len(byte) == 1 byte +set WORD, 2 # len(word) == 2 bytes +set LONG, 4 # len(longword) == 2 bytes + +set BSUN_VEC, 0xc0 # bsun vector offset +set INEX_VEC, 0xc4 # inexact vector offset +set DZ_VEC, 0xc8 # dz vector offset +set UNFL_VEC, 0xcc # unfl vector offset +set OPERR_VEC, 0xd0 # operr vector offset +set OVFL_VEC, 0xd4 # ovfl vector offset +set SNAN_VEC, 0xd8 # snan vector offset + +########################### +# SPecial CONDition FLaGs # +########################### +set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception +set fbsun_flg, 0x02 # flag bit: bsun exception +set mia7_flg, 0x04 # flag bit: (a7)+ <ea> +set mda7_flg, 0x08 # flag bit: -(a7) <ea> +set fmovm_flg, 0x40 # flag bit: fmovm instruction +set immed_flg, 0x80 # flag bit: &<data> <ea> + +set ftrapcc_bit, 0x0 +set fbsun_bit, 0x1 +set mia7_bit, 0x2 +set mda7_bit, 0x3 +set immed_bit, 0x7 + +################################## +# TRANSCENDENTAL "LAST-OP" FLAGS # +################################## +set FMUL_OP, 0x0 # fmul instr performed last +set FDIV_OP, 0x1 # fdiv performed last +set FADD_OP, 0x2 # fadd performed last +set FMOV_OP, 0x3 # fmov performed last + +############# +# CONSTANTS # +############# +T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD +T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL + +PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 +PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 + +TWOBYPI: + long 0x3FE45F30,0x6DC9C883 + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fsins_ +_fsins_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L0_2s + bsr.l ssin # operand is a NORM + bra.b _L0_6s +_L0_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L0_3s # no + bsr.l src_zero # yes + bra.b _L0_6s +_L0_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L0_4s # no + bsr.l t_operr # yes + bra.b _L0_6s +_L0_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L0_5s # no + bsr.l src_qnan # yes + bra.b _L0_6s +_L0_5s: + bsr.l ssind # operand is a DENORM +_L0_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fsind_ +_fsind_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L0_2d + bsr.l ssin # operand is a NORM + bra.b _L0_6d +_L0_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L0_3d # no + bsr.l src_zero # yes + bra.b _L0_6d +_L0_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L0_4d # no + bsr.l t_operr # yes + bra.b _L0_6d +_L0_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L0_5d # no + bsr.l src_qnan # yes + bra.b _L0_6d +_L0_5d: + bsr.l ssind # operand is a DENORM +_L0_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fsinx_ +_fsinx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L0_2x + bsr.l ssin # operand is a NORM + bra.b _L0_6x +_L0_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L0_3x # no + bsr.l src_zero # yes + bra.b _L0_6x +_L0_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L0_4x # no + bsr.l t_operr # yes + bra.b _L0_6x +_L0_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L0_5x # no + bsr.l src_qnan # yes + bra.b _L0_6x +_L0_5x: + bsr.l ssind # operand is a DENORM +_L0_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fcoss_ +_fcoss_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L1_2s + bsr.l scos # operand is a NORM + bra.b _L1_6s +_L1_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L1_3s # no + bsr.l ld_pone # yes + bra.b _L1_6s +_L1_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L1_4s # no + bsr.l t_operr # yes + bra.b _L1_6s +_L1_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L1_5s # no + bsr.l src_qnan # yes + bra.b _L1_6s +_L1_5s: + bsr.l scosd # operand is a DENORM +_L1_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fcosd_ +_fcosd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L1_2d + bsr.l scos # operand is a NORM + bra.b _L1_6d +_L1_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L1_3d # no + bsr.l ld_pone # yes + bra.b _L1_6d +_L1_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L1_4d # no + bsr.l t_operr # yes + bra.b _L1_6d +_L1_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L1_5d # no + bsr.l src_qnan # yes + bra.b _L1_6d +_L1_5d: + bsr.l scosd # operand is a DENORM +_L1_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fcosx_ +_fcosx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L1_2x + bsr.l scos # operand is a NORM + bra.b _L1_6x +_L1_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L1_3x # no + bsr.l ld_pone # yes + bra.b _L1_6x +_L1_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L1_4x # no + bsr.l t_operr # yes + bra.b _L1_6x +_L1_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L1_5x # no + bsr.l src_qnan # yes + bra.b _L1_6x +_L1_5x: + bsr.l scosd # operand is a DENORM +_L1_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fsinhs_ +_fsinhs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L2_2s + bsr.l ssinh # operand is a NORM + bra.b _L2_6s +_L2_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L2_3s # no + bsr.l src_zero # yes + bra.b _L2_6s +_L2_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L2_4s # no + bsr.l src_inf # yes + bra.b _L2_6s +_L2_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L2_5s # no + bsr.l src_qnan # yes + bra.b _L2_6s +_L2_5s: + bsr.l ssinhd # operand is a DENORM +_L2_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fsinhd_ +_fsinhd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L2_2d + bsr.l ssinh # operand is a NORM + bra.b _L2_6d +_L2_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L2_3d # no + bsr.l src_zero # yes + bra.b _L2_6d +_L2_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L2_4d # no + bsr.l src_inf # yes + bra.b _L2_6d +_L2_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L2_5d # no + bsr.l src_qnan # yes + bra.b _L2_6d +_L2_5d: + bsr.l ssinhd # operand is a DENORM +_L2_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fsinhx_ +_fsinhx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L2_2x + bsr.l ssinh # operand is a NORM + bra.b _L2_6x +_L2_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L2_3x # no + bsr.l src_zero # yes + bra.b _L2_6x +_L2_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L2_4x # no + bsr.l src_inf # yes + bra.b _L2_6x +_L2_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L2_5x # no + bsr.l src_qnan # yes + bra.b _L2_6x +_L2_5x: + bsr.l ssinhd # operand is a DENORM +_L2_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _flognp1s_ +_flognp1s_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L3_2s + bsr.l slognp1 # operand is a NORM + bra.b _L3_6s +_L3_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L3_3s # no + bsr.l src_zero # yes + bra.b _L3_6s +_L3_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L3_4s # no + bsr.l sopr_inf # yes + bra.b _L3_6s +_L3_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L3_5s # no + bsr.l src_qnan # yes + bra.b _L3_6s +_L3_5s: + bsr.l slognp1d # operand is a DENORM +_L3_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flognp1d_ +_flognp1d_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L3_2d + bsr.l slognp1 # operand is a NORM + bra.b _L3_6d +_L3_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L3_3d # no + bsr.l src_zero # yes + bra.b _L3_6d +_L3_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L3_4d # no + bsr.l sopr_inf # yes + bra.b _L3_6d +_L3_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L3_5d # no + bsr.l src_qnan # yes + bra.b _L3_6d +_L3_5d: + bsr.l slognp1d # operand is a DENORM +_L3_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flognp1x_ +_flognp1x_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L3_2x + bsr.l slognp1 # operand is a NORM + bra.b _L3_6x +_L3_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L3_3x # no + bsr.l src_zero # yes + bra.b _L3_6x +_L3_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L3_4x # no + bsr.l sopr_inf # yes + bra.b _L3_6x +_L3_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L3_5x # no + bsr.l src_qnan # yes + bra.b _L3_6x +_L3_5x: + bsr.l slognp1d # operand is a DENORM +_L3_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fetoxm1s_ +_fetoxm1s_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L4_2s + bsr.l setoxm1 # operand is a NORM + bra.b _L4_6s +_L4_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L4_3s # no + bsr.l src_zero # yes + bra.b _L4_6s +_L4_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L4_4s # no + bsr.l setoxm1i # yes + bra.b _L4_6s +_L4_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L4_5s # no + bsr.l src_qnan # yes + bra.b _L4_6s +_L4_5s: + bsr.l setoxm1d # operand is a DENORM +_L4_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fetoxm1d_ +_fetoxm1d_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L4_2d + bsr.l setoxm1 # operand is a NORM + bra.b _L4_6d +_L4_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L4_3d # no + bsr.l src_zero # yes + bra.b _L4_6d +_L4_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L4_4d # no + bsr.l setoxm1i # yes + bra.b _L4_6d +_L4_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L4_5d # no + bsr.l src_qnan # yes + bra.b _L4_6d +_L4_5d: + bsr.l setoxm1d # operand is a DENORM +_L4_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fetoxm1x_ +_fetoxm1x_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L4_2x + bsr.l setoxm1 # operand is a NORM + bra.b _L4_6x +_L4_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L4_3x # no + bsr.l src_zero # yes + bra.b _L4_6x +_L4_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L4_4x # no + bsr.l setoxm1i # yes + bra.b _L4_6x +_L4_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L4_5x # no + bsr.l src_qnan # yes + bra.b _L4_6x +_L4_5x: + bsr.l setoxm1d # operand is a DENORM +_L4_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _ftanhs_ +_ftanhs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L5_2s + bsr.l stanh # operand is a NORM + bra.b _L5_6s +_L5_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L5_3s # no + bsr.l src_zero # yes + bra.b _L5_6s +_L5_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L5_4s # no + bsr.l src_one # yes + bra.b _L5_6s +_L5_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L5_5s # no + bsr.l src_qnan # yes + bra.b _L5_6s +_L5_5s: + bsr.l stanhd # operand is a DENORM +_L5_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftanhd_ +_ftanhd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L5_2d + bsr.l stanh # operand is a NORM + bra.b _L5_6d +_L5_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L5_3d # no + bsr.l src_zero # yes + bra.b _L5_6d +_L5_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L5_4d # no + bsr.l src_one # yes + bra.b _L5_6d +_L5_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L5_5d # no + bsr.l src_qnan # yes + bra.b _L5_6d +_L5_5d: + bsr.l stanhd # operand is a DENORM +_L5_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftanhx_ +_ftanhx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L5_2x + bsr.l stanh # operand is a NORM + bra.b _L5_6x +_L5_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L5_3x # no + bsr.l src_zero # yes + bra.b _L5_6x +_L5_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L5_4x # no + bsr.l src_one # yes + bra.b _L5_6x +_L5_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L5_5x # no + bsr.l src_qnan # yes + bra.b _L5_6x +_L5_5x: + bsr.l stanhd # operand is a DENORM +_L5_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fatans_ +_fatans_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L6_2s + bsr.l satan # operand is a NORM + bra.b _L6_6s +_L6_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L6_3s # no + bsr.l src_zero # yes + bra.b _L6_6s +_L6_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L6_4s # no + bsr.l spi_2 # yes + bra.b _L6_6s +_L6_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L6_5s # no + bsr.l src_qnan # yes + bra.b _L6_6s +_L6_5s: + bsr.l satand # operand is a DENORM +_L6_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fatand_ +_fatand_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L6_2d + bsr.l satan # operand is a NORM + bra.b _L6_6d +_L6_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L6_3d # no + bsr.l src_zero # yes + bra.b _L6_6d +_L6_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L6_4d # no + bsr.l spi_2 # yes + bra.b _L6_6d +_L6_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L6_5d # no + bsr.l src_qnan # yes + bra.b _L6_6d +_L6_5d: + bsr.l satand # operand is a DENORM +_L6_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fatanx_ +_fatanx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L6_2x + bsr.l satan # operand is a NORM + bra.b _L6_6x +_L6_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L6_3x # no + bsr.l src_zero # yes + bra.b _L6_6x +_L6_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L6_4x # no + bsr.l spi_2 # yes + bra.b _L6_6x +_L6_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L6_5x # no + bsr.l src_qnan # yes + bra.b _L6_6x +_L6_5x: + bsr.l satand # operand is a DENORM +_L6_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fasins_ +_fasins_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L7_2s + bsr.l sasin # operand is a NORM + bra.b _L7_6s +_L7_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L7_3s # no + bsr.l src_zero # yes + bra.b _L7_6s +_L7_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L7_4s # no + bsr.l t_operr # yes + bra.b _L7_6s +_L7_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L7_5s # no + bsr.l src_qnan # yes + bra.b _L7_6s +_L7_5s: + bsr.l sasind # operand is a DENORM +_L7_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fasind_ +_fasind_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L7_2d + bsr.l sasin # operand is a NORM + bra.b _L7_6d +_L7_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L7_3d # no + bsr.l src_zero # yes + bra.b _L7_6d +_L7_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L7_4d # no + bsr.l t_operr # yes + bra.b _L7_6d +_L7_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L7_5d # no + bsr.l src_qnan # yes + bra.b _L7_6d +_L7_5d: + bsr.l sasind # operand is a DENORM +_L7_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fasinx_ +_fasinx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L7_2x + bsr.l sasin # operand is a NORM + bra.b _L7_6x +_L7_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L7_3x # no + bsr.l src_zero # yes + bra.b _L7_6x +_L7_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L7_4x # no + bsr.l t_operr # yes + bra.b _L7_6x +_L7_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L7_5x # no + bsr.l src_qnan # yes + bra.b _L7_6x +_L7_5x: + bsr.l sasind # operand is a DENORM +_L7_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fatanhs_ +_fatanhs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L8_2s + bsr.l satanh # operand is a NORM + bra.b _L8_6s +_L8_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L8_3s # no + bsr.l src_zero # yes + bra.b _L8_6s +_L8_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L8_4s # no + bsr.l t_operr # yes + bra.b _L8_6s +_L8_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L8_5s # no + bsr.l src_qnan # yes + bra.b _L8_6s +_L8_5s: + bsr.l satanhd # operand is a DENORM +_L8_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fatanhd_ +_fatanhd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L8_2d + bsr.l satanh # operand is a NORM + bra.b _L8_6d +_L8_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L8_3d # no + bsr.l src_zero # yes + bra.b _L8_6d +_L8_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L8_4d # no + bsr.l t_operr # yes + bra.b _L8_6d +_L8_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L8_5d # no + bsr.l src_qnan # yes + bra.b _L8_6d +_L8_5d: + bsr.l satanhd # operand is a DENORM +_L8_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fatanhx_ +_fatanhx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L8_2x + bsr.l satanh # operand is a NORM + bra.b _L8_6x +_L8_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L8_3x # no + bsr.l src_zero # yes + bra.b _L8_6x +_L8_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L8_4x # no + bsr.l t_operr # yes + bra.b _L8_6x +_L8_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L8_5x # no + bsr.l src_qnan # yes + bra.b _L8_6x +_L8_5x: + bsr.l satanhd # operand is a DENORM +_L8_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _ftans_ +_ftans_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L9_2s + bsr.l stan # operand is a NORM + bra.b _L9_6s +_L9_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L9_3s # no + bsr.l src_zero # yes + bra.b _L9_6s +_L9_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L9_4s # no + bsr.l t_operr # yes + bra.b _L9_6s +_L9_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L9_5s # no + bsr.l src_qnan # yes + bra.b _L9_6s +_L9_5s: + bsr.l stand # operand is a DENORM +_L9_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftand_ +_ftand_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L9_2d + bsr.l stan # operand is a NORM + bra.b _L9_6d +_L9_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L9_3d # no + bsr.l src_zero # yes + bra.b _L9_6d +_L9_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L9_4d # no + bsr.l t_operr # yes + bra.b _L9_6d +_L9_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L9_5d # no + bsr.l src_qnan # yes + bra.b _L9_6d +_L9_5d: + bsr.l stand # operand is a DENORM +_L9_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftanx_ +_ftanx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L9_2x + bsr.l stan # operand is a NORM + bra.b _L9_6x +_L9_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L9_3x # no + bsr.l src_zero # yes + bra.b _L9_6x +_L9_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L9_4x # no + bsr.l t_operr # yes + bra.b _L9_6x +_L9_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L9_5x # no + bsr.l src_qnan # yes + bra.b _L9_6x +_L9_5x: + bsr.l stand # operand is a DENORM +_L9_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fetoxs_ +_fetoxs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L10_2s + bsr.l setox # operand is a NORM + bra.b _L10_6s +_L10_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L10_3s # no + bsr.l ld_pone # yes + bra.b _L10_6s +_L10_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L10_4s # no + bsr.l szr_inf # yes + bra.b _L10_6s +_L10_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L10_5s # no + bsr.l src_qnan # yes + bra.b _L10_6s +_L10_5s: + bsr.l setoxd # operand is a DENORM +_L10_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fetoxd_ +_fetoxd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L10_2d + bsr.l setox # operand is a NORM + bra.b _L10_6d +_L10_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L10_3d # no + bsr.l ld_pone # yes + bra.b _L10_6d +_L10_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L10_4d # no + bsr.l szr_inf # yes + bra.b _L10_6d +_L10_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L10_5d # no + bsr.l src_qnan # yes + bra.b _L10_6d +_L10_5d: + bsr.l setoxd # operand is a DENORM +_L10_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fetoxx_ +_fetoxx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L10_2x + bsr.l setox # operand is a NORM + bra.b _L10_6x +_L10_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L10_3x # no + bsr.l ld_pone # yes + bra.b _L10_6x +_L10_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L10_4x # no + bsr.l szr_inf # yes + bra.b _L10_6x +_L10_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L10_5x # no + bsr.l src_qnan # yes + bra.b _L10_6x +_L10_5x: + bsr.l setoxd # operand is a DENORM +_L10_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _ftwotoxs_ +_ftwotoxs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L11_2s + bsr.l stwotox # operand is a NORM + bra.b _L11_6s +_L11_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L11_3s # no + bsr.l ld_pone # yes + bra.b _L11_6s +_L11_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L11_4s # no + bsr.l szr_inf # yes + bra.b _L11_6s +_L11_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L11_5s # no + bsr.l src_qnan # yes + bra.b _L11_6s +_L11_5s: + bsr.l stwotoxd # operand is a DENORM +_L11_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftwotoxd_ +_ftwotoxd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L11_2d + bsr.l stwotox # operand is a NORM + bra.b _L11_6d +_L11_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L11_3d # no + bsr.l ld_pone # yes + bra.b _L11_6d +_L11_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L11_4d # no + bsr.l szr_inf # yes + bra.b _L11_6d +_L11_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L11_5d # no + bsr.l src_qnan # yes + bra.b _L11_6d +_L11_5d: + bsr.l stwotoxd # operand is a DENORM +_L11_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftwotoxx_ +_ftwotoxx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L11_2x + bsr.l stwotox # operand is a NORM + bra.b _L11_6x +_L11_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L11_3x # no + bsr.l ld_pone # yes + bra.b _L11_6x +_L11_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L11_4x # no + bsr.l szr_inf # yes + bra.b _L11_6x +_L11_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L11_5x # no + bsr.l src_qnan # yes + bra.b _L11_6x +_L11_5x: + bsr.l stwotoxd # operand is a DENORM +_L11_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _ftentoxs_ +_ftentoxs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L12_2s + bsr.l stentox # operand is a NORM + bra.b _L12_6s +_L12_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L12_3s # no + bsr.l ld_pone # yes + bra.b _L12_6s +_L12_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L12_4s # no + bsr.l szr_inf # yes + bra.b _L12_6s +_L12_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L12_5s # no + bsr.l src_qnan # yes + bra.b _L12_6s +_L12_5s: + bsr.l stentoxd # operand is a DENORM +_L12_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftentoxd_ +_ftentoxd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L12_2d + bsr.l stentox # operand is a NORM + bra.b _L12_6d +_L12_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L12_3d # no + bsr.l ld_pone # yes + bra.b _L12_6d +_L12_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L12_4d # no + bsr.l szr_inf # yes + bra.b _L12_6d +_L12_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L12_5d # no + bsr.l src_qnan # yes + bra.b _L12_6d +_L12_5d: + bsr.l stentoxd # operand is a DENORM +_L12_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _ftentoxx_ +_ftentoxx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L12_2x + bsr.l stentox # operand is a NORM + bra.b _L12_6x +_L12_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L12_3x # no + bsr.l ld_pone # yes + bra.b _L12_6x +_L12_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L12_4x # no + bsr.l szr_inf # yes + bra.b _L12_6x +_L12_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L12_5x # no + bsr.l src_qnan # yes + bra.b _L12_6x +_L12_5x: + bsr.l stentoxd # operand is a DENORM +_L12_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _flogns_ +_flogns_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L13_2s + bsr.l slogn # operand is a NORM + bra.b _L13_6s +_L13_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L13_3s # no + bsr.l t_dz2 # yes + bra.b _L13_6s +_L13_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L13_4s # no + bsr.l sopr_inf # yes + bra.b _L13_6s +_L13_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L13_5s # no + bsr.l src_qnan # yes + bra.b _L13_6s +_L13_5s: + bsr.l slognd # operand is a DENORM +_L13_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flognd_ +_flognd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L13_2d + bsr.l slogn # operand is a NORM + bra.b _L13_6d +_L13_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L13_3d # no + bsr.l t_dz2 # yes + bra.b _L13_6d +_L13_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L13_4d # no + bsr.l sopr_inf # yes + bra.b _L13_6d +_L13_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L13_5d # no + bsr.l src_qnan # yes + bra.b _L13_6d +_L13_5d: + bsr.l slognd # operand is a DENORM +_L13_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flognx_ +_flognx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L13_2x + bsr.l slogn # operand is a NORM + bra.b _L13_6x +_L13_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L13_3x # no + bsr.l t_dz2 # yes + bra.b _L13_6x +_L13_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L13_4x # no + bsr.l sopr_inf # yes + bra.b _L13_6x +_L13_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L13_5x # no + bsr.l src_qnan # yes + bra.b _L13_6x +_L13_5x: + bsr.l slognd # operand is a DENORM +_L13_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _flog10s_ +_flog10s_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L14_2s + bsr.l slog10 # operand is a NORM + bra.b _L14_6s +_L14_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L14_3s # no + bsr.l t_dz2 # yes + bra.b _L14_6s +_L14_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L14_4s # no + bsr.l sopr_inf # yes + bra.b _L14_6s +_L14_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L14_5s # no + bsr.l src_qnan # yes + bra.b _L14_6s +_L14_5s: + bsr.l slog10d # operand is a DENORM +_L14_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flog10d_ +_flog10d_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L14_2d + bsr.l slog10 # operand is a NORM + bra.b _L14_6d +_L14_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L14_3d # no + bsr.l t_dz2 # yes + bra.b _L14_6d +_L14_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L14_4d # no + bsr.l sopr_inf # yes + bra.b _L14_6d +_L14_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L14_5d # no + bsr.l src_qnan # yes + bra.b _L14_6d +_L14_5d: + bsr.l slog10d # operand is a DENORM +_L14_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flog10x_ +_flog10x_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L14_2x + bsr.l slog10 # operand is a NORM + bra.b _L14_6x +_L14_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L14_3x # no + bsr.l t_dz2 # yes + bra.b _L14_6x +_L14_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L14_4x # no + bsr.l sopr_inf # yes + bra.b _L14_6x +_L14_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L14_5x # no + bsr.l src_qnan # yes + bra.b _L14_6x +_L14_5x: + bsr.l slog10d # operand is a DENORM +_L14_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _flog2s_ +_flog2s_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L15_2s + bsr.l slog2 # operand is a NORM + bra.b _L15_6s +_L15_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L15_3s # no + bsr.l t_dz2 # yes + bra.b _L15_6s +_L15_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L15_4s # no + bsr.l sopr_inf # yes + bra.b _L15_6s +_L15_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L15_5s # no + bsr.l src_qnan # yes + bra.b _L15_6s +_L15_5s: + bsr.l slog2d # operand is a DENORM +_L15_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flog2d_ +_flog2d_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L15_2d + bsr.l slog2 # operand is a NORM + bra.b _L15_6d +_L15_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L15_3d # no + bsr.l t_dz2 # yes + bra.b _L15_6d +_L15_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L15_4d # no + bsr.l sopr_inf # yes + bra.b _L15_6d +_L15_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L15_5d # no + bsr.l src_qnan # yes + bra.b _L15_6d +_L15_5d: + bsr.l slog2d # operand is a DENORM +_L15_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _flog2x_ +_flog2x_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L15_2x + bsr.l slog2 # operand is a NORM + bra.b _L15_6x +_L15_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L15_3x # no + bsr.l t_dz2 # yes + bra.b _L15_6x +_L15_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L15_4x # no + bsr.l sopr_inf # yes + bra.b _L15_6x +_L15_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L15_5x # no + bsr.l src_qnan # yes + bra.b _L15_6x +_L15_5x: + bsr.l slog2d # operand is a DENORM +_L15_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fcoshs_ +_fcoshs_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L16_2s + bsr.l scosh # operand is a NORM + bra.b _L16_6s +_L16_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L16_3s # no + bsr.l ld_pone # yes + bra.b _L16_6s +_L16_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L16_4s # no + bsr.l ld_pinf # yes + bra.b _L16_6s +_L16_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L16_5s # no + bsr.l src_qnan # yes + bra.b _L16_6s +_L16_5s: + bsr.l scoshd # operand is a DENORM +_L16_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fcoshd_ +_fcoshd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L16_2d + bsr.l scosh # operand is a NORM + bra.b _L16_6d +_L16_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L16_3d # no + bsr.l ld_pone # yes + bra.b _L16_6d +_L16_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L16_4d # no + bsr.l ld_pinf # yes + bra.b _L16_6d +_L16_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L16_5d # no + bsr.l src_qnan # yes + bra.b _L16_6d +_L16_5d: + bsr.l scoshd # operand is a DENORM +_L16_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fcoshx_ +_fcoshx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L16_2x + bsr.l scosh # operand is a NORM + bra.b _L16_6x +_L16_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L16_3x # no + bsr.l ld_pone # yes + bra.b _L16_6x +_L16_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L16_4x # no + bsr.l ld_pinf # yes + bra.b _L16_6x +_L16_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L16_5x # no + bsr.l src_qnan # yes + bra.b _L16_6x +_L16_5x: + bsr.l scoshd # operand is a DENORM +_L16_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _facoss_ +_facoss_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L17_2s + bsr.l sacos # operand is a NORM + bra.b _L17_6s +_L17_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L17_3s # no + bsr.l ld_ppi2 # yes + bra.b _L17_6s +_L17_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L17_4s # no + bsr.l t_operr # yes + bra.b _L17_6s +_L17_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L17_5s # no + bsr.l src_qnan # yes + bra.b _L17_6s +_L17_5s: + bsr.l sacosd # operand is a DENORM +_L17_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _facosd_ +_facosd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L17_2d + bsr.l sacos # operand is a NORM + bra.b _L17_6d +_L17_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L17_3d # no + bsr.l ld_ppi2 # yes + bra.b _L17_6d +_L17_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L17_4d # no + bsr.l t_operr # yes + bra.b _L17_6d +_L17_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L17_5d # no + bsr.l src_qnan # yes + bra.b _L17_6d +_L17_5d: + bsr.l sacosd # operand is a DENORM +_L17_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _facosx_ +_facosx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L17_2x + bsr.l sacos # operand is a NORM + bra.b _L17_6x +_L17_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L17_3x # no + bsr.l ld_ppi2 # yes + bra.b _L17_6x +_L17_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L17_4x # no + bsr.l t_operr # yes + bra.b _L17_6x +_L17_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L17_5x # no + bsr.l src_qnan # yes + bra.b _L17_6x +_L17_5x: + bsr.l sacosd # operand is a DENORM +_L17_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fgetexps_ +_fgetexps_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L18_2s + bsr.l sgetexp # operand is a NORM + bra.b _L18_6s +_L18_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L18_3s # no + bsr.l src_zero # yes + bra.b _L18_6s +_L18_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L18_4s # no + bsr.l t_operr # yes + bra.b _L18_6s +_L18_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L18_5s # no + bsr.l src_qnan # yes + bra.b _L18_6s +_L18_5s: + bsr.l sgetexpd # operand is a DENORM +_L18_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fgetexpd_ +_fgetexpd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L18_2d + bsr.l sgetexp # operand is a NORM + bra.b _L18_6d +_L18_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L18_3d # no + bsr.l src_zero # yes + bra.b _L18_6d +_L18_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L18_4d # no + bsr.l t_operr # yes + bra.b _L18_6d +_L18_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L18_5d # no + bsr.l src_qnan # yes + bra.b _L18_6d +_L18_5d: + bsr.l sgetexpd # operand is a DENORM +_L18_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fgetexpx_ +_fgetexpx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L18_2x + bsr.l sgetexp # operand is a NORM + bra.b _L18_6x +_L18_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L18_3x # no + bsr.l src_zero # yes + bra.b _L18_6x +_L18_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L18_4x # no + bsr.l t_operr # yes + bra.b _L18_6x +_L18_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L18_5x # no + bsr.l src_qnan # yes + bra.b _L18_6x +_L18_5x: + bsr.l sgetexpd # operand is a DENORM +_L18_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fgetmans_ +_fgetmans_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L19_2s + bsr.l sgetman # operand is a NORM + bra.b _L19_6s +_L19_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L19_3s # no + bsr.l src_zero # yes + bra.b _L19_6s +_L19_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L19_4s # no + bsr.l t_operr # yes + bra.b _L19_6s +_L19_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L19_5s # no + bsr.l src_qnan # yes + bra.b _L19_6s +_L19_5s: + bsr.l sgetmand # operand is a DENORM +_L19_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fgetmand_ +_fgetmand_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L19_2d + bsr.l sgetman # operand is a NORM + bra.b _L19_6d +_L19_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L19_3d # no + bsr.l src_zero # yes + bra.b _L19_6d +_L19_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L19_4d # no + bsr.l t_operr # yes + bra.b _L19_6d +_L19_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L19_5d # no + bsr.l src_qnan # yes + bra.b _L19_6d +_L19_5d: + bsr.l sgetmand # operand is a DENORM +_L19_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fgetmanx_ +_fgetmanx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L19_2x + bsr.l sgetman # operand is a NORM + bra.b _L19_6x +_L19_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L19_3x # no + bsr.l src_zero # yes + bra.b _L19_6x +_L19_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L19_4x # no + bsr.l t_operr # yes + bra.b _L19_6x +_L19_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L19_5x # no + bsr.l src_qnan # yes + bra.b _L19_6x +_L19_5x: + bsr.l sgetmand # operand is a DENORM +_L19_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# MONADIC TEMPLATE # +######################################################################### + global _fsincoss_ +_fsincoss_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L20_2s + bsr.l ssincos # operand is a NORM + bra.b _L20_6s +_L20_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L20_3s # no + bsr.l ssincosz # yes + bra.b _L20_6s +_L20_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L20_4s # no + bsr.l ssincosi # yes + bra.b _L20_6s +_L20_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L20_5s # no + bsr.l ssincosqnan # yes + bra.b _L20_6s +_L20_5s: + bsr.l ssincosd # operand is a DENORM +_L20_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x &0x03,-(%sp) # store off fp0/fp1 + fmovm.x (%sp)+,&0x40 # fp0 now in fp1 + fmovm.x (%sp)+,&0x80 # fp1 now in fp0 + unlk %a6 + rts + + global _fsincosd_ +_fsincosd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl input + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + mov.b %d1,STAG(%a6) + tst.b %d1 + bne.b _L20_2d + bsr.l ssincos # operand is a NORM + bra.b _L20_6d +_L20_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L20_3d # no + bsr.l ssincosz # yes + bra.b _L20_6d +_L20_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L20_4d # no + bsr.l ssincosi # yes + bra.b _L20_6d +_L20_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L20_5d # no + bsr.l ssincosqnan # yes + bra.b _L20_6d +_L20_5d: + bsr.l ssincosd # operand is a DENORM +_L20_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x &0x03,-(%sp) # store off fp0/fp1 + fmovm.x (%sp)+,&0x40 # fp0 now in fp1 + fmovm.x (%sp)+,&0x80 # fp1 now in fp0 + unlk %a6 + rts + + global _fsincosx_ +_fsincosx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_SRC(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext input + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.b %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + tst.b %d1 + bne.b _L20_2x + bsr.l ssincos # operand is a NORM + bra.b _L20_6x +_L20_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L20_3x # no + bsr.l ssincosz # yes + bra.b _L20_6x +_L20_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L20_4x # no + bsr.l ssincosi # yes + bra.b _L20_6x +_L20_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L20_5x # no + bsr.l ssincosqnan # yes + bra.b _L20_6x +_L20_5x: + bsr.l ssincosd # operand is a DENORM +_L20_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x &0x03,-(%sp) # store off fp0/fp1 + fmovm.x (%sp)+,&0x40 # fp0 now in fp1 + fmovm.x (%sp)+,&0x80 # fp1 now in fp0 + unlk %a6 + rts + + +######################################################################### +# DYADIC TEMPLATE # +######################################################################### + global _frems_ +_frems_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl dst + fmov.x %fp0,FP_DST(%a6) + lea FP_DST(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + fmov.s 0xc(%a6),%fp0 # load sgl src + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L21_2s + bsr.l srem_snorm # operand is a NORM + bra.b _L21_6s +_L21_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L21_3s # no + bsr.l srem_szero # yes + bra.b _L21_6s +_L21_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L21_4s # no + bsr.l srem_sinf # yes + bra.b _L21_6s +_L21_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L21_5s # no + bsr.l sop_sqnan # yes + bra.b _L21_6s +_L21_5s: + bsr.l srem_sdnrm # operand is a DENORM +_L21_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fremd_ +_fremd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl dst + fmov.x %fp0,FP_DST(%a6) + lea FP_DST(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + fmov.d 0x10(%a6),%fp0 # load dbl src + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L21_2d + bsr.l srem_snorm # operand is a NORM + bra.b _L21_6d +_L21_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L21_3d # no + bsr.l srem_szero # yes + bra.b _L21_6d +_L21_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L21_4d # no + bsr.l srem_sinf # yes + bra.b _L21_6d +_L21_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L21_5d # no + bsr.l sop_sqnan # yes + bra.b _L21_6d +_L21_5d: + bsr.l srem_sdnrm # operand is a DENORM +_L21_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fremx_ +_fremx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_DST(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + lea FP_SRC(%a6),%a0 + mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src + mov.l 0x14+0x4(%a6),0x4(%a0) + mov.l 0x14+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L21_2x + bsr.l srem_snorm # operand is a NORM + bra.b _L21_6x +_L21_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L21_3x # no + bsr.l srem_szero # yes + bra.b _L21_6x +_L21_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L21_4x # no + bsr.l srem_sinf # yes + bra.b _L21_6x +_L21_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L21_5x # no + bsr.l sop_sqnan # yes + bra.b _L21_6x +_L21_5x: + bsr.l srem_sdnrm # operand is a DENORM +_L21_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# DYADIC TEMPLATE # +######################################################################### + global _fmods_ +_fmods_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl dst + fmov.x %fp0,FP_DST(%a6) + lea FP_DST(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + fmov.s 0xc(%a6),%fp0 # load sgl src + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L22_2s + bsr.l smod_snorm # operand is a NORM + bra.b _L22_6s +_L22_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L22_3s # no + bsr.l smod_szero # yes + bra.b _L22_6s +_L22_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L22_4s # no + bsr.l smod_sinf # yes + bra.b _L22_6s +_L22_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L22_5s # no + bsr.l sop_sqnan # yes + bra.b _L22_6s +_L22_5s: + bsr.l smod_sdnrm # operand is a DENORM +_L22_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fmodd_ +_fmodd_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl dst + fmov.x %fp0,FP_DST(%a6) + lea FP_DST(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + fmov.d 0x10(%a6),%fp0 # load dbl src + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L22_2d + bsr.l smod_snorm # operand is a NORM + bra.b _L22_6d +_L22_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L22_3d # no + bsr.l smod_szero # yes + bra.b _L22_6d +_L22_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L22_4d # no + bsr.l smod_sinf # yes + bra.b _L22_6d +_L22_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L22_5d # no + bsr.l sop_sqnan # yes + bra.b _L22_6d +_L22_5d: + bsr.l smod_sdnrm # operand is a DENORM +_L22_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fmodx_ +_fmodx_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_DST(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + lea FP_SRC(%a6),%a0 + mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src + mov.l 0x14+0x4(%a6),0x4(%a0) + mov.l 0x14+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L22_2x + bsr.l smod_snorm # operand is a NORM + bra.b _L22_6x +_L22_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L22_3x # no + bsr.l smod_szero # yes + bra.b _L22_6x +_L22_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L22_4x # no + bsr.l smod_sinf # yes + bra.b _L22_6x +_L22_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L22_5x # no + bsr.l sop_sqnan # yes + bra.b _L22_6x +_L22_5x: + bsr.l smod_sdnrm # operand is a DENORM +_L22_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# DYADIC TEMPLATE # +######################################################################### + global _fscales_ +_fscales_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.s 0x8(%a6),%fp0 # load sgl dst + fmov.x %fp0,FP_DST(%a6) + lea FP_DST(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + fmov.s 0xc(%a6),%fp0 # load sgl src + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L23_2s + bsr.l sscale_snorm # operand is a NORM + bra.b _L23_6s +_L23_2s: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L23_3s # no + bsr.l sscale_szero # yes + bra.b _L23_6s +_L23_3s: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L23_4s # no + bsr.l sscale_sinf # yes + bra.b _L23_6s +_L23_4s: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L23_5s # no + bsr.l sop_sqnan # yes + bra.b _L23_6s +_L23_5s: + bsr.l sscale_sdnrm # operand is a DENORM +_L23_6s: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fscaled_ +_fscaled_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + fmov.d 0x8(%a6),%fp0 # load dbl dst + fmov.x %fp0,FP_DST(%a6) + lea FP_DST(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + fmov.d 0x10(%a6),%fp0 # load dbl src + fmov.x %fp0,FP_SRC(%a6) + lea FP_SRC(%a6),%a0 + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L23_2d + bsr.l sscale_snorm # operand is a NORM + bra.b _L23_6d +_L23_2d: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L23_3d # no + bsr.l sscale_szero # yes + bra.b _L23_6d +_L23_3d: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L23_4d # no + bsr.l sscale_sinf # yes + bra.b _L23_6d +_L23_4d: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L23_5d # no + bsr.l sop_sqnan # yes + bra.b _L23_6d +_L23_5d: + bsr.l sscale_sdnrm # operand is a DENORM +_L23_6d: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + global _fscalex_ +_fscalex_: + link %a6,&-LOCAL_SIZE + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FP0(%a6) # save fp0/fp1 + + fmov.l &0x0,%fpcr # zero FPCR + +# +# copy, convert, and tag input argument +# + lea FP_DST(%a6),%a0 + mov.l 0x8+0x0(%a6),0x0(%a0) # load ext dst + mov.l 0x8+0x4(%a6),0x4(%a0) + mov.l 0x8+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,DTAG(%a6) + + lea FP_SRC(%a6),%a0 + mov.l 0x14+0x0(%a6),0x0(%a0) # load ext src + mov.l 0x14+0x4(%a6),0x4(%a0) + mov.l 0x14+0x8(%a6),0x8(%a0) + bsr.l tag # fetch operand type + mov.b %d0,STAG(%a6) + mov.l %d0,%d1 + + andi.l &0x00ff00ff,USER_FPSR(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd mode,prec + + lea FP_SRC(%a6),%a0 # pass ptr to src + lea FP_DST(%a6),%a1 # pass ptr to dst + + tst.b %d1 + bne.b _L23_2x + bsr.l sscale_snorm # operand is a NORM + bra.b _L23_6x +_L23_2x: + cmpi.b %d1,&ZERO # is operand a ZERO? + bne.b _L23_3x # no + bsr.l sscale_szero # yes + bra.b _L23_6x +_L23_3x: + cmpi.b %d1,&INF # is operand an INF? + bne.b _L23_4x # no + bsr.l sscale_sinf # yes + bra.b _L23_6x +_L23_4x: + cmpi.b %d1,&QNAN # is operand a QNAN? + bne.b _L23_5x # no + bsr.l sop_sqnan # yes + bra.b _L23_6x +_L23_5x: + bsr.l sscale_sdnrm # operand is a DENORM +_L23_6x: + +# +# Result is now in FP0 +# + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr # restore ctrl regs + fmovm.x EXC_FP1(%a6),&0x40 # restore fp1 + unlk %a6 + rts + + +######################################################################### +# ssin(): computes the sine of a normalized input # +# ssind(): computes the sine of a denormalized input # +# scos(): computes the cosine of a normalized input # +# scosd(): computes the cosine of a denormalized input # +# ssincos(): computes the sine and cosine of a normalized input # +# ssincosd(): computes the sine and cosine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = sin(X) or cos(X) # +# # +# For ssincos(X): # +# fp0 = sin(X) # +# fp1 = cos(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 1 ulp in 64 significant bit, i.e. # +# within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# SIN and COS: # +# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # +# # +# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # +# # +# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # +# k = N mod 4, so in particular, k = 0,1,2,or 3. # +# Overwrite k by k := k + AdjN. # +# # +# 4. If k is even, go to 6. # +# # +# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # +# Return sgn*cos(r) where cos(r) is approximated by an # +# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # +# s = r*r. # +# Exit. # +# # +# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # +# where sin(r) is approximated by an odd polynomial in r # +# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # +# Exit. # +# # +# 7. If |X| > 1, go to 9. # +# # +# 8. (|X|<2**(-40)) If SIN is invoked, return X; # +# otherwise return 1. # +# # +# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # +# go back to 3. # +# # +# SINCOS: # +# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # +# # +# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # +# k = N mod 4, so in particular, k = 0,1,2,or 3. # +# # +# 3. If k is even, go to 5. # +# # +# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # +# j1 exclusive or with the l.s.b. of k. # +# sgn1 := (-1)**j1, sgn2 := (-1)**j2. # +# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # +# sin(r) and cos(r) are computed as odd and even # +# polynomials in r, respectively. Exit # +# # +# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # +# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # +# sin(r) and cos(r) are computed as odd and even # +# polynomials in r, respectively. Exit # +# # +# 6. If |X| > 1, go to 8. # +# # +# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # +# # +# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # +# go back to 2. # +# # +######################################################################### + +SINA7: long 0xBD6AAA77,0xCCC994F5 +SINA6: long 0x3DE61209,0x7AAE8DA1 +SINA5: long 0xBE5AE645,0x2A118AE4 +SINA4: long 0x3EC71DE3,0xA5341531 +SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 +SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 +SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 + +COSB8: long 0x3D2AC4D0,0xD6011EE3 +COSB7: long 0xBDA9396F,0x9F45AC19 +COSB6: long 0x3E21EED9,0x0612C972 +COSB5: long 0xBE927E4F,0xB79D9FCF +COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 +COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 +COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E +COSB1: long 0xBF000000 + + set INARG,FP_SCR0 + + set X,FP_SCR0 +# set XDCARE,X+2 + set XFRAC,X+4 + + set RPRIME,FP_SCR0 + set SPRIME,FP_SCR1 + + set POSNEG1,L_SCR1 + set TWOTO63,L_SCR1 + + set ENDFLAG,L_SCR2 + set INT,L_SCR2 + + set ADJN,L_SCR3 + +############################################ + global ssin +ssin: + mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 + bra.b SINBGN + +############################################ + global scos +scos: + mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 + +############################################ +SINBGN: +#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE + + fmov.x (%a0),%fp0 # LOAD INPUT + fmov.x %fp0,X(%a6) # save input at X + +# "COMPACTIFY" X + mov.l (%a0),%d1 # put exp in hi word + mov.w 4(%a0),%d1 # fetch hi(man) + and.l &0x7FFFFFFF,%d1 # strip sign + + cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? + bge.b SOK1 # no + bra.w SINSM # yes; input is very small + +SOK1: + cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? + blt.b SINMAIN # no + bra.w SREDUCEX # yes; input is very large + +#--THIS IS THE USUAL CASE, |X| <= 15 PI. +#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. +SINMAIN: + fmov.x %fp0,%fp1 + fmul.d TWOBYPI(%pc),%fp1 # X*2/PI + + lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 + + fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER + + mov.l INT(%a6),%d1 # make a copy of N + asl.l &4,%d1 # N *= 16 + add.l %d1,%a1 # tbl_addr = a1 + (N*16) + +# A1 IS THE ADDRESS OF N*PIBY2 +# ...WHICH IS IN TWO PIECES Y1 & Y2 + fsub.x (%a1)+,%fp0 # X-Y1 + fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 + +SINCONT: +#--continuation from REDUCEX + +#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED + mov.l INT(%a6),%d1 + add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN + ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE + cmp.l %d1,&0 + blt.w COSPOLY + +#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. +#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY +#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE +#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS +#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) +#--WHERE T=S*S. +#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION +#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. +SINPOLY: + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmov.x %fp0,X(%a6) # X IS R + fmul.x %fp0,%fp0 # FP0 IS S + + fmov.d SINA7(%pc),%fp3 + fmov.d SINA6(%pc),%fp2 + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS T + + ror.l &1,%d1 + and.l &0x80000000,%d1 +# ...LEAST SIG. BIT OF D0 IN SIGN POSITION + eor.l %d1,X(%a6) # X IS NOW R'= SGN*R + + fmul.x %fp1,%fp3 # TA7 + fmul.x %fp1,%fp2 # TA6 + + fadd.d SINA5(%pc),%fp3 # A5+TA7 + fadd.d SINA4(%pc),%fp2 # A4+TA6 + + fmul.x %fp1,%fp3 # T(A5+TA7) + fmul.x %fp1,%fp2 # T(A4+TA6) + + fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) + fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) + + fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) + + fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) + fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) + fmul.x X(%a6),%fp0 # R'*S + + fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] + + fmul.x %fp1,%fp0 # SIN(R')-R' + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users round mode,prec + fadd.x X(%a6),%fp0 # last inst - possible exception set + bra t_inx2 + +#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. +#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY +#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE +#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS +#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) +#--WHERE T=S*S. +#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION +#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 +#--AND IS THEREFORE STORED AS SINGLE PRECISION. +COSPOLY: + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmul.x %fp0,%fp0 # FP0 IS S + + fmov.d COSB8(%pc),%fp2 + fmov.d COSB7(%pc),%fp3 + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS T + + fmov.x %fp0,X(%a6) # X IS S + ror.l &1,%d1 + and.l &0x80000000,%d1 +# ...LEAST SIG. BIT OF D0 IN SIGN POSITION + + fmul.x %fp1,%fp2 # TB8 + + eor.l %d1,X(%a6) # X IS NOW S'= SGN*S + and.l &0x80000000,%d1 + + fmul.x %fp1,%fp3 # TB7 + + or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE + mov.l %d1,POSNEG1(%a6) + + fadd.d COSB6(%pc),%fp2 # B6+TB8 + fadd.d COSB5(%pc),%fp3 # B5+TB7 + + fmul.x %fp1,%fp2 # T(B6+TB8) + fmul.x %fp1,%fp3 # T(B5+TB7) + + fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) + fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) + + fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) + fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) + + fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) + fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) + + fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) + + fadd.x %fp1,%fp0 + + fmul.x X(%a6),%fp0 + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users round mode,prec + fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set + bra t_inx2 + +############################################## + +# SINe: Big OR Small? +#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. +#--IF |X| < 2**(-40), RETURN X OR 1. +SINBORS: + cmp.l %d1,&0x3FFF8000 + bgt.l SREDUCEX + +SINSM: + mov.l ADJN(%a6),%d1 + cmp.l %d1,&0 + bgt.b COSTINY + +# here, the operation may underflow iff the precision is sgl or dbl. +# extended denorms are handled through another entry point. +SINTINY: +# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE + + fmov.l %d0,%fpcr # restore users round mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 # last inst - possible exception set + bra t_catch + +COSTINY: + fmov.s &0x3F800000,%fp0 # fp0 = 1.0 + fmov.l %d0,%fpcr # restore users round mode,prec + fadd.s &0x80800000,%fp0 # last inst - possible exception set + bra t_pinx2 + +################################################ + global ssind +#--SIN(X) = X FOR DENORMALIZED X +ssind: + bra t_extdnrm + +############################################ + global scosd +#--COS(X) = 1 FOR DENORMALIZED X +scosd: + fmov.s &0x3F800000,%fp0 # fp0 = 1.0 + bra t_pinx2 + +################################################## + + global ssincos +ssincos: +#--SET ADJN TO 4 + mov.l &4,ADJN(%a6) + + fmov.x (%a0),%fp0 # LOAD INPUT + fmov.x %fp0,X(%a6) + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 # COMPACTIFY X + + cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? + bge.b SCOK1 + bra.w SCSM + +SCOK1: + cmp.l %d1,&0x4004BC7E # |X| < 15 PI? + blt.b SCMAIN + bra.w SREDUCEX + + +#--THIS IS THE USUAL CASE, |X| <= 15 PI. +#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. +SCMAIN: + fmov.x %fp0,%fp1 + + fmul.d TWOBYPI(%pc),%fp1 # X*2/PI + + lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 + + fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER + + mov.l INT(%a6),%d1 + asl.l &4,%d1 + add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 + + fsub.x (%a1)+,%fp0 # X-Y1 + fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 + +SCCONT: +#--continuation point from REDUCEX + + mov.l INT(%a6),%d1 + ror.l &1,%d1 + cmp.l %d1,&0 # D0 < 0 IFF N IS ODD + bge.w NEVEN + +SNODD: +#--REGISTERS SAVED SO FAR: D0, A0, FP2. + fmovm.x &0x04,-(%sp) # save fp2 + + fmov.x %fp0,RPRIME(%a6) + fmul.x %fp0,%fp0 # FP0 IS S = R*R + fmov.d SINA7(%pc),%fp1 # A7 + fmov.d COSB8(%pc),%fp2 # B8 + fmul.x %fp0,%fp1 # SA7 + fmul.x %fp0,%fp2 # SB8 + + mov.l %d2,-(%sp) + mov.l %d1,%d2 + ror.l &1,%d2 + and.l &0x80000000,%d2 + eor.l %d1,%d2 + and.l &0x80000000,%d2 + + fadd.d SINA6(%pc),%fp1 # A6+SA7 + fadd.d COSB7(%pc),%fp2 # B7+SB8 + + fmul.x %fp0,%fp1 # S(A6+SA7) + eor.l %d2,RPRIME(%a6) + mov.l (%sp)+,%d2 + fmul.x %fp0,%fp2 # S(B7+SB8) + ror.l &1,%d1 + and.l &0x80000000,%d1 + mov.l &0x3F800000,POSNEG1(%a6) + eor.l %d1,POSNEG1(%a6) + + fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) + fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) + + fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) + fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) + fmov.x %fp0,SPRIME(%a6) + + fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) + eor.l %d1,SPRIME(%a6) + fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) + + fmul.x %fp0,%fp1 # S(A4+...) + fmul.x %fp0,%fp2 # S(B5+...) + + fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) + fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) + + fmul.x %fp0,%fp1 # S(A3+...) + fmul.x %fp0,%fp2 # S(B4+...) + + fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) + fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) + + fmul.x %fp0,%fp1 # S(A2+...) + fmul.x %fp0,%fp2 # S(B3+...) + + fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) + fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) + + fmul.x %fp0,%fp1 # S(A1+...) + fmul.x %fp2,%fp0 # S(B2+...) + + fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) + fadd.s COSB1(%pc),%fp0 # B1+S(B2...) + fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) + + fmovm.x (%sp)+,&0x20 # restore fp2 + + fmov.l %d0,%fpcr + fadd.x RPRIME(%a6),%fp1 # COS(X) + bsr sto_cos # store cosine result + fadd.s POSNEG1(%a6),%fp0 # SIN(X) + bra t_inx2 + +NEVEN: +#--REGISTERS SAVED SO FAR: FP2. + fmovm.x &0x04,-(%sp) # save fp2 + + fmov.x %fp0,RPRIME(%a6) + fmul.x %fp0,%fp0 # FP0 IS S = R*R + + fmov.d COSB8(%pc),%fp1 # B8 + fmov.d SINA7(%pc),%fp2 # A7 + + fmul.x %fp0,%fp1 # SB8 + fmov.x %fp0,SPRIME(%a6) + fmul.x %fp0,%fp2 # SA7 + + ror.l &1,%d1 + and.l &0x80000000,%d1 + + fadd.d COSB7(%pc),%fp1 # B7+SB8 + fadd.d SINA6(%pc),%fp2 # A6+SA7 + + eor.l %d1,RPRIME(%a6) + eor.l %d1,SPRIME(%a6) + + fmul.x %fp0,%fp1 # S(B7+SB8) + + or.l &0x3F800000,%d1 + mov.l %d1,POSNEG1(%a6) + + fmul.x %fp0,%fp2 # S(A6+SA7) + + fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) + fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) + + fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) + fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) + + fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) + fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) + + fmul.x %fp0,%fp1 # S(B5+...) + fmul.x %fp0,%fp2 # S(A4+...) + + fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) + fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) + + fmul.x %fp0,%fp1 # S(B4+...) + fmul.x %fp0,%fp2 # S(A3+...) + + fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) + fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) + + fmul.x %fp0,%fp1 # S(B3+...) + fmul.x %fp0,%fp2 # S(A2+...) + + fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) + fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) + + fmul.x %fp0,%fp1 # S(B2+...) + fmul.x %fp2,%fp0 # s(a1+...) + + + fadd.s COSB1(%pc),%fp1 # B1+S(B2...) + fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) + fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) + + fmovm.x (%sp)+,&0x20 # restore fp2 + + fmov.l %d0,%fpcr + fadd.s POSNEG1(%a6),%fp1 # COS(X) + bsr sto_cos # store cosine result + fadd.x RPRIME(%a6),%fp0 # SIN(X) + bra t_inx2 + +################################################ + +SCBORS: + cmp.l %d1,&0x3FFF8000 + bgt.w SREDUCEX + +################################################ + +SCSM: +# mov.w &0x0000,XDCARE(%a6) + fmov.s &0x3F800000,%fp1 + + fmov.l %d0,%fpcr + fsub.s &0x00800000,%fp1 + bsr sto_cos # store cosine result + fmov.l %fpcr,%d0 # d0 must have fpcr,too + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 + bra t_catch + +############################################## + + global ssincosd +#--SIN AND COS OF X FOR DENORMALIZED X +ssincosd: + mov.l %d0,-(%sp) # save d0 + fmov.s &0x3F800000,%fp1 + bsr sto_cos # store cosine result + mov.l (%sp)+,%d0 # restore d0 + bra t_extdnrm + +############################################ + +#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. +#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING +#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. +SREDUCEX: + fmovm.x &0x3c,-(%sp) # save {fp2-fp5} + mov.l %d2,-(%sp) # save d2 + fmov.s &0x00000000,%fp1 # fp1 = 0 + +#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that +#--there is a danger of unwanted overflow in first LOOP iteration. In this +#--case, reduce argument by one remainder step to make subsequent reduction +#--safe. + cmp.l %d1,&0x7ffeffff # is arg dangerously large? + bne.b SLOOP # no + +# yes; create 2**16383*PI/2 + mov.w &0x7ffe,FP_SCR0_EX(%a6) + mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + +# create low half of 2**16383*PI/2 at FP_SCR1 + mov.w &0x7fdc,FP_SCR1_EX(%a6) + mov.l &0x85a308d3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + + ftest.x %fp0 # test sign of argument + fblt.w sred_neg + + or.b &0x80,FP_SCR0_EX(%a6) # positive arg + or.b &0x80,FP_SCR1_EX(%a6) +sred_neg: + fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact + fmov.x %fp0,%fp1 # save high result in fp1 + fadd.x FP_SCR1(%a6),%fp0 # low part of reduction + fsub.x %fp0,%fp1 # determine low component of result + fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. + +#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. +#--integer quotient will be stored in N +#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) +SLOOP: + fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 + mov.w INARG(%a6),%d1 + mov.l %d1,%a1 # save a copy of D0 + and.l &0x00007FFF,%d1 + sub.l &0x00003FFF,%d1 # d0 = K + cmp.l %d1,&28 + ble.b SLASTLOOP +SCONTLOOP: + sub.l &27,%d1 # d0 = L := K-27 + mov.b &0,ENDFLAG(%a6) + bra.b SWORK +SLASTLOOP: + clr.l %d1 # d0 = L := 0 + mov.b &1,ENDFLAG(%a6) + +SWORK: +#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN +#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. + +#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), +#--2**L * (PIby2_1), 2**L * (PIby2_2) + + mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI + sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) + + mov.l &0xA2F9836E,FP_SCR0_HI(%a6) + mov.l &0x4E44152A,FP_SCR0_LO(%a6) + mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) + + fmov.x %fp0,%fp2 + fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) + +#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN +#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N +#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT +#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE +#--US THE DESIRED VALUE IN FLOATING POINT. + mov.l %a1,%d2 + swap %d2 + and.l &0x80000000,%d2 + or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL + mov.l %d2,TWOTO63(%a6) + fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED + fsub.s TWOTO63(%a6),%fp2 # fp2 = N +# fint.x %fp2 + +#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 + mov.l %d1,%d2 # d2 = L + + add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) + mov.w %d2,FP_SCR0_EX(%a6) + mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 + + add.l &0x00003FDD,%d1 + mov.w %d1,FP_SCR1_EX(%a6) + mov.l &0x85A308D3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 + + mov.b ENDFLAG(%a6),%d1 + +#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and +#--P2 = 2**(L) * Piby2_2 + fmov.x %fp2,%fp4 # fp4 = N + fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 + fmov.x %fp2,%fp5 # fp5 = N + fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 + fmov.x %fp4,%fp3 # fp3 = W = N*P1 + +#--we want P+p = W+w but |p| <= half ulp of P +#--Then, we need to compute A := R-P and a := r-p + fadd.x %fp5,%fp3 # fp3 = P + fsub.x %fp3,%fp4 # fp4 = W-P + + fsub.x %fp3,%fp0 # fp0 = A := R - P + fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w + + fmov.x %fp0,%fp3 # fp3 = A + fsub.x %fp4,%fp1 # fp1 = a := r - p + +#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but +#--|r| <= half ulp of R. + fadd.x %fp1,%fp0 # fp0 = R := A+a +#--No need to calculate r if this is the last loop + cmp.b %d1,&0 + bgt.w SRESTORE + +#--Need to calculate r + fsub.x %fp0,%fp3 # fp3 = A-R + fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a + bra.w SLOOP + +SRESTORE: + fmov.l %fp2,INT(%a6) + mov.l (%sp)+,%d2 # restore d2 + fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} + + mov.l ADJN(%a6),%d1 + cmp.l %d1,&4 + + blt.w SINCONT + bra.w SCCONT + +######################################################################### +# stan(): computes the tangent of a normalized input # +# stand(): computes the tangent of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = tan(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulp in 64 significant bit, i.e. # +# within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # +# # +# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # +# k = N mod 2, so in particular, k = 0 or 1. # +# # +# 3. If k is odd, go to 5. # +# # +# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # +# rational function U/V where # +# U = r + r*s*(P1 + s*(P2 + s*P3)), and # +# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # +# Exit. # +# # +# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # +# a rational function U/V where # +# U = r + r*s*(P1 + s*(P2 + s*P3)), and # +# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # +# -Cot(r) = -V/U. Exit. # +# # +# 6. If |X| > 1, go to 8. # +# # +# 7. (|X|<2**(-40)) Tan(X) = X. Exit. # +# # +# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # +# to 2. # +# # +######################################################################### + +TANQ4: + long 0x3EA0B759,0xF50F8688 +TANP3: + long 0xBEF2BAA5,0xA8924F04 + +TANQ3: + long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 + +TANP2: + long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 + +TANQ2: + long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 + +TANP1: + long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 + +TANQ1: + long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 + +INVTWOPI: + long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 + +TWOPI1: + long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 +TWOPI2: + long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 + +#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING +#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT +#--MOST 69 BITS LONG. +# global PITBL +PITBL: + long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 + long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 + long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 + long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 + long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 + long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 + long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 + long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 + long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 + long 0xC0040000,0x90836524,0x88034B96,0x20B00000 + long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 + long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 + long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 + long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 + long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 + long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 + long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 + long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 + long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 + long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 + long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 + long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 + long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 + long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 + long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 + long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 + long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 + long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 + long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 + long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 + long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 + long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 + long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 + long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 + long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 + long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 + long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 + long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 + long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 + long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 + long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 + long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 + long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 + long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 + long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 + long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 + long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 + long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 + long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 + long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 + long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 + long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 + long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 + long 0x40040000,0x90836524,0x88034B96,0xA0B00000 + long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 + long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 + long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 + long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 + long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 + long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 + long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 + long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 + long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 + + set INARG,FP_SCR0 + + set TWOTO63,L_SCR1 + set INT,L_SCR1 + set ENDFLAG,L_SCR2 + + global stan +stan: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? + bge.b TANOK1 + bra.w TANSM +TANOK1: + cmp.l %d1,&0x4004BC7E # |X| < 15 PI? + blt.b TANMAIN + bra.w REDUCEX + +TANMAIN: +#--THIS IS THE USUAL CASE, |X| <= 15 PI. +#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. + fmov.x %fp0,%fp1 + fmul.d TWOBYPI(%pc),%fp1 # X*2/PI + + lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 + + fmov.l %fp1,%d1 # CONVERT TO INTEGER + + asl.l &4,%d1 + add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 + + fsub.x (%a1)+,%fp0 # X-Y1 + + fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 + + ror.l &5,%d1 + and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 + +TANCONT: + fmovm.x &0x0c,-(%sp) # save fp2,fp3 + + cmp.l %d1,&0 + blt.w NODD + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # S = R*R + + fmov.d TANQ4(%pc),%fp3 + fmov.d TANP3(%pc),%fp2 + + fmul.x %fp1,%fp3 # SQ4 + fmul.x %fp1,%fp2 # SP3 + + fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 + fadd.x TANP2(%pc),%fp2 # P2+SP3 + + fmul.x %fp1,%fp3 # S(Q3+SQ4) + fmul.x %fp1,%fp2 # S(P2+SP3) + + fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) + fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) + + fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) + fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) + + fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) + fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) + + fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) + + fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) + + fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) + + fmovm.x (%sp)+,&0x30 # restore fp2,fp3 + + fmov.l %d0,%fpcr # restore users round mode,prec + fdiv.x %fp1,%fp0 # last inst - possible exception set + bra t_inx2 + +NODD: + fmov.x %fp0,%fp1 + fmul.x %fp0,%fp0 # S = R*R + + fmov.d TANQ4(%pc),%fp3 + fmov.d TANP3(%pc),%fp2 + + fmul.x %fp0,%fp3 # SQ4 + fmul.x %fp0,%fp2 # SP3 + + fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 + fadd.x TANP2(%pc),%fp2 # P2+SP3 + + fmul.x %fp0,%fp3 # S(Q3+SQ4) + fmul.x %fp0,%fp2 # S(P2+SP3) + + fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) + fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) + + fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) + fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) + + fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) + fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) + + fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) + + fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) + fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) + + fmovm.x (%sp)+,&0x30 # restore fp2,fp3 + + fmov.x %fp1,-(%sp) + eor.l &0x80000000,(%sp) + + fmov.l %d0,%fpcr # restore users round mode,prec + fdiv.x (%sp)+,%fp0 # last inst - possible exception set + bra t_inx2 + +TANBORS: +#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. +#--IF |X| < 2**(-40), RETURN X OR 1. + cmp.l %d1,&0x3FFF8000 + bgt.b REDUCEX + +TANSM: + fmov.x %fp0,-(%sp) + fmov.l %d0,%fpcr # restore users round mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x (%sp)+,%fp0 # last inst - posibble exception set + bra t_catch + + global stand +#--TAN(X) = X FOR DENORMALIZED X +stand: + bra t_extdnrm + +#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. +#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING +#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. +REDUCEX: + fmovm.x &0x3c,-(%sp) # save {fp2-fp5} + mov.l %d2,-(%sp) # save d2 + fmov.s &0x00000000,%fp1 # fp1 = 0 + +#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that +#--there is a danger of unwanted overflow in first LOOP iteration. In this +#--case, reduce argument by one remainder step to make subsequent reduction +#--safe. + cmp.l %d1,&0x7ffeffff # is arg dangerously large? + bne.b LOOP # no + +# yes; create 2**16383*PI/2 + mov.w &0x7ffe,FP_SCR0_EX(%a6) + mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + +# create low half of 2**16383*PI/2 at FP_SCR1 + mov.w &0x7fdc,FP_SCR1_EX(%a6) + mov.l &0x85a308d3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + + ftest.x %fp0 # test sign of argument + fblt.w red_neg + + or.b &0x80,FP_SCR0_EX(%a6) # positive arg + or.b &0x80,FP_SCR1_EX(%a6) +red_neg: + fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact + fmov.x %fp0,%fp1 # save high result in fp1 + fadd.x FP_SCR1(%a6),%fp0 # low part of reduction + fsub.x %fp0,%fp1 # determine low component of result + fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. + +#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. +#--integer quotient will be stored in N +#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) +LOOP: + fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 + mov.w INARG(%a6),%d1 + mov.l %d1,%a1 # save a copy of D0 + and.l &0x00007FFF,%d1 + sub.l &0x00003FFF,%d1 # d0 = K + cmp.l %d1,&28 + ble.b LASTLOOP +CONTLOOP: + sub.l &27,%d1 # d0 = L := K-27 + mov.b &0,ENDFLAG(%a6) + bra.b WORK +LASTLOOP: + clr.l %d1 # d0 = L := 0 + mov.b &1,ENDFLAG(%a6) + +WORK: +#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN +#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. + +#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), +#--2**L * (PIby2_1), 2**L * (PIby2_2) + + mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI + sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) + + mov.l &0xA2F9836E,FP_SCR0_HI(%a6) + mov.l &0x4E44152A,FP_SCR0_LO(%a6) + mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) + + fmov.x %fp0,%fp2 + fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) + +#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN +#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N +#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT +#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE +#--US THE DESIRED VALUE IN FLOATING POINT. + mov.l %a1,%d2 + swap %d2 + and.l &0x80000000,%d2 + or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL + mov.l %d2,TWOTO63(%a6) + fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED + fsub.s TWOTO63(%a6),%fp2 # fp2 = N +# fintrz.x %fp2,%fp2 + +#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 + mov.l %d1,%d2 # d2 = L + + add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) + mov.w %d2,FP_SCR0_EX(%a6) + mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 + + add.l &0x00003FDD,%d1 + mov.w %d1,FP_SCR1_EX(%a6) + mov.l &0x85A308D3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 + + mov.b ENDFLAG(%a6),%d1 + +#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and +#--P2 = 2**(L) * Piby2_2 + fmov.x %fp2,%fp4 # fp4 = N + fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 + fmov.x %fp2,%fp5 # fp5 = N + fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 + fmov.x %fp4,%fp3 # fp3 = W = N*P1 + +#--we want P+p = W+w but |p| <= half ulp of P +#--Then, we need to compute A := R-P and a := r-p + fadd.x %fp5,%fp3 # fp3 = P + fsub.x %fp3,%fp4 # fp4 = W-P + + fsub.x %fp3,%fp0 # fp0 = A := R - P + fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w + + fmov.x %fp0,%fp3 # fp3 = A + fsub.x %fp4,%fp1 # fp1 = a := r - p + +#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but +#--|r| <= half ulp of R. + fadd.x %fp1,%fp0 # fp0 = R := A+a +#--No need to calculate r if this is the last loop + cmp.b %d1,&0 + bgt.w RESTORE + +#--Need to calculate r + fsub.x %fp0,%fp3 # fp3 = A-R + fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a + bra.w LOOP + +RESTORE: + fmov.l %fp2,INT(%a6) + mov.l (%sp)+,%d2 # restore d2 + fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} + + mov.l INT(%a6),%d1 + ror.l &1,%d1 + + bra.w TANCONT + +######################################################################### +# satan(): computes the arctangent of a normalized number # +# satand(): computes the arctangent of a denormalized number # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arctan(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 2 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # +# # +# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # +# Note that k = -4, -3,..., or 3. # +# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # +# significant bits of X with a bit-1 attached at the 6-th # +# bit position. Define u to be u = (X-F) / (1 + X*F). # +# # +# Step 3. Approximate arctan(u) by a polynomial poly. # +# # +# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # +# table of values calculated beforehand. Exit. # +# # +# Step 5. If |X| >= 16, go to Step 7. # +# # +# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # +# # +# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # +# polynomial in X'. # +# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # +# # +######################################################################### + +ATANA3: long 0xBFF6687E,0x314987D8 +ATANA2: long 0x4002AC69,0x34A26DB3 +ATANA1: long 0xBFC2476F,0x4E1DA28E + +ATANB6: long 0x3FB34444,0x7F876989 +ATANB5: long 0xBFB744EE,0x7FAF45DB +ATANB4: long 0x3FBC71C6,0x46940220 +ATANB3: long 0xBFC24924,0x921872F9 +ATANB2: long 0x3FC99999,0x99998FA9 +ATANB1: long 0xBFD55555,0x55555555 + +ATANC5: long 0xBFB70BF3,0x98539E6A +ATANC4: long 0x3FBC7187,0x962D1D7D +ATANC3: long 0xBFC24924,0x827107B8 +ATANC2: long 0x3FC99999,0x9996263E +ATANC1: long 0xBFD55555,0x55555536 + +PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 +NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 + +PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 +NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 + +ATANTBL: + long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 + long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 + long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 + long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 + long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 + long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 + long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 + long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 + long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 + long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 + long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 + long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 + long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 + long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 + long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 + long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 + long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 + long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 + long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 + long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 + long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 + long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 + long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 + long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 + long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 + long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 + long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 + long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 + long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 + long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 + long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 + long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 + long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 + long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 + long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 + long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 + long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 + long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 + long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 + long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 + long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 + long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 + long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 + long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 + long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 + long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 + long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 + long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 + long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 + long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 + long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 + long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 + long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 + long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 + long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 + long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 + long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 + long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 + long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 + long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 + long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 + long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 + long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 + long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 + long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 + long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 + long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 + long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 + long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 + long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 + long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 + long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 + long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 + long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 + long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 + long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 + long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 + long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 + long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 + long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 + long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 + long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 + long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 + long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 + long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 + long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 + long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 + long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 + long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 + long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 + long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 + long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 + long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 + long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 + long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 + long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 + long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 + long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 + long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 + long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 + long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 + long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 + long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 + long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 + long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 + long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 + long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 + long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 + long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 + long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 + long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 + long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 + long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 + long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 + long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 + long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 + long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 + long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 + long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 + long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 + long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 + long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 + long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 + long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 + long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 + long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 + long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 + long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 + + set X,FP_SCR0 + set XDCARE,X+2 + set XFRAC,X+4 + set XFRACLO,X+8 + + set ATANF,FP_SCR1 + set ATANFHI,ATANF+4 + set ATANFLO,ATANF+8 + + global satan +#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S +satan: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + fmov.x %fp0,X(%a6) + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? + bge.b ATANOK1 + bra.w ATANSM + +ATANOK1: + cmp.l %d1,&0x4002FFFF # |X| < 16 ? + ble.b ATANMAIN + bra.w ATANBIG + +#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE +#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). +#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN +#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE +#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS +#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR +#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO +#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE +#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL +#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE +#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION +#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION +#--WILL INVOLVE A VERY LONG POLYNOMIAL. + +#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS +#--WE CHOSE F TO BE +-2^K * 1.BBBB1 +#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE +#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE +#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS +#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). + +ATANMAIN: + + and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS + or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 + mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F + + fmov.x %fp0,%fp1 # FP1 IS X + fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 + fsub.x X(%a6),%fp0 # FP0 IS X-F + fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F + fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) + +#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) +#--CREATE ATAN(F) AND STORE IT IN ATANF, AND +#--SAVE REGISTERS FP2. + + mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY + mov.l %d1,%d2 # THE EXP AND 16 BITS OF X + and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION + and.l &0x7FFF0000,%d2 # EXPONENT OF F + sub.l &0x3FFB0000,%d2 # K+4 + asr.l &1,%d2 + add.l %d2,%d1 # THE 7 BITS IDENTIFYING F + asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) + lea ATANTBL(%pc),%a1 + add.l %d1,%a1 # ADDRESS OF ATAN(|F|) + mov.l (%a1)+,ATANF(%a6) + mov.l (%a1)+,ATANFHI(%a6) + mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) + mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN + and.l &0x80000000,%d1 # SIGN(F) + or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) + mov.l (%sp)+,%d2 # RESTORE d2 + +#--THAT'S ALL I HAVE TO DO FOR NOW, +#--BUT ALAS, THE DIVIDE IS STILL CRANKING! + +#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS +#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U +#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. +#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) +#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. +#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT +#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED + + fmovm.x &0x04,-(%sp) # save fp2 + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 + fmov.d ATANA3(%pc),%fp2 + fadd.x %fp1,%fp2 # A3+V + fmul.x %fp1,%fp2 # V*(A3+V) + fmul.x %fp0,%fp1 # U*V + fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) + fmul.d ATANA1(%pc),%fp1 # A1*U*V + fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) + fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED + + fmovm.x (%sp)+,&0x20 # restore fp2 + + fmov.l %d0,%fpcr # restore users rnd mode,prec + fadd.x ATANF(%a6),%fp0 # ATAN(X) + bra t_inx2 + +ATANBORS: +#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. +#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. + cmp.l %d1,&0x3FFF8000 + bgt.w ATANBIG # I.E. |X| >= 16 + +ATANSM: +#--|X| <= 1/16 +#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE +#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) +#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) +#--WHERE Y = X*X, AND Z = Y*Y. + + cmp.l %d1,&0x3FD78000 + blt.w ATANTINY + +#--COMPUTE POLYNOMIAL + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmul.x %fp0,%fp0 # FPO IS Y = X*X + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y + + fmov.d ATANB6(%pc),%fp2 + fmov.d ATANB5(%pc),%fp3 + + fmul.x %fp1,%fp2 # Z*B6 + fmul.x %fp1,%fp3 # Z*B5 + + fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 + fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 + + fmul.x %fp1,%fp2 # Z*(B4+Z*B6) + fmul.x %fp3,%fp1 # Z*(B3+Z*B5) + + fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) + fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) + + fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) + fmul.x X(%a6),%fp0 # X*Y + + fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] + + fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users rnd mode,prec + fadd.x X(%a6),%fp0 + bra t_inx2 + +ATANTINY: +#--|X| < 2^(-40), ATAN(X) = X + + fmov.l %d0,%fpcr # restore users rnd mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 # last inst - possible exception set + + bra t_catch + +ATANBIG: +#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, +#--RETURN SIGN(X)*PI/2 + ATAN(-1/X). + cmp.l %d1,&0x40638000 + bgt.w ATANHUGE + +#--APPROXIMATE ATAN(-1/X) BY +#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' +#--THIS CAN BE RE-WRITTEN AS +#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. + + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmov.s &0xBF800000,%fp1 # LOAD -1 + fdiv.x %fp0,%fp1 # FP1 IS -1/X + +#--DIVIDE IS STILL CRANKING + + fmov.x %fp1,%fp0 # FP0 IS X' + fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' + fmov.x %fp1,X(%a6) # X IS REALLY X' + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y + + fmov.d ATANC5(%pc),%fp3 + fmov.d ATANC4(%pc),%fp2 + + fmul.x %fp1,%fp3 # Z*C5 + fmul.x %fp1,%fp2 # Z*B4 + + fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 + fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 + + fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED + fmul.x %fp0,%fp2 # Y*(C2+Z*C4) + + fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) + fmul.x X(%a6),%fp0 # X'*Y + + fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] + + fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] +# ... +[Y*(B2+Z*(B4+Z*B6))]) + fadd.x X(%a6),%fp0 + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users rnd mode,prec + tst.b (%a0) + bpl.b pos_big + +neg_big: + fadd.x NPIBY2(%pc),%fp0 + bra t_minx2 + +pos_big: + fadd.x PPIBY2(%pc),%fp0 + bra t_pinx2 + +ATANHUGE: +#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY + tst.b (%a0) + bpl.b pos_huge + +neg_huge: + fmov.x NPIBY2(%pc),%fp0 + fmov.l %d0,%fpcr + fadd.x PTINY(%pc),%fp0 + bra t_minx2 + +pos_huge: + fmov.x PPIBY2(%pc),%fp0 + fmov.l %d0,%fpcr + fadd.x NTINY(%pc),%fp0 + bra t_pinx2 + + global satand +#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT +satand: + bra t_extdnrm + +######################################################################### +# sasin(): computes the inverse sine of a normalized input # +# sasind(): computes the inverse sine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arcsin(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# ASIN # +# 1. If |X| >= 1, go to 3. # +# # +# 2. (|X| < 1) Calculate asin(X) by # +# z := sqrt( [1-X][1+X] ) # +# asin(X) = atan( x / z ). # +# Exit. # +# # +# 3. If |X| > 1, go to 5. # +# # +# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# +# # +# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # +# Exit. # +# # +######################################################################### + + global sasin +sasin: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x3FFF8000 + bge.b ASINBIG + +# This catch is added here for the '060 QSP. Originally, the call to +# satan() would handle this case by causing the exception which would +# not be caught until gen_except(). Now, with the exceptions being +# detected inside of satan(), the exception would have been handled there +# instead of inside sasin() as expected. + cmp.l %d1,&0x3FD78000 + blt.w ASINTINY + +#--THIS IS THE USUAL CASE, |X| < 1 +#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) + +ASINMAIN: + fmov.s &0x3F800000,%fp1 + fsub.x %fp0,%fp1 # 1-X + fmovm.x &0x4,-(%sp) # {fp2} + fmov.s &0x3F800000,%fp2 + fadd.x %fp0,%fp2 # 1+X + fmul.x %fp2,%fp1 # (1+X)(1-X) + fmovm.x (%sp)+,&0x20 # {fp2} + fsqrt.x %fp1 # SQRT([1-X][1+X]) + fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) + fmovm.x &0x01,-(%sp) # save X/SQRT(...) + lea (%sp),%a0 # pass ptr to X/SQRT(...) + bsr satan + add.l &0xc,%sp # clear X/SQRT(...) from stack + bra t_inx2 + +ASINBIG: + fabs.x %fp0 # |X| + fcmp.s %fp0,&0x3F800000 + fbgt t_operr # cause an operr exception + +#--|X| = 1, ASIN(X) = +- PI/2. +ASINONE: + fmov.x PIBY2(%pc),%fp0 + mov.l (%a0),%d1 + and.l &0x80000000,%d1 # SIGN BIT OF X + or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT + mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT + fmov.l %d0,%fpcr + fmul.s (%sp)+,%fp0 + bra t_inx2 + +#--|X| < 2^(-40), ATAN(X) = X +ASINTINY: + fmov.l %d0,%fpcr # restore users rnd mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x (%a0),%fp0 # last inst - possible exception + bra t_catch + + global sasind +#--ASIN(X) = X FOR DENORMALIZED X +sasind: + bra t_extdnrm + +######################################################################### +# sacos(): computes the inverse cosine of a normalized input # +# sacosd(): computes the inverse cosine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arccos(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# ACOS # +# 1. If |X| >= 1, go to 3. # +# # +# 2. (|X| < 1) Calculate acos(X) by # +# z := (1-X) / (1+X) # +# acos(X) = 2 * atan( sqrt(z) ). # +# Exit. # +# # +# 3. If |X| > 1, go to 5. # +# # +# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # +# # +# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # +# Exit. # +# # +######################################################################### + + global sacos +sacos: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 # pack exp w/ upper 16 fraction + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x3FFF8000 + bge.b ACOSBIG + +#--THIS IS THE USUAL CASE, |X| < 1 +#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) + +ACOSMAIN: + fmov.s &0x3F800000,%fp1 + fadd.x %fp0,%fp1 # 1+X + fneg.x %fp0 # -X + fadd.s &0x3F800000,%fp0 # 1-X + fdiv.x %fp1,%fp0 # (1-X)/(1+X) + fsqrt.x %fp0 # SQRT((1-X)/(1+X)) + mov.l %d0,-(%sp) # save original users fpcr + clr.l %d0 + fmovm.x &0x01,-(%sp) # save SQRT(...) to stack + lea (%sp),%a0 # pass ptr to sqrt + bsr satan # ATAN(SQRT([1-X]/[1+X])) + add.l &0xc,%sp # clear SQRT(...) from stack + + fmov.l (%sp)+,%fpcr # restore users round prec,mode + fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) + bra t_pinx2 + +ACOSBIG: + fabs.x %fp0 + fcmp.s %fp0,&0x3F800000 + fbgt t_operr # cause an operr exception + +#--|X| = 1, ACOS(X) = 0 OR PI + tst.b (%a0) # is X positive or negative? + bpl.b ACOSP1 + +#--X = -1 +#Returns PI and inexact exception +ACOSM1: + fmov.x PI(%pc),%fp0 # load PI + fmov.l %d0,%fpcr # load round mode,prec + fadd.s &0x00800000,%fp0 # add a small value + bra t_pinx2 + +ACOSP1: + bra ld_pzero # answer is positive zero + + global sacosd +#--ACOS(X) = PI/2 FOR DENORMALIZED X +sacosd: + fmov.l %d0,%fpcr # load user's rnd mode/prec + fmov.x PIBY2(%pc),%fp0 + bra t_pinx2 + +######################################################################### +# setox(): computes the exponential for a normalized input # +# setoxd(): computes the exponential for a denormalized input # +# setoxm1(): computes the exponential minus 1 for a normalized input # +# setoxm1d(): computes the exponential minus 1 for a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = exp(X) or exp(X)-1 # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 0.85 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM and IMPLEMENTATION **************************************** # +# # +# setoxd # +# ------ # +# Step 1. Set ans := 1.0 # +# # +# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # +# Notes: This will always generate one exception -- inexact. # +# # +# # +# setox # +# ----- # +# # +# Step 1. Filter out extreme cases of input argument. # +# 1.1 If |X| >= 2^(-65), go to Step 1.3. # +# 1.2 Go to Step 7. # +# 1.3 If |X| < 16380 log(2), go to Step 2. # +# 1.4 Go to Step 8. # +# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# +# To avoid the use of floating-point comparisons, a # +# compact representation of |X| is used. This format is a # +# 32-bit integer, the upper (more significant) 16 bits # +# are the sign and biased exponent field of |X|; the # +# lower 16 bits are the 16 most significant fraction # +# (including the explicit bit) bits of |X|. Consequently, # +# the comparisons in Steps 1.1 and 1.3 can be performed # +# by integer comparison. Note also that the constant # +# 16380 log(2) used in Step 1.3 is also in the compact # +# form. Thus taking the branch to Step 2 guarantees # +# |X| < 16380 log(2). There is no harm to have a small # +# number of cases where |X| is less than, but close to, # +# 16380 log(2) and the branch to Step 9 is taken. # +# # +# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # +# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # +# was taken) # +# 2.2 N := round-to-nearest-integer( X * 64/log2 ). # +# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # +# or 63. # +# 2.4 Calculate M = (N - J)/64; so N = 64M + J. # +# 2.5 Calculate the address of the stored value of # +# 2^(J/64). # +# 2.6 Create the value Scale = 2^M. # +# Notes: The calculation in 2.2 is really performed by # +# Z := X * constant # +# N := round-to-nearest-integer(Z) # +# where # +# constant := single-precision( 64/log 2 ). # +# # +# Using a single-precision constant avoids memory # +# access. Another effect of using a single-precision # +# "constant" is that the calculated value Z is # +# # +# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # +# # +# This error has to be considered later in Steps 3 and 4. # +# # +# Step 3. Calculate X - N*log2/64. # +# 3.1 R := X + N*L1, # +# where L1 := single-precision(-log2/64). # +# 3.2 R := R + N*L2, # +# L2 := extended-precision(-log2/64 - L1).# +# Notes: a) The way L1 and L2 are chosen ensures L1+L2 # +# approximate the value -log2/64 to 88 bits of accuracy. # +# b) N*L1 is exact because N is no longer than 22 bits # +# and L1 is no longer than 24 bits. # +# c) The calculation X+N*L1 is also exact due to # +# cancellation. Thus, R is practically X+N(L1+L2) to full # +# 64 bits. # +# d) It is important to estimate how large can |R| be # +# after Step 3.2. # +# # +# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # +# X*64/log2 (1+eps) = N + f, |f| <= 0.5 # +# X*64/log2 - N = f - eps*X 64/log2 # +# X - N*log2/64 = f*log2/64 - eps*X # +# # +# # +# Now |X| <= 16446 log2, thus # +# # +# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # +# <= 0.57 log2/64. # +# This bound will be used in Step 4. # +# # +# Step 4. Approximate exp(R)-1 by a polynomial # +# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # +# Notes: a) In order to reduce memory access, the coefficients # +# are made as "short" as possible: A1 (which is 1/2), A4 # +# and A5 are single precision; A2 and A3 are double # +# precision. # +# b) Even with the restrictions above, # +# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # +# Note that 0.0062 is slightly bigger than 0.57 log2/64. # +# c) To fully utilize the pipeline, p is separated into # +# two independent pieces of roughly equal complexities # +# p = [ R + R*S*(A2 + S*A4) ] + # +# [ S*(A1 + S*(A3 + S*A5)) ] # +# where S = R*R. # +# # +# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # +# ans := T + ( T*p + t) # +# where T and t are the stored values for 2^(J/64). # +# Notes: 2^(J/64) is stored as T and t where T+t approximates # +# 2^(J/64) to roughly 85 bits; T is in extended precision # +# and t is in single precision. Note also that T is # +# rounded to 62 bits so that the last two bits of T are # +# zero. The reason for such a special form is that T-1, # +# T-2, and T-8 will all be exact --- a property that will # +# give much more accurate computation of the function # +# EXPM1. # +# # +# Step 6. Reconstruction of exp(X) # +# exp(X) = 2^M * 2^(J/64) * exp(R). # +# 6.1 If AdjFlag = 0, go to 6.3 # +# 6.2 ans := ans * AdjScale # +# 6.3 Restore the user FPCR # +# 6.4 Return ans := ans * Scale. Exit. # +# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # +# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # +# neither overflow nor underflow. If AdjFlag = 1, that # +# means that # +# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # +# Hence, exp(X) may overflow or underflow or neither. # +# When that is the case, AdjScale = 2^(M1) where M1 is # +# approximately M. Thus 6.2 will never cause # +# over/underflow. Possible exception in 6.4 is overflow # +# or underflow. The inexact exception is not generated in # +# 6.4. Although one can argue that the inexact flag # +# should always be raised, to simulate that exception # +# cost to much than the flag is worth in practical uses. # +# # +# Step 7. Return 1 + X. # +# 7.1 ans := X # +# 7.2 Restore user FPCR. # +# 7.3 Return ans := 1 + ans. Exit # +# Notes: For non-zero X, the inexact exception will always be # +# raised by 7.3. That is the only exception raised by 7.3.# +# Note also that we use the FMOVEM instruction to move X # +# in Step 7.1 to avoid unnecessary trapping. (Although # +# the FMOVEM may not seem relevant since X is normalized, # +# the precaution will be useful in the library version of # +# this code where the separate entry for denormalized # +# inputs will be done away with.) # +# # +# Step 8. Handle exp(X) where |X| >= 16380log2. # +# 8.1 If |X| > 16480 log2, go to Step 9. # +# (mimic 2.2 - 2.6) # +# 8.2 N := round-to-integer( X * 64/log2 ) # +# 8.3 Calculate J = N mod 64, J = 0,1,...,63 # +# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # +# AdjFlag := 1. # +# 8.5 Calculate the address of the stored value # +# 2^(J/64). # +# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # +# 8.7 Go to Step 3. # +# Notes: Refer to notes for 2.2 - 2.6. # +# # +# Step 9. Handle exp(X), |X| > 16480 log2. # +# 9.1 If X < 0, go to 9.3 # +# 9.2 ans := Huge, go to 9.4 # +# 9.3 ans := Tiny. # +# 9.4 Restore user FPCR. # +# 9.5 Return ans := ans * ans. Exit. # +# Notes: Exp(X) will surely overflow or underflow, depending on # +# X's sign. "Huge" and "Tiny" are respectively large/tiny # +# extended-precision numbers whose square over/underflow # +# with an inexact result. Thus, 9.5 always raises the # +# inexact together with either overflow or underflow. # +# # +# setoxm1d # +# -------- # +# # +# Step 1. Set ans := 0 # +# # +# Step 2. Return ans := X + ans. Exit. # +# Notes: This will return X with the appropriate rounding # +# precision prescribed by the user FPCR. # +# # +# setoxm1 # +# ------- # +# # +# Step 1. Check |X| # +# 1.1 If |X| >= 1/4, go to Step 1.3. # +# 1.2 Go to Step 7. # +# 1.3 If |X| < 70 log(2), go to Step 2. # +# 1.4 Go to Step 10. # +# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# +# However, it is conceivable |X| can be small very often # +# because EXPM1 is intended to evaluate exp(X)-1 # +# accurately when |X| is small. For further details on # +# the comparisons, see the notes on Step 1 of setox. # +# # +# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # +# 2.1 N := round-to-nearest-integer( X * 64/log2 ). # +# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # +# or 63. # +# 2.3 Calculate M = (N - J)/64; so N = 64M + J. # +# 2.4 Calculate the address of the stored value of # +# 2^(J/64). # +# 2.5 Create the values Sc = 2^M and # +# OnebySc := -2^(-M). # +# Notes: See the notes on Step 2 of setox. # +# # +# Step 3. Calculate X - N*log2/64. # +# 3.1 R := X + N*L1, # +# where L1 := single-precision(-log2/64). # +# 3.2 R := R + N*L2, # +# L2 := extended-precision(-log2/64 - L1).# +# Notes: Applying the analysis of Step 3 of setox in this case # +# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # +# this case). # +# # +# Step 4. Approximate exp(R)-1 by a polynomial # +# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # +# Notes: a) In order to reduce memory access, the coefficients # +# are made as "short" as possible: A1 (which is 1/2), A5 # +# and A6 are single precision; A2, A3 and A4 are double # +# precision. # +# b) Even with the restriction above, # +# |p - (exp(R)-1)| < |R| * 2^(-72.7) # +# for all |R| <= 0.0055. # +# c) To fully utilize the pipeline, p is separated into # +# two independent pieces of roughly equal complexity # +# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # +# [ R + S*(A1 + S*(A3 + S*A5)) ] # +# where S = R*R. # +# # +# Step 5. Compute 2^(J/64)*p by # +# p := T*p # +# where T and t are the stored values for 2^(J/64). # +# Notes: 2^(J/64) is stored as T and t where T+t approximates # +# 2^(J/64) to roughly 85 bits; T is in extended precision # +# and t is in single precision. Note also that T is # +# rounded to 62 bits so that the last two bits of T are # +# zero. The reason for such a special form is that T-1, # +# T-2, and T-8 will all be exact --- a property that will # +# be exploited in Step 6 below. The total relative error # +# in p is no bigger than 2^(-67.7) compared to the final # +# result. # +# # +# Step 6. Reconstruction of exp(X)-1 # +# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # +# 6.1 If M <= 63, go to Step 6.3. # +# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # +# 6.3 If M >= -3, go to 6.5. # +# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # +# 6.5 ans := (T + OnebySc) + (p + t). # +# 6.6 Restore user FPCR. # +# 6.7 Return ans := Sc * ans. Exit. # +# Notes: The various arrangements of the expressions give # +# accurate evaluations. # +# # +# Step 7. exp(X)-1 for |X| < 1/4. # +# 7.1 If |X| >= 2^(-65), go to Step 9. # +# 7.2 Go to Step 8. # +# # +# Step 8. Calculate exp(X)-1, |X| < 2^(-65). # +# 8.1 If |X| < 2^(-16312), goto 8.3 # +# 8.2 Restore FPCR; return ans := X - 2^(-16382). # +# Exit. # +# 8.3 X := X * 2^(140). # +# 8.4 Restore FPCR; ans := ans - 2^(-16382). # +# Return ans := ans*2^(140). Exit # +# Notes: The idea is to return "X - tiny" under the user # +# precision and rounding modes. To avoid unnecessary # +# inefficiency, we stay away from denormalized numbers # +# the best we can. For |X| >= 2^(-16312), the # +# straightforward 8.2 generates the inexact exception as # +# the case warrants. # +# # +# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # +# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # +# Notes: a) In order to reduce memory access, the coefficients # +# are made as "short" as possible: B1 (which is 1/2), B9 # +# to B12 are single precision; B3 to B8 are double # +# precision; and B2 is double extended. # +# b) Even with the restriction above, # +# |p - (exp(X)-1)| < |X| 2^(-70.6) # +# for all |X| <= 0.251. # +# Note that 0.251 is slightly bigger than 1/4. # +# c) To fully preserve accuracy, the polynomial is # +# computed as # +# X + ( S*B1 + Q ) where S = X*X and # +# Q = X*S*(B2 + X*(B3 + ... + X*B12)) # +# d) To fully utilize the pipeline, Q is separated into # +# two independent pieces of roughly equal complexity # +# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # +# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # +# # +# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # +# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # +# practical purposes. Therefore, go to Step 1 of setox. # +# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # +# purposes. # +# ans := -1 # +# Restore user FPCR # +# Return ans := ans + 2^(-126). Exit. # +# Notes: 10.2 will always create an inexact and return -1 + tiny # +# in the user rounding precision and mode. # +# # +######################################################################### + +L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 + +EEXPA3: long 0x3FA55555,0x55554CC1 +EEXPA2: long 0x3FC55555,0x55554A54 + +EM1A4: long 0x3F811111,0x11174385 +EM1A3: long 0x3FA55555,0x55554F5A + +EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 + +EM1B8: long 0x3EC71DE3,0xA5774682 +EM1B7: long 0x3EFA01A0,0x19D7CB68 + +EM1B6: long 0x3F2A01A0,0x1A019DF3 +EM1B5: long 0x3F56C16C,0x16C170E2 + +EM1B4: long 0x3F811111,0x11111111 +EM1B3: long 0x3FA55555,0x55555555 + +EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB + long 0x00000000 + +TWO140: long 0x48B00000,0x00000000 +TWON140: + long 0x37300000,0x00000000 + +EEXPTBL: + long 0x3FFF0000,0x80000000,0x00000000,0x00000000 + long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B + long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 + long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 + long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C + long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F + long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 + long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF + long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF + long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA + long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 + long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 + long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 + long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 + long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D + long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 + long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD + long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 + long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 + long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D + long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 + long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C + long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 + long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 + long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 + long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA + long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A + long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC + long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC + long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 + long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 + long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A + long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 + long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 + long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC + long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 + long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 + long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 + long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 + long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B + long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 + long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E + long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 + long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D + long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 + long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C + long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 + long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 + long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F + long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F + long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 + long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 + long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B + long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 + long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A + long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 + long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 + long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B + long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 + long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 + long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 + long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 + long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 + long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A + + set ADJFLAG,L_SCR2 + set SCALE,FP_SCR0 + set ADJSCALE,FP_SCR1 + set SC,FP_SCR0 + set ONEBYSC,FP_SCR1 + + global setox +setox: +#--entry point for EXP(X), here X is finite, non-zero, and not NaN's + +#--Step 1. + mov.l (%a0),%d1 # load part of input X + and.l &0x7FFF0000,%d1 # biased expo. of X + cmp.l %d1,&0x3FBE0000 # 2^(-65) + bge.b EXPC1 # normal case + bra EXPSM + +EXPC1: +#--The case |X| >= 2^(-65) + mov.w 4(%a0),%d1 # expo. and partial sig. of |X| + cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits + blt.b EXPMAIN # normal case + bra EEXPBIG + +EXPMAIN: +#--Step 2. +#--This is the normal branch: 2^(-65) <= |X| < 16380 log2. + fmov.x (%a0),%fp0 # load input from (a0) + + fmov.x %fp0,%fp1 + fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + mov.l &0,ADJFLAG(%a6) + fmov.l %fp0,%d1 # N = int( X * 64/log2 ) + lea EEXPTBL(%pc),%a1 + fmov.l %d1,%fp0 # convert to floating-format + + mov.l %d1,L_SCR1(%a6) # save N temporarily + and.l &0x3F,%d1 # D0 is J = N mod 64 + lsl.l &4,%d1 + add.l %d1,%a1 # address of 2^(J/64) + mov.l L_SCR1(%a6),%d1 + asr.l &6,%d1 # D0 is M + add.w &0x3FFF,%d1 # biased expo. of 2^(M) + mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB + +EXPCONT1: +#--Step 3. +#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, +#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) + fmov.x %fp0,%fp2 + fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) + fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 + fadd.x %fp1,%fp0 # X + N*L1 + fadd.x %fp2,%fp0 # fp0 is R, reduced arg. + +#--Step 4. +#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL +#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) +#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R +#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # fp1 IS S = R*R + + fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 + + fmul.x %fp1,%fp2 # fp2 IS S*A5 + fmov.x %fp1,%fp3 + fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 + + fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 + fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 + + fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) + mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended + mov.l &0x80000000,SCALE+4(%a6) + clr.l SCALE+8(%a6) + + fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) + + fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) + fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) + + fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) + fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), + + fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) + fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 + +#--Step 5 +#--final reconstruction process +#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) + + fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) + fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} + fadd.s (%a1),%fp0 # accurate 2^(J/64) + + fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... + mov.l ADJFLAG(%a6),%d1 + +#--Step 6 + tst.l %d1 + beq.b NORMAL +ADJUST: + fmul.x ADJSCALE(%a6),%fp0 +NORMAL: + fmov.l %d0,%fpcr # restore user FPCR + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x SCALE(%a6),%fp0 # multiply 2^(M) + bra t_catch + +EXPSM: +#--Step 7 + fmovm.x (%a0),&0x80 # load X + fmov.l %d0,%fpcr + fadd.s &0x3F800000,%fp0 # 1+X in user mode + bra t_pinx2 + +EEXPBIG: +#--Step 8 + cmp.l %d1,&0x400CB27C # 16480 log2 + bgt.b EXP2BIG +#--Steps 8.2 -- 8.6 + fmov.x (%a0),%fp0 # load input from (a0) + + fmov.x %fp0,%fp1 + fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + mov.l &1,ADJFLAG(%a6) + fmov.l %fp0,%d1 # N = int( X * 64/log2 ) + lea EEXPTBL(%pc),%a1 + fmov.l %d1,%fp0 # convert to floating-format + mov.l %d1,L_SCR1(%a6) # save N temporarily + and.l &0x3F,%d1 # D0 is J = N mod 64 + lsl.l &4,%d1 + add.l %d1,%a1 # address of 2^(J/64) + mov.l L_SCR1(%a6),%d1 + asr.l &6,%d1 # D0 is K + mov.l %d1,L_SCR1(%a6) # save K temporarily + asr.l &1,%d1 # D0 is M1 + sub.l %d1,L_SCR1(%a6) # a1 is M + add.w &0x3FFF,%d1 # biased expo. of 2^(M1) + mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) + mov.l &0x80000000,ADJSCALE+4(%a6) + clr.l ADJSCALE+8(%a6) + mov.l L_SCR1(%a6),%d1 # D0 is M + add.w &0x3FFF,%d1 # biased expo. of 2^(M) + bra.w EXPCONT1 # go back to Step 3 + +EXP2BIG: +#--Step 9 + tst.b (%a0) # is X positive or negative? + bmi t_unfl2 + bra t_ovfl2 + + global setoxd +setoxd: +#--entry point for EXP(X), X is denormalized + mov.l (%a0),-(%sp) + andi.l &0x80000000,(%sp) + ori.l &0x00800000,(%sp) # sign(X)*2^(-126) + + fmov.s &0x3F800000,%fp0 + + fmov.l %d0,%fpcr + fadd.s (%sp)+,%fp0 + bra t_pinx2 + + global setoxm1 +setoxm1: +#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN + +#--Step 1. +#--Step 1.1 + mov.l (%a0),%d1 # load part of input X + and.l &0x7FFF0000,%d1 # biased expo. of X + cmp.l %d1,&0x3FFD0000 # 1/4 + bge.b EM1CON1 # |X| >= 1/4 + bra EM1SM + +EM1CON1: +#--Step 1.3 +#--The case |X| >= 1/4 + mov.w 4(%a0),%d1 # expo. and partial sig. of |X| + cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits + ble.b EM1MAIN # 1/4 <= |X| <= 70log2 + bra EM1BIG + +EM1MAIN: +#--Step 2. +#--This is the case: 1/4 <= |X| <= 70 log2. + fmov.x (%a0),%fp0 # load input from (a0) + + fmov.x %fp0,%fp1 + fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + fmov.l %fp0,%d1 # N = int( X * 64/log2 ) + lea EEXPTBL(%pc),%a1 + fmov.l %d1,%fp0 # convert to floating-format + + mov.l %d1,L_SCR1(%a6) # save N temporarily + and.l &0x3F,%d1 # D0 is J = N mod 64 + lsl.l &4,%d1 + add.l %d1,%a1 # address of 2^(J/64) + mov.l L_SCR1(%a6),%d1 + asr.l &6,%d1 # D0 is M + mov.l %d1,L_SCR1(%a6) # save a copy of M + +#--Step 3. +#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, +#--a0 points to 2^(J/64), D0 and a1 both contain M + fmov.x %fp0,%fp2 + fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) + fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 + fadd.x %fp1,%fp0 # X + N*L1 + fadd.x %fp2,%fp0 # fp0 is R, reduced arg. + add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M + +#--Step 4. +#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL +#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) +#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R +#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # fp1 IS S = R*R + + fmov.s &0x3950097B,%fp2 # fp2 IS a6 + + fmul.x %fp1,%fp2 # fp2 IS S*A6 + fmov.x %fp1,%fp3 + fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 + + fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 + fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 + mov.w %d1,SC(%a6) # SC is 2^(M) in extended + mov.l &0x80000000,SC+4(%a6) + clr.l SC+8(%a6) + + fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) + mov.l L_SCR1(%a6),%d1 # D0 is M + neg.w %d1 # D0 is -M + fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) + add.w &0x3FFF,%d1 # biased expo. of 2^(-M) + fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) + fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) + + fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) + or.w &0x8000,%d1 # signed/expo. of -2^(-M) + mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) + mov.l &0x80000000,ONEBYSC+4(%a6) + clr.l ONEBYSC+8(%a6) + fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) + + fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) + fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) + + fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 + + fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} + +#--Step 5 +#--Compute 2^(J/64)*p + + fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) + +#--Step 6 +#--Step 6.1 + mov.l L_SCR1(%a6),%d1 # retrieve M + cmp.l %d1,&63 + ble.b MLE63 +#--Step 6.2 M >= 64 + fmov.s 12(%a1),%fp1 # fp1 is t + fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc + fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released + fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) + bra EM1SCALE +MLE63: +#--Step 6.3 M <= 63 + cmp.l %d1,&-3 + bge.b MGEN3 +MLTN3: +#--Step 6.4 M <= -4 + fadd.s 12(%a1),%fp0 # p+t + fadd.x (%a1),%fp0 # T+(p+t) + fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) + bra EM1SCALE +MGEN3: +#--Step 6.5 -3 <= M <= 63 + fmov.x (%a1)+,%fp1 # fp1 is T + fadd.s (%a1),%fp0 # fp0 is p+t + fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc + fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) + +EM1SCALE: +#--Step 6.6 + fmov.l %d0,%fpcr + fmul.x SC(%a6),%fp0 + bra t_inx2 + +EM1SM: +#--Step 7 |X| < 1/4. + cmp.l %d1,&0x3FBE0000 # 2^(-65) + bge.b EM1POLY + +EM1TINY: +#--Step 8 |X| < 2^(-65) + cmp.l %d1,&0x00330000 # 2^(-16312) + blt.b EM12TINY +#--Step 8.2 + mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) + mov.l &0x80000000,SC+4(%a6) + clr.l SC+8(%a6) + fmov.x (%a0),%fp0 + fmov.l %d0,%fpcr + mov.b &FADD_OP,%d1 # last inst is ADD + fadd.x SC(%a6),%fp0 + bra t_catch + +EM12TINY: +#--Step 8.3 + fmov.x (%a0),%fp0 + fmul.d TWO140(%pc),%fp0 + mov.l &0x80010000,SC(%a6) + mov.l &0x80000000,SC+4(%a6) + clr.l SC+8(%a6) + fadd.x SC(%a6),%fp0 + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.d TWON140(%pc),%fp0 + bra t_catch + +EM1POLY: +#--Step 9 exp(X)-1 by a simple polynomial + fmov.x (%a0),%fp0 # fp0 is X + fmul.x %fp0,%fp0 # fp0 is S := X*X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 + fmul.x %fp0,%fp1 # fp1 is S*B12 + fmov.s &0x310F8290,%fp2 # fp2 is B11 + fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 + + fmul.x %fp0,%fp2 # fp2 is S*B11 + fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... + + fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... + fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B9+... + fmul.x %fp0,%fp1 # fp1 is S*(B8+... + + fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... + fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B7+... + fmul.x %fp0,%fp1 # fp1 is S*(B6+... + + fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... + fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B5+... + fmul.x %fp0,%fp1 # fp1 is S*(B4+... + + fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... + fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B3+... + fmul.x %fp0,%fp1 # fp1 is S*(B2+... + + fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) + fmul.x (%a0),%fp1 # fp1 is X*S*(B2... + + fmul.s &0x3F000000,%fp0 # fp0 is S*B1 + fadd.x %fp2,%fp1 # fp1 is Q + + fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} + + fadd.x %fp1,%fp0 # fp0 is S*B1+Q + + fmov.l %d0,%fpcr + fadd.x (%a0),%fp0 + bra t_inx2 + +EM1BIG: +#--Step 10 |X| > 70 log2 + mov.l (%a0),%d1 + cmp.l %d1,&0 + bgt.w EXPC1 +#--Step 10.2 + fmov.s &0xBF800000,%fp0 # fp0 is -1 + fmov.l %d0,%fpcr + fadd.s &0x00800000,%fp0 # -1 + 2^(-126) + bra t_minx2 + + global setoxm1d +setoxm1d: +#--entry point for EXPM1(X), here X is denormalized +#--Step 0. + bra t_extdnrm + +######################################################################### +# sgetexp(): returns the exponent portion of the input argument. # +# The exponent bias is removed and the exponent value is # +# returned as an extended precision number in fp0. # +# sgetexpd(): handles denormalized numbers. # +# # +# sgetman(): extracts the mantissa of the input argument. The # +# mantissa is converted to an extended precision number w/ # +# an exponent of $3fff and is returned in fp0. The range of # +# the result is [1.0 - 2.0). # +# sgetmand(): handles denormalized numbers. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# # +# OUTPUT ************************************************************** # +# fp0 = exponent(X) or mantissa(X) # +# # +######################################################################### + + global sgetexp +sgetexp: + mov.w SRC_EX(%a0),%d0 # get the exponent + bclr &0xf,%d0 # clear the sign bit + subi.w &0x3fff,%d0 # subtract off the bias + fmov.w %d0,%fp0 # return exp in fp0 + blt.b sgetexpn # it's negative + rts + +sgetexpn: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + + global sgetexpd +sgetexpd: + bsr.l norm # normalize + neg.w %d0 # new exp = -(shft amt) + subi.w &0x3fff,%d0 # subtract off the bias + fmov.w %d0,%fp0 # return exp in fp0 + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + + global sgetman +sgetman: + mov.w SRC_EX(%a0),%d0 # get the exp + ori.w &0x7fff,%d0 # clear old exp + bclr &0xe,%d0 # make it the new exp +-3fff + +# here, we build the result in a tmp location so as not to disturb the input + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 + bmi.b sgetmann # it's negative + rts + +sgetmann: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +# +# For denormalized numbers, shift the mantissa until the j-bit = 1, +# then load the exponent with +/1 $3fff. +# + global sgetmand +sgetmand: + bsr.l norm # normalize exponent + bra.b sgetman + +######################################################################### +# scosh(): computes the hyperbolic cosine of a normalized input # +# scoshd(): computes the hyperbolic cosine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = cosh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# COSH # +# 1. If |X| > 16380 log2, go to 3. # +# # +# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # +# y = |X|, z = exp(Y), and # +# cosh(X) = (1/2)*( z + 1/z ). # +# Exit. # +# # +# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # +# # +# 4. (16380 log2 < |X| <= 16480 log2) # +# cosh(X) = sign(X) * exp(|X|)/2. # +# However, invoking exp(|X|) may cause premature # +# overflow. Thus, we calculate sinh(X) as follows: # +# Y := |X| # +# Fact := 2**(16380) # +# Y' := Y - 16381 log2 # +# cosh(X) := Fact * exp(Y'). # +# Exit. # +# # +# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # +# Huge*Huge to generate overflow and an infinity with # +# the appropriate sign. Huge is the largest finite number # +# in extended format. Exit. # +# # +######################################################################### + +TWO16380: + long 0x7FFB0000,0x80000000,0x00000000,0x00000000 + + global scosh +scosh: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x400CB167 + bgt.b COSHBIG + +#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 +#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) + + fabs.x %fp0 # |X| + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save |X| to stack + lea (%sp),%a0 # pass ptr to |X| + bsr setox # FP0 IS EXP(|X|) + add.l &0xc,%sp # erase |X| from stack + fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) + mov.l (%sp)+,%d0 + + fmov.s &0x3E800000,%fp1 # (1/4) + fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) + + fmov.l %d0,%fpcr + mov.b &FADD_OP,%d1 # last inst is ADD + fadd.x %fp1,%fp0 + bra t_catch + +COSHBIG: + cmp.l %d1,&0x400CB2B3 + bgt.b COSHHUGE + + fabs.x %fp0 + fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) + fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save fp0 to stack + lea (%sp),%a0 # pass ptr to fp0 + bsr setox + add.l &0xc,%sp # clear fp0 from stack + mov.l (%sp)+,%d0 + + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x TWO16380(%pc),%fp0 + bra t_catch + +COSHHUGE: + bra t_ovfl2 + + global scoshd +#--COSH(X) = 1 FOR DENORMALIZED X +scoshd: + fmov.s &0x3F800000,%fp0 + + fmov.l %d0,%fpcr + fadd.s &0x00800000,%fp0 + bra t_pinx2 + +######################################################################### +# ssinh(): computes the hyperbolic sine of a normalized input # +# ssinhd(): computes the hyperbolic sine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = sinh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# SINH # +# 1. If |X| > 16380 log2, go to 3. # +# # +# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # +# y = |X|, sgn = sign(X), and z = expm1(Y), # +# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # +# Exit. # +# # +# 3. If |X| > 16480 log2, go to 5. # +# # +# 4. (16380 log2 < |X| <= 16480 log2) # +# sinh(X) = sign(X) * exp(|X|)/2. # +# However, invoking exp(|X|) may cause premature overflow. # +# Thus, we calculate sinh(X) as follows: # +# Y := |X| # +# sgn := sign(X) # +# sgnFact := sgn * 2**(16380) # +# Y' := Y - 16381 log2 # +# sinh(X) := sgnFact * exp(Y'). # +# Exit. # +# # +# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # +# sign(X)*Huge*Huge to generate overflow and an infinity with # +# the appropriate sign. Huge is the largest finite number in # +# extended format. Exit. # +# # +######################################################################### + + global ssinh +ssinh: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + mov.l %d1,%a1 # save (compacted) operand + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x400CB167 + bgt.b SINHBIG + +#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 +#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) + + fabs.x %fp0 # Y = |X| + + movm.l &0x8040,-(%sp) # {a1/d0} + fmovm.x &0x01,-(%sp) # save Y on stack + lea (%sp),%a0 # pass ptr to Y + clr.l %d0 + bsr setoxm1 # FP0 IS Z = EXPM1(Y) + add.l &0xc,%sp # clear Y from stack + fmov.l &0,%fpcr + movm.l (%sp)+,&0x0201 # {a1/d0} + + fmov.x %fp0,%fp1 + fadd.s &0x3F800000,%fp1 # 1+Z + fmov.x %fp0,-(%sp) + fdiv.x %fp1,%fp0 # Z/(1+Z) + mov.l %a1,%d1 + and.l &0x80000000,%d1 + or.l &0x3F000000,%d1 + fadd.x (%sp)+,%fp0 + mov.l %d1,-(%sp) + + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set + bra t_catch + +SINHBIG: + cmp.l %d1,&0x400CB2B3 + bgt t_ovfl + fabs.x %fp0 + fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) + mov.l &0,-(%sp) + mov.l &0x80000000,-(%sp) + mov.l %a1,%d1 + and.l &0x80000000,%d1 + or.l &0x7FFB0000,%d1 + mov.l %d1,-(%sp) # EXTENDED FMT + fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save fp0 on stack + lea (%sp),%a0 # pass ptr to fp0 + bsr setox + add.l &0xc,%sp # clear fp0 from stack + + mov.l (%sp)+,%d0 + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x (%sp)+,%fp0 # possible exception + bra t_catch + + global ssinhd +#--SINH(X) = X FOR DENORMALIZED X +ssinhd: + bra t_extdnrm + +######################################################################### +# stanh(): computes the hyperbolic tangent of a normalized input # +# stanhd(): computes the hyperbolic tangent of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = tanh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# TANH # +# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # +# # +# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # +# sgn := sign(X), y := 2|X|, z := expm1(Y), and # +# tanh(X) = sgn*( z/(2+z) ). # +# Exit. # +# # +# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # +# go to 7. # +# # +# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # +# # +# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # +# sgn := sign(X), y := 2|X|, z := exp(Y), # +# tanh(X) = sgn - [ sgn*2/(1+z) ]. # +# Exit. # +# # +# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # +# calculate Tanh(X) by # +# sgn := sign(X), Tiny := 2**(-126), # +# tanh(X) := sgn - sgn*Tiny. # +# Exit. # +# # +# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # +# # +######################################################################### + + set X,FP_SCR0 + set XFRAC,X+4 + + set SGN,L_SCR3 + + set V,FP_SCR0 + + global stanh +stanh: + fmov.x (%a0),%fp0 # LOAD INPUT + + fmov.x %fp0,X(%a6) + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + mov.l %d1,X(%a6) + and.l &0x7FFFFFFF,%d1 + cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? + blt.w TANHBORS # yes + cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? + bgt.w TANHBORS # yes + +#--THIS IS THE USUAL CASE +#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). + + mov.l X(%a6),%d1 + mov.l %d1,SGN(%a6) + and.l &0x7FFF0000,%d1 + add.l &0x00010000,%d1 # EXPONENT OF 2|X| + mov.l %d1,X(%a6) + and.l &0x80000000,SGN(%a6) + fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x1,-(%sp) # save Y on stack + lea (%sp),%a0 # pass ptr to Y + bsr setoxm1 # FP0 IS Z = EXPM1(Y) + add.l &0xc,%sp # clear Y from stack + mov.l (%sp)+,%d0 + + fmov.x %fp0,%fp1 + fadd.s &0x40000000,%fp1 # Z+2 + mov.l SGN(%a6),%d1 + fmov.x %fp1,V(%a6) + eor.l %d1,V(%a6) + + fmov.l %d0,%fpcr # restore users round prec,mode + fdiv.x V(%a6),%fp0 + bra t_inx2 + +TANHBORS: + cmp.l %d1,&0x3FFF8000 + blt.w TANHSM + + cmp.l %d1,&0x40048AA1 + bgt.w TANHHUGE + +#-- (5/2) LOG2 < |X| < 50 LOG2, +#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), +#--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. + + mov.l X(%a6),%d1 + mov.l %d1,SGN(%a6) + and.l &0x7FFF0000,%d1 + add.l &0x00010000,%d1 # EXPO OF 2|X| + mov.l %d1,X(%a6) # Y = 2|X| + and.l &0x80000000,SGN(%a6) + mov.l SGN(%a6),%d1 + fmov.x X(%a6),%fp0 # Y = 2|X| + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save Y on stack + lea (%sp),%a0 # pass ptr to Y + bsr setox # FP0 IS EXP(Y) + add.l &0xc,%sp # clear Y from stack + mov.l (%sp)+,%d0 + mov.l SGN(%a6),%d1 + fadd.s &0x3F800000,%fp0 # EXP(Y)+1 + + eor.l &0xC0000000,%d1 # -SIGN(X)*2 + fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT + fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] + + mov.l SGN(%a6),%d1 + or.l &0x3F800000,%d1 # SGN + fmov.s %d1,%fp0 # SGN IN SGL FMT + + fmov.l %d0,%fpcr # restore users round prec,mode + mov.b &FADD_OP,%d1 # last inst is ADD + fadd.x %fp1,%fp0 + bra t_inx2 + +TANHSM: + fmov.l %d0,%fpcr # restore users round prec,mode + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 # last inst - possible exception set + bra t_catch + +#---RETURN SGN(X) - SGN(X)EPS +TANHHUGE: + mov.l X(%a6),%d1 + and.l &0x80000000,%d1 + or.l &0x3F800000,%d1 + fmov.s %d1,%fp0 + and.l &0x80000000,%d1 + eor.l &0x80800000,%d1 # -SIGN(X)*EPS + + fmov.l %d0,%fpcr # restore users round prec,mode + fadd.s %d1,%fp0 + bra t_inx2 + + global stanhd +#--TANH(X) = X FOR DENORMALIZED X +stanhd: + bra t_extdnrm + +######################################################################### +# slogn(): computes the natural logarithm of a normalized input # +# slognd(): computes the natural logarithm of a denormalized input # +# slognp1(): computes the log(1+X) of a normalized input # +# slognp1d(): computes the log(1+X) of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = log(X) or log(1+X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 2 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# LOGN: # +# Step 1. If |X-1| < 1/16, approximate log(X) by an odd # +# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # +# move on to Step 2. # +# # +# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # +# seven significant bits of Y plus 2**(-7), i.e. # +# F = 1.xxxxxx1 in base 2 where the six "x" match those # +# of Y. Note that |Y-F| <= 2**(-7). # +# # +# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # +# polynomial in u, log(1+u) = poly. # +# # +# Step 4. Reconstruct # +# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # +# by k*log(2) + (log(F) + poly). The values of log(F) are # +# calculated beforehand and stored in the program. # +# # +# lognp1: # +# Step 1: If |X| < 1/16, approximate log(1+X) by an odd # +# polynomial in u where u = 2X/(2+X). Otherwise, move on # +# to Step 2. # +# # +# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # +# in Step 2 of the algorithm for LOGN and compute # +# log(1+X) as k*log(2) + log(F) + poly where poly # +# approximates log(1+u), u = (Y-F)/F. # +# # +# Implementation Notes: # +# Note 1. There are 64 different possible values for F, thus 64 # +# log(F)'s need to be tabulated. Moreover, the values of # +# 1/F are also tabulated so that the division in (Y-F)/F # +# can be performed by a multiplication. # +# # +# Note 2. In Step 2 of lognp1, in order to preserved accuracy, # +# the value Y-F has to be calculated carefully when # +# 1/2 <= X < 3/2. # +# # +# Note 3. To fully exploit the pipeline, polynomials are usually # +# separated into two parts evaluated independently before # +# being added up. # +# # +######################################################################### +LOGOF2: + long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 + +one: + long 0x3F800000 +zero: + long 0x00000000 +infty: + long 0x7F800000 +negone: + long 0xBF800000 + +LOGA6: + long 0x3FC2499A,0xB5E4040B +LOGA5: + long 0xBFC555B5,0x848CB7DB + +LOGA4: + long 0x3FC99999,0x987D8730 +LOGA3: + long 0xBFCFFFFF,0xFF6F7E97 + +LOGA2: + long 0x3FD55555,0x555555A4 +LOGA1: + long 0xBFE00000,0x00000008 + +LOGB5: + long 0x3F175496,0xADD7DAD6 +LOGB4: + long 0x3F3C71C2,0xFE80C7E0 + +LOGB3: + long 0x3F624924,0x928BCCFF +LOGB2: + long 0x3F899999,0x999995EC + +LOGB1: + long 0x3FB55555,0x55555555 +TWO: + long 0x40000000,0x00000000 + +LTHOLD: + long 0x3f990000,0x80000000,0x00000000,0x00000000 + +LOGTBL: + long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 + long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 + long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 + long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 + long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 + long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 + long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 + long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 + long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 + long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 + long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 + long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 + long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 + long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 + long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 + long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 + long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 + long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 + long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 + long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 + long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 + long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 + long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 + long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 + long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 + long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 + long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 + long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 + long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 + long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 + long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 + long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 + long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 + long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 + long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 + long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 + long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 + long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 + long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 + long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 + long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 + long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 + long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 + long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 + long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 + long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 + long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 + long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 + long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 + long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 + long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 + long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 + long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 + long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 + long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 + long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 + long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 + long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 + long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 + long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 + long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 + long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 + long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 + long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 + long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 + long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 + long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 + long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 + long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 + long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 + long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 + long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 + long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 + long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 + long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 + long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 + long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 + long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 + long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 + long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 + long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 + long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 + long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 + long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 + long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 + long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 + long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 + long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 + long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 + long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 + long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 + long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 + long 0x3FFE0000,0x94458094,0x45809446,0x00000000 + long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 + long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 + long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 + long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 + long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 + long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 + long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 + long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 + long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 + long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 + long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 + long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 + long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 + long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 + long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 + long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 + long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 + long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 + long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 + long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 + long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 + long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 + long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 + long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 + long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 + long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 + long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 + long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 + long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 + long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 + long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 + long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 + long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 + long 0x3FFE0000,0x80808080,0x80808081,0x00000000 + long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 + + set ADJK,L_SCR1 + + set X,FP_SCR0 + set XDCARE,X+2 + set XFRAC,X+4 + + set F,FP_SCR1 + set FFRAC,F+4 + + set KLOG2,FP_SCR0 + + set SAVEU,FP_SCR0 + + global slogn +#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S +slogn: + fmov.x (%a0),%fp0 # LOAD INPUT + mov.l &0x00000000,ADJK(%a6) + +LOGBGN: +#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS +#--A FINITE, NON-ZERO, NORMALIZED NUMBER. + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + + mov.l (%a0),X(%a6) + mov.l 4(%a0),X+4(%a6) + mov.l 8(%a0),X+8(%a6) + + cmp.l %d1,&0 # CHECK IF X IS NEGATIVE + blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID +# X IS POSITIVE, CHECK IF X IS NEAR 1 + cmp.l %d1,&0x3ffef07d # IS X < 15/16? + blt.b LOGMAIN # YES + cmp.l %d1,&0x3fff8841 # IS X > 17/16? + ble.w LOGNEAR1 # NO + +LOGMAIN: +#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 + +#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. +#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. +#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) +#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). +#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING +#--LOG(1+U) CAN BE VERY EFFICIENT. +#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO +#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. + +#--GET K, Y, F, AND ADDRESS OF 1/F. + asr.l &8,%d1 + asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X + sub.l &0x3FFF,%d1 # THIS IS K + add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. + lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) + fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT + +#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F + mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X + mov.l XFRAC(%a6),FFRAC(%a6) + and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y + or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT + mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F + and.l &0x7E000000,%d1 + asr.l &8,%d1 + asr.l &8,%d1 + asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT + add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F + + fmov.x X(%a6),%fp0 + mov.l &0x3fff0000,F(%a6) + clr.l F+8(%a6) + fsub.x F(%a6),%fp0 # Y-F + fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY +#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K +#--REGISTERS SAVED: FPCR, FP1, FP2 + +LP1CONT1: +#--AN RE-ENTRY POINT FOR LOGNP1 + fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F + fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY + fmov.x %fp0,%fp2 + fmul.x %fp2,%fp2 # FP2 IS V=U*U + fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 + +#--LOG(1+U) IS APPROXIMATED BY +#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS +#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] + + fmov.x %fp2,%fp3 + fmov.x %fp2,%fp1 + + fmul.d LOGA6(%pc),%fp1 # V*A6 + fmul.d LOGA5(%pc),%fp2 # V*A5 + + fadd.d LOGA4(%pc),%fp1 # A4+V*A6 + fadd.d LOGA3(%pc),%fp2 # A3+V*A5 + + fmul.x %fp3,%fp1 # V*(A4+V*A6) + fmul.x %fp3,%fp2 # V*(A3+V*A5) + + fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) + fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) + + fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) + add.l &16,%a0 # ADDRESS OF LOG(F) + fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) + + fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) + fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) + + fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) + fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 + fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) + + fmov.l %d0,%fpcr + fadd.x KLOG2(%a6),%fp0 # FINAL ADD + bra t_inx2 + + +LOGNEAR1: + +# if the input is exactly equal to one, then exit through ld_pzero. +# if these 2 lines weren't here, the correct answer would be returned +# but the INEX2 bit would be set. + fcmp.b %fp0,&0x1 # is it equal to one? + fbeq.l ld_pzero # yes + +#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. + fmov.x %fp0,%fp1 + fsub.s one(%pc),%fp1 # FP1 IS X-1 + fadd.s one(%pc),%fp0 # FP0 IS X+1 + fadd.x %fp1,%fp1 # FP1 IS 2(X-1) +#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL +#--IN U, U = 2(X-1)/(X+1) = FP1/FP0 + +LP1CONT2: +#--THIS IS AN RE-ENTRY POINT FOR LOGNP1 + fdiv.x %fp0,%fp1 # FP1 IS U + fmovm.x &0xc,-(%sp) # SAVE FP2-3 +#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 +#--LET V=U*U, W=V*V, CALCULATE +#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY +#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) + fmov.x %fp1,%fp0 + fmul.x %fp0,%fp0 # FP0 IS V + fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS W + + fmov.d LOGB5(%pc),%fp3 + fmov.d LOGB4(%pc),%fp2 + + fmul.x %fp1,%fp3 # W*B5 + fmul.x %fp1,%fp2 # W*B4 + + fadd.d LOGB3(%pc),%fp3 # B3+W*B5 + fadd.d LOGB2(%pc),%fp2 # B2+W*B4 + + fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED + + fmul.x %fp0,%fp2 # V*(B2+W*B4) + + fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) + fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V + + fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED + fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED + + fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) + + fmov.l %d0,%fpcr + fadd.x SAVEU(%a6),%fp0 + bra t_inx2 + +#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID +LOGNEG: + bra t_operr + + global slognd +slognd: +#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT + + mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 + +#----normalize the input value by left shifting k bits (k to be determined +#----below), adjusting exponent and storing -k to ADJK +#----the value TWOTO100 is no longer needed. +#----Note that this code assumes the denormalized input is NON-ZERO. + + movm.l &0x3f00,-(%sp) # save some registers {d2-d7} + mov.l (%a0),%d3 # D3 is exponent of smallest norm. # + mov.l 4(%a0),%d4 + mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) + clr.l %d2 # D2 used for holding K + + tst.l %d4 + bne.b Hi_not0 + +Hi_0: + mov.l %d5,%d4 + clr.l %d5 + mov.l &32,%d2 + clr.l %d6 + bfffo %d4{&0:&32},%d6 + lsl.l %d6,%d4 + add.l %d6,%d2 # (D3,D4,D5) is normalized + + mov.l %d3,X(%a6) + mov.l %d4,XFRAC(%a6) + mov.l %d5,XFRAC+4(%a6) + neg.l %d2 + mov.l %d2,ADJK(%a6) + fmov.x X(%a6),%fp0 + movm.l (%sp)+,&0xfc # restore registers {d2-d7} + lea X(%a6),%a0 + bra.w LOGBGN # begin regular log(X) + +Hi_not0: + clr.l %d6 + bfffo %d4{&0:&32},%d6 # find first 1 + mov.l %d6,%d2 # get k + lsl.l %d6,%d4 + mov.l %d5,%d7 # a copy of D5 + lsl.l %d6,%d5 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d4 # (D3,D4,D5) normalized + + mov.l %d3,X(%a6) + mov.l %d4,XFRAC(%a6) + mov.l %d5,XFRAC+4(%a6) + neg.l %d2 + mov.l %d2,ADJK(%a6) + fmov.x X(%a6),%fp0 + movm.l (%sp)+,&0xfc # restore registers {d2-d7} + lea X(%a6),%a0 + bra.w LOGBGN # begin regular log(X) + + global slognp1 +#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S +slognp1: + fmov.x (%a0),%fp0 # LOAD INPUT + fabs.x %fp0 # test magnitude + fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold + fbgt.w LP1REAL # if greater, continue + fmov.l %d0,%fpcr + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x (%a0),%fp0 # return signed argument + bra t_catch + +LP1REAL: + fmov.x (%a0),%fp0 # LOAD INPUT + mov.l &0x00000000,ADJK(%a6) + fmov.x %fp0,%fp1 # FP1 IS INPUT Z + fadd.s one(%pc),%fp0 # X := ROUND(1+Z) + fmov.x %fp0,X(%a6) + mov.w XFRAC(%a6),XDCARE(%a6) + mov.l X(%a6),%d1 + cmp.l %d1,&0 + ble.w LP1NEG0 # LOG OF ZERO OR -VE + cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? + blt.w LOGMAIN + cmp.l %d1,&0x3fffc000 + bgt.w LOGMAIN +#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, +#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, +#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). + +LP1NEAR1: +#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) + cmp.l %d1,&0x3ffef07d + blt.w LP1CARE + cmp.l %d1,&0x3fff8841 + bgt.w LP1CARE + +LP1ONE16: +#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) +#--WHERE U = 2Z/(2+Z) = 2Z/(1+X). + fadd.x %fp1,%fp1 # FP1 IS 2Z + fadd.s one(%pc),%fp0 # FP0 IS 1+X +#--U = FP1/FP0 + bra.w LP1CONT2 + +LP1CARE: +#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE +#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST +#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], +#--THERE ARE ONLY TWO CASES. +#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z +#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z +#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF +#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. + + mov.l XFRAC(%a6),FFRAC(%a6) + and.l &0xFE000000,FFRAC(%a6) + or.l &0x01000000,FFRAC(%a6) # F OBTAINED + cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 + bge.b KISZERO + +KISNEG1: + fmov.s TWO(%pc),%fp0 + mov.l &0x3fff0000,F(%a6) + clr.l F+8(%a6) + fsub.x F(%a6),%fp0 # 2-F + mov.l FFRAC(%a6),%d1 + and.l &0x7E000000,%d1 + asr.l &8,%d1 + asr.l &8,%d1 + asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F + fadd.x %fp1,%fp1 # GET 2Z + fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} + fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z + lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F + add.l %d1,%a0 + fmov.s negone(%pc),%fp1 # FP1 IS K = -1 + bra.w LP1CONT1 + +KISZERO: + fmov.s one(%pc),%fp0 + mov.l &0x3fff0000,F(%a6) + clr.l F+8(%a6) + fsub.x F(%a6),%fp0 # 1-F + mov.l FFRAC(%a6),%d1 + and.l &0x7E000000,%d1 + asr.l &8,%d1 + asr.l &8,%d1 + asr.l &4,%d1 + fadd.x %fp1,%fp0 # FP0 IS Y-F + fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} + lea LOGTBL(%pc),%a0 + add.l %d1,%a0 # A0 IS ADDRESS OF 1/F + fmov.s zero(%pc),%fp1 # FP1 IS K = 0 + bra.w LP1CONT1 + +LP1NEG0: +#--FPCR SAVED. D0 IS X IN COMPACT FORM. + cmp.l %d1,&0 + blt.b LP1NEG +LP1ZERO: + fmov.s negone(%pc),%fp0 + + fmov.l %d0,%fpcr + bra t_dz + +LP1NEG: + fmov.s zero(%pc),%fp0 + + fmov.l %d0,%fpcr + bra t_operr + + global slognp1d +#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT +# Simply return the denorm +slognp1d: + bra t_extdnrm + +######################################################################### +# satanh(): computes the inverse hyperbolic tangent of a norm input # +# satanhd(): computes the inverse hyperbolic tangent of a denorm input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arctanh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# ATANH # +# 1. If |X| >= 1, go to 3. # +# # +# 2. (|X| < 1) Calculate atanh(X) by # +# sgn := sign(X) # +# y := |X| # +# z := 2y/(1-y) # +# atanh(X) := sgn * (1/2) * logp1(z) # +# Exit. # +# # +# 3. If |X| > 1, go to 5. # +# # +# 4. (|X| = 1) Generate infinity with an appropriate sign and # +# divide-by-zero by # +# sgn := sign(X) # +# atan(X) := sgn / (+0). # +# Exit. # +# # +# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # +# Exit. # +# # +######################################################################### + + global satanh +satanh: + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x3FFF8000 + bge.b ATANHBIG + +#--THIS IS THE USUAL CASE, |X| < 1 +#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). + + fabs.x (%a0),%fp0 # Y = |X| + fmov.x %fp0,%fp1 + fneg.x %fp1 # -Y + fadd.x %fp0,%fp0 # 2Y + fadd.s &0x3F800000,%fp1 # 1-Y + fdiv.x %fp1,%fp0 # 2Y/(1-Y) + mov.l (%a0),%d1 + and.l &0x80000000,%d1 + or.l &0x3F000000,%d1 # SIGN(X)*HALF + mov.l %d1,-(%sp) + + mov.l %d0,-(%sp) # save rnd prec,mode + clr.l %d0 # pass ext prec,RN + fmovm.x &0x01,-(%sp) # save Z on stack + lea (%sp),%a0 # pass ptr to Z + bsr slognp1 # LOG1P(Z) + add.l &0xc,%sp # clear Z from stack + + mov.l (%sp)+,%d0 # fetch old prec,mode + fmov.l %d0,%fpcr # load it + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.s (%sp)+,%fp0 + bra t_catch + +ATANHBIG: + fabs.x (%a0),%fp0 # |X| + fcmp.s %fp0,&0x3F800000 + fbgt t_operr + bra t_dz + + global satanhd +#--ATANH(X) = X FOR DENORMALIZED X +satanhd: + bra t_extdnrm + +######################################################################### +# slog10(): computes the base-10 logarithm of a normalized input # +# slog10d(): computes the base-10 logarithm of a denormalized input # +# slog2(): computes the base-2 logarithm of a normalized input # +# slog2d(): computes the base-2 logarithm of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = log_10(X) or log_2(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 1.7 ulps in 64 significant bit, # +# i.e. within 0.5003 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# slog10d: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # +# Notes: Even if X is denormalized, log(X) is always normalized. # +# # +# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # +# 2.1 Restore the user FPCR # +# 2.2 Return ans := Y * INV_L10. # +# # +# slog10: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # +# # +# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # +# 2.1 Restore the user FPCR # +# 2.2 Return ans := Y * INV_L10. # +# # +# sLog2d: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # +# Notes: Even if X is denormalized, log(X) is always normalized. # +# # +# Step 2. Compute log_10(X) = log(X) * (1/log(2)). # +# 2.1 Restore the user FPCR # +# 2.2 Return ans := Y * INV_L2. # +# # +# sLog2: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. If X is not an integer power of two, i.e., X != 2^k, # +# go to Step 3. # +# # +# Step 2. Return k. # +# 2.1 Get integer k, X = 2^k. # +# 2.2 Restore the user FPCR. # +# 2.3 Return ans := convert-to-double-extended(k). # +# # +# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # +# # +# Step 4. Compute log_2(X) = log(X) * (1/log(2)). # +# 4.1 Restore the user FPCR # +# 4.2 Return ans := Y * INV_L2. # +# # +######################################################################### + +INV_L10: + long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 + +INV_L2: + long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 + + global slog10 +#--entry point for Log10(X), X is normalized +slog10: + fmov.b &0x1,%fp0 + fcmp.x %fp0,(%a0) # if operand == 1, + fbeq.l ld_pzero # return an EXACT zero + + mov.l (%a0),%d1 + blt.w invalid + mov.l %d0,-(%sp) + clr.l %d0 + bsr slogn # log(X), X normal. + fmov.l (%sp)+,%fpcr + fmul.x INV_L10(%pc),%fp0 + bra t_inx2 + + global slog10d +#--entry point for Log10(X), X is denormalized +slog10d: + mov.l (%a0),%d1 + blt.w invalid + mov.l %d0,-(%sp) + clr.l %d0 + bsr slognd # log(X), X denorm. + fmov.l (%sp)+,%fpcr + fmul.x INV_L10(%pc),%fp0 + bra t_minx2 + + global slog2 +#--entry point for Log2(X), X is normalized +slog2: + mov.l (%a0),%d1 + blt.w invalid + + mov.l 8(%a0),%d1 + bne.b continue # X is not 2^k + + mov.l 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + bne.b continue + +#--X = 2^k. + mov.w (%a0),%d1 + and.l &0x00007FFF,%d1 + sub.l &0x3FFF,%d1 + beq.l ld_pzero + fmov.l %d0,%fpcr + fmov.l %d1,%fp0 + bra t_inx2 + +continue: + mov.l %d0,-(%sp) + clr.l %d0 + bsr slogn # log(X), X normal. + fmov.l (%sp)+,%fpcr + fmul.x INV_L2(%pc),%fp0 + bra t_inx2 + +invalid: + bra t_operr + + global slog2d +#--entry point for Log2(X), X is denormalized +slog2d: + mov.l (%a0),%d1 + blt.w invalid + mov.l %d0,-(%sp) + clr.l %d0 + bsr slognd # log(X), X denorm. + fmov.l (%sp)+,%fpcr + fmul.x INV_L2(%pc),%fp0 + bra t_minx2 + +######################################################################### +# stwotox(): computes 2**X for a normalized input # +# stwotoxd(): computes 2**X for a denormalized input # +# stentox(): computes 10**X for a normalized input # +# stentoxd(): computes 10**X for a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = 2**X or 10**X # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 2 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# twotox # +# 1. If |X| > 16480, go to ExpBig. # +# # +# 2. If |X| < 2**(-70), go to ExpSm. # +# # +# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # +# decompose N as # +# N = 64(M + M') + j, j = 0,1,2,...,63. # +# # +# 4. Overwrite r := r * log2. Then # +# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # +# Go to expr to compute that expression. # +# # +# tentox # +# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # +# # +# 2. If |X| < 2**(-70), go to ExpSm. # +# # +# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # +# N := round-to-int(y). Decompose N as # +# N = 64(M + M') + j, j = 0,1,2,...,63. # +# # +# 4. Define r as # +# r := ((X - N*L1)-N*L2) * L10 # +# where L1, L2 are the leading and trailing parts of # +# log_10(2)/64 and L10 is the natural log of 10. Then # +# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # +# Go to expr to compute that expression. # +# # +# expr # +# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # +# # +# 2. Overwrite Fact1 and Fact2 by # +# Fact1 := 2**(M) * Fact1 # +# Fact2 := 2**(M) * Fact2 # +# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # +# # +# 3. Calculate P where 1 + P approximates exp(r): # +# P = r + r*r*(A1+r*(A2+...+r*A5)). # +# # +# 4. Let AdjFact := 2**(M'). Return # +# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # +# Exit. # +# # +# ExpBig # +# 1. Generate overflow by Huge * Huge if X > 0; otherwise, # +# generate underflow by Tiny * Tiny. # +# # +# ExpSm # +# 1. Return 1 + X. # +# # +######################################################################### + +L2TEN64: + long 0x406A934F,0x0979A371 # 64LOG10/LOG2 +L10TWO1: + long 0x3F734413,0x509F8000 # LOG2/64LOG10 + +L10TWO2: + long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 + +LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 + +LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 + +EXPA5: long 0x3F56C16D,0x6F7BD0B2 +EXPA4: long 0x3F811112,0x302C712C +EXPA3: long 0x3FA55555,0x55554CC1 +EXPA2: long 0x3FC55555,0x55554A54 +EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 + +TEXPTBL: + long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 + long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA + long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 + long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 + long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA + long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C + long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 + long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA + long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 + long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 + long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 + long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 + long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D + long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 + long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B + long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 + long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A + long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B + long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF + long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA + long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD + long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E + long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B + long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB + long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB + long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 + long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C + long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 + long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 + long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 + long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F + long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C + long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB + long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB + long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C + long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA + long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD + long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 + long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A + long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 + long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB + long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 + long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C + long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 + long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 + long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE + long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 + long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 + long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A + long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 + long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 + long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 + long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 + long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE + long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 + long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F + long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A + long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A + long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC + long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F + long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A + long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 + long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B + long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 + + set INT,L_SCR1 + + set X,FP_SCR0 + set XDCARE,X+2 + set XFRAC,X+4 + + set ADJFACT,FP_SCR0 + + set FACT1,FP_SCR0 + set FACT1HI,FACT1+4 + set FACT1LOW,FACT1+8 + + set FACT2,FP_SCR1 + set FACT2HI,FACT2+4 + set FACT2LOW,FACT2+8 + + global stwotox +#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S +stwotox: + fmovm.x (%a0),&0x80 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + fmov.x %fp0,X(%a6) + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? + bge.b TWOOK1 + bra.w EXPBORS + +TWOOK1: + cmp.l %d1,&0x400D80C0 # |X| > 16480? + ble.b TWOMAIN + bra.w EXPBORS + +TWOMAIN: +#--USUAL CASE, 2^(-70) <= |X| <= 16480 + + fmov.x %fp0,%fp1 + fmul.s &0x42800000,%fp1 # 64 * X + fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) + mov.l %d2,-(%sp) + lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) + fmov.l INT(%a6),%fp1 # N --> FLOATING FMT + mov.l INT(%a6),%d1 + mov.l %d1,%d2 + and.l &0x3F,%d1 # D0 IS J + asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) + add.l %d1,%a1 # ADDRESS FOR 2^(J/64) + asr.l &6,%d2 # d2 IS L, N = 64L + J + mov.l %d2,%d1 + asr.l &1,%d1 # D0 IS M + sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J + add.l &0x3FFF,%d2 + +#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), +#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. +#--ADJFACT = 2^(M'). +#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. + + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmul.s &0x3C800000,%fp1 # (1/64)*N + mov.l (%a1)+,FACT1(%a6) + mov.l (%a1)+,FACT1HI(%a6) + mov.l (%a1)+,FACT1LOW(%a6) + mov.w (%a1)+,FACT2(%a6) + + fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) + + mov.w (%a1)+,FACT2HI(%a6) + clr.w FACT2HI+2(%a6) + clr.l FACT2LOW(%a6) + add.w %d1,FACT1(%a6) + fmul.x LOG2(%pc),%fp0 # FP0 IS R + add.w %d1,FACT2(%a6) + + bra.w expr + +EXPBORS: +#--FPCR, D0 SAVED + cmp.l %d1,&0x3FFF8000 + bgt.b TEXPBIG + +#--|X| IS SMALL, RETURN 1 + X + + fmov.l %d0,%fpcr # restore users round prec,mode + fadd.s &0x3F800000,%fp0 # RETURN 1 + X + bra t_pinx2 + +TEXPBIG: +#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW +#--REGISTERS SAVE SO FAR ARE FPCR AND D0 + mov.l X(%a6),%d1 + cmp.l %d1,&0 + blt.b EXPNEG + + bra t_ovfl2 # t_ovfl expects positive value + +EXPNEG: + bra t_unfl2 # t_unfl expects positive value + + global stwotoxd +stwotoxd: +#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT + + fmov.l %d0,%fpcr # set user's rounding mode/precision + fmov.s &0x3F800000,%fp0 # RETURN 1 + X + mov.l (%a0),%d1 + or.l &0x00800001,%d1 + fadd.s %d1,%fp0 + bra t_pinx2 + + global stentox +#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S +stentox: + fmovm.x (%a0),&0x80 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + fmov.x %fp0,X(%a6) + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? + bge.b TENOK1 + bra.w EXPBORS + +TENOK1: + cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? + ble.b TENMAIN + bra.w EXPBORS + +TENMAIN: +#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 + + fmov.x %fp0,%fp1 + fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 + fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) + mov.l %d2,-(%sp) + lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) + fmov.l INT(%a6),%fp1 # N --> FLOATING FMT + mov.l INT(%a6),%d1 + mov.l %d1,%d2 + and.l &0x3F,%d1 # D0 IS J + asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) + add.l %d1,%a1 # ADDRESS FOR 2^(J/64) + asr.l &6,%d2 # d2 IS L, N = 64L + J + mov.l %d2,%d1 + asr.l &1,%d1 # D0 IS M + sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J + add.l &0x3FFF,%d2 + +#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), +#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. +#--ADJFACT = 2^(M'). +#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmov.x %fp1,%fp2 + + fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD + mov.l (%a1)+,FACT1(%a6) + + fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL + + mov.l (%a1)+,FACT1HI(%a6) + mov.l (%a1)+,FACT1LOW(%a6) + fsub.x %fp1,%fp0 # X - N L_LEAD + mov.w (%a1)+,FACT2(%a6) + + fsub.x %fp2,%fp0 # X - N L_TRAIL + + mov.w (%a1)+,FACT2HI(%a6) + clr.w FACT2HI+2(%a6) + clr.l FACT2LOW(%a6) + + fmul.x LOG10(%pc),%fp0 # FP0 IS R + add.w %d1,FACT1(%a6) + add.w %d1,FACT2(%a6) + +expr: +#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. +#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). +#--FP0 IS R. THE FOLLOWING CODE COMPUTES +#-- 2**(M'+M) * 2**(J/64) * EXP(R) + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS S = R*R + + fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 + fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 + + fmul.x %fp1,%fp2 # FP2 IS S*A5 + fmul.x %fp1,%fp3 # FP3 IS S*A4 + + fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 + fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 + + fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) + fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) + + fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) + fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) + + fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) + fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) + fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + +#--FINAL RECONSTRUCTION PROCESS +#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) + + fmul.x FACT1(%a6),%fp0 + fadd.x FACT2(%a6),%fp0 + fadd.x FACT1(%a6),%fp0 + + fmov.l %d0,%fpcr # restore users round prec,mode + mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT + mov.l (%sp)+,%d2 + mov.l &0x80000000,ADJFACT+4(%a6) + clr.l ADJFACT+8(%a6) + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT + bra t_catch + + global stentoxd +stentoxd: +#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT + + fmov.l %d0,%fpcr # set user's rounding mode/precision + fmov.s &0x3F800000,%fp0 # RETURN 1 + X + mov.l (%a0),%d1 + or.l &0x00800001,%d1 + fadd.s %d1,%fp0 + bra t_pinx2 + +######################################################################### +# sscale(): computes the destination operand scaled by the source # +# operand. If the absoulute value of the source operand is # +# >= 2^14, an overflow or underflow is returned. # +# # +# INPUT *************************************************************** # +# a0 = pointer to double-extended source operand X # +# a1 = pointer to double-extended destination operand Y # +# # +# OUTPUT ************************************************************** # +# fp0 = scale(X,Y) # +# # +######################################################################### + +set SIGN, L_SCR1 + + global sscale +sscale: + mov.l %d0,-(%sp) # store off ctrl bits for now + + mov.w DST_EX(%a1),%d1 # get dst exponent + smi.b SIGN(%a6) # use SIGN to hold dst sign + andi.l &0x00007fff,%d1 # strip sign from dst exp + + mov.w SRC_EX(%a0),%d0 # check src bounds + andi.w &0x7fff,%d0 # clr src sign bit + cmpi.w %d0,&0x3fff # is src ~ ZERO? + blt.w src_small # yes + cmpi.w %d0,&0x400c # no; is src too big? + bgt.w src_out # yes + +# +# Source is within 2^14 range. +# +src_ok: + fintrz.x SRC(%a0),%fp0 # calc int of src + fmov.l %fp0,%d0 # int src to d0 +# don't want any accrued bits from the fintrz showing up later since +# we may need to read the fpsr for the last fp op in t_catch2(). + fmov.l &0x0,%fpsr + + tst.b DST_HI(%a1) # is dst denormalized? + bmi.b sok_norm + +# the dst is a DENORM. normalize the DENORM and add the adjustment to +# the src value. then, jump to the norm part of the routine. +sok_dnrm: + mov.l %d0,-(%sp) # save src for now + + mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy + mov.l DST_HI(%a1),FP_SCR0_HI(%a6) + mov.l DST_LO(%a1),FP_SCR0_LO(%a6) + + lea FP_SCR0(%a6),%a0 # pass ptr to DENORM + bsr.l norm # normalize the DENORM + neg.l %d0 + add.l (%sp)+,%d0 # add adjustment to src + + fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM + + cmpi.w %d0,&-0x3fff # is the shft amt really low? + bge.b sok_norm2 # thank goodness no + +# the multiply factor that we're trying to create should be a denorm +# for the multiply to work. therefore, we're going to actually do a +# multiply with a denorm which will cause an unimplemented data type +# exception to be put into the machine which will be caught and corrected +# later. we don't do this with the DENORMs above because this method +# is slower. but, don't fret, I don't see it being used much either. + fmov.l (%sp)+,%fpcr # restore user fpcr + mov.l &0x80000000,%d1 # load normalized mantissa + subi.l &-0x3fff,%d0 # how many should we shift? + neg.l %d0 # make it positive + cmpi.b %d0,&0x20 # is it > 32? + bge.b sok_dnrm_32 # yes + lsr.l %d0,%d1 # no; bit stays in upper lw + clr.l -(%sp) # insert zero low mantissa + mov.l %d1,-(%sp) # insert new high mantissa + clr.l -(%sp) # make zero exponent + bra.b sok_norm_cont +sok_dnrm_32: + subi.b &0x20,%d0 # get shift count + lsr.l %d0,%d1 # make low mantissa longword + mov.l %d1,-(%sp) # insert new low mantissa + clr.l -(%sp) # insert zero high mantissa + clr.l -(%sp) # make zero exponent + bra.b sok_norm_cont + +# the src will force the dst to a DENORM value or worse. so, let's +# create an fp multiply that will create the result. +sok_norm: + fmovm.x DST(%a1),&0x80 # load fp0 with normalized src +sok_norm2: + fmov.l (%sp)+,%fpcr # restore user fpcr + + addi.w &0x3fff,%d0 # turn src amt into exp value + swap %d0 # put exponent in high word + clr.l -(%sp) # insert new exponent + mov.l &0x80000000,-(%sp) # insert new high mantissa + mov.l %d0,-(%sp) # insert new lo mantissa + +sok_norm_cont: + fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x (%sp)+,%fp0 # do the multiply + bra t_catch2 # catch any exceptions + +# +# Source is outside of 2^14 range. Test the sign and branch +# to the appropriate exception handler. +# +src_out: + mov.l (%sp)+,%d0 # restore ctrl bits + exg %a0,%a1 # swap src,dst ptrs + tst.b SRC_EX(%a1) # is src negative? + bmi t_unfl # yes; underflow + bra t_ovfl_sc # no; overflow + +# +# The source input is below 1, so we check for denormalized numbers +# and set unfl. +# +src_small: + tst.b DST_HI(%a1) # is dst denormalized? + bpl.b ssmall_done # yes + + mov.l (%sp)+,%d0 + fmov.l %d0,%fpcr # no; load control bits + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x DST(%a1),%fp0 # simply return dest + bra t_catch2 +ssmall_done: + mov.l (%sp)+,%d0 # load control bits into d1 + mov.l %a1,%a0 # pass ptr to dst + bra t_resdnrm + +######################################################################### +# smod(): computes the fp MOD of the input values X,Y. # +# srem(): computes the fp (IEEE) REM of the input values X,Y. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input X # +# a1 = pointer to extended precision input Y # +# d0 = round precision,mode # +# # +# The input operands X and Y can be either normalized or # +# denormalized. # +# # +# OUTPUT ************************************************************** # +# fp0 = FREM(X,Y) or FMOD(X,Y) # +# # +# ALGORITHM *********************************************************** # +# # +# Step 1. Save and strip signs of X and Y: signX := sign(X), # +# signY := sign(Y), X := |X|, Y := |Y|, # +# signQ := signX EOR signY. Record whether MOD or REM # +# is requested. # +# # +# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # +# If (L < 0) then # +# R := X, go to Step 4. # +# else # +# R := 2^(-L)X, j := L. # +# endif # +# # +# Step 3. Perform MOD(X,Y) # +# 3.1 If R = Y, go to Step 9. # +# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # +# 3.3 If j = 0, go to Step 4. # +# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # +# Step 3.1. # +# # +# Step 4. At this point, R = X - QY = MOD(X,Y). Set # +# Last_Subtract := false (used in Step 7 below). If # +# MOD is requested, go to Step 6. # +# # +# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # +# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # +# Step 6. # +# 5.2 If R > Y/2, then { set Last_Subtract := true, # +# Q := Q + 1, Y := signY*Y }. Go to Step 6. # +# 5.3 This is the tricky case of R = Y/2. If Q is odd, # +# then { Q := Q + 1, signX := -signX }. # +# # +# Step 6. R := signX*R. # +# # +# Step 7. If Last_Subtract = true, R := R - Y. # +# # +# Step 8. Return signQ, last 7 bits of Q, and R as required. # +# # +# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # +# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # +# R := 0. Return signQ, last 7 bits of Q, and R. # +# # +######################################################################### + + set Mod_Flag,L_SCR3 + set Sc_Flag,L_SCR3+1 + + set SignY,L_SCR2 + set SignX,L_SCR2+2 + set SignQ,L_SCR3+2 + + set Y,FP_SCR0 + set Y_Hi,Y+4 + set Y_Lo,Y+8 + + set R,FP_SCR1 + set R_Hi,R+4 + set R_Lo,R+8 + +Scale: + long 0x00010000,0x80000000,0x00000000,0x00000000 + + global smod +smod: + clr.b FPSR_QBYTE(%a6) + mov.l %d0,-(%sp) # save ctrl bits + clr.b Mod_Flag(%a6) + bra.b Mod_Rem + + global srem +srem: + clr.b FPSR_QBYTE(%a6) + mov.l %d0,-(%sp) # save ctrl bits + mov.b &0x1,Mod_Flag(%a6) + +Mod_Rem: +#..Save sign of X and Y + movm.l &0x3f00,-(%sp) # save data registers + mov.w SRC_EX(%a0),%d3 + mov.w %d3,SignY(%a6) + and.l &0x00007FFF,%d3 # Y := |Y| + +# + mov.l SRC_HI(%a0),%d4 + mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| + + tst.l %d3 + bne.b Y_Normal + + mov.l &0x00003FFE,%d3 # $3FFD + 1 + tst.l %d4 + bne.b HiY_not0 + +HiY_0: + mov.l %d5,%d4 + clr.l %d5 + sub.l &32,%d3 + clr.l %d6 + bfffo %d4{&0:&32},%d6 + lsl.l %d6,%d4 + sub.l %d6,%d3 # (D3,D4,D5) is normalized +# ...with bias $7FFD + bra.b Chk_X + +HiY_not0: + clr.l %d6 + bfffo %d4{&0:&32},%d6 + sub.l %d6,%d3 + lsl.l %d6,%d4 + mov.l %d5,%d7 # a copy of D5 + lsl.l %d6,%d5 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d4 # (D3,D4,D5) normalized +# ...with bias $7FFD + bra.b Chk_X + +Y_Normal: + add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized +# ...with bias $7FFD + +Chk_X: + mov.w DST_EX(%a1),%d0 + mov.w %d0,SignX(%a6) + mov.w SignY(%a6),%d1 + eor.l %d0,%d1 + and.l &0x00008000,%d1 + mov.w %d1,SignQ(%a6) # sign(Q) obtained + and.l &0x00007FFF,%d0 + mov.l DST_HI(%a1),%d1 + mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| + tst.l %d0 + bne.b X_Normal + mov.l &0x00003FFE,%d0 + tst.l %d1 + bne.b HiX_not0 + +HiX_0: + mov.l %d2,%d1 + clr.l %d2 + sub.l &32,%d0 + clr.l %d6 + bfffo %d1{&0:&32},%d6 + lsl.l %d6,%d1 + sub.l %d6,%d0 # (D0,D1,D2) is normalized +# ...with bias $7FFD + bra.b Init + +HiX_not0: + clr.l %d6 + bfffo %d1{&0:&32},%d6 + sub.l %d6,%d0 + lsl.l %d6,%d1 + mov.l %d2,%d7 # a copy of D2 + lsl.l %d6,%d2 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d1 # (D0,D1,D2) normalized +# ...with bias $7FFD + bra.b Init + +X_Normal: + add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized +# ...with bias $7FFD + +Init: +# + mov.l %d3,L_SCR1(%a6) # save biased exp(Y) + mov.l %d0,-(%sp) # save biased exp(X) + sub.l %d3,%d0 # L := expo(X)-expo(Y) + + clr.l %d6 # D6 := carry <- 0 + clr.l %d3 # D3 is Q + mov.l &0,%a1 # A1 is k; j+k=L, Q=0 + +#..(Carry,D1,D2) is R + tst.l %d0 + bge.b Mod_Loop_pre + +#..expo(X) < expo(Y). Thus X = mod(X,Y) +# + mov.l (%sp)+,%d0 # restore d0 + bra.w Get_Mod + +Mod_Loop_pre: + addq.l &0x4,%sp # erase exp(X) +#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L +Mod_Loop: + tst.l %d6 # test carry bit + bgt.b R_GT_Y + +#..At this point carry = 0, R = (D1,D2), Y = (D4,D5) + cmp.l %d1,%d4 # compare hi(R) and hi(Y) + bne.b R_NE_Y + cmp.l %d2,%d5 # compare lo(R) and lo(Y) + bne.b R_NE_Y + +#..At this point, R = Y + bra.w Rem_is_0 + +R_NE_Y: +#..use the borrow of the previous compare + bcs.b R_LT_Y # borrow is set iff R < Y + +R_GT_Y: +#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 +#..and Y < (D1,D2) < 2Y. Either way, perform R - Y + sub.l %d5,%d2 # lo(R) - lo(Y) + subx.l %d4,%d1 # hi(R) - hi(Y) + clr.l %d6 # clear carry + addq.l &1,%d3 # Q := Q + 1 + +R_LT_Y: +#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. + tst.l %d0 # see if j = 0. + beq.b PostLoop + + add.l %d3,%d3 # Q := 2Q + add.l %d2,%d2 # lo(R) = 2lo(R) + roxl.l &1,%d1 # hi(R) = 2hi(R) + carry + scs %d6 # set Carry if 2(R) overflows + addq.l &1,%a1 # k := k+1 + subq.l &1,%d0 # j := j - 1 +#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. + + bra.b Mod_Loop + +PostLoop: +#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. + +#..normalize R. + mov.l L_SCR1(%a6),%d0 # new biased expo of R + tst.l %d1 + bne.b HiR_not0 + +HiR_0: + mov.l %d2,%d1 + clr.l %d2 + sub.l &32,%d0 + clr.l %d6 + bfffo %d1{&0:&32},%d6 + lsl.l %d6,%d1 + sub.l %d6,%d0 # (D0,D1,D2) is normalized +# ...with bias $7FFD + bra.b Get_Mod + +HiR_not0: + clr.l %d6 + bfffo %d1{&0:&32},%d6 + bmi.b Get_Mod # already normalized + sub.l %d6,%d0 + lsl.l %d6,%d1 + mov.l %d2,%d7 # a copy of D2 + lsl.l %d6,%d2 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d1 # (D0,D1,D2) normalized + +# +Get_Mod: + cmp.l %d0,&0x000041FE + bge.b No_Scale +Do_Scale: + mov.w %d0,R(%a6) + mov.l %d1,R_Hi(%a6) + mov.l %d2,R_Lo(%a6) + mov.l L_SCR1(%a6),%d6 + mov.w %d6,Y(%a6) + mov.l %d4,Y_Hi(%a6) + mov.l %d5,Y_Lo(%a6) + fmov.x R(%a6),%fp0 # no exception + mov.b &1,Sc_Flag(%a6) + bra.b ModOrRem +No_Scale: + mov.l %d1,R_Hi(%a6) + mov.l %d2,R_Lo(%a6) + sub.l &0x3FFE,%d0 + mov.w %d0,R(%a6) + mov.l L_SCR1(%a6),%d6 + sub.l &0x3FFE,%d6 + mov.l %d6,L_SCR1(%a6) + fmov.x R(%a6),%fp0 + mov.w %d6,Y(%a6) + mov.l %d4,Y_Hi(%a6) + mov.l %d5,Y_Lo(%a6) + clr.b Sc_Flag(%a6) + +# +ModOrRem: + tst.b Mod_Flag(%a6) + beq.b Fix_Sign + + mov.l L_SCR1(%a6),%d6 # new biased expo(Y) + subq.l &1,%d6 # biased expo(Y/2) + cmp.l %d0,%d6 + blt.b Fix_Sign + bgt.b Last_Sub + + cmp.l %d1,%d4 + bne.b Not_EQ + cmp.l %d2,%d5 + bne.b Not_EQ + bra.w Tie_Case + +Not_EQ: + bcs.b Fix_Sign + +Last_Sub: +# + fsub.x Y(%a6),%fp0 # no exceptions + addq.l &1,%d3 # Q := Q + 1 + +# +Fix_Sign: +#..Get sign of X + mov.w SignX(%a6),%d6 + bge.b Get_Q + fneg.x %fp0 + +#..Get Q +# +Get_Q: + clr.l %d6 + mov.w SignQ(%a6),%d6 # D6 is sign(Q) + mov.l &8,%d7 + lsr.l %d7,%d6 + and.l &0x0000007F,%d3 # 7 bits of Q + or.l %d6,%d3 # sign and bits of Q +# swap %d3 +# fmov.l %fpsr,%d6 +# and.l &0xFF00FFFF,%d6 +# or.l %d3,%d6 +# fmov.l %d6,%fpsr # put Q in fpsr + mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr + +# +Restore: + movm.l (%sp)+,&0xfc # {%d2-%d7} + mov.l (%sp)+,%d0 + fmov.l %d0,%fpcr + tst.b Sc_Flag(%a6) + beq.b Finish + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x Scale(%pc),%fp0 # may cause underflow + bra t_catch2 +# the '040 package did this apparently to see if the dst operand for the +# preceding fmul was a denorm. but, it better not have been since the +# algorithm just got done playing with fp0 and expected no exceptions +# as a result. trust me... +# bra t_avoid_unsupp # check for denorm as a +# ;result of the scaling + +Finish: + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x %fp0,%fp0 # capture exceptions & round + bra t_catch2 + +Rem_is_0: +#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) + addq.l &1,%d3 + cmp.l %d0,&8 # D0 is j + bge.b Q_Big + + lsl.l %d0,%d3 + bra.b Set_R_0 + +Q_Big: + clr.l %d3 + +Set_R_0: + fmov.s &0x00000000,%fp0 + clr.b Sc_Flag(%a6) + bra.w Fix_Sign + +Tie_Case: +#..Check parity of Q + mov.l %d3,%d6 + and.l &0x00000001,%d6 + tst.l %d6 + beq.w Fix_Sign # Q is even + +#..Q is odd, Q := Q + 1, signX := -signX + addq.l &1,%d3 + mov.w SignX(%a6),%d6 + eor.l &0x00008000,%d6 + mov.w %d6,SignX(%a6) + bra.w Fix_Sign + +######################################################################### +# XDEF **************************************************************** # +# tag(): return the optype of the input ext fp number # +# # +# This routine is used by the 060FPLSP. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# If it's an unnormalized zero, alter the operand and force it # +# to be a normal zero. # +# # +######################################################################### + + global tag +tag: + mov.w FTEMP_EX(%a0), %d0 # extract exponent + andi.w &0x7fff, %d0 # strip off sign + cmpi.w %d0, &0x7fff # is (EXP == MAX)? + beq.b inf_or_nan_x +not_inf_or_nan_x: + btst &0x7,FTEMP_HI(%a0) + beq.b not_norm_x +is_norm_x: + mov.b &NORM, %d0 + rts +not_norm_x: + tst.w %d0 # is exponent = 0? + bne.b is_unnorm_x +not_unnorm_x: + tst.l FTEMP_HI(%a0) + bne.b is_denorm_x + tst.l FTEMP_LO(%a0) + bne.b is_denorm_x +is_zero_x: + mov.b &ZERO, %d0 + rts +is_denorm_x: + mov.b &DENORM, %d0 + rts +is_unnorm_x: + bsr.l unnorm_fix # convert to norm,denorm,or zero + rts +is_unnorm_reg_x: + mov.b &UNNORM, %d0 + rts +inf_or_nan_x: + tst.l FTEMP_LO(%a0) + bne.b is_nan_x + mov.l FTEMP_HI(%a0), %d0 + and.l &0x7fffffff, %d0 # msb is a don't care! + bne.b is_nan_x +is_inf_x: + mov.b &INF, %d0 + rts +is_nan_x: + mov.b &QNAN, %d0 + rts + +############################################################# + +qnan: long 0x7fff0000, 0xffffffff, 0xffffffff + +######################################################################### +# XDEF **************************************************************** # +# t_dz(): Handle 060FPLSP dz exception for "flogn" emulation. # +# t_dz2(): Handle 060FPLSP dz exception for "fatanh" emulation. # +# # +# These rouitnes are used by the 060FPLSP package. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand. # +# # +# OUTPUT ************************************************************** # +# fp0 = default DZ result. # +# # +# ALGORITHM *********************************************************** # +# Transcendental emulation for the 060FPLSP has detected that # +# a DZ exception should occur for the instruction. If DZ is disabled, # +# return the default result. # +# If DZ is enabled, the dst operand should be returned unscathed # +# in fp0 while fp1 is used to create a DZ exception so that the # +# operating system can log that such an event occurred. # +# # +######################################################################### + + global t_dz +t_dz: + tst.b SRC_EX(%a0) # check sign for neg or pos + bpl.b dz_pinf # branch if pos sign + + global t_dz2 +t_dz2: + ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ + + btst &dz_bit,FPCR_ENABLE(%a6) + bne.b dz_minf_ena + +# dz is disabled. return a -INF. + fmov.s &0xff800000,%fp0 # return -INF + rts + +# dz is enabled. create a dz exception so the user can record it +# but use fp1 instead. return the dst operand unscathed in fp0. +dz_minf_ena: + fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed + fmov.l USER_FPCR(%a6),%fpcr + fmov.s &0xbf800000,%fp1 # load -1 + fdiv.s &0x00000000,%fp1 # -1 / 0 + rts + +dz_pinf: + ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ + + btst &dz_bit,FPCR_ENABLE(%a6) + bne.b dz_pinf_ena + +# dz is disabled. return a +INF. + fmov.s &0x7f800000,%fp0 # return +INF + rts + +# dz is enabled. create a dz exception so the user can record it +# but use fp1 instead. return the dst operand unscathed in fp0. +dz_pinf_ena: + fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed + fmov.l USER_FPCR(%a6),%fpcr + fmov.s &0x3f800000,%fp1 # load +1 + fdiv.s &0x00000000,%fp1 # +1 / 0 + rts + +######################################################################### +# XDEF **************************************************************** # +# t_operr(): Handle 060FPLSP OPERR exception during emulation. # +# # +# This routine is used by the 060FPLSP package. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# fp1 = source operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# fp1 = unchanged # +# # +# ALGORITHM *********************************************************** # +# An operand error should occur as the result of transcendental # +# emulation in the 060FPLSP. If OPERR is disabled, just return a NAN # +# in fp0. If OPERR is enabled, return the dst operand unscathed in fp0 # +# and the source operand in fp1. Use fp2 to create an OPERR exception # +# so that the operating system can log the event. # +# # +######################################################################### + + global t_operr +t_operr: + ori.l &opnan_mask,USER_FPSR(%a6) # set NAN/OPERR/AIOP + + btst &operr_bit,FPCR_ENABLE(%a6) + bne.b operr_ena + +# operr is disabled. return a QNAN in fp0 + fmovm.x qnan(%pc),&0x80 # return QNAN + rts + +# operr is enabled. create an operr exception so the user can record it +# but use fp2 instead. return the dst operand unscathed in fp0. +operr_ena: + fmovm.x EXC_FP0(%a6),&0x80 # return fp0 unscathed + fmov.l USER_FPCR(%a6),%fpcr + fmovm.x &0x04,-(%sp) # save fp2 + fmov.s &0x7f800000,%fp2 # load +INF + fmul.s &0x00000000,%fp2 # +INF x 0 + fmovm.x (%sp)+,&0x20 # restore fp2 + rts + +pls_huge: + long 0x7ffe0000,0xffffffff,0xffffffff +mns_huge: + long 0xfffe0000,0xffffffff,0xffffffff +pls_tiny: + long 0x00000000,0x80000000,0x00000000 +mns_tiny: + long 0x80000000,0x80000000,0x00000000 + +######################################################################### +# XDEF **************************************************************** # +# t_unfl(): Handle 060FPLSP underflow exception during emulation. # +# t_unfl2(): Handle 060FPLSP underflow exception during # +# emulation. result always positive. # +# # +# This routine is used by the 060FPLSP package. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default underflow result # +# # +# ALGORITHM *********************************************************** # +# An underflow should occur as the result of transcendental # +# emulation in the 060FPLSP. Create an underflow by using "fmul" # +# and two very small numbers of appropriate sign so the operating # +# system can log the event. # +# # +######################################################################### + + global t_unfl +t_unfl: + tst.b SRC_EX(%a0) + bpl.b unf_pos + + global t_unfl2 +t_unfl2: + ori.l &unfinx_mask+neg_mask,USER_FPSR(%a6) # set N/UNFL/INEX2/AUNFL/AINEX + + fmov.l USER_FPCR(%a6),%fpcr + fmovm.x mns_tiny(%pc),&0x80 + fmul.x pls_tiny(%pc),%fp0 + + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 + mov.b %d0,FPSR_CC(%a6) + rts +unf_pos: + ori.w &unfinx_mask,FPSR_EXCEPT(%a6) # set UNFL/INEX2/AUNFL/AINEX + + fmov.l USER_FPCR(%a6),%fpcr + fmovm.x pls_tiny(%pc),&0x80 + fmul.x %fp0,%fp0 + + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 + mov.b %d0,FPSR_CC(%a6) + rts + +######################################################################### +# XDEF **************************************************************** # +# t_ovfl(): Handle 060FPLSP overflow exception during emulation. # +# (monadic) # +# t_ovfl2(): Handle 060FPLSP overflow exception during # +# emulation. result always positive. (dyadic) # +# t_ovfl_sc(): Handle 060FPLSP overflow exception during # +# emulation for "fscale". # +# # +# This routine is used by the 060FPLSP package. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default underflow result # +# # +# ALGORITHM *********************************************************** # +# An overflow should occur as the result of transcendental # +# emulation in the 060FPLSP. Create an overflow by using "fmul" # +# and two very lareg numbers of appropriate sign so the operating # +# system can log the event. # +# For t_ovfl_sc() we take special care not to lose the INEX2 bit. # +# # +######################################################################### + + global t_ovfl_sc +t_ovfl_sc: + ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX + + mov.b %d0,%d1 # fetch rnd prec,mode + andi.b &0xc0,%d1 # extract prec + beq.w ovfl_work + +# dst op is a DENORM. we have to normalize the mantissa to see if the +# result would be inexact for the given precision. make a copy of the +# dst so we don't screw up the version passed to us. + mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) + mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) + mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 + movm.l &0xc080,-(%sp) # save d0-d1/a0 + bsr.l norm # normalize mantissa + movm.l (%sp)+,&0x0103 # restore d0-d1/a0 + + cmpi.b %d1,&0x40 # is precision sgl? + bne.b ovfl_sc_dbl # no; dbl +ovfl_sc_sgl: + tst.l LOCAL_LO(%a0) # is lo lw of sgl set? + bne.b ovfl_sc_inx # yes + tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? + bne.b ovfl_sc_inx # yes + bra.w ovfl_work # don't set INEX2 +ovfl_sc_dbl: + mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of + andi.l &0x7ff,%d1 # dbl mantissa set? + beq.w ovfl_work # no; don't set INEX2 +ovfl_sc_inx: + ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 + bra.b ovfl_work # continue + + global t_ovfl +t_ovfl: + ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX +ovfl_work: + tst.b SRC_EX(%a0) + bpl.b ovfl_p +ovfl_m: + fmov.l USER_FPCR(%a6),%fpcr + fmovm.x mns_huge(%pc),&0x80 + fmul.x pls_huge(%pc),%fp0 + + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 + ori.b &neg_mask,%d0 + mov.b %d0,FPSR_CC(%a6) + rts +ovfl_p: + fmov.l USER_FPCR(%a6),%fpcr + fmovm.x pls_huge(%pc),&0x80 + fmul.x pls_huge(%pc),%fp0 + + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 + mov.b %d0,FPSR_CC(%a6) + rts + + global t_ovfl2 +t_ovfl2: + ori.w &ovfinx_mask,FPSR_EXCEPT(%a6) # set OVFL/INEX2/AOVFL/AINEX + fmov.l USER_FPCR(%a6),%fpcr + fmovm.x pls_huge(%pc),&0x80 + fmul.x pls_huge(%pc),%fp0 + + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 + mov.b %d0,FPSR_CC(%a6) + rts + +######################################################################### +# XDEF **************************************************************** # +# t_catch(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # +# emulation. # +# t_catch2(): Handle 060FPLSP OVFL,UNFL,or INEX2 exception during # +# emulation. # +# # +# These routines are used by the 060FPLSP package. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# fp0 = default underflow or overflow result # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# # +# ALGORITHM *********************************************************** # +# If an overflow or underflow occurred during the last # +# instruction of transcendental 060FPLSP emulation, then it has already # +# occurred and has been logged. Now we need to see if an inexact # +# exception should occur. # +# # +######################################################################### + + global t_catch2 +t_catch2: + fmov.l %fpsr,%d0 + or.l %d0,USER_FPSR(%a6) + bra.b inx2_work + + global t_catch +t_catch: + fmov.l %fpsr,%d0 + or.l %d0,USER_FPSR(%a6) + +######################################################################### +# XDEF **************************************************************** # +# t_inx2(): Handle inexact 060FPLSP exception during emulation. # +# t_pinx2(): Handle inexact 060FPLSP exception for "+" results. # +# t_minx2(): Handle inexact 060FPLSP exception for "-" results. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# fp0 = default result # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# # +# ALGORITHM *********************************************************** # +# The last instruction of transcendental emulation for the # +# 060FPLSP should be inexact. So, if inexact is enabled, then we create # +# the event here by adding a large and very small number together # +# so that the operating system can log the event. # +# Must check, too, if the result was zero, in which case we just # +# set the FPSR bits and return. # +# # +######################################################################### + + global t_inx2 +t_inx2: + fblt.w t_minx2 + fbeq.w inx2_zero + + global t_pinx2 +t_pinx2: + ori.w &inx2a_mask,FPSR_EXCEPT(%a6) # set INEX2/AINEX + bra.b inx2_work + + global t_minx2 +t_minx2: + ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) + +inx2_work: + btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? + bne.b inx2_work_ena # yes + rts +inx2_work_ena: + fmov.l USER_FPCR(%a6),%fpcr # insert user's exceptions + fmov.s &0x3f800000,%fp1 # load +1 + fadd.x pls_tiny(%pc),%fp1 # cause exception + rts + +inx2_zero: + mov.b &z_bmask,FPSR_CC(%a6) + ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX/AINEX + rts + +######################################################################### +# XDEF **************************************************************** # +# t_extdnrm(): Handle DENORM inputs in 060FPLSP. # +# t_resdnrm(): Handle DENORM inputs in 060FPLSP for "fscale". # +# # +# This routine is used by the 060FPLSP package. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# # +# ALGORITHM *********************************************************** # +# For all functions that have a denormalized input and that # +# f(x)=x, this is the entry point. # +# DENORM value is moved using "fmove" which triggers an exception # +# if enabled so the operating system can log the event. # +# # +######################################################################### + + global t_extdnrm +t_extdnrm: + fmov.l USER_FPCR(%a6),%fpcr + fmov.x SRC_EX(%a0),%fp0 + fmov.l %fpsr,%d0 + ori.l &unfinx_mask,%d0 + or.l %d0,USER_FPSR(%a6) + rts + + global t_resdnrm +t_resdnrm: + fmov.l USER_FPCR(%a6),%fpcr + fmov.x SRC_EX(%a0),%fp0 + fmov.l %fpsr,%d0 + or.l %d0,USER_FPSR(%a6) + rts + +########################################## + +# +# sto_cos: +# This is used by fsincos library emulation. The correct +# values are already in fp0 and fp1 so we do nothing here. +# + global sto_cos +sto_cos: + rts + +########################################## + +# +# dst_qnan --- force result when destination is a NaN +# + global dst_qnan +dst_qnan: + fmov.x DST(%a1),%fp0 + tst.b DST_EX(%a1) + bmi.b dst_qnan_m +dst_qnan_p: + mov.b &nan_bmask,FPSR_CC(%a6) + rts +dst_qnan_m: + mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) + rts + +# +# src_qnan --- force result when source is a NaN +# + global src_qnan +src_qnan: + fmov.x SRC(%a0),%fp0 + tst.b SRC_EX(%a0) + bmi.b src_qnan_m +src_qnan_p: + mov.b &nan_bmask,FPSR_CC(%a6) + rts +src_qnan_m: + mov.b &nan_bmask+neg_bmask,FPSR_CC(%a6) + rts + +########################################## + +# +# Native instruction support +# +# Some systems may need entry points even for 68060 native +# instructions. These routines are provided for +# convenience. +# + global _fadds_ +_fadds_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.s 0x8(%sp),%fp0 # load sgl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fadd.s 0x8(%sp),%fp0 # fadd w/ sgl src + rts + + global _faddd_ +_faddd_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.d 0x8(%sp),%fp0 # load dbl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fadd.d 0xc(%sp),%fp0 # fadd w/ dbl src + rts + + global _faddx_ +_faddx_: + fmovm.x 0x4(%sp),&0x80 # load ext dst + fadd.x 0x10(%sp),%fp0 # fadd w/ ext src + rts + + global _fsubs_ +_fsubs_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.s 0x8(%sp),%fp0 # load sgl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fsub.s 0x8(%sp),%fp0 # fsub w/ sgl src + rts + + global _fsubd_ +_fsubd_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.d 0x8(%sp),%fp0 # load dbl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fsub.d 0xc(%sp),%fp0 # fsub w/ dbl src + rts + + global _fsubx_ +_fsubx_: + fmovm.x 0x4(%sp),&0x80 # load ext dst + fsub.x 0x10(%sp),%fp0 # fsub w/ ext src + rts + + global _fmuls_ +_fmuls_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.s 0x8(%sp),%fp0 # load sgl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fmul.s 0x8(%sp),%fp0 # fmul w/ sgl src + rts + + global _fmuld_ +_fmuld_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.d 0x8(%sp),%fp0 # load dbl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fmul.d 0xc(%sp),%fp0 # fmul w/ dbl src + rts + + global _fmulx_ +_fmulx_: + fmovm.x 0x4(%sp),&0x80 # load ext dst + fmul.x 0x10(%sp),%fp0 # fmul w/ ext src + rts + + global _fdivs_ +_fdivs_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.s 0x8(%sp),%fp0 # load sgl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fdiv.s 0x8(%sp),%fp0 # fdiv w/ sgl src + rts + + global _fdivd_ +_fdivd_: + fmov.l %fpcr,-(%sp) # save fpcr + fmov.l &0x00000000,%fpcr # clear fpcr for load + fmov.d 0x8(%sp),%fp0 # load dbl dst + fmov.l (%sp)+,%fpcr # restore fpcr + fdiv.d 0xc(%sp),%fp0 # fdiv w/ dbl src + rts + + global _fdivx_ +_fdivx_: + fmovm.x 0x4(%sp),&0x80 # load ext dst + fdiv.x 0x10(%sp),%fp0 # fdiv w/ ext src + rts + + global _fabss_ +_fabss_: + fabs.s 0x4(%sp),%fp0 # fabs w/ sgl src + rts + + global _fabsd_ +_fabsd_: + fabs.d 0x4(%sp),%fp0 # fabs w/ dbl src + rts + + global _fabsx_ +_fabsx_: + fabs.x 0x4(%sp),%fp0 # fabs w/ ext src + rts + + global _fnegs_ +_fnegs_: + fneg.s 0x4(%sp),%fp0 # fneg w/ sgl src + rts + + global _fnegd_ +_fnegd_: + fneg.d 0x4(%sp),%fp0 # fneg w/ dbl src + rts + + global _fnegx_ +_fnegx_: + fneg.x 0x4(%sp),%fp0 # fneg w/ ext src + rts + + global _fsqrts_ +_fsqrts_: + fsqrt.s 0x4(%sp),%fp0 # fsqrt w/ sgl src + rts + + global _fsqrtd_ +_fsqrtd_: + fsqrt.d 0x4(%sp),%fp0 # fsqrt w/ dbl src + rts + + global _fsqrtx_ +_fsqrtx_: + fsqrt.x 0x4(%sp),%fp0 # fsqrt w/ ext src + rts + + global _fints_ +_fints_: + fint.s 0x4(%sp),%fp0 # fint w/ sgl src + rts + + global _fintd_ +_fintd_: + fint.d 0x4(%sp),%fp0 # fint w/ dbl src + rts + + global _fintx_ +_fintx_: + fint.x 0x4(%sp),%fp0 # fint w/ ext src + rts + + global _fintrzs_ +_fintrzs_: + fintrz.s 0x4(%sp),%fp0 # fintrz w/ sgl src + rts + + global _fintrzd_ +_fintrzd_: + fintrz.d 0x4(%sp),%fp0 # fintrx w/ dbl src + rts + + global _fintrzx_ +_fintrzx_: + fintrz.x 0x4(%sp),%fp0 # fintrz w/ ext src + rts + +######################################################################## + +######################################################################### +# src_zero(): Return signed zero according to sign of src operand. # +######################################################################### + global src_zero +src_zero: + tst.b SRC_EX(%a0) # get sign of src operand + bmi.b ld_mzero # if neg, load neg zero + +# +# ld_pzero(): return a positive zero. +# + global ld_pzero +ld_pzero: + fmov.s &0x00000000,%fp0 # load +0 + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts + +# ld_mzero(): return a negative zero. + global ld_mzero +ld_mzero: + fmov.s &0x80000000,%fp0 # load -0 + mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits + rts + +######################################################################### +# dst_zero(): Return signed zero according to sign of dst operand. # +######################################################################### + global dst_zero +dst_zero: + tst.b DST_EX(%a1) # get sign of dst operand + bmi.b ld_mzero # if neg, load neg zero + bra.b ld_pzero # load positive zero + +######################################################################### +# src_inf(): Return signed inf according to sign of src operand. # +######################################################################### + global src_inf +src_inf: + tst.b SRC_EX(%a0) # get sign of src operand + bmi.b ld_minf # if negative branch + +# +# ld_pinf(): return a positive infinity. +# + global ld_pinf +ld_pinf: + fmov.s &0x7f800000,%fp0 # load +INF + mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit + rts + +# +# ld_minf():return a negative infinity. +# + global ld_minf +ld_minf: + fmov.s &0xff800000,%fp0 # load -INF + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits + rts + +######################################################################### +# dst_inf(): Return signed inf according to sign of dst operand. # +######################################################################### + global dst_inf +dst_inf: + tst.b DST_EX(%a1) # get sign of dst operand + bmi.b ld_minf # if negative branch + bra.b ld_pinf + + global szr_inf +################################################################# +# szr_inf(): Return +ZERO for a negative src operand or # +# +INF for a positive src operand. # +# Routine used for fetox, ftwotox, and ftentox. # +################################################################# +szr_inf: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_pzero + bra.b ld_pinf + +######################################################################### +# sopr_inf(): Return +INF for a positive src operand or # +# jump to operand error routine for a negative src operand. # +# Routine used for flogn, flognp1, flog10, and flog2. # +######################################################################### + global sopr_inf +sopr_inf: + tst.b SRC_EX(%a0) # check sign of source + bmi.w t_operr + bra.b ld_pinf + +################################################################# +# setoxm1i(): Return minus one for a negative src operand or # +# positive infinity for a positive src operand. # +# Routine used for fetoxm1. # +################################################################# + global setoxm1i +setoxm1i: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_mone + bra.b ld_pinf + +######################################################################### +# src_one(): Return signed one according to sign of src operand. # +######################################################################### + global src_one +src_one: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_mone + +# +# ld_pone(): return positive one. +# + global ld_pone +ld_pone: + fmov.s &0x3f800000,%fp0 # load +1 + clr.b FPSR_CC(%a6) + rts + +# +# ld_mone(): return negative one. +# + global ld_mone +ld_mone: + fmov.s &0xbf800000,%fp0 # load -1 + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 +mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 + +################################################################# +# spi_2(): Return signed PI/2 according to sign of src operand. # +################################################################# + global spi_2 +spi_2: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_mpi2 + +# +# ld_ppi2(): return positive PI/2. +# + global ld_ppi2 +ld_ppi2: + fmov.l %d0,%fpcr + fmov.x ppiby2(%pc),%fp0 # load +pi/2 + bra.w t_pinx2 # set INEX2 + +# +# ld_mpi2(): return negative PI/2. +# + global ld_mpi2 +ld_mpi2: + fmov.l %d0,%fpcr + fmov.x mpiby2(%pc),%fp0 # load -pi/2 + bra.w t_minx2 # set INEX2 + +#################################################### +# The following routines give support for fsincos. # +#################################################### + +# +# ssincosz(): When the src operand is ZERO, store a one in the +# cosine register and return a ZERO in fp0 w/ the same sign +# as the src operand. +# + global ssincosz +ssincosz: + fmov.s &0x3f800000,%fp1 + tst.b SRC_EX(%a0) # test sign + bpl.b sincoszp + fmov.s &0x80000000,%fp0 # return sin result in fp0 + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) + rts +sincoszp: + fmov.s &0x00000000,%fp0 # return sin result in fp0 + mov.b &z_bmask,FPSR_CC(%a6) + rts + +# +# ssincosi(): When the src operand is INF, store a QNAN in the cosine +# register and jump to the operand error routine for negative +# src operands. +# + global ssincosi +ssincosi: + fmov.x qnan(%pc),%fp1 # load NAN + bra.w t_operr + +# +# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine +# register and branch to the src QNAN routine. +# + global ssincosqnan +ssincosqnan: + fmov.x LOCAL_EX(%a0),%fp1 + bra.w src_qnan + +######################################################################## + + global smod_sdnrm + global smod_snorm +smod_sdnrm: +smod_snorm: + mov.b DTAG(%a6),%d1 + beq.l smod + cmpi.b %d1,&ZERO + beq.w smod_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l smod + bra.l dst_qnan + + global smod_szero +smod_szero: + mov.b DTAG(%a6),%d1 + beq.l t_operr + cmpi.b %d1,&ZERO + beq.l t_operr + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l t_operr + bra.l dst_qnan + + global smod_sinf +smod_sinf: + mov.b DTAG(%a6),%d1 + beq.l smod_fpn + cmpi.b %d1,&ZERO + beq.l smod_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l smod_fpn + bra.l dst_qnan + +smod_zro: +srem_zro: + mov.b SRC_EX(%a0),%d1 # get src sign + mov.b DST_EX(%a1),%d0 # get dst sign + eor.b %d0,%d1 # get qbyte sign + andi.b &0x80,%d1 + mov.b %d1,FPSR_QBYTE(%a6) + tst.b %d0 + bpl.w ld_pzero + bra.w ld_mzero + +smod_fpn: +srem_fpn: + clr.b FPSR_QBYTE(%a6) + mov.l %d0,-(%sp) + mov.b SRC_EX(%a0),%d1 # get src sign + mov.b DST_EX(%a1),%d0 # get dst sign + eor.b %d0,%d1 # get qbyte sign + andi.b &0x80,%d1 + mov.b %d1,FPSR_QBYTE(%a6) + cmpi.b DTAG(%a6),&DENORM + bne.b smod_nrm + lea DST(%a1),%a0 + mov.l (%sp)+,%d0 + bra t_resdnrm +smod_nrm: + fmov.l (%sp)+,%fpcr + fmov.x DST(%a1),%fp0 + tst.b DST_EX(%a1) + bmi.b smod_nrm_neg + rts + +smod_nrm_neg: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' code + rts + +######################################################################### + global srem_snorm + global srem_sdnrm +srem_sdnrm: +srem_snorm: + mov.b DTAG(%a6),%d1 + beq.l srem + cmpi.b %d1,&ZERO + beq.w srem_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l srem + bra.l dst_qnan + + global srem_szero +srem_szero: + mov.b DTAG(%a6),%d1 + beq.l t_operr + cmpi.b %d1,&ZERO + beq.l t_operr + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l t_operr + bra.l dst_qnan + + global srem_sinf +srem_sinf: + mov.b DTAG(%a6),%d1 + beq.w srem_fpn + cmpi.b %d1,&ZERO + beq.w srem_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l srem_fpn + bra.l dst_qnan + +######################################################################### + + global sscale_snorm + global sscale_sdnrm +sscale_snorm: +sscale_sdnrm: + mov.b DTAG(%a6),%d1 + beq.l sscale + cmpi.b %d1,&ZERO + beq.l dst_zero + cmpi.b %d1,&INF + beq.l dst_inf + cmpi.b %d1,&DENORM + beq.l sscale + bra.l dst_qnan + + global sscale_szero +sscale_szero: + mov.b DTAG(%a6),%d1 + beq.l sscale + cmpi.b %d1,&ZERO + beq.l dst_zero + cmpi.b %d1,&INF + beq.l dst_inf + cmpi.b %d1,&DENORM + beq.l sscale + bra.l dst_qnan + + global sscale_sinf +sscale_sinf: + mov.b DTAG(%a6),%d1 + beq.l t_operr + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l t_operr + +######################################################################## + + global sop_sqnan +sop_sqnan: + mov.b DTAG(%a6),%d1 + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l src_qnan + +######################################################################### +# norm(): normalize the mantissa of an extended precision input. the # +# input operand should not be normalized already. # +# # +# XDEF **************************************************************** # +# norm() # +# # +# XREF **************************************************************** # +# none # +# # +# INPUT *************************************************************** # +# a0 = pointer fp extended precision operand to normalize # +# # +# OUTPUT ************************************************************** # +# d0 = number of bit positions the mantissa was shifted # +# a0 = the input operand's mantissa is normalized; the exponent # +# is unchanged. # +# # +######################################################################### + global norm +norm: + mov.l %d2, -(%sp) # create some temp regs + mov.l %d3, -(%sp) + + mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) + mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) + + bfffo %d0{&0:&32}, %d2 # how many places to shift? + beq.b norm_lo # hi(man) is all zeroes! + +norm_hi: + lsl.l %d2, %d0 # left shift hi(man) + bfextu %d1{&0:%d2}, %d3 # extract lo bits + + or.l %d3, %d0 # create hi(man) + lsl.l %d2, %d1 # create lo(man) + + mov.l %d0, FTEMP_HI(%a0) # store new hi(man) + mov.l %d1, FTEMP_LO(%a0) # store new lo(man) + + mov.l %d2, %d0 # return shift amount + + mov.l (%sp)+, %d3 # restore temp regs + mov.l (%sp)+, %d2 + + rts + +norm_lo: + bfffo %d1{&0:&32}, %d2 # how many places to shift? + lsl.l %d2, %d1 # shift lo(man) + add.l &32, %d2 # add 32 to shft amount + + mov.l %d1, FTEMP_HI(%a0) # store hi(man) + clr.l FTEMP_LO(%a0) # lo(man) is now zero + + mov.l %d2, %d0 # return shift amount + + mov.l (%sp)+, %d3 # restore temp regs + mov.l (%sp)+, %d2 + + rts + +######################################################################### +# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # +# - returns corresponding optype tag # +# # +# XDEF **************************************************************** # +# unnorm_fix() # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa # +# # +# INPUT *************************************************************** # +# a0 = pointer to unnormalized extended precision number # +# # +# OUTPUT ************************************************************** # +# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # +# a0 = input operand has been converted to a norm, denorm, or # +# zero; both the exponent and mantissa are changed. # +# # +######################################################################### + + global unnorm_fix +unnorm_fix: + bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? + bne.b unnorm_shift # hi(man) is not all zeroes + +# +# hi(man) is all zeroes so see if any bits in lo(man) are set +# +unnorm_chk_lo: + bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? + beq.w unnorm_zero # yes + + add.w &32, %d0 # no; fix shift distance + +# +# d0 = # shifts needed for complete normalization +# +unnorm_shift: + clr.l %d1 # clear top word + mov.w FTEMP_EX(%a0), %d1 # extract exponent + and.w &0x7fff, %d1 # strip off sgn + + cmp.w %d0, %d1 # will denorm push exp < 0? + bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 + +# +# exponent would not go < 0. therefore, number stays normalized +# + sub.w %d0, %d1 # shift exponent value + mov.w FTEMP_EX(%a0), %d0 # load old exponent + and.w &0x8000, %d0 # save old sign + or.w %d0, %d1 # {sgn,new exp} + mov.w %d1, FTEMP_EX(%a0) # insert new exponent + + bsr.l norm # normalize UNNORM + + mov.b &NORM, %d0 # return new optype tag + rts + +# +# exponent would go < 0, so only denormalize until exp = 0 +# +unnorm_nrm_zero: + cmp.b %d1, &32 # is exp <= 32? + bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent + + bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) + mov.l %d0, FTEMP_HI(%a0) # save new hi(man) + + mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) + lsl.l %d1, %d0 # extract new lo(man) + mov.l %d0, FTEMP_LO(%a0) # save new lo(man) + + and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 + + mov.b &DENORM, %d0 # return new optype tag + rts + +# +# only mantissa bits set are in lo(man) +# +unnorm_nrm_zero_lrg: + sub.w &32, %d1 # adjust shft amt by 32 + + mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) + lsl.l %d1, %d0 # left shift lo(man) + + mov.l %d0, FTEMP_HI(%a0) # store new hi(man) + clr.l FTEMP_LO(%a0) # lo(man) = 0 + + and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 + + mov.b &DENORM, %d0 # return new optype tag + rts + +# +# whole mantissa is zero so this UNNORM is actually a zero +# +unnorm_zero: + and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero + + mov.b &ZERO, %d0 # fix optype tag + rts diff --git a/arch/m68k/ifpsp060/src/fpsp.S b/arch/m68k/ifpsp060/src/fpsp.S new file mode 100644 index 00000000000..3b597a9bbf4 --- /dev/null +++ b/arch/m68k/ifpsp060/src/fpsp.S @@ -0,0 +1,24785 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# +# freal.s: +# This file is appended to the top of the 060FPSP package +# and contains the entry points into the package. The user, in +# effect, branches to one of the branch table entries located +# after _060FPSP_TABLE. +# Also, subroutine stubs exist in this file (_fpsp_done for +# example) that are referenced by the FPSP package itself in order +# to call a given routine. The stub routine actually performs the +# callout. The FPSP code does a "bsr" to the stub routine. This +# extra layer of hierarchy adds a slight performance penalty but +# it makes the FPSP code easier to read and more mainatinable. +# + +set _off_bsun, 0x00 +set _off_snan, 0x04 +set _off_operr, 0x08 +set _off_ovfl, 0x0c +set _off_unfl, 0x10 +set _off_dz, 0x14 +set _off_inex, 0x18 +set _off_fline, 0x1c +set _off_fpu_dis, 0x20 +set _off_trap, 0x24 +set _off_trace, 0x28 +set _off_access, 0x2c +set _off_done, 0x30 + +set _off_imr, 0x40 +set _off_dmr, 0x44 +set _off_dmw, 0x48 +set _off_irw, 0x4c +set _off_irl, 0x50 +set _off_drb, 0x54 +set _off_drw, 0x58 +set _off_drl, 0x5c +set _off_dwb, 0x60 +set _off_dww, 0x64 +set _off_dwl, 0x68 + +_060FPSP_TABLE: + +############################################################### + +# Here's the table of ENTRY POINTS for those linking the package. + bra.l _fpsp_snan + short 0x0000 + bra.l _fpsp_operr + short 0x0000 + bra.l _fpsp_ovfl + short 0x0000 + bra.l _fpsp_unfl + short 0x0000 + bra.l _fpsp_dz + short 0x0000 + bra.l _fpsp_inex + short 0x0000 + bra.l _fpsp_fline + short 0x0000 + bra.l _fpsp_unsupp + short 0x0000 + bra.l _fpsp_effadd + short 0x0000 + + space 56 + +############################################################### + global _fpsp_done +_fpsp_done: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_ovfl +_real_ovfl: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_unfl +_real_unfl: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_inex +_real_inex: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_bsun +_real_bsun: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_operr +_real_operr: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_snan +_real_snan: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_dz +_real_dz: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_fline +_real_fline: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_fpu_disabled +_real_fpu_disabled: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_trap +_real_trap: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_trace +_real_trace: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_access +_real_access: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +####################################### + + global _imem_read +_imem_read: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read +_dmem_read: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write +_dmem_write: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _imem_read_word +_imem_read_word: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _imem_read_long +_imem_read_long: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_byte +_dmem_read_byte: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_word +_dmem_read_word: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_long +_dmem_read_long: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_byte +_dmem_write_byte: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_word +_dmem_write_word: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_long +_dmem_write_long: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +# +# This file contains a set of define statements for constants +# in order to promote readability within the corecode itself. +# + +set LOCAL_SIZE, 192 # stack frame size(bytes) +set LV, -LOCAL_SIZE # stack offset + +set EXC_SR, 0x4 # stack status register +set EXC_PC, 0x6 # stack pc +set EXC_VOFF, 0xa # stacked vector offset +set EXC_EA, 0xc # stacked <ea> + +set EXC_FP, 0x0 # frame pointer + +set EXC_AREGS, -68 # offset of all address regs +set EXC_DREGS, -100 # offset of all data regs +set EXC_FPREGS, -36 # offset of all fp regs + +set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 +set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 +set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 +set EXC_A5, EXC_AREGS+(5*4) +set EXC_A4, EXC_AREGS+(4*4) +set EXC_A3, EXC_AREGS+(3*4) +set EXC_A2, EXC_AREGS+(2*4) +set EXC_A1, EXC_AREGS+(1*4) +set EXC_A0, EXC_AREGS+(0*4) +set EXC_D7, EXC_DREGS+(7*4) +set EXC_D6, EXC_DREGS+(6*4) +set EXC_D5, EXC_DREGS+(5*4) +set EXC_D4, EXC_DREGS+(4*4) +set EXC_D3, EXC_DREGS+(3*4) +set EXC_D2, EXC_DREGS+(2*4) +set EXC_D1, EXC_DREGS+(1*4) +set EXC_D0, EXC_DREGS+(0*4) + +set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 +set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 +set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) + +set FP_SCR1, LV+80 # fp scratch 1 +set FP_SCR1_EX, FP_SCR1+0 +set FP_SCR1_SGN, FP_SCR1+2 +set FP_SCR1_HI, FP_SCR1+4 +set FP_SCR1_LO, FP_SCR1+8 + +set FP_SCR0, LV+68 # fp scratch 0 +set FP_SCR0_EX, FP_SCR0+0 +set FP_SCR0_SGN, FP_SCR0+2 +set FP_SCR0_HI, FP_SCR0+4 +set FP_SCR0_LO, FP_SCR0+8 + +set FP_DST, LV+56 # fp destination operand +set FP_DST_EX, FP_DST+0 +set FP_DST_SGN, FP_DST+2 +set FP_DST_HI, FP_DST+4 +set FP_DST_LO, FP_DST+8 + +set FP_SRC, LV+44 # fp source operand +set FP_SRC_EX, FP_SRC+0 +set FP_SRC_SGN, FP_SRC+2 +set FP_SRC_HI, FP_SRC+4 +set FP_SRC_LO, FP_SRC+8 + +set USER_FPIAR, LV+40 # FP instr address register + +set USER_FPSR, LV+36 # FP status register +set FPSR_CC, USER_FPSR+0 # FPSR condition codes +set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte +set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte +set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte + +set USER_FPCR, LV+32 # FP control register +set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable +set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control + +set L_SCR3, LV+28 # integer scratch 3 +set L_SCR2, LV+24 # integer scratch 2 +set L_SCR1, LV+20 # integer scratch 1 + +set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) + +set EXC_TEMP2, LV+24 # temporary space +set EXC_TEMP, LV+16 # temporary space + +set DTAG, LV+15 # destination operand type +set STAG, LV+14 # source operand type + +set SPCOND_FLG, LV+10 # flag: special case (see below) + +set EXC_CC, LV+8 # saved condition codes +set EXC_EXTWPTR, LV+4 # saved current PC (active) +set EXC_EXTWORD, LV+2 # saved extension word +set EXC_CMDREG, LV+2 # saved extension word +set EXC_OPWORD, LV+0 # saved operation word + +################################ + +# Helpful macros + +set FTEMP, 0 # offsets within an +set FTEMP_EX, 0 # extended precision +set FTEMP_SGN, 2 # value saved in memory. +set FTEMP_HI, 4 +set FTEMP_LO, 8 +set FTEMP_GRS, 12 + +set LOCAL, 0 # offsets within an +set LOCAL_EX, 0 # extended precision +set LOCAL_SGN, 2 # value saved in memory. +set LOCAL_HI, 4 +set LOCAL_LO, 8 +set LOCAL_GRS, 12 + +set DST, 0 # offsets within an +set DST_EX, 0 # extended precision +set DST_HI, 4 # value saved in memory. +set DST_LO, 8 + +set SRC, 0 # offsets within an +set SRC_EX, 0 # extended precision +set SRC_HI, 4 # value saved in memory. +set SRC_LO, 8 + +set SGL_LO, 0x3f81 # min sgl prec exponent +set SGL_HI, 0x407e # max sgl prec exponent +set DBL_LO, 0x3c01 # min dbl prec exponent +set DBL_HI, 0x43fe # max dbl prec exponent +set EXT_LO, 0x0 # min ext prec exponent +set EXT_HI, 0x7ffe # max ext prec exponent + +set EXT_BIAS, 0x3fff # extended precision bias +set SGL_BIAS, 0x007f # single precision bias +set DBL_BIAS, 0x03ff # double precision bias + +set NORM, 0x00 # operand type for STAG/DTAG +set ZERO, 0x01 # operand type for STAG/DTAG +set INF, 0x02 # operand type for STAG/DTAG +set QNAN, 0x03 # operand type for STAG/DTAG +set DENORM, 0x04 # operand type for STAG/DTAG +set SNAN, 0x05 # operand type for STAG/DTAG +set UNNORM, 0x06 # operand type for STAG/DTAG + +################## +# FPSR/FPCR bits # +################## +set neg_bit, 0x3 # negative result +set z_bit, 0x2 # zero result +set inf_bit, 0x1 # infinite result +set nan_bit, 0x0 # NAN result + +set q_sn_bit, 0x7 # sign bit of quotient byte + +set bsun_bit, 7 # branch on unordered +set snan_bit, 6 # signalling NAN +set operr_bit, 5 # operand error +set ovfl_bit, 4 # overflow +set unfl_bit, 3 # underflow +set dz_bit, 2 # divide by zero +set inex2_bit, 1 # inexact result 2 +set inex1_bit, 0 # inexact result 1 + +set aiop_bit, 7 # accrued inexact operation bit +set aovfl_bit, 6 # accrued overflow bit +set aunfl_bit, 5 # accrued underflow bit +set adz_bit, 4 # accrued dz bit +set ainex_bit, 3 # accrued inexact bit + +############################# +# FPSR individual bit masks # +############################# +set neg_mask, 0x08000000 # negative bit mask (lw) +set inf_mask, 0x02000000 # infinity bit mask (lw) +set z_mask, 0x04000000 # zero bit mask (lw) +set nan_mask, 0x01000000 # nan bit mask (lw) + +set neg_bmask, 0x08 # negative bit mask (byte) +set inf_bmask, 0x02 # infinity bit mask (byte) +set z_bmask, 0x04 # zero bit mask (byte) +set nan_bmask, 0x01 # nan bit mask (byte) + +set bsun_mask, 0x00008000 # bsun exception mask +set snan_mask, 0x00004000 # snan exception mask +set operr_mask, 0x00002000 # operr exception mask +set ovfl_mask, 0x00001000 # overflow exception mask +set unfl_mask, 0x00000800 # underflow exception mask +set dz_mask, 0x00000400 # dz exception mask +set inex2_mask, 0x00000200 # inex2 exception mask +set inex1_mask, 0x00000100 # inex1 exception mask + +set aiop_mask, 0x00000080 # accrued illegal operation +set aovfl_mask, 0x00000040 # accrued overflow +set aunfl_mask, 0x00000020 # accrued underflow +set adz_mask, 0x00000010 # accrued divide by zero +set ainex_mask, 0x00000008 # accrued inexact + +###################################### +# FPSR combinations used in the FPSP # +###################################### +set dzinf_mask, inf_mask+dz_mask+adz_mask +set opnan_mask, nan_mask+operr_mask+aiop_mask +set nzi_mask, 0x01ffffff #clears N, Z, and I +set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask +set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask +set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask +set inx1a_mask, inex1_mask+ainex_mask +set inx2a_mask, inex2_mask+ainex_mask +set snaniop_mask, nan_mask+snan_mask+aiop_mask +set snaniop2_mask, snan_mask+aiop_mask +set naniop_mask, nan_mask+aiop_mask +set neginf_mask, neg_mask+inf_mask +set infaiop_mask, inf_mask+aiop_mask +set negz_mask, neg_mask+z_mask +set opaop_mask, operr_mask+aiop_mask +set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask +set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask + +######### +# misc. # +######### +set rnd_stky_bit, 29 # stky bit pos in longword + +set sign_bit, 0x7 # sign bit +set signan_bit, 0x6 # signalling nan bit + +set sgl_thresh, 0x3f81 # minimum sgl exponent +set dbl_thresh, 0x3c01 # minimum dbl exponent + +set x_mode, 0x0 # extended precision +set s_mode, 0x4 # single precision +set d_mode, 0x8 # double precision + +set rn_mode, 0x0 # round-to-nearest +set rz_mode, 0x1 # round-to-zero +set rm_mode, 0x2 # round-tp-minus-infinity +set rp_mode, 0x3 # round-to-plus-infinity + +set mantissalen, 64 # length of mantissa in bits + +set BYTE, 1 # len(byte) == 1 byte +set WORD, 2 # len(word) == 2 bytes +set LONG, 4 # len(longword) == 2 bytes + +set BSUN_VEC, 0xc0 # bsun vector offset +set INEX_VEC, 0xc4 # inexact vector offset +set DZ_VEC, 0xc8 # dz vector offset +set UNFL_VEC, 0xcc # unfl vector offset +set OPERR_VEC, 0xd0 # operr vector offset +set OVFL_VEC, 0xd4 # ovfl vector offset +set SNAN_VEC, 0xd8 # snan vector offset + +########################### +# SPecial CONDition FLaGs # +########################### +set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception +set fbsun_flg, 0x02 # flag bit: bsun exception +set mia7_flg, 0x04 # flag bit: (a7)+ <ea> +set mda7_flg, 0x08 # flag bit: -(a7) <ea> +set fmovm_flg, 0x40 # flag bit: fmovm instruction +set immed_flg, 0x80 # flag bit: &<data> <ea> + +set ftrapcc_bit, 0x0 +set fbsun_bit, 0x1 +set mia7_bit, 0x2 +set mda7_bit, 0x3 +set immed_bit, 0x7 + +################################## +# TRANSCENDENTAL "LAST-OP" FLAGS # +################################## +set FMUL_OP, 0x0 # fmul instr performed last +set FDIV_OP, 0x1 # fdiv performed last +set FADD_OP, 0x2 # fadd performed last +set FMOV_OP, 0x3 # fmov performed last + +############# +# CONSTANTS # +############# +T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD +T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL + +PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 +PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 + +TWOBYPI: + long 0x3FE45F30,0x6DC9C883 + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Overflow exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # +# _real_ovfl() - "callout" for Overflow exception enabled code # +# _real_inex() - "callout" for Inexact exception enabled code # +# _real_trace() - "callout" for Trace exception code # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Ovfl exception stack frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# Overflow Exception enabled: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# Overflow Exception disabled: # +# - The system stack is unchanged # +# - The "exception present" flag in the fsave frame is cleared # +# # +# ALGORITHM *********************************************************** # +# On the 060, if an FP overflow is present as the result of any # +# instruction, the 060 will take an overflow exception whether the # +# exception is enabled or disabled in the FPCR. For the disabled case, # +# This handler emulates the instruction to determine what the correct # +# default result should be for the operation. This default result is # +# then stored in either the FP regfile, data regfile, or memory. # +# Finally, the handler exits through the "callout" _fpsp_done() # +# denoting that no exceptional conditions exist within the machine. # +# If the exception is enabled, then this handler must create the # +# exceptional operand and plave it in the fsave state frame, and store # +# the default result (only if the instruction is opclass 3). For # +# exceptions enabled, this handler must exit through the "callout" # +# _real_ovfl() so that the operating system enabled overflow handler # +# can handle this case. # +# Two other conditions exist. First, if overflow was disabled # +# but the inexact exception was enabled, this handler must exit # +# through the "callout" _real_inex() regardless of whether the result # +# was inexact. # +# Also, in the case of an opclass three instruction where # +# overflow was disabled and the trace exception was enabled, this # +# handler must exit through the "callout" _real_trace(). # +# # +######################################################################### + + global _fpsp_ovfl +_fpsp_ovfl: + +#$# sub.l &24,%sp # make room for src/dst + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? + bne.w fovfl_out + + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +# since, I believe, only NORMs and DENORMs can come through here, +# maybe we can avoid the subroutine call. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # maybe NORM,DENORM + +# bit five of the fp extension word separates the monadic and dyadic operations +# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos +# will never take this exception. + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b fovfl_extract # monadic + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fovfl_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +fovfl_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +fovfl_extract: + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) +#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) +#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) +#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + +# maybe we can make these entry points ONLY the OVFL entry points of each routine. + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# the operation has been emulated. the result is in fp0. +# the EXOP, if an exception occurred, is in fp1. +# we must save the default result regardless of whether +# traps are enabled or disabled. + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l store_fpreg + +# the exceptional possibilities we have left ourselves with are ONLY overflow +# and inexact. and, the inexact is such that overflow occurred and was disabled +# but inexact was enabled. + btst &ovfl_bit,FPCR_ENABLE(%a6) + bne.b fovfl_ovfl_on + + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.b fovfl_inex_on + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + bra.l _fpsp_done + +# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP +# in fp1. now, simply jump to _real_ovfl()! +fovfl_ovfl_on: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack + + mov.w &0xe005,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_ovfl + +# overflow occurred but is disabled. meanwhile, inexact is enabled. therefore, +# we must jump to real_inex(). +fovfl_inex_on: + + fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack + + mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_inex + +######################################################################## +fovfl_out: + + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) + +# the src operand is definitely a NORM(!), so tag it as such + mov.b &NORM,STAG(%a6) # set src optype tag + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + bsr.l fout + + btst &ovfl_bit,FPCR_ENABLE(%a6) + bne.w fovfl_ovfl_on + + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.w fovfl_inex_on + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + + btst &0x7,(%sp) # is trace on? + beq.l _fpsp_done # no + + fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 + bra.l _real_trace + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Underflow exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # +# _real_ovfl() - "callout" for Overflow exception enabled code # +# _real_inex() - "callout" for Inexact exception enabled code # +# _real_trace() - "callout" for Trace exception code # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Unfl exception stack frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# Underflow Exception enabled: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# Underflow Exception disabled: # +# - The system stack is unchanged # +# - The "exception present" flag in the fsave frame is cleared # +# # +# ALGORITHM *********************************************************** # +# On the 060, if an FP underflow is present as the result of any # +# instruction, the 060 will take an underflow exception whether the # +# exception is enabled or disabled in the FPCR. For the disabled case, # +# This handler emulates the instruction to determine what the correct # +# default result should be for the operation. This default result is # +# then stored in either the FP regfile, data regfile, or memory. # +# Finally, the handler exits through the "callout" _fpsp_done() # +# denoting that no exceptional conditions exist within the machine. # +# If the exception is enabled, then this handler must create the # +# exceptional operand and plave it in the fsave state frame, and store # +# the default result (only if the instruction is opclass 3). For # +# exceptions enabled, this handler must exit through the "callout" # +# _real_unfl() so that the operating system enabled overflow handler # +# can handle this case. # +# Two other conditions exist. First, if underflow was disabled # +# but the inexact exception was enabled and the result was inexact, # +# this handler must exit through the "callout" _real_inex(). # +# was inexact. # +# Also, in the case of an opclass three instruction where # +# underflow was disabled and the trace exception was enabled, this # +# handler must exit through the "callout" _real_trace(). # +# # +######################################################################### + + global _fpsp_unfl +_fpsp_unfl: + +#$# sub.l &24,%sp # make room for src/dst + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? + bne.w funfl_out + + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # maybe NORM,DENORM + +# bit five of the fp ext word separates the monadic and dyadic operations +# that can pass through fpsp_unfl(). remember that fcmp, and ftst +# will never take this exception. + btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? + beq.b funfl_extract # monadic + +# now, what's left that's not dyadic is fsincos. we can distinguish it +# from all dyadics by the '0110xxx pattern + btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? + bne.b funfl_extract # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b funfl_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +funfl_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +funfl_extract: + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) +#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) +#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) +#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + andi.l &0x00ff01ff,USER_FPSR(%a6) + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + +# maybe we can make these entry points ONLY the OVFL entry points of each routine. + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l store_fpreg + +# The `060 FPU multiplier hardware is such that if the result of a +# multiply operation is the smallest possible normalized number +# (0x00000000_80000000_00000000), then the machine will take an +# underflow exception. Since this is incorrect, we need to check +# if our emulation, after re-doing the operation, decided that +# no underflow was called for. We do these checks only in +# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this +# special case will simply exit gracefully with the correct result. + +# the exceptional possibilities we have left ourselves with are ONLY overflow +# and inexact. and, the inexact is such that overflow occurred and was disabled +# but inexact was enabled. + btst &unfl_bit,FPCR_ENABLE(%a6) + bne.b funfl_unfl_on + +funfl_chkinex: + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.b funfl_inex_on + +funfl_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + bra.l _fpsp_done + +# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP +# in fp1 (don't forget to save fp0). what to do now? +# well, we simply have to get to go to _real_unfl()! +funfl_unfl_on: + +# The `060 FPU multiplier hardware is such that if the result of a +# multiply operation is the smallest possible normalized number +# (0x00000000_80000000_00000000), then the machine will take an +# underflow exception. Since this is incorrect, we check here to see +# if our emulation, after re-doing the operation, decided that +# no underflow was called for. + btst &unfl_bit,FPSR_EXCEPT(%a6) + beq.w funfl_chkinex + +funfl_unfl_on2: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack + + mov.w &0xe003,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_unfl + +# undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore, +# we must jump to real_inex(). +funfl_inex_on: + +# The `060 FPU multiplier hardware is such that if the result of a +# multiply operation is the smallest possible normalized number +# (0x00000000_80000000_00000000), then the machine will take an +# underflow exception. +# But, whether bogus or not, if inexact is enabled AND it occurred, +# then we have to branch to real_inex. + + btst &inex2_bit,FPSR_EXCEPT(%a6) + beq.w funfl_exit + +funfl_inex_on2: + + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack + + mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_inex + +####################################################################### +funfl_out: + + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) + +# the src operand is definitely a NORM(!), so tag it as such + mov.b &NORM,STAG(%a6) # set src optype tag + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + bsr.l fout + + btst &unfl_bit,FPCR_ENABLE(%a6) + bne.w funfl_unfl_on2 + + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.w funfl_inex_on2 + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + + btst &0x7,(%sp) # is trace on? + beq.l _fpsp_done # no + + fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 + bra.l _real_trace + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # +# Data Type" exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Unimplemented Data Type exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_{word,long}() - read instruction word/longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# load_fpn1() - load src operand from FP regfile # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _real_inex() - "callout" to operating system inexact handler # +# _fpsp_done() - "callout" for exit; work all done # +# _real_trace() - "callout" for Trace enabled exception # +# funimp_skew() - adjust fsave src ops to "incorrect" value # +# _real_snan() - "callout" for SNAN exception # +# _real_operr() - "callout" for OPERR exception # +# _real_ovfl() - "callout" for OVFL exception # +# _real_unfl() - "callout" for UNFL exception # +# get_packed() - fetch packed operand from memory # +# # +# INPUT *************************************************************** # +# - The system stack contains the "Unimp Data Type" stk frame # +# - The fsave frame contains the ssrc op (for UNNORM/DENORM) # +# # +# OUTPUT ************************************************************** # +# If Inexact exception (opclass 3): # +# - The system stack is changed to an Inexact exception stk frame # +# If SNAN exception (opclass 3): # +# - The system stack is changed to an SNAN exception stk frame # +# If OPERR exception (opclass 3): # +# - The system stack is changed to an OPERR exception stk frame # +# If OVFL exception (opclass 3): # +# - The system stack is changed to an OVFL exception stk frame # +# If UNFL exception (opclass 3): # +# - The system stack is changed to an UNFL exception stack frame # +# If Trace exception enabled: # +# - The system stack is changed to a Trace exception stack frame # +# Else: (normal case) # +# - Correct result has been stored as appropriate # +# # +# ALGORITHM *********************************************************** # +# Two main instruction types can enter here: (1) DENORM or UNNORM # +# unimplemented data types. These can be either opclass 0,2 or 3 # +# instructions, and (2) PACKED unimplemented data format instructions # +# also of opclasses 0,2, or 3. # +# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # +# operand from the fsave state frame and the dst operand (if dyadic) # +# from the FP register file. The instruction is then emulated by # +# choosing an emulation routine from a table of routines indexed by # +# instruction type. Once the instruction has been emulated and result # +# saved, then we check to see if any enabled exceptions resulted from # +# instruction emulation. If none, then we exit through the "callout" # +# _fpsp_done(). If there is an enabled FP exception, then we insert # +# this exception into the FPU in the fsave state frame and then exit # +# through _fpsp_done(). # +# PACKED opclass 0 and 2 is similar in how the instruction is # +# emulated and exceptions handled. The differences occur in how the # +# handler loads the packed op (by calling get_packed() routine) and # +# by the fact that a Trace exception could be pending for PACKED ops. # +# If a Trace exception is pending, then the current exception stack # +# frame is changed to a Trace exception stack frame and an exit is # +# made through _real_trace(). # +# For UNNORM/DENORM opclass 3, the actual move out to memory is # +# performed by calling the routine fout(). If no exception should occur # +# as the result of emulation, then an exit either occurs through # +# _fpsp_done() or through _real_trace() if a Trace exception is pending # +# (a Trace stack frame must be created here, too). If an FP exception # +# should occur, then we must create an exception stack frame of that # +# type and jump to either _real_snan(), _real_operr(), _real_inex(), # +# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # +# emulation is performed in a similar manner. # +# # +######################################################################### + +# +# (1) DENORM and UNNORM (unimplemented) data types: +# +# post-instruction +# ***************** +# * EA * +# pre-instruction * * +# ***************** ***************** +# * 0x0 * 0x0dc * * 0x3 * 0x0dc * +# ***************** ***************** +# * Next * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# +# (2) PACKED format (unsupported) opclasses two and three: +# ***************** +# * EA * +# * * +# ***************** +# * 0x2 * 0x0dc * +# ***************** +# * Next * +# * PC * +# ***************** +# * SR * +# ***************** +# + global _fpsp_unsupp +_fpsp_unsupp: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # save fp state + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + + btst &0x5,EXC_SR(%a6) # user or supervisor mode? + bne.b fu_s +fu_u: + mov.l %usp,%a0 # fetch user stack pointer + mov.l %a0,EXC_A7(%a6) # save on stack + bra.b fu_cont +# if the exception is an opclass zero or two unimplemented data type +# exception, then the a7' calculated here is wrong since it doesn't +# stack an ea. however, we don't need an a7' for this case anyways. +fu_s: + lea 0x4+EXC_EA(%a6),%a0 # load old a7' + mov.l %a0,EXC_A7(%a6) # save on stack + +fu_cont: + +# the FPIAR holds the "current PC" of the faulting instruction +# the FPIAR should be set correctly for ALL exceptions passing through +# this point. + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD + +############################ + + clr.b SPCOND_FLG(%a6) # clear special condition flag + +# Separate opclass three (fpn-to-mem) ops since they have a different +# stack frame and protocol. + btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? + bne.w fu_out # yes + +# Separate packed opclass two instructions. + bfextu EXC_CMDREG(%a6){&0:&6},%d0 + cmpi.b %d0,&0x13 + beq.w fu_in_pack + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field + andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + +# Opclass two w/ memory-to-fpn operation will have an incorrect extended +# precision format if the src format was single or double and the +# source data type was an INF, NAN, DENORM, or UNNORM + lea FP_SRC(%a6),%a0 # pass ptr to input + bsr.l fix_skewed_ops + +# we don't know whether the src operand or the dst operand (or both) is the +# UNNORM or DENORM. call the function that tags the operand type. if the +# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2 # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO + +fu_op2: + mov.b %d0,STAG(%a6) # save src optype tag + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + +# bit five of the fp extension word separates the monadic and dyadic operations +# at this point + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b fu_extract # monadic + cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? + beq.b fu_extract # yes, so it's monadic, too + + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +fu_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +fu_extract: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# +# Exceptions in order of precedence: +# BSUN : none +# SNAN : all dyadic ops +# OPERR : fsqrt(-NORM) +# OVFL : all except ftst,fcmp +# UNFL : all except ftst,fcmp +# DZ : fdiv +# INEX2 : all except ftst,fcmp +# INEX1 : none (packed doesn't go through here) +# + +# we determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set + bne.b fu_in_ena # some are enabled + +fu_in_cont: +# fcmp and ftst do not store any result. + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension + andi.b &0x38,%d0 # extract bits 3-5 + cmpi.b %d0,&0x38 # is instr fcmp or ftst? + beq.b fu_in_exit # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l store_fpreg # store the result + +fu_in_exit: + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + bra.l _fpsp_done + +fu_in_ena: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b fu_in_exc # there is at least one set + +# +# No exceptions occurred that were also enabled. Now: +# +# if (OVFL && ovfl_disabled && inexact_enabled) { +# branch to _real_inex() (even if the result was exact!); +# } else { +# save the result in the proper fp reg (unless the op is fcmp or ftst); +# return; +# } +# + btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? + beq.b fu_in_cont # no + +fu_in_ovflchk: + btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? + beq.b fu_in_cont # no + bra.w fu_in_exc_ovfl # go insert overflow frame + +# +# An exception occurred and that exception was enabled: +# +# shift enabled exception field into lo byte of d0; +# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || +# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { +# /* +# * this is the case where we must call _real_inex() now or else +# * there will be no other way to pass it the exceptional operand +# */ +# call _real_inex(); +# } else { +# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; +# } +# +fu_in_exc: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? (6) + bne.b fu_in_exc_exit # no + +# the enabled exception was inexact + btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? + bne.w fu_in_exc_unfl # yes + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? + bne.w fu_in_exc_ovfl # yes + +# here, we insert the correct fsave status value into the fsave frame for the +# corresponding exception. the operand in the fsave frame should be the original +# src operand. +fu_in_exc_exit: + mov.l %d0,-(%sp) # save d0 + bsr.l funimp_skew # skew sgl or dbl inputs + mov.l (%sp)+,%d0 # restore d0 + + mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore src op + + unlk %a6 + + bra.l _fpsp_done + +tbl_except: + short 0xe000,0xe006,0xe004,0xe005 + short 0xe003,0xe002,0xe001,0xe001 + +fu_in_exc_unfl: + mov.w &0x4,%d0 + bra.b fu_in_exc_exit +fu_in_exc_ovfl: + mov.w &0x03,%d0 + bra.b fu_in_exc_exit + +# If the input operand to this operation was opclass two and a single +# or double precision denorm, inf, or nan, the operand needs to be +# "corrected" in order to have the proper equivalent extended precision +# number. + global fix_skewed_ops +fix_skewed_ops: + bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt + cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? + beq.b fso_sgl # yes + cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? + beq.b fso_dbl # yes + rts # no + +fso_sgl: + mov.w LOCAL_EX(%a0),%d0 # fetch src exponent + andi.w &0x7fff,%d0 # strip sign + cmpi.w %d0,&0x3f80 # is |exp| == $3f80? + beq.b fso_sgl_dnrm_zero # yes + cmpi.w %d0,&0x407f # no; is |exp| == $407f? + beq.b fso_infnan # yes + rts # no + +fso_sgl_dnrm_zero: + andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit + beq.b fso_zero # it's a skewed zero +fso_sgl_dnrm: +# here, we count on norm not to alter a0... + bsr.l norm # normalize mantissa + neg.w %d0 # -shft amt + addi.w &0x3f81,%d0 # adjust new exponent + andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent + or.w %d0,LOCAL_EX(%a0) # insert new exponent + rts + +fso_zero: + andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent + rts + +fso_infnan: + andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit + ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff + rts + +fso_dbl: + mov.w LOCAL_EX(%a0),%d0 # fetch src exponent + andi.w &0x7fff,%d0 # strip sign + cmpi.w %d0,&0x3c00 # is |exp| == $3c00? + beq.b fso_dbl_dnrm_zero # yes + cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? + beq.b fso_infnan # yes + rts # no + +fso_dbl_dnrm_zero: + andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit + bne.b fso_dbl_dnrm # it's a skewed denorm + tst.l LOCAL_LO(%a0) # is it a zero? + beq.b fso_zero # yes +fso_dbl_dnrm: +# here, we count on norm not to alter a0... + bsr.l norm # normalize mantissa + neg.w %d0 # -shft amt + addi.w &0x3c01,%d0 # adjust new exponent + andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent + or.w %d0,LOCAL_EX(%a0) # insert new exponent + rts + +################################################################# + +# fmove out took an unimplemented data type exception. +# the src operand is in FP_SRC. Call _fout() to write out the result and +# to determine which exceptions, if any, to take. +fu_out: + +# Separate packed move outs from the UNNORM and DENORM move outs. + bfextu EXC_CMDREG(%a6){&3:&3},%d0 + cmpi.b %d0,&0x3 + beq.w fu_out_pack + cmpi.b %d0,&0x7 + beq.w fu_out_pack + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field. +# fmove out doesn't affect ccodes. + and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + +# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine +# call here. just figure out what it is... + mov.w FP_SRC_EX(%a6),%d0 # get exponent + andi.w &0x7fff,%d0 # strip sign + beq.b fu_out_denorm # it's a DENORM + + lea FP_SRC(%a6),%a0 + bsr.l unnorm_fix # yes; fix it + + mov.b %d0,STAG(%a6) + + bra.b fu_out_cont +fu_out_denorm: + mov.b &DENORM,STAG(%a6) +fu_out_cont: + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + mov.l (%a6),EXC_A6(%a6) # in case a6 changes + bsr.l fout # call fmove out routine + +# Exceptions in order of precedence: +# BSUN : none +# SNAN : none +# OPERR : fmove.{b,w,l} out of large UNNORM +# OVFL : fmove.{s,d} +# UNFL : fmove.{s,d,x} +# DZ : none +# INEX2 : all +# INEX1 : none (packed doesn't travel through here) + +# determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w fu_out_ena # some are enabled + +fu_out_done: + + mov.l EXC_A6(%a6),(%a6) # in case a6 changed + +# on extended precision opclass three instructions using pre-decrement or +# post-increment addressing mode, the address register is not updated. is the +# address register was the stack pointer used from user mode, then let's update +# it here. if it was used from supervisor mode, then we have to handle this +# as a special case. + btst &0x5,EXC_SR(%a6) + bne.b fu_out_done_s + + mov.l EXC_A7(%a6),%a0 # restore a7 + mov.l %a0,%usp + +fu_out_done_cont: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + btst &0x7,(%sp) # is trace on? + bne.b fu_out_trace # yes + + bra.l _fpsp_done + +# is the ea mode pre-decrement of the stack pointer from supervisor mode? +# ("fmov.x fpm,-(a7)") if so, +fu_out_done_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.b fu_out_done_cont + +# the extended precision result is still in fp0. but, we need to save it +# somewhere on the stack until we can copy it to its final resting place. +# here, we're counting on the top of the stack to be the old place-holders +# for fp0/fp1 which have already been restored. that way, we can write +# over those destinations with the shifted stack frame. + fmovm.x &0x80,FP_SRC(%a6) # put answer on stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + +# now, copy the result to the proper place on the stack + mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) + mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) + mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + btst &0x7,(%sp) + bne.b fu_out_trace + + bra.l _fpsp_done + +fu_out_ena: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b fu_out_exc # there is at least one set + +# no exceptions were set. +# if a disabled overflow occurred and inexact was enabled but the result +# was exact, then a branch to _real_inex() is made. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? + beq.w fu_out_done # no + +fu_out_ovflchk: + btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? + beq.w fu_out_done # no + bra.w fu_inex # yes + +# +# The fp move out that took the "Unimplemented Data Type" exception was +# being traced. Since the stack frames are similar, get the "current" PC +# from FPIAR and put it in the trace stack frame then jump to _real_trace(). +# +# UNSUPP FRAME TRACE FRAME +# ***************** ***************** +# * EA * * Current * +# * * * PC * +# ***************** ***************** +# * 0x3 * 0x0dc * * 0x2 * 0x024 * +# ***************** ***************** +# * Next * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# +fu_out_trace: + mov.w &0x2024,0x6(%sp) + fmov.l %fpiar,0x8(%sp) + bra.l _real_trace + +# an exception occurred and that exception was enabled. +fu_out_exc: + subi.l &24,%d0 # fix offset to be 0-8 + +# we don't mess with the existing fsave frame. just re-insert it and +# jump to the "_real_{}()" handler... + mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 + jmp (tbl_fu_out.b,%pc,%d0.w*1) + + swbeg &0x8 +tbl_fu_out: + short tbl_fu_out - tbl_fu_out # BSUN can't happen + short tbl_fu_out - tbl_fu_out # SNAN can't happen + short fu_operr - tbl_fu_out # OPERR + short fu_ovfl - tbl_fu_out # OVFL + short fu_unfl - tbl_fu_out # UNFL + short tbl_fu_out - tbl_fu_out # DZ can't happen + short fu_inex - tbl_fu_out # INEX2 + short tbl_fu_out - tbl_fu_out # INEX1 won't make it here + +# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just +# frestore it. +fu_snan: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 + mov.w &0xe006,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) + + unlk %a6 + + + bra.l _real_snan + +fu_operr: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 + mov.w &0xe004,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) + + unlk %a6 + + + bra.l _real_operr + +fu_ovfl: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 + mov.w &0xe005,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) # restore EXOP + + unlk %a6 + + bra.l _real_ovfl + +# underflow can happen for extended precision. extended precision opclass +# three instruction exceptions don't update the stack pointer. so, if the +# exception occurred from user mode, then simply update a7 and exit normally. +# if the exception occurred from supervisor mode, check if +fu_unfl: + mov.l EXC_A6(%a6),(%a6) # restore a6 + + btst &0x5,EXC_SR(%a6) + bne.w fu_unfl_s + + mov.l EXC_A7(%a6),%a0 # restore a7 whether we need + mov.l %a0,%usp # to or not... + +fu_unfl_cont: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc + mov.w &0xe003,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) # restore EXOP + + unlk %a6 + + bra.l _real_unfl + +fu_unfl_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? + bne.b fu_unfl_cont + +# the extended precision result is still in fp0. but, we need to save it +# somewhere on the stack until we can copy it to its final resting place +# (where the exc frame is currently). make sure it's not at the top of the +# frame or it will get overwritten when the exc stack frame is shifted "down". + fmovm.x &0x80,FP_SRC(%a6) # put answer on stack + fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc + mov.w &0xe003,2+FP_DST(%a6) + + frestore FP_DST(%a6) # restore EXOP + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, copy the result to the proper place on the stack + mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) + mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) + mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + bra.l _real_unfl + +# fmove in and out enter here. +fu_inex: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) # restore EXOP + + unlk %a6 + + + bra.l _real_inex + +######################################################################### +######################################################################### +fu_in_pack: + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field + andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + bsr.l get_packed # fetch packed src operand + + lea FP_SRC(%a6),%a0 # pass ptr to src + bsr.l set_tag_x # set src optype tag + + mov.b %d0,STAG(%a6) # save src optype tag + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + +# bit five of the fp extension word separates the monadic and dyadic operations +# at this point + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b fu_extract_p # monadic + cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? + beq.b fu_extract_p # yes, so it's monadic, too + + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2_done_p # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +fu_op2_done_p: + mov.b %d0,DTAG(%a6) # save dst optype tag + +fu_extract_p: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# +# Exceptions in order of precedence: +# BSUN : none +# SNAN : all dyadic ops +# OPERR : fsqrt(-NORM) +# OVFL : all except ftst,fcmp +# UNFL : all except ftst,fcmp +# DZ : fdiv +# INEX2 : all except ftst,fcmp +# INEX1 : all +# + +# we determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w fu_in_ena_p # some are enabled + +fu_in_cont_p: +# fcmp and ftst do not store any result. + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension + andi.b &0x38,%d0 # extract bits 3-5 + cmpi.b %d0,&0x38 # is instr fcmp or ftst? + beq.b fu_in_exit_p # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l store_fpreg # store the result + +fu_in_exit_p: + + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.w fu_in_exit_s_p # supervisor + + mov.l EXC_A7(%a6),%a0 # update user a7 + mov.l %a0,%usp + +fu_in_exit_cont_p: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel stack frame + + btst &0x7,(%sp) # is trace on? + bne.w fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +# the exception occurred in supervisor mode. check to see if the +# addressing mode was (a7)+. if so, we'll need to shift the +# stack frame "up". +fu_in_exit_s_p: + btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ + beq.b fu_in_exit_cont_p # no + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel stack frame + +# shift the stack frame "up". we don't really care about the <ea> field. + mov.l 0x4(%sp),0x10(%sp) + mov.l 0x0(%sp),0xc(%sp) + add.l &0xc,%sp + + btst &0x7,(%sp) # is trace on? + bne.w fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +fu_in_ena_p: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b fu_in_exc_p # at least one was set + +# +# No exceptions occurred that were also enabled. Now: +# +# if (OVFL && ovfl_disabled && inexact_enabled) { +# branch to _real_inex() (even if the result was exact!); +# } else { +# save the result in the proper fp reg (unless the op is fcmp or ftst); +# return; +# } +# + btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? + beq.w fu_in_cont_p # no + +fu_in_ovflchk_p: + btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? + beq.w fu_in_cont_p # no + bra.w fu_in_exc_ovfl_p # do _real_inex() now + +# +# An exception occurred and that exception was enabled: +# +# shift enabled exception field into lo byte of d0; +# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || +# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { +# /* +# * this is the case where we must call _real_inex() now or else +# * there will be no other way to pass it the exceptional operand +# */ +# call _real_inex(); +# } else { +# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; +# } +# +fu_in_exc_p: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) + blt.b fu_in_exc_exit_p # no + +# the enabled exception was inexact + btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? + bne.w fu_in_exc_unfl_p # yes + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? + bne.w fu_in_exc_ovfl_p # yes + +# here, we insert the correct fsave status value into the fsave frame for the +# corresponding exception. the operand in the fsave frame should be the original +# src operand. +# as a reminder for future predicted pain and agony, we are passing in fsave the +# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. +# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! +fu_in_exc_exit_p: + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.w fu_in_exc_exit_s_p # supervisor + + mov.l EXC_A7(%a6),%a0 # update user a7 + mov.l %a0,%usp + +fu_in_exc_exit_cont_p: + mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore src op + + unlk %a6 + + btst &0x7,(%sp) # is trace enabled? + bne.w fu_trace_p # yes + + bra.l _fpsp_done + +tbl_except_p: + short 0xe000,0xe006,0xe004,0xe005 + short 0xe003,0xe002,0xe001,0xe001 + +fu_in_exc_ovfl_p: + mov.w &0x3,%d0 + bra.w fu_in_exc_exit_p + +fu_in_exc_unfl_p: + mov.w &0x4,%d0 + bra.w fu_in_exc_exit_p + +fu_in_exc_exit_s_p: + btst &mia7_bit,SPCOND_FLG(%a6) + beq.b fu_in_exc_exit_cont_p + + mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore src op + + unlk %a6 # unravel stack frame + +# shift stack frame "up". who cares about <ea> field. + mov.l 0x4(%sp),0x10(%sp) + mov.l 0x0(%sp),0xc(%sp) + add.l &0xc,%sp + + btst &0x7,(%sp) # is trace on? + bne.b fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +# +# The opclass two PACKED instruction that took an "Unimplemented Data Type" +# exception was being traced. Make the "current" PC the FPIAR and put it in the +# trace stack frame then jump to _real_trace(). +# +# UNSUPP FRAME TRACE FRAME +# ***************** ***************** +# * EA * * Current * +# * * * PC * +# ***************** ***************** +# * 0x2 * 0x0dc * * 0x2 * 0x024 * +# ***************** ***************** +# * Next * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +fu_trace_p: + mov.w &0x2024,0x6(%sp) + fmov.l %fpiar,0x8(%sp) + + bra.l _real_trace + +######################################################### +######################################################### +fu_out_pack: + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field. +# fmove out doesn't affect ccodes. + and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l load_fpn1 + +# unlike other opclass 3, unimplemented data type exceptions, packed must be +# able to detect all operand types. + lea FP_SRC(%a6),%a0 + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2_p # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO + +fu_op2_p: + mov.b %d0,STAG(%a6) # save src optype tag + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + mov.l (%a6),EXC_A6(%a6) # in case a6 changes + bsr.l fout # call fmove out routine + +# Exceptions in order of precedence: +# BSUN : no +# SNAN : yes +# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) +# OVFL : no +# UNFL : no +# DZ : no +# INEX2 : yes +# INEX1 : no + +# determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w fu_out_ena_p # some are enabled + +fu_out_exit_p: + mov.l EXC_A6(%a6),(%a6) # restore a6 + + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.b fu_out_exit_s_p # supervisor + + mov.l EXC_A7(%a6),%a0 # update user a7 + mov.l %a0,%usp + +fu_out_exit_cont_p: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel stack frame + + btst &0x7,(%sp) # is trace on? + bne.w fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +# the exception occurred in supervisor mode. check to see if the +# addressing mode was -(a7). if so, we'll need to shift the +# stack frame "down". +fu_out_exit_s_p: + btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) + beq.b fu_out_exit_cont_p # no + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + +# now, copy the result to the proper place on the stack + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + btst &0x7,(%sp) + bne.w fu_trace_p + + bra.l _fpsp_done + +fu_out_ena_p: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled + bfffo %d0{&24:&8},%d0 # find highest priority exception + beq.w fu_out_exit_p + + mov.l EXC_A6(%a6),(%a6) # restore a6 + +# an exception occurred and that exception was enabled. +# the only exception possible on packed move out are INEX, OPERR, and SNAN. +fu_out_exc_p: + cmpi.b %d0,&0x1a + bgt.w fu_inex_p2 + beq.w fu_operr_p + +fu_snan_p: + btst &0x5,EXC_SR(%a6) + bne.b fu_snan_s_p + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + bra.w fu_snan + +fu_snan_s_p: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.w fu_snan + +# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. +# the strategy is to move the exception frame "down" 12 bytes. then, we +# can store the default result where the exception frame was. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 + mov.w &0xe006,2+FP_SRC(%a6) # set fsave status + + frestore FP_SRC(%a6) # restore src operand + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, we copy the default result to its proper location + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + + bra.l _real_snan + +fu_operr_p: + btst &0x5,EXC_SR(%a6) + bne.w fu_operr_p_s + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + bra.w fu_operr + +fu_operr_p_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.w fu_operr + +# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. +# the strategy is to move the exception frame "down" 12 bytes. then, we +# can store the default result where the exception frame was. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 + mov.w &0xe004,2+FP_SRC(%a6) # set fsave status + + frestore FP_SRC(%a6) # restore src operand + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, we copy the default result to its proper location + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + + bra.l _real_operr + +fu_inex_p2: + btst &0x5,EXC_SR(%a6) + bne.w fu_inex_s_p2 + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + bra.w fu_inex + +fu_inex_s_p2: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.w fu_inex + +# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. +# the strategy is to move the exception frame "down" 12 bytes. then, we +# can store the default result where the exception frame was. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) # set fsave status + + frestore FP_SRC(%a6) # restore src operand + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, we copy the default result to its proper location + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + + bra.l _real_inex + +######################################################################### + +# +# if we're stuffing a source operand back into an fsave frame then we +# have to make sure that for single or double source operands that the +# format stuffed is as weird as the hardware usually makes it. +# + global funimp_skew +funimp_skew: + bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier + cmpi.b %d0,&0x1 # was src sgl? + beq.b funimp_skew_sgl # yes + cmpi.b %d0,&0x5 # was src dbl? + beq.b funimp_skew_dbl # yes + rts + +funimp_skew_sgl: + mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent + andi.w &0x7fff,%d0 # strip sign + beq.b funimp_skew_sgl_not + cmpi.w %d0,&0x3f80 + bgt.b funimp_skew_sgl_not + neg.w %d0 # make exponent negative + addi.w &0x3f81,%d0 # find amt to shift + mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) + lsr.l %d0,%d1 # shift it + bset &31,%d1 # set j-bit + mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) + andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent + ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent +funimp_skew_sgl_not: + rts + +funimp_skew_dbl: + mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent + andi.w &0x7fff,%d0 # strip sign + beq.b funimp_skew_dbl_not + cmpi.w %d0,&0x3c00 + bgt.b funimp_skew_dbl_not + + tst.b FP_SRC_EX(%a6) # make "internal format" + smi.b 0x2+FP_SRC(%a6) + mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign + clr.l %d0 # clear g,r,s + lea FP_SRC(%a6),%a0 # pass ptr to src op + mov.w &0x3c01,%d1 # pass denorm threshold + bsr.l dnrm_lp # denorm it + mov.w &0x3c00,%d0 # new exponent + tst.b 0x2+FP_SRC(%a6) # is sign set? + beq.b fss_dbl_denorm_done # no + bset &15,%d0 # set sign +fss_dbl_denorm_done: + bset &0x7,FP_SRC_HI(%a6) # set j-bit + mov.w %d0,FP_SRC_EX(%a6) # insert new exponent +funimp_skew_dbl_not: + rts + +######################################################################### + global _mem_write2 +_mem_write2: + btst &0x5,EXC_SR(%a6) + beq.l _dmem_write + mov.l 0x0(%a0),FP_DST_EX(%a6) + mov.l 0x4(%a0),FP_DST_HI(%a6) + mov.l 0x8(%a0),FP_DST_LO(%a6) + clr.l %d1 + rts + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # +# effective address" exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Unimplemented Effective Address exception in an operating # +# system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# decbin() - convert packed data to FP binary data # +# _real_fpu_disabled() - "callout" for "FPU disabled" exception # +# _real_access() - "callout" for access error exception # +# _mem_read() - read extended immediate operand from memory # +# _fpsp_done() - "callout" for exit; work all done # +# _real_trace() - "callout" for Trace enabled exception # +# fmovm_dynamic() - emulate dynamic fmovm instruction # +# fmovm_ctrl() - emulate fmovm control instruction # +# # +# INPUT *************************************************************** # +# - The system stack contains the "Unimplemented <ea>" stk frame # +# # +# OUTPUT ************************************************************** # +# If access error: # +# - The system stack is changed to an access error stack frame # +# If FPU disabled: # +# - The system stack is changed to an FPU disabled stack frame # +# If Trace exception enabled: # +# - The system stack is changed to a Trace exception stack frame # +# Else: (normal case) # +# - None (correct result has been stored as appropriate) # +# # +# ALGORITHM *********************************************************** # +# This exception handles 3 types of operations: # +# (1) FP Instructions using extended precision or packed immediate # +# addressing mode. # +# (2) The "fmovm.x" instruction w/ dynamic register specification. # +# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # +# # +# For immediate data operations, the data is read in w/ a # +# _mem_read() "callout", converted to FP binary (if packed), and used # +# as the source operand to the instruction specified by the instruction # +# word. If no FP exception should be reported ads a result of the # +# emulation, then the result is stored to the destination register and # +# the handler exits through _fpsp_done(). If an enabled exc has been # +# signalled as a result of emulation, then an fsave state frame # +# corresponding to the FP exception type must be entered into the 060 # +# FPU before exiting. In either the enabled or disabled cases, we # +# must also check if a Trace exception is pending, in which case, we # +# must create a Trace exception stack frame from the current exception # +# stack frame. If no Trace is pending, we simply exit through # +# _fpsp_done(). # +# For "fmovm.x", call the routine fmovm_dynamic() which will # +# decode and emulate the instruction. No FP exceptions can be pending # +# as a result of this operation emulation. A Trace exception can be # +# pending, though, which means the current stack frame must be changed # +# to a Trace stack frame and an exit made through _real_trace(). # +# For the case of "fmovm.x Dn,-(a7)", where the offending instruction # +# was executed from supervisor mode, this handler must store the FP # +# register file values to the system stack by itself since # +# fmovm_dynamic() can't handle this. A normal exit is made through # +# fpsp_done(). # +# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # +# Again, a Trace exception may be pending and an exit made through # +# _real_trace(). Else, a normal exit is made through _fpsp_done(). # +# # +# Before any of the above is attempted, it must be checked to # +# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # +# before the "FPU disabled" exception, but the "FPU disabled" exception # +# has higher priority, we check the disabled bit in the PCR. If set, # +# then we must create an 8 word "FPU disabled" exception stack frame # +# from the current 4 word exception stack frame. This includes # +# reproducing the effective address of the instruction to put on the # +# new stack frame. # +# # +# In the process of all emulation work, if a _mem_read() # +# "callout" returns a failing result indicating an access error, then # +# we must create an access error stack frame from the current stack # +# frame. This information includes a faulting address and a fault- # +# status-longword. These are created within this handler. # +# # +######################################################################### + + global _fpsp_effadd +_fpsp_effadd: + +# This exception type takes priority over the "Line F Emulator" +# exception. Therefore, the FPU could be disabled when entering here. +# So, we must check to see if it's disabled and handle that case separately. + mov.l %d0,-(%sp) # save d0 + movc %pcr,%d0 # load proc cr + btst &0x1,%d0 # is FPU disabled? + bne.w iea_disabled # yes + mov.l (%sp)+,%d0 # restore d0 + + link %a6,&-LOCAL_SIZE # init stack frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# PC of instruction that took the exception is the PC in the frame + mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD + +######################################################################### + + tst.w %d0 # is operation fmovem? + bmi.w iea_fmovm # yes + +# +# here, we will have: +# fabs fdabs fsabs facos fmod +# fadd fdadd fsadd fasin frem +# fcmp fatan fscale +# fdiv fddiv fsdiv fatanh fsin +# fint fcos fsincos +# fintrz fcosh fsinh +# fmove fdmove fsmove fetox ftan +# fmul fdmul fsmul fetoxm1 ftanh +# fneg fdneg fsneg fgetexp ftentox +# fsgldiv fgetman ftwotox +# fsglmul flog10 +# fsqrt flog2 +# fsub fdsub fssub flogn +# ftst flognp1 +# which can all use f<op>.{x,p} +# so, now it's immediate data extended precision AND PACKED FORMAT! +# +iea_op: + andi.l &0x00ff00ff,USER_FPSR(%a6) + + btst &0xa,%d0 # is src fmt x or p? + bne.b iea_op_pack # packed + + + mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> + lea FP_SRC(%a6),%a1 # pass: ptr to super addr + mov.l &0xc,%d0 # pass: 12 bytes + bsr.l _imem_read # read extended immediate + + tst.l %d1 # did ifetch fail? + bne.w iea_iacc # yes + + bra.b iea_op_setsrc + +iea_op_pack: + + mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> + lea FP_SRC(%a6),%a1 # pass: ptr to super dst + mov.l &0xc,%d0 # pass: 12 bytes + bsr.l _imem_read # read packed operand + + tst.l %d1 # did ifetch fail? + bne.w iea_iacc # yes + +# The packed operand is an INF or a NAN if the exponent field is all ones. + bfextu FP_SRC(%a6){&1:&15},%d0 # get exp + cmpi.w %d0,&0x7fff # INF or NAN? + beq.b iea_op_setsrc # operand is an INF or NAN + +# The packed operand is a zero if the mantissa is all zero, else it's +# a normal packed op. + mov.b 3+FP_SRC(%a6),%d0 # get byte 4 + andi.b &0x0f,%d0 # clear all but last nybble + bne.b iea_op_gp_not_spec # not a zero + tst.l FP_SRC_HI(%a6) # is lw 2 zero? + bne.b iea_op_gp_not_spec # not a zero + tst.l FP_SRC_LO(%a6) # is lw 3 zero? + beq.b iea_op_setsrc # operand is a ZERO +iea_op_gp_not_spec: + lea FP_SRC(%a6),%a0 # pass: ptr to packed op + bsr.l decbin # convert to extended + fmovm.x &0x80,FP_SRC(%a6) # make this the srcop + +iea_op_setsrc: + addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer + +# FP_SRC now holds the src operand. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # could be ANYTHING!!! + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b iea_op_getdst # no + bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO + mov.b %d0,STAG(%a6) # set new optype tag +iea_op_getdst: + clr.b STORE_FLG(%a6) # clear "store result" boolean + + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b iea_op_extract # monadic + btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? + bne.b iea_op_spec # yes + +iea_op_loaddst: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno + bsr.l load_fpn2 # load dst operand + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + mov.b %d0,DTAG(%a6) # could be ANYTHING!!! + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b iea_op_extract # no + bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO + mov.b %d0,DTAG(%a6) # set new optype tag + bra.b iea_op_extract + +# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic +iea_op_spec: + btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? + beq.b iea_op_extract # yes +# now, we're left with ftst and fcmp. so, first let's tag them so that they don't +# store a result. then, only fcmp will branch back and pick up a dst operand. + st STORE_FLG(%a6) # don't store a final result + btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? + beq.b iea_op_loaddst # yes + +iea_op_extract: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + fmov.l &0x0,%fpcr + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# +# Exceptions in order of precedence: +# BSUN : none +# SNAN : all operations +# OPERR : all reg-reg or mem-reg operations that can normally operr +# OVFL : same as OPERR +# UNFL : same as OPERR +# DZ : same as OPERR +# INEX2 : same as OPERR +# INEX1 : all packed immediate operations +# + +# we determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.b iea_op_ena # some are enabled + +# now, we save the result, unless, of course, the operation was ftst or fcmp. +# these don't save results. +iea_op_save: + tst.b STORE_FLG(%a6) # does this op store a result? + bne.b iea_op_exit1 # exit with no frestore + +iea_op_store: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno + bsr.l store_fpreg # store the result + +iea_op_exit1: + mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" + mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel the frame + + btst &0x7,(%sp) # is trace on? + bne.w iea_op_trace # yes + + bra.l _fpsp_done # exit to os + +iea_op_ena: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b iea_op_exc # at least one was set + +# no exception occurred. now, did a disabled, exact overflow occur with inexact +# enabled? if so, then we have to stuff an overflow frame into the FPU. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? + beq.b iea_op_save + +iea_op_ovfl: + btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? + beq.b iea_op_store # no + bra.b iea_op_exc_ovfl # yes + +# an enabled exception occurred. we have to insert the exception type back into +# the machine. +iea_op_exc: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? + bne.b iea_op_exc_force # no + +# the enabled exception was inexact. so, if it occurs with an overflow +# or underflow that was disabled, then we have to force an overflow or +# underflow frame. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? + bne.b iea_op_exc_ovfl # yes + btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? + bne.b iea_op_exc_unfl # yes + +iea_op_exc_force: + mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) + bra.b iea_op_exit2 # exit with frestore + +tbl_iea_except: + short 0xe002, 0xe006, 0xe004, 0xe005 + short 0xe003, 0xe002, 0xe001, 0xe001 + +iea_op_exc_ovfl: + mov.w &0xe005,2+FP_SRC(%a6) + bra.b iea_op_exit2 + +iea_op_exc_unfl: + mov.w &0xe003,2+FP_SRC(%a6) + +iea_op_exit2: + mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" + mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore exceptional state + + unlk %a6 # unravel the frame + + btst &0x7,(%sp) # is trace on? + bne.b iea_op_trace # yes + + bra.l _fpsp_done # exit to os + +# +# The opclass two instruction that took an "Unimplemented Effective Address" +# exception was being traced. Make the "current" PC the FPIAR and put it in +# the trace stack frame then jump to _real_trace(). +# +# UNIMP EA FRAME TRACE FRAME +# ***************** ***************** +# * 0x0 * 0x0f0 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x024 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# ***************** +# * SR * +# ***************** +iea_op_trace: + mov.l (%sp),-(%sp) # shift stack frame "down" + mov.w 0x8(%sp),0x4(%sp) + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 + fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR + + bra.l _real_trace + +######################################################################### +iea_fmovm: + btst &14,%d0 # ctrl or data reg + beq.w iea_fmovm_ctrl + +iea_fmovm_data: + + btst &0x5,EXC_SR(%a6) # user or supervisor mode + bne.b iea_fmovm_data_s + +iea_fmovm_data_u: + mov.l %usp,%a0 + mov.l %a0,EXC_A7(%a6) # store current a7 + bsr.l fmovm_dynamic # do dynamic fmovm + mov.l EXC_A7(%a6),%a0 # load possibly new a7 + mov.l %a0,%usp # update usp + bra.w iea_fmovm_exit + +iea_fmovm_data_s: + clr.b SPCOND_FLG(%a6) + lea 0x2+EXC_VOFF(%a6),%a0 + mov.l %a0,EXC_A7(%a6) + bsr.l fmovm_dynamic # do dynamic fmovm + + cmpi.b SPCOND_FLG(%a6),&mda7_flg + beq.w iea_fmovm_data_predec + cmpi.b SPCOND_FLG(%a6),&mia7_flg + bne.w iea_fmovm_exit + +# right now, d0 = the size. +# the data has been fetched from the supervisor stack, but we have not +# incremented the stack pointer by the appropriate number of bytes. +# do it here. +iea_fmovm_data_postinc: + btst &0x7,EXC_SR(%a6) + bne.b iea_fmovm_data_pi_trace + + mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) + mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) + mov.w &0x00f0,(EXC_VOFF,%a6,%d0) + + lea (EXC_SR,%a6,%d0),%a0 + mov.l %a0,EXC_SR(%a6) + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + mov.l (%sp)+,%sp + bra.l _fpsp_done + +iea_fmovm_data_pi_trace: + mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) + mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) + mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) + mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) + + lea (EXC_SR-0x4,%a6,%d0),%a0 + mov.l %a0,EXC_SR(%a6) + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + mov.l (%sp)+,%sp + bra.l _real_trace + +# right now, d1 = size and d0 = the strg. +iea_fmovm_data_predec: + mov.b %d1,EXC_VOFF(%a6) # store strg + mov.b %d0,0x1+EXC_VOFF(%a6) # store size + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.l (%a6),-(%sp) # make a copy of a6 + mov.l %d0,-(%sp) # save d0 + mov.l %d1,-(%sp) # save d1 + mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC + + clr.l %d0 + mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size + neg.l %d0 # get negative of size + + btst &0x7,EXC_SR(%a6) # is trace enabled? + beq.b iea_fmovm_data_p2 + + mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) + mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) + mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) + mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) + + pea (%a6,%d0) # create final sp + bra.b iea_fmovm_data_p3 + +iea_fmovm_data_p2: + mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) + mov.l (%sp)+,(EXC_PC,%a6,%d0) + mov.w &0x00f0,(EXC_VOFF,%a6,%d0) + + pea (0x4,%a6,%d0) # create final sp + +iea_fmovm_data_p3: + clr.l %d1 + mov.b EXC_VOFF(%a6),%d1 # fetch strg + + tst.b %d1 + bpl.b fm_1 + fmovm.x &0x80,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_1: + lsl.b &0x1,%d1 + bpl.b fm_2 + fmovm.x &0x40,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_2: + lsl.b &0x1,%d1 + bpl.b fm_3 + fmovm.x &0x20,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_3: + lsl.b &0x1,%d1 + bpl.b fm_4 + fmovm.x &0x10,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_4: + lsl.b &0x1,%d1 + bpl.b fm_5 + fmovm.x &0x08,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_5: + lsl.b &0x1,%d1 + bpl.b fm_6 + fmovm.x &0x04,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_6: + lsl.b &0x1,%d1 + bpl.b fm_7 + fmovm.x &0x02,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_7: + lsl.b &0x1,%d1 + bpl.b fm_end + fmovm.x &0x01,(0x4+0x8,%a6,%d0) +fm_end: + mov.l 0x4(%sp),%d1 + mov.l 0x8(%sp),%d0 + mov.l 0xc(%sp),%a6 + mov.l (%sp)+,%sp + + btst &0x7,(%sp) # is trace enabled? + beq.l _fpsp_done + bra.l _real_trace + +######################################################################### +iea_fmovm_ctrl: + + bsr.l fmovm_ctrl # load ctrl regs + +iea_fmovm_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + btst &0x7,EXC_SR(%a6) # is trace on? + bne.b iea_fmovm_trace # yes + + mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC + + unlk %a6 # unravel the frame + + bra.l _fpsp_done # exit to os + +# +# The control reg instruction that took an "Unimplemented Effective Address" +# exception was being traced. The "Current PC" for the trace frame is the +# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. +# After fixing the stack frame, jump to _real_trace(). +# +# UNIMP EA FRAME TRACE FRAME +# ***************** ***************** +# * 0x0 * 0x0f0 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x024 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# ***************** +# * SR * +# ***************** +# this ain't a pretty solution, but it works: +# -restore a6 (not with unlk) +# -shift stack frame down over where old a6 used to be +# -add LOCAL_SIZE to stack pointer +iea_fmovm_trace: + mov.l (%a6),%a6 # restore frame pointer + mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) + mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) + mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) + mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 + add.l &LOCAL_SIZE,%sp # clear stack frame + + bra.l _real_trace + +######################################################################### +# The FPU is disabled and so we should really have taken the "Line +# F Emulator" exception. So, here we create an 8-word stack frame +# from our 4-word stack frame. This means we must calculate the length +# the faulting instruction to get the "next PC". This is trivial for +# immediate operands but requires some extra work for fmovm dynamic +# which can use most addressing modes. +iea_disabled: + mov.l (%sp)+,%d0 # restore d0 + + link %a6,&-LOCAL_SIZE # init stack frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + +# PC of instruction that took the exception is the PC in the frame + mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD + + tst.w %d0 # is instr fmovm? + bmi.b iea_dis_fmovm # yes +# instruction is using an extended precision immediate operand. therefore, +# the total instruction length is 16 bytes. +iea_dis_immed: + mov.l &0x10,%d0 # 16 bytes of instruction + bra.b iea_dis_cont +iea_dis_fmovm: + btst &0xe,%d0 # is instr fmovm ctrl + bne.b iea_dis_fmovm_data # no +# the instruction is a fmovm.l with 2 or 3 registers. + bfextu %d0{&19:&3},%d1 + mov.l &0xc,%d0 + cmpi.b %d1,&0x7 # move all regs? + bne.b iea_dis_cont + addq.l &0x4,%d0 + bra.b iea_dis_cont +# the instruction is an fmovm.x dynamic which can use many addressing +# modes and thus can have several different total instruction lengths. +# call fmovm_calc_ea which will go through the ea calc process and, +# as a by-product, will tell us how long the instruction is. +iea_dis_fmovm_data: + clr.l %d0 + bsr.l fmovm_calc_ea + mov.l EXC_EXTWPTR(%a6),%d0 + sub.l EXC_PC(%a6),%d0 +iea_dis_cont: + mov.w %d0,EXC_VOFF(%a6) # store stack shift value + + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + +# here, we actually create the 8-word frame from the 4-word frame, +# with the "next PC" as additional info. +# the <ea> field is let as undefined. + subq.l &0x8,%sp # make room for new stack + mov.l %d0,-(%sp) # save d0 + mov.w 0xc(%sp),0x4(%sp) # move SR + mov.l 0xe(%sp),0x6(%sp) # move Current PC + clr.l %d0 + mov.w 0x12(%sp),%d0 + mov.l 0x6(%sp),0x10(%sp) # move Current PC + add.l %d0,0x6(%sp) # make Next PC + mov.w &0x402c,0xa(%sp) # insert offset,frame format + mov.l (%sp)+,%d0 # restore d0 + + bra.l _real_fpu_disabled + +########## + +iea_iacc: + movc %pcr,%d0 + btst &0x1,%d0 + bne.b iea_iacc_cont + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack +iea_iacc_cont: + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + subq.w &0x8,%sp # make stack frame bigger + mov.l 0x8(%sp),(%sp) # store SR,hi(PC) + mov.w 0xc(%sp),0x4(%sp) # store lo(PC) + mov.w &0x4008,0x6(%sp) # store voff + mov.l 0x2(%sp),0x8(%sp) # store ea + mov.l &0x09428001,0xc(%sp) # store fslw + +iea_acc_done: + btst &0x5,(%sp) # user or supervisor mode? + beq.b iea_acc_done2 # user + bset &0x2,0xd(%sp) # set supervisor TM bit + +iea_acc_done2: + bra.l _real_access + +iea_dacc: + lea -LOCAL_SIZE(%a6),%sp + + movc %pcr,%d1 + btst &0x1,%d1 + bne.b iea_dacc_cont + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack + fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs +iea_dacc_cont: + mov.l (%a6),%a6 + + mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) + mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) + mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) + mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) + mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) + mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) + + movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 + add.w &LOCAL_SIZE-0x4,%sp + + bra.b iea_acc_done + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_operr(): 060FPSP entry point for FP Operr exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Operand Error exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# _real_operr() - "callout" to operating system operr handler # +# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # +# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # +# facc_out_{b,w,l}() - store to memory took access error (opcl 3) # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Operr exception frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# No access error: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# # +# ALGORITHM *********************************************************** # +# In a system where the FP Operr exception is enabled, the goal # +# is to get to the handler specified at _real_operr(). But, on the 060, # +# for opclass zero and two instruction taking this exception, the # +# input operand in the fsave frame may be incorrect for some cases # +# and needs to be corrected. This handler calls fix_skewed_ops() to # +# do just this and then exits through _real_operr(). # +# For opclass 3 instructions, the 060 doesn't store the default # +# operr result out to memory or data register file as it should. # +# This code must emulate the move out before finally exiting through # +# _real_inex(). The move out, if to memory, is performed using # +# _mem_write() "callout" routines that may return a failing result. # +# In this special case, the handler must exit through facc_out() # +# which creates an access error stack frame from the current operr # +# stack frame. # +# # +######################################################################### + + global _fpsp_operr +_fpsp_operr: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &13,%d0 # is instr an fmove out? + bne.b foperr_out # fmove out + + +# here, we simply see if the operand in the fsave frame needs to be "unskewed". +# this would be the case for opclass two operations with a source infinity or +# denorm operand in the sgl or dbl format. NANs also become skewed, but can't +# cause an operr so we don't need to check for them here. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +foperr_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_operr + +######################################################################## + +# +# the hardware does not save the default result to memory on enabled +# operand error exceptions. we do this here before passing control to +# the user operand error handler. +# +# byte, word, and long destination format operations can pass +# through here. we simply need to test the sign of the src +# operand and save the appropriate minimum or maximum integer value +# to the effective address as pointed to by the stacked effective address. +# +# although packed opclass three operations can take operand error +# exceptions, they won't pass through here since they are caught +# first by the unsupported data format exception handler. that handler +# sends them directly to _real_operr() if necessary. +# +foperr_out: + + mov.w FP_SRC_EX(%a6),%d1 # fetch exponent + andi.w &0x7fff,%d1 + cmpi.w %d1,&0x7fff + bne.b foperr_out_not_qnan +# the operand is either an infinity or a QNAN. + tst.l FP_SRC_LO(%a6) + bne.b foperr_out_qnan + mov.l FP_SRC_HI(%a6),%d1 + andi.l &0x7fffffff,%d1 + beq.b foperr_out_not_qnan +foperr_out_qnan: + mov.l FP_SRC_HI(%a6),L_SCR1(%a6) + bra.b foperr_out_jmp + +foperr_out_not_qnan: + mov.l &0x7fffffff,%d1 + tst.b FP_SRC_EX(%a6) + bpl.b foperr_out_not_qnan2 + addq.l &0x1,%d1 +foperr_out_not_qnan2: + mov.l %d1,L_SCR1(%a6) + +foperr_out_jmp: + bfextu %d0{&19:&3},%d0 # extract dst format field + mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg + mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 + jmp (tbl_operr.b,%pc,%a0) + +tbl_operr: + short foperr_out_l - tbl_operr # long word integer + short tbl_operr - tbl_operr # sgl prec shouldn't happen + short tbl_operr - tbl_operr # ext prec shouldn't happen + short foperr_exit - tbl_operr # packed won't enter here + short foperr_out_w - tbl_operr # word integer + short tbl_operr - tbl_operr # dbl prec shouldn't happen + short foperr_out_b - tbl_operr # byte integer + short tbl_operr - tbl_operr # packed won't enter here + +foperr_out_b: + mov.b L_SCR1(%a6),%d0 # load positive default result + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b foperr_out_b_save_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_byte # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_b # yes + + bra.w foperr_exit +foperr_out_b_save_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_b # store result to regfile + bra.w foperr_exit + +foperr_out_w: + mov.w L_SCR1(%a6),%d0 # load positive default result + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b foperr_out_w_save_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_word # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_w # yes + + bra.w foperr_exit +foperr_out_w_save_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_w # store result to regfile + bra.w foperr_exit + +foperr_out_l: + mov.l L_SCR1(%a6),%d0 # load positive default result + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b foperr_out_l_save_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_long # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.w foperr_exit +foperr_out_l_save_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_l # store result to regfile + bra.w foperr_exit + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Signalling NAN exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# _real_snan() - "callout" to operating system SNAN handler # +# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # +# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # +# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # +# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP SNAN exception frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# No access error: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# # +# ALGORITHM *********************************************************** # +# In a system where the FP SNAN exception is enabled, the goal # +# is to get to the handler specified at _real_snan(). But, on the 060, # +# for opclass zero and two instructions taking this exception, the # +# input operand in the fsave frame may be incorrect for some cases # +# and needs to be corrected. This handler calls fix_skewed_ops() to # +# do just this and then exits through _real_snan(). # +# For opclass 3 instructions, the 060 doesn't store the default # +# SNAN result out to memory or data register file as it should. # +# This code must emulate the move out before finally exiting through # +# _real_snan(). The move out, if to memory, is performed using # +# _mem_write() "callout" routines that may return a failing result. # +# In this special case, the handler must exit through facc_out() # +# which creates an access error stack frame from the current SNAN # +# stack frame. # +# For the case of an extended precision opclass 3 instruction, # +# if the effective addressing mode was -() or ()+, then the address # +# register must get updated by calling _calc_ea_fout(). If the <ea> # +# was -(a7) from supervisor mode, then the exception frame currently # +# on the system stack must be carefully moved "down" to make room # +# for the operand being moved. # +# # +######################################################################### + + global _fpsp_snan +_fpsp_snan: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &13,%d0 # is instr an fmove out? + bne.w fsnan_out # fmove out + + +# here, we simply see if the operand in the fsave frame needs to be "unskewed". +# this would be the case for opclass two operations with a source infinity or +# denorm operand in the sgl or dbl format. NANs also become skewed and must be +# fixed here. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +fsnan_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_snan + +######################################################################## + +# +# the hardware does not save the default result to memory on enabled +# snan exceptions. we do this here before passing control to +# the user snan handler. +# +# byte, word, long, and packed destination format operations can pass +# through here. since packed format operations already were handled by +# fpsp_unsupp(), then we need to do nothing else for them here. +# for byte, word, and long, we simply need to test the sign of the src +# operand and save the appropriate minimum or maximum integer value +# to the effective address as pointed to by the stacked effective address. +# +fsnan_out: + + bfextu %d0{&19:&3},%d0 # extract dst format field + mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg + mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 + jmp (tbl_snan.b,%pc,%a0) + +tbl_snan: + short fsnan_out_l - tbl_snan # long word integer + short fsnan_out_s - tbl_snan # sgl prec shouldn't happen + short fsnan_out_x - tbl_snan # ext prec shouldn't happen + short tbl_snan - tbl_snan # packed needs no help + short fsnan_out_w - tbl_snan # word integer + short fsnan_out_d - tbl_snan # dbl prec shouldn't happen + short fsnan_out_b - tbl_snan # byte integer + short tbl_snan - tbl_snan # packed needs no help + +fsnan_out_b: + mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN + bset &6,%d0 # set SNAN bit + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_b_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_byte # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_b # yes + + bra.w fsnan_exit +fsnan_out_b_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_b # store result to regfile + bra.w fsnan_exit + +fsnan_out_w: + mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN + bset &14,%d0 # set SNAN bit + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_w_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_word # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_w # yes + + bra.w fsnan_exit +fsnan_out_w_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_w # store result to regfile + bra.w fsnan_exit + +fsnan_out_l: + mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN + bset &30,%d0 # set SNAN bit + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_l_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_long # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.w fsnan_exit +fsnan_out_l_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_l # store result to regfile + bra.w fsnan_exit + +fsnan_out_s: + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_d_dn # yes + mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign + andi.l &0x80000000,%d0 # keep sign + ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit + mov.l FP_SRC_HI(%a6),%d1 # load mantissa + lsr.l &0x8,%d1 # shift mantissa for sgl + or.l %d1,%d0 # create sgl SNAN + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_long # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.w fsnan_exit +fsnan_out_d_dn: + mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign + andi.l &0x80000000,%d0 # keep sign + ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit + mov.l %d1,-(%sp) + mov.l FP_SRC_HI(%a6),%d1 # load mantissa + lsr.l &0x8,%d1 # shift mantissa for sgl + or.l %d1,%d0 # create sgl SNAN + mov.l (%sp)+,%d1 + andi.w &0x0007,%d1 + bsr.l store_dreg_l # store result to regfile + bra.w fsnan_exit + +fsnan_out_d: + mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign + andi.l &0x80000000,%d0 # keep sign + ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit + mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa + mov.l %d0,FP_SCR0_EX(%a6) # store to temp space + mov.l &11,%d0 # load shift amt + lsr.l %d0,%d1 + or.l %d1,FP_SCR0_EX(%a6) # create dbl hi + mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa + andi.l &0x000007ff,%d1 + ror.l %d0,%d1 + mov.l %d1,FP_SCR0_HI(%a6) # store to temp space + mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa + lsr.l %d0,%d1 + or.l %d1,FP_SCR0_HI(%a6) # create dbl lo + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + mov.l EXC_EA(%a6),%a1 # pass: dst addr + movq.l &0x8,%d0 # pass: size of 8 bytes + bsr.l _dmem_write # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + bra.w fsnan_exit + +# for extended precision, if the addressing mode is pre-decrement or +# post-increment, then the address register did not get updated. +# in addition, for pre-decrement, the stacked <ea> is incorrect. +fsnan_out_x: + clr.b SPCOND_FLG(%a6) # clear special case flag + + mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) + clr.w 2+FP_SCR0(%a6) + mov.l FP_SRC_HI(%a6),%d0 + bset &30,%d0 + mov.l %d0,FP_SCR0_HI(%a6) + mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) + + btst &0x5,EXC_SR(%a6) # supervisor mode exception? + bne.b fsnan_out_x_s # yes + + mov.l %usp,%a0 # fetch user stack pointer + mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() + mov.l (%a6),EXC_A6(%a6) + + bsr.l _calc_ea_fout # find the correct ea,update An + mov.l %a0,%a1 + mov.l %a0,EXC_EA(%a6) # stack correct <ea> + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp # restore user stack pointer + mov.l EXC_A6(%a6),(%a6) + +fsnan_out_x_save: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + movq.l &0xc,%d0 # pass: size of extended + bsr.l _dmem_write # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_x # yes + + bra.w fsnan_exit + +fsnan_out_x_s: + mov.l (%a6),EXC_A6(%a6) + + bsr.l _calc_ea_fout # find the correct ea,update An + mov.l %a0,%a1 + mov.l %a0,EXC_EA(%a6) # stack correct <ea> + + mov.l EXC_A6(%a6),(%a6) + + cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? + bne.b fsnan_out_x_save # no + +# the operation was "fmove.x SNAN,-(a7)" from supervisor mode. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + mov.l EXC_A6(%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + + mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) + mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) + mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + bra.l _real_snan + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Inexact exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# smovcr() - emulate an "fmovcr" instruction # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _real_inex() - "callout" to operating system inexact handler # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Inexact exception frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# # +# ALGORITHM *********************************************************** # +# In a system where the FP Inexact exception is enabled, the goal # +# is to get to the handler specified at _real_inex(). But, on the 060, # +# for opclass zero and two instruction taking this exception, the # +# hardware doesn't store the correct result to the destination FP # +# register as did the '040 and '881/2. This handler must emulate the # +# instruction in order to get this value and then store it to the # +# correct register before calling _real_inex(). # +# For opclass 3 instructions, the 060 doesn't store the default # +# inexact result out to memory or data register file as it should. # +# This code must emulate the move out by calling fout() before finally # +# exiting through _real_inex(). # +# # +######################################################################### + + global _fpsp_inex +_fpsp_inex: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &13,%d0 # is instr an fmove out? + bne.w finex_out # fmove out + + +# the hardware, for "fabs" and "fneg" w/ a long source format, puts the +# longword integer directly into the upper longword of the mantissa along +# w/ an exponent value of 0x401e. we convert this to extended precision here. + bfextu %d0{&19:&3},%d0 # fetch instr size + bne.b finex_cont # instr size is not long + cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? + bne.b finex_cont # no + fmov.l &0x0,%fpcr + fmov.l FP_SRC_HI(%a6),%fp0 # load integer src + fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision + mov.w &0xe001,0x2+FP_SRC(%a6) + +finex_cont: + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +# Here, we zero the ccode and exception byte field since we're going to +# emulate the whole instruction. Notice, though, that we don't kill the +# INEX1 bit. This is because a packed op has long since been converted +# to extended before arriving here. Therefore, we need to retain the +# INEX1 bit from when the operand was first converted. + andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg + cmpi.b %d1,&0x17 # is op an fmovecr? + beq.w finex_fmovcr # yes + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # maybe NORM,DENORM + +# bits four and five of the fp extension word separate the monadic and dyadic +# operations that can pass through fpsp_inex(). remember that fcmp and ftst +# will never take this exception, but fsincos will. + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b finex_extract # monadic + + btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? + bne.b finex_extract # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b finex_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +finex_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +finex_extract: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# the operation has been emulated. the result is in fp0. +finex_save: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l store_fpreg + +finex_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_inex + +finex_fmovcr: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.l &0x0000007f,%d1 # pass rom offset + bsr.l smovcr + bra.b finex_save + +######################################################################## + +# +# the hardware does not save the default result to memory on enabled +# inexact exceptions. we do this here before passing control to +# the user inexact handler. +# +# byte, word, and long destination format operations can pass +# through here. so can double and single precision. +# although packed opclass three operations can take inexact +# exceptions, they won't pass through here since they are caught +# first by the unsupported data format exception handler. that handler +# sends them directly to _real_inex() if necessary. +# +finex_out: + + mov.b &NORM,STAG(%a6) # src is a NORM + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode + + andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + bsr.l fout # store the default result + + bra.b finex_exit + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_dz(): 060FPSP entry point for FP DZ exception. # +# # +# This handler should be the first code executed upon taking # +# the FP DZ exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword from memory # +# fix_skewed_ops() - adjust fsave operand # +# _real_dz() - "callout" exit point from FP DZ handler # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP DZ exception stack. # +# - The fsave frame contains the source operand. # +# # +# OUTPUT ************************************************************** # +# - The system stack contains the FP DZ exception stack. # +# - The fsave frame contains the adjusted source operand. # +# # +# ALGORITHM *********************************************************** # +# In a system where the DZ exception is enabled, the goal is to # +# get to the handler specified at _real_dz(). But, on the 060, when the # +# exception is taken, the input operand in the fsave state frame may # +# be incorrect for some cases and need to be adjusted. So, this package # +# adjusts the operand using fix_skewed_ops() and then branches to # +# _real_dz(). # +# # +######################################################################### + + global _fpsp_dz +_fpsp_dz: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + +# here, we simply see if the operand in the fsave frame needs to be "unskewed". +# this would be the case for opclass two operations with a source zero +# in the sgl or dbl format. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +fdz_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_dz + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc. # +# # +# This handler should be the first code executed upon taking the # +# "Line F Emulator" exception in an operating system. # +# # +# XREF **************************************************************** # +# _fpsp_unimp() - handle "FP Unimplemented" exceptions # +# _real_fpu_disabled() - handle "FPU disabled" exceptions # +# _real_fline() - handle "FLINE" exceptions # +# _imem_read_long() - read instruction longword # +# # +# INPUT *************************************************************** # +# - The system stack contains a "Line F Emulator" exception # +# stack frame. # +# # +# OUTPUT ************************************************************** # +# - The system stack is unchanged # +# # +# ALGORITHM *********************************************************** # +# When a "Line F Emulator" exception occurs, there are 3 possible # +# exception types, denoted by the exception stack frame format number: # +# (1) FPU unimplemented instruction (6 word stack frame) # +# (2) FPU disabled (8 word stack frame) # +# (3) Line F (4 word stack frame) # +# # +# This module determines which and forks the flow off to the # +# appropriate "callout" (for "disabled" and "Line F") or to the # +# correct emulation code (for "FPU unimplemented"). # +# This code also must check for "fmovecr" instructions w/ a # +# non-zero <ea> field. These may get flagged as "Line F" but should # +# really be flagged as "FPU Unimplemented". (This is a "feature" on # +# the '060. # +# # +######################################################################### + + global _fpsp_fline +_fpsp_fline: + +# check to see if this exception is a "FP Unimplemented Instruction" +# exception. if so, branch directly to that handler's entry point. + cmpi.w 0x6(%sp),&0x202c + beq.l _fpsp_unimp + +# check to see if the FPU is disabled. if so, jump to the OS entry +# point for that condition. + cmpi.w 0x6(%sp),&0x402c + beq.l _real_fpu_disabled + +# the exception was an "F-Line Illegal" exception. we check to see +# if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if +# so, convert the F-Line exception stack frame to an FP Unimplemented +# Instruction exception stack frame else branch to the OS entry +# point for the F-Line exception handler. + link.w %a6,&-LOCAL_SIZE # init stack frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + + mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch instruction words + + bfextu %d0{&0:&10},%d1 # is it an fmovecr? + cmpi.w %d1,&0x03c8 + bne.b fline_fline # no + + bfextu %d0{&16:&6},%d1 # is it an fmovecr? + cmpi.b %d1,&0x17 + bne.b fline_fline # no + +# it's an fmovecr w/ a non-zero <ea> that has entered through +# the F-Line Illegal exception. +# so, we need to convert the F-Line exception stack frame into an +# FP Unimplemented Instruction stack frame and jump to that entry +# point. +# +# but, if the FPU is disabled, then we need to jump to the FPU diabled +# entry point. + movc %pcr,%d0 + btst &0x1,%d0 + beq.b fline_fmovcr + + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + sub.l &0x8,%sp # make room for "Next PC", <ea> + mov.w 0x8(%sp),(%sp) + mov.l 0xa(%sp),0x2(%sp) # move "Current PC" + mov.w &0x402c,0x6(%sp) + mov.l 0x2(%sp),0xc(%sp) + addq.l &0x4,0x2(%sp) # set "Next PC" + + bra.l _real_fpu_disabled + +fline_fmovcr: + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + fmov.l 0x2(%sp),%fpiar # set current PC + addq.l &0x4,0x2(%sp) # set Next PC + + mov.l (%sp),-(%sp) + mov.l 0x8(%sp),0x4(%sp) + mov.b &0x20,0x6(%sp) + + bra.l _fpsp_unimp + +fline_fline: + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + bra.l _real_fline + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented # +# Instruction" exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Unimplemented Instruction exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_{word,long}() - read instruction word/longword # +# load_fop() - load src/dst ops from memory and/or FP regfile # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# tbl_trans - addr of table of emulation routines for trnscndls # +# _real_access() - "callout" for access error exception # +# _fpsp_done() - "callout" for exit; work all done # +# _real_trace() - "callout" for Trace enabled exception # +# smovcr() - emulate "fmovecr" instruction # +# funimp_skew() - adjust fsave src ops to "incorrect" value # +# _ftrapcc() - emulate an "ftrapcc" instruction # +# _fdbcc() - emulate an "fdbcc" instruction # +# _fscc() - emulate an "fscc" instruction # +# _real_trap() - "callout" for Trap exception # +# _real_bsun() - "callout" for enabled Bsun exception # +# # +# INPUT *************************************************************** # +# - The system stack contains the "Unimplemented Instr" stk frame # +# # +# OUTPUT ************************************************************** # +# If access error: # +# - The system stack is changed to an access error stack frame # +# If Trace exception enabled: # +# - The system stack is changed to a Trace exception stack frame # +# Else: (normal case) # +# - Correct result has been stored as appropriate # +# # +# ALGORITHM *********************************************************** # +# There are two main cases of instructions that may enter here to # +# be emulated: (1) the FPgen instructions, most of which were also # +# unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc". # +# For the first set, this handler calls the routine load_fop() # +# to load the source and destination (for dyadic) operands to be used # +# for instruction emulation. The correct emulation routine is then # +# chosen by decoding the instruction type and indexing into an # +# emulation subroutine index table. After emulation returns, this # +# handler checks to see if an exception should occur as a result of the # +# FP instruction emulation. If so, then an FP exception of the correct # +# type is inserted into the FPU state frame using the "frestore" # +# instruction before exiting through _fpsp_done(). In either the # +# exceptional or non-exceptional cases, we must check to see if the # +# Trace exception is enabled. If so, then we must create a Trace # +# exception frame from the current exception frame and exit through # +# _real_trace(). # +# For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines # +# _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three # +# may flag that a BSUN exception should be taken. If so, then the # +# current exception stack frame is converted into a BSUN exception # +# stack frame and an exit is made through _real_bsun(). If the # +# instruction was "ftrapcc" and a Trap exception should result, a Trap # +# exception stack frame is created from the current frame and an exit # +# is made through _real_trap(). If a Trace exception is pending, then # +# a Trace exception frame is created from the current frame and a jump # +# is made to _real_trace(). Finally, if none of these conditions exist, # +# then the handler exits though the callout _fpsp_done(). # +# # +# In any of the above scenarios, if a _mem_read() or _mem_write() # +# "callout" returns a failing value, then an access error stack frame # +# is created from the current stack frame and an exit is made through # +# _real_access(). # +# # +######################################################################### + +# +# FP UNIMPLEMENTED INSTRUCTION STACK FRAME: +# +# ***************** +# * * => <ea> of fp unimp instr. +# - EA - +# * * +# ***************** +# * 0x2 * 0x02c * => frame format and vector offset(vector #11) +# ***************** +# * * +# - Next PC - => PC of instr to execute after exc handling +# * * +# ***************** +# * SR * => SR at the time the exception was taken +# ***************** +# +# Note: the !NULL bit does not get set in the fsave frame when the +# machine encounters an fp unimp exception. Therefore, it must be set +# before leaving this handler. +# + global _fpsp_unimp +_fpsp_unimp: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 + + btst &0x5,EXC_SR(%a6) # user mode exception? + bne.b funimp_s # no; supervisor mode + +# save the value of the user stack pointer onto the stack frame +funimp_u: + mov.l %usp,%a0 # fetch user stack pointer + mov.l %a0,EXC_A7(%a6) # store in stack frame + bra.b funimp_cont + +# store the value of the supervisor stack pointer BEFORE the exc occurred. +# old_sp is address just above stacked effective address. +funimp_s: + lea 4+EXC_EA(%a6),%a0 # load old a7' + mov.l %a0,EXC_A7(%a6) # store a7' + mov.l %a0,OLD_A7(%a6) # make a copy + +funimp_cont: + +# the FPIAR holds the "current PC" of the faulting instruction. + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################ + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l &0x0,%fpsr # clear FPSR + + clr.b SPCOND_FLG(%a6) # clear "special case" flag + +# Divide the fp instructions into 8 types based on the TYPE field in +# bits 6-8 of the opword(classes 6,7 are undefined). +# (for the '060, only two types can take this exception) +# bftst %d0{&7:&3} # test TYPE + btst &22,%d0 # type 0 or 1 ? + bne.w funimp_misc # type 1 + +######################################### +# TYPE == 0: General instructions # +######################################### +funimp_gen: + + clr.b STORE_FLG(%a6) # clear "store result" flag + +# clear the ccode byte and exception status byte + andi.l &0x00ff00ff,USER_FPSR(%a6) + + bfextu %d0{&16:&6},%d1 # extract upper 6 of cmdreg + cmpi.b %d1,&0x17 # is op an fmovecr? + beq.w funimp_fmovcr # yes + +funimp_gen_op: + bsr.l _load_fop # load + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x003f,%d1 # extract extension bits + lsl.w &0x3,%d1 # shift right 3 bits + or.b STAG(%a6),%d1 # insert src optag bits + + lea FP_DST(%a6),%a1 # pass dst ptr in a1 + lea FP_SRC(%a6),%a0 # pass src ptr in a0 + + mov.w (tbl_trans.w,%pc,%d1.w*2),%d1 + jsr (tbl_trans.w,%pc,%d1.w*1) # emulate + +funimp_fsave: + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w funimp_ena # some are enabled + +funimp_store: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn + bsr.l store_fpreg # store result to fp regfile + +funimp_gen_exit: + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + +funimp_gen_exit_cmp: + cmpi.b SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ? + beq.b funimp_gen_exit_a7 # yes + + cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ? + beq.b funimp_gen_exit_a7 # yes + +funimp_gen_exit_cont: + unlk %a6 + +funimp_gen_exit_cont2: + btst &0x7,(%sp) # is trace on? + beq.l _fpsp_done # no + +# this catches a problem with the case where an exception will be re-inserted +# into the machine. the frestore has already been executed...so, the fmov.l +# alone of the control register would trigger an unwanted exception. +# until I feel like fixing this, we'll sidestep the exception. + fsave -(%sp) + fmov.l %fpiar,0x14(%sp) # "Current PC" is in FPIAR + frestore (%sp)+ + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x24 + bra.l _real_trace + +funimp_gen_exit_a7: + btst &0x5,EXC_SR(%a6) # supervisor or user mode? + bne.b funimp_gen_exit_a7_s # supervisor + + mov.l %a0,-(%sp) + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + mov.l (%sp)+,%a0 + bra.b funimp_gen_exit_cont + +# if the instruction was executed from supervisor mode and the addressing +# mode was (a7)+, then the stack frame for the rte must be shifted "up" +# "n" bytes where "n" is the size of the src operand type. +# f<op>.{b,w,l,s,d,x,p} +funimp_gen_exit_a7_s: + mov.l %d0,-(%sp) # save d0 + mov.l EXC_A7(%a6),%d0 # load new a7' + sub.l OLD_A7(%a6),%d0 # subtract old a7' + mov.l 0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame + mov.l EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame + mov.w %d0,EXC_SR(%a6) # store incr number + mov.l (%sp)+,%d0 # restore d0 + + unlk %a6 + + add.w (%sp),%sp # stack frame shifted + bra.b funimp_gen_exit_cont2 + +###################### +# fmovecr.x #ccc,fpn # +###################### +funimp_fmovcr: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.l &0x0000007f,%d1 # pass rom offset in d1 + bsr.l smovcr + bra.w funimp_fsave + +######################################################################### + +# +# the user has enabled some exceptions. we figure not to see this too +# often so that's why it gets lower priority. +# +funimp_ena: + +# was an exception set that was also enabled? + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled and set + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b funimp_exc # at least one was set + +# no exception that was enabled was set BUT if we got an exact overflow +# and overflow wasn't enabled but inexact was (yech!) then this is +# an inexact exception; otherwise, return to normal non-exception flow. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? + beq.w funimp_store # no; return to normal flow + +# the overflow w/ exact result happened but was inexact set in the FPCR? +funimp_ovfl: + btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? + beq.w funimp_store # no; return to normal flow + bra.b funimp_exc_ovfl # yes + +# some exception happened that was actually enabled. +# we'll insert this new exception into the FPU and then return. +funimp_exc: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? + bne.b funimp_exc_force # no + +# the enabled exception was inexact. so, if it occurs with an overflow +# or underflow that was disabled, then we have to force an overflow or +# underflow frame. the eventual overflow or underflow handler will see that +# it's actually an inexact and act appropriately. this is the only easy +# way to have the EXOP available for the enabled inexact handler when +# a disabled overflow or underflow has also happened. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? + bne.b funimp_exc_ovfl # yes + btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? + bne.b funimp_exc_unfl # yes + +# force the fsave exception status bits to signal an exception of the +# appropriate type. don't forget to "skew" the source operand in case we +# "unskewed" the one the hardware initially gave us. +funimp_exc_force: + mov.l %d0,-(%sp) # save d0 + bsr.l funimp_skew # check for special case + mov.l (%sp)+,%d0 # restore d0 + mov.w (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) + bra.b funimp_gen_exit2 # exit with frestore + +tbl_funimp_except: + short 0xe002, 0xe006, 0xe004, 0xe005 + short 0xe003, 0xe002, 0xe001, 0xe001 + +# insert an overflow frame +funimp_exc_ovfl: + bsr.l funimp_skew # check for special case + mov.w &0xe005,2+FP_SRC(%a6) + bra.b funimp_gen_exit2 + +# insert an underflow frame +funimp_exc_unfl: + bsr.l funimp_skew # check for special case + mov.w &0xe003,2+FP_SRC(%a6) + +# this is the general exit point for an enabled exception that will be +# restored into the machine for the instruction just emulated. +funimp_gen_exit2: + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # insert exceptional status + + bra.w funimp_gen_exit_cmp + +############################################################################ + +# +# TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc> +# +# These instructions were implemented on the '881/2 and '040 in hardware but +# are emulated in software on the '060. +# +funimp_misc: + bfextu %d0{&10:&3},%d1 # extract mode field + cmpi.b %d1,&0x1 # is it an fdb<cc>? + beq.w funimp_fdbcc # yes + cmpi.b %d1,&0x7 # is it an fs<cc>? + bne.w funimp_fscc # yes + bfextu %d0{&13:&3},%d1 + cmpi.b %d1,&0x2 # is it an fs<cc>? + blt.w funimp_fscc # yes + +######################### +# ftrap<cc> # +# ftrap<cc>.w #<data> # +# ftrap<cc>.l #<data> # +######################### +funimp_ftrapcc: + + bsr.l _ftrapcc # FTRAP<cc>() + + cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? + beq.w funimp_bsun # yes + + cmpi.b SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur? + bne.w funimp_done # no + +# FP UNIMP FRAME TRAP FRAME +# ***************** ***************** +# ** <EA> ** ** Current PC ** +# ***************** ***************** +# * 0x2 * 0x02c * * 0x2 * 0x01c * +# ***************** ***************** +# ** Next PC ** ** Next PC ** +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# (6 words) (6 words) +# +# the ftrapcc instruction should take a trap. so, here we must create a +# trap stack frame from an unimplemented fp instruction stack frame and +# jump to the user supplied entry point for the trap exception +funimp_ftrapcc_tp: + mov.l USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC + mov.w &0x201c,EXC_VOFF(%a6) # Vector Offset = 0x01c + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + bra.l _real_trap + +######################### +# fdb<cc> Dn,<label> # +######################### +funimp_fdbcc: + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # read displacement + + tst.l %d1 # did ifetch fail? + bne.w funimp_iacc # yes + + ext.l %d0 # sign extend displacement + + bsr.l _fdbcc # FDB<cc>() + + cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? + beq.w funimp_bsun + + bra.w funimp_done # branch to finish + +################# +# fs<cc>.b <ea> # +################# +funimp_fscc: + + bsr.l _fscc # FS<cc>() + +# I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction +# does not need to update "An" before taking a bsun exception. + cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? + beq.w funimp_bsun + + btst &0x5,EXC_SR(%a6) # yes; is it a user mode exception? + bne.b funimp_fscc_s # no + +funimp_fscc_u: + mov.l EXC_A7(%a6),%a0 # yes; set new USP + mov.l %a0,%usp + bra.w funimp_done # branch to finish + +# remember, I'm assuming that post-increment is bogus...(it IS!!!) +# so, the least significant WORD of the stacked effective address got +# overwritten by the "fs<cc> -(An)". We must shift the stack frame "down" +# so that the rte will work correctly without destroying the result. +# even though the operation size is byte, the stack ptr is decr by 2. +# +# remember, also, this instruction may be traced. +funimp_fscc_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg # was a7 modified? + bne.w funimp_done # no + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + btst &0x7,(%sp) # is trace enabled? + bne.b funimp_fscc_s_trace # yes + + subq.l &0x2,%sp + mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" + mov.l 0x6(%sp),0x4(%sp) # shift lo(PC),voff "down" + bra.l _fpsp_done + +funimp_fscc_s_trace: + subq.l &0x2,%sp + mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down" + mov.w 0x6(%sp),0x4(%sp) # shift lo(PC) + mov.w &0x2024,0x6(%sp) # fmt/voff = $2024 + fmov.l %fpiar,0x8(%sp) # insert "current PC" + + bra.l _real_trace + +# +# The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert +# the fp unimplemented instruction exception stack frame into a bsun stack frame, +# restore a bsun exception into the machine, and branch to the user +# supplied bsun hook. +# +# FP UNIMP FRAME BSUN FRAME +# ***************** ***************** +# ** <EA> ** * 0x0 * 0x0c0 * +# ***************** ***************** +# * 0x2 * 0x02c * ** Current PC ** +# ***************** ***************** +# ** Next PC ** * SR * +# ***************** ***************** +# * SR * (4 words) +# ***************** +# (6 words) +# +funimp_bsun: + mov.w &0x00c0,2+EXC_EA(%a6) # Fmt = 0x0; Vector Offset = 0x0c0 + mov.l USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC + mov.w EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up" + + mov.w &0xe000,2+FP_SRC(%a6) # bsun exception enabled + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore bsun exception + + unlk %a6 + + addq.l &0x4,%sp # erase sludge + + bra.l _real_bsun # branch to user bsun hook + +# +# all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame +# and return. +# +# as usual, we have to check for trace mode being on here. since instructions +# modifying the supervisor stack frame don't pass through here, this is a +# relatively easy task. +# +funimp_done: + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + btst &0x7,(%sp) # is trace enabled? + bne.b funimp_trace # yes + + bra.l _fpsp_done + +# FP UNIMP FRAME TRACE FRAME +# ***************** ***************** +# ** <EA> ** ** Current PC ** +# ***************** ***************** +# * 0x2 * 0x02c * * 0x2 * 0x024 * +# ***************** ***************** +# ** Next PC ** ** Next PC ** +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# (6 words) (6 words) +# +# the fscc instruction should take a trace trap. so, here we must create a +# trace stack frame from an unimplemented fp instruction stack frame and +# jump to the user supplied entry point for the trace exception +funimp_trace: + fmov.l %fpiar,0x8(%sp) # current PC is in fpiar + mov.b &0x24,0x7(%sp) # vector offset = 0x024 + + bra.l _real_trace + +################################################################ + + global tbl_trans + swbeg &0x1c0 +tbl_trans: + short tbl_trans - tbl_trans # $00-0 fmovecr all + short tbl_trans - tbl_trans # $00-1 fmovecr all + short tbl_trans - tbl_trans # $00-2 fmovecr all + short tbl_trans - tbl_trans # $00-3 fmovecr all + short tbl_trans - tbl_trans # $00-4 fmovecr all + short tbl_trans - tbl_trans # $00-5 fmovecr all + short tbl_trans - tbl_trans # $00-6 fmovecr all + short tbl_trans - tbl_trans # $00-7 fmovecr all + + short tbl_trans - tbl_trans # $01-0 fint norm + short tbl_trans - tbl_trans # $01-1 fint zero + short tbl_trans - tbl_trans # $01-2 fint inf + short tbl_trans - tbl_trans # $01-3 fint qnan + short tbl_trans - tbl_trans # $01-5 fint denorm + short tbl_trans - tbl_trans # $01-4 fint snan + short tbl_trans - tbl_trans # $01-6 fint unnorm + short tbl_trans - tbl_trans # $01-7 ERROR + + short ssinh - tbl_trans # $02-0 fsinh norm + short src_zero - tbl_trans # $02-1 fsinh zero + short src_inf - tbl_trans # $02-2 fsinh inf + short src_qnan - tbl_trans # $02-3 fsinh qnan + short ssinhd - tbl_trans # $02-5 fsinh denorm + short src_snan - tbl_trans # $02-4 fsinh snan + short tbl_trans - tbl_trans # $02-6 fsinh unnorm + short tbl_trans - tbl_trans # $02-7 ERROR + + short tbl_trans - tbl_trans # $03-0 fintrz norm + short tbl_trans - tbl_trans # $03-1 fintrz zero + short tbl_trans - tbl_trans # $03-2 fintrz inf + short tbl_trans - tbl_trans # $03-3 fintrz qnan + short tbl_trans - tbl_trans # $03-5 fintrz denorm + short tbl_trans - tbl_trans # $03-4 fintrz snan + short tbl_trans - tbl_trans # $03-6 fintrz unnorm + short tbl_trans - tbl_trans # $03-7 ERROR + + short tbl_trans - tbl_trans # $04-0 fsqrt norm + short tbl_trans - tbl_trans # $04-1 fsqrt zero + short tbl_trans - tbl_trans # $04-2 fsqrt inf + short tbl_trans - tbl_trans # $04-3 fsqrt qnan + short tbl_trans - tbl_trans # $04-5 fsqrt denorm + short tbl_trans - tbl_trans # $04-4 fsqrt snan + short tbl_trans - tbl_trans # $04-6 fsqrt unnorm + short tbl_trans - tbl_trans # $04-7 ERROR + + short tbl_trans - tbl_trans # $05-0 ERROR + short tbl_trans - tbl_trans # $05-1 ERROR + short tbl_trans - tbl_trans # $05-2 ERROR + short tbl_trans - tbl_trans # $05-3 ERROR + short tbl_trans - tbl_trans # $05-4 ERROR + short tbl_trans - tbl_trans # $05-5 ERROR + short tbl_trans - tbl_trans # $05-6 ERROR + short tbl_trans - tbl_trans # $05-7 ERROR + + short slognp1 - tbl_trans # $06-0 flognp1 norm + short src_zero - tbl_trans # $06-1 flognp1 zero + short sopr_inf - tbl_trans # $06-2 flognp1 inf + short src_qnan - tbl_trans # $06-3 flognp1 qnan + short slognp1d - tbl_trans # $06-5 flognp1 denorm + short src_snan - tbl_trans # $06-4 flognp1 snan + short tbl_trans - tbl_trans # $06-6 flognp1 unnorm + short tbl_trans - tbl_trans # $06-7 ERROR + + short tbl_trans - tbl_trans # $07-0 ERROR + short tbl_trans - tbl_trans # $07-1 ERROR + short tbl_trans - tbl_trans # $07-2 ERROR + short tbl_trans - tbl_trans # $07-3 ERROR + short tbl_trans - tbl_trans # $07-4 ERROR + short tbl_trans - tbl_trans # $07-5 ERROR + short tbl_trans - tbl_trans # $07-6 ERROR + short tbl_trans - tbl_trans # $07-7 ERROR + + short setoxm1 - tbl_trans # $08-0 fetoxm1 norm + short src_zero - tbl_trans # $08-1 fetoxm1 zero + short setoxm1i - tbl_trans # $08-2 fetoxm1 inf + short src_qnan - tbl_trans # $08-3 fetoxm1 qnan + short setoxm1d - tbl_trans # $08-5 fetoxm1 denorm + short src_snan - tbl_trans # $08-4 fetoxm1 snan + short tbl_trans - tbl_trans # $08-6 fetoxm1 unnorm + short tbl_trans - tbl_trans # $08-7 ERROR + + short stanh - tbl_trans # $09-0 ftanh norm + short src_zero - tbl_trans # $09-1 ftanh zero + short src_one - tbl_trans # $09-2 ftanh inf + short src_qnan - tbl_trans # $09-3 ftanh qnan + short stanhd - tbl_trans # $09-5 ftanh denorm + short src_snan - tbl_trans # $09-4 ftanh snan + short tbl_trans - tbl_trans # $09-6 ftanh unnorm + short tbl_trans - tbl_trans # $09-7 ERROR + + short satan - tbl_trans # $0a-0 fatan norm + short src_zero - tbl_trans # $0a-1 fatan zero + short spi_2 - tbl_trans # $0a-2 fatan inf + short src_qnan - tbl_trans # $0a-3 fatan qnan + short satand - tbl_trans # $0a-5 fatan denorm + short src_snan - tbl_trans # $0a-4 fatan snan + short tbl_trans - tbl_trans # $0a-6 fatan unnorm + short tbl_trans - tbl_trans # $0a-7 ERROR + + short tbl_trans - tbl_trans # $0b-0 ERROR + short tbl_trans - tbl_trans # $0b-1 ERROR + short tbl_trans - tbl_trans # $0b-2 ERROR + short tbl_trans - tbl_trans # $0b-3 ERROR + short tbl_trans - tbl_trans # $0b-4 ERROR + short tbl_trans - tbl_trans # $0b-5 ERROR + short tbl_trans - tbl_trans # $0b-6 ERROR + short tbl_trans - tbl_trans # $0b-7 ERROR + + short sasin - tbl_trans # $0c-0 fasin norm + short src_zero - tbl_trans # $0c-1 fasin zero + short t_operr - tbl_trans # $0c-2 fasin inf + short src_qnan - tbl_trans # $0c-3 fasin qnan + short sasind - tbl_trans # $0c-5 fasin denorm + short src_snan - tbl_trans # $0c-4 fasin snan + short tbl_trans - tbl_trans # $0c-6 fasin unnorm + short tbl_trans - tbl_trans # $0c-7 ERROR + + short satanh - tbl_trans # $0d-0 fatanh norm + short src_zero - tbl_trans # $0d-1 fatanh zero + short t_operr - tbl_trans # $0d-2 fatanh inf + short src_qnan - tbl_trans # $0d-3 fatanh qnan + short satanhd - tbl_trans # $0d-5 fatanh denorm + short src_snan - tbl_trans # $0d-4 fatanh snan + short tbl_trans - tbl_trans # $0d-6 fatanh unnorm + short tbl_trans - tbl_trans # $0d-7 ERROR + + short ssin - tbl_trans # $0e-0 fsin norm + short src_zero - tbl_trans # $0e-1 fsin zero + short t_operr - tbl_trans # $0e-2 fsin inf + short src_qnan - tbl_trans # $0e-3 fsin qnan + short ssind - tbl_trans # $0e-5 fsin denorm + short src_snan - tbl_trans # $0e-4 fsin snan + short tbl_trans - tbl_trans # $0e-6 fsin unnorm + short tbl_trans - tbl_trans # $0e-7 ERROR + + short stan - tbl_trans # $0f-0 ftan norm + short src_zero - tbl_trans # $0f-1 ftan zero + short t_operr - tbl_trans # $0f-2 ftan inf + short src_qnan - tbl_trans # $0f-3 ftan qnan + short stand - tbl_trans # $0f-5 ftan denorm + short src_snan - tbl_trans # $0f-4 ftan snan + short tbl_trans - tbl_trans # $0f-6 ftan unnorm + short tbl_trans - tbl_trans # $0f-7 ERROR + + short setox - tbl_trans # $10-0 fetox norm + short ld_pone - tbl_trans # $10-1 fetox zero + short szr_inf - tbl_trans # $10-2 fetox inf + short src_qnan - tbl_trans # $10-3 fetox qnan + short setoxd - tbl_trans # $10-5 fetox denorm + short src_snan - tbl_trans # $10-4 fetox snan + short tbl_trans - tbl_trans # $10-6 fetox unnorm + short tbl_trans - tbl_trans # $10-7 ERROR + + short stwotox - tbl_trans # $11-0 ftwotox norm + short ld_pone - tbl_trans # $11-1 ftwotox zero + short szr_inf - tbl_trans # $11-2 ftwotox inf + short src_qnan - tbl_trans # $11-3 ftwotox qnan + short stwotoxd - tbl_trans # $11-5 ftwotox denorm + short src_snan - tbl_trans # $11-4 ftwotox snan + short tbl_trans - tbl_trans # $11-6 ftwotox unnorm + short tbl_trans - tbl_trans # $11-7 ERROR + + short stentox - tbl_trans # $12-0 ftentox norm + short ld_pone - tbl_trans # $12-1 ftentox zero + short szr_inf - tbl_trans # $12-2 ftentox inf + short src_qnan - tbl_trans # $12-3 ftentox qnan + short stentoxd - tbl_trans # $12-5 ftentox denorm + short src_snan - tbl_trans # $12-4 ftentox snan + short tbl_trans - tbl_trans # $12-6 ftentox unnorm + short tbl_trans - tbl_trans # $12-7 ERROR + + short tbl_trans - tbl_trans # $13-0 ERROR + short tbl_trans - tbl_trans # $13-1 ERROR + short tbl_trans - tbl_trans # $13-2 ERROR + short tbl_trans - tbl_trans # $13-3 ERROR + short tbl_trans - tbl_trans # $13-4 ERROR + short tbl_trans - tbl_trans # $13-5 ERROR + short tbl_trans - tbl_trans # $13-6 ERROR + short tbl_trans - tbl_trans # $13-7 ERROR + + short slogn - tbl_trans # $14-0 flogn norm + short t_dz2 - tbl_trans # $14-1 flogn zero + short sopr_inf - tbl_trans # $14-2 flogn inf + short src_qnan - tbl_trans # $14-3 flogn qnan + short slognd - tbl_trans # $14-5 flogn denorm + short src_snan - tbl_trans # $14-4 flogn snan + short tbl_trans - tbl_trans # $14-6 flogn unnorm + short tbl_trans - tbl_trans # $14-7 ERROR + + short slog10 - tbl_trans # $15-0 flog10 norm + short t_dz2 - tbl_trans # $15-1 flog10 zero + short sopr_inf - tbl_trans # $15-2 flog10 inf + short src_qnan - tbl_trans # $15-3 flog10 qnan + short slog10d - tbl_trans # $15-5 flog10 denorm + short src_snan - tbl_trans # $15-4 flog10 snan + short tbl_trans - tbl_trans # $15-6 flog10 unnorm + short tbl_trans - tbl_trans # $15-7 ERROR + + short slog2 - tbl_trans # $16-0 flog2 norm + short t_dz2 - tbl_trans # $16-1 flog2 zero + short sopr_inf - tbl_trans # $16-2 flog2 inf + short src_qnan - tbl_trans # $16-3 flog2 qnan + short slog2d - tbl_trans # $16-5 flog2 denorm + short src_snan - tbl_trans # $16-4 flog2 snan + short tbl_trans - tbl_trans # $16-6 flog2 unnorm + short tbl_trans - tbl_trans # $16-7 ERROR + + short tbl_trans - tbl_trans # $17-0 ERROR + short tbl_trans - tbl_trans # $17-1 ERROR + short tbl_trans - tbl_trans # $17-2 ERROR + short tbl_trans - tbl_trans # $17-3 ERROR + short tbl_trans - tbl_trans # $17-4 ERROR + short tbl_trans - tbl_trans # $17-5 ERROR + short tbl_trans - tbl_trans # $17-6 ERROR + short tbl_trans - tbl_trans # $17-7 ERROR + + short tbl_trans - tbl_trans # $18-0 fabs norm + short tbl_trans - tbl_trans # $18-1 fabs zero + short tbl_trans - tbl_trans # $18-2 fabs inf + short tbl_trans - tbl_trans # $18-3 fabs qnan + short tbl_trans - tbl_trans # $18-5 fabs denorm + short tbl_trans - tbl_trans # $18-4 fabs snan + short tbl_trans - tbl_trans # $18-6 fabs unnorm + short tbl_trans - tbl_trans # $18-7 ERROR + + short scosh - tbl_trans # $19-0 fcosh norm + short ld_pone - tbl_trans # $19-1 fcosh zero + short ld_pinf - tbl_trans # $19-2 fcosh inf + short src_qnan - tbl_trans # $19-3 fcosh qnan + short scoshd - tbl_trans # $19-5 fcosh denorm + short src_snan - tbl_trans # $19-4 fcosh snan + short tbl_trans - tbl_trans # $19-6 fcosh unnorm + short tbl_trans - tbl_trans # $19-7 ERROR + + short tbl_trans - tbl_trans # $1a-0 fneg norm + short tbl_trans - tbl_trans # $1a-1 fneg zero + short tbl_trans - tbl_trans # $1a-2 fneg inf + short tbl_trans - tbl_trans # $1a-3 fneg qnan + short tbl_trans - tbl_trans # $1a-5 fneg denorm + short tbl_trans - tbl_trans # $1a-4 fneg snan + short tbl_trans - tbl_trans # $1a-6 fneg unnorm + short tbl_trans - tbl_trans # $1a-7 ERROR + + short tbl_trans - tbl_trans # $1b-0 ERROR + short tbl_trans - tbl_trans # $1b-1 ERROR + short tbl_trans - tbl_trans # $1b-2 ERROR + short tbl_trans - tbl_trans # $1b-3 ERROR + short tbl_trans - tbl_trans # $1b-4 ERROR + short tbl_trans - tbl_trans # $1b-5 ERROR + short tbl_trans - tbl_trans # $1b-6 ERROR + short tbl_trans - tbl_trans # $1b-7 ERROR + + short sacos - tbl_trans # $1c-0 facos norm + short ld_ppi2 - tbl_trans # $1c-1 facos zero + short t_operr - tbl_trans # $1c-2 facos inf + short src_qnan - tbl_trans # $1c-3 facos qnan + short sacosd - tbl_trans # $1c-5 facos denorm + short src_snan - tbl_trans # $1c-4 facos snan + short tbl_trans - tbl_trans # $1c-6 facos unnorm + short tbl_trans - tbl_trans # $1c-7 ERROR + + short scos - tbl_trans # $1d-0 fcos norm + short ld_pone - tbl_trans # $1d-1 fcos zero + short t_operr - tbl_trans # $1d-2 fcos inf + short src_qnan - tbl_trans # $1d-3 fcos qnan + short scosd - tbl_trans # $1d-5 fcos denorm + short src_snan - tbl_trans # $1d-4 fcos snan + short tbl_trans - tbl_trans # $1d-6 fcos unnorm + short tbl_trans - tbl_trans # $1d-7 ERROR + + short sgetexp - tbl_trans # $1e-0 fgetexp norm + short src_zero - tbl_trans # $1e-1 fgetexp zero + short t_operr - tbl_trans # $1e-2 fgetexp inf + short src_qnan - tbl_trans # $1e-3 fgetexp qnan + short sgetexpd - tbl_trans # $1e-5 fgetexp denorm + short src_snan - tbl_trans # $1e-4 fgetexp snan + short tbl_trans - tbl_trans # $1e-6 fgetexp unnorm + short tbl_trans - tbl_trans # $1e-7 ERROR + + short sgetman - tbl_trans # $1f-0 fgetman norm + short src_zero - tbl_trans # $1f-1 fgetman zero + short t_operr - tbl_trans # $1f-2 fgetman inf + short src_qnan - tbl_trans # $1f-3 fgetman qnan + short sgetmand - tbl_trans # $1f-5 fgetman denorm + short src_snan - tbl_trans # $1f-4 fgetman snan + short tbl_trans - tbl_trans # $1f-6 fgetman unnorm + short tbl_trans - tbl_trans # $1f-7 ERROR + + short tbl_trans - tbl_trans # $20-0 fdiv norm + short tbl_trans - tbl_trans # $20-1 fdiv zero + short tbl_trans - tbl_trans # $20-2 fdiv inf + short tbl_trans - tbl_trans # $20-3 fdiv qnan + short tbl_trans - tbl_trans # $20-5 fdiv denorm + short tbl_trans - tbl_trans # $20-4 fdiv snan + short tbl_trans - tbl_trans # $20-6 fdiv unnorm + short tbl_trans - tbl_trans # $20-7 ERROR + + short smod_snorm - tbl_trans # $21-0 fmod norm + short smod_szero - tbl_trans # $21-1 fmod zero + short smod_sinf - tbl_trans # $21-2 fmod inf + short sop_sqnan - tbl_trans # $21-3 fmod qnan + short smod_sdnrm - tbl_trans # $21-5 fmod denorm + short sop_ssnan - tbl_trans # $21-4 fmod snan + short tbl_trans - tbl_trans # $21-6 fmod unnorm + short tbl_trans - tbl_trans # $21-7 ERROR + + short tbl_trans - tbl_trans # $22-0 fadd norm + short tbl_trans - tbl_trans # $22-1 fadd zero + short tbl_trans - tbl_trans # $22-2 fadd inf + short tbl_trans - tbl_trans # $22-3 fadd qnan + short tbl_trans - tbl_trans # $22-5 fadd denorm + short tbl_trans - tbl_trans # $22-4 fadd snan + short tbl_trans - tbl_trans # $22-6 fadd unnorm + short tbl_trans - tbl_trans # $22-7 ERROR + + short tbl_trans - tbl_trans # $23-0 fmul norm + short tbl_trans - tbl_trans # $23-1 fmul zero + short tbl_trans - tbl_trans # $23-2 fmul inf + short tbl_trans - tbl_trans # $23-3 fmul qnan + short tbl_trans - tbl_trans # $23-5 fmul denorm + short tbl_trans - tbl_trans # $23-4 fmul snan + short tbl_trans - tbl_trans # $23-6 fmul unnorm + short tbl_trans - tbl_trans # $23-7 ERROR + + short tbl_trans - tbl_trans # $24-0 fsgldiv norm + short tbl_trans - tbl_trans # $24-1 fsgldiv zero + short tbl_trans - tbl_trans # $24-2 fsgldiv inf + short tbl_trans - tbl_trans # $24-3 fsgldiv qnan + short tbl_trans - tbl_trans # $24-5 fsgldiv denorm + short tbl_trans - tbl_trans # $24-4 fsgldiv snan + short tbl_trans - tbl_trans # $24-6 fsgldiv unnorm + short tbl_trans - tbl_trans # $24-7 ERROR + + short srem_snorm - tbl_trans # $25-0 frem norm + short srem_szero - tbl_trans # $25-1 frem zero + short srem_sinf - tbl_trans # $25-2 frem inf + short sop_sqnan - tbl_trans # $25-3 frem qnan + short srem_sdnrm - tbl_trans # $25-5 frem denorm + short sop_ssnan - tbl_trans # $25-4 frem snan + short tbl_trans - tbl_trans # $25-6 frem unnorm + short tbl_trans - tbl_trans # $25-7 ERROR + + short sscale_snorm - tbl_trans # $26-0 fscale norm + short sscale_szero - tbl_trans # $26-1 fscale zero + short sscale_sinf - tbl_trans # $26-2 fscale inf + short sop_sqnan - tbl_trans # $26-3 fscale qnan + short sscale_sdnrm - tbl_trans # $26-5 fscale denorm + short sop_ssnan - tbl_trans # $26-4 fscale snan + short tbl_trans - tbl_trans # $26-6 fscale unnorm + short tbl_trans - tbl_trans # $26-7 ERROR + + short tbl_trans - tbl_trans # $27-0 fsglmul norm + short tbl_trans - tbl_trans # $27-1 fsglmul zero + short tbl_trans - tbl_trans # $27-2 fsglmul inf + short tbl_trans - tbl_trans # $27-3 fsglmul qnan + short tbl_trans - tbl_trans # $27-5 fsglmul denorm + short tbl_trans - tbl_trans # $27-4 fsglmul snan + short tbl_trans - tbl_trans # $27-6 fsglmul unnorm + short tbl_trans - tbl_trans # $27-7 ERROR + + short tbl_trans - tbl_trans # $28-0 fsub norm + short tbl_trans - tbl_trans # $28-1 fsub zero + short tbl_trans - tbl_trans # $28-2 fsub inf + short tbl_trans - tbl_trans # $28-3 fsub qnan + short tbl_trans - tbl_trans # $28-5 fsub denorm + short tbl_trans - tbl_trans # $28-4 fsub snan + short tbl_trans - tbl_trans # $28-6 fsub unnorm + short tbl_trans - tbl_trans # $28-7 ERROR + + short tbl_trans - tbl_trans # $29-0 ERROR + short tbl_trans - tbl_trans # $29-1 ERROR + short tbl_trans - tbl_trans # $29-2 ERROR + short tbl_trans - tbl_trans # $29-3 ERROR + short tbl_trans - tbl_trans # $29-4 ERROR + short tbl_trans - tbl_trans # $29-5 ERROR + short tbl_trans - tbl_trans # $29-6 ERROR + short tbl_trans - tbl_trans # $29-7 ERROR + + short tbl_trans - tbl_trans # $2a-0 ERROR + short tbl_trans - tbl_trans # $2a-1 ERROR + short tbl_trans - tbl_trans # $2a-2 ERROR + short tbl_trans - tbl_trans # $2a-3 ERROR + short tbl_trans - tbl_trans # $2a-4 ERROR + short tbl_trans - tbl_trans # $2a-5 ERROR + short tbl_trans - tbl_trans # $2a-6 ERROR + short tbl_trans - tbl_trans # $2a-7 ERROR + + short tbl_trans - tbl_trans # $2b-0 ERROR + short tbl_trans - tbl_trans # $2b-1 ERROR + short tbl_trans - tbl_trans # $2b-2 ERROR + short tbl_trans - tbl_trans # $2b-3 ERROR + short tbl_trans - tbl_trans # $2b-4 ERROR + short tbl_trans - tbl_trans # $2b-5 ERROR + short tbl_trans - tbl_trans # $2b-6 ERROR + short tbl_trans - tbl_trans # $2b-7 ERROR + + short tbl_trans - tbl_trans # $2c-0 ERROR + short tbl_trans - tbl_trans # $2c-1 ERROR + short tbl_trans - tbl_trans # $2c-2 ERROR + short tbl_trans - tbl_trans # $2c-3 ERROR + short tbl_trans - tbl_trans # $2c-4 ERROR + short tbl_trans - tbl_trans # $2c-5 ERROR + short tbl_trans - tbl_trans # $2c-6 ERROR + short tbl_trans - tbl_trans # $2c-7 ERROR + + short tbl_trans - tbl_trans # $2d-0 ERROR + short tbl_trans - tbl_trans # $2d-1 ERROR + short tbl_trans - tbl_trans # $2d-2 ERROR + short tbl_trans - tbl_trans # $2d-3 ERROR + short tbl_trans - tbl_trans # $2d-4 ERROR + short tbl_trans - tbl_trans # $2d-5 ERROR + short tbl_trans - tbl_trans # $2d-6 ERROR + short tbl_trans - tbl_trans # $2d-7 ERROR + + short tbl_trans - tbl_trans # $2e-0 ERROR + short tbl_trans - tbl_trans # $2e-1 ERROR + short tbl_trans - tbl_trans # $2e-2 ERROR + short tbl_trans - tbl_trans # $2e-3 ERROR + short tbl_trans - tbl_trans # $2e-4 ERROR + short tbl_trans - tbl_trans # $2e-5 ERROR + short tbl_trans - tbl_trans # $2e-6 ERROR + short tbl_trans - tbl_trans # $2e-7 ERROR + + short tbl_trans - tbl_trans # $2f-0 ERROR + short tbl_trans - tbl_trans # $2f-1 ERROR + short tbl_trans - tbl_trans # $2f-2 ERROR + short tbl_trans - tbl_trans # $2f-3 ERROR + short tbl_trans - tbl_trans # $2f-4 ERROR + short tbl_trans - tbl_trans # $2f-5 ERROR + short tbl_trans - tbl_trans # $2f-6 ERROR + short tbl_trans - tbl_trans # $2f-7 ERROR + + short ssincos - tbl_trans # $30-0 fsincos norm + short ssincosz - tbl_trans # $30-1 fsincos zero + short ssincosi - tbl_trans # $30-2 fsincos inf + short ssincosqnan - tbl_trans # $30-3 fsincos qnan + short ssincosd - tbl_trans # $30-5 fsincos denorm + short ssincossnan - tbl_trans # $30-4 fsincos snan + short tbl_trans - tbl_trans # $30-6 fsincos unnorm + short tbl_trans - tbl_trans # $30-7 ERROR + + short ssincos - tbl_trans # $31-0 fsincos norm + short ssincosz - tbl_trans # $31-1 fsincos zero + short ssincosi - tbl_trans # $31-2 fsincos inf + short ssincosqnan - tbl_trans # $31-3 fsincos qnan + short ssincosd - tbl_trans # $31-5 fsincos denorm + short ssincossnan - tbl_trans # $31-4 fsincos snan + short tbl_trans - tbl_trans # $31-6 fsincos unnorm + short tbl_trans - tbl_trans # $31-7 ERROR + + short ssincos - tbl_trans # $32-0 fsincos norm + short ssincosz - tbl_trans # $32-1 fsincos zero + short ssincosi - tbl_trans # $32-2 fsincos inf + short ssincosqnan - tbl_trans # $32-3 fsincos qnan + short ssincosd - tbl_trans # $32-5 fsincos denorm + short ssincossnan - tbl_trans # $32-4 fsincos snan + short tbl_trans - tbl_trans # $32-6 fsincos unnorm + short tbl_trans - tbl_trans # $32-7 ERROR + + short ssincos - tbl_trans # $33-0 fsincos norm + short ssincosz - tbl_trans # $33-1 fsincos zero + short ssincosi - tbl_trans # $33-2 fsincos inf + short ssincosqnan - tbl_trans # $33-3 fsincos qnan + short ssincosd - tbl_trans # $33-5 fsincos denorm + short ssincossnan - tbl_trans # $33-4 fsincos snan + short tbl_trans - tbl_trans # $33-6 fsincos unnorm + short tbl_trans - tbl_trans # $33-7 ERROR + + short ssincos - tbl_trans # $34-0 fsincos norm + short ssincosz - tbl_trans # $34-1 fsincos zero + short ssincosi - tbl_trans # $34-2 fsincos inf + short ssincosqnan - tbl_trans # $34-3 fsincos qnan + short ssincosd - tbl_trans # $34-5 fsincos denorm + short ssincossnan - tbl_trans # $34-4 fsincos snan + short tbl_trans - tbl_trans # $34-6 fsincos unnorm + short tbl_trans - tbl_trans # $34-7 ERROR + + short ssincos - tbl_trans # $35-0 fsincos norm + short ssincosz - tbl_trans # $35-1 fsincos zero + short ssincosi - tbl_trans # $35-2 fsincos inf + short ssincosqnan - tbl_trans # $35-3 fsincos qnan + short ssincosd - tbl_trans # $35-5 fsincos denorm + short ssincossnan - tbl_trans # $35-4 fsincos snan + short tbl_trans - tbl_trans # $35-6 fsincos unnorm + short tbl_trans - tbl_trans # $35-7 ERROR + + short ssincos - tbl_trans # $36-0 fsincos norm + short ssincosz - tbl_trans # $36-1 fsincos zero + short ssincosi - tbl_trans # $36-2 fsincos inf + short ssincosqnan - tbl_trans # $36-3 fsincos qnan + short ssincosd - tbl_trans # $36-5 fsincos denorm + short ssincossnan - tbl_trans # $36-4 fsincos snan + short tbl_trans - tbl_trans # $36-6 fsincos unnorm + short tbl_trans - tbl_trans # $36-7 ERROR + + short ssincos - tbl_trans # $37-0 fsincos norm + short ssincosz - tbl_trans # $37-1 fsincos zero + short ssincosi - tbl_trans # $37-2 fsincos inf + short ssincosqnan - tbl_trans # $37-3 fsincos qnan + short ssincosd - tbl_trans # $37-5 fsincos denorm + short ssincossnan - tbl_trans # $37-4 fsincos snan + short tbl_trans - tbl_trans # $37-6 fsincos unnorm + short tbl_trans - tbl_trans # $37-7 ERROR + +########## + +# the instruction fetch access for the displacement word for the +# fdbcc emulation failed. here, we create an access error frame +# from the current frame and branch to _real_access(). +funimp_iacc: + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + + mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC + + unlk %a6 + + mov.l (%sp),-(%sp) # store SR,hi(PC) + mov.w 0x8(%sp),0x4(%sp) # store lo(PC) + mov.w &0x4008,0x6(%sp) # store voff + mov.l 0x2(%sp),0x8(%sp) # store EA + mov.l &0x09428001,0xc(%sp) # store FSLW + + btst &0x5,(%sp) # user or supervisor mode? + beq.b funimp_iacc_end # user + bset &0x2,0xd(%sp) # set supervisor TM bit + +funimp_iacc_end: + bra.l _real_access + +######################################################################### +# ssin(): computes the sine of a normalized input # +# ssind(): computes the sine of a denormalized input # +# scos(): computes the cosine of a normalized input # +# scosd(): computes the cosine of a denormalized input # +# ssincos(): computes the sine and cosine of a normalized input # +# ssincosd(): computes the sine and cosine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = sin(X) or cos(X) # +# # +# For ssincos(X): # +# fp0 = sin(X) # +# fp1 = cos(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 1 ulp in 64 significant bit, i.e. # +# within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# SIN and COS: # +# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. # +# # +# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. # +# # +# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # +# k = N mod 4, so in particular, k = 0,1,2,or 3. # +# Overwrite k by k := k + AdjN. # +# # +# 4. If k is even, go to 6. # +# # +# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # +# Return sgn*cos(r) where cos(r) is approximated by an # +# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), # +# s = r*r. # +# Exit. # +# # +# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # +# where sin(r) is approximated by an odd polynomial in r # +# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. # +# Exit. # +# # +# 7. If |X| > 1, go to 9. # +# # +# 8. (|X|<2**(-40)) If SIN is invoked, return X; # +# otherwise return 1. # +# # +# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # +# go back to 3. # +# # +# SINCOS: # +# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # +# # +# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # +# k = N mod 4, so in particular, k = 0,1,2,or 3. # +# # +# 3. If k is even, go to 5. # +# # +# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. # +# j1 exclusive or with the l.s.b. of k. # +# sgn1 := (-1)**j1, sgn2 := (-1)**j2. # +# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where # +# sin(r) and cos(r) are computed as odd and even # +# polynomials in r, respectively. Exit # +# # +# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. # +# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where # +# sin(r) and cos(r) are computed as odd and even # +# polynomials in r, respectively. Exit # +# # +# 6. If |X| > 1, go to 8. # +# # +# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. # +# # +# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, # +# go back to 2. # +# # +######################################################################### + +SINA7: long 0xBD6AAA77,0xCCC994F5 +SINA6: long 0x3DE61209,0x7AAE8DA1 +SINA5: long 0xBE5AE645,0x2A118AE4 +SINA4: long 0x3EC71DE3,0xA5341531 +SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 +SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000 +SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 + +COSB8: long 0x3D2AC4D0,0xD6011EE3 +COSB7: long 0xBDA9396F,0x9F45AC19 +COSB6: long 0x3E21EED9,0x0612C972 +COSB5: long 0xBE927E4F,0xB79D9FCF +COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 +COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 +COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E +COSB1: long 0xBF000000 + + set INARG,FP_SCR0 + + set X,FP_SCR0 +# set XDCARE,X+2 + set XFRAC,X+4 + + set RPRIME,FP_SCR0 + set SPRIME,FP_SCR1 + + set POSNEG1,L_SCR1 + set TWOTO63,L_SCR1 + + set ENDFLAG,L_SCR2 + set INT,L_SCR2 + + set ADJN,L_SCR3 + +############################################ + global ssin +ssin: + mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0 + bra.b SINBGN + +############################################ + global scos +scos: + mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1 + +############################################ +SINBGN: +#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE + + fmov.x (%a0),%fp0 # LOAD INPUT + fmov.x %fp0,X(%a6) # save input at X + +# "COMPACTIFY" X + mov.l (%a0),%d1 # put exp in hi word + mov.w 4(%a0),%d1 # fetch hi(man) + and.l &0x7FFFFFFF,%d1 # strip sign + + cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)? + bge.b SOK1 # no + bra.w SINSM # yes; input is very small + +SOK1: + cmp.l %d1,&0x4004BC7E # is |X| < 15 PI? + blt.b SINMAIN # no + bra.w SREDUCEX # yes; input is very large + +#--THIS IS THE USUAL CASE, |X| <= 15 PI. +#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. +SINMAIN: + fmov.x %fp0,%fp1 + fmul.d TWOBYPI(%pc),%fp1 # X*2/PI + + lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 + + fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER + + mov.l INT(%a6),%d1 # make a copy of N + asl.l &4,%d1 # N *= 16 + add.l %d1,%a1 # tbl_addr = a1 + (N*16) + +# A1 IS THE ADDRESS OF N*PIBY2 +# ...WHICH IS IN TWO PIECES Y1 & Y2 + fsub.x (%a1)+,%fp0 # X-Y1 + fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2 + +SINCONT: +#--continuation from REDUCEX + +#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED + mov.l INT(%a6),%d1 + add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN + ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE + cmp.l %d1,&0 + blt.w COSPOLY + +#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. +#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY +#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE +#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS +#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) +#--WHERE T=S*S. +#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION +#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. +SINPOLY: + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmov.x %fp0,X(%a6) # X IS R + fmul.x %fp0,%fp0 # FP0 IS S + + fmov.d SINA7(%pc),%fp3 + fmov.d SINA6(%pc),%fp2 + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS T + + ror.l &1,%d1 + and.l &0x80000000,%d1 +# ...LEAST SIG. BIT OF D0 IN SIGN POSITION + eor.l %d1,X(%a6) # X IS NOW R'= SGN*R + + fmul.x %fp1,%fp3 # TA7 + fmul.x %fp1,%fp2 # TA6 + + fadd.d SINA5(%pc),%fp3 # A5+TA7 + fadd.d SINA4(%pc),%fp2 # A4+TA6 + + fmul.x %fp1,%fp3 # T(A5+TA7) + fmul.x %fp1,%fp2 # T(A4+TA6) + + fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7) + fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6) + + fmul.x %fp3,%fp1 # T(A3+T(A5+TA7)) + + fmul.x %fp0,%fp2 # S(A2+T(A4+TA6)) + fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7)) + fmul.x X(%a6),%fp0 # R'*S + + fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] + + fmul.x %fp1,%fp0 # SIN(R')-R' + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users round mode,prec + fadd.x X(%a6),%fp0 # last inst - possible exception set + bra t_inx2 + +#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. +#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY +#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE +#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS +#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) +#--WHERE T=S*S. +#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION +#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 +#--AND IS THEREFORE STORED AS SINGLE PRECISION. +COSPOLY: + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmul.x %fp0,%fp0 # FP0 IS S + + fmov.d COSB8(%pc),%fp2 + fmov.d COSB7(%pc),%fp3 + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS T + + fmov.x %fp0,X(%a6) # X IS S + ror.l &1,%d1 + and.l &0x80000000,%d1 +# ...LEAST SIG. BIT OF D0 IN SIGN POSITION + + fmul.x %fp1,%fp2 # TB8 + + eor.l %d1,X(%a6) # X IS NOW S'= SGN*S + and.l &0x80000000,%d1 + + fmul.x %fp1,%fp3 # TB7 + + or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE + mov.l %d1,POSNEG1(%a6) + + fadd.d COSB6(%pc),%fp2 # B6+TB8 + fadd.d COSB5(%pc),%fp3 # B5+TB7 + + fmul.x %fp1,%fp2 # T(B6+TB8) + fmul.x %fp1,%fp3 # T(B5+TB7) + + fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8) + fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7) + + fmul.x %fp1,%fp2 # T(B4+T(B6+TB8)) + fmul.x %fp3,%fp1 # T(B3+T(B5+TB7)) + + fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8)) + fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7)) + + fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8))) + + fadd.x %fp1,%fp0 + + fmul.x X(%a6),%fp0 + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users round mode,prec + fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set + bra t_inx2 + +############################################## + +# SINe: Big OR Small? +#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. +#--IF |X| < 2**(-40), RETURN X OR 1. +SINBORS: + cmp.l %d1,&0x3FFF8000 + bgt.l SREDUCEX + +SINSM: + mov.l ADJN(%a6),%d1 + cmp.l %d1,&0 + bgt.b COSTINY + +# here, the operation may underflow iff the precision is sgl or dbl. +# extended denorms are handled through another entry point. +SINTINY: +# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE + + fmov.l %d0,%fpcr # restore users round mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 # last inst - possible exception set + bra t_catch + +COSTINY: + fmov.s &0x3F800000,%fp0 # fp0 = 1.0 + fmov.l %d0,%fpcr # restore users round mode,prec + fadd.s &0x80800000,%fp0 # last inst - possible exception set + bra t_pinx2 + +################################################ + global ssind +#--SIN(X) = X FOR DENORMALIZED X +ssind: + bra t_extdnrm + +############################################ + global scosd +#--COS(X) = 1 FOR DENORMALIZED X +scosd: + fmov.s &0x3F800000,%fp0 # fp0 = 1.0 + bra t_pinx2 + +################################################## + + global ssincos +ssincos: +#--SET ADJN TO 4 + mov.l &4,ADJN(%a6) + + fmov.x (%a0),%fp0 # LOAD INPUT + fmov.x %fp0,X(%a6) + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 # COMPACTIFY X + + cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? + bge.b SCOK1 + bra.w SCSM + +SCOK1: + cmp.l %d1,&0x4004BC7E # |X| < 15 PI? + blt.b SCMAIN + bra.w SREDUCEX + + +#--THIS IS THE USUAL CASE, |X| <= 15 PI. +#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. +SCMAIN: + fmov.x %fp0,%fp1 + + fmul.d TWOBYPI(%pc),%fp1 # X*2/PI + + lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 + + fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER + + mov.l INT(%a6),%d1 + asl.l &4,%d1 + add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2 + + fsub.x (%a1)+,%fp0 # X-Y1 + fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 + +SCCONT: +#--continuation point from REDUCEX + + mov.l INT(%a6),%d1 + ror.l &1,%d1 + cmp.l %d1,&0 # D0 < 0 IFF N IS ODD + bge.w NEVEN + +SNODD: +#--REGISTERS SAVED SO FAR: D0, A0, FP2. + fmovm.x &0x04,-(%sp) # save fp2 + + fmov.x %fp0,RPRIME(%a6) + fmul.x %fp0,%fp0 # FP0 IS S = R*R + fmov.d SINA7(%pc),%fp1 # A7 + fmov.d COSB8(%pc),%fp2 # B8 + fmul.x %fp0,%fp1 # SA7 + fmul.x %fp0,%fp2 # SB8 + + mov.l %d2,-(%sp) + mov.l %d1,%d2 + ror.l &1,%d2 + and.l &0x80000000,%d2 + eor.l %d1,%d2 + and.l &0x80000000,%d2 + + fadd.d SINA6(%pc),%fp1 # A6+SA7 + fadd.d COSB7(%pc),%fp2 # B7+SB8 + + fmul.x %fp0,%fp1 # S(A6+SA7) + eor.l %d2,RPRIME(%a6) + mov.l (%sp)+,%d2 + fmul.x %fp0,%fp2 # S(B7+SB8) + ror.l &1,%d1 + and.l &0x80000000,%d1 + mov.l &0x3F800000,POSNEG1(%a6) + eor.l %d1,POSNEG1(%a6) + + fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7) + fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8) + + fmul.x %fp0,%fp1 # S(A5+S(A6+SA7)) + fmul.x %fp0,%fp2 # S(B6+S(B7+SB8)) + fmov.x %fp0,SPRIME(%a6) + + fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7)) + eor.l %d1,SPRIME(%a6) + fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8)) + + fmul.x %fp0,%fp1 # S(A4+...) + fmul.x %fp0,%fp2 # S(B5+...) + + fadd.d SINA3(%pc),%fp1 # A3+S(A4+...) + fadd.d COSB4(%pc),%fp2 # B4+S(B5+...) + + fmul.x %fp0,%fp1 # S(A3+...) + fmul.x %fp0,%fp2 # S(B4+...) + + fadd.x SINA2(%pc),%fp1 # A2+S(A3+...) + fadd.x COSB3(%pc),%fp2 # B3+S(B4+...) + + fmul.x %fp0,%fp1 # S(A2+...) + fmul.x %fp0,%fp2 # S(B3+...) + + fadd.x SINA1(%pc),%fp1 # A1+S(A2+...) + fadd.x COSB2(%pc),%fp2 # B2+S(B3+...) + + fmul.x %fp0,%fp1 # S(A1+...) + fmul.x %fp2,%fp0 # S(B2+...) + + fmul.x RPRIME(%a6),%fp1 # R'S(A1+...) + fadd.s COSB1(%pc),%fp0 # B1+S(B2...) + fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...)) + + fmovm.x (%sp)+,&0x20 # restore fp2 + + fmov.l %d0,%fpcr + fadd.x RPRIME(%a6),%fp1 # COS(X) + bsr sto_cos # store cosine result + fadd.s POSNEG1(%a6),%fp0 # SIN(X) + bra t_inx2 + +NEVEN: +#--REGISTERS SAVED SO FAR: FP2. + fmovm.x &0x04,-(%sp) # save fp2 + + fmov.x %fp0,RPRIME(%a6) + fmul.x %fp0,%fp0 # FP0 IS S = R*R + + fmov.d COSB8(%pc),%fp1 # B8 + fmov.d SINA7(%pc),%fp2 # A7 + + fmul.x %fp0,%fp1 # SB8 + fmov.x %fp0,SPRIME(%a6) + fmul.x %fp0,%fp2 # SA7 + + ror.l &1,%d1 + and.l &0x80000000,%d1 + + fadd.d COSB7(%pc),%fp1 # B7+SB8 + fadd.d SINA6(%pc),%fp2 # A6+SA7 + + eor.l %d1,RPRIME(%a6) + eor.l %d1,SPRIME(%a6) + + fmul.x %fp0,%fp1 # S(B7+SB8) + + or.l &0x3F800000,%d1 + mov.l %d1,POSNEG1(%a6) + + fmul.x %fp0,%fp2 # S(A6+SA7) + + fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8) + fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7) + + fmul.x %fp0,%fp1 # S(B6+S(B7+SB8)) + fmul.x %fp0,%fp2 # S(A5+S(A6+SA7)) + + fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8)) + fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7)) + + fmul.x %fp0,%fp1 # S(B5+...) + fmul.x %fp0,%fp2 # S(A4+...) + + fadd.d COSB4(%pc),%fp1 # B4+S(B5+...) + fadd.d SINA3(%pc),%fp2 # A3+S(A4+...) + + fmul.x %fp0,%fp1 # S(B4+...) + fmul.x %fp0,%fp2 # S(A3+...) + + fadd.x COSB3(%pc),%fp1 # B3+S(B4+...) + fadd.x SINA2(%pc),%fp2 # A2+S(A3+...) + + fmul.x %fp0,%fp1 # S(B3+...) + fmul.x %fp0,%fp2 # S(A2+...) + + fadd.x COSB2(%pc),%fp1 # B2+S(B3+...) + fadd.x SINA1(%pc),%fp2 # A1+S(A2+...) + + fmul.x %fp0,%fp1 # S(B2+...) + fmul.x %fp2,%fp0 # s(a1+...) + + + fadd.s COSB1(%pc),%fp1 # B1+S(B2...) + fmul.x RPRIME(%a6),%fp0 # R'S(A1+...) + fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...)) + + fmovm.x (%sp)+,&0x20 # restore fp2 + + fmov.l %d0,%fpcr + fadd.s POSNEG1(%a6),%fp1 # COS(X) + bsr sto_cos # store cosine result + fadd.x RPRIME(%a6),%fp0 # SIN(X) + bra t_inx2 + +################################################ + +SCBORS: + cmp.l %d1,&0x3FFF8000 + bgt.w SREDUCEX + +################################################ + +SCSM: +# mov.w &0x0000,XDCARE(%a6) + fmov.s &0x3F800000,%fp1 + + fmov.l %d0,%fpcr + fsub.s &0x00800000,%fp1 + bsr sto_cos # store cosine result + fmov.l %fpcr,%d0 # d0 must have fpcr,too + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 + bra t_catch + +############################################## + + global ssincosd +#--SIN AND COS OF X FOR DENORMALIZED X +ssincosd: + mov.l %d0,-(%sp) # save d0 + fmov.s &0x3F800000,%fp1 + bsr sto_cos # store cosine result + mov.l (%sp)+,%d0 # restore d0 + bra t_extdnrm + +############################################ + +#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. +#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING +#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. +SREDUCEX: + fmovm.x &0x3c,-(%sp) # save {fp2-fp5} + mov.l %d2,-(%sp) # save d2 + fmov.s &0x00000000,%fp1 # fp1 = 0 + +#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that +#--there is a danger of unwanted overflow in first LOOP iteration. In this +#--case, reduce argument by one remainder step to make subsequent reduction +#--safe. + cmp.l %d1,&0x7ffeffff # is arg dangerously large? + bne.b SLOOP # no + +# yes; create 2**16383*PI/2 + mov.w &0x7ffe,FP_SCR0_EX(%a6) + mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + +# create low half of 2**16383*PI/2 at FP_SCR1 + mov.w &0x7fdc,FP_SCR1_EX(%a6) + mov.l &0x85a308d3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + + ftest.x %fp0 # test sign of argument + fblt.w sred_neg + + or.b &0x80,FP_SCR0_EX(%a6) # positive arg + or.b &0x80,FP_SCR1_EX(%a6) +sred_neg: + fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact + fmov.x %fp0,%fp1 # save high result in fp1 + fadd.x FP_SCR1(%a6),%fp0 # low part of reduction + fsub.x %fp0,%fp1 # determine low component of result + fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. + +#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. +#--integer quotient will be stored in N +#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) +SLOOP: + fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 + mov.w INARG(%a6),%d1 + mov.l %d1,%a1 # save a copy of D0 + and.l &0x00007FFF,%d1 + sub.l &0x00003FFF,%d1 # d0 = K + cmp.l %d1,&28 + ble.b SLASTLOOP +SCONTLOOP: + sub.l &27,%d1 # d0 = L := K-27 + mov.b &0,ENDFLAG(%a6) + bra.b SWORK +SLASTLOOP: + clr.l %d1 # d0 = L := 0 + mov.b &1,ENDFLAG(%a6) + +SWORK: +#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN +#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. + +#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), +#--2**L * (PIby2_1), 2**L * (PIby2_2) + + mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI + sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) + + mov.l &0xA2F9836E,FP_SCR0_HI(%a6) + mov.l &0x4E44152A,FP_SCR0_LO(%a6) + mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) + + fmov.x %fp0,%fp2 + fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) + +#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN +#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N +#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT +#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE +#--US THE DESIRED VALUE IN FLOATING POINT. + mov.l %a1,%d2 + swap %d2 + and.l &0x80000000,%d2 + or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL + mov.l %d2,TWOTO63(%a6) + fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED + fsub.s TWOTO63(%a6),%fp2 # fp2 = N +# fint.x %fp2 + +#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 + mov.l %d1,%d2 # d2 = L + + add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) + mov.w %d2,FP_SCR0_EX(%a6) + mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 + + add.l &0x00003FDD,%d1 + mov.w %d1,FP_SCR1_EX(%a6) + mov.l &0x85A308D3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 + + mov.b ENDFLAG(%a6),%d1 + +#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and +#--P2 = 2**(L) * Piby2_2 + fmov.x %fp2,%fp4 # fp4 = N + fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 + fmov.x %fp2,%fp5 # fp5 = N + fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 + fmov.x %fp4,%fp3 # fp3 = W = N*P1 + +#--we want P+p = W+w but |p| <= half ulp of P +#--Then, we need to compute A := R-P and a := r-p + fadd.x %fp5,%fp3 # fp3 = P + fsub.x %fp3,%fp4 # fp4 = W-P + + fsub.x %fp3,%fp0 # fp0 = A := R - P + fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w + + fmov.x %fp0,%fp3 # fp3 = A + fsub.x %fp4,%fp1 # fp1 = a := r - p + +#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but +#--|r| <= half ulp of R. + fadd.x %fp1,%fp0 # fp0 = R := A+a +#--No need to calculate r if this is the last loop + cmp.b %d1,&0 + bgt.w SRESTORE + +#--Need to calculate r + fsub.x %fp0,%fp3 # fp3 = A-R + fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a + bra.w SLOOP + +SRESTORE: + fmov.l %fp2,INT(%a6) + mov.l (%sp)+,%d2 # restore d2 + fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} + + mov.l ADJN(%a6),%d1 + cmp.l %d1,&4 + + blt.w SINCONT + bra.w SCCONT + +######################################################################### +# stan(): computes the tangent of a normalized input # +# stand(): computes the tangent of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = tan(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulp in 64 significant bit, i.e. # +# within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. # +# # +# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let # +# k = N mod 2, so in particular, k = 0 or 1. # +# # +# 3. If k is odd, go to 5. # +# # +# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a # +# rational function U/V where # +# U = r + r*s*(P1 + s*(P2 + s*P3)), and # +# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. # +# Exit. # +# # +# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # +# a rational function U/V where # +# U = r + r*s*(P1 + s*(P2 + s*P3)), and # +# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, # +# -Cot(r) = -V/U. Exit. # +# # +# 6. If |X| > 1, go to 8. # +# # +# 7. (|X|<2**(-40)) Tan(X) = X. Exit. # +# # +# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back # +# to 2. # +# # +######################################################################### + +TANQ4: + long 0x3EA0B759,0xF50F8688 +TANP3: + long 0xBEF2BAA5,0xA8924F04 + +TANQ3: + long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000 + +TANP2: + long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 + +TANQ2: + long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 + +TANP1: + long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 + +TANQ1: + long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 + +INVTWOPI: + long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 + +TWOPI1: + long 0x40010000,0xC90FDAA2,0x00000000,0x00000000 +TWOPI2: + long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 + +#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING +#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT +#--MOST 69 BITS LONG. +# global PITBL +PITBL: + long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 + long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 + long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 + long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000 + long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 + long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 + long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 + long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 + long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 + long 0xC0040000,0x90836524,0x88034B96,0x20B00000 + long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 + long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 + long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 + long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 + long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 + long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 + long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 + long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 + long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 + long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 + long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 + long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 + long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 + long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 + long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 + long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 + long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 + long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 + long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 + long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 + long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 + long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 + long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 + long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 + long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 + long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 + long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 + long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 + long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 + long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 + long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 + long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000 + long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 + long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 + long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 + long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 + long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 + long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 + long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 + long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 + long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 + long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 + long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000 + long 0x40040000,0x90836524,0x88034B96,0xA0B00000 + long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 + long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 + long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 + long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 + long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 + long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000 + long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 + long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 + long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 + + set INARG,FP_SCR0 + + set TWOTO63,L_SCR1 + set INT,L_SCR1 + set ENDFLAG,L_SCR2 + + global stan +stan: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)? + bge.b TANOK1 + bra.w TANSM +TANOK1: + cmp.l %d1,&0x4004BC7E # |X| < 15 PI? + blt.b TANMAIN + bra.w REDUCEX + +TANMAIN: +#--THIS IS THE USUAL CASE, |X| <= 15 PI. +#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. + fmov.x %fp0,%fp1 + fmul.d TWOBYPI(%pc),%fp1 # X*2/PI + + lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32 + + fmov.l %fp1,%d1 # CONVERT TO INTEGER + + asl.l &4,%d1 + add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2 + + fsub.x (%a1)+,%fp0 # X-Y1 + + fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2 + + ror.l &5,%d1 + and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0 + +TANCONT: + fmovm.x &0x0c,-(%sp) # save fp2,fp3 + + cmp.l %d1,&0 + blt.w NODD + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # S = R*R + + fmov.d TANQ4(%pc),%fp3 + fmov.d TANP3(%pc),%fp2 + + fmul.x %fp1,%fp3 # SQ4 + fmul.x %fp1,%fp2 # SP3 + + fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 + fadd.x TANP2(%pc),%fp2 # P2+SP3 + + fmul.x %fp1,%fp3 # S(Q3+SQ4) + fmul.x %fp1,%fp2 # S(P2+SP3) + + fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) + fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) + + fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4)) + fmul.x %fp1,%fp2 # S(P1+S(P2+SP3)) + + fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) + fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3)) + + fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4))) + + fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3)) + + fadd.s &0x3F800000,%fp1 # 1+S(Q1+...) + + fmovm.x (%sp)+,&0x30 # restore fp2,fp3 + + fmov.l %d0,%fpcr # restore users round mode,prec + fdiv.x %fp1,%fp0 # last inst - possible exception set + bra t_inx2 + +NODD: + fmov.x %fp0,%fp1 + fmul.x %fp0,%fp0 # S = R*R + + fmov.d TANQ4(%pc),%fp3 + fmov.d TANP3(%pc),%fp2 + + fmul.x %fp0,%fp3 # SQ4 + fmul.x %fp0,%fp2 # SP3 + + fadd.d TANQ3(%pc),%fp3 # Q3+SQ4 + fadd.x TANP2(%pc),%fp2 # P2+SP3 + + fmul.x %fp0,%fp3 # S(Q3+SQ4) + fmul.x %fp0,%fp2 # S(P2+SP3) + + fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4) + fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3) + + fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4)) + fmul.x %fp0,%fp2 # S(P1+S(P2+SP3)) + + fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4)) + fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3)) + + fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4))) + + fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3)) + fadd.s &0x3F800000,%fp0 # 1+S(Q1+...) + + fmovm.x (%sp)+,&0x30 # restore fp2,fp3 + + fmov.x %fp1,-(%sp) + eor.l &0x80000000,(%sp) + + fmov.l %d0,%fpcr # restore users round mode,prec + fdiv.x (%sp)+,%fp0 # last inst - possible exception set + bra t_inx2 + +TANBORS: +#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. +#--IF |X| < 2**(-40), RETURN X OR 1. + cmp.l %d1,&0x3FFF8000 + bgt.b REDUCEX + +TANSM: + fmov.x %fp0,-(%sp) + fmov.l %d0,%fpcr # restore users round mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x (%sp)+,%fp0 # last inst - posibble exception set + bra t_catch + + global stand +#--TAN(X) = X FOR DENORMALIZED X +stand: + bra t_extdnrm + +#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. +#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING +#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. +REDUCEX: + fmovm.x &0x3c,-(%sp) # save {fp2-fp5} + mov.l %d2,-(%sp) # save d2 + fmov.s &0x00000000,%fp1 # fp1 = 0 + +#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that +#--there is a danger of unwanted overflow in first LOOP iteration. In this +#--case, reduce argument by one remainder step to make subsequent reduction +#--safe. + cmp.l %d1,&0x7ffeffff # is arg dangerously large? + bne.b LOOP # no + +# yes; create 2**16383*PI/2 + mov.w &0x7ffe,FP_SCR0_EX(%a6) + mov.l &0xc90fdaa2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + +# create low half of 2**16383*PI/2 at FP_SCR1 + mov.w &0x7fdc,FP_SCR1_EX(%a6) + mov.l &0x85a308d3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + + ftest.x %fp0 # test sign of argument + fblt.w red_neg + + or.b &0x80,FP_SCR0_EX(%a6) # positive arg + or.b &0x80,FP_SCR1_EX(%a6) +red_neg: + fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact + fmov.x %fp0,%fp1 # save high result in fp1 + fadd.x FP_SCR1(%a6),%fp0 # low part of reduction + fsub.x %fp0,%fp1 # determine low component of result + fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument. + +#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. +#--integer quotient will be stored in N +#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) +LOOP: + fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2 + mov.w INARG(%a6),%d1 + mov.l %d1,%a1 # save a copy of D0 + and.l &0x00007FFF,%d1 + sub.l &0x00003FFF,%d1 # d0 = K + cmp.l %d1,&28 + ble.b LASTLOOP +CONTLOOP: + sub.l &27,%d1 # d0 = L := K-27 + mov.b &0,ENDFLAG(%a6) + bra.b WORK +LASTLOOP: + clr.l %d1 # d0 = L := 0 + mov.b &1,ENDFLAG(%a6) + +WORK: +#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN +#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29. + +#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), +#--2**L * (PIby2_1), 2**L * (PIby2_2) + + mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI + sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI) + + mov.l &0xA2F9836E,FP_SCR0_HI(%a6) + mov.l &0x4E44152A,FP_SCR0_LO(%a6) + mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI) + + fmov.x %fp0,%fp2 + fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI) + +#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN +#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N +#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT +#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE +#--US THE DESIRED VALUE IN FLOATING POINT. + mov.l %a1,%d2 + swap %d2 + and.l &0x80000000,%d2 + or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL + mov.l %d2,TWOTO63(%a6) + fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED + fsub.s TWOTO63(%a6),%fp2 # fp2 = N +# fintrz.x %fp2,%fp2 + +#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 + mov.l %d1,%d2 # d2 = L + + add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2) + mov.w %d2,FP_SCR0_EX(%a6) + mov.l &0xC90FDAA2,FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1 + + add.l &0x00003FDD,%d1 + mov.w %d1,FP_SCR1_EX(%a6) + mov.l &0x85A308D3,FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2 + + mov.b ENDFLAG(%a6),%d1 + +#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and +#--P2 = 2**(L) * Piby2_2 + fmov.x %fp2,%fp4 # fp4 = N + fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1 + fmov.x %fp2,%fp5 # fp5 = N + fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2 + fmov.x %fp4,%fp3 # fp3 = W = N*P1 + +#--we want P+p = W+w but |p| <= half ulp of P +#--Then, we need to compute A := R-P and a := r-p + fadd.x %fp5,%fp3 # fp3 = P + fsub.x %fp3,%fp4 # fp4 = W-P + + fsub.x %fp3,%fp0 # fp0 = A := R - P + fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w + + fmov.x %fp0,%fp3 # fp3 = A + fsub.x %fp4,%fp1 # fp1 = a := r - p + +#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but +#--|r| <= half ulp of R. + fadd.x %fp1,%fp0 # fp0 = R := A+a +#--No need to calculate r if this is the last loop + cmp.b %d1,&0 + bgt.w RESTORE + +#--Need to calculate r + fsub.x %fp0,%fp3 # fp3 = A-R + fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a + bra.w LOOP + +RESTORE: + fmov.l %fp2,INT(%a6) + mov.l (%sp)+,%d2 # restore d2 + fmovm.x (%sp)+,&0x3c # restore {fp2-fp5} + + mov.l INT(%a6),%d1 + ror.l &1,%d1 + + bra.w TANCONT + +######################################################################### +# satan(): computes the arctangent of a normalized number # +# satand(): computes the arctangent of a denormalized number # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arctan(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 2 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. # +# # +# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # +# Note that k = -4, -3,..., or 3. # +# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # +# significant bits of X with a bit-1 attached at the 6-th # +# bit position. Define u to be u = (X-F) / (1 + X*F). # +# # +# Step 3. Approximate arctan(u) by a polynomial poly. # +# # +# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a # +# table of values calculated beforehand. Exit. # +# # +# Step 5. If |X| >= 16, go to Step 7. # +# # +# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. # +# # +# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd # +# polynomial in X'. # +# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. # +# # +######################################################################### + +ATANA3: long 0xBFF6687E,0x314987D8 +ATANA2: long 0x4002AC69,0x34A26DB3 +ATANA1: long 0xBFC2476F,0x4E1DA28E + +ATANB6: long 0x3FB34444,0x7F876989 +ATANB5: long 0xBFB744EE,0x7FAF45DB +ATANB4: long 0x3FBC71C6,0x46940220 +ATANB3: long 0xBFC24924,0x921872F9 +ATANB2: long 0x3FC99999,0x99998FA9 +ATANB1: long 0xBFD55555,0x55555555 + +ATANC5: long 0xBFB70BF3,0x98539E6A +ATANC4: long 0x3FBC7187,0x962D1D7D +ATANC3: long 0xBFC24924,0x827107B8 +ATANC2: long 0x3FC99999,0x9996263E +ATANC1: long 0xBFD55555,0x55555536 + +PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 +NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 + +PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000 +NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000 + +ATANTBL: + long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 + long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 + long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 + long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 + long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 + long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000 + long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 + long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 + long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 + long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 + long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 + long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 + long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 + long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 + long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 + long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 + long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 + long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 + long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 + long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 + long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 + long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 + long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 + long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 + long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 + long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 + long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 + long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 + long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 + long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 + long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 + long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 + long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 + long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 + long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 + long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 + long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 + long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 + long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 + long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 + long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 + long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 + long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 + long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 + long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 + long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 + long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 + long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 + long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 + long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 + long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 + long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 + long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 + long 0x3FFE0000,0x97731420,0x365E538C,0x00000000 + long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 + long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 + long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 + long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 + long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 + long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 + long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 + long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 + long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 + long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 + long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 + long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 + long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 + long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 + long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000 + long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 + long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 + long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 + long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 + long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 + long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 + long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 + long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 + long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 + long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 + long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 + long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 + long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 + long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 + long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 + long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 + long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 + long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 + long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000 + long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 + long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 + long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 + long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 + long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 + long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 + long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 + long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 + long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 + long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 + long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 + long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 + long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 + long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 + long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 + long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 + long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 + long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000 + long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 + long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 + long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 + long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 + long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 + long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 + long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 + long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 + long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 + long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 + long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 + long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 + long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 + long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 + long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 + long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 + long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 + long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 + long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 + long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 + long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 + long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 + + set X,FP_SCR0 + set XDCARE,X+2 + set XFRAC,X+4 + set XFRACLO,X+8 + + set ATANF,FP_SCR1 + set ATANFHI,ATANF+4 + set ATANFLO,ATANF+8 + + global satan +#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S +satan: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + fmov.x %fp0,X(%a6) + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FFB8000 # |X| >= 1/16? + bge.b ATANOK1 + bra.w ATANSM + +ATANOK1: + cmp.l %d1,&0x4002FFFF # |X| < 16 ? + ble.b ATANMAIN + bra.w ATANBIG + +#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE +#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). +#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN +#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE +#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS +#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR +#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO +#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE +#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL +#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE +#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION +#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION +#--WILL INVOLVE A VERY LONG POLYNOMIAL. + +#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS +#--WE CHOSE F TO BE +-2^K * 1.BBBB1 +#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE +#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE +#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS +#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). + +ATANMAIN: + + and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS + or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1 + mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F + + fmov.x %fp0,%fp1 # FP1 IS X + fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0 + fsub.x X(%a6),%fp0 # FP0 IS X-F + fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F + fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F) + +#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) +#--CREATE ATAN(F) AND STORE IT IN ATANF, AND +#--SAVE REGISTERS FP2. + + mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY + mov.l %d1,%d2 # THE EXP AND 16 BITS OF X + and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION + and.l &0x7FFF0000,%d2 # EXPONENT OF F + sub.l &0x3FFB0000,%d2 # K+4 + asr.l &1,%d2 + add.l %d2,%d1 # THE 7 BITS IDENTIFYING F + asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|) + lea ATANTBL(%pc),%a1 + add.l %d1,%a1 # ADDRESS OF ATAN(|F|) + mov.l (%a1)+,ATANF(%a6) + mov.l (%a1)+,ATANFHI(%a6) + mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|) + mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN + and.l &0x80000000,%d1 # SIGN(F) + or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|) + mov.l (%sp)+,%d2 # RESTORE d2 + +#--THAT'S ALL I HAVE TO DO FOR NOW, +#--BUT ALAS, THE DIVIDE IS STILL CRANKING! + +#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS +#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U +#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. +#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) +#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3. +#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT +#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED + + fmovm.x &0x04,-(%sp) # save fp2 + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 + fmov.d ATANA3(%pc),%fp2 + fadd.x %fp1,%fp2 # A3+V + fmul.x %fp1,%fp2 # V*(A3+V) + fmul.x %fp0,%fp1 # U*V + fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V) + fmul.d ATANA1(%pc),%fp1 # A1*U*V + fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V)) + fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED + + fmovm.x (%sp)+,&0x20 # restore fp2 + + fmov.l %d0,%fpcr # restore users rnd mode,prec + fadd.x ATANF(%a6),%fp0 # ATAN(X) + bra t_inx2 + +ATANBORS: +#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. +#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. + cmp.l %d1,&0x3FFF8000 + bgt.w ATANBIG # I.E. |X| >= 16 + +ATANSM: +#--|X| <= 1/16 +#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE +#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) +#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) +#--WHERE Y = X*X, AND Z = Y*Y. + + cmp.l %d1,&0x3FD78000 + blt.w ATANTINY + +#--COMPUTE POLYNOMIAL + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmul.x %fp0,%fp0 # FPO IS Y = X*X + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y + + fmov.d ATANB6(%pc),%fp2 + fmov.d ATANB5(%pc),%fp3 + + fmul.x %fp1,%fp2 # Z*B6 + fmul.x %fp1,%fp3 # Z*B5 + + fadd.d ATANB4(%pc),%fp2 # B4+Z*B6 + fadd.d ATANB3(%pc),%fp3 # B3+Z*B5 + + fmul.x %fp1,%fp2 # Z*(B4+Z*B6) + fmul.x %fp3,%fp1 # Z*(B3+Z*B5) + + fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6) + fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5) + + fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6)) + fmul.x X(%a6),%fp0 # X*Y + + fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] + + fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users rnd mode,prec + fadd.x X(%a6),%fp0 + bra t_inx2 + +ATANTINY: +#--|X| < 2^(-40), ATAN(X) = X + + fmov.l %d0,%fpcr # restore users rnd mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 # last inst - possible exception set + + bra t_catch + +ATANBIG: +#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE, +#--RETURN SIGN(X)*PI/2 + ATAN(-1/X). + cmp.l %d1,&0x40638000 + bgt.w ATANHUGE + +#--APPROXIMATE ATAN(-1/X) BY +#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' +#--THIS CAN BE RE-WRITTEN AS +#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. + + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmov.s &0xBF800000,%fp1 # LOAD -1 + fdiv.x %fp0,%fp1 # FP1 IS -1/X + +#--DIVIDE IS STILL CRANKING + + fmov.x %fp1,%fp0 # FP0 IS X' + fmul.x %fp0,%fp0 # FP0 IS Y = X'*X' + fmov.x %fp1,X(%a6) # X IS REALLY X' + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y + + fmov.d ATANC5(%pc),%fp3 + fmov.d ATANC4(%pc),%fp2 + + fmul.x %fp1,%fp3 # Z*C5 + fmul.x %fp1,%fp2 # Z*B4 + + fadd.d ATANC3(%pc),%fp3 # C3+Z*C5 + fadd.d ATANC2(%pc),%fp2 # C2+Z*C4 + + fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED + fmul.x %fp0,%fp2 # Y*(C2+Z*C4) + + fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5) + fmul.x X(%a6),%fp0 # X'*Y + + fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] + + fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)] +# ... +[Y*(B2+Z*(B4+Z*B6))]) + fadd.x X(%a6),%fp0 + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + + fmov.l %d0,%fpcr # restore users rnd mode,prec + tst.b (%a0) + bpl.b pos_big + +neg_big: + fadd.x NPIBY2(%pc),%fp0 + bra t_minx2 + +pos_big: + fadd.x PPIBY2(%pc),%fp0 + bra t_pinx2 + +ATANHUGE: +#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY + tst.b (%a0) + bpl.b pos_huge + +neg_huge: + fmov.x NPIBY2(%pc),%fp0 + fmov.l %d0,%fpcr + fadd.x PTINY(%pc),%fp0 + bra t_minx2 + +pos_huge: + fmov.x PPIBY2(%pc),%fp0 + fmov.l %d0,%fpcr + fadd.x NTINY(%pc),%fp0 + bra t_pinx2 + + global satand +#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT +satand: + bra t_extdnrm + +######################################################################### +# sasin(): computes the inverse sine of a normalized input # +# sasind(): computes the inverse sine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arcsin(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# ASIN # +# 1. If |X| >= 1, go to 3. # +# # +# 2. (|X| < 1) Calculate asin(X) by # +# z := sqrt( [1-X][1+X] ) # +# asin(X) = atan( x / z ). # +# Exit. # +# # +# 3. If |X| > 1, go to 5. # +# # +# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# +# # +# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # +# Exit. # +# # +######################################################################### + + global sasin +sasin: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x3FFF8000 + bge.b ASINBIG + +# This catch is added here for the '060 QSP. Originally, the call to +# satan() would handle this case by causing the exception which would +# not be caught until gen_except(). Now, with the exceptions being +# detected inside of satan(), the exception would have been handled there +# instead of inside sasin() as expected. + cmp.l %d1,&0x3FD78000 + blt.w ASINTINY + +#--THIS IS THE USUAL CASE, |X| < 1 +#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) + +ASINMAIN: + fmov.s &0x3F800000,%fp1 + fsub.x %fp0,%fp1 # 1-X + fmovm.x &0x4,-(%sp) # {fp2} + fmov.s &0x3F800000,%fp2 + fadd.x %fp0,%fp2 # 1+X + fmul.x %fp2,%fp1 # (1+X)(1-X) + fmovm.x (%sp)+,&0x20 # {fp2} + fsqrt.x %fp1 # SQRT([1-X][1+X]) + fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X]) + fmovm.x &0x01,-(%sp) # save X/SQRT(...) + lea (%sp),%a0 # pass ptr to X/SQRT(...) + bsr satan + add.l &0xc,%sp # clear X/SQRT(...) from stack + bra t_inx2 + +ASINBIG: + fabs.x %fp0 # |X| + fcmp.s %fp0,&0x3F800000 + fbgt t_operr # cause an operr exception + +#--|X| = 1, ASIN(X) = +- PI/2. +ASINONE: + fmov.x PIBY2(%pc),%fp0 + mov.l (%a0),%d1 + and.l &0x80000000,%d1 # SIGN BIT OF X + or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT + mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT + fmov.l %d0,%fpcr + fmul.s (%sp)+,%fp0 + bra t_inx2 + +#--|X| < 2^(-40), ATAN(X) = X +ASINTINY: + fmov.l %d0,%fpcr # restore users rnd mode,prec + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x (%a0),%fp0 # last inst - possible exception + bra t_catch + + global sasind +#--ASIN(X) = X FOR DENORMALIZED X +sasind: + bra t_extdnrm + +######################################################################### +# sacos(): computes the inverse cosine of a normalized input # +# sacosd(): computes the inverse cosine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arccos(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# ACOS # +# 1. If |X| >= 1, go to 3. # +# # +# 2. (|X| < 1) Calculate acos(X) by # +# z := (1-X) / (1+X) # +# acos(X) = 2 * atan( sqrt(z) ). # +# Exit. # +# # +# 3. If |X| > 1, go to 5. # +# # +# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. # +# # +# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # +# Exit. # +# # +######################################################################### + + global sacos +sacos: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 # pack exp w/ upper 16 fraction + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x3FFF8000 + bge.b ACOSBIG + +#--THIS IS THE USUAL CASE, |X| < 1 +#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) ) + +ACOSMAIN: + fmov.s &0x3F800000,%fp1 + fadd.x %fp0,%fp1 # 1+X + fneg.x %fp0 # -X + fadd.s &0x3F800000,%fp0 # 1-X + fdiv.x %fp1,%fp0 # (1-X)/(1+X) + fsqrt.x %fp0 # SQRT((1-X)/(1+X)) + mov.l %d0,-(%sp) # save original users fpcr + clr.l %d0 + fmovm.x &0x01,-(%sp) # save SQRT(...) to stack + lea (%sp),%a0 # pass ptr to sqrt + bsr satan # ATAN(SQRT([1-X]/[1+X])) + add.l &0xc,%sp # clear SQRT(...) from stack + + fmov.l (%sp)+,%fpcr # restore users round prec,mode + fadd.x %fp0,%fp0 # 2 * ATAN( STUFF ) + bra t_pinx2 + +ACOSBIG: + fabs.x %fp0 + fcmp.s %fp0,&0x3F800000 + fbgt t_operr # cause an operr exception + +#--|X| = 1, ACOS(X) = 0 OR PI + tst.b (%a0) # is X positive or negative? + bpl.b ACOSP1 + +#--X = -1 +#Returns PI and inexact exception +ACOSM1: + fmov.x PI(%pc),%fp0 # load PI + fmov.l %d0,%fpcr # load round mode,prec + fadd.s &0x00800000,%fp0 # add a small value + bra t_pinx2 + +ACOSP1: + bra ld_pzero # answer is positive zero + + global sacosd +#--ACOS(X) = PI/2 FOR DENORMALIZED X +sacosd: + fmov.l %d0,%fpcr # load user's rnd mode/prec + fmov.x PIBY2(%pc),%fp0 + bra t_pinx2 + +######################################################################### +# setox(): computes the exponential for a normalized input # +# setoxd(): computes the exponential for a denormalized input # +# setoxm1(): computes the exponential minus 1 for a normalized input # +# setoxm1d(): computes the exponential minus 1 for a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = exp(X) or exp(X)-1 # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 0.85 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM and IMPLEMENTATION **************************************** # +# # +# setoxd # +# ------ # +# Step 1. Set ans := 1.0 # +# # +# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. # +# Notes: This will always generate one exception -- inexact. # +# # +# # +# setox # +# ----- # +# # +# Step 1. Filter out extreme cases of input argument. # +# 1.1 If |X| >= 2^(-65), go to Step 1.3. # +# 1.2 Go to Step 7. # +# 1.3 If |X| < 16380 log(2), go to Step 2. # +# 1.4 Go to Step 8. # +# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# +# To avoid the use of floating-point comparisons, a # +# compact representation of |X| is used. This format is a # +# 32-bit integer, the upper (more significant) 16 bits # +# are the sign and biased exponent field of |X|; the # +# lower 16 bits are the 16 most significant fraction # +# (including the explicit bit) bits of |X|. Consequently, # +# the comparisons in Steps 1.1 and 1.3 can be performed # +# by integer comparison. Note also that the constant # +# 16380 log(2) used in Step 1.3 is also in the compact # +# form. Thus taking the branch to Step 2 guarantees # +# |X| < 16380 log(2). There is no harm to have a small # +# number of cases where |X| is less than, but close to, # +# 16380 log(2) and the branch to Step 9 is taken. # +# # +# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # +# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # +# was taken) # +# 2.2 N := round-to-nearest-integer( X * 64/log2 ). # +# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., # +# or 63. # +# 2.4 Calculate M = (N - J)/64; so N = 64M + J. # +# 2.5 Calculate the address of the stored value of # +# 2^(J/64). # +# 2.6 Create the value Scale = 2^M. # +# Notes: The calculation in 2.2 is really performed by # +# Z := X * constant # +# N := round-to-nearest-integer(Z) # +# where # +# constant := single-precision( 64/log 2 ). # +# # +# Using a single-precision constant avoids memory # +# access. Another effect of using a single-precision # +# "constant" is that the calculated value Z is # +# # +# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). # +# # +# This error has to be considered later in Steps 3 and 4. # +# # +# Step 3. Calculate X - N*log2/64. # +# 3.1 R := X + N*L1, # +# where L1 := single-precision(-log2/64). # +# 3.2 R := R + N*L2, # +# L2 := extended-precision(-log2/64 - L1).# +# Notes: a) The way L1 and L2 are chosen ensures L1+L2 # +# approximate the value -log2/64 to 88 bits of accuracy. # +# b) N*L1 is exact because N is no longer than 22 bits # +# and L1 is no longer than 24 bits. # +# c) The calculation X+N*L1 is also exact due to # +# cancellation. Thus, R is practically X+N(L1+L2) to full # +# 64 bits. # +# d) It is important to estimate how large can |R| be # +# after Step 3.2. # +# # +# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) # +# X*64/log2 (1+eps) = N + f, |f| <= 0.5 # +# X*64/log2 - N = f - eps*X 64/log2 # +# X - N*log2/64 = f*log2/64 - eps*X # +# # +# # +# Now |X| <= 16446 log2, thus # +# # +# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 # +# <= 0.57 log2/64. # +# This bound will be used in Step 4. # +# # +# Step 4. Approximate exp(R)-1 by a polynomial # +# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) # +# Notes: a) In order to reduce memory access, the coefficients # +# are made as "short" as possible: A1 (which is 1/2), A4 # +# and A5 are single precision; A2 and A3 are double # +# precision. # +# b) Even with the restrictions above, # +# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. # +# Note that 0.0062 is slightly bigger than 0.57 log2/64. # +# c) To fully utilize the pipeline, p is separated into # +# two independent pieces of roughly equal complexities # +# p = [ R + R*S*(A2 + S*A4) ] + # +# [ S*(A1 + S*(A3 + S*A5)) ] # +# where S = R*R. # +# # +# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by # +# ans := T + ( T*p + t) # +# where T and t are the stored values for 2^(J/64). # +# Notes: 2^(J/64) is stored as T and t where T+t approximates # +# 2^(J/64) to roughly 85 bits; T is in extended precision # +# and t is in single precision. Note also that T is # +# rounded to 62 bits so that the last two bits of T are # +# zero. The reason for such a special form is that T-1, # +# T-2, and T-8 will all be exact --- a property that will # +# give much more accurate computation of the function # +# EXPM1. # +# # +# Step 6. Reconstruction of exp(X) # +# exp(X) = 2^M * 2^(J/64) * exp(R). # +# 6.1 If AdjFlag = 0, go to 6.3 # +# 6.2 ans := ans * AdjScale # +# 6.3 Restore the user FPCR # +# 6.4 Return ans := ans * Scale. Exit. # +# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, # +# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will # +# neither overflow nor underflow. If AdjFlag = 1, that # +# means that # +# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. # +# Hence, exp(X) may overflow or underflow or neither. # +# When that is the case, AdjScale = 2^(M1) where M1 is # +# approximately M. Thus 6.2 will never cause # +# over/underflow. Possible exception in 6.4 is overflow # +# or underflow. The inexact exception is not generated in # +# 6.4. Although one can argue that the inexact flag # +# should always be raised, to simulate that exception # +# cost to much than the flag is worth in practical uses. # +# # +# Step 7. Return 1 + X. # +# 7.1 ans := X # +# 7.2 Restore user FPCR. # +# 7.3 Return ans := 1 + ans. Exit # +# Notes: For non-zero X, the inexact exception will always be # +# raised by 7.3. That is the only exception raised by 7.3.# +# Note also that we use the FMOVEM instruction to move X # +# in Step 7.1 to avoid unnecessary trapping. (Although # +# the FMOVEM may not seem relevant since X is normalized, # +# the precaution will be useful in the library version of # +# this code where the separate entry for denormalized # +# inputs will be done away with.) # +# # +# Step 8. Handle exp(X) where |X| >= 16380log2. # +# 8.1 If |X| > 16480 log2, go to Step 9. # +# (mimic 2.2 - 2.6) # +# 8.2 N := round-to-integer( X * 64/log2 ) # +# 8.3 Calculate J = N mod 64, J = 0,1,...,63 # +# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, # +# AdjFlag := 1. # +# 8.5 Calculate the address of the stored value # +# 2^(J/64). # +# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. # +# 8.7 Go to Step 3. # +# Notes: Refer to notes for 2.2 - 2.6. # +# # +# Step 9. Handle exp(X), |X| > 16480 log2. # +# 9.1 If X < 0, go to 9.3 # +# 9.2 ans := Huge, go to 9.4 # +# 9.3 ans := Tiny. # +# 9.4 Restore user FPCR. # +# 9.5 Return ans := ans * ans. Exit. # +# Notes: Exp(X) will surely overflow or underflow, depending on # +# X's sign. "Huge" and "Tiny" are respectively large/tiny # +# extended-precision numbers whose square over/underflow # +# with an inexact result. Thus, 9.5 always raises the # +# inexact together with either overflow or underflow. # +# # +# setoxm1d # +# -------- # +# # +# Step 1. Set ans := 0 # +# # +# Step 2. Return ans := X + ans. Exit. # +# Notes: This will return X with the appropriate rounding # +# precision prescribed by the user FPCR. # +# # +# setoxm1 # +# ------- # +# # +# Step 1. Check |X| # +# 1.1 If |X| >= 1/4, go to Step 1.3. # +# 1.2 Go to Step 7. # +# 1.3 If |X| < 70 log(2), go to Step 2. # +# 1.4 Go to Step 10. # +# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.# +# However, it is conceivable |X| can be small very often # +# because EXPM1 is intended to evaluate exp(X)-1 # +# accurately when |X| is small. For further details on # +# the comparisons, see the notes on Step 1 of setox. # +# # +# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). # +# 2.1 N := round-to-nearest-integer( X * 64/log2 ). # +# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., # +# or 63. # +# 2.3 Calculate M = (N - J)/64; so N = 64M + J. # +# 2.4 Calculate the address of the stored value of # +# 2^(J/64). # +# 2.5 Create the values Sc = 2^M and # +# OnebySc := -2^(-M). # +# Notes: See the notes on Step 2 of setox. # +# # +# Step 3. Calculate X - N*log2/64. # +# 3.1 R := X + N*L1, # +# where L1 := single-precision(-log2/64). # +# 3.2 R := R + N*L2, # +# L2 := extended-precision(-log2/64 - L1).# +# Notes: Applying the analysis of Step 3 of setox in this case # +# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in # +# this case). # +# # +# Step 4. Approximate exp(R)-1 by a polynomial # +# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) # +# Notes: a) In order to reduce memory access, the coefficients # +# are made as "short" as possible: A1 (which is 1/2), A5 # +# and A6 are single precision; A2, A3 and A4 are double # +# precision. # +# b) Even with the restriction above, # +# |p - (exp(R)-1)| < |R| * 2^(-72.7) # +# for all |R| <= 0.0055. # +# c) To fully utilize the pipeline, p is separated into # +# two independent pieces of roughly equal complexity # +# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + # +# [ R + S*(A1 + S*(A3 + S*A5)) ] # +# where S = R*R. # +# # +# Step 5. Compute 2^(J/64)*p by # +# p := T*p # +# where T and t are the stored values for 2^(J/64). # +# Notes: 2^(J/64) is stored as T and t where T+t approximates # +# 2^(J/64) to roughly 85 bits; T is in extended precision # +# and t is in single precision. Note also that T is # +# rounded to 62 bits so that the last two bits of T are # +# zero. The reason for such a special form is that T-1, # +# T-2, and T-8 will all be exact --- a property that will # +# be exploited in Step 6 below. The total relative error # +# in p is no bigger than 2^(-67.7) compared to the final # +# result. # +# # +# Step 6. Reconstruction of exp(X)-1 # +# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). # +# 6.1 If M <= 63, go to Step 6.3. # +# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 # +# 6.3 If M >= -3, go to 6.5. # +# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 # +# 6.5 ans := (T + OnebySc) + (p + t). # +# 6.6 Restore user FPCR. # +# 6.7 Return ans := Sc * ans. Exit. # +# Notes: The various arrangements of the expressions give # +# accurate evaluations. # +# # +# Step 7. exp(X)-1 for |X| < 1/4. # +# 7.1 If |X| >= 2^(-65), go to Step 9. # +# 7.2 Go to Step 8. # +# # +# Step 8. Calculate exp(X)-1, |X| < 2^(-65). # +# 8.1 If |X| < 2^(-16312), goto 8.3 # +# 8.2 Restore FPCR; return ans := X - 2^(-16382). # +# Exit. # +# 8.3 X := X * 2^(140). # +# 8.4 Restore FPCR; ans := ans - 2^(-16382). # +# Return ans := ans*2^(140). Exit # +# Notes: The idea is to return "X - tiny" under the user # +# precision and rounding modes. To avoid unnecessary # +# inefficiency, we stay away from denormalized numbers # +# the best we can. For |X| >= 2^(-16312), the # +# straightforward 8.2 generates the inexact exception as # +# the case warrants. # +# # +# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial # +# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) # +# Notes: a) In order to reduce memory access, the coefficients # +# are made as "short" as possible: B1 (which is 1/2), B9 # +# to B12 are single precision; B3 to B8 are double # +# precision; and B2 is double extended. # +# b) Even with the restriction above, # +# |p - (exp(X)-1)| < |X| 2^(-70.6) # +# for all |X| <= 0.251. # +# Note that 0.251 is slightly bigger than 1/4. # +# c) To fully preserve accuracy, the polynomial is # +# computed as # +# X + ( S*B1 + Q ) where S = X*X and # +# Q = X*S*(B2 + X*(B3 + ... + X*B12)) # +# d) To fully utilize the pipeline, Q is separated into # +# two independent pieces of roughly equal complexity # +# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + # +# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] # +# # +# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. # +# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all # +# practical purposes. Therefore, go to Step 1 of setox. # +# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical # +# purposes. # +# ans := -1 # +# Restore user FPCR # +# Return ans := ans + 2^(-126). Exit. # +# Notes: 10.2 will always create an inexact and return -1 + tiny # +# in the user rounding precision and mode. # +# # +######################################################################### + +L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 + +EEXPA3: long 0x3FA55555,0x55554CC1 +EEXPA2: long 0x3FC55555,0x55554A54 + +EM1A4: long 0x3F811111,0x11174385 +EM1A3: long 0x3FA55555,0x55554F5A + +EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000 + +EM1B8: long 0x3EC71DE3,0xA5774682 +EM1B7: long 0x3EFA01A0,0x19D7CB68 + +EM1B6: long 0x3F2A01A0,0x1A019DF3 +EM1B5: long 0x3F56C16C,0x16C170E2 + +EM1B4: long 0x3F811111,0x11111111 +EM1B3: long 0x3FA55555,0x55555555 + +EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB + long 0x00000000 + +TWO140: long 0x48B00000,0x00000000 +TWON140: + long 0x37300000,0x00000000 + +EEXPTBL: + long 0x3FFF0000,0x80000000,0x00000000,0x00000000 + long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B + long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 + long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 + long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C + long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F + long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 + long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF + long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF + long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA + long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 + long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 + long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 + long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 + long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D + long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 + long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD + long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 + long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 + long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D + long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 + long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C + long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 + long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 + long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 + long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA + long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A + long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC + long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC + long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 + long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 + long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A + long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 + long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 + long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC + long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 + long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 + long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 + long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 + long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B + long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 + long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E + long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 + long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D + long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 + long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C + long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 + long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 + long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F + long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F + long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 + long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 + long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B + long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 + long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A + long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 + long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 + long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B + long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 + long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 + long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 + long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 + long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 + long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A + + set ADJFLAG,L_SCR2 + set SCALE,FP_SCR0 + set ADJSCALE,FP_SCR1 + set SC,FP_SCR0 + set ONEBYSC,FP_SCR1 + + global setox +setox: +#--entry point for EXP(X), here X is finite, non-zero, and not NaN's + +#--Step 1. + mov.l (%a0),%d1 # load part of input X + and.l &0x7FFF0000,%d1 # biased expo. of X + cmp.l %d1,&0x3FBE0000 # 2^(-65) + bge.b EXPC1 # normal case + bra EXPSM + +EXPC1: +#--The case |X| >= 2^(-65) + mov.w 4(%a0),%d1 # expo. and partial sig. of |X| + cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits + blt.b EXPMAIN # normal case + bra EEXPBIG + +EXPMAIN: +#--Step 2. +#--This is the normal branch: 2^(-65) <= |X| < 16380 log2. + fmov.x (%a0),%fp0 # load input from (a0) + + fmov.x %fp0,%fp1 + fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + mov.l &0,ADJFLAG(%a6) + fmov.l %fp0,%d1 # N = int( X * 64/log2 ) + lea EEXPTBL(%pc),%a1 + fmov.l %d1,%fp0 # convert to floating-format + + mov.l %d1,L_SCR1(%a6) # save N temporarily + and.l &0x3F,%d1 # D0 is J = N mod 64 + lsl.l &4,%d1 + add.l %d1,%a1 # address of 2^(J/64) + mov.l L_SCR1(%a6),%d1 + asr.l &6,%d1 # D0 is M + add.w &0x3FFF,%d1 # biased expo. of 2^(M) + mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB + +EXPCONT1: +#--Step 3. +#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, +#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) + fmov.x %fp0,%fp2 + fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) + fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 + fadd.x %fp1,%fp0 # X + N*L1 + fadd.x %fp2,%fp0 # fp0 is R, reduced arg. + +#--Step 4. +#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL +#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) +#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R +#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # fp1 IS S = R*R + + fmov.s &0x3AB60B70,%fp2 # fp2 IS A5 + + fmul.x %fp1,%fp2 # fp2 IS S*A5 + fmov.x %fp1,%fp3 + fmul.s &0x3C088895,%fp3 # fp3 IS S*A4 + + fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5 + fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4 + + fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5) + mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended + mov.l &0x80000000,SCALE+4(%a6) + clr.l SCALE+8(%a6) + + fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4) + + fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5) + fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4) + + fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5)) + fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4), + + fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64) + fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1 + +#--Step 5 +#--final reconstruction process +#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) + + fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1) + fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} + fadd.s (%a1),%fp0 # accurate 2^(J/64) + + fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*... + mov.l ADJFLAG(%a6),%d1 + +#--Step 6 + tst.l %d1 + beq.b NORMAL +ADJUST: + fmul.x ADJSCALE(%a6),%fp0 +NORMAL: + fmov.l %d0,%fpcr # restore user FPCR + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x SCALE(%a6),%fp0 # multiply 2^(M) + bra t_catch + +EXPSM: +#--Step 7 + fmovm.x (%a0),&0x80 # load X + fmov.l %d0,%fpcr + fadd.s &0x3F800000,%fp0 # 1+X in user mode + bra t_pinx2 + +EEXPBIG: +#--Step 8 + cmp.l %d1,&0x400CB27C # 16480 log2 + bgt.b EXP2BIG +#--Steps 8.2 -- 8.6 + fmov.x (%a0),%fp0 # load input from (a0) + + fmov.x %fp0,%fp1 + fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + mov.l &1,ADJFLAG(%a6) + fmov.l %fp0,%d1 # N = int( X * 64/log2 ) + lea EEXPTBL(%pc),%a1 + fmov.l %d1,%fp0 # convert to floating-format + mov.l %d1,L_SCR1(%a6) # save N temporarily + and.l &0x3F,%d1 # D0 is J = N mod 64 + lsl.l &4,%d1 + add.l %d1,%a1 # address of 2^(J/64) + mov.l L_SCR1(%a6),%d1 + asr.l &6,%d1 # D0 is K + mov.l %d1,L_SCR1(%a6) # save K temporarily + asr.l &1,%d1 # D0 is M1 + sub.l %d1,L_SCR1(%a6) # a1 is M + add.w &0x3FFF,%d1 # biased expo. of 2^(M1) + mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1) + mov.l &0x80000000,ADJSCALE+4(%a6) + clr.l ADJSCALE+8(%a6) + mov.l L_SCR1(%a6),%d1 # D0 is M + add.w &0x3FFF,%d1 # biased expo. of 2^(M) + bra.w EXPCONT1 # go back to Step 3 + +EXP2BIG: +#--Step 9 + tst.b (%a0) # is X positive or negative? + bmi t_unfl2 + bra t_ovfl2 + + global setoxd +setoxd: +#--entry point for EXP(X), X is denormalized + mov.l (%a0),-(%sp) + andi.l &0x80000000,(%sp) + ori.l &0x00800000,(%sp) # sign(X)*2^(-126) + + fmov.s &0x3F800000,%fp0 + + fmov.l %d0,%fpcr + fadd.s (%sp)+,%fp0 + bra t_pinx2 + + global setoxm1 +setoxm1: +#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN + +#--Step 1. +#--Step 1.1 + mov.l (%a0),%d1 # load part of input X + and.l &0x7FFF0000,%d1 # biased expo. of X + cmp.l %d1,&0x3FFD0000 # 1/4 + bge.b EM1CON1 # |X| >= 1/4 + bra EM1SM + +EM1CON1: +#--Step 1.3 +#--The case |X| >= 1/4 + mov.w 4(%a0),%d1 # expo. and partial sig. of |X| + cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits + ble.b EM1MAIN # 1/4 <= |X| <= 70log2 + bra EM1BIG + +EM1MAIN: +#--Step 2. +#--This is the case: 1/4 <= |X| <= 70 log2. + fmov.x (%a0),%fp0 # load input from (a0) + + fmov.x %fp0,%fp1 + fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + fmov.l %fp0,%d1 # N = int( X * 64/log2 ) + lea EEXPTBL(%pc),%a1 + fmov.l %d1,%fp0 # convert to floating-format + + mov.l %d1,L_SCR1(%a6) # save N temporarily + and.l &0x3F,%d1 # D0 is J = N mod 64 + lsl.l &4,%d1 + add.l %d1,%a1 # address of 2^(J/64) + mov.l L_SCR1(%a6),%d1 + asr.l &6,%d1 # D0 is M + mov.l %d1,L_SCR1(%a6) # save a copy of M + +#--Step 3. +#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, +#--a0 points to 2^(J/64), D0 and a1 both contain M + fmov.x %fp0,%fp2 + fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64) + fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64 + fadd.x %fp1,%fp0 # X + N*L1 + fadd.x %fp2,%fp0 # fp0 is R, reduced arg. + add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M + +#--Step 4. +#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL +#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) +#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R +#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # fp1 IS S = R*R + + fmov.s &0x3950097B,%fp2 # fp2 IS a6 + + fmul.x %fp1,%fp2 # fp2 IS S*A6 + fmov.x %fp1,%fp3 + fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5 + + fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6 + fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5 + mov.w %d1,SC(%a6) # SC is 2^(M) in extended + mov.l &0x80000000,SC+4(%a6) + clr.l SC+8(%a6) + + fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6) + mov.l L_SCR1(%a6),%d1 # D0 is M + neg.w %d1 # D0 is -M + fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5) + add.w &0x3FFF,%d1 # biased expo. of 2^(-M) + fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6) + fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5) + + fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6)) + or.w &0x8000,%d1 # signed/expo. of -2^(-M) + mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M) + mov.l &0x80000000,ONEBYSC+4(%a6) + clr.l ONEBYSC+8(%a6) + fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5)) + + fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6)) + fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5)) + + fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1 + + fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} + +#--Step 5 +#--Compute 2^(J/64)*p + + fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1) + +#--Step 6 +#--Step 6.1 + mov.l L_SCR1(%a6),%d1 # retrieve M + cmp.l %d1,&63 + ble.b MLE63 +#--Step 6.2 M >= 64 + fmov.s 12(%a1),%fp1 # fp1 is t + fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc + fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released + fadd.x (%a1),%fp0 # T+(p+(t+OnebySc)) + bra EM1SCALE +MLE63: +#--Step 6.3 M <= 63 + cmp.l %d1,&-3 + bge.b MGEN3 +MLTN3: +#--Step 6.4 M <= -4 + fadd.s 12(%a1),%fp0 # p+t + fadd.x (%a1),%fp0 # T+(p+t) + fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t)) + bra EM1SCALE +MGEN3: +#--Step 6.5 -3 <= M <= 63 + fmov.x (%a1)+,%fp1 # fp1 is T + fadd.s (%a1),%fp0 # fp0 is p+t + fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc + fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t) + +EM1SCALE: +#--Step 6.6 + fmov.l %d0,%fpcr + fmul.x SC(%a6),%fp0 + bra t_inx2 + +EM1SM: +#--Step 7 |X| < 1/4. + cmp.l %d1,&0x3FBE0000 # 2^(-65) + bge.b EM1POLY + +EM1TINY: +#--Step 8 |X| < 2^(-65) + cmp.l %d1,&0x00330000 # 2^(-16312) + blt.b EM12TINY +#--Step 8.2 + mov.l &0x80010000,SC(%a6) # SC is -2^(-16382) + mov.l &0x80000000,SC+4(%a6) + clr.l SC+8(%a6) + fmov.x (%a0),%fp0 + fmov.l %d0,%fpcr + mov.b &FADD_OP,%d1 # last inst is ADD + fadd.x SC(%a6),%fp0 + bra t_catch + +EM12TINY: +#--Step 8.3 + fmov.x (%a0),%fp0 + fmul.d TWO140(%pc),%fp0 + mov.l &0x80010000,SC(%a6) + mov.l &0x80000000,SC+4(%a6) + clr.l SC+8(%a6) + fadd.x SC(%a6),%fp0 + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.d TWON140(%pc),%fp0 + bra t_catch + +EM1POLY: +#--Step 9 exp(X)-1 by a simple polynomial + fmov.x (%a0),%fp0 # fp0 is X + fmul.x %fp0,%fp0 # fp0 is S := X*X + fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3} + fmov.s &0x2F30CAA8,%fp1 # fp1 is B12 + fmul.x %fp0,%fp1 # fp1 is S*B12 + fmov.s &0x310F8290,%fp2 # fp2 is B11 + fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12 + + fmul.x %fp0,%fp2 # fp2 is S*B11 + fmul.x %fp0,%fp1 # fp1 is S*(B10 + ... + + fadd.s &0x3493F281,%fp2 # fp2 is B9+S*... + fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B9+... + fmul.x %fp0,%fp1 # fp1 is S*(B8+... + + fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*... + fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B7+... + fmul.x %fp0,%fp1 # fp1 is S*(B6+... + + fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*... + fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B5+... + fmul.x %fp0,%fp1 # fp1 is S*(B4+... + + fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*... + fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*... + + fmul.x %fp0,%fp2 # fp2 is S*(B3+... + fmul.x %fp0,%fp1 # fp1 is S*(B2+... + + fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...) + fmul.x (%a0),%fp1 # fp1 is X*S*(B2... + + fmul.s &0x3F000000,%fp0 # fp0 is S*B1 + fadd.x %fp2,%fp1 # fp1 is Q + + fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3} + + fadd.x %fp1,%fp0 # fp0 is S*B1+Q + + fmov.l %d0,%fpcr + fadd.x (%a0),%fp0 + bra t_inx2 + +EM1BIG: +#--Step 10 |X| > 70 log2 + mov.l (%a0),%d1 + cmp.l %d1,&0 + bgt.w EXPC1 +#--Step 10.2 + fmov.s &0xBF800000,%fp0 # fp0 is -1 + fmov.l %d0,%fpcr + fadd.s &0x00800000,%fp0 # -1 + 2^(-126) + bra t_minx2 + + global setoxm1d +setoxm1d: +#--entry point for EXPM1(X), here X is denormalized +#--Step 0. + bra t_extdnrm + +######################################################################### +# sgetexp(): returns the exponent portion of the input argument. # +# The exponent bias is removed and the exponent value is # +# returned as an extended precision number in fp0. # +# sgetexpd(): handles denormalized numbers. # +# # +# sgetman(): extracts the mantissa of the input argument. The # +# mantissa is converted to an extended precision number w/ # +# an exponent of $3fff and is returned in fp0. The range of # +# the result is [1.0 - 2.0). # +# sgetmand(): handles denormalized numbers. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# # +# OUTPUT ************************************************************** # +# fp0 = exponent(X) or mantissa(X) # +# # +######################################################################### + + global sgetexp +sgetexp: + mov.w SRC_EX(%a0),%d0 # get the exponent + bclr &0xf,%d0 # clear the sign bit + subi.w &0x3fff,%d0 # subtract off the bias + fmov.w %d0,%fp0 # return exp in fp0 + blt.b sgetexpn # it's negative + rts + +sgetexpn: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + + global sgetexpd +sgetexpd: + bsr.l norm # normalize + neg.w %d0 # new exp = -(shft amt) + subi.w &0x3fff,%d0 # subtract off the bias + fmov.w %d0,%fp0 # return exp in fp0 + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + + global sgetman +sgetman: + mov.w SRC_EX(%a0),%d0 # get the exp + ori.w &0x7fff,%d0 # clear old exp + bclr &0xe,%d0 # make it the new exp +-3fff + +# here, we build the result in a tmp location so as not to disturb the input + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0 + bmi.b sgetmann # it's negative + rts + +sgetmann: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +# +# For denormalized numbers, shift the mantissa until the j-bit = 1, +# then load the exponent with +/1 $3fff. +# + global sgetmand +sgetmand: + bsr.l norm # normalize exponent + bra.b sgetman + +######################################################################### +# scosh(): computes the hyperbolic cosine of a normalized input # +# scoshd(): computes the hyperbolic cosine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = cosh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# COSH # +# 1. If |X| > 16380 log2, go to 3. # +# # +# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae # +# y = |X|, z = exp(Y), and # +# cosh(X) = (1/2)*( z + 1/z ). # +# Exit. # +# # +# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. # +# # +# 4. (16380 log2 < |X| <= 16480 log2) # +# cosh(X) = sign(X) * exp(|X|)/2. # +# However, invoking exp(|X|) may cause premature # +# overflow. Thus, we calculate sinh(X) as follows: # +# Y := |X| # +# Fact := 2**(16380) # +# Y' := Y - 16381 log2 # +# cosh(X) := Fact * exp(Y'). # +# Exit. # +# # +# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # +# Huge*Huge to generate overflow and an infinity with # +# the appropriate sign. Huge is the largest finite number # +# in extended format. Exit. # +# # +######################################################################### + +TWO16380: + long 0x7FFB0000,0x80000000,0x00000000,0x00000000 + + global scosh +scosh: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x400CB167 + bgt.b COSHBIG + +#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 +#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) + + fabs.x %fp0 # |X| + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save |X| to stack + lea (%sp),%a0 # pass ptr to |X| + bsr setox # FP0 IS EXP(|X|) + add.l &0xc,%sp # erase |X| from stack + fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|) + mov.l (%sp)+,%d0 + + fmov.s &0x3E800000,%fp1 # (1/4) + fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|)) + + fmov.l %d0,%fpcr + mov.b &FADD_OP,%d1 # last inst is ADD + fadd.x %fp1,%fp0 + bra t_catch + +COSHBIG: + cmp.l %d1,&0x400CB2B3 + bgt.b COSHHUGE + + fabs.x %fp0 + fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) + fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save fp0 to stack + lea (%sp),%a0 # pass ptr to fp0 + bsr setox + add.l &0xc,%sp # clear fp0 from stack + mov.l (%sp)+,%d0 + + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x TWO16380(%pc),%fp0 + bra t_catch + +COSHHUGE: + bra t_ovfl2 + + global scoshd +#--COSH(X) = 1 FOR DENORMALIZED X +scoshd: + fmov.s &0x3F800000,%fp0 + + fmov.l %d0,%fpcr + fadd.s &0x00800000,%fp0 + bra t_pinx2 + +######################################################################### +# ssinh(): computes the hyperbolic sine of a normalized input # +# ssinhd(): computes the hyperbolic sine of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = sinh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# SINH # +# 1. If |X| > 16380 log2, go to 3. # +# # +# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula # +# y = |X|, sgn = sign(X), and z = expm1(Y), # +# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # +# Exit. # +# # +# 3. If |X| > 16480 log2, go to 5. # +# # +# 4. (16380 log2 < |X| <= 16480 log2) # +# sinh(X) = sign(X) * exp(|X|)/2. # +# However, invoking exp(|X|) may cause premature overflow. # +# Thus, we calculate sinh(X) as follows: # +# Y := |X| # +# sgn := sign(X) # +# sgnFact := sgn * 2**(16380) # +# Y' := Y - 16381 log2 # +# sinh(X) := sgnFact * exp(Y'). # +# Exit. # +# # +# 5. (|X| > 16480 log2) sinh(X) must overflow. Return # +# sign(X)*Huge*Huge to generate overflow and an infinity with # +# the appropriate sign. Huge is the largest finite number in # +# extended format. Exit. # +# # +######################################################################### + + global ssinh +ssinh: + fmov.x (%a0),%fp0 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + mov.l %d1,%a1 # save (compacted) operand + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x400CB167 + bgt.b SINHBIG + +#--THIS IS THE USUAL CASE, |X| < 16380 LOG2 +#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) + + fabs.x %fp0 # Y = |X| + + movm.l &0x8040,-(%sp) # {a1/d0} + fmovm.x &0x01,-(%sp) # save Y on stack + lea (%sp),%a0 # pass ptr to Y + clr.l %d0 + bsr setoxm1 # FP0 IS Z = EXPM1(Y) + add.l &0xc,%sp # clear Y from stack + fmov.l &0,%fpcr + movm.l (%sp)+,&0x0201 # {a1/d0} + + fmov.x %fp0,%fp1 + fadd.s &0x3F800000,%fp1 # 1+Z + fmov.x %fp0,-(%sp) + fdiv.x %fp1,%fp0 # Z/(1+Z) + mov.l %a1,%d1 + and.l &0x80000000,%d1 + or.l &0x3F000000,%d1 + fadd.x (%sp)+,%fp0 + mov.l %d1,-(%sp) + + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set + bra t_catch + +SINHBIG: + cmp.l %d1,&0x400CB2B3 + bgt t_ovfl + fabs.x %fp0 + fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD) + mov.l &0,-(%sp) + mov.l &0x80000000,-(%sp) + mov.l %a1,%d1 + and.l &0x80000000,%d1 + or.l &0x7FFB0000,%d1 + mov.l %d1,-(%sp) # EXTENDED FMT + fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save fp0 on stack + lea (%sp),%a0 # pass ptr to fp0 + bsr setox + add.l &0xc,%sp # clear fp0 from stack + + mov.l (%sp)+,%d0 + fmov.l %d0,%fpcr + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x (%sp)+,%fp0 # possible exception + bra t_catch + + global ssinhd +#--SINH(X) = X FOR DENORMALIZED X +ssinhd: + bra t_extdnrm + +######################################################################### +# stanh(): computes the hyperbolic tangent of a normalized input # +# stanhd(): computes the hyperbolic tangent of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = tanh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# TANH # +# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. # +# # +# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by # +# sgn := sign(X), y := 2|X|, z := expm1(Y), and # +# tanh(X) = sgn*( z/(2+z) ). # +# Exit. # +# # +# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, # +# go to 7. # +# # +# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. # +# # +# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by # +# sgn := sign(X), y := 2|X|, z := exp(Y), # +# tanh(X) = sgn - [ sgn*2/(1+z) ]. # +# Exit. # +# # +# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we # +# calculate Tanh(X) by # +# sgn := sign(X), Tiny := 2**(-126), # +# tanh(X) := sgn - sgn*Tiny. # +# Exit. # +# # +# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. # +# # +######################################################################### + + set X,FP_SCR0 + set XFRAC,X+4 + + set SGN,L_SCR3 + + set V,FP_SCR0 + + global stanh +stanh: + fmov.x (%a0),%fp0 # LOAD INPUT + + fmov.x %fp0,X(%a6) + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + mov.l %d1,X(%a6) + and.l &0x7FFFFFFF,%d1 + cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)? + blt.w TANHBORS # yes + cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2? + bgt.w TANHBORS # yes + +#--THIS IS THE USUAL CASE +#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). + + mov.l X(%a6),%d1 + mov.l %d1,SGN(%a6) + and.l &0x7FFF0000,%d1 + add.l &0x00010000,%d1 # EXPONENT OF 2|X| + mov.l %d1,X(%a6) + and.l &0x80000000,SGN(%a6) + fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X| + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x1,-(%sp) # save Y on stack + lea (%sp),%a0 # pass ptr to Y + bsr setoxm1 # FP0 IS Z = EXPM1(Y) + add.l &0xc,%sp # clear Y from stack + mov.l (%sp)+,%d0 + + fmov.x %fp0,%fp1 + fadd.s &0x40000000,%fp1 # Z+2 + mov.l SGN(%a6),%d1 + fmov.x %fp1,V(%a6) + eor.l %d1,V(%a6) + + fmov.l %d0,%fpcr # restore users round prec,mode + fdiv.x V(%a6),%fp0 + bra t_inx2 + +TANHBORS: + cmp.l %d1,&0x3FFF8000 + blt.w TANHSM + + cmp.l %d1,&0x40048AA1 + bgt.w TANHHUGE + +#-- (5/2) LOG2 < |X| < 50 LOG2, +#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), +#--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. + + mov.l X(%a6),%d1 + mov.l %d1,SGN(%a6) + and.l &0x7FFF0000,%d1 + add.l &0x00010000,%d1 # EXPO OF 2|X| + mov.l %d1,X(%a6) # Y = 2|X| + and.l &0x80000000,SGN(%a6) + mov.l SGN(%a6),%d1 + fmov.x X(%a6),%fp0 # Y = 2|X| + + mov.l %d0,-(%sp) + clr.l %d0 + fmovm.x &0x01,-(%sp) # save Y on stack + lea (%sp),%a0 # pass ptr to Y + bsr setox # FP0 IS EXP(Y) + add.l &0xc,%sp # clear Y from stack + mov.l (%sp)+,%d0 + mov.l SGN(%a6),%d1 + fadd.s &0x3F800000,%fp0 # EXP(Y)+1 + + eor.l &0xC0000000,%d1 # -SIGN(X)*2 + fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT + fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ] + + mov.l SGN(%a6),%d1 + or.l &0x3F800000,%d1 # SGN + fmov.s %d1,%fp0 # SGN IN SGL FMT + + fmov.l %d0,%fpcr # restore users round prec,mode + mov.b &FADD_OP,%d1 # last inst is ADD + fadd.x %fp1,%fp0 + bra t_inx2 + +TANHSM: + fmov.l %d0,%fpcr # restore users round prec,mode + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x X(%a6),%fp0 # last inst - possible exception set + bra t_catch + +#---RETURN SGN(X) - SGN(X)EPS +TANHHUGE: + mov.l X(%a6),%d1 + and.l &0x80000000,%d1 + or.l &0x3F800000,%d1 + fmov.s %d1,%fp0 + and.l &0x80000000,%d1 + eor.l &0x80800000,%d1 # -SIGN(X)*EPS + + fmov.l %d0,%fpcr # restore users round prec,mode + fadd.s %d1,%fp0 + bra t_inx2 + + global stanhd +#--TANH(X) = X FOR DENORMALIZED X +stanhd: + bra t_extdnrm + +######################################################################### +# slogn(): computes the natural logarithm of a normalized input # +# slognd(): computes the natural logarithm of a denormalized input # +# slognp1(): computes the log(1+X) of a normalized input # +# slognp1d(): computes the log(1+X) of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = log(X) or log(1+X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 2 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# LOGN: # +# Step 1. If |X-1| < 1/16, approximate log(X) by an odd # +# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, # +# move on to Step 2. # +# # +# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first # +# seven significant bits of Y plus 2**(-7), i.e. # +# F = 1.xxxxxx1 in base 2 where the six "x" match those # +# of Y. Note that |Y-F| <= 2**(-7). # +# # +# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a # +# polynomial in u, log(1+u) = poly. # +# # +# Step 4. Reconstruct # +# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) # +# by k*log(2) + (log(F) + poly). The values of log(F) are # +# calculated beforehand and stored in the program. # +# # +# lognp1: # +# Step 1: If |X| < 1/16, approximate log(1+X) by an odd # +# polynomial in u where u = 2X/(2+X). Otherwise, move on # +# to Step 2. # +# # +# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done # +# in Step 2 of the algorithm for LOGN and compute # +# log(1+X) as k*log(2) + log(F) + poly where poly # +# approximates log(1+u), u = (Y-F)/F. # +# # +# Implementation Notes: # +# Note 1. There are 64 different possible values for F, thus 64 # +# log(F)'s need to be tabulated. Moreover, the values of # +# 1/F are also tabulated so that the division in (Y-F)/F # +# can be performed by a multiplication. # +# # +# Note 2. In Step 2 of lognp1, in order to preserved accuracy, # +# the value Y-F has to be calculated carefully when # +# 1/2 <= X < 3/2. # +# # +# Note 3. To fully exploit the pipeline, polynomials are usually # +# separated into two parts evaluated independently before # +# being added up. # +# # +######################################################################### +LOGOF2: + long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 + +one: + long 0x3F800000 +zero: + long 0x00000000 +infty: + long 0x7F800000 +negone: + long 0xBF800000 + +LOGA6: + long 0x3FC2499A,0xB5E4040B +LOGA5: + long 0xBFC555B5,0x848CB7DB + +LOGA4: + long 0x3FC99999,0x987D8730 +LOGA3: + long 0xBFCFFFFF,0xFF6F7E97 + +LOGA2: + long 0x3FD55555,0x555555A4 +LOGA1: + long 0xBFE00000,0x00000008 + +LOGB5: + long 0x3F175496,0xADD7DAD6 +LOGB4: + long 0x3F3C71C2,0xFE80C7E0 + +LOGB3: + long 0x3F624924,0x928BCCFF +LOGB2: + long 0x3F899999,0x999995EC + +LOGB1: + long 0x3FB55555,0x55555555 +TWO: + long 0x40000000,0x00000000 + +LTHOLD: + long 0x3f990000,0x80000000,0x00000000,0x00000000 + +LOGTBL: + long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 + long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 + long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 + long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 + long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 + long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 + long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 + long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 + long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 + long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 + long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 + long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 + long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 + long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 + long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 + long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 + long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 + long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 + long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 + long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 + long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 + long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 + long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 + long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 + long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 + long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 + long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 + long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 + long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 + long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 + long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 + long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 + long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 + long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 + long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 + long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 + long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 + long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 + long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 + long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 + long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 + long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 + long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 + long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 + long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 + long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 + long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 + long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 + long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 + long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 + long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 + long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 + long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 + long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 + long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 + long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 + long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 + long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 + long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 + long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 + long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 + long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 + long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 + long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 + long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 + long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 + long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 + long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 + long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 + long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 + long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 + long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 + long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 + long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 + long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 + long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 + long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 + long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 + long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 + long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 + long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 + long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 + long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 + long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 + long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 + long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 + long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 + long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 + long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 + long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 + long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 + long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 + long 0x3FFE0000,0x94458094,0x45809446,0x00000000 + long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 + long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 + long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 + long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 + long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 + long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 + long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 + long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 + long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 + long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 + long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 + long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 + long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 + long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 + long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 + long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 + long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 + long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 + long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 + long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 + long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 + long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 + long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 + long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 + long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 + long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 + long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 + long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 + long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 + long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 + long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 + long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 + long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 + long 0x3FFE0000,0x80808080,0x80808081,0x00000000 + long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 + + set ADJK,L_SCR1 + + set X,FP_SCR0 + set XDCARE,X+2 + set XFRAC,X+4 + + set F,FP_SCR1 + set FFRAC,F+4 + + set KLOG2,FP_SCR0 + + set SAVEU,FP_SCR0 + + global slogn +#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S +slogn: + fmov.x (%a0),%fp0 # LOAD INPUT + mov.l &0x00000000,ADJK(%a6) + +LOGBGN: +#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS +#--A FINITE, NON-ZERO, NORMALIZED NUMBER. + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + + mov.l (%a0),X(%a6) + mov.l 4(%a0),X+4(%a6) + mov.l 8(%a0),X+8(%a6) + + cmp.l %d1,&0 # CHECK IF X IS NEGATIVE + blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID +# X IS POSITIVE, CHECK IF X IS NEAR 1 + cmp.l %d1,&0x3ffef07d # IS X < 15/16? + blt.b LOGMAIN # YES + cmp.l %d1,&0x3fff8841 # IS X > 17/16? + ble.w LOGNEAR1 # NO + +LOGMAIN: +#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 + +#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. +#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. +#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) +#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). +#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING +#--LOG(1+U) CAN BE VERY EFFICIENT. +#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO +#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. + +#--GET K, Y, F, AND ADDRESS OF 1/F. + asr.l &8,%d1 + asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X + sub.l &0x3FFF,%d1 # THIS IS K + add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM. + lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F) + fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT + +#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F + mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X + mov.l XFRAC(%a6),FFRAC(%a6) + and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y + or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT + mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F + and.l &0x7E000000,%d1 + asr.l &8,%d1 + asr.l &8,%d1 + asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT + add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F + + fmov.x X(%a6),%fp0 + mov.l &0x3fff0000,F(%a6) + clr.l F+8(%a6) + fsub.x F(%a6),%fp0 # Y-F + fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY +#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K +#--REGISTERS SAVED: FPCR, FP1, FP2 + +LP1CONT1: +#--AN RE-ENTRY POINT FOR LOGNP1 + fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F + fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY + fmov.x %fp0,%fp2 + fmul.x %fp2,%fp2 # FP2 IS V=U*U + fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1 + +#--LOG(1+U) IS APPROXIMATED BY +#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS +#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] + + fmov.x %fp2,%fp3 + fmov.x %fp2,%fp1 + + fmul.d LOGA6(%pc),%fp1 # V*A6 + fmul.d LOGA5(%pc),%fp2 # V*A5 + + fadd.d LOGA4(%pc),%fp1 # A4+V*A6 + fadd.d LOGA3(%pc),%fp2 # A3+V*A5 + + fmul.x %fp3,%fp1 # V*(A4+V*A6) + fmul.x %fp3,%fp2 # V*(A3+V*A5) + + fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6) + fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5) + + fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6)) + add.l &16,%a0 # ADDRESS OF LOG(F) + fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5)) + + fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6)) + fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5)) + + fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6)) + fmovm.x (%sp)+,&0x30 # RESTORE FP2-3 + fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U) + + fmov.l %d0,%fpcr + fadd.x KLOG2(%a6),%fp0 # FINAL ADD + bra t_inx2 + + +LOGNEAR1: + +# if the input is exactly equal to one, then exit through ld_pzero. +# if these 2 lines weren't here, the correct answer would be returned +# but the INEX2 bit would be set. + fcmp.b %fp0,&0x1 # is it equal to one? + fbeq.l ld_pzero # yes + +#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. + fmov.x %fp0,%fp1 + fsub.s one(%pc),%fp1 # FP1 IS X-1 + fadd.s one(%pc),%fp0 # FP0 IS X+1 + fadd.x %fp1,%fp1 # FP1 IS 2(X-1) +#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL +#--IN U, U = 2(X-1)/(X+1) = FP1/FP0 + +LP1CONT2: +#--THIS IS AN RE-ENTRY POINT FOR LOGNP1 + fdiv.x %fp0,%fp1 # FP1 IS U + fmovm.x &0xc,-(%sp) # SAVE FP2-3 +#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 +#--LET V=U*U, W=V*V, CALCULATE +#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY +#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) + fmov.x %fp1,%fp0 + fmul.x %fp0,%fp0 # FP0 IS V + fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1 + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS W + + fmov.d LOGB5(%pc),%fp3 + fmov.d LOGB4(%pc),%fp2 + + fmul.x %fp1,%fp3 # W*B5 + fmul.x %fp1,%fp2 # W*B4 + + fadd.d LOGB3(%pc),%fp3 # B3+W*B5 + fadd.d LOGB2(%pc),%fp2 # B2+W*B4 + + fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED + + fmul.x %fp0,%fp2 # V*(B2+W*B4) + + fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5) + fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V + + fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED + fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED + + fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) + + fmov.l %d0,%fpcr + fadd.x SAVEU(%a6),%fp0 + bra t_inx2 + +#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID +LOGNEG: + bra t_operr + + global slognd +slognd: +#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT + + mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0 + +#----normalize the input value by left shifting k bits (k to be determined +#----below), adjusting exponent and storing -k to ADJK +#----the value TWOTO100 is no longer needed. +#----Note that this code assumes the denormalized input is NON-ZERO. + + movm.l &0x3f00,-(%sp) # save some registers {d2-d7} + mov.l (%a0),%d3 # D3 is exponent of smallest norm. # + mov.l 4(%a0),%d4 + mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X) + clr.l %d2 # D2 used for holding K + + tst.l %d4 + bne.b Hi_not0 + +Hi_0: + mov.l %d5,%d4 + clr.l %d5 + mov.l &32,%d2 + clr.l %d6 + bfffo %d4{&0:&32},%d6 + lsl.l %d6,%d4 + add.l %d6,%d2 # (D3,D4,D5) is normalized + + mov.l %d3,X(%a6) + mov.l %d4,XFRAC(%a6) + mov.l %d5,XFRAC+4(%a6) + neg.l %d2 + mov.l %d2,ADJK(%a6) + fmov.x X(%a6),%fp0 + movm.l (%sp)+,&0xfc # restore registers {d2-d7} + lea X(%a6),%a0 + bra.w LOGBGN # begin regular log(X) + +Hi_not0: + clr.l %d6 + bfffo %d4{&0:&32},%d6 # find first 1 + mov.l %d6,%d2 # get k + lsl.l %d6,%d4 + mov.l %d5,%d7 # a copy of D5 + lsl.l %d6,%d5 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d4 # (D3,D4,D5) normalized + + mov.l %d3,X(%a6) + mov.l %d4,XFRAC(%a6) + mov.l %d5,XFRAC+4(%a6) + neg.l %d2 + mov.l %d2,ADJK(%a6) + fmov.x X(%a6),%fp0 + movm.l (%sp)+,&0xfc # restore registers {d2-d7} + lea X(%a6),%a0 + bra.w LOGBGN # begin regular log(X) + + global slognp1 +#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S +slognp1: + fmov.x (%a0),%fp0 # LOAD INPUT + fabs.x %fp0 # test magnitude + fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold + fbgt.w LP1REAL # if greater, continue + fmov.l %d0,%fpcr + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x (%a0),%fp0 # return signed argument + bra t_catch + +LP1REAL: + fmov.x (%a0),%fp0 # LOAD INPUT + mov.l &0x00000000,ADJK(%a6) + fmov.x %fp0,%fp1 # FP1 IS INPUT Z + fadd.s one(%pc),%fp0 # X := ROUND(1+Z) + fmov.x %fp0,X(%a6) + mov.w XFRAC(%a6),XDCARE(%a6) + mov.l X(%a6),%d1 + cmp.l %d1,&0 + ble.w LP1NEG0 # LOG OF ZERO OR -VE + cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]? + blt.w LOGMAIN + cmp.l %d1,&0x3fffc000 + bgt.w LOGMAIN +#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, +#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, +#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). + +LP1NEAR1: +#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) + cmp.l %d1,&0x3ffef07d + blt.w LP1CARE + cmp.l %d1,&0x3fff8841 + bgt.w LP1CARE + +LP1ONE16: +#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) +#--WHERE U = 2Z/(2+Z) = 2Z/(1+X). + fadd.x %fp1,%fp1 # FP1 IS 2Z + fadd.s one(%pc),%fp0 # FP0 IS 1+X +#--U = FP1/FP0 + bra.w LP1CONT2 + +LP1CARE: +#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE +#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST +#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], +#--THERE ARE ONLY TWO CASES. +#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z +#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z +#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF +#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. + + mov.l XFRAC(%a6),FFRAC(%a6) + and.l &0xFE000000,FFRAC(%a6) + or.l &0x01000000,FFRAC(%a6) # F OBTAINED + cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1 + bge.b KISZERO + +KISNEG1: + fmov.s TWO(%pc),%fp0 + mov.l &0x3fff0000,F(%a6) + clr.l F+8(%a6) + fsub.x F(%a6),%fp0 # 2-F + mov.l FFRAC(%a6),%d1 + and.l &0x7E000000,%d1 + asr.l &8,%d1 + asr.l &8,%d1 + asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F + fadd.x %fp1,%fp1 # GET 2Z + fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3} + fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z + lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F + add.l %d1,%a0 + fmov.s negone(%pc),%fp1 # FP1 IS K = -1 + bra.w LP1CONT1 + +KISZERO: + fmov.s one(%pc),%fp0 + mov.l &0x3fff0000,F(%a6) + clr.l F+8(%a6) + fsub.x F(%a6),%fp0 # 1-F + mov.l FFRAC(%a6),%d1 + and.l &0x7E000000,%d1 + asr.l &8,%d1 + asr.l &8,%d1 + asr.l &4,%d1 + fadd.x %fp1,%fp0 # FP0 IS Y-F + fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3} + lea LOGTBL(%pc),%a0 + add.l %d1,%a0 # A0 IS ADDRESS OF 1/F + fmov.s zero(%pc),%fp1 # FP1 IS K = 0 + bra.w LP1CONT1 + +LP1NEG0: +#--FPCR SAVED. D0 IS X IN COMPACT FORM. + cmp.l %d1,&0 + blt.b LP1NEG +LP1ZERO: + fmov.s negone(%pc),%fp0 + + fmov.l %d0,%fpcr + bra t_dz + +LP1NEG: + fmov.s zero(%pc),%fp0 + + fmov.l %d0,%fpcr + bra t_operr + + global slognp1d +#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT +# Simply return the denorm +slognp1d: + bra t_extdnrm + +######################################################################### +# satanh(): computes the inverse hyperbolic tangent of a norm input # +# satanhd(): computes the inverse hyperbolic tangent of a denorm input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = arctanh(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 3 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# ATANH # +# 1. If |X| >= 1, go to 3. # +# # +# 2. (|X| < 1) Calculate atanh(X) by # +# sgn := sign(X) # +# y := |X| # +# z := 2y/(1-y) # +# atanh(X) := sgn * (1/2) * logp1(z) # +# Exit. # +# # +# 3. If |X| > 1, go to 5. # +# # +# 4. (|X| = 1) Generate infinity with an appropriate sign and # +# divide-by-zero by # +# sgn := sign(X) # +# atan(X) := sgn / (+0). # +# Exit. # +# # +# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. # +# Exit. # +# # +######################################################################### + + global satanh +satanh: + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + cmp.l %d1,&0x3FFF8000 + bge.b ATANHBIG + +#--THIS IS THE USUAL CASE, |X| < 1 +#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). + + fabs.x (%a0),%fp0 # Y = |X| + fmov.x %fp0,%fp1 + fneg.x %fp1 # -Y + fadd.x %fp0,%fp0 # 2Y + fadd.s &0x3F800000,%fp1 # 1-Y + fdiv.x %fp1,%fp0 # 2Y/(1-Y) + mov.l (%a0),%d1 + and.l &0x80000000,%d1 + or.l &0x3F000000,%d1 # SIGN(X)*HALF + mov.l %d1,-(%sp) + + mov.l %d0,-(%sp) # save rnd prec,mode + clr.l %d0 # pass ext prec,RN + fmovm.x &0x01,-(%sp) # save Z on stack + lea (%sp),%a0 # pass ptr to Z + bsr slognp1 # LOG1P(Z) + add.l &0xc,%sp # clear Z from stack + + mov.l (%sp)+,%d0 # fetch old prec,mode + fmov.l %d0,%fpcr # load it + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.s (%sp)+,%fp0 + bra t_catch + +ATANHBIG: + fabs.x (%a0),%fp0 # |X| + fcmp.s %fp0,&0x3F800000 + fbgt t_operr + bra t_dz + + global satanhd +#--ATANH(X) = X FOR DENORMALIZED X +satanhd: + bra t_extdnrm + +######################################################################### +# slog10(): computes the base-10 logarithm of a normalized input # +# slog10d(): computes the base-10 logarithm of a denormalized input # +# slog2(): computes the base-2 logarithm of a normalized input # +# slog2d(): computes the base-2 logarithm of a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = log_10(X) or log_2(X) # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 1.7 ulps in 64 significant bit, # +# i.e. within 0.5003 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# slog10d: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # +# Notes: Even if X is denormalized, log(X) is always normalized. # +# # +# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # +# 2.1 Restore the user FPCR # +# 2.2 Return ans := Y * INV_L10. # +# # +# slog10: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. # +# # +# Step 2. Compute log_10(X) = log(X) * (1/log(10)). # +# 2.1 Restore the user FPCR # +# 2.2 Return ans := Y * INV_L10. # +# # +# sLog2d: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. Call slognd to obtain Y = log(X), the natural log of X. # +# Notes: Even if X is denormalized, log(X) is always normalized. # +# # +# Step 2. Compute log_10(X) = log(X) * (1/log(2)). # +# 2.1 Restore the user FPCR # +# 2.2 Return ans := Y * INV_L2. # +# # +# sLog2: # +# # +# Step 0. If X < 0, create a NaN and raise the invalid operation # +# flag. Otherwise, save FPCR in D1; set FpCR to default. # +# Notes: Default means round-to-nearest mode, no floating-point # +# traps, and precision control = double extended. # +# # +# Step 1. If X is not an integer power of two, i.e., X != 2^k, # +# go to Step 3. # +# # +# Step 2. Return k. # +# 2.1 Get integer k, X = 2^k. # +# 2.2 Restore the user FPCR. # +# 2.3 Return ans := convert-to-double-extended(k). # +# # +# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. # +# # +# Step 4. Compute log_2(X) = log(X) * (1/log(2)). # +# 4.1 Restore the user FPCR # +# 4.2 Return ans := Y * INV_L2. # +# # +######################################################################### + +INV_L10: + long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 + +INV_L2: + long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 + + global slog10 +#--entry point for Log10(X), X is normalized +slog10: + fmov.b &0x1,%fp0 + fcmp.x %fp0,(%a0) # if operand == 1, + fbeq.l ld_pzero # return an EXACT zero + + mov.l (%a0),%d1 + blt.w invalid + mov.l %d0,-(%sp) + clr.l %d0 + bsr slogn # log(X), X normal. + fmov.l (%sp)+,%fpcr + fmul.x INV_L10(%pc),%fp0 + bra t_inx2 + + global slog10d +#--entry point for Log10(X), X is denormalized +slog10d: + mov.l (%a0),%d1 + blt.w invalid + mov.l %d0,-(%sp) + clr.l %d0 + bsr slognd # log(X), X denorm. + fmov.l (%sp)+,%fpcr + fmul.x INV_L10(%pc),%fp0 + bra t_minx2 + + global slog2 +#--entry point for Log2(X), X is normalized +slog2: + mov.l (%a0),%d1 + blt.w invalid + + mov.l 8(%a0),%d1 + bne.b continue # X is not 2^k + + mov.l 4(%a0),%d1 + and.l &0x7FFFFFFF,%d1 + bne.b continue + +#--X = 2^k. + mov.w (%a0),%d1 + and.l &0x00007FFF,%d1 + sub.l &0x3FFF,%d1 + beq.l ld_pzero + fmov.l %d0,%fpcr + fmov.l %d1,%fp0 + bra t_inx2 + +continue: + mov.l %d0,-(%sp) + clr.l %d0 + bsr slogn # log(X), X normal. + fmov.l (%sp)+,%fpcr + fmul.x INV_L2(%pc),%fp0 + bra t_inx2 + +invalid: + bra t_operr + + global slog2d +#--entry point for Log2(X), X is denormalized +slog2d: + mov.l (%a0),%d1 + blt.w invalid + mov.l %d0,-(%sp) + clr.l %d0 + bsr slognd # log(X), X denorm. + fmov.l (%sp)+,%fpcr + fmul.x INV_L2(%pc),%fp0 + bra t_minx2 + +######################################################################### +# stwotox(): computes 2**X for a normalized input # +# stwotoxd(): computes 2**X for a denormalized input # +# stentox(): computes 10**X for a normalized input # +# stentoxd(): computes 10**X for a denormalized input # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input # +# d0 = round precision,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = 2**X or 10**X # +# # +# ACCURACY and MONOTONICITY ******************************************* # +# The returned result is within 2 ulps in 64 significant bit, # +# i.e. within 0.5001 ulp to 53 bits if the result is subsequently # +# rounded to double precision. The result is provably monotonic # +# in double precision. # +# # +# ALGORITHM *********************************************************** # +# # +# twotox # +# 1. If |X| > 16480, go to ExpBig. # +# # +# 2. If |X| < 2**(-70), go to ExpSm. # +# # +# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore # +# decompose N as # +# N = 64(M + M') + j, j = 0,1,2,...,63. # +# # +# 4. Overwrite r := r * log2. Then # +# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # +# Go to expr to compute that expression. # +# # +# tentox # +# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. # +# # +# 2. If |X| < 2**(-70), go to ExpSm. # +# # +# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set # +# N := round-to-int(y). Decompose N as # +# N = 64(M + M') + j, j = 0,1,2,...,63. # +# # +# 4. Define r as # +# r := ((X - N*L1)-N*L2) * L10 # +# where L1, L2 are the leading and trailing parts of # +# log_10(2)/64 and L10 is the natural log of 10. Then # +# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). # +# Go to expr to compute that expression. # +# # +# expr # +# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. # +# # +# 2. Overwrite Fact1 and Fact2 by # +# Fact1 := 2**(M) * Fact1 # +# Fact2 := 2**(M) * Fact2 # +# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). # +# # +# 3. Calculate P where 1 + P approximates exp(r): # +# P = r + r*r*(A1+r*(A2+...+r*A5)). # +# # +# 4. Let AdjFact := 2**(M'). Return # +# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). # +# Exit. # +# # +# ExpBig # +# 1. Generate overflow by Huge * Huge if X > 0; otherwise, # +# generate underflow by Tiny * Tiny. # +# # +# ExpSm # +# 1. Return 1 + X. # +# # +######################################################################### + +L2TEN64: + long 0x406A934F,0x0979A371 # 64LOG10/LOG2 +L10TWO1: + long 0x3F734413,0x509F8000 # LOG2/64LOG10 + +L10TWO2: + long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 + +LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 + +LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 + +EXPA5: long 0x3F56C16D,0x6F7BD0B2 +EXPA4: long 0x3F811112,0x302C712C +EXPA3: long 0x3FA55555,0x55554CC1 +EXPA2: long 0x3FC55555,0x55554A54 +EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000 + +TEXPTBL: + long 0x3FFF0000,0x80000000,0x00000000,0x3F738000 + long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA + long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 + long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 + long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA + long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C + long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 + long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA + long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 + long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 + long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 + long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 + long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D + long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 + long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B + long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 + long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A + long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B + long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF + long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA + long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD + long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E + long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B + long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB + long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB + long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 + long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C + long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 + long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 + long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 + long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F + long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C + long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB + long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB + long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C + long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA + long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD + long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 + long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A + long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 + long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB + long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 + long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C + long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 + long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 + long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE + long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 + long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 + long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A + long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 + long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 + long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 + long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 + long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE + long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 + long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F + long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A + long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A + long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC + long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F + long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A + long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 + long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B + long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 + + set INT,L_SCR1 + + set X,FP_SCR0 + set XDCARE,X+2 + set XFRAC,X+4 + + set ADJFACT,FP_SCR0 + + set FACT1,FP_SCR0 + set FACT1HI,FACT1+4 + set FACT1LOW,FACT1+8 + + set FACT2,FP_SCR1 + set FACT2HI,FACT2+4 + set FACT2LOW,FACT2+8 + + global stwotox +#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S +stwotox: + fmovm.x (%a0),&0x80 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + fmov.x %fp0,X(%a6) + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? + bge.b TWOOK1 + bra.w EXPBORS + +TWOOK1: + cmp.l %d1,&0x400D80C0 # |X| > 16480? + ble.b TWOMAIN + bra.w EXPBORS + +TWOMAIN: +#--USUAL CASE, 2^(-70) <= |X| <= 16480 + + fmov.x %fp0,%fp1 + fmul.s &0x42800000,%fp1 # 64 * X + fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X) + mov.l %d2,-(%sp) + lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) + fmov.l INT(%a6),%fp1 # N --> FLOATING FMT + mov.l INT(%a6),%d1 + mov.l %d1,%d2 + and.l &0x3F,%d1 # D0 IS J + asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) + add.l %d1,%a1 # ADDRESS FOR 2^(J/64) + asr.l &6,%d2 # d2 IS L, N = 64L + J + mov.l %d2,%d1 + asr.l &1,%d1 # D0 IS M + sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J + add.l &0x3FFF,%d2 + +#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), +#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. +#--ADJFACT = 2^(M'). +#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. + + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmul.s &0x3C800000,%fp1 # (1/64)*N + mov.l (%a1)+,FACT1(%a6) + mov.l (%a1)+,FACT1HI(%a6) + mov.l (%a1)+,FACT1LOW(%a6) + mov.w (%a1)+,FACT2(%a6) + + fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X) + + mov.w (%a1)+,FACT2HI(%a6) + clr.w FACT2HI+2(%a6) + clr.l FACT2LOW(%a6) + add.w %d1,FACT1(%a6) + fmul.x LOG2(%pc),%fp0 # FP0 IS R + add.w %d1,FACT2(%a6) + + bra.w expr + +EXPBORS: +#--FPCR, D0 SAVED + cmp.l %d1,&0x3FFF8000 + bgt.b TEXPBIG + +#--|X| IS SMALL, RETURN 1 + X + + fmov.l %d0,%fpcr # restore users round prec,mode + fadd.s &0x3F800000,%fp0 # RETURN 1 + X + bra t_pinx2 + +TEXPBIG: +#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW +#--REGISTERS SAVE SO FAR ARE FPCR AND D0 + mov.l X(%a6),%d1 + cmp.l %d1,&0 + blt.b EXPNEG + + bra t_ovfl2 # t_ovfl expects positive value + +EXPNEG: + bra t_unfl2 # t_unfl expects positive value + + global stwotoxd +stwotoxd: +#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT + + fmov.l %d0,%fpcr # set user's rounding mode/precision + fmov.s &0x3F800000,%fp0 # RETURN 1 + X + mov.l (%a0),%d1 + or.l &0x00800001,%d1 + fadd.s %d1,%fp0 + bra t_pinx2 + + global stentox +#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S +stentox: + fmovm.x (%a0),&0x80 # LOAD INPUT + + mov.l (%a0),%d1 + mov.w 4(%a0),%d1 + fmov.x %fp0,X(%a6) + and.l &0x7FFFFFFF,%d1 + + cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)? + bge.b TENOK1 + bra.w EXPBORS + +TENOK1: + cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ? + ble.b TENMAIN + bra.w EXPBORS + +TENMAIN: +#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 + + fmov.x %fp0,%fp1 + fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2 + fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2) + mov.l %d2,-(%sp) + lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64) + fmov.l INT(%a6),%fp1 # N --> FLOATING FMT + mov.l INT(%a6),%d1 + mov.l %d1,%d2 + and.l &0x3F,%d1 # D0 IS J + asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64) + add.l %d1,%a1 # ADDRESS FOR 2^(J/64) + asr.l &6,%d2 # d2 IS L, N = 64L + J + mov.l %d2,%d1 + asr.l &1,%d1 # D0 IS M + sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J + add.l &0x3FFF,%d2 + +#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), +#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. +#--ADJFACT = 2^(M'). +#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. + fmovm.x &0x0c,-(%sp) # save fp2/fp3 + + fmov.x %fp1,%fp2 + + fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD + mov.l (%a1)+,FACT1(%a6) + + fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL + + mov.l (%a1)+,FACT1HI(%a6) + mov.l (%a1)+,FACT1LOW(%a6) + fsub.x %fp1,%fp0 # X - N L_LEAD + mov.w (%a1)+,FACT2(%a6) + + fsub.x %fp2,%fp0 # X - N L_TRAIL + + mov.w (%a1)+,FACT2HI(%a6) + clr.w FACT2HI+2(%a6) + clr.l FACT2LOW(%a6) + + fmul.x LOG10(%pc),%fp0 # FP0 IS R + add.w %d1,FACT1(%a6) + add.w %d1,FACT2(%a6) + +expr: +#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. +#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). +#--FP0 IS R. THE FOLLOWING CODE COMPUTES +#-- 2**(M'+M) * 2**(J/64) * EXP(R) + + fmov.x %fp0,%fp1 + fmul.x %fp1,%fp1 # FP1 IS S = R*R + + fmov.d EXPA5(%pc),%fp2 # FP2 IS A5 + fmov.d EXPA4(%pc),%fp3 # FP3 IS A4 + + fmul.x %fp1,%fp2 # FP2 IS S*A5 + fmul.x %fp1,%fp3 # FP3 IS S*A4 + + fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5 + fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4 + + fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5) + fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4) + + fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5) + fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4) + + fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5)) + fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4) + fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1 + + fmovm.x (%sp)+,&0x30 # restore fp2/fp3 + +#--FINAL RECONSTRUCTION PROCESS +#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0) + + fmul.x FACT1(%a6),%fp0 + fadd.x FACT2(%a6),%fp0 + fadd.x FACT1(%a6),%fp0 + + fmov.l %d0,%fpcr # restore users round prec,mode + mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT + mov.l (%sp)+,%d2 + mov.l &0x80000000,ADJFACT+4(%a6) + clr.l ADJFACT+8(%a6) + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT + bra t_catch + + global stentoxd +stentoxd: +#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT + + fmov.l %d0,%fpcr # set user's rounding mode/precision + fmov.s &0x3F800000,%fp0 # RETURN 1 + X + mov.l (%a0),%d1 + or.l &0x00800001,%d1 + fadd.s %d1,%fp0 + bra t_pinx2 + +######################################################################### +# smovcr(): returns the ROM constant at the offset specified in d1 # +# rounded to the mode and precision specified in d0. # +# # +# INPUT *************************************************************** # +# d0 = rnd prec,mode # +# d1 = ROM offset # +# # +# OUTPUT ************************************************************** # +# fp0 = the ROM constant rounded to the user's rounding mode,prec # +# # +######################################################################### + + global smovcr +smovcr: + mov.l %d1,-(%sp) # save rom offset for a sec + + lsr.b &0x4,%d0 # shift ctrl bits to lo + mov.l %d0,%d1 # make a copy + andi.w &0x3,%d1 # extract rnd mode + andi.w &0xc,%d0 # extract rnd prec + swap %d0 # put rnd prec in hi + mov.w %d1,%d0 # put rnd mode in lo + + mov.l (%sp)+,%d1 # get rom offset + +# +# check range of offset +# + tst.b %d1 # if zero, offset is to pi + beq.b pi_tbl # it is pi + cmpi.b %d1,&0x0a # check range $01 - $0a + ble.b z_val # if in this range, return zero + cmpi.b %d1,&0x0e # check range $0b - $0e + ble.b sm_tbl # valid constants in this range + cmpi.b %d1,&0x2f # check range $10 - $2f + ble.b z_val # if in this range, return zero + cmpi.b %d1,&0x3f # check range $30 - $3f + ble.b bg_tbl # valid constants in this range + +z_val: + bra.l ld_pzero # return a zero + +# +# the answer is PI rounded to the proper precision. +# +# fetch a pointer to the answer table relating to the proper rounding +# precision. +# +pi_tbl: + tst.b %d0 # is rmode RN? + bne.b pi_not_rn # no +pi_rn: + lea.l PIRN(%pc),%a0 # yes; load PI RN table addr + bra.w set_finx +pi_not_rn: + cmpi.b %d0,&rp_mode # is rmode RP? + beq.b pi_rp # yes +pi_rzrm: + lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr + bra.b set_finx +pi_rp: + lea.l PIRP(%pc),%a0 # load PI RP table addr + bra.b set_finx + +# +# the answer is one of: +# $0B log10(2) (inexact) +# $0C e (inexact) +# $0D log2(e) (inexact) +# $0E log10(e) (exact) +# +# fetch a pointer to the answer table relating to the proper rounding +# precision. +# +sm_tbl: + subi.b &0xb,%d1 # make offset in 0-4 range + tst.b %d0 # is rmode RN? + bne.b sm_not_rn # no +sm_rn: + lea.l SMALRN(%pc),%a0 # yes; load RN table addr +sm_tbl_cont: + cmpi.b %d1,&0x2 # is result log10(e)? + ble.b set_finx # no; answer is inexact + bra.b no_finx # yes; answer is exact +sm_not_rn: + cmpi.b %d0,&rp_mode # is rmode RP? + beq.b sm_rp # yes +sm_rzrm: + lea.l SMALRZRM(%pc),%a0 # no; load RZ,RM table addr + bra.b sm_tbl_cont +sm_rp: + lea.l SMALRP(%pc),%a0 # load RP table addr + bra.b sm_tbl_cont + +# +# the answer is one of: +# $30 ln(2) (inexact) +# $31 ln(10) (inexact) +# $32 10^0 (exact) +# $33 10^1 (exact) +# $34 10^2 (exact) +# $35 10^4 (exact) +# $36 10^8 (exact) +# $37 10^16 (exact) +# $38 10^32 (inexact) +# $39 10^64 (inexact) +# $3A 10^128 (inexact) +# $3B 10^256 (inexact) +# $3C 10^512 (inexact) +# $3D 10^1024 (inexact) +# $3E 10^2048 (inexact) +# $3F 10^4096 (inexact) +# +# fetch a pointer to the answer table relating to the proper rounding +# precision. +# +bg_tbl: + subi.b &0x30,%d1 # make offset in 0-f range + tst.b %d0 # is rmode RN? + bne.b bg_not_rn # no +bg_rn: + lea.l BIGRN(%pc),%a0 # yes; load RN table addr +bg_tbl_cont: + cmpi.b %d1,&0x1 # is offset <= $31? + ble.b set_finx # yes; answer is inexact + cmpi.b %d1,&0x7 # is $32 <= offset <= $37? + ble.b no_finx # yes; answer is exact + bra.b set_finx # no; answer is inexact +bg_not_rn: + cmpi.b %d0,&rp_mode # is rmode RP? + beq.b bg_rp # yes +bg_rzrm: + lea.l BIGRZRM(%pc),%a0 # no; load RZ,RM table addr + bra.b bg_tbl_cont +bg_rp: + lea.l BIGRP(%pc),%a0 # load RP table addr + bra.b bg_tbl_cont + +# answer is inexact, so set INEX2 and AINEX in the user's FPSR. +set_finx: + ori.l &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX +no_finx: + mulu.w &0xc,%d1 # offset points into tables + swap %d0 # put rnd prec in lo word + tst.b %d0 # is precision extended? + + bne.b not_ext # if xprec, do not call round + +# Precision is extended + fmovm.x (%a0,%d1.w),&0x80 # return result in fp0 + rts + +# Precision is single or double +not_ext: + swap %d0 # rnd prec in upper word + +# call round() to round the answer to the proper precision. +# exponents out of range for single or double DO NOT cause underflow +# or overflow. + mov.w 0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word + mov.l 0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word + mov.l 0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word + mov.l %d0,%d1 + clr.l %d0 # clear g,r,s + lea FP_SCR1(%a6),%a0 # pass ptr to answer + clr.w LOCAL_SGN(%a0) # sign always positive + bsr.l _round # round the mantissa + + fmovm.x (%a0),&0x80 # return rounded result in fp0 + rts + + align 0x4 + +PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi +PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi +PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi + +SMALRN: long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) + long 0x40000000,0xadf85458,0xa2bb4a9a # e + long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) + long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) + long 0x00000000,0x00000000,0x00000000 # 0.0 + +SMALRZRM: + long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2) + long 0x40000000,0xadf85458,0xa2bb4a9a # e + long 0x3fff0000,0xb8aa3b29,0x5c17f0bb # log2(e) + long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) + long 0x00000000,0x00000000,0x00000000 # 0.0 + +SMALRP: long 0x3ffd0000,0x9a209a84,0xfbcff799 # log10(2) + long 0x40000000,0xadf85458,0xa2bb4a9b # e + long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e) + long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e) + long 0x00000000,0x00000000,0x00000000 # 0.0 + +BIGRN: long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) + long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) + + long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 + +BIGRZRM: + long 0x3ffe0000,0xb17217f7,0xd1cf79ab # ln(2) + long 0x40000000,0x935d8ddd,0xaaa8ac16 # ln(10) + + long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 + +BIGRP: + long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2) + long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10) + + long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0 + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 + +######################################################################### +# sscale(): computes the destination operand scaled by the source # +# operand. If the absoulute value of the source operand is # +# >= 2^14, an overflow or underflow is returned. # +# # +# INPUT *************************************************************** # +# a0 = pointer to double-extended source operand X # +# a1 = pointer to double-extended destination operand Y # +# # +# OUTPUT ************************************************************** # +# fp0 = scale(X,Y) # +# # +######################################################################### + +set SIGN, L_SCR1 + + global sscale +sscale: + mov.l %d0,-(%sp) # store off ctrl bits for now + + mov.w DST_EX(%a1),%d1 # get dst exponent + smi.b SIGN(%a6) # use SIGN to hold dst sign + andi.l &0x00007fff,%d1 # strip sign from dst exp + + mov.w SRC_EX(%a0),%d0 # check src bounds + andi.w &0x7fff,%d0 # clr src sign bit + cmpi.w %d0,&0x3fff # is src ~ ZERO? + blt.w src_small # yes + cmpi.w %d0,&0x400c # no; is src too big? + bgt.w src_out # yes + +# +# Source is within 2^14 range. +# +src_ok: + fintrz.x SRC(%a0),%fp0 # calc int of src + fmov.l %fp0,%d0 # int src to d0 +# don't want any accrued bits from the fintrz showing up later since +# we may need to read the fpsr for the last fp op in t_catch2(). + fmov.l &0x0,%fpsr + + tst.b DST_HI(%a1) # is dst denormalized? + bmi.b sok_norm + +# the dst is a DENORM. normalize the DENORM and add the adjustment to +# the src value. then, jump to the norm part of the routine. +sok_dnrm: + mov.l %d0,-(%sp) # save src for now + + mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy + mov.l DST_HI(%a1),FP_SCR0_HI(%a6) + mov.l DST_LO(%a1),FP_SCR0_LO(%a6) + + lea FP_SCR0(%a6),%a0 # pass ptr to DENORM + bsr.l norm # normalize the DENORM + neg.l %d0 + add.l (%sp)+,%d0 # add adjustment to src + + fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM + + cmpi.w %d0,&-0x3fff # is the shft amt really low? + bge.b sok_norm2 # thank goodness no + +# the multiply factor that we're trying to create should be a denorm +# for the multiply to work. therefore, we're going to actually do a +# multiply with a denorm which will cause an unimplemented data type +# exception to be put into the machine which will be caught and corrected +# later. we don't do this with the DENORMs above because this method +# is slower. but, don't fret, I don't see it being used much either. + fmov.l (%sp)+,%fpcr # restore user fpcr + mov.l &0x80000000,%d1 # load normalized mantissa + subi.l &-0x3fff,%d0 # how many should we shift? + neg.l %d0 # make it positive + cmpi.b %d0,&0x20 # is it > 32? + bge.b sok_dnrm_32 # yes + lsr.l %d0,%d1 # no; bit stays in upper lw + clr.l -(%sp) # insert zero low mantissa + mov.l %d1,-(%sp) # insert new high mantissa + clr.l -(%sp) # make zero exponent + bra.b sok_norm_cont +sok_dnrm_32: + subi.b &0x20,%d0 # get shift count + lsr.l %d0,%d1 # make low mantissa longword + mov.l %d1,-(%sp) # insert new low mantissa + clr.l -(%sp) # insert zero high mantissa + clr.l -(%sp) # make zero exponent + bra.b sok_norm_cont + +# the src will force the dst to a DENORM value or worse. so, let's +# create an fp multiply that will create the result. +sok_norm: + fmovm.x DST(%a1),&0x80 # load fp0 with normalized src +sok_norm2: + fmov.l (%sp)+,%fpcr # restore user fpcr + + addi.w &0x3fff,%d0 # turn src amt into exp value + swap %d0 # put exponent in high word + clr.l -(%sp) # insert new exponent + mov.l &0x80000000,-(%sp) # insert new high mantissa + mov.l %d0,-(%sp) # insert new lo mantissa + +sok_norm_cont: + fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2 + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x (%sp)+,%fp0 # do the multiply + bra t_catch2 # catch any exceptions + +# +# Source is outside of 2^14 range. Test the sign and branch +# to the appropriate exception handler. +# +src_out: + mov.l (%sp)+,%d0 # restore ctrl bits + exg %a0,%a1 # swap src,dst ptrs + tst.b SRC_EX(%a1) # is src negative? + bmi t_unfl # yes; underflow + bra t_ovfl_sc # no; overflow + +# +# The source input is below 1, so we check for denormalized numbers +# and set unfl. +# +src_small: + tst.b DST_HI(%a1) # is dst denormalized? + bpl.b ssmall_done # yes + + mov.l (%sp)+,%d0 + fmov.l %d0,%fpcr # no; load control bits + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x DST(%a1),%fp0 # simply return dest + bra t_catch2 +ssmall_done: + mov.l (%sp)+,%d0 # load control bits into d1 + mov.l %a1,%a0 # pass ptr to dst + bra t_resdnrm + +######################################################################### +# smod(): computes the fp MOD of the input values X,Y. # +# srem(): computes the fp (IEEE) REM of the input values X,Y. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision input X # +# a1 = pointer to extended precision input Y # +# d0 = round precision,mode # +# # +# The input operands X and Y can be either normalized or # +# denormalized. # +# # +# OUTPUT ************************************************************** # +# fp0 = FREM(X,Y) or FMOD(X,Y) # +# # +# ALGORITHM *********************************************************** # +# # +# Step 1. Save and strip signs of X and Y: signX := sign(X), # +# signY := sign(Y), X := |X|, Y := |Y|, # +# signQ := signX EOR signY. Record whether MOD or REM # +# is requested. # +# # +# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. # +# If (L < 0) then # +# R := X, go to Step 4. # +# else # +# R := 2^(-L)X, j := L. # +# endif # +# # +# Step 3. Perform MOD(X,Y) # +# 3.1 If R = Y, go to Step 9. # +# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} # +# 3.3 If j = 0, go to Step 4. # +# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to # +# Step 3.1. # +# # +# Step 4. At this point, R = X - QY = MOD(X,Y). Set # +# Last_Subtract := false (used in Step 7 below). If # +# MOD is requested, go to Step 6. # +# # +# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. # +# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to # +# Step 6. # +# 5.2 If R > Y/2, then { set Last_Subtract := true, # +# Q := Q + 1, Y := signY*Y }. Go to Step 6. # +# 5.3 This is the tricky case of R = Y/2. If Q is odd, # +# then { Q := Q + 1, signX := -signX }. # +# # +# Step 6. R := signX*R. # +# # +# Step 7. If Last_Subtract = true, R := R - Y. # +# # +# Step 8. Return signQ, last 7 bits of Q, and R as required. # +# # +# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, # +# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), # +# R := 0. Return signQ, last 7 bits of Q, and R. # +# # +######################################################################### + + set Mod_Flag,L_SCR3 + set Sc_Flag,L_SCR3+1 + + set SignY,L_SCR2 + set SignX,L_SCR2+2 + set SignQ,L_SCR3+2 + + set Y,FP_SCR0 + set Y_Hi,Y+4 + set Y_Lo,Y+8 + + set R,FP_SCR1 + set R_Hi,R+4 + set R_Lo,R+8 + +Scale: + long 0x00010000,0x80000000,0x00000000,0x00000000 + + global smod +smod: + clr.b FPSR_QBYTE(%a6) + mov.l %d0,-(%sp) # save ctrl bits + clr.b Mod_Flag(%a6) + bra.b Mod_Rem + + global srem +srem: + clr.b FPSR_QBYTE(%a6) + mov.l %d0,-(%sp) # save ctrl bits + mov.b &0x1,Mod_Flag(%a6) + +Mod_Rem: +#..Save sign of X and Y + movm.l &0x3f00,-(%sp) # save data registers + mov.w SRC_EX(%a0),%d3 + mov.w %d3,SignY(%a6) + and.l &0x00007FFF,%d3 # Y := |Y| + +# + mov.l SRC_HI(%a0),%d4 + mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y| + + tst.l %d3 + bne.b Y_Normal + + mov.l &0x00003FFE,%d3 # $3FFD + 1 + tst.l %d4 + bne.b HiY_not0 + +HiY_0: + mov.l %d5,%d4 + clr.l %d5 + sub.l &32,%d3 + clr.l %d6 + bfffo %d4{&0:&32},%d6 + lsl.l %d6,%d4 + sub.l %d6,%d3 # (D3,D4,D5) is normalized +# ...with bias $7FFD + bra.b Chk_X + +HiY_not0: + clr.l %d6 + bfffo %d4{&0:&32},%d6 + sub.l %d6,%d3 + lsl.l %d6,%d4 + mov.l %d5,%d7 # a copy of D5 + lsl.l %d6,%d5 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d4 # (D3,D4,D5) normalized +# ...with bias $7FFD + bra.b Chk_X + +Y_Normal: + add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized +# ...with bias $7FFD + +Chk_X: + mov.w DST_EX(%a1),%d0 + mov.w %d0,SignX(%a6) + mov.w SignY(%a6),%d1 + eor.l %d0,%d1 + and.l &0x00008000,%d1 + mov.w %d1,SignQ(%a6) # sign(Q) obtained + and.l &0x00007FFF,%d0 + mov.l DST_HI(%a1),%d1 + mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X| + tst.l %d0 + bne.b X_Normal + mov.l &0x00003FFE,%d0 + tst.l %d1 + bne.b HiX_not0 + +HiX_0: + mov.l %d2,%d1 + clr.l %d2 + sub.l &32,%d0 + clr.l %d6 + bfffo %d1{&0:&32},%d6 + lsl.l %d6,%d1 + sub.l %d6,%d0 # (D0,D1,D2) is normalized +# ...with bias $7FFD + bra.b Init + +HiX_not0: + clr.l %d6 + bfffo %d1{&0:&32},%d6 + sub.l %d6,%d0 + lsl.l %d6,%d1 + mov.l %d2,%d7 # a copy of D2 + lsl.l %d6,%d2 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d1 # (D0,D1,D2) normalized +# ...with bias $7FFD + bra.b Init + +X_Normal: + add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized +# ...with bias $7FFD + +Init: +# + mov.l %d3,L_SCR1(%a6) # save biased exp(Y) + mov.l %d0,-(%sp) # save biased exp(X) + sub.l %d3,%d0 # L := expo(X)-expo(Y) + + clr.l %d6 # D6 := carry <- 0 + clr.l %d3 # D3 is Q + mov.l &0,%a1 # A1 is k; j+k=L, Q=0 + +#..(Carry,D1,D2) is R + tst.l %d0 + bge.b Mod_Loop_pre + +#..expo(X) < expo(Y). Thus X = mod(X,Y) +# + mov.l (%sp)+,%d0 # restore d0 + bra.w Get_Mod + +Mod_Loop_pre: + addq.l &0x4,%sp # erase exp(X) +#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L +Mod_Loop: + tst.l %d6 # test carry bit + bgt.b R_GT_Y + +#..At this point carry = 0, R = (D1,D2), Y = (D4,D5) + cmp.l %d1,%d4 # compare hi(R) and hi(Y) + bne.b R_NE_Y + cmp.l %d2,%d5 # compare lo(R) and lo(Y) + bne.b R_NE_Y + +#..At this point, R = Y + bra.w Rem_is_0 + +R_NE_Y: +#..use the borrow of the previous compare + bcs.b R_LT_Y # borrow is set iff R < Y + +R_GT_Y: +#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 +#..and Y < (D1,D2) < 2Y. Either way, perform R - Y + sub.l %d5,%d2 # lo(R) - lo(Y) + subx.l %d4,%d1 # hi(R) - hi(Y) + clr.l %d6 # clear carry + addq.l &1,%d3 # Q := Q + 1 + +R_LT_Y: +#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. + tst.l %d0 # see if j = 0. + beq.b PostLoop + + add.l %d3,%d3 # Q := 2Q + add.l %d2,%d2 # lo(R) = 2lo(R) + roxl.l &1,%d1 # hi(R) = 2hi(R) + carry + scs %d6 # set Carry if 2(R) overflows + addq.l &1,%a1 # k := k+1 + subq.l &1,%d0 # j := j - 1 +#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. + + bra.b Mod_Loop + +PostLoop: +#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. + +#..normalize R. + mov.l L_SCR1(%a6),%d0 # new biased expo of R + tst.l %d1 + bne.b HiR_not0 + +HiR_0: + mov.l %d2,%d1 + clr.l %d2 + sub.l &32,%d0 + clr.l %d6 + bfffo %d1{&0:&32},%d6 + lsl.l %d6,%d1 + sub.l %d6,%d0 # (D0,D1,D2) is normalized +# ...with bias $7FFD + bra.b Get_Mod + +HiR_not0: + clr.l %d6 + bfffo %d1{&0:&32},%d6 + bmi.b Get_Mod # already normalized + sub.l %d6,%d0 + lsl.l %d6,%d1 + mov.l %d2,%d7 # a copy of D2 + lsl.l %d6,%d2 + neg.l %d6 + add.l &32,%d6 + lsr.l %d6,%d7 + or.l %d7,%d1 # (D0,D1,D2) normalized + +# +Get_Mod: + cmp.l %d0,&0x000041FE + bge.b No_Scale +Do_Scale: + mov.w %d0,R(%a6) + mov.l %d1,R_Hi(%a6) + mov.l %d2,R_Lo(%a6) + mov.l L_SCR1(%a6),%d6 + mov.w %d6,Y(%a6) + mov.l %d4,Y_Hi(%a6) + mov.l %d5,Y_Lo(%a6) + fmov.x R(%a6),%fp0 # no exception + mov.b &1,Sc_Flag(%a6) + bra.b ModOrRem +No_Scale: + mov.l %d1,R_Hi(%a6) + mov.l %d2,R_Lo(%a6) + sub.l &0x3FFE,%d0 + mov.w %d0,R(%a6) + mov.l L_SCR1(%a6),%d6 + sub.l &0x3FFE,%d6 + mov.l %d6,L_SCR1(%a6) + fmov.x R(%a6),%fp0 + mov.w %d6,Y(%a6) + mov.l %d4,Y_Hi(%a6) + mov.l %d5,Y_Lo(%a6) + clr.b Sc_Flag(%a6) + +# +ModOrRem: + tst.b Mod_Flag(%a6) + beq.b Fix_Sign + + mov.l L_SCR1(%a6),%d6 # new biased expo(Y) + subq.l &1,%d6 # biased expo(Y/2) + cmp.l %d0,%d6 + blt.b Fix_Sign + bgt.b Last_Sub + + cmp.l %d1,%d4 + bne.b Not_EQ + cmp.l %d2,%d5 + bne.b Not_EQ + bra.w Tie_Case + +Not_EQ: + bcs.b Fix_Sign + +Last_Sub: +# + fsub.x Y(%a6),%fp0 # no exceptions + addq.l &1,%d3 # Q := Q + 1 + +# +Fix_Sign: +#..Get sign of X + mov.w SignX(%a6),%d6 + bge.b Get_Q + fneg.x %fp0 + +#..Get Q +# +Get_Q: + clr.l %d6 + mov.w SignQ(%a6),%d6 # D6 is sign(Q) + mov.l &8,%d7 + lsr.l %d7,%d6 + and.l &0x0000007F,%d3 # 7 bits of Q + or.l %d6,%d3 # sign and bits of Q +# swap %d3 +# fmov.l %fpsr,%d6 +# and.l &0xFF00FFFF,%d6 +# or.l %d3,%d6 +# fmov.l %d6,%fpsr # put Q in fpsr + mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr + +# +Restore: + movm.l (%sp)+,&0xfc # {%d2-%d7} + mov.l (%sp)+,%d0 + fmov.l %d0,%fpcr + tst.b Sc_Flag(%a6) + beq.b Finish + mov.b &FMUL_OP,%d1 # last inst is MUL + fmul.x Scale(%pc),%fp0 # may cause underflow + bra t_catch2 +# the '040 package did this apparently to see if the dst operand for the +# preceding fmul was a denorm. but, it better not have been since the +# algorithm just got done playing with fp0 and expected no exceptions +# as a result. trust me... +# bra t_avoid_unsupp # check for denorm as a +# ;result of the scaling + +Finish: + mov.b &FMOV_OP,%d1 # last inst is MOVE + fmov.x %fp0,%fp0 # capture exceptions & round + bra t_catch2 + +Rem_is_0: +#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) + addq.l &1,%d3 + cmp.l %d0,&8 # D0 is j + bge.b Q_Big + + lsl.l %d0,%d3 + bra.b Set_R_0 + +Q_Big: + clr.l %d3 + +Set_R_0: + fmov.s &0x00000000,%fp0 + clr.b Sc_Flag(%a6) + bra.w Fix_Sign + +Tie_Case: +#..Check parity of Q + mov.l %d3,%d6 + and.l &0x00000001,%d6 + tst.l %d6 + beq.w Fix_Sign # Q is even + +#..Q is odd, Q := Q + 1, signX := -signX + addq.l &1,%d3 + mov.w SignX(%a6),%d6 + eor.l &0x00008000,%d6 + mov.w %d6,SignX(%a6) + bra.w Fix_Sign + +qnan: long 0x7fff0000, 0xffffffff, 0xffffffff + +######################################################################### +# XDEF **************************************************************** # +# t_dz(): Handle DZ exception during transcendental emulation. # +# Sets N bit according to sign of source operand. # +# t_dz2(): Handle DZ exception during transcendental emulation. # +# Sets N bit always. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to source operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# # +# ALGORITHM *********************************************************** # +# - Store properly signed INF into fp0. # +# - Set FPSR exception status dz bit, ccode inf bit, and # +# accrued dz bit. # +# # +######################################################################### + + global t_dz +t_dz: + tst.b SRC_EX(%a0) # no; is src negative? + bmi.b t_dz2 # yes + +dz_pinf: + fmov.s &0x7f800000,%fp0 # return +INF in fp0 + ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ + rts + + global t_dz2 +t_dz2: + fmov.s &0xff800000,%fp0 # return -INF in fp0 + ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ + rts + +################################################################# +# OPERR exception: # +# - set FPSR exception status operr bit, condition code # +# nan bit; Store default NAN into fp0 # +################################################################# + global t_operr +t_operr: + ori.l &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP + fmovm.x qnan(%pc),&0x80 # return default NAN in fp0 + rts + +################################################################# +# Extended DENORM: # +# - For all functions that have a denormalized input and # +# that f(x)=x, this is the entry point. # +# - we only return the EXOP here if either underflow or # +# inexact is enabled. # +################################################################# + +# Entry point for scale w/ extended denorm. The function does +# NOT set INEX2/AUNFL/AINEX. + global t_resdnrm +t_resdnrm: + ori.l &unfl_mask,USER_FPSR(%a6) # set UNFL + bra.b xdnrm_con + + global t_extdnrm +t_extdnrm: + ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX + +xdnrm_con: + mov.l %a0,%a1 # make copy of src ptr + mov.l %d0,%d1 # make copy of rnd prec,mode + andi.b &0xc0,%d1 # extended precision? + bne.b xdnrm_sd # no + +# result precision is extended. + tst.b LOCAL_EX(%a0) # is denorm negative? + bpl.b xdnrm_exit # no + + bset &neg_bit,FPSR_CC(%a6) # yes; set 'N' ccode bit + bra.b xdnrm_exit + +# result precision is single or double +xdnrm_sd: + mov.l %a1,-(%sp) + tst.b LOCAL_EX(%a0) # is denorm pos or neg? + smi.b %d1 # set d0 accodingly + bsr.l unf_sub + mov.l (%sp)+,%a1 +xdnrm_exit: + fmovm.x (%a0),&0x80 # return default result in fp0 + + mov.b FPCR_ENABLE(%a6),%d0 + andi.b &0x0a,%d0 # is UNFL or INEX enabled? + bne.b xdnrm_ena # yes + rts + +################ +# unfl enabled # +################ +# we have a DENORM that needs to be converted into an EXOP. +# so, normalize the mantissa, add 0x6000 to the new exponent, +# and return the result in fp1. +xdnrm_ena: + mov.w LOCAL_EX(%a1),FP_SCR0_EX(%a6) + mov.l LOCAL_HI(%a1),FP_SCR0_HI(%a6) + mov.l LOCAL_LO(%a1),FP_SCR0_LO(%a6) + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize mantissa + addi.l &0x6000,%d0 # add extra bias + andi.w &0x8000,FP_SCR0_EX(%a6) # keep old sign + or.w %d0,FP_SCR0_EX(%a6) # insert new exponent + + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +################################################################# +# UNFL exception: # +# - This routine is for cases where even an EXOP isn't # +# large enough to hold the range of this result. # +# In such a case, the EXOP equals zero. # +# - Return the default result to the proper precision # +# with the sign of this result being the same as that # +# of the src operand. # +# - t_unfl2() is provided to force the result sign to # +# positive which is the desired result for fetox(). # +################################################################# + global t_unfl +t_unfl: + ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX + + tst.b (%a0) # is result pos or neg? + smi.b %d1 # set d1 accordingly + bsr.l unf_sub # calc default unfl result + fmovm.x (%a0),&0x80 # return default result in fp0 + + fmov.s &0x00000000,%fp1 # return EXOP in fp1 + rts + +# t_unfl2 ALWAYS tells unf_sub to create a positive result + global t_unfl2 +t_unfl2: + ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX + + sf.b %d1 # set d0 to represent positive + bsr.l unf_sub # calc default unfl result + fmovm.x (%a0),&0x80 # return default result in fp0 + + fmov.s &0x0000000,%fp1 # return EXOP in fp1 + rts + +################################################################# +# OVFL exception: # +# - This routine is for cases where even an EXOP isn't # +# large enough to hold the range of this result. # +# - Return the default result to the proper precision # +# with the sign of this result being the same as that # +# of the src operand. # +# - t_ovfl2() is provided to force the result sign to # +# positive which is the desired result for fcosh(). # +# - t_ovfl_sc() is provided for scale() which only sets # +# the inexact bits if the number is inexact for the # +# precision indicated. # +################################################################# + + global t_ovfl_sc +t_ovfl_sc: + ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX + + mov.b %d0,%d1 # fetch rnd mode/prec + andi.b &0xc0,%d1 # extract rnd prec + beq.b ovfl_work # prec is extended + + tst.b LOCAL_HI(%a0) # is dst a DENORM? + bmi.b ovfl_sc_norm # no + +# dst op is a DENORM. we have to normalize the mantissa to see if the +# result would be inexact for the given precision. make a copy of the +# dst so we don't screw up the version passed to us. + mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6) + mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6) + mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0 + movm.l &0xc080,-(%sp) # save d0-d1/a0 + bsr.l norm # normalize mantissa + movm.l (%sp)+,&0x0103 # restore d0-d1/a0 + +ovfl_sc_norm: + cmpi.b %d1,&0x40 # is prec dbl? + bne.b ovfl_sc_dbl # no; sgl +ovfl_sc_sgl: + tst.l LOCAL_LO(%a0) # is lo lw of sgl set? + bne.b ovfl_sc_inx # yes + tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set? + bne.b ovfl_sc_inx # yes + bra.b ovfl_work # don't set INEX2 +ovfl_sc_dbl: + mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of + andi.l &0x7ff,%d1 # dbl mantissa set? + beq.b ovfl_work # no; don't set INEX2 +ovfl_sc_inx: + ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2 + bra.b ovfl_work # continue + + global t_ovfl +t_ovfl: + ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX + +ovfl_work: + tst.b LOCAL_EX(%a0) # what is the sign? + smi.b %d1 # set d1 accordingly + bsr.l ovf_res # calc default ovfl result + mov.b %d0,FPSR_CC(%a6) # insert new ccodes + fmovm.x (%a0),&0x80 # return default result in fp0 + + fmov.s &0x00000000,%fp1 # return EXOP in fp1 + rts + +# t_ovfl2 ALWAYS tells ovf_res to create a positive result + global t_ovfl2 +t_ovfl2: + ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX + + sf.b %d1 # clear sign flag for positive + bsr.l ovf_res # calc default ovfl result + mov.b %d0,FPSR_CC(%a6) # insert new ccodes + fmovm.x (%a0),&0x80 # return default result in fp0 + + fmov.s &0x00000000,%fp1 # return EXOP in fp1 + rts + +################################################################# +# t_catch(): # +# - the last operation of a transcendental emulation # +# routine may have caused an underflow or overflow. # +# we find out if this occurred by doing an fsave and # +# checking the exception bit. if one did occur, then we # +# jump to fgen_except() which creates the default # +# result and EXOP for us. # +################################################################# + global t_catch +t_catch: + + fsave -(%sp) + tst.b 0x2(%sp) + bmi.b catch + add.l &0xc,%sp + +################################################################# +# INEX2 exception: # +# - The inex2 and ainex bits are set. # +################################################################# + global t_inx2 +t_inx2: + fblt.w t_minx2 + fbeq.w inx2_zero + + global t_pinx2 +t_pinx2: + ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX + rts + + global t_minx2 +t_minx2: + ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX + rts + +inx2_zero: + mov.b &z_bmask,FPSR_CC(%a6) + ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX + rts + +# an underflow or overflow exception occurred. +# we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not! +catch: + ori.w &inx2a_mask,FPSR_EXCEPT(%a6) +catch2: + bsr.l fgen_except + add.l &0xc,%sp + rts + + global t_catch2 +t_catch2: + + fsave -(%sp) + + tst.b 0x2(%sp) + bmi.b catch2 + add.l &0xc,%sp + + fmov.l %fpsr,%d0 + or.l %d0,USER_FPSR(%a6) + + rts + +######################################################################### + +######################################################################### +# unf_res(): underflow default result calculation for transcendentals # +# # +# INPUT: # +# d0 : rnd mode,precision # +# d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+)) # +# OUTPUT: # +# a0 : points to result (in instruction memory) # +######################################################################### +unf_sub: + ori.l &unfinx_mask,USER_FPSR(%a6) + + andi.w &0x10,%d1 # keep sign bit in 4th spot + + lsr.b &0x4,%d0 # shift rnd prec,mode to lo bits + andi.b &0xf,%d0 # strip hi rnd mode bit + or.b %d1,%d0 # concat {sgn,mode,prec} + + mov.l %d0,%d1 # make a copy + lsl.b &0x1,%d1 # mult index 2 by 2 + + mov.b (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits + lea (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr + rts + +tbl_unf_cc: + byte 0x4, 0x4, 0x4, 0x0 + byte 0x4, 0x4, 0x4, 0x0 + byte 0x4, 0x4, 0x4, 0x0 + byte 0x0, 0x0, 0x0, 0x0 + byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 + byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 + byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 + +tbl_unf_result: + long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext + long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext + long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext + long 0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext + + long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl + long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl + long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl + long 0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl + + long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl + long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl + long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl + long 0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl + + long 0x0,0x0,0x0,0x0 + long 0x0,0x0,0x0,0x0 + long 0x0,0x0,0x0,0x0 + long 0x0,0x0,0x0,0x0 + + long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext + long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext + long 0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext + long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext + + long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl + long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl + long 0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl + long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl + + long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl + long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl + long 0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl + long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl + +############################################################ + +######################################################################### +# src_zero(): Return signed zero according to sign of src operand. # +######################################################################### + global src_zero +src_zero: + tst.b SRC_EX(%a0) # get sign of src operand + bmi.b ld_mzero # if neg, load neg zero + +# +# ld_pzero(): return a positive zero. +# + global ld_pzero +ld_pzero: + fmov.s &0x00000000,%fp0 # load +0 + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts + +# ld_mzero(): return a negative zero. + global ld_mzero +ld_mzero: + fmov.s &0x80000000,%fp0 # load -0 + mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits + rts + +######################################################################### +# dst_zero(): Return signed zero according to sign of dst operand. # +######################################################################### + global dst_zero +dst_zero: + tst.b DST_EX(%a1) # get sign of dst operand + bmi.b ld_mzero # if neg, load neg zero + bra.b ld_pzero # load positive zero + +######################################################################### +# src_inf(): Return signed inf according to sign of src operand. # +######################################################################### + global src_inf +src_inf: + tst.b SRC_EX(%a0) # get sign of src operand + bmi.b ld_minf # if negative branch + +# +# ld_pinf(): return a positive infinity. +# + global ld_pinf +ld_pinf: + fmov.s &0x7f800000,%fp0 # load +INF + mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit + rts + +# +# ld_minf():return a negative infinity. +# + global ld_minf +ld_minf: + fmov.s &0xff800000,%fp0 # load -INF + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits + rts + +######################################################################### +# dst_inf(): Return signed inf according to sign of dst operand. # +######################################################################### + global dst_inf +dst_inf: + tst.b DST_EX(%a1) # get sign of dst operand + bmi.b ld_minf # if negative branch + bra.b ld_pinf + + global szr_inf +################################################################# +# szr_inf(): Return +ZERO for a negative src operand or # +# +INF for a positive src operand. # +# Routine used for fetox, ftwotox, and ftentox. # +################################################################# +szr_inf: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_pzero + bra.b ld_pinf + +######################################################################### +# sopr_inf(): Return +INF for a positive src operand or # +# jump to operand error routine for a negative src operand. # +# Routine used for flogn, flognp1, flog10, and flog2. # +######################################################################### + global sopr_inf +sopr_inf: + tst.b SRC_EX(%a0) # check sign of source + bmi.w t_operr + bra.b ld_pinf + +################################################################# +# setoxm1i(): Return minus one for a negative src operand or # +# positive infinity for a positive src operand. # +# Routine used for fetoxm1. # +################################################################# + global setoxm1i +setoxm1i: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_mone + bra.b ld_pinf + +######################################################################### +# src_one(): Return signed one according to sign of src operand. # +######################################################################### + global src_one +src_one: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_mone + +# +# ld_pone(): return positive one. +# + global ld_pone +ld_pone: + fmov.s &0x3f800000,%fp0 # load +1 + clr.b FPSR_CC(%a6) + rts + +# +# ld_mone(): return negative one. +# + global ld_mone +ld_mone: + fmov.s &0xbf800000,%fp0 # load -1 + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235 +mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235 + +################################################################# +# spi_2(): Return signed PI/2 according to sign of src operand. # +################################################################# + global spi_2 +spi_2: + tst.b SRC_EX(%a0) # check sign of source + bmi.b ld_mpi2 + +# +# ld_ppi2(): return positive PI/2. +# + global ld_ppi2 +ld_ppi2: + fmov.l %d0,%fpcr + fmov.x ppiby2(%pc),%fp0 # load +pi/2 + bra.w t_pinx2 # set INEX2 + +# +# ld_mpi2(): return negative PI/2. +# + global ld_mpi2 +ld_mpi2: + fmov.l %d0,%fpcr + fmov.x mpiby2(%pc),%fp0 # load -pi/2 + bra.w t_minx2 # set INEX2 + +#################################################### +# The following routines give support for fsincos. # +#################################################### + +# +# ssincosz(): When the src operand is ZERO, store a one in the +# cosine register and return a ZERO in fp0 w/ the same sign +# as the src operand. +# + global ssincosz +ssincosz: + fmov.s &0x3f800000,%fp1 + tst.b SRC_EX(%a0) # test sign + bpl.b sincoszp + fmov.s &0x80000000,%fp0 # return sin result in fp0 + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) + bra.b sto_cos # store cosine result +sincoszp: + fmov.s &0x00000000,%fp0 # return sin result in fp0 + mov.b &z_bmask,FPSR_CC(%a6) + bra.b sto_cos # store cosine result + +# +# ssincosi(): When the src operand is INF, store a QNAN in the cosine +# register and jump to the operand error routine for negative +# src operands. +# + global ssincosi +ssincosi: + fmov.x qnan(%pc),%fp1 # load NAN + bsr.l sto_cos # store cosine result + bra.w t_operr + +# +# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine +# register and branch to the src QNAN routine. +# + global ssincosqnan +ssincosqnan: + fmov.x LOCAL_EX(%a0),%fp1 + bsr.l sto_cos + bra.w src_qnan + +# +# ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set +# in the cosine register and branch to the src SNAN routine. +# + global ssincossnan +ssincossnan: + fmov.x LOCAL_EX(%a0),%fp1 + bsr.l sto_cos + bra.w src_snan + +######################################################################## + +######################################################################### +# sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. # +# fp1 holds the result of the cosine portion of ssincos(). # +# the value in fp1 will not take any exceptions when moved. # +# INPUT: # +# fp1 : fp value to store # +# MODIFIED: # +# d0 # +######################################################################### + global sto_cos +sto_cos: + mov.b 1+EXC_CMDREG(%a6),%d0 + andi.w &0x7,%d0 + mov.w (tbl_sto_cos.b,%pc,%d0.w*2),%d0 + jmp (tbl_sto_cos.b,%pc,%d0.w*1) + +tbl_sto_cos: + short sto_cos_0 - tbl_sto_cos + short sto_cos_1 - tbl_sto_cos + short sto_cos_2 - tbl_sto_cos + short sto_cos_3 - tbl_sto_cos + short sto_cos_4 - tbl_sto_cos + short sto_cos_5 - tbl_sto_cos + short sto_cos_6 - tbl_sto_cos + short sto_cos_7 - tbl_sto_cos + +sto_cos_0: + fmovm.x &0x40,EXC_FP0(%a6) + rts +sto_cos_1: + fmovm.x &0x40,EXC_FP1(%a6) + rts +sto_cos_2: + fmov.x %fp1,%fp2 + rts +sto_cos_3: + fmov.x %fp1,%fp3 + rts +sto_cos_4: + fmov.x %fp1,%fp4 + rts +sto_cos_5: + fmov.x %fp1,%fp5 + rts +sto_cos_6: + fmov.x %fp1,%fp6 + rts +sto_cos_7: + fmov.x %fp1,%fp7 + rts + +################################################################## + global smod_sdnrm + global smod_snorm +smod_sdnrm: +smod_snorm: + mov.b DTAG(%a6),%d1 + beq.l smod + cmpi.b %d1,&ZERO + beq.w smod_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l smod + cmpi.b %d1,&SNAN + beq.l dst_snan + bra.l dst_qnan + + global smod_szero +smod_szero: + mov.b DTAG(%a6),%d1 + beq.l t_operr + cmpi.b %d1,&ZERO + beq.l t_operr + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l t_operr + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + + global smod_sinf +smod_sinf: + mov.b DTAG(%a6),%d1 + beq.l smod_fpn + cmpi.b %d1,&ZERO + beq.l smod_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l smod_fpn + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + +smod_zro: +srem_zro: + mov.b SRC_EX(%a0),%d1 # get src sign + mov.b DST_EX(%a1),%d0 # get dst sign + eor.b %d0,%d1 # get qbyte sign + andi.b &0x80,%d1 + mov.b %d1,FPSR_QBYTE(%a6) + tst.b %d0 + bpl.w ld_pzero + bra.w ld_mzero + +smod_fpn: +srem_fpn: + clr.b FPSR_QBYTE(%a6) + mov.l %d0,-(%sp) + mov.b SRC_EX(%a0),%d1 # get src sign + mov.b DST_EX(%a1),%d0 # get dst sign + eor.b %d0,%d1 # get qbyte sign + andi.b &0x80,%d1 + mov.b %d1,FPSR_QBYTE(%a6) + cmpi.b DTAG(%a6),&DENORM + bne.b smod_nrm + lea DST(%a1),%a0 + mov.l (%sp)+,%d0 + bra t_resdnrm +smod_nrm: + fmov.l (%sp)+,%fpcr + fmov.x DST(%a1),%fp0 + tst.b DST_EX(%a1) + bmi.b smod_nrm_neg + rts + +smod_nrm_neg: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode + rts + +######################################################################### + global srem_snorm + global srem_sdnrm +srem_sdnrm: +srem_snorm: + mov.b DTAG(%a6),%d1 + beq.l srem + cmpi.b %d1,&ZERO + beq.w srem_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l srem + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + + global srem_szero +srem_szero: + mov.b DTAG(%a6),%d1 + beq.l t_operr + cmpi.b %d1,&ZERO + beq.l t_operr + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l t_operr + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + + global srem_sinf +srem_sinf: + mov.b DTAG(%a6),%d1 + beq.w srem_fpn + cmpi.b %d1,&ZERO + beq.w srem_zro + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l srem_fpn + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + +######################################################################### + global sscale_snorm + global sscale_sdnrm +sscale_snorm: +sscale_sdnrm: + mov.b DTAG(%a6),%d1 + beq.l sscale + cmpi.b %d1,&ZERO + beq.l dst_zero + cmpi.b %d1,&INF + beq.l dst_inf + cmpi.b %d1,&DENORM + beq.l sscale + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + + global sscale_szero +sscale_szero: + mov.b DTAG(%a6),%d1 + beq.l sscale + cmpi.b %d1,&ZERO + beq.l dst_zero + cmpi.b %d1,&INF + beq.l dst_inf + cmpi.b %d1,&DENORM + beq.l sscale + cmpi.b %d1,&QNAN + beq.l dst_qnan + bra.l dst_snan + + global sscale_sinf +sscale_sinf: + mov.b DTAG(%a6),%d1 + beq.l t_operr + cmpi.b %d1,&QNAN + beq.l dst_qnan + cmpi.b %d1,&SNAN + beq.l dst_snan + bra.l t_operr + +######################################################################## + +# +# sop_sqnan(): The src op for frem/fmod/fscale was a QNAN. +# + global sop_sqnan +sop_sqnan: + mov.b DTAG(%a6),%d1 + cmpi.b %d1,&QNAN + beq.b dst_qnan + cmpi.b %d1,&SNAN + beq.b dst_snan + bra.b src_qnan + +# +# sop_ssnan(): The src op for frem/fmod/fscale was an SNAN. +# + global sop_ssnan +sop_ssnan: + mov.b DTAG(%a6),%d1 + cmpi.b %d1,&QNAN + beq.b dst_qnan_src_snan + cmpi.b %d1,&SNAN + beq.b dst_snan + bra.b src_snan + +dst_qnan_src_snan: + ori.l &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP + bra.b dst_qnan + +# +# dst_qnan(): Return the dst SNAN w/ the SNAN bit set. +# + global dst_snan +dst_snan: + fmov.x DST(%a1),%fp0 # the fmove sets the SNAN bit + fmov.l %fpsr,%d0 # catch resulting status + or.l %d0,USER_FPSR(%a6) # store status + rts + +# +# dst_qnan(): Return the dst QNAN. +# + global dst_qnan +dst_qnan: + fmov.x DST(%a1),%fp0 # return the non-signalling nan + tst.b DST_EX(%a1) # set ccodes according to QNAN sign + bmi.b dst_qnan_m +dst_qnan_p: + mov.b &nan_bmask,FPSR_CC(%a6) + rts +dst_qnan_m: + mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) + rts + +# +# src_snan(): Return the src SNAN w/ the SNAN bit set. +# + global src_snan +src_snan: + fmov.x SRC(%a0),%fp0 # the fmove sets the SNAN bit + fmov.l %fpsr,%d0 # catch resulting status + or.l %d0,USER_FPSR(%a6) # store status + rts + +# +# src_qnan(): Return the src QNAN. +# + global src_qnan +src_qnan: + fmov.x SRC(%a0),%fp0 # return the non-signalling nan + tst.b SRC_EX(%a0) # set ccodes according to QNAN sign + bmi.b dst_qnan_m +src_qnan_p: + mov.b &nan_bmask,FPSR_CC(%a6) + rts +src_qnan_m: + mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6) + rts + +# +# fkern2.s: +# These entry points are used by the exception handler +# routines where an instruction is selected by an index into +# a large jump table corresponding to a given instruction which +# has been decoded. Flow continues here where we now decode +# further accoding to the source operand type. +# + + global fsinh +fsinh: + mov.b STAG(%a6),%d1 + beq.l ssinh + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l src_inf + cmpi.b %d1,&DENORM + beq.l ssinhd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global flognp1 +flognp1: + mov.b STAG(%a6),%d1 + beq.l slognp1 + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l sopr_inf + cmpi.b %d1,&DENORM + beq.l slognp1d + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fetoxm1 +fetoxm1: + mov.b STAG(%a6),%d1 + beq.l setoxm1 + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l setoxm1i + cmpi.b %d1,&DENORM + beq.l setoxm1d + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global ftanh +ftanh: + mov.b STAG(%a6),%d1 + beq.l stanh + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l src_one + cmpi.b %d1,&DENORM + beq.l stanhd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fatan +fatan: + mov.b STAG(%a6),%d1 + beq.l satan + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l spi_2 + cmpi.b %d1,&DENORM + beq.l satand + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fasin +fasin: + mov.b STAG(%a6),%d1 + beq.l sasin + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l sasind + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fatanh +fatanh: + mov.b STAG(%a6),%d1 + beq.l satanh + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l satanhd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fsine +fsine: + mov.b STAG(%a6),%d1 + beq.l ssin + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l ssind + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global ftan +ftan: + mov.b STAG(%a6),%d1 + beq.l stan + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l stand + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fetox +fetox: + mov.b STAG(%a6),%d1 + beq.l setox + cmpi.b %d1,&ZERO + beq.l ld_pone + cmpi.b %d1,&INF + beq.l szr_inf + cmpi.b %d1,&DENORM + beq.l setoxd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global ftwotox +ftwotox: + mov.b STAG(%a6),%d1 + beq.l stwotox + cmpi.b %d1,&ZERO + beq.l ld_pone + cmpi.b %d1,&INF + beq.l szr_inf + cmpi.b %d1,&DENORM + beq.l stwotoxd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global ftentox +ftentox: + mov.b STAG(%a6),%d1 + beq.l stentox + cmpi.b %d1,&ZERO + beq.l ld_pone + cmpi.b %d1,&INF + beq.l szr_inf + cmpi.b %d1,&DENORM + beq.l stentoxd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global flogn +flogn: + mov.b STAG(%a6),%d1 + beq.l slogn + cmpi.b %d1,&ZERO + beq.l t_dz2 + cmpi.b %d1,&INF + beq.l sopr_inf + cmpi.b %d1,&DENORM + beq.l slognd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global flog10 +flog10: + mov.b STAG(%a6),%d1 + beq.l slog10 + cmpi.b %d1,&ZERO + beq.l t_dz2 + cmpi.b %d1,&INF + beq.l sopr_inf + cmpi.b %d1,&DENORM + beq.l slog10d + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global flog2 +flog2: + mov.b STAG(%a6),%d1 + beq.l slog2 + cmpi.b %d1,&ZERO + beq.l t_dz2 + cmpi.b %d1,&INF + beq.l sopr_inf + cmpi.b %d1,&DENORM + beq.l slog2d + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fcosh +fcosh: + mov.b STAG(%a6),%d1 + beq.l scosh + cmpi.b %d1,&ZERO + beq.l ld_pone + cmpi.b %d1,&INF + beq.l ld_pinf + cmpi.b %d1,&DENORM + beq.l scoshd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global facos +facos: + mov.b STAG(%a6),%d1 + beq.l sacos + cmpi.b %d1,&ZERO + beq.l ld_ppi2 + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l sacosd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fcos +fcos: + mov.b STAG(%a6),%d1 + beq.l scos + cmpi.b %d1,&ZERO + beq.l ld_pone + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l scosd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fgetexp +fgetexp: + mov.b STAG(%a6),%d1 + beq.l sgetexp + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l sgetexpd + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fgetman +fgetman: + mov.b STAG(%a6),%d1 + beq.l sgetman + cmpi.b %d1,&ZERO + beq.l src_zero + cmpi.b %d1,&INF + beq.l t_operr + cmpi.b %d1,&DENORM + beq.l sgetmand + cmpi.b %d1,&QNAN + beq.l src_qnan + bra.l src_snan + + global fsincos +fsincos: + mov.b STAG(%a6),%d1 + beq.l ssincos + cmpi.b %d1,&ZERO + beq.l ssincosz + cmpi.b %d1,&INF + beq.l ssincosi + cmpi.b %d1,&DENORM + beq.l ssincosd + cmpi.b %d1,&QNAN + beq.l ssincosqnan + bra.l ssincossnan + + global fmod +fmod: + mov.b STAG(%a6),%d1 + beq.l smod_snorm + cmpi.b %d1,&ZERO + beq.l smod_szero + cmpi.b %d1,&INF + beq.l smod_sinf + cmpi.b %d1,&DENORM + beq.l smod_sdnrm + cmpi.b %d1,&QNAN + beq.l sop_sqnan + bra.l sop_ssnan + + global frem +frem: + mov.b STAG(%a6),%d1 + beq.l srem_snorm + cmpi.b %d1,&ZERO + beq.l srem_szero + cmpi.b %d1,&INF + beq.l srem_sinf + cmpi.b %d1,&DENORM + beq.l srem_sdnrm + cmpi.b %d1,&QNAN + beq.l sop_sqnan + bra.l sop_ssnan + + global fscale +fscale: + mov.b STAG(%a6),%d1 + beq.l sscale_snorm + cmpi.b %d1,&ZERO + beq.l sscale_szero + cmpi.b %d1,&INF + beq.l sscale_sinf + cmpi.b %d1,&DENORM + beq.l sscale_sdnrm + cmpi.b %d1,&QNAN + beq.l sop_sqnan + bra.l sop_ssnan + +######################################################################### +# XDEF **************************************************************** # +# fgen_except(): catch an exception during transcendental # +# emulation # +# # +# XREF **************************************************************** # +# fmul() - emulate a multiply instruction # +# fadd() - emulate an add instruction # +# fin() - emulate an fmove instruction # +# # +# INPUT *************************************************************** # +# fp0 = destination operand # +# d0 = type of instruction that took exception # +# fsave frame = source operand # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP # +# # +# ALGORITHM *********************************************************** # +# An exception occurred on the last instruction of the # +# transcendental emulation. hopefully, this won't be happening much # +# because it will be VERY slow. # +# The only exceptions capable of passing through here are # +# Overflow, Underflow, and Unsupported Data Type. # +# # +######################################################################### + + global fgen_except +fgen_except: + cmpi.b 0x3(%sp),&0x7 # is exception UNSUPP? + beq.b fge_unsupp # yes + + mov.b &NORM,STAG(%a6) + +fge_cont: + mov.b &NORM,DTAG(%a6) + +# ok, I have a problem with putting the dst op at FP_DST. the emulation +# routines aren't supposed to alter the operands but we've just squashed +# FP_DST here... + +# 8/17/93 - this turns out to be more of a "cleanliness" standpoint +# then a potential bug. to begin with, only the dyadic functions +# frem,fmod, and fscale would get the dst trashed here. But, for +# the 060SP, the FP_DST is never used again anyways. + fmovm.x &0x80,FP_DST(%a6) # dst op is in fp0 + + lea 0x4(%sp),%a0 # pass: ptr to src op + lea FP_DST(%a6),%a1 # pass: ptr to dst op + + cmpi.b %d1,&FMOV_OP + beq.b fge_fin # it was an "fmov" + cmpi.b %d1,&FADD_OP + beq.b fge_fadd # it was an "fadd" +fge_fmul: + bsr.l fmul + rts +fge_fadd: + bsr.l fadd + rts +fge_fin: + bsr.l fin + rts + +fge_unsupp: + mov.b &DENORM,STAG(%a6) + bra.b fge_cont + +# +# This table holds the offsets of the emulation routines for each individual +# math operation relative to the address of this table. Included are +# routines like fadd/fmul/fabs as well as the transcendentals. +# The location within the table is determined by the extension bits of the +# operation longword. +# + + swbeg &109 +tbl_unsupp: + long fin - tbl_unsupp # 00: fmove + long fint - tbl_unsupp # 01: fint + long fsinh - tbl_unsupp # 02: fsinh + long fintrz - tbl_unsupp # 03: fintrz + long fsqrt - tbl_unsupp # 04: fsqrt + long tbl_unsupp - tbl_unsupp + long flognp1 - tbl_unsupp # 06: flognp1 + long tbl_unsupp - tbl_unsupp + long fetoxm1 - tbl_unsupp # 08: fetoxm1 + long ftanh - tbl_unsupp # 09: ftanh + long fatan - tbl_unsupp # 0a: fatan + long tbl_unsupp - tbl_unsupp + long fasin - tbl_unsupp # 0c: fasin + long fatanh - tbl_unsupp # 0d: fatanh + long fsine - tbl_unsupp # 0e: fsin + long ftan - tbl_unsupp # 0f: ftan + long fetox - tbl_unsupp # 10: fetox + long ftwotox - tbl_unsupp # 11: ftwotox + long ftentox - tbl_unsupp # 12: ftentox + long tbl_unsupp - tbl_unsupp + long flogn - tbl_unsupp # 14: flogn + long flog10 - tbl_unsupp # 15: flog10 + long flog2 - tbl_unsupp # 16: flog2 + long tbl_unsupp - tbl_unsupp + long fabs - tbl_unsupp # 18: fabs + long fcosh - tbl_unsupp # 19: fcosh + long fneg - tbl_unsupp # 1a: fneg + long tbl_unsupp - tbl_unsupp + long facos - tbl_unsupp # 1c: facos + long fcos - tbl_unsupp # 1d: fcos + long fgetexp - tbl_unsupp # 1e: fgetexp + long fgetman - tbl_unsupp # 1f: fgetman + long fdiv - tbl_unsupp # 20: fdiv + long fmod - tbl_unsupp # 21: fmod + long fadd - tbl_unsupp # 22: fadd + long fmul - tbl_unsupp # 23: fmul + long fsgldiv - tbl_unsupp # 24: fsgldiv + long frem - tbl_unsupp # 25: frem + long fscale - tbl_unsupp # 26: fscale + long fsglmul - tbl_unsupp # 27: fsglmul + long fsub - tbl_unsupp # 28: fsub + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fsincos - tbl_unsupp # 30: fsincos + long fsincos - tbl_unsupp # 31: fsincos + long fsincos - tbl_unsupp # 32: fsincos + long fsincos - tbl_unsupp # 33: fsincos + long fsincos - tbl_unsupp # 34: fsincos + long fsincos - tbl_unsupp # 35: fsincos + long fsincos - tbl_unsupp # 36: fsincos + long fsincos - tbl_unsupp # 37: fsincos + long fcmp - tbl_unsupp # 38: fcmp + long tbl_unsupp - tbl_unsupp + long ftst - tbl_unsupp # 3a: ftst + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fsin - tbl_unsupp # 40: fsmove + long fssqrt - tbl_unsupp # 41: fssqrt + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fdin - tbl_unsupp # 44: fdmove + long fdsqrt - tbl_unsupp # 45: fdsqrt + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fsabs - tbl_unsupp # 58: fsabs + long tbl_unsupp - tbl_unsupp + long fsneg - tbl_unsupp # 5a: fsneg + long tbl_unsupp - tbl_unsupp + long fdabs - tbl_unsupp # 5c: fdabs + long tbl_unsupp - tbl_unsupp + long fdneg - tbl_unsupp # 5e: fdneg + long tbl_unsupp - tbl_unsupp + long fsdiv - tbl_unsupp # 60: fsdiv + long tbl_unsupp - tbl_unsupp + long fsadd - tbl_unsupp # 62: fsadd + long fsmul - tbl_unsupp # 63: fsmul + long fddiv - tbl_unsupp # 64: fddiv + long tbl_unsupp - tbl_unsupp + long fdadd - tbl_unsupp # 66: fdadd + long fdmul - tbl_unsupp # 67: fdmul + long fssub - tbl_unsupp # 68: fssub + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fdsub - tbl_unsupp # 6c: fdsub + +######################################################################### +# XDEF **************************************************************** # +# fmul(): emulates the fmul instruction # +# fsmul(): emulates the fsmul instruction # +# fdmul(): emulates the fdmul instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res() - return default underflow result # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a multiply # +# instruction won't cause an exception. Use the regular fmul to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + align 0x10 +tbl_fmul_ovfl: + long 0x3fff - 0x7ffe # ext_max + long 0x3fff - 0x407e # sgl_max + long 0x3fff - 0x43fe # dbl_max +tbl_fmul_unfl: + long 0x3fff + 0x0001 # ext_unfl + long 0x3fff - 0x3f80 # sgl_unfl + long 0x3fff - 0x3c00 # dbl_unfl + + global fsmul +fsmul: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fmul + + global fdmul +fdmul: + andi.b &0x30,%d0 + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fmul +fmul: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + bne.w fmul_not_norm # optimize on non-norm input + +fmul_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # scale src exponent + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # scale dst exponent + + add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 + + mov.w 2+L_SCR3(%a6),%d1 # fetch precision + lsr.b &0x6,%d1 # shift to lo bits + mov.l (%sp)+,%d0 # load S.F. + cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? + beq.w fmul_may_ovfl # result may rnd to overflow + blt.w fmul_ovfl # result will overflow + + cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? + beq.w fmul_may_unfl # result may rnd to no unfl + bgt.w fmul_unfl # result will underflow + +# +# NORMAL: +# - the result of the multiply operation will neither overflow nor underflow. +# - do the multiply to the proper precision and rounding mode. +# - scale the result exponent using the scale factor. if both operands were +# normalized then we really don't need to go through this scaling. but for now, +# this will do. +# +fmul_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fmul_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# OVERFLOW: +# - the result of the multiply operation is an overflow. +# - do the multiply to the proper precision and rounding mode in order to +# set the inexact bits. +# - calculate the default result and return it in fp0. +# - if overflow or inexact is enabled, we need a multiply result rounded to +# extended precision. if the original operation was extended, then we have this +# result. if the original operation was single or double, we have to do another +# multiply using extended precision and the correct rounding mode. the result +# of this operation then has its exponent scaled by -0x6000 to create the +# exceptional operand. +# +fmul_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +# save setting this until now because this is where fmul_may_ovfl may jump in +fmul_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fmul_ovfl_ena # yes + +# calculate the default result +fmul_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled; Create EXOP: +# - if precision is extended, then we have the EXOP. simply bias the exponent +# with an extra -0x6000. if the precision is single or double, we need to +# calculate a result rounded to extended precision. +# +fmul_ovfl_ena: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # test the rnd prec + bne.b fmul_ovfl_ena_sd # it's sgl or dbl + +fmul_ovfl_ena_cont: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 # clear sign bit + andi.w &0x8000,%d2 # keep old sign + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fmul_ovfl_dis + +fmul_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # keep rnd mode only + fmov.l %d1,%fpcr # set FPCR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + bra.b fmul_ovfl_ena_cont + +# +# may OVERFLOW: +# - the result of the multiply operation MAY overflow. +# - do the multiply to the proper precision and rounding mode in order to +# set the inexact bits. +# - calculate the default result and return it in fp0. +# +fmul_may_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fmul_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fmul_normal_exit + +# +# UNDERFLOW: +# - the result of the multiply operation is an underflow. +# - do the multiply to the proper precision and rounding mode in order to +# set the inexact bits. +# - calculate the default result and return it in fp0. +# - if overflow or inexact is enabled, we need a multiply result rounded to +# extended precision. if the original operation was extended, then we have this +# result. if the original operation was single or double, we have to do another +# multiply using extended precision and the correct rounding mode. the result +# of this operation then has its exponent scaled by -0x6000 to create the +# exceptional operand. +# +fmul_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + +# for fun, let's use only extended precision, round to zero. then, let +# the unf_res() routine figure out all the rest. +# will we get the correct answer. + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fmul_unfl_ena # yes + +fmul_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fmul_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fmul_unfl_ena_sd # no, sgl or dbl + +# if the rnd mode is anything but RZ, then we have to re-do the above +# multiplication becuase we used RZ for all. + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fmul_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp1 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fmul_unfl_dis + +fmul_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # use only rnd mode + fmov.l %d1,%fpcr # set FPCR + + bra.b fmul_unfl_ena_cont + +# MAY UNDERFLOW: +# -use the correct rounding mode and precision. this code favors operations +# that do not underflow. +fmul_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| > 2.b? + fbgt.w fmul_normal_exit # no; no underflow occurred + fblt.w fmul_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 2. but, +# we don't know if the result was an underflow that rounded up to a 2 or +# a normalized number that rounded down to a 2. so, redo the entire operation +# using RZ as the rounding mode to see what the pre-rounded result is. +# this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst operand + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert RZ + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp1 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x2 # is |result| < 2.b? + fbge.w fmul_normal_exit # no; no underflow occurred + bra.w fmul_unfl # yes, underflow occurred + +################################################################################ + +# +# Multiply: inputs are not both normalized; what are they? +# +fmul_not_norm: + mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fmul_op.b,%pc,%d1.w) + + swbeg &48 +tbl_fmul_op: + short fmul_norm - tbl_fmul_op # NORM x NORM + short fmul_zero - tbl_fmul_op # NORM x ZERO + short fmul_inf_src - tbl_fmul_op # NORM x INF + short fmul_res_qnan - tbl_fmul_op # NORM x QNAN + short fmul_norm - tbl_fmul_op # NORM x DENORM + short fmul_res_snan - tbl_fmul_op # NORM x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_zero - tbl_fmul_op # ZERO x NORM + short fmul_zero - tbl_fmul_op # ZERO x ZERO + short fmul_res_operr - tbl_fmul_op # ZERO x INF + short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN + short fmul_zero - tbl_fmul_op # ZERO x DENORM + short fmul_res_snan - tbl_fmul_op # ZERO x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_inf_dst - tbl_fmul_op # INF x NORM + short fmul_res_operr - tbl_fmul_op # INF x ZERO + short fmul_inf_dst - tbl_fmul_op # INF x INF + short fmul_res_qnan - tbl_fmul_op # INF x QNAN + short fmul_inf_dst - tbl_fmul_op # INF x DENORM + short fmul_res_snan - tbl_fmul_op # INF x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_res_qnan - tbl_fmul_op # QNAN x NORM + short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO + short fmul_res_qnan - tbl_fmul_op # QNAN x INF + short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN + short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM + short fmul_res_snan - tbl_fmul_op # QNAN x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_norm - tbl_fmul_op # NORM x NORM + short fmul_zero - tbl_fmul_op # NORM x ZERO + short fmul_inf_src - tbl_fmul_op # NORM x INF + short fmul_res_qnan - tbl_fmul_op # NORM x QNAN + short fmul_norm - tbl_fmul_op # NORM x DENORM + short fmul_res_snan - tbl_fmul_op # NORM x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_res_snan - tbl_fmul_op # SNAN x NORM + short fmul_res_snan - tbl_fmul_op # SNAN x ZERO + short fmul_res_snan - tbl_fmul_op # SNAN x INF + short fmul_res_snan - tbl_fmul_op # SNAN x QNAN + short fmul_res_snan - tbl_fmul_op # SNAN x DENORM + short fmul_res_snan - tbl_fmul_op # SNAN x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + +fmul_res_operr: + bra.l res_operr +fmul_res_snan: + bra.l res_snan +fmul_res_qnan: + bra.l res_qnan + +# +# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) +# + global fmul_zero # global for fsglmul +fmul_zero: + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fmul_zero_p # result ZERO is pos. +fmul_zero_n: + fmov.s &0x80000000,%fp0 # load -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N + rts +fmul_zero_p: + fmov.s &0x00000000,%fp0 # load +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# Multiply: (inf x inf) || (inf x norm) || (inf x denorm) +# +# Note: The j-bit for an infinity is a don't-care. However, to be +# strictly compatible w/ the 68881/882, we make sure to return an +# INF w/ the j-bit set if the input INF j-bit was set. Destination +# INFs take priority. +# + global fmul_inf_dst # global for fsglmul +fmul_inf_dst: + fmovm.x DST(%a1),&0x80 # return INF result in fp0 + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fmul_inf_dst_p # result INF is pos. +fmul_inf_dst_n: + fabs.x %fp0 # clear result sign + fneg.x %fp0 # set result sign + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N + rts +fmul_inf_dst_p: + fabs.x %fp0 # clear result sign + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + + global fmul_inf_src # global for fsglmul +fmul_inf_src: + fmovm.x SRC(%a0),&0x80 # return INF result in fp0 + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fmul_inf_dst_p # result INF is pos. + bra.b fmul_inf_dst_n + +######################################################################### +# XDEF **************************************************************** # +# fin(): emulates the fmove instruction # +# fsin(): emulates the fsmove instruction # +# fdin(): emulates the fdmove instruction # +# # +# XREF **************************************************************** # +# norm() - normalize mantissa for EXOP on denorm # +# scale_to_zero_src() - scale src exponent to zero # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan_1op() - return QNAN result # +# res_snan_1op() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round prec/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Norms can be emulated w/ a regular fmove instruction. For # +# sgl/dbl, must scale exponent and perform an "fmove". Check to see # +# if the result would have overflowed/underflowed. If so, use unf_res() # +# or ovf_res() to return the default result. Also return EXOP if # +# exception is enabled. If no exception, return the default result. # +# Unnorms don't pass through here. # +# # +######################################################################### + + global fsin +fsin: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fin + + global fdin +fdin: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl precision + + global fin +fin: + mov.l %d0,L_SCR3(%a6) # store rnd info + + mov.b STAG(%a6),%d1 # fetch src optype tag + bne.w fin_not_norm # optimize on non-norm input + +# +# FP MOVE IN: NORMs and DENORMs ONLY! +# +fin_norm: + andi.b &0xc0,%d0 # is precision extended? + bne.w fin_not_ext # no, so go handle dbl or sgl + +# +# precision selected is extended. so...we cannot get an underflow +# or overflow because of rounding to the correct precision. so... +# skip the scaling and unscaling... +# + tst.b SRC_EX(%a0) # is the operand negative? + bpl.b fin_norm_done # no + bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit +fin_norm_done: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + rts + +# +# for an extended precision DENORM, the UNFL exception bit is set +# the accrued bit is NOT set in this instance(no inexactness!) +# +fin_denorm: + andi.b &0xc0,%d0 # is precision extended? + bne.w fin_not_ext # no, so go handle dbl or sgl + + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + tst.b SRC_EX(%a0) # is the operand negative? + bpl.b fin_denorm_done # no + bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit +fin_denorm_done: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? + bne.b fin_denorm_unfl_ena # yes + rts + +# +# the input is an extended DENORM and underflow is enabled in the FPCR. +# normalize the mantissa and add the bias of 0x6000 to the resulting negative +# exponent and insert back into the operand. +# +fin_denorm_unfl_ena: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + bsr.l norm # normalize result + neg.w %d0 # new exponent = -(shft val) + addi.w &0x6000,%d0 # add new bias to exponent + mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp + andi.w &0x8000,%d1 # keep old sign + andi.w &0x7fff,%d0 # clear sign position + or.w %d1,%d0 # concat new exo,old sign + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +# +# operand is to be rounded to single or double precision +# +fin_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.b fin_dbl + +# +# operand is to be rounded to single precision +# +fin_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? + bge.w fin_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407e # will move in overflow? + beq.w fin_sd_may_ovfl # maybe; go check + blt.w fin_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved into the fp reg file +# +fin_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # perform move + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fin_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exponent + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fin_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? + bge.w fin_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? + beq.w fin_sd_may_ovfl # maybe; go check + blt.w fin_sd_ovfl # yes; go handle overflow + bra.w fin_sd_normal # no; ho handle normalized op + +# +# operand WILL underflow when moved in to the fp register file +# +fin_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + tst.b FP_SCR0_EX(%a6) # is operand negative? + bpl.b fin_sd_unfl_tst + bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit + +# if underflow or inexact is enabled, then go calculate the EXOP first. +fin_sd_unfl_tst: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fin_sd_unfl_ena # yes + +fin_sd_unfl_dis: + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow or inexact is enabled. +# therefore, we must return the result rounded to extended precision. +# +fin_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # subtract scale factor + andi.w &0x8000,%d2 # extract old sign + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fin_sd_unfl_dis + +# +# operand WILL overflow. +# +fin_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # perform move + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fin_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fin_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fin_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fin_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + sub.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fin_sd_ovfl_dis + +# +# the move in MAY overflow. so... +# +fin_sd_may_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # perform the move + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fin_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fin_sd_normal_exit + +########################################################################## + +# +# operand is not a NORM: check its optype and branch accordingly +# +fin_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fin_denorm + cmpi.b %d1,&SNAN # weed out SNANs + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNANs + beq.l res_qnan_1op + +# +# do the fmove in; at this point, only possible ops are ZERO and INF. +# use fmov to determine ccodes. +# prec:mode should be zero at this point but it won't affect answer anyways. +# + fmov.x SRC(%a0),%fp0 # do fmove in + fmov.l %fpsr,%d0 # no exceptions possible + rol.l &0x8,%d0 # put ccodes in lo byte + mov.b %d0,FPSR_CC(%a6) # insert correct ccodes + rts + +######################################################################### +# XDEF **************************************************************** # +# fdiv(): emulates the fdiv instruction # +# fsdiv(): emulates the fsdiv instruction # +# fddiv(): emulates the fddiv instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res() - return default underflow result # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a divide # +# instruction won't cause an exception. Use the regular fdiv to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + align 0x10 +tbl_fdiv_unfl: + long 0x3fff - 0x0000 # ext_unfl + long 0x3fff - 0x3f81 # sgl_unfl + long 0x3fff - 0x3c01 # dbl_unfl + +tbl_fdiv_ovfl: + long 0x3fff - 0x7ffe # ext overflow exponent + long 0x3fff - 0x407e # sgl overflow exponent + long 0x3fff - 0x43fe # dbl overflow exponent + + global fsdiv +fsdiv: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fdiv + + global fddiv +fddiv: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fdiv +fdiv: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fdiv_not_norm # optimize on non-norm input + +# +# DIVIDE: NORMs and DENORMs ONLY! +# +fdiv_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # scale src exponent + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # scale dst exponent + + neg.l (%sp) # SCALE FACTOR = scale1 - scale2 + add.l %d0,(%sp) + + mov.w 2+L_SCR3(%a6),%d1 # fetch precision + lsr.b &0x6,%d1 # shift to lo bits + mov.l (%sp)+,%d0 # load S.F. + cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? + ble.w fdiv_may_ovfl # result will overflow + + cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? + beq.w fdiv_may_unfl # maybe + bgt.w fdiv_unfl # yes; go handle underflow + +fdiv_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # save FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # perform divide + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fdiv_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store result on stack + mov.l %d2,-(%sp) # store d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +tbl_fdiv_ovfl2: + long 0x7fff + long 0x407f + long 0x43ff + +fdiv_no_ovfl: + mov.l (%sp)+,%d0 # restore scale factor + bra.b fdiv_normal_exit + +fdiv_may_ovfl: + mov.l %d0,-(%sp) # save scale factor + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # set FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d0 + fmov.l &0x0,%fpcr + + or.l %d0,USER_FPSR(%a6) # save INEX,N + + fmovm.x &0x01,-(%sp) # save result to stack + mov.w (%sp),%d0 # fetch new exponent + add.l &0xc,%sp # clear result from stack + andi.l &0x7fff,%d0 # strip sign + sub.l (%sp),%d0 # add scale factor + cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) + blt.b fdiv_no_ovfl + mov.l (%sp)+,%d0 + +fdiv_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fdiv_ovfl_ena # yes + +fdiv_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +fdiv_ovfl_ena: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl + +fdiv_ovfl_ena_cont: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 # clear sign bit + andi.w &0x8000,%d2 # keep old sign + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fdiv_ovfl_dis + +fdiv_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # keep rnd mode + fmov.l %d1,%fpcr # set FPCR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l &0x0,%fpcr # clear FPCR + bra.b fdiv_ovfl_ena_cont + +fdiv_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fdiv_unfl_ena # yes + +fdiv_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fdiv_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fdiv_unfl_ena_sd # no, sgl or dbl + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fdiv_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp1 # execute divide + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factoer + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exp + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fdiv_unfl_dis + +fdiv_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # use only rnd mode + fmov.l %d1,%fpcr # set FPCR + + bra.b fdiv_unfl_ena_cont + +# +# the divide operation MAY underflow: +# +fdiv_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x1 # is |result| > 1.b? + fbgt.w fdiv_normal_exit # no; no underflow occurred + fblt.w fdiv_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 1. but, +# we don't know if the result was an underflow that rounded up to a 1 +# or a normalized number that rounded down to a 1. so, redo the entire +# operation using RZ as the rounding mode to see what the pre-rounded +# result is. this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert RZ + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp1 # execute divide + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x1 # is |result| < 1.b? + fbge.w fdiv_normal_exit # no; no underflow occurred + bra.w fdiv_unfl # yes; underflow occurred + +############################################################################ + +# +# Divide: inputs are not both normalized; what are they? +# +fdiv_not_norm: + mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fdiv_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fdiv_op: + short fdiv_norm - tbl_fdiv_op # NORM / NORM + short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO + short fdiv_zero_load - tbl_fdiv_op # NORM / INF + short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN + short fdiv_norm - tbl_fdiv_op # NORM / DENORM + short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM + short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO + short fdiv_zero_load - tbl_fdiv_op # ZERO / INF + short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN + short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM + short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_inf_dst - tbl_fdiv_op # INF / NORM + short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO + short fdiv_res_operr - tbl_fdiv_op # INF / INF + short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN + short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM + short fdiv_res_snan - tbl_fdiv_op # INF / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM + short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO + short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF + short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN + short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM + short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_norm - tbl_fdiv_op # DENORM / NORM + short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO + short fdiv_zero_load - tbl_fdiv_op # DENORM / INF + short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN + short fdiv_norm - tbl_fdiv_op # DENORM / DENORM + short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM + short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO + short fdiv_res_snan - tbl_fdiv_op # SNAN / INF + short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN + short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM + short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + +fdiv_res_qnan: + bra.l res_qnan +fdiv_res_snan: + bra.l res_snan +fdiv_res_operr: + bra.l res_operr + + global fdiv_zero_load # global for fsgldiv +fdiv_zero_load: + mov.b SRC_EX(%a0),%d0 # result sign is exclusive + mov.b DST_EX(%a1),%d1 # or of input signs. + eor.b %d0,%d1 + bpl.b fdiv_zero_load_p # result is positive + fmov.s &0x80000000,%fp0 # load a -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N + rts +fdiv_zero_load_p: + fmov.s &0x00000000,%fp0 # load a +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# The destination was In Range and the source was a ZERO. The result, +# therefore, is an INF w/ the proper sign. +# So, determine the sign and return a new INF (w/ the j-bit cleared). +# + global fdiv_inf_load # global for fsgldiv +fdiv_inf_load: + ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ + mov.b SRC_EX(%a0),%d0 # load both signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fdiv_inf_load_p # result is positive + fmov.s &0xff800000,%fp0 # make result -INF + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N + rts +fdiv_inf_load_p: + fmov.s &0x7f800000,%fp0 # make result +INF + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +# +# The destination was an INF w/ an In Range or ZERO source, the result is +# an INF w/ the proper sign. +# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the +# dst INF is set, then then j-bit of the result INF is also set). +# + global fdiv_inf_dst # global for fsgldiv +fdiv_inf_dst: + mov.b DST_EX(%a1),%d0 # load both signs + mov.b SRC_EX(%a0),%d1 + eor.b %d0,%d1 + bpl.b fdiv_inf_dst_p # result is positive + + fmovm.x DST(%a1),&0x80 # return result in fp0 + fabs.x %fp0 # clear sign bit + fneg.x %fp0 # set sign bit + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fdiv_inf_dst_p: + fmovm.x DST(%a1),&0x80 # return result in fp0 + fabs.x %fp0 # return positive INF + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +######################################################################### +# XDEF **************************************************************** # +# fneg(): emulates the fneg instruction # +# fsneg(): emulates the fsneg instruction # +# fdneg(): emulates the fdneg instruction # +# # +# XREF **************************************************************** # +# norm() - normalize a denorm to provide EXOP # +# scale_to_zero_src() - scale sgl/dbl source exponent # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan_1op() - return QNAN result # +# res_snan_1op() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, zeroes, and infinities as special cases. Separate # +# norms/denorms into ext/sgl/dbl precisions. Extended precision can be # +# emulated by simply setting sign bit. Sgl/dbl operands must be scaled # +# and an actual fneg performed to see if overflow/underflow would have # +# occurred. If so, return default underflow/overflow result. Else, # +# scale the result exponent and return result. FPSR gets set based on # +# the result value. # +# # +######################################################################### + + global fsneg +fsneg: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fneg + + global fdneg +fdneg: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fneg +fneg: + mov.l %d0,L_SCR3(%a6) # store rnd info + mov.b STAG(%a6),%d1 + bne.w fneg_not_norm # optimize on non-norm input + +# +# NEGATE SIGN : norms and denorms ONLY! +# +fneg_norm: + andi.b &0xc0,%d0 # is precision extended? + bne.w fneg_not_ext # no; go handle sgl or dbl + +# +# precision selected is extended. so...we can not get an underflow +# or overflow because of rounding to the correct precision. so... +# skip the scaling and unscaling... +# + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d0 + eori.w &0x8000,%d0 # negate sign + bpl.b fneg_norm_load # sign is positive + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit +fneg_norm_load: + mov.w %d0,FP_SCR0_EX(%a6) + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# for an extended precision DENORM, the UNFL exception bit is set +# the accrued bit is NOT set in this instance(no inexactness!) +# +fneg_denorm: + andi.b &0xc0,%d0 # is precision extended? + bne.b fneg_not_ext # no; go handle sgl or dbl + + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d0 + eori.w &0x8000,%d0 # negate sign + bpl.b fneg_denorm_done # no + mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit +fneg_denorm_done: + mov.w %d0,FP_SCR0_EX(%a6) + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + + btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? + bne.b fneg_ext_unfl_ena # yes + rts + +# +# the input is an extended DENORM and underflow is enabled in the FPCR. +# normalize the mantissa and add the bias of 0x6000 to the resulting negative +# exponent and insert back into the operand. +# +fneg_ext_unfl_ena: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + bsr.l norm # normalize result + neg.w %d0 # new exponent = -(shft val) + addi.w &0x6000,%d0 # add new bias to exponent + mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp + andi.w &0x8000,%d1 # keep old sign + andi.w &0x7fff,%d0 # clear sign position + or.w %d1,%d0 # concat old sign, new exponent + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +# +# operand is either single or double +# +fneg_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.b fneg_dbl + +# +# operand is to be rounded to single precision +# +fneg_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? + bge.w fneg_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407e # will move in overflow? + beq.w fneg_sd_may_ovfl # maybe; go check + blt.w fneg_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved in to the fp reg file +# +fneg_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fneg.x FP_SCR0(%a6),%fp0 # perform negation + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fneg_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fneg_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? + bge.b fneg_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? + beq.w fneg_sd_may_ovfl # maybe; go check + blt.w fneg_sd_ovfl # yes; go handle overflow + bra.w fneg_sd_normal # no; ho handle normalized op + +# +# operand WILL underflow when moved in to the fp register file +# +fneg_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + eori.b &0x80,FP_SCR0_EX(%a6) # negate sign + bpl.b fneg_sd_unfl_tst + bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit + +# if underflow or inexact is enabled, go calculate EXOP first. +fneg_sd_unfl_tst: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fneg_sd_unfl_ena # yes + +fneg_sd_unfl_dis: + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow is enabled. +# therefore, we must return the result rounded to extended precision. +# +fneg_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # subtract scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat new sign,new exp + mov.w %d1,FP_SCR1_EX(%a6) # insert new exp + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fneg_sd_unfl_dis + +# +# operand WILL overflow. +# +fneg_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fneg.x FP_SCR0(%a6),%fp0 # perform negation + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fneg_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fneg_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fneg_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fneg_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat sign,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fneg_sd_ovfl_dis + +# +# the move in MAY underflow. so... +# +fneg_sd_may_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fneg.x FP_SCR0(%a6),%fp0 # perform negation + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fneg_sd_normal_exit + +########################################################################## + +# +# input is not normalized; what is it? +# +fneg_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fneg_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNAN + beq.l res_qnan_1op + +# +# do the fneg; at this point, only possible ops are ZERO and INF. +# use fneg to determine ccodes. +# prec:mode should be zero at this point but it won't affect answer anyways. +# + fneg.x SRC_EX(%a0),%fp0 # do fneg + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 # put ccodes in lo byte + mov.b %d0,FPSR_CC(%a6) # insert correct ccodes + rts + +######################################################################### +# XDEF **************************************************************** # +# ftst(): emulates the ftest instruction # +# # +# XREF **************************************************************** # +# res{s,q}nan_1op() - set NAN result for monadic instruction # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# # +# OUTPUT ************************************************************** # +# none # +# # +# ALGORITHM *********************************************************** # +# Check the source operand tag (STAG) and set the FPCR according # +# to the operand type and sign. # +# # +######################################################################### + + global ftst +ftst: + mov.b STAG(%a6),%d1 + bne.b ftst_not_norm # optimize on non-norm input + +# +# Norm: +# +ftst_norm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_norm_m # yes + rts +ftst_norm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +# +# input is not normalized; what is it? +# +ftst_not_norm: + cmpi.b %d1,&ZERO # weed out ZERO + beq.b ftst_zero + cmpi.b %d1,&INF # weed out INF + beq.b ftst_inf + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNAN + beq.l res_qnan_1op + +# +# Denorm: +# +ftst_denorm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_denorm_m # yes + rts +ftst_denorm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +# +# Infinity: +# +ftst_inf: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_inf_m # yes +ftst_inf_p: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts +ftst_inf_m: + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits + rts + +# +# Zero: +# +ftst_zero: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_zero_m # yes +ftst_zero_p: + mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts +ftst_zero_m: + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +######################################################################### +# XDEF **************************************************************** # +# fint(): emulates the fint instruction # +# # +# XREF **************************************************************** # +# res_{s,q}nan_1op() - set NAN result for monadic operation # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round precision/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# # +# ALGORITHM *********************************************************** # +# Separate according to operand type. Unnorms don't pass through # +# here. For norms, load the rounding mode/prec, execute a "fint", then # +# store the resulting FPSR bits. # +# For denorms, force the j-bit to a one and do the same as for # +# norms. Denorms are so low that the answer will either be a zero or a # +# one. # +# For zeroes/infs/NANs, return the same while setting the FPSR # +# as appropriate. # +# # +######################################################################### + + global fint +fint: + mov.b STAG(%a6),%d1 + bne.b fint_not_norm # optimize on non-norm input + +# +# Norm: +# +fint_norm: + andi.b &0x30,%d0 # set prec = ext + + fmov.l %d0,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fint.x SRC(%a0),%fp0 # execute fint + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d0 # save FPSR + or.l %d0,USER_FPSR(%a6) # set exception bits + + rts + +# +# input is not normalized; what is it? +# +fint_not_norm: + cmpi.b %d1,&ZERO # weed out ZERO + beq.b fint_zero + cmpi.b %d1,&INF # weed out INF + beq.b fint_inf + cmpi.b %d1,&DENORM # weed out DENORM + beq.b fint_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + bra.l res_qnan_1op # weed out QNAN + +# +# Denorm: +# +# for DENORMs, the result will be either (+/-)ZERO or (+/-)1. +# also, the INEX2 and AINEX exception bits will be set. +# so, we could either set these manually or force the DENORM +# to a very small NORM and ship it to the NORM routine. +# I do the latter. +# +fint_denorm: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp + mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM + lea FP_SCR0(%a6),%a0 + bra.b fint_norm + +# +# Zero: +# +fint_zero: + tst.b SRC_EX(%a0) # is ZERO negative? + bmi.b fint_zero_m # yes +fint_zero_p: + fmov.s &0x00000000,%fp0 # return +ZERO in fp0 + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fint_zero_m: + fmov.s &0x80000000,%fp0 # return -ZERO in fp0 + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +# +# Infinity: +# +fint_inf: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + tst.b SRC_EX(%a0) # is INF negative? + bmi.b fint_inf_m # yes +fint_inf_p: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts +fint_inf_m: + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits + rts + +######################################################################### +# XDEF **************************************************************** # +# fintrz(): emulates the fintrz instruction # +# # +# XREF **************************************************************** # +# res_{s,q}nan_1op() - set NAN result for monadic operation # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round precision/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# # +# ALGORITHM *********************************************************** # +# Separate according to operand type. Unnorms don't pass through # +# here. For norms, load the rounding mode/prec, execute a "fintrz", # +# then store the resulting FPSR bits. # +# For denorms, force the j-bit to a one and do the same as for # +# norms. Denorms are so low that the answer will either be a zero or a # +# one. # +# For zeroes/infs/NANs, return the same while setting the FPSR # +# as appropriate. # +# # +######################################################################### + + global fintrz +fintrz: + mov.b STAG(%a6),%d1 + bne.b fintrz_not_norm # optimize on non-norm input + +# +# Norm: +# +fintrz_norm: + fmov.l &0x0,%fpsr # clear FPSR + + fintrz.x SRC(%a0),%fp0 # execute fintrz + + fmov.l %fpsr,%d0 # save FPSR + or.l %d0,USER_FPSR(%a6) # set exception bits + + rts + +# +# input is not normalized; what is it? +# +fintrz_not_norm: + cmpi.b %d1,&ZERO # weed out ZERO + beq.b fintrz_zero + cmpi.b %d1,&INF # weed out INF + beq.b fintrz_inf + cmpi.b %d1,&DENORM # weed out DENORM + beq.b fintrz_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + bra.l res_qnan_1op # weed out QNAN + +# +# Denorm: +# +# for DENORMs, the result will be (+/-)ZERO. +# also, the INEX2 and AINEX exception bits will be set. +# so, we could either set these manually or force the DENORM +# to a very small NORM and ship it to the NORM routine. +# I do the latter. +# +fintrz_denorm: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp + mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM + lea FP_SCR0(%a6),%a0 + bra.b fintrz_norm + +# +# Zero: +# +fintrz_zero: + tst.b SRC_EX(%a0) # is ZERO negative? + bmi.b fintrz_zero_m # yes +fintrz_zero_p: + fmov.s &0x00000000,%fp0 # return +ZERO in fp0 + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fintrz_zero_m: + fmov.s &0x80000000,%fp0 # return -ZERO in fp0 + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +# +# Infinity: +# +fintrz_inf: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + tst.b SRC_EX(%a0) # is INF negative? + bmi.b fintrz_inf_m # yes +fintrz_inf_p: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts +fintrz_inf_m: + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits + rts + +######################################################################### +# XDEF **************************************************************** # +# fabs(): emulates the fabs instruction # +# fsabs(): emulates the fsabs instruction # +# fdabs(): emulates the fdabs instruction # +# # +# XREF **************************************************************** # +# norm() - normalize denorm mantissa to provide EXOP # +# scale_to_zero_src() - make exponent. = 0; get scale factor # +# unf_res() - calculate underflow result # +# ovf_res() - calculate overflow result # +# res_{s,q}nan_1op() - set NAN result for monadic operation # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = rnd precision/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Simply clear sign for extended precision norm. Ext prec denorm # +# gets an EXOP created for it since it's an underflow. # +# Double and single precision can overflow and underflow. First, # +# scale the operand such that the exponent is zero. Perform an "fabs" # +# using the correct rnd mode/prec. Check to see if the original # +# exponent would take an exception. If so, use unf_res() or ovf_res() # +# to calculate the default result. Also, create the EXOP for the # +# exceptional case. If no exception should occur, insert the correct # +# result exponent and return. # +# Unnorms don't pass through here. # +# # +######################################################################### + + global fsabs +fsabs: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fabs + + global fdabs +fdabs: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl precision + + global fabs +fabs: + mov.l %d0,L_SCR3(%a6) # store rnd info + mov.b STAG(%a6),%d1 + bne.w fabs_not_norm # optimize on non-norm input + +# +# ABSOLUTE VALUE: norms and denorms ONLY! +# +fabs_norm: + andi.b &0xc0,%d0 # is precision extended? + bne.b fabs_not_ext # no; go handle sgl or dbl + +# +# precision selected is extended. so...we can not get an underflow +# or overflow because of rounding to the correct precision. so... +# skip the scaling and unscaling... +# + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d1 + bclr &15,%d1 # force absolute value + mov.w %d1,FP_SCR0_EX(%a6) # insert exponent + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# for an extended precision DENORM, the UNFL exception bit is set +# the accrued bit is NOT set in this instance(no inexactness!) +# +fabs_denorm: + andi.b &0xc0,%d0 # is precision extended? + bne.b fabs_not_ext # no + + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d0 + bclr &15,%d0 # clear sign + mov.w %d0,FP_SCR0_EX(%a6) # insert exponent + + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + + btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? + bne.b fabs_ext_unfl_ena + rts + +# +# the input is an extended DENORM and underflow is enabled in the FPCR. +# normalize the mantissa and add the bias of 0x6000 to the resulting negative +# exponent and insert back into the operand. +# +fabs_ext_unfl_ena: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + bsr.l norm # normalize result + neg.w %d0 # new exponent = -(shft val) + addi.w &0x6000,%d0 # add new bias to exponent + mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp + andi.w &0x8000,%d1 # keep old sign + andi.w &0x7fff,%d0 # clear sign position + or.w %d1,%d0 # concat old sign, new exponent + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +# +# operand is either single or double +# +fabs_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.b fabs_dbl + +# +# operand is to be rounded to single precision +# +fabs_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? + bge.w fabs_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407e # will move in overflow? + beq.w fabs_sd_may_ovfl # maybe; go check + blt.w fabs_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved in to the fp reg file +# +fabs_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fabs.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fabs_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fabs_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? + bge.b fabs_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? + beq.w fabs_sd_may_ovfl # maybe; go check + blt.w fabs_sd_ovfl # yes; go handle overflow + bra.w fabs_sd_normal # no; ho handle normalized op + +# +# operand WILL underflow when moved in to the fp register file +# +fabs_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + bclr &0x7,FP_SCR0_EX(%a6) # force absolute value + +# if underflow or inexact is enabled, go calculate EXOP first. + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fabs_sd_unfl_ena # yes + +fabs_sd_unfl_dis: + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow is enabled. +# therefore, we must return the result rounded to extended precision. +# +fabs_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # subtract scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat new sign,new exp + mov.w %d1,FP_SCR1_EX(%a6) # insert new exp + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fabs_sd_unfl_dis + +# +# operand WILL overflow. +# +fabs_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fabs.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fabs_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fabs_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fabs_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fabs_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat sign,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fabs_sd_ovfl_dis + +# +# the move in MAY underflow. so... +# +fabs_sd_may_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fabs.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fabs_sd_normal_exit + +########################################################################## + +# +# input is not normalized; what is it? +# +fabs_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fabs_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNAN + beq.l res_qnan_1op + + fabs.x SRC(%a0),%fp0 # force absolute value + + cmpi.b %d1,&INF # weed out INF + beq.b fabs_inf +fabs_zero: + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fabs_inf: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts + +######################################################################### +# XDEF **************************************************************** # +# fcmp(): fp compare op routine # +# # +# XREF **************************************************************** # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 = round prec/mode # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# Handle NANs and denorms as special cases. For everything else, # +# just use the actual fcmp instruction to produce the correct condition # +# codes. # +# # +######################################################################### + + global fcmp +fcmp: + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 + bne.b fcmp_not_norm # optimize on non-norm input + +# +# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs +# +fcmp_norm: + fmovm.x DST(%a1),&0x80 # load dst op + + fcmp.x %fp0,SRC(%a0) # do compare + + fmov.l %fpsr,%d0 # save FPSR + rol.l &0x8,%d0 # extract ccode bits + mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) + + rts + +# +# fcmp: inputs are not both normalized; what are they? +# +fcmp_not_norm: + mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fcmp_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fcmp_op: + short fcmp_norm - tbl_fcmp_op # NORM - NORM + short fcmp_norm - tbl_fcmp_op # NORM - ZERO + short fcmp_norm - tbl_fcmp_op # NORM - INF + short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN + short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM + short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_norm - tbl_fcmp_op # ZERO - NORM + short fcmp_norm - tbl_fcmp_op # ZERO - ZERO + short fcmp_norm - tbl_fcmp_op # ZERO - INF + short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN + short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM + short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_norm - tbl_fcmp_op # INF - NORM + short fcmp_norm - tbl_fcmp_op # INF - ZERO + short fcmp_norm - tbl_fcmp_op # INF - INF + short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN + short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM + short fcmp_res_snan - tbl_fcmp_op # INF - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM + short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO + short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF + short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN + short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM + short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM + short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO + short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF + short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN + short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM + short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM + short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO + short fcmp_res_snan - tbl_fcmp_op # SNAN - INF + short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN + short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM + short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + +# unlike all other functions for QNAN and SNAN, fcmp does NOT set the +# 'N' bit for a negative QNAN or SNAN input so we must squelch it here. +fcmp_res_qnan: + bsr.l res_qnan + andi.b &0xf7,FPSR_CC(%a6) + rts +fcmp_res_snan: + bsr.l res_snan + andi.b &0xf7,FPSR_CC(%a6) + rts + +# +# DENORMs are a little more difficult. +# If you have a 2 DENORMs, then you can just force the j-bit to a one +# and use the fcmp_norm routine. +# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one +# and use the fcmp_norm routine. +# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. +# But with a DENORM and a NORM of the same sign, the neg bit is set if the +# (1) signs are (+) and the DENORM is the dst or +# (2) signs are (-) and the DENORM is the src +# + +fcmp_dnrm_s: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),%d0 + bset &31,%d0 # DENORM src; make into small norm + mov.l %d0,FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a0 + bra.w fcmp_norm + +fcmp_dnrm_d: + mov.l DST_EX(%a1),FP_SCR0_EX(%a6) + mov.l DST_HI(%a1),%d0 + bset &31,%d0 # DENORM src; make into small norm + mov.l %d0,FP_SCR0_HI(%a6) + mov.l DST_LO(%a1),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a1 + bra.w fcmp_norm + +fcmp_dnrm_sd: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l DST_HI(%a1),%d0 + bset &31,%d0 # DENORM dst; make into small norm + mov.l %d0,FP_SCR1_HI(%a6) + mov.l SRC_HI(%a0),%d0 + bset &31,%d0 # DENORM dst; make into small norm + mov.l %d0,FP_SCR0_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR1(%a6),%a1 + lea FP_SCR0(%a6),%a0 + bra.w fcmp_norm + +fcmp_nrm_dnrm: + mov.b SRC_EX(%a0),%d0 # determine if like signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bmi.w fcmp_dnrm_s + +# signs are the same, so must determine the answer ourselves. + tst.b %d0 # is src op negative? + bmi.b fcmp_nrm_dnrm_m # yes + rts +fcmp_nrm_dnrm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts + +fcmp_dnrm_nrm: + mov.b SRC_EX(%a0),%d0 # determine if like signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bmi.w fcmp_dnrm_d + +# signs are the same, so must determine the answer ourselves. + tst.b %d0 # is src op negative? + bpl.b fcmp_dnrm_nrm_m # no + rts +fcmp_dnrm_nrm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts + +######################################################################### +# XDEF **************************************************************** # +# fsglmul(): emulates the fsglmul instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res4() - return default underflow result for sglop # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a multiply # +# instruction won't cause an exception. Use the regular fsglmul to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + global fsglmul +fsglmul: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 + + bne.w fsglmul_not_norm # optimize on non-norm input + +fsglmul_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # scale exponent + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # scale dst exponent + + add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 + + cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? + beq.w fsglmul_may_ovfl # result may rnd to overflow + blt.w fsglmul_ovfl # result will overflow + + cmpi.l %d0,&0x3fff+0x0001 # would result unfl? + beq.w fsglmul_may_unfl # result may rnd to no unfl + bgt.w fsglmul_unfl # result will underflow + +fsglmul_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsglmul_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +fsglmul_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsglmul_ovfl_tst: + +# save setting this until now because this is where fsglmul_may_ovfl may jump in + or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsglmul_ovfl_ena # yes + +fsglmul_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + andi.b &0x30,%d0 # force prec = ext + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +fsglmul_ovfl_ena: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + andi.w &0x8000,%d2 # keep old sign + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fsglmul_ovfl_dis + +fsglmul_may_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fsglmul_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fsglmul_normal_exit + +fsglmul_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsglmul_unfl_ena # yes + +fsglmul_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res4 # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fsglmul_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fsglmul_unfl_dis + +fsglmul_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| > 2.b? + fbgt.w fsglmul_normal_exit # no; no underflow occurred + fblt.w fsglmul_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 2. but, +# we don't know if the result was an underflow that rounded up to a 2 or +# a normalized number that rounded down to a 2. so, redo the entire operation +# using RZ as the rounding mode to see what the pre-rounded result is. +# this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert RZ + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x2 # is |result| < 2.b? + fbge.w fsglmul_normal_exit # no; no underflow occurred + bra.w fsglmul_unfl # yes, underflow occurred + +############################################################################## + +# +# Single Precision Multiply: inputs are not both normalized; what are they? +# +fsglmul_not_norm: + mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fsglmul_op: + short fsglmul_norm - tbl_fsglmul_op # NORM x NORM + short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO + short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF + short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN + short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM + short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO + short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF + short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN + short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM + short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO + short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF + short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN + short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_norm - tbl_fsglmul_op # NORM x NORM + short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO + short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF + short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN + short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + +fsglmul_res_operr: + bra.l res_operr +fsglmul_res_snan: + bra.l res_snan +fsglmul_res_qnan: + bra.l res_qnan +fsglmul_zero: + bra.l fmul_zero +fsglmul_inf_src: + bra.l fmul_inf_src +fsglmul_inf_dst: + bra.l fmul_inf_dst + +######################################################################### +# XDEF **************************************************************** # +# fsgldiv(): emulates the fsgldiv instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res4() - return default underflow result for sglop # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a divide # +# instruction won't cause an exception. Use the regular fsgldiv to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + global fsgldiv +fsgldiv: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fsgldiv_not_norm # optimize on non-norm input + +# +# DIVIDE: NORMs and DENORMs ONLY! +# +fsgldiv_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # calculate scale factor 1 + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # calculate scale factor 2 + + neg.l (%sp) # S.F. = scale1 - scale2 + add.l %d0,(%sp) + + mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode + lsr.b &0x6,%d1 + mov.l (%sp)+,%d0 + cmpi.l %d0,&0x3fff-0x7ffe + ble.w fsgldiv_may_ovfl + + cmpi.l %d0,&0x3fff-0x0000 # will result underflow? + beq.w fsgldiv_may_unfl # maybe + bgt.w fsgldiv_unfl # yes; go handle underflow + +fsgldiv_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # save FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsgldiv_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store result on stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +fsgldiv_may_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # set FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d1 + fmov.l &0x0,%fpcr + + or.l %d1,USER_FPSR(%a6) # save INEX,N + + fmovm.x &0x01,-(%sp) # save result to stack + mov.w (%sp),%d1 # fetch new exponent + add.l &0xc,%sp # clear result + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + cmp.l %d1,&0x7fff # did divide overflow? + blt.b fsgldiv_normal_exit + +fsgldiv_ovfl_tst: + or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsgldiv_ovfl_ena # yes + +fsgldiv_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + andi.b &0x30,%d0 # kill precision + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +fsgldiv_ovfl_ena: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract new bias + andi.w &0x7fff,%d1 # clear ms bit + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fsgldiv_ovfl_dis + +fsgldiv_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsgldiv_unfl_ena # yes + +fsgldiv_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res4 # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fsgldiv_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 # clear top bit + or.w %d2,%d1 # concat old sign, new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fsgldiv_unfl_dis + +# +# the divide operation MAY underflow: +# +fsgldiv_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x1 # is |result| > 1.b? + fbgt.w fsgldiv_normal_exit # no; no underflow occurred + fblt.w fsgldiv_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 1. but, +# we don't know if the result was an underflow that rounded up to a 1 +# or a normalized number that rounded down to a 1. so, redo the entire +# operation using RZ as the rounding mode to see what the pre-rounded +# result is. this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 + + clr.l %d1 # clear scratch register + ori.b &rz_mode*0x10,%d1 # force RZ rnd mode + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x1 # is |result| < 1.b? + fbge.w fsgldiv_normal_exit # no; no underflow occurred + bra.w fsgldiv_unfl # yes; underflow occurred + +############################################################################ + +# +# Divide: inputs are not both normalized; what are they? +# +fsgldiv_not_norm: + mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fsgldiv_op: + short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM + short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO + short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN + short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM + short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO + short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN + short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM + short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO + short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN + short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM + short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO + short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN + short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + +fsgldiv_res_qnan: + bra.l res_qnan +fsgldiv_res_snan: + bra.l res_snan +fsgldiv_res_operr: + bra.l res_operr +fsgldiv_inf_load: + bra.l fdiv_inf_load +fsgldiv_zero_load: + bra.l fdiv_zero_load +fsgldiv_inf_dst: + bra.l fdiv_inf_dst + +######################################################################### +# XDEF **************************************************************** # +# fadd(): emulates the fadd instruction # +# fsadd(): emulates the fadd instruction # +# fdadd(): emulates the fdadd instruction # +# # +# XREF **************************************************************** # +# addsub_scaler2() - scale the operands so they won't take exc # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan() - set QNAN result # +# res_snan() - set SNAN result # +# res_operr() - set OPERR result # +# scale_to_zero_src() - set src operand exponent equal to zero # +# scale_to_zero_dst() - set dst operand exponent equal to zero # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Do addition after scaling exponents such that exception won't # +# occur. Then, check result exponent to see if exception would have # +# occurred. If so, return default result and maybe EXOP. Else, insert # +# the correct result exponent and return. Set FPSR bits as appropriate. # +# # +######################################################################### + + global fsadd +fsadd: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fadd + + global fdadd +fdadd: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fadd +fadd: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fadd_not_norm # optimize on non-norm input + +# +# ADD: norms and denorms +# +fadd_norm: + bsr.l addsub_scaler2 # scale exponents + +fadd_zero_entry: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fadd.x FP_SCR0(%a6),%fp0 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch INEX2,N,Z + + or.l %d1,USER_FPSR(%a6) # save exc and ccode bits + + fbeq.w fadd_zero_exit # if result is zero, end now + + mov.l %d2,-(%sp) # save d2 + + fmovm.x &0x01,-(%sp) # save result to stack + + mov.w 2+L_SCR3(%a6),%d1 + lsr.b &0x6,%d1 + + mov.w (%sp),%d2 # fetch new sign, exp + andi.l &0x7fff,%d2 # strip sign + sub.l %d0,%d2 # add scale factor + + cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? + bge.b fadd_ovfl # yes + + cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? + blt.w fadd_unfl # yes + beq.w fadd_may_unfl # maybe; go find out + +fadd_normal: + mov.w (%sp),%d1 + andi.w &0x8000,%d1 # keep sign + or.w %d2,%d1 # concat sign,new exp + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x80 # return result in fp0 + + mov.l (%sp)+,%d2 # restore d2 + rts + +fadd_zero_exit: +# fmov.s &0x00000000,%fp0 # return zero in fp0 + rts + +tbl_fadd_ovfl: + long 0x7fff # ext ovfl + long 0x407f # sgl ovfl + long 0x43ff # dbl ovfl + +tbl_fadd_unfl: + long 0x0000 # ext unfl + long 0x3f81 # sgl unfl + long 0x3c01 # dbl unfl + +fadd_ovfl: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fadd_ovfl_ena # yes + + add.l &0xc,%sp +fadd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fadd_ovfl_ena: + mov.b L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl + +fadd_ovfl_ena_cont: + mov.w (%sp),%d1 + andi.w &0x8000,%d1 # keep sign + subi.l &0x6000,%d2 # add extra bias + andi.w &0x7fff,%d2 + or.w %d2,%d1 # concat sign,new exp + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x40 # return EXOP in fp1 + bra.b fadd_ovfl_dis + +fadd_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # keep rnd mode + fmov.l %d1,%fpcr # set FPCR + + fadd.x FP_SCR0(%a6),%fp0 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + + add.l &0xc,%sp + fmovm.x &0x01,-(%sp) + bra.b fadd_ovfl_ena_cont + +fadd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + add.l &0xc,%sp + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fadd.x FP_SCR0(%a6),%fp0 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save status + + or.l %d1,USER_FPSR(%a6) # save INEX,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fadd_unfl_ena # yes + +fadd_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fadd_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fadd_unfl_ena_sd # no; sgl or dbl + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fadd_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fadd.x FP_SCR0(%a6),%fp1 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 # clear top bit + or.w %d2,%d1 # concat sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fadd_unfl_dis + +fadd_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # use only rnd mode + fmov.l %d1,%fpcr # set FPCR + + bra.b fadd_unfl_ena_cont + +# +# result is equal to the smallest normalized number in the selected precision +# if the precision is extended, this result could not have come from an +# underflow that rounded up. +# +fadd_may_unfl: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 + beq.w fadd_normal # yes; no underflow occurred + + mov.l 0x4(%sp),%d1 # extract hi(man) + cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? + bne.w fadd_normal # no; no underflow occurred + + tst.l 0x8(%sp) # is lo(man) = 0x0? + bne.w fadd_normal # no; no underflow occurred + + btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? + beq.w fadd_normal # no; no underflow occurred + +# +# ok, so now the result has a exponent equal to the smallest normalized +# exponent for the selected precision. also, the mantissa is equal to +# 0x8000000000000000 and this mantissa is the result of rounding non-zero +# g,r,s. +# now, we must determine whether the pre-rounded result was an underflow +# rounded "up" or a normalized number rounded "down". +# so, we do this be re-executing the add using RZ as the rounding mode and +# seeing if the new result is smaller or equal to the current result. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert rnd mode + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fadd.x FP_SCR0(%a6),%fp1 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # compare absolute values + fabs.x %fp1 + fcmp.x %fp0,%fp1 # is first result > second? + + fbgt.w fadd_unfl # yes; it's an underflow + bra.w fadd_normal # no; it's not an underflow + +########################################################################## + +# +# Add: inputs are not both normalized; what are they? +# +fadd_not_norm: + mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fadd_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fadd_op: + short fadd_norm - tbl_fadd_op # NORM + NORM + short fadd_zero_src - tbl_fadd_op # NORM + ZERO + short fadd_inf_src - tbl_fadd_op # NORM + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_norm - tbl_fadd_op # NORM + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_zero_dst - tbl_fadd_op # ZERO + NORM + short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO + short fadd_inf_src - tbl_fadd_op # ZERO + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_inf_dst - tbl_fadd_op # INF + NORM + short fadd_inf_dst - tbl_fadd_op # INF + ZERO + short fadd_inf_2 - tbl_fadd_op # INF + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_inf_dst - tbl_fadd_op # INF + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_res_qnan - tbl_fadd_op # QNAN + NORM + short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO + short fadd_res_qnan - tbl_fadd_op # QNAN + INF + short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN + short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM + short fadd_res_snan - tbl_fadd_op # QNAN + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_norm - tbl_fadd_op # DENORM + NORM + short fadd_zero_src - tbl_fadd_op # DENORM + ZERO + short fadd_inf_src - tbl_fadd_op # DENORM + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_norm - tbl_fadd_op # DENORM + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_res_snan - tbl_fadd_op # SNAN + NORM + short fadd_res_snan - tbl_fadd_op # SNAN + ZERO + short fadd_res_snan - tbl_fadd_op # SNAN + INF + short fadd_res_snan - tbl_fadd_op # SNAN + QNAN + short fadd_res_snan - tbl_fadd_op # SNAN + DENORM + short fadd_res_snan - tbl_fadd_op # SNAN + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + +fadd_res_qnan: + bra.l res_qnan +fadd_res_snan: + bra.l res_snan + +# +# both operands are ZEROes +# +fadd_zero_2: + mov.b SRC_EX(%a0),%d0 # are the signs opposite + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) + +# the signs are the same. so determine whether they are positive or negative +# and return the appropriately signed zero. + tst.b %d0 # are ZEROes positive or negative? + bmi.b fadd_zero_rm # negative + fmov.s &0x00000000,%fp0 # return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# the ZEROes have opposite signs: +# - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. +# - -ZERO is returned in the case of RM. +# +fadd_zero_2_chk_rm: + mov.b 3+L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # extract rnd mode + cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? + beq.b fadd_zero_rm # yes + fmov.s &0x00000000,%fp0 # return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +fadd_zero_rm: + fmov.s &0x80000000,%fp0 # return -ZERO + mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z + rts + +# +# one operand is a ZERO and the other is a DENORM or NORM. scale +# the DENORM or NORM and jump to the regular fadd routine. +# +fadd_zero_dst: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # scale the operand + clr.w FP_SCR1_EX(%a6) + clr.l FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + bra.w fadd_zero_entry # go execute fadd + +fadd_zero_src: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + bsr.l scale_to_zero_dst # scale the operand + clr.w FP_SCR0_EX(%a6) + clr.l FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + bra.w fadd_zero_entry # go execute fadd + +# +# both operands are INFs. an OPERR will result if the INFs have +# different signs. else, an INF of the same sign is returned +# +fadd_inf_2: + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d1,%d0 + bmi.l res_operr # weed out (-INF)+(+INF) + +# ok, so it's not an OPERR. but, we do have to remember to return the +# src INF since that's where the 881/882 gets the j-bit from... + +# +# operands are INF and one of {ZERO, INF, DENORM, NORM} +# +fadd_inf_src: + fmovm.x SRC(%a0),&0x80 # return src INF + tst.b SRC_EX(%a0) # is INF positive? + bpl.b fadd_inf_done # yes; we're done + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +# +# operands are INF and one of {ZERO, INF, DENORM, NORM} +# +fadd_inf_dst: + fmovm.x DST(%a1),&0x80 # return dst INF + tst.b DST_EX(%a1) # is INF positive? + bpl.b fadd_inf_done # yes; we're done + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fadd_inf_done: + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +######################################################################### +# XDEF **************************************************************** # +# fsub(): emulates the fsub instruction # +# fssub(): emulates the fssub instruction # +# fdsub(): emulates the fdsub instruction # +# # +# XREF **************************************************************** # +# addsub_scaler2() - scale the operands so they won't take exc # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan() - set QNAN result # +# res_snan() - set SNAN result # +# res_operr() - set OPERR result # +# scale_to_zero_src() - set src operand exponent equal to zero # +# scale_to_zero_dst() - set dst operand exponent equal to zero # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Do subtraction after scaling exponents such that exception won't# +# occur. Then, check result exponent to see if exception would have # +# occurred. If so, return default result and maybe EXOP. Else, insert # +# the correct result exponent and return. Set FPSR bits as appropriate. # +# # +######################################################################### + + global fssub +fssub: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fsub + + global fdsub +fdsub: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fsub +fsub: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fsub_not_norm # optimize on non-norm input + +# +# SUB: norms and denorms +# +fsub_norm: + bsr.l addsub_scaler2 # scale exponents + +fsub_zero_entry: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsub.x FP_SCR0(%a6),%fp0 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch INEX2, N, Z + + or.l %d1,USER_FPSR(%a6) # save exc and ccode bits + + fbeq.w fsub_zero_exit # if result zero, end now + + mov.l %d2,-(%sp) # save d2 + + fmovm.x &0x01,-(%sp) # save result to stack + + mov.w 2+L_SCR3(%a6),%d1 + lsr.b &0x6,%d1 + + mov.w (%sp),%d2 # fetch new exponent + andi.l &0x7fff,%d2 # strip sign + sub.l %d0,%d2 # add scale factor + + cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? + bge.b fsub_ovfl # yes + + cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? + blt.w fsub_unfl # yes + beq.w fsub_may_unfl # maybe; go find out + +fsub_normal: + mov.w (%sp),%d1 + andi.w &0x8000,%d1 # keep sign + or.w %d2,%d1 # insert new exponent + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x80 # return result in fp0 + + mov.l (%sp)+,%d2 # restore d2 + rts + +fsub_zero_exit: +# fmov.s &0x00000000,%fp0 # return zero in fp0 + rts + +tbl_fsub_ovfl: + long 0x7fff # ext ovfl + long 0x407f # sgl ovfl + long 0x43ff # dbl ovfl + +tbl_fsub_unfl: + long 0x0000 # ext unfl + long 0x3f81 # sgl unfl + long 0x3c01 # dbl unfl + +fsub_ovfl: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsub_ovfl_ena # yes + + add.l &0xc,%sp +fsub_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fsub_ovfl_ena: + mov.b L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fsub_ovfl_ena_sd # no + +fsub_ovfl_ena_cont: + mov.w (%sp),%d1 # fetch {sgn,exp} + andi.w &0x8000,%d1 # keep sign + subi.l &0x6000,%d2 # subtract new bias + andi.w &0x7fff,%d2 # clear top bit + or.w %d2,%d1 # concat sign,exp + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x40 # return EXOP in fp1 + bra.b fsub_ovfl_dis + +fsub_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # clear rnd prec + fmov.l %d1,%fpcr # set FPCR + + fsub.x FP_SCR0(%a6),%fp0 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + + add.l &0xc,%sp + fmovm.x &0x01,-(%sp) + bra.b fsub_ovfl_ena_cont + +fsub_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + add.l &0xc,%sp + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsub.x FP_SCR0(%a6),%fp0 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save status + + or.l %d1,USER_FPSR(%a6) + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsub_unfl_ena # yes + +fsub_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fsub_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fsub_unfl_ena_sd # no + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fsub_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fsub.x FP_SCR0(%a6),%fp1 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # store result to stack + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # subtract new bias + andi.w &0x7fff,%d1 # clear top bit + or.w %d2,%d1 # concat sgn,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fsub_unfl_dis + +fsub_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # clear rnd prec + fmov.l %d1,%fpcr # set FPCR + + bra.b fsub_unfl_ena_cont + +# +# result is equal to the smallest normalized number in the selected precision +# if the precision is extended, this result could not have come from an +# underflow that rounded up. +# +fsub_may_unfl: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # fetch rnd prec + beq.w fsub_normal # yes; no underflow occurred + + mov.l 0x4(%sp),%d1 + cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? + bne.w fsub_normal # no; no underflow occurred + + tst.l 0x8(%sp) # is lo(man) = 0x0? + bne.w fsub_normal # no; no underflow occurred + + btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? + beq.w fsub_normal # no; no underflow occurred + +# +# ok, so now the result has a exponent equal to the smallest normalized +# exponent for the selected precision. also, the mantissa is equal to +# 0x8000000000000000 and this mantissa is the result of rounding non-zero +# g,r,s. +# now, we must determine whether the pre-rounded result was an underflow +# rounded "up" or a normalized number rounded "down". +# so, we do this be re-executing the add using RZ as the rounding mode and +# seeing if the new result is smaller or equal to the current result. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert rnd mode + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsub.x FP_SCR0(%a6),%fp1 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # compare absolute values + fabs.x %fp1 + fcmp.x %fp0,%fp1 # is first result > second? + + fbgt.w fsub_unfl # yes; it's an underflow + bra.w fsub_normal # no; it's not an underflow + +########################################################################## + +# +# Sub: inputs are not both normalized; what are they? +# +fsub_not_norm: + mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fsub_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fsub_op: + short fsub_norm - tbl_fsub_op # NORM - NORM + short fsub_zero_src - tbl_fsub_op # NORM - ZERO + short fsub_inf_src - tbl_fsub_op # NORM - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_norm - tbl_fsub_op # NORM - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_zero_dst - tbl_fsub_op # ZERO - NORM + short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO + short fsub_inf_src - tbl_fsub_op # ZERO - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_inf_dst - tbl_fsub_op # INF - NORM + short fsub_inf_dst - tbl_fsub_op # INF - ZERO + short fsub_inf_2 - tbl_fsub_op # INF - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_inf_dst - tbl_fsub_op # INF - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_res_qnan - tbl_fsub_op # QNAN - NORM + short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO + short fsub_res_qnan - tbl_fsub_op # QNAN - INF + short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN + short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM + short fsub_res_snan - tbl_fsub_op # QNAN - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_norm - tbl_fsub_op # DENORM - NORM + short fsub_zero_src - tbl_fsub_op # DENORM - ZERO + short fsub_inf_src - tbl_fsub_op # DENORM - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_norm - tbl_fsub_op # DENORM - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_res_snan - tbl_fsub_op # SNAN - NORM + short fsub_res_snan - tbl_fsub_op # SNAN - ZERO + short fsub_res_snan - tbl_fsub_op # SNAN - INF + short fsub_res_snan - tbl_fsub_op # SNAN - QNAN + short fsub_res_snan - tbl_fsub_op # SNAN - DENORM + short fsub_res_snan - tbl_fsub_op # SNAN - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + +fsub_res_qnan: + bra.l res_qnan +fsub_res_snan: + bra.l res_snan + +# +# both operands are ZEROes +# +fsub_zero_2: + mov.b SRC_EX(%a0),%d0 + mov.b DST_EX(%a1),%d1 + eor.b %d1,%d0 + bpl.b fsub_zero_2_chk_rm + +# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO + tst.b %d0 # is dst negative? + bmi.b fsub_zero_2_rm # yes + fmov.s &0x00000000,%fp0 # no; return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# the ZEROes have the same signs: +# - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP +# - -ZERO is returned in the case of RM. +# +fsub_zero_2_chk_rm: + mov.b 3+L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # extract rnd mode + cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? + beq.b fsub_zero_2_rm # yes + fmov.s &0x00000000,%fp0 # no; return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +fsub_zero_2_rm: + fmov.s &0x80000000,%fp0 # return -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG + rts + +# +# one operand is a ZERO and the other is a DENORM or a NORM. +# scale the DENORM or NORM and jump to the regular fsub routine. +# +fsub_zero_dst: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # scale the operand + clr.w FP_SCR1_EX(%a6) + clr.l FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + bra.w fsub_zero_entry # go execute fsub + +fsub_zero_src: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + bsr.l scale_to_zero_dst # scale the operand + clr.w FP_SCR0_EX(%a6) + clr.l FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + bra.w fsub_zero_entry # go execute fsub + +# +# both operands are INFs. an OPERR will result if the INFs have the +# same signs. else, +# +fsub_inf_2: + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d1,%d0 + bpl.l res_operr # weed out (-INF)+(+INF) + +# ok, so it's not an OPERR. but we do have to remember to return +# the src INF since that's where the 881/882 gets the j-bit. + +fsub_inf_src: + fmovm.x SRC(%a0),&0x80 # return src INF + fneg.x %fp0 # invert sign + fbge.w fsub_inf_done # sign is now positive + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fsub_inf_dst: + fmovm.x DST(%a1),&0x80 # return dst INF + tst.b DST_EX(%a1) # is INF negative? + bpl.b fsub_inf_done # no + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fsub_inf_done: + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +######################################################################### +# XDEF **************************************************************** # +# fsqrt(): emulates the fsqrt instruction # +# fssqrt(): emulates the fssqrt instruction # +# fdsqrt(): emulates the fdsqrt instruction # +# # +# XREF **************************************************************** # +# scale_sqrt() - scale the source operand # +# unf_res() - return default underflow result # +# ovf_res() - return default overflow result # +# res_qnan_1op() - return QNAN result # +# res_snan_1op() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a sqrt # +# instruction won't cause an exception. Use the regular fsqrt to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + global fssqrt +fssqrt: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fsqrt + + global fdsqrt +fdsqrt: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl precision + + global fsqrt +fsqrt: + mov.l %d0,L_SCR3(%a6) # store rnd info + clr.w %d1 + mov.b STAG(%a6),%d1 + bne.w fsqrt_not_norm # optimize on non-norm input + +# +# SQUARE ROOT: norms and denorms ONLY! +# +fsqrt_norm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.l res_operr # yes + + andi.b &0xc0,%d0 # is precision extended? + bne.b fsqrt_not_ext # no; go handle sgl or dbl + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsqrt.x (%a0),%fp0 # execute square root + + fmov.l %fpsr,%d1 + or.l %d1,USER_FPSR(%a6) # set N,INEX + + rts + +fsqrt_denorm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.l res_operr # yes + + andi.b &0xc0,%d0 # is precision extended? + bne.b fsqrt_not_ext # no; go handle sgl or dbl + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_sqrt # calculate scale factor + + bra.w fsqrt_sd_normal + +# +# operand is either single or double +# +fsqrt_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.w fsqrt_dbl + +# +# operand is to be rounded to single precision +# +fsqrt_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_sqrt # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? + beq.w fsqrt_sd_may_unfl + bgt.w fsqrt_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407f # will move in overflow? + beq.w fsqrt_sd_may_ovfl # maybe; go check + blt.w fsqrt_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved in to the fp reg file +# +fsqrt_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsqrt_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fsqrt_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_sqrt # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? + beq.w fsqrt_sd_may_unfl + bgt.b fsqrt_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? + beq.w fsqrt_sd_may_ovfl # maybe; go check + blt.w fsqrt_sd_ovfl # yes; go handle overflow + bra.w fsqrt_sd_normal # no; ho handle normalized op + +# we're on the line here and the distinguising characteristic is whether +# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number +# elsewise fall through to underflow. +fsqrt_sd_may_unfl: + btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? + bne.w fsqrt_sd_normal # yes, so no underflow + +# +# operand WILL underflow when moved in to the fp register file +# +fsqrt_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsqrt.x FP_SCR0(%a6),%fp0 # execute square root + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +# if underflow or inexact is enabled, go calculate EXOP first. + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsqrt_sd_unfl_ena # yes + +fsqrt_sd_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow is enabled. +# therefore, we must return the result rounded to extended precision. +# +fsqrt_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # subtract scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat new sign,new exp + mov.w %d1,FP_SCR1_EX(%a6) # insert new exp + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fsqrt_sd_unfl_dis + +# +# operand WILL overflow. +# +fsqrt_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsqrt.x FP_SCR0(%a6),%fp0 # perform square root + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsqrt_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsqrt_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fsqrt_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fsqrt_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat sign,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fsqrt_sd_ovfl_dis + +# +# the move in MAY underflow. so... +# +fsqrt_sd_may_ovfl: + btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? + bne.w fsqrt_sd_ovfl # yes, so overflow + + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fmov.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x1 # is |result| >= 1.b? + fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fsqrt_sd_normal_exit + +########################################################################## + +# +# input is not normalized; what is it? +# +fsqrt_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fsqrt_denorm + cmpi.b %d1,&ZERO # weed out ZERO + beq.b fsqrt_zero + cmpi.b %d1,&INF # weed out INF + beq.b fsqrt_inf + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + bra.l res_qnan_1op + +# +# fsqrt(+0) = +0 +# fsqrt(-0) = -0 +# fsqrt(+INF) = +INF +# fsqrt(-INF) = OPERR +# +fsqrt_zero: + tst.b SRC_EX(%a0) # is ZERO positive or negative? + bmi.b fsqrt_zero_m # negative +fsqrt_zero_p: + fmov.s &0x00000000,%fp0 # return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fsqrt_zero_m: + fmov.s &0x80000000,%fp0 # return -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +fsqrt_inf: + tst.b SRC_EX(%a0) # is INF positive or negative? + bmi.l res_operr # negative +fsqrt_inf_p: + fmovm.x SRC(%a0),&0x80 # return +INF in fp0 + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts + +########################################################################## + +######################################################################### +# XDEF **************************************************************** # +# addsub_scaler2(): scale inputs to fadd/fsub such that no # +# OVFL/UNFL exceptions will result # +# # +# XREF **************************************************************** # +# norm() - normalize mantissa after adjusting exponent # +# # +# INPUT *************************************************************** # +# FP_SRC(a6) = fp op1(src) # +# FP_DST(a6) = fp op2(dst) # +# # +# OUTPUT ************************************************************** # +# FP_SRC(a6) = fp op1 scaled(src) # +# FP_DST(a6) = fp op2 scaled(dst) # +# d0 = scale amount # +# # +# ALGORITHM *********************************************************** # +# If the DST exponent is > the SRC exponent, set the DST exponent # +# equal to 0x3fff and scale the SRC exponent by the value that the # +# DST exponent was scaled by. If the SRC exponent is greater or equal, # +# do the opposite. Return this scale factor in d0. # +# If the two exponents differ by > the number of mantissa bits # +# plus two, then set the smallest exponent to a very small value as a # +# quick shortcut. # +# # +######################################################################### + + global addsub_scaler2 +addsub_scaler2: + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + mov.w SRC_EX(%a0),%d0 + mov.w DST_EX(%a1),%d1 + mov.w %d0,FP_SCR0_EX(%a6) + mov.w %d1,FP_SCR1_EX(%a6) + + andi.w &0x7fff,%d0 + andi.w &0x7fff,%d1 + mov.w %d0,L_SCR1(%a6) # store src exponent + mov.w %d1,2+L_SCR1(%a6) # store dst exponent + + cmp.w %d0, %d1 # is src exp >= dst exp? + bge.l src_exp_ge2 + +# dst exp is > src exp; scale dst to exp = 0x3fff +dst_exp_gt2: + bsr.l scale_to_zero_dst + mov.l %d0,-(%sp) # save scale factor + + cmpi.b STAG(%a6),&DENORM # is dst denormalized? + bne.b cmpexp12 + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the denorm; result is new exp + neg.w %d0 # new exp = -(shft val) + mov.w %d0,L_SCR1(%a6) # inset new exp + +cmpexp12: + mov.w 2+L_SCR1(%a6),%d0 + subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp + + cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? + bge.b quick_scale12 + + mov.w L_SCR1(%a6),%d0 + add.w 0x2(%sp),%d0 # scale src exponent by scale factor + mov.w FP_SCR0_EX(%a6),%d1 + and.w &0x8000,%d1 + or.w %d1,%d0 # concat {sgn,new exp} + mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +quick_scale12: + andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent + bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +# src exp is >= dst exp; scale src to exp = 0x3fff +src_exp_ge2: + bsr.l scale_to_zero_src + mov.l %d0,-(%sp) # save scale factor + + cmpi.b DTAG(%a6),&DENORM # is dst denormalized? + bne.b cmpexp22 + lea FP_SCR1(%a6),%a0 + bsr.l norm # normalize the denorm; result is new exp + neg.w %d0 # new exp = -(shft val) + mov.w %d0,2+L_SCR1(%a6) # inset new exp + +cmpexp22: + mov.w L_SCR1(%a6),%d0 + subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp + + cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? + bge.b quick_scale22 + + mov.w 2+L_SCR1(%a6),%d0 + add.w 0x2(%sp),%d0 # scale dst exponent by scale factor + mov.w FP_SCR1_EX(%a6),%d1 + andi.w &0x8000,%d1 + or.w %d1,%d0 # concat {sgn,new exp} + mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +quick_scale22: + andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent + bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +########################################################################## + +######################################################################### +# XDEF **************************************************************** # +# scale_to_zero_src(): scale the exponent of extended precision # +# value at FP_SCR0(a6). # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa if the operand was a DENORM # +# # +# INPUT *************************************************************** # +# FP_SCR0(a6) = extended precision operand to be scaled # +# # +# OUTPUT ************************************************************** # +# FP_SCR0(a6) = scaled extended precision operand # +# d0 = scale value # +# # +# ALGORITHM *********************************************************** # +# Set the exponent of the input operand to 0x3fff. Save the value # +# of the difference between the original and new exponent. Then, # +# normalize the operand if it was a DENORM. Add this normalization # +# value to the previous value. Return the result. # +# # +######################################################################### + + global scale_to_zero_src +scale_to_zero_src: + mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} + mov.w %d1,%d0 # make a copy + + andi.l &0x7fff,%d1 # extract operand's exponent + + andi.w &0x8000,%d0 # extract operand's sgn + or.w &0x3fff,%d0 # insert new operand's exponent(=0) + + mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent + + cmpi.b STAG(%a6),&DENORM # is operand normalized? + beq.b stzs_denorm # normalize the DENORM + +stzs_norm: + mov.l &0x3fff,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + + rts + +stzs_denorm: + lea FP_SCR0(%a6),%a0 # pass ptr to src op + bsr.l norm # normalize denorm + neg.l %d0 # new exponent = -(shft val) + mov.l %d0,%d1 # prepare for op_norm call + bra.b stzs_norm # finish scaling + +### + +######################################################################### +# XDEF **************************************************************** # +# scale_sqrt(): scale the input operand exponent so a subsequent # +# fsqrt operation won't take an exception. # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa if the operand was a DENORM # +# # +# INPUT *************************************************************** # +# FP_SCR0(a6) = extended precision operand to be scaled # +# # +# OUTPUT ************************************************************** # +# FP_SCR0(a6) = scaled extended precision operand # +# d0 = scale value # +# # +# ALGORITHM *********************************************************** # +# If the input operand is a DENORM, normalize it. # +# If the exponent of the input operand is even, set the exponent # +# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # +# exponent of the input operand is off, set the exponent to ox3fff and # +# return a scale factor of "(exp-0x3fff)/2". # +# # +######################################################################### + + global scale_sqrt +scale_sqrt: + cmpi.b STAG(%a6),&DENORM # is operand normalized? + beq.b ss_denorm # normalize the DENORM + + mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} + andi.l &0x7fff,%d1 # extract operand's exponent + + andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn + + btst &0x0,%d1 # is exp even or odd? + beq.b ss_norm_even + + ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + mov.l &0x3fff,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +ss_norm_even: + ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + mov.l &0x3ffe,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +ss_denorm: + lea FP_SCR0(%a6),%a0 # pass ptr to src op + bsr.l norm # normalize denorm + + btst &0x0,%d0 # is exp even or odd? + beq.b ss_denorm_even + + ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + add.l &0x3fff,%d0 + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +ss_denorm_even: + ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + add.l &0x3ffe,%d0 + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +### + +######################################################################### +# XDEF **************************************************************** # +# scale_to_zero_dst(): scale the exponent of extended precision # +# value at FP_SCR1(a6). # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa if the operand was a DENORM # +# # +# INPUT *************************************************************** # +# FP_SCR1(a6) = extended precision operand to be scaled # +# # +# OUTPUT ************************************************************** # +# FP_SCR1(a6) = scaled extended precision operand # +# d0 = scale value # +# # +# ALGORITHM *********************************************************** # +# Set the exponent of the input operand to 0x3fff. Save the value # +# of the difference between the original and new exponent. Then, # +# normalize the operand if it was a DENORM. Add this normalization # +# value to the previous value. Return the result. # +# # +######################################################################### + + global scale_to_zero_dst +scale_to_zero_dst: + mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} + mov.w %d1,%d0 # make a copy + + andi.l &0x7fff,%d1 # extract operand's exponent + + andi.w &0x8000,%d0 # extract operand's sgn + or.w &0x3fff,%d0 # insert new operand's exponent(=0) + + mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent + + cmpi.b DTAG(%a6),&DENORM # is operand normalized? + beq.b stzd_denorm # normalize the DENORM + +stzd_norm: + mov.l &0x3fff,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + rts + +stzd_denorm: + lea FP_SCR1(%a6),%a0 # pass ptr to dst op + bsr.l norm # normalize denorm + neg.l %d0 # new exponent = -(shft val) + mov.l %d0,%d1 # prepare for op_norm call + bra.b stzd_norm # finish scaling + +########################################################################## + +######################################################################### +# XDEF **************************************************************** # +# res_qnan(): return default result w/ QNAN operand for dyadic # +# res_snan(): return default result w/ SNAN operand for dyadic # +# res_qnan_1op(): return dflt result w/ QNAN operand for monadic # +# res_snan_1op(): return dflt result w/ SNAN operand for monadic # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# FP_SRC(a6) = pointer to extended precision src operand # +# FP_DST(a6) = pointer to extended precision dst operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# # +# ALGORITHM *********************************************************** # +# If either operand (but not both operands) of an operation is a # +# nonsignalling NAN, then that NAN is returned as the result. If both # +# operands are nonsignalling NANs, then the destination operand # +# nonsignalling NAN is returned as the result. # +# If either operand to an operation is a signalling NAN (SNAN), # +# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # +# enable bit is set in the FPCR, then the trap is taken and the # +# destination is not modified. If the SNAN trap enable bit is not set, # +# then the SNAN is converted to a nonsignalling NAN (by setting the # +# SNAN bit in the operand to one), and the operation continues as # +# described in the preceding paragraph, for nonsignalling NANs. # +# Make sure the appropriate FPSR bits are set before exiting. # +# # +######################################################################### + + global res_qnan + global res_snan +res_qnan: +res_snan: + cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? + beq.b dst_snan2 + cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? + beq.b dst_qnan2 +src_nan: + cmp.b STAG(%a6), &QNAN + beq.b src_qnan2 + global res_snan_1op +res_snan_1op: +src_snan2: + bset &0x6, FP_SRC_HI(%a6) # set SNAN bit + or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) + lea FP_SRC(%a6), %a0 + bra.b nan_comp + global res_qnan_1op +res_qnan_1op: +src_qnan2: + or.l &nan_mask, USER_FPSR(%a6) + lea FP_SRC(%a6), %a0 + bra.b nan_comp +dst_snan2: + or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) + bset &0x6, FP_DST_HI(%a6) # set SNAN bit + lea FP_DST(%a6), %a0 + bra.b nan_comp +dst_qnan2: + lea FP_DST(%a6), %a0 + cmp.b STAG(%a6), &SNAN + bne nan_done + or.l &aiop_mask+snan_mask, USER_FPSR(%a6) +nan_done: + or.l &nan_mask, USER_FPSR(%a6) +nan_comp: + btst &0x7, FTEMP_EX(%a0) # is NAN neg? + beq.b nan_not_neg + or.l &neg_mask, USER_FPSR(%a6) +nan_not_neg: + fmovm.x (%a0), &0x80 + rts + +######################################################################### +# XDEF **************************************************************** # +# res_operr(): return default result during operand error # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# fp0 = default operand error result # +# # +# ALGORITHM *********************************************************** # +# An nonsignalling NAN is returned as the default result when # +# an operand error occurs for the following cases: # +# # +# Multiply: (Infinity x Zero) # +# Divide : (Zero / Zero) || (Infinity / Infinity) # +# # +######################################################################### + + global res_operr +res_operr: + or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) + fmovm.x nan_return(%pc), &0x80 + rts + +nan_return: + long 0x7fff0000, 0xffffffff, 0xffffffff + +######################################################################### +# fdbcc(): routine to emulate the fdbcc instruction # +# # +# XDEF **************************************************************** # +# _fdbcc() # +# # +# XREF **************************************************************** # +# fetch_dreg() - fetch Dn value # +# store_dreg_l() - store updated Dn value # +# # +# INPUT *************************************************************** # +# d0 = displacement # +# # +# OUTPUT ************************************************************** # +# none # +# # +# ALGORITHM *********************************************************** # +# This routine checks which conditional predicate is specified by # +# the stacked fdbcc instruction opcode and then branches to a routine # +# for that predicate. The corresponding fbcc instruction is then used # +# to see whether the condition (specified by the stacked FPSR) is true # +# or false. # +# If a BSUN exception should be indicated, the BSUN and ABSUN # +# bits are set in the stacked FPSR. If the BSUN exception is enabled, # +# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # +# enabled BSUN should not be flagged and the predicate is true, then # +# Dn is fetched and decremented by one. If Dn is not equal to -1, add # +# the displacement value to the stacked PC so that when an "rte" is # +# finally executed, the branch occurs. # +# # +######################################################################### + global _fdbcc +_fdbcc: + mov.l %d0,L_SCR1(%a6) # save displacement + + mov.w EXC_CMDREG(%a6),%d0 # fetch predicate + + clr.l %d1 # clear scratch reg + mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes + ror.l &0x8,%d1 # rotate to top byte + fmov.l %d1,%fpsr # insert into FPSR + + mov.w (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table + jmp (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine + +tbl_fdbcc: + short fdbcc_f - tbl_fdbcc # 00 + short fdbcc_eq - tbl_fdbcc # 01 + short fdbcc_ogt - tbl_fdbcc # 02 + short fdbcc_oge - tbl_fdbcc # 03 + short fdbcc_olt - tbl_fdbcc # 04 + short fdbcc_ole - tbl_fdbcc # 05 + short fdbcc_ogl - tbl_fdbcc # 06 + short fdbcc_or - tbl_fdbcc # 07 + short fdbcc_un - tbl_fdbcc # 08 + short fdbcc_ueq - tbl_fdbcc # 09 + short fdbcc_ugt - tbl_fdbcc # 10 + short fdbcc_uge - tbl_fdbcc # 11 + short fdbcc_ult - tbl_fdbcc # 12 + short fdbcc_ule - tbl_fdbcc # 13 + short fdbcc_neq - tbl_fdbcc # 14 + short fdbcc_t - tbl_fdbcc # 15 + short fdbcc_sf - tbl_fdbcc # 16 + short fdbcc_seq - tbl_fdbcc # 17 + short fdbcc_gt - tbl_fdbcc # 18 + short fdbcc_ge - tbl_fdbcc # 19 + short fdbcc_lt - tbl_fdbcc # 20 + short fdbcc_le - tbl_fdbcc # 21 + short fdbcc_gl - tbl_fdbcc # 22 + short fdbcc_gle - tbl_fdbcc # 23 + short fdbcc_ngle - tbl_fdbcc # 24 + short fdbcc_ngl - tbl_fdbcc # 25 + short fdbcc_nle - tbl_fdbcc # 26 + short fdbcc_nlt - tbl_fdbcc # 27 + short fdbcc_nge - tbl_fdbcc # 28 + short fdbcc_ngt - tbl_fdbcc # 29 + short fdbcc_sneq - tbl_fdbcc # 30 + short fdbcc_st - tbl_fdbcc # 31 + +######################################################################### +# # +# IEEE Nonaware tests # +# # +# For the IEEE nonaware tests, only the false branch changes the # +# counter. However, the true branch may set bsun so we check to see # +# if the NAN bit is set, in which case BSUN and AIOP will be set. # +# # +# The cases EQ and NE are shared by the Aware and Nonaware groups # +# and are incapable of setting the BSUN exception bit. # +# # +# Typically, only one of the two possible branch directions could # +# have the NAN bit set. # +# (This is assuming the mutual exclusiveness of FPSR cc bit groupings # +# is preserved.) # +# # +######################################################################### + +# +# equal: +# +# Z +# +fdbcc_eq: + fbeq.w fdbcc_eq_yes # equal? +fdbcc_eq_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_eq_yes: + rts + +# +# not equal: +# _ +# Z +# +fdbcc_neq: + fbneq.w fdbcc_neq_yes # not equal? +fdbcc_neq_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_neq_yes: + rts + +# +# greater than: +# _______ +# NANvZvN +# +fdbcc_gt: + fbgt.w fdbcc_gt_yes # greater than? + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fdbcc_false # no;go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # no; go handle counter +fdbcc_gt_yes: + rts # do nothing + +# +# not greater than: +# +# NANvZvN +# +fdbcc_ngt: + fbngt.w fdbcc_ngt_yes # not greater than? +fdbcc_ngt_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ngt_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b fdbcc_ngt_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_ngt_done: + rts # no; do nothing + +# +# greater than or equal: +# _____ +# Zv(NANvN) +# +fdbcc_ge: + fbge.w fdbcc_ge_yes # greater than or equal? +fdbcc_ge_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fdbcc_false # no;go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # no; go handle counter +fdbcc_ge_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b fdbcc_ge_yes_done # no;go do nothing + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_ge_yes_done: + rts # do nothing + +# +# not (greater than or equal): +# _ +# NANv(N^Z) +# +fdbcc_nge: + fbnge.w fdbcc_nge_yes # not (greater than or equal)? +fdbcc_nge_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_nge_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b fdbcc_nge_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_nge_done: + rts # no; do nothing + +# +# less than: +# _____ +# N^(NANvZ) +# +fdbcc_lt: + fblt.w fdbcc_lt_yes # less than? +fdbcc_lt_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fdbcc_false # no; go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # no; go handle counter +fdbcc_lt_yes: + rts # do nothing + +# +# not less than: +# _ +# NANv(ZvN) +# +fdbcc_nlt: + fbnlt.w fdbcc_nlt_yes # not less than? +fdbcc_nlt_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_nlt_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b fdbcc_nlt_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_nlt_done: + rts # no; do nothing + +# +# less than or equal: +# ___ +# Zv(N^NAN) +# +fdbcc_le: + fble.w fdbcc_le_yes # less than or equal? +fdbcc_le_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fdbcc_false # no; go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # no; go handle counter +fdbcc_le_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b fdbcc_le_yes_done # no; go do nothing + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_le_yes_done: + rts # do nothing + +# +# not (less than or equal): +# ___ +# NANv(NvZ) +# +fdbcc_nle: + fbnle.w fdbcc_nle_yes # not (less than or equal)? +fdbcc_nle_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_nle_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fdbcc_nle_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_nle_done: + rts # no; do nothing + +# +# greater or less than: +# _____ +# NANvZ +# +fdbcc_gl: + fbgl.w fdbcc_gl_yes # greater or less than? +fdbcc_gl_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fdbcc_false # no; handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # no; go handle counter +fdbcc_gl_yes: + rts # do nothing + +# +# not (greater or less than): +# +# NANvZ +# +fdbcc_ngl: + fbngl.w fdbcc_ngl_yes # not (greater or less than)? +fdbcc_ngl_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ngl_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b fdbcc_ngl_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_ngl_done: + rts # no; do nothing + +# +# greater, less, or equal: +# ___ +# NAN +# +fdbcc_gle: + fbgle.w fdbcc_gle_yes # greater, less, or equal? +fdbcc_gle_no: + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # no; go handle counter +fdbcc_gle_yes: + rts # do nothing + +# +# not (greater, less, or equal): +# +# NAN +# +fdbcc_ngle: + fbngle.w fdbcc_ngle_yes # not (greater, less, or equal)? +fdbcc_ngle_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ngle_yes: + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + rts # no; do nothing + +######################################################################### +# # +# Miscellaneous tests # +# # +# For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. # +# # +######################################################################### + +# +# false: +# +# False +# +fdbcc_f: # no bsun possible + bra.w fdbcc_false # go handle counter + +# +# true: +# +# True +# +fdbcc_t: # no bsun possible + rts # do nothing + +# +# signalling false: +# +# False +# +fdbcc_sf: + btst &nan_bit, FPSR_CC(%a6) # is NAN set? + beq.w fdbcc_false # no;go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # go handle counter + +# +# signalling true: +# +# True +# +fdbcc_st: + btst &nan_bit, FPSR_CC(%a6) # is NAN set? + beq.b fdbcc_st_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_st_done: + rts + +# +# signalling equal: +# +# Z +# +fdbcc_seq: + fbseq.w fdbcc_seq_yes # signalling equal? +fdbcc_seq_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set? + beq.w fdbcc_false # no;go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # go handle counter +fdbcc_seq_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set? + beq.b fdbcc_seq_yes_done # no;go do nothing + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_seq_yes_done: + rts # yes; do nothing + +# +# signalling not equal: +# _ +# Z +# +fdbcc_sneq: + fbsneq.w fdbcc_sneq_yes # signalling not equal? +fdbcc_sneq_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set? + beq.w fdbcc_false # no;go handle counter + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception + bra.w fdbcc_false # go handle counter +fdbcc_sneq_yes: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fdbcc_sneq_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? + bne.w fdbcc_bsun # yes; we have an exception +fdbcc_sneq_done: + rts + +######################################################################### +# # +# IEEE Aware tests # +# # +# For the IEEE aware tests, action is only taken if the result is false.# +# Therefore, the opposite branch type is used to jump to the decrement # +# routine. # +# The BSUN exception will not be set for any of these tests. # +# # +######################################################################### + +# +# ordered greater than: +# _______ +# NANvZvN +# +fdbcc_ogt: + fbogt.w fdbcc_ogt_yes # ordered greater than? +fdbcc_ogt_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ogt_yes: + rts # yes; do nothing + +# +# unordered or less or equal: +# _______ +# NANvZvN +# +fdbcc_ule: + fbule.w fdbcc_ule_yes # unordered or less or equal? +fdbcc_ule_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ule_yes: + rts # yes; do nothing + +# +# ordered greater than or equal: +# _____ +# Zv(NANvN) +# +fdbcc_oge: + fboge.w fdbcc_oge_yes # ordered greater than or equal? +fdbcc_oge_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_oge_yes: + rts # yes; do nothing + +# +# unordered or less than: +# _ +# NANv(N^Z) +# +fdbcc_ult: + fbult.w fdbcc_ult_yes # unordered or less than? +fdbcc_ult_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ult_yes: + rts # yes; do nothing + +# +# ordered less than: +# _____ +# N^(NANvZ) +# +fdbcc_olt: + fbolt.w fdbcc_olt_yes # ordered less than? +fdbcc_olt_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_olt_yes: + rts # yes; do nothing + +# +# unordered or greater or equal: +# +# NANvZvN +# +fdbcc_uge: + fbuge.w fdbcc_uge_yes # unordered or greater than? +fdbcc_uge_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_uge_yes: + rts # yes; do nothing + +# +# ordered less than or equal: +# ___ +# Zv(N^NAN) +# +fdbcc_ole: + fbole.w fdbcc_ole_yes # ordered greater or less than? +fdbcc_ole_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ole_yes: + rts # yes; do nothing + +# +# unordered or greater than: +# ___ +# NANv(NvZ) +# +fdbcc_ugt: + fbugt.w fdbcc_ugt_yes # unordered or greater than? +fdbcc_ugt_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ugt_yes: + rts # yes; do nothing + +# +# ordered greater or less than: +# _____ +# NANvZ +# +fdbcc_ogl: + fbogl.w fdbcc_ogl_yes # ordered greater or less than? +fdbcc_ogl_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ogl_yes: + rts # yes; do nothing + +# +# unordered or equal: +# +# NANvZ +# +fdbcc_ueq: + fbueq.w fdbcc_ueq_yes # unordered or equal? +fdbcc_ueq_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_ueq_yes: + rts # yes; do nothing + +# +# ordered: +# ___ +# NAN +# +fdbcc_or: + fbor.w fdbcc_or_yes # ordered? +fdbcc_or_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_or_yes: + rts # yes; do nothing + +# +# unordered: +# +# NAN +# +fdbcc_un: + fbun.w fdbcc_un_yes # unordered? +fdbcc_un_no: + bra.w fdbcc_false # no; go handle counter +fdbcc_un_yes: + rts # yes; do nothing + +####################################################################### + +# +# the bsun exception bit was not set. +# +# (1) subtract 1 from the count register +# (2) if (cr == -1) then +# pc = pc of next instruction +# else +# pc += sign_ext(16-bit displacement) +# +fdbcc_false: + mov.b 1+EXC_OPWORD(%a6), %d1 # fetch lo opword + andi.w &0x7, %d1 # extract count register + + bsr.l fetch_dreg # fetch count value +# make sure that d0 isn't corrupted between calls... + + subq.w &0x1, %d0 # Dn - 1 -> Dn + + bsr.l store_dreg_l # store new count value + + cmpi.w %d0, &-0x1 # is (Dn == -1)? + bne.b fdbcc_false_cont # no; + rts + +fdbcc_false_cont: + mov.l L_SCR1(%a6),%d0 # fetch displacement + add.l USER_FPIAR(%a6),%d0 # add instruction PC + addq.l &0x4,%d0 # add instruction length + mov.l %d0,EXC_PC(%a6) # set new PC + rts + +# the emulation routine set bsun and BSUN was enabled. have to +# fix stack and jump to the bsun handler. +# let the caller of this routine shift the stack frame up to +# eliminate the effective address field. +fdbcc_bsun: + mov.b &fbsun_flg,SPCOND_FLG(%a6) + rts + +######################################################################### +# ftrapcc(): routine to emulate the ftrapcc instruction # +# # +# XDEF **************************************************************** # +# _ftrapcc() # +# # +# XREF **************************************************************** # +# none # +# # +# INPUT *************************************************************** # +# none # +# # +# OUTPUT ************************************************************** # +# none # +# # +# ALGORITHM *********************************************************** # +# This routine checks which conditional predicate is specified by # +# the stacked ftrapcc instruction opcode and then branches to a routine # +# for that predicate. The corresponding fbcc instruction is then used # +# to see whether the condition (specified by the stacked FPSR) is true # +# or false. # +# If a BSUN exception should be indicated, the BSUN and ABSUN # +# bits are set in the stacked FPSR. If the BSUN exception is enabled, # +# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # +# enabled BSUN should not be flagged and the predicate is true, then # +# the ftrapcc_flg is set in the SPCOND_FLG location. These special # +# flags indicate to the calling routine to emulate the exceptional # +# condition. # +# # +######################################################################### + + global _ftrapcc +_ftrapcc: + mov.w EXC_CMDREG(%a6),%d0 # fetch predicate + + clr.l %d1 # clear scratch reg + mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes + ror.l &0x8,%d1 # rotate to top byte + fmov.l %d1,%fpsr # insert into FPSR + + mov.w (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table + jmp (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine + +tbl_ftrapcc: + short ftrapcc_f - tbl_ftrapcc # 00 + short ftrapcc_eq - tbl_ftrapcc # 01 + short ftrapcc_ogt - tbl_ftrapcc # 02 + short ftrapcc_oge - tbl_ftrapcc # 03 + short ftrapcc_olt - tbl_ftrapcc # 04 + short ftrapcc_ole - tbl_ftrapcc # 05 + short ftrapcc_ogl - tbl_ftrapcc # 06 + short ftrapcc_or - tbl_ftrapcc # 07 + short ftrapcc_un - tbl_ftrapcc # 08 + short ftrapcc_ueq - tbl_ftrapcc # 09 + short ftrapcc_ugt - tbl_ftrapcc # 10 + short ftrapcc_uge - tbl_ftrapcc # 11 + short ftrapcc_ult - tbl_ftrapcc # 12 + short ftrapcc_ule - tbl_ftrapcc # 13 + short ftrapcc_neq - tbl_ftrapcc # 14 + short ftrapcc_t - tbl_ftrapcc # 15 + short ftrapcc_sf - tbl_ftrapcc # 16 + short ftrapcc_seq - tbl_ftrapcc # 17 + short ftrapcc_gt - tbl_ftrapcc # 18 + short ftrapcc_ge - tbl_ftrapcc # 19 + short ftrapcc_lt - tbl_ftrapcc # 20 + short ftrapcc_le - tbl_ftrapcc # 21 + short ftrapcc_gl - tbl_ftrapcc # 22 + short ftrapcc_gle - tbl_ftrapcc # 23 + short ftrapcc_ngle - tbl_ftrapcc # 24 + short ftrapcc_ngl - tbl_ftrapcc # 25 + short ftrapcc_nle - tbl_ftrapcc # 26 + short ftrapcc_nlt - tbl_ftrapcc # 27 + short ftrapcc_nge - tbl_ftrapcc # 28 + short ftrapcc_ngt - tbl_ftrapcc # 29 + short ftrapcc_sneq - tbl_ftrapcc # 30 + short ftrapcc_st - tbl_ftrapcc # 31 + +######################################################################### +# # +# IEEE Nonaware tests # +# # +# For the IEEE nonaware tests, we set the result based on the # +# floating point condition codes. In addition, we check to see # +# if the NAN bit is set, in which case BSUN and AIOP will be set. # +# # +# The cases EQ and NE are shared by the Aware and Nonaware groups # +# and are incapable of setting the BSUN exception bit. # +# # +# Typically, only one of the two possible branch directions could # +# have the NAN bit set. # +# # +######################################################################### + +# +# equal: +# +# Z +# +ftrapcc_eq: + fbeq.w ftrapcc_trap # equal? +ftrapcc_eq_no: + rts # do nothing + +# +# not equal: +# _ +# Z +# +ftrapcc_neq: + fbneq.w ftrapcc_trap # not equal? +ftrapcc_neq_no: + rts # do nothing + +# +# greater than: +# _______ +# NANvZvN +# +ftrapcc_gt: + fbgt.w ftrapcc_trap # greater than? +ftrapcc_gt_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b ftrapcc_gt_done # no + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_gt_done: + rts # no; do nothing + +# +# not greater than: +# +# NANvZvN +# +ftrapcc_ngt: + fbngt.w ftrapcc_ngt_yes # not greater than? +ftrapcc_ngt_no: + rts # do nothing +ftrapcc_ngt_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# greater than or equal: +# _____ +# Zv(NANvN) +# +ftrapcc_ge: + fbge.w ftrapcc_ge_yes # greater than or equal? +ftrapcc_ge_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b ftrapcc_ge_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_ge_done: + rts # no; do nothing +ftrapcc_ge_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# not (greater than or equal): +# _ +# NANv(N^Z) +# +ftrapcc_nge: + fbnge.w ftrapcc_nge_yes # not (greater than or equal)? +ftrapcc_nge_no: + rts # do nothing +ftrapcc_nge_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# less than: +# _____ +# N^(NANvZ) +# +ftrapcc_lt: + fblt.w ftrapcc_trap # less than? +ftrapcc_lt_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b ftrapcc_lt_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_lt_done: + rts # no; do nothing + +# +# not less than: +# _ +# NANv(ZvN) +# +ftrapcc_nlt: + fbnlt.w ftrapcc_nlt_yes # not less than? +ftrapcc_nlt_no: + rts # do nothing +ftrapcc_nlt_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# less than or equal: +# ___ +# Zv(N^NAN) +# +ftrapcc_le: + fble.w ftrapcc_le_yes # less than or equal? +ftrapcc_le_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b ftrapcc_le_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_le_done: + rts # no; do nothing +ftrapcc_le_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# not (less than or equal): +# ___ +# NANv(NvZ) +# +ftrapcc_nle: + fbnle.w ftrapcc_nle_yes # not (less than or equal)? +ftrapcc_nle_no: + rts # do nothing +ftrapcc_nle_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# greater or less than: +# _____ +# NANvZ +# +ftrapcc_gl: + fbgl.w ftrapcc_trap # greater or less than? +ftrapcc_gl_no: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.b ftrapcc_gl_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_gl_done: + rts # no; do nothing + +# +# not (greater or less than): +# +# NANvZ +# +ftrapcc_ngl: + fbngl.w ftrapcc_ngl_yes # not (greater or less than)? +ftrapcc_ngl_no: + rts # do nothing +ftrapcc_ngl_yes: + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# greater, less, or equal: +# ___ +# NAN +# +ftrapcc_gle: + fbgle.w ftrapcc_trap # greater, less, or equal? +ftrapcc_gle_no: + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + rts # no; do nothing + +# +# not (greater, less, or equal): +# +# NAN +# +ftrapcc_ngle: + fbngle.w ftrapcc_ngle_yes # not (greater, less, or equal)? +ftrapcc_ngle_no: + rts # do nothing +ftrapcc_ngle_yes: + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +######################################################################### +# # +# Miscellaneous tests # +# # +# For the IEEE aware tests, we only have to set the result based on the # +# floating point condition codes. The BSUN exception will not be # +# set for any of these tests. # +# # +######################################################################### + +# +# false: +# +# False +# +ftrapcc_f: + rts # do nothing + +# +# true: +# +# True +# +ftrapcc_t: + bra.w ftrapcc_trap # go take trap + +# +# signalling false: +# +# False +# +ftrapcc_sf: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.b ftrapcc_sf_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_sf_done: + rts # no; do nothing + +# +# signalling true: +# +# True +# +ftrapcc_st: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# signalling equal: +# +# Z +# +ftrapcc_seq: + fbseq.w ftrapcc_seq_yes # signalling equal? +ftrapcc_seq_no: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w ftrapcc_seq_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_seq_done: + rts # no; do nothing +ftrapcc_seq_yes: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +# +# signalling not equal: +# _ +# Z +# +ftrapcc_sneq: + fbsneq.w ftrapcc_sneq_yes # signalling equal? +ftrapcc_sneq_no: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w ftrapcc_sneq_no_done # no; go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes +ftrapcc_sneq_no_done: + rts # do nothing +ftrapcc_sneq_yes: + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w ftrapcc_trap # no; go take trap + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? + bne.w ftrapcc_bsun # yes + bra.w ftrapcc_trap # no; go take trap + +######################################################################### +# # +# IEEE Aware tests # +# # +# For the IEEE aware tests, we only have to set the result based on the # +# floating point condition codes. The BSUN exception will not be # +# set for any of these tests. # +# # +######################################################################### + +# +# ordered greater than: +# _______ +# NANvZvN +# +ftrapcc_ogt: + fbogt.w ftrapcc_trap # ordered greater than? +ftrapcc_ogt_no: + rts # do nothing + +# +# unordered or less or equal: +# _______ +# NANvZvN +# +ftrapcc_ule: + fbule.w ftrapcc_trap # unordered or less or equal? +ftrapcc_ule_no: + rts # do nothing + +# +# ordered greater than or equal: +# _____ +# Zv(NANvN) +# +ftrapcc_oge: + fboge.w ftrapcc_trap # ordered greater than or equal? +ftrapcc_oge_no: + rts # do nothing + +# +# unordered or less than: +# _ +# NANv(N^Z) +# +ftrapcc_ult: + fbult.w ftrapcc_trap # unordered or less than? +ftrapcc_ult_no: + rts # do nothing + +# +# ordered less than: +# _____ +# N^(NANvZ) +# +ftrapcc_olt: + fbolt.w ftrapcc_trap # ordered less than? +ftrapcc_olt_no: + rts # do nothing + +# +# unordered or greater or equal: +# +# NANvZvN +# +ftrapcc_uge: + fbuge.w ftrapcc_trap # unordered or greater than? +ftrapcc_uge_no: + rts # do nothing + +# +# ordered less than or equal: +# ___ +# Zv(N^NAN) +# +ftrapcc_ole: + fbole.w ftrapcc_trap # ordered greater or less than? +ftrapcc_ole_no: + rts # do nothing + +# +# unordered or greater than: +# ___ +# NANv(NvZ) +# +ftrapcc_ugt: + fbugt.w ftrapcc_trap # unordered or greater than? +ftrapcc_ugt_no: + rts # do nothing + +# +# ordered greater or less than: +# _____ +# NANvZ +# +ftrapcc_ogl: + fbogl.w ftrapcc_trap # ordered greater or less than? +ftrapcc_ogl_no: + rts # do nothing + +# +# unordered or equal: +# +# NANvZ +# +ftrapcc_ueq: + fbueq.w ftrapcc_trap # unordered or equal? +ftrapcc_ueq_no: + rts # do nothing + +# +# ordered: +# ___ +# NAN +# +ftrapcc_or: + fbor.w ftrapcc_trap # ordered? +ftrapcc_or_no: + rts # do nothing + +# +# unordered: +# +# NAN +# +ftrapcc_un: + fbun.w ftrapcc_trap # unordered? +ftrapcc_un_no: + rts # do nothing + +####################################################################### + +# the bsun exception bit was not set. +# we will need to jump to the ftrapcc vector. the stack frame +# is the same size as that of the fp unimp instruction. the +# only difference is that the <ea> field should hold the PC +# of the ftrapcc instruction and the vector offset field +# should denote the ftrapcc trap. +ftrapcc_trap: + mov.b &ftrapcc_flg,SPCOND_FLG(%a6) + rts + +# the emulation routine set bsun and BSUN was enabled. have to +# fix stack and jump to the bsun handler. +# let the caller of this routine shift the stack frame up to +# eliminate the effective address field. +ftrapcc_bsun: + mov.b &fbsun_flg,SPCOND_FLG(%a6) + rts + +######################################################################### +# fscc(): routine to emulate the fscc instruction # +# # +# XDEF **************************************************************** # +# _fscc() # +# # +# XREF **************************************************************** # +# store_dreg_b() - store result to data register file # +# dec_areg() - decrement an areg for -(an) mode # +# inc_areg() - increment an areg for (an)+ mode # +# _dmem_write_byte() - store result to memory # +# # +# INPUT *************************************************************** # +# none # +# # +# OUTPUT ************************************************************** # +# none # +# # +# ALGORITHM *********************************************************** # +# This routine checks which conditional predicate is specified by # +# the stacked fscc instruction opcode and then branches to a routine # +# for that predicate. The corresponding fbcc instruction is then used # +# to see whether the condition (specified by the stacked FPSR) is true # +# or false. # +# If a BSUN exception should be indicated, the BSUN and ABSUN # +# bits are set in the stacked FPSR. If the BSUN exception is enabled, # +# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an # +# enabled BSUN should not be flagged and the predicate is true, then # +# the result is stored to the data register file or memory # +# # +######################################################################### + + global _fscc +_fscc: + mov.w EXC_CMDREG(%a6),%d0 # fetch predicate + + clr.l %d1 # clear scratch reg + mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes + ror.l &0x8,%d1 # rotate to top byte + fmov.l %d1,%fpsr # insert into FPSR + + mov.w (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table + jmp (tbl_fscc.b,%pc,%d1.w) # jump to fscc routine + +tbl_fscc: + short fscc_f - tbl_fscc # 00 + short fscc_eq - tbl_fscc # 01 + short fscc_ogt - tbl_fscc # 02 + short fscc_oge - tbl_fscc # 03 + short fscc_olt - tbl_fscc # 04 + short fscc_ole - tbl_fscc # 05 + short fscc_ogl - tbl_fscc # 06 + short fscc_or - tbl_fscc # 07 + short fscc_un - tbl_fscc # 08 + short fscc_ueq - tbl_fscc # 09 + short fscc_ugt - tbl_fscc # 10 + short fscc_uge - tbl_fscc # 11 + short fscc_ult - tbl_fscc # 12 + short fscc_ule - tbl_fscc # 13 + short fscc_neq - tbl_fscc # 14 + short fscc_t - tbl_fscc # 15 + short fscc_sf - tbl_fscc # 16 + short fscc_seq - tbl_fscc # 17 + short fscc_gt - tbl_fscc # 18 + short fscc_ge - tbl_fscc # 19 + short fscc_lt - tbl_fscc # 20 + short fscc_le - tbl_fscc # 21 + short fscc_gl - tbl_fscc # 22 + short fscc_gle - tbl_fscc # 23 + short fscc_ngle - tbl_fscc # 24 + short fscc_ngl - tbl_fscc # 25 + short fscc_nle - tbl_fscc # 26 + short fscc_nlt - tbl_fscc # 27 + short fscc_nge - tbl_fscc # 28 + short fscc_ngt - tbl_fscc # 29 + short fscc_sneq - tbl_fscc # 30 + short fscc_st - tbl_fscc # 31 + +######################################################################### +# # +# IEEE Nonaware tests # +# # +# For the IEEE nonaware tests, we set the result based on the # +# floating point condition codes. In addition, we check to see # +# if the NAN bit is set, in which case BSUN and AIOP will be set. # +# # +# The cases EQ and NE are shared by the Aware and Nonaware groups # +# and are incapable of setting the BSUN exception bit. # +# # +# Typically, only one of the two possible branch directions could # +# have the NAN bit set. # +# # +######################################################################### + +# +# equal: +# +# Z +# +fscc_eq: + fbeq.w fscc_eq_yes # equal? +fscc_eq_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_eq_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# not equal: +# _ +# Z +# +fscc_neq: + fbneq.w fscc_neq_yes # not equal? +fscc_neq_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_neq_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# greater than: +# _______ +# NANvZvN +# +fscc_gt: + fbgt.w fscc_gt_yes # greater than? +fscc_gt_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_gt_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# not greater than: +# +# NANvZvN +# +fscc_ngt: + fbngt.w fscc_ngt_yes # not greater than? +fscc_ngt_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ngt_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# greater than or equal: +# _____ +# Zv(NANvN) +# +fscc_ge: + fbge.w fscc_ge_yes # greater than or equal? +fscc_ge_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_ge_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# not (greater than or equal): +# _ +# NANv(N^Z) +# +fscc_nge: + fbnge.w fscc_nge_yes # not (greater than or equal)? +fscc_nge_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_nge_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# less than: +# _____ +# N^(NANvZ) +# +fscc_lt: + fblt.w fscc_lt_yes # less than? +fscc_lt_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_lt_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# not less than: +# _ +# NANv(ZvN) +# +fscc_nlt: + fbnlt.w fscc_nlt_yes # not less than? +fscc_nlt_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_nlt_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# less than or equal: +# ___ +# Zv(N^NAN) +# +fscc_le: + fble.w fscc_le_yes # less than or equal? +fscc_le_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_le_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# not (less than or equal): +# ___ +# NANv(NvZ) +# +fscc_nle: + fbnle.w fscc_nle_yes # not (less than or equal)? +fscc_nle_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_nle_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# greater or less than: +# _____ +# NANvZ +# +fscc_gl: + fbgl.w fscc_gl_yes # greater or less than? +fscc_gl_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_gl_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# not (greater or less than): +# +# NANvZ +# +fscc_ngl: + fbngl.w fscc_ngl_yes # not (greater or less than)? +fscc_ngl_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ngl_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc? + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# greater, less, or equal: +# ___ +# NAN +# +fscc_gle: + fbgle.w fscc_gle_yes # greater, less, or equal? +fscc_gle_no: + clr.b %d0 # set false + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_gle_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# not (greater, less, or equal): +# +# NAN +# +fscc_ngle: + fbngle.w fscc_ngle_yes # not (greater, less, or equal)? +fscc_ngle_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ngle_yes: + st %d0 # set true + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +######################################################################### +# # +# Miscellaneous tests # +# # +# For the IEEE aware tests, we only have to set the result based on the # +# floating point condition codes. The BSUN exception will not be # +# set for any of these tests. # +# # +######################################################################### + +# +# false: +# +# False +# +fscc_f: + clr.b %d0 # set false + bra.w fscc_done # go finish + +# +# true: +# +# True +# +fscc_t: + st %d0 # set true + bra.w fscc_done # go finish + +# +# signalling false: +# +# False +# +fscc_sf: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# signalling true: +# +# True +# +fscc_st: + st %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# signalling equal: +# +# Z +# +fscc_seq: + fbseq.w fscc_seq_yes # signalling equal? +fscc_seq_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_seq_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +# +# signalling not equal: +# _ +# Z +# +fscc_sneq: + fbsneq.w fscc_sneq_yes # signalling equal? +fscc_sneq_no: + clr.b %d0 # set false + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish +fscc_sneq_yes: + st %d0 # set true + btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit + beq.w fscc_done # no;go finish + ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit + bra.w fscc_chk_bsun # go finish + +######################################################################### +# # +# IEEE Aware tests # +# # +# For the IEEE aware tests, we only have to set the result based on the # +# floating point condition codes. The BSUN exception will not be # +# set for any of these tests. # +# # +######################################################################### + +# +# ordered greater than: +# _______ +# NANvZvN +# +fscc_ogt: + fbogt.w fscc_ogt_yes # ordered greater than? +fscc_ogt_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ogt_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# unordered or less or equal: +# _______ +# NANvZvN +# +fscc_ule: + fbule.w fscc_ule_yes # unordered or less or equal? +fscc_ule_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ule_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# ordered greater than or equal: +# _____ +# Zv(NANvN) +# +fscc_oge: + fboge.w fscc_oge_yes # ordered greater than or equal? +fscc_oge_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_oge_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# unordered or less than: +# _ +# NANv(N^Z) +# +fscc_ult: + fbult.w fscc_ult_yes # unordered or less than? +fscc_ult_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ult_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# ordered less than: +# _____ +# N^(NANvZ) +# +fscc_olt: + fbolt.w fscc_olt_yes # ordered less than? +fscc_olt_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_olt_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# unordered or greater or equal: +# +# NANvZvN +# +fscc_uge: + fbuge.w fscc_uge_yes # unordered or greater than? +fscc_uge_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_uge_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# ordered less than or equal: +# ___ +# Zv(N^NAN) +# +fscc_ole: + fbole.w fscc_ole_yes # ordered greater or less than? +fscc_ole_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ole_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# unordered or greater than: +# ___ +# NANv(NvZ) +# +fscc_ugt: + fbugt.w fscc_ugt_yes # unordered or greater than? +fscc_ugt_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ugt_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# ordered greater or less than: +# _____ +# NANvZ +# +fscc_ogl: + fbogl.w fscc_ogl_yes # ordered greater or less than? +fscc_ogl_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ogl_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# unordered or equal: +# +# NANvZ +# +fscc_ueq: + fbueq.w fscc_ueq_yes # unordered or equal? +fscc_ueq_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_ueq_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# ordered: +# ___ +# NAN +# +fscc_or: + fbor.w fscc_or_yes # ordered? +fscc_or_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_or_yes: + st %d0 # set true + bra.w fscc_done # go finish + +# +# unordered: +# +# NAN +# +fscc_un: + fbun.w fscc_un_yes # unordered? +fscc_un_no: + clr.b %d0 # set false + bra.w fscc_done # go finish +fscc_un_yes: + st %d0 # set true + bra.w fscc_done # go finish + +####################################################################### + +# +# the bsun exception bit was set. now, check to see is BSUN +# is enabled. if so, don't store result and correct stack frame +# for a bsun exception. +# +fscc_chk_bsun: + btst &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set? + bne.w fscc_bsun + +# +# the bsun exception bit was not set. +# the result has been selected. +# now, check to see if the result is to be stored in the data register +# file or in memory. +# +fscc_done: + mov.l %d0,%a0 # save result for a moment + + mov.b 1+EXC_OPWORD(%a6),%d1 # fetch lo opword + mov.l %d1,%d0 # make a copy + andi.b &0x38,%d1 # extract src mode + + bne.b fscc_mem_op # it's a memory operation + + mov.l %d0,%d1 + andi.w &0x7,%d1 # pass index in d1 + mov.l %a0,%d0 # pass result in d0 + bsr.l store_dreg_b # save result in regfile + rts + +# +# the stacked <ea> is correct with the exception of: +# -> Dn : <ea> is garbage +# +# if the addressing mode is post-increment or pre-decrement, +# then the address registers have not been updated. +# +fscc_mem_op: + cmpi.b %d1,&0x18 # is <ea> (An)+ ? + beq.b fscc_mem_inc # yes + cmpi.b %d1,&0x20 # is <ea> -(An) ? + beq.b fscc_mem_dec # yes + + mov.l %a0,%d0 # pass result in d0 + mov.l EXC_EA(%a6),%a0 # fetch <ea> + bsr.l _dmem_write_byte # write result byte + + tst.l %d1 # did dstore fail? + bne.w fscc_err # yes + + rts + +# addresing mode is post-increment. write the result byte. if the write +# fails then don't update the address register. if write passes then +# call inc_areg() to update the address register. +fscc_mem_inc: + mov.l %a0,%d0 # pass result in d0 + mov.l EXC_EA(%a6),%a0 # fetch <ea> + bsr.l _dmem_write_byte # write result byte + + tst.l %d1 # did dstore fail? + bne.w fscc_err # yes + + mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword + andi.w &0x7,%d1 # pass index in d1 + movq.l &0x1,%d0 # pass amt to inc by + bsr.l inc_areg # increment address register + + rts + +# addressing mode is pre-decrement. write the result byte. if the write +# fails then don't update the address register. if the write passes then +# call dec_areg() to update the address register. +fscc_mem_dec: + mov.l %a0,%d0 # pass result in d0 + mov.l EXC_EA(%a6),%a0 # fetch <ea> + bsr.l _dmem_write_byte # write result byte + + tst.l %d1 # did dstore fail? + bne.w fscc_err # yes + + mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword + andi.w &0x7,%d1 # pass index in d1 + movq.l &0x1,%d0 # pass amt to dec by + bsr.l dec_areg # decrement address register + + rts + +# the emulation routine set bsun and BSUN was enabled. have to +# fix stack and jump to the bsun handler. +# let the caller of this routine shift the stack frame up to +# eliminate the effective address field. +fscc_bsun: + mov.b &fbsun_flg,SPCOND_FLG(%a6) + rts + +# the byte write to memory has failed. pass the failing effective address +# and a FSLW to funimp_dacc(). +fscc_err: + mov.w &0x00a1,EXC_VOFF(%a6) + bra.l facc_finish + +######################################################################### +# XDEF **************************************************************** # +# fmovm_dynamic(): emulate "fmovm" dynamic instruction # +# # +# XREF **************************************************************** # +# fetch_dreg() - fetch data register # +# {i,d,}mem_read() - fetch data from memory # +# _mem_write() - write data to memory # +# iea_iacc() - instruction memory access error occurred # +# iea_dacc() - data memory access error occurred # +# restore() - restore An index regs if access error occurred # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If instr is "fmovm Dn,-(A7)" from supervisor mode, # +# d0 = size of dump # +# d1 = Dn # +# Else if instruction access error, # +# d0 = FSLW # +# Else if data access error, # +# d0 = FSLW # +# a0 = address of fault # +# Else # +# none. # +# # +# ALGORITHM *********************************************************** # +# The effective address must be calculated since this is entered # +# from an "Unimplemented Effective Address" exception handler. So, we # +# have our own fcalc_ea() routine here. If an access error is flagged # +# by a _{i,d,}mem_read() call, we must exit through the special # +# handler. # +# The data register is determined and its value loaded to get the # +# string of FP registers affected. This value is used as an index into # +# a lookup table such that we can determine the number of bytes # +# involved. # +# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # +# to read in all FP values. Again, _mem_read() may fail and require a # +# special exit. # +# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # +# to write all FP values. _mem_write() may also fail. # +# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # +# then we return the size of the dump and the string to the caller # +# so that the move can occur outside of this routine. This special # +# case is required so that moves to the system stack are handled # +# correctly. # +# # +# DYNAMIC: # +# fmovm.x dn, <ea> # +# fmovm.x <ea>, dn # +# # +# <WORD 1> <WORD2> # +# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # +# # +# & = (0): predecrement addressing mode # +# (1): postincrement or control addressing mode # +# @ = (0): move listed regs from memory to the FPU # +# (1): move listed regs from the FPU to memory # +# $$$ : index of data register holding reg select mask # +# # +# NOTES: # +# If the data register holds a zero, then the # +# instruction is a nop. # +# # +######################################################################### + + global fmovm_dynamic +fmovm_dynamic: + +# extract the data register in which the bit string resides... + mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword + andi.w &0x70,%d1 # extract reg bits + lsr.b &0x4,%d1 # shift into lo bits + +# fetch the bit string into d0... + bsr.l fetch_dreg # fetch reg string + + andi.l &0x000000ff,%d0 # keep only lo byte + + mov.l %d0,-(%sp) # save strg + mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 + mov.l %d0,-(%sp) # save size + bsr.l fmovm_calc_ea # calculate <ea> + mov.l (%sp)+,%d0 # restore size + mov.l (%sp)+,%d1 # restore strg + +# if the bit string is a zero, then the operation is a no-op +# but, make sure that we've calculated ea and advanced the opword pointer + beq.w fmovm_data_done + +# separate move ins from move outs... + btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? + beq.w fmovm_data_in # it's a move out + +############# +# MOVE OUT: # +############# +fmovm_data_out: + btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? + bne.w fmovm_out_ctrl # control + +############################ +fmovm_out_predec: +# for predecrement mode, the bit string is the opposite of both control +# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) +# here, we convert it to be just like the others... + mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 + + btst &0x5,EXC_SR(%a6) # user or supervisor mode? + beq.b fmovm_out_ctrl # user + +fmovm_out_predec_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? + bne.b fmovm_out_ctrl + +# the operation was unfortunately an: fmovm.x dn,-(sp) +# called from supervisor mode. +# we're also passing "size" and "strg" back to the calling routine + rts + +############################ +fmovm_out_ctrl: + mov.l %a0,%a1 # move <ea> to a1 + + sub.l %d0,%sp # subtract size of dump + lea (%sp),%a0 + + tst.b %d1 # should FP0 be moved? + bpl.b fmovm_out_ctrl_fp1 # no + + mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes + mov.l 0x4+EXC_FP0(%a6),(%a0)+ + mov.l 0x8+EXC_FP0(%a6),(%a0)+ + +fmovm_out_ctrl_fp1: + lsl.b &0x1,%d1 # should FP1 be moved? + bpl.b fmovm_out_ctrl_fp2 # no + + mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes + mov.l 0x4+EXC_FP1(%a6),(%a0)+ + mov.l 0x8+EXC_FP1(%a6),(%a0)+ + +fmovm_out_ctrl_fp2: + lsl.b &0x1,%d1 # should FP2 be moved? + bpl.b fmovm_out_ctrl_fp3 # no + + fmovm.x &0x20,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp3: + lsl.b &0x1,%d1 # should FP3 be moved? + bpl.b fmovm_out_ctrl_fp4 # no + + fmovm.x &0x10,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp4: + lsl.b &0x1,%d1 # should FP4 be moved? + bpl.b fmovm_out_ctrl_fp5 # no + + fmovm.x &0x08,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp5: + lsl.b &0x1,%d1 # should FP5 be moved? + bpl.b fmovm_out_ctrl_fp6 # no + + fmovm.x &0x04,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp6: + lsl.b &0x1,%d1 # should FP6 be moved? + bpl.b fmovm_out_ctrl_fp7 # no + + fmovm.x &0x02,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp7: + lsl.b &0x1,%d1 # should FP7 be moved? + bpl.b fmovm_out_ctrl_done # no + + fmovm.x &0x01,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_done: + mov.l %a1,L_SCR1(%a6) + + lea (%sp),%a0 # pass: supervisor src + mov.l %d0,-(%sp) # save size + bsr.l _dmem_write # copy data to user mem + + mov.l (%sp)+,%d0 + add.l %d0,%sp # clear fpreg data from stack + + tst.l %d1 # did dstore err? + bne.w fmovm_out_err # yes + + rts + +############ +# MOVE IN: # +############ +fmovm_data_in: + mov.l %a0,L_SCR1(%a6) + + sub.l %d0,%sp # make room for fpregs + lea (%sp),%a1 + + mov.l %d1,-(%sp) # save bit string for later + mov.l %d0,-(%sp) # save # of bytes + + bsr.l _dmem_read # copy data from user mem + + mov.l (%sp)+,%d0 # retrieve # of bytes + + tst.l %d1 # did dfetch fail? + bne.w fmovm_in_err # yes + + mov.l (%sp)+,%d1 # load bit string + + lea (%sp),%a0 # addr of stack + + tst.b %d1 # should FP0 be moved? + bpl.b fmovm_data_in_fp1 # no + + mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes + mov.l (%a0)+,0x4+EXC_FP0(%a6) + mov.l (%a0)+,0x8+EXC_FP0(%a6) + +fmovm_data_in_fp1: + lsl.b &0x1,%d1 # should FP1 be moved? + bpl.b fmovm_data_in_fp2 # no + + mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes + mov.l (%a0)+,0x4+EXC_FP1(%a6) + mov.l (%a0)+,0x8+EXC_FP1(%a6) + +fmovm_data_in_fp2: + lsl.b &0x1,%d1 # should FP2 be moved? + bpl.b fmovm_data_in_fp3 # no + + fmovm.x (%a0)+,&0x20 # yes + +fmovm_data_in_fp3: + lsl.b &0x1,%d1 # should FP3 be moved? + bpl.b fmovm_data_in_fp4 # no + + fmovm.x (%a0)+,&0x10 # yes + +fmovm_data_in_fp4: + lsl.b &0x1,%d1 # should FP4 be moved? + bpl.b fmovm_data_in_fp5 # no + + fmovm.x (%a0)+,&0x08 # yes + +fmovm_data_in_fp5: + lsl.b &0x1,%d1 # should FP5 be moved? + bpl.b fmovm_data_in_fp6 # no + + fmovm.x (%a0)+,&0x04 # yes + +fmovm_data_in_fp6: + lsl.b &0x1,%d1 # should FP6 be moved? + bpl.b fmovm_data_in_fp7 # no + + fmovm.x (%a0)+,&0x02 # yes + +fmovm_data_in_fp7: + lsl.b &0x1,%d1 # should FP7 be moved? + bpl.b fmovm_data_in_done # no + + fmovm.x (%a0)+,&0x01 # yes + +fmovm_data_in_done: + add.l %d0,%sp # remove fpregs from stack + rts + +##################################### + +fmovm_data_done: + rts + +############################################################################## + +# +# table indexed by the operation's bit string that gives the number +# of bytes that will be moved. +# +# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) +# +tbl_fmovm_size: + byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 + +# +# table to convert a pre-decrement bit string into a post-increment +# or control bit string. +# ex: 0x00 ==> 0x00 +# 0x01 ==> 0x80 +# 0x02 ==> 0x40 +# . +# . +# 0xfd ==> 0xbf +# 0xfe ==> 0x7f +# 0xff ==> 0xff +# +tbl_fmovm_convert: + byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 + byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 + byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 + byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 + byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 + byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 + byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec + byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc + byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 + byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 + byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea + byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa + byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 + byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 + byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee + byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe + byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 + byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 + byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 + byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 + byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 + byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 + byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed + byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd + byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 + byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 + byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb + byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb + byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 + byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 + byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef + byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff + + global fmovm_calc_ea +############################################### +# _fmovm_calc_ea: calculate effective address # +############################################### +fmovm_calc_ea: + mov.l %d0,%a0 # move # bytes to a0 + +# currently, MODE and REG are taken from the EXC_OPWORD. this could be +# easily changed if they were inputs passed in registers. + mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word + mov.w %d0,%d1 # make a copy + + andi.w &0x3f,%d0 # extract mode field + andi.l &0x7,%d1 # extract reg field + +# jump to the corresponding function for each {MODE,REG} pair. + mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance + jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode + + swbeg &64 +tbl_fea_mode: + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + + short faddr_ind_a0 - tbl_fea_mode + short faddr_ind_a1 - tbl_fea_mode + short faddr_ind_a2 - tbl_fea_mode + short faddr_ind_a3 - tbl_fea_mode + short faddr_ind_a4 - tbl_fea_mode + short faddr_ind_a5 - tbl_fea_mode + short faddr_ind_a6 - tbl_fea_mode + short faddr_ind_a7 - tbl_fea_mode + + short faddr_ind_p_a0 - tbl_fea_mode + short faddr_ind_p_a1 - tbl_fea_mode + short faddr_ind_p_a2 - tbl_fea_mode + short faddr_ind_p_a3 - tbl_fea_mode + short faddr_ind_p_a4 - tbl_fea_mode + short faddr_ind_p_a5 - tbl_fea_mode + short faddr_ind_p_a6 - tbl_fea_mode + short faddr_ind_p_a7 - tbl_fea_mode + + short faddr_ind_m_a0 - tbl_fea_mode + short faddr_ind_m_a1 - tbl_fea_mode + short faddr_ind_m_a2 - tbl_fea_mode + short faddr_ind_m_a3 - tbl_fea_mode + short faddr_ind_m_a4 - tbl_fea_mode + short faddr_ind_m_a5 - tbl_fea_mode + short faddr_ind_m_a6 - tbl_fea_mode + short faddr_ind_m_a7 - tbl_fea_mode + + short faddr_ind_disp_a0 - tbl_fea_mode + short faddr_ind_disp_a1 - tbl_fea_mode + short faddr_ind_disp_a2 - tbl_fea_mode + short faddr_ind_disp_a3 - tbl_fea_mode + short faddr_ind_disp_a4 - tbl_fea_mode + short faddr_ind_disp_a5 - tbl_fea_mode + short faddr_ind_disp_a6 - tbl_fea_mode + short faddr_ind_disp_a7 - tbl_fea_mode + + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + + short fabs_short - tbl_fea_mode + short fabs_long - tbl_fea_mode + short fpc_ind - tbl_fea_mode + short fpc_ind_ext - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + +################################### +# Address register indirect: (An) # +################################### +faddr_ind_a0: + mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 + rts + +faddr_ind_a1: + mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 + rts + +faddr_ind_a2: + mov.l %a2,%a0 # Get current a2 + rts + +faddr_ind_a3: + mov.l %a3,%a0 # Get current a3 + rts + +faddr_ind_a4: + mov.l %a4,%a0 # Get current a4 + rts + +faddr_ind_a5: + mov.l %a5,%a0 # Get current a5 + rts + +faddr_ind_a6: + mov.l (%a6),%a0 # Get current a6 + rts + +faddr_ind_a7: + mov.l EXC_A7(%a6),%a0 # Get current a7 + rts + +##################################################### +# Address register indirect w/ postincrement: (An)+ # +##################################################### +faddr_ind_p_a0: + mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a1: + mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a2: + mov.l %a2,%d0 # Get current a2 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a2 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a3: + mov.l %a3,%d0 # Get current a3 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a3 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a4: + mov.l %a4,%d0 # Get current a4 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a4 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a5: + mov.l %a5,%d0 # Get current a5 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a5 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a6: + mov.l (%a6),%d0 # Get current a6 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,(%a6) # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a7: + mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag + + mov.l EXC_A7(%a6),%d0 # Get current a7 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,EXC_A7(%a6) # Save incr value + mov.l %d0,%a0 + rts + +#################################################### +# Address register indirect w/ predecrement: -(An) # +#################################################### +faddr_ind_m_a0: + mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a1: + mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a2: + mov.l %a2,%d0 # Get current a2 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a2 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a3: + mov.l %a3,%d0 # Get current a3 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a3 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a4: + mov.l %a4,%d0 # Get current a4 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a4 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a5: + mov.l %a5,%d0 # Get current a5 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a5 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a6: + mov.l (%a6),%d0 # Get current a6 + sub.l %a0,%d0 # Decrement + mov.l %d0,(%a6) # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a7: + mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag + + mov.l EXC_A7(%a6),%d0 # Get current a7 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A7(%a6) # Save decr value + mov.l %d0,%a0 + rts + +######################################################## +# Address register indirect w/ displacement: (d16, An) # +######################################################## +faddr_ind_disp_a0: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 + rts + +faddr_ind_disp_a1: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 + rts + +faddr_ind_disp_a2: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a2,%a0 # a2 + d16 + rts + +faddr_ind_disp_a3: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a3,%a0 # a3 + d16 + rts + +faddr_ind_disp_a4: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a4,%a0 # a4 + d16 + rts + +faddr_ind_disp_a5: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a5,%a0 # a5 + d16 + rts + +faddr_ind_disp_a6: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l (%a6),%a0 # a6 + d16 + rts + +faddr_ind_disp_a7: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_A7(%a6),%a0 # a7 + d16 + rts + +######################################################################## +# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # +# " " " w/ " (base displacement): (bd, An, Xn) # +# Memory indirect postindexed: ([bd, An], Xn, od) # +# Memory indirect preindexed: ([bd, An, Xn], od) # +######################################################################## +faddr_ind_ext: + addq.l &0x8,%d1 + bsr.l fetch_dreg # fetch base areg + mov.l %d0,-(%sp) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch extword in d0 + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l (%sp)+,%a0 + + btst &0x8,%d0 + bne.w fcalc_mem_ind + + mov.l %d0,L_SCR1(%a6) # hold opword + + mov.l %d0,%d1 + rol.w &0x4,%d1 + andi.w &0xf,%d1 # extract index regno + +# count on fetch_dreg() not to alter a0... + bsr.l fetch_dreg # fetch index + + mov.l %d2,-(%sp) # save d2 + mov.l L_SCR1(%a6),%d2 # fetch opword + + btst &0xb,%d2 # is it word or long? + bne.b faii8_long + ext.l %d0 # sign extend word index +faii8_long: + mov.l %d2,%d1 + rol.w &0x7,%d1 + andi.l &0x3,%d1 # extract scale value + + lsl.l %d1,%d0 # shift index by scale + + extb.l %d2 # sign extend displacement + add.l %d2,%d0 # index + disp + add.l %d0,%a0 # An + (index + disp) + + mov.l (%sp)+,%d2 # restore old d2 + rts + +########################### +# Absolute short: (XXX).W # +########################### +fabs_short: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch short address + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # return <ea> in a0 + rts + +########################## +# Absolute long: (XXX).L # +########################## +fabs_long: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch long address + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,%a0 # return <ea> in a0 + rts + +####################################################### +# Program counter indirect w/ displacement: (d16, PC) # +####################################################### +fpc_ind: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch word displacement + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 + +# _imem_read_word() increased the extwptr by 2. need to adjust here. + subq.l &0x2,%a0 # adjust <ea> + rts + +########################################################## +# PC indirect w/ index(8-bit displacement): (d8, PC, An) # +# " " w/ " (base displacement): (bd, PC, An) # +# PC memory indirect postindexed: ([bd, PC], Xn, od) # +# PC memory indirect preindexed: ([bd, PC, Xn], od) # +########################################################## +fpc_ind_ext: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch ext word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 + subq.l &0x2,%a0 # adjust base + + btst &0x8,%d0 # is disp only 8 bits? + bne.w fcalc_mem_ind # calc memory indirect + + mov.l %d0,L_SCR1(%a6) # store opword + + mov.l %d0,%d1 # make extword copy + rol.w &0x4,%d1 # rotate reg num into place + andi.w &0xf,%d1 # extract register number + +# count on fetch_dreg() not to alter a0... + bsr.l fetch_dreg # fetch index + + mov.l %d2,-(%sp) # save d2 + mov.l L_SCR1(%a6),%d2 # fetch opword + + btst &0xb,%d2 # is index word or long? + bne.b fpii8_long # long + ext.l %d0 # sign extend word index +fpii8_long: + mov.l %d2,%d1 + rol.w &0x7,%d1 # rotate scale value into place + andi.l &0x3,%d1 # extract scale value + + lsl.l %d1,%d0 # shift index by scale + + extb.l %d2 # sign extend displacement + add.l %d2,%d0 # disp + index + add.l %d0,%a0 # An + (index + disp) + + mov.l (%sp)+,%d2 # restore temp register + rts + +# d2 = index +# d3 = base +# d4 = od +# d5 = extword +fcalc_mem_ind: + btst &0x6,%d0 # is the index suppressed? + beq.b fcalc_index + + movm.l &0x3c00,-(%sp) # save d2-d5 + + mov.l %d0,%d5 # put extword in d5 + mov.l %a0,%d3 # put base in d3 + + clr.l %d2 # yes, so index = 0 + bra.b fbase_supp_ck + +# index: +fcalc_index: + mov.l %d0,L_SCR1(%a6) # save d0 (opword) + bfextu %d0{&16:&4},%d1 # fetch dreg index + bsr.l fetch_dreg + + movm.l &0x3c00,-(%sp) # save d2-d5 + mov.l %d0,%d2 # put index in d2 + mov.l L_SCR1(%a6),%d5 + mov.l %a0,%d3 + + btst &0xb,%d5 # is index word or long? + bne.b fno_ext + ext.l %d2 + +fno_ext: + bfextu %d5{&21:&2},%d0 + lsl.l %d0,%d2 + +# base address (passed as parameter in d3): +# we clear the value here if it should actually be suppressed. +fbase_supp_ck: + btst &0x7,%d5 # is the bd suppressed? + beq.b fno_base_sup + clr.l %d3 + +# base displacement: +fno_base_sup: + bfextu %d5{&26:&2},%d0 # get bd size +# beq.l fmovm_error # if (size == 0) it's reserved + + cmpi.b %d0,&0x2 + blt.b fno_bd + beq.b fget_word_bd + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + bra.b fchk_ind + +fget_word_bd: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + ext.l %d0 # sign extend bd + +fchk_ind: + add.l %d0,%d3 # base += bd + +# outer displacement: +fno_bd: + bfextu %d5{&30:&2},%d0 # is od suppressed? + beq.w faii_bd + + cmpi.b %d0,&0x2 + blt.b fnull_od + beq.b fword_od + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + bra.b fadd_them + +fword_od: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + ext.l %d0 # sign extend od + bra.b fadd_them + +fnull_od: + clr.l %d0 + +fadd_them: + mov.l %d0,%d4 + + btst &0x2,%d5 # pre or post indexing? + beq.b fpre_indexed + + mov.l %d3,%a0 + bsr.l _dmem_read_long + + tst.l %d1 # did dfetch fail? + bne.w fcea_err # yes + + add.l %d2,%d0 # <ea> += index + add.l %d4,%d0 # <ea> += od + bra.b fdone_ea + +fpre_indexed: + add.l %d2,%d3 # preindexing + mov.l %d3,%a0 + bsr.l _dmem_read_long + + tst.l %d1 # did dfetch fail? + bne.w fcea_err # yes + + add.l %d4,%d0 # ea += od + bra.b fdone_ea + +faii_bd: + add.l %d2,%d3 # ea = (base + bd) + index + mov.l %d3,%d0 +fdone_ea: + mov.l %d0,%a0 + + movm.l (%sp)+,&0x003c # restore d2-d5 + rts + +######################################################### +fcea_err: + mov.l %d3,%a0 + + movm.l (%sp)+,&0x003c # restore d2-d5 + mov.w &0x0101,%d0 + bra.l iea_dacc + +fcea_iacc: + movm.l (%sp)+,&0x003c # restore d2-d5 + bra.l iea_iacc + +fmovm_out_err: + bsr.l restore + mov.w &0x00e1,%d0 + bra.b fmovm_err + +fmovm_in_err: + bsr.l restore + mov.w &0x0161,%d0 + +fmovm_err: + mov.l L_SCR1(%a6),%a0 + bra.l iea_dacc + +######################################################################### +# XDEF **************************************************************** # +# fmovm_ctrl(): emulate fmovm.l of control registers instr # +# # +# XREF **************************************************************** # +# _imem_read_long() - read longword from memory # +# iea_iacc() - _imem_read_long() failed; error recovery # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If _imem_read_long() doesn't fail: # +# USER_FPCR(a6) = new FPCR value # +# USER_FPSR(a6) = new FPSR value # +# USER_FPIAR(a6) = new FPIAR value # +# # +# ALGORITHM *********************************************************** # +# Decode the instruction type by looking at the extension word # +# in order to see how many control registers to fetch from memory. # +# Fetch them using _imem_read_long(). If this fetch fails, exit through # +# the special access error exit handler iea_iacc(). # +# # +# Instruction word decoding: # +# # +# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # +# # +# WORD1 WORD2 # +# 1111 0010 00 111100 100$ $$00 0000 0000 # +# # +# $$$ (100): FPCR # +# (010): FPSR # +# (001): FPIAR # +# (000): FPIAR # +# # +######################################################################### + + global fmovm_ctrl +fmovm_ctrl: + mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits + cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? + beq.w fctrl_in_7 # yes + cmpi.b %d0,&0x98 # fpcr & fpsr ? + beq.w fctrl_in_6 # yes + cmpi.b %d0,&0x94 # fpcr & fpiar ? + beq.b fctrl_in_5 # yes + +# fmovem.l #<data>, fpsr/fpiar +fctrl_in_3: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPSR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPIAR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack + rts + +# fmovem.l #<data>, fpcr/fpiar +fctrl_in_5: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPCR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPIAR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack + rts + +# fmovem.l #<data>, fpcr/fpsr +fctrl_in_6: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPCR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPSR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem + rts + +# fmovem.l #<data>, fpcr/fpsr/fpiar +fctrl_in_7: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPCR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPSR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPIAR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem + rts + +######################################################################### +# XDEF **************************************************************** # +# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # +# # +# XREF **************************************************************** # +# inc_areg() - increment an address register # +# dec_areg() - decrement an address register # +# # +# INPUT *************************************************************** # +# d0 = number of bytes to adjust <ea> by # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# "Dummy" CALCulate Effective Address: # +# The stacked <ea> for FP unimplemented instructions and opclass # +# two packed instructions is correct with the exception of... # +# # +# 1) -(An) : The register is not updated regardless of size. # +# Also, for extended precision and packed, the # +# stacked <ea> value is 8 bytes too big # +# 2) (An)+ : The register is not updated. # +# 3) #<data> : The upper longword of the immediate operand is # +# stacked b,w,l and s sizes are completely stacked. # +# d,x, and p are not. # +# # +######################################################################### + + global _dcalc_ea +_dcalc_ea: + mov.l %d0, %a0 # move # bytes to %a0 + + mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word + mov.l %d0, %d1 # make a copy + + andi.w &0x38, %d0 # extract mode field + andi.l &0x7, %d1 # extract reg field + + cmpi.b %d0,&0x18 # is mode (An)+ ? + beq.b dcea_pi # yes + + cmpi.b %d0,&0x20 # is mode -(An) ? + beq.b dcea_pd # yes + + or.w %d1,%d0 # concat mode,reg + cmpi.b %d0,&0x3c # is mode #<data>? + + beq.b dcea_imm # yes + + mov.l EXC_EA(%a6),%a0 # return <ea> + rts + +# need to set immediate data flag here since we'll need to do +# an imem_read to fetch this later. +dcea_imm: + mov.b &immed_flg,SPCOND_FLG(%a6) + lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> + rts + +# here, the <ea> is stacked correctly. however, we must update the +# address register... +dcea_pi: + mov.l %a0,%d0 # pass amt to inc by + bsr.l inc_areg # inc addr register + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + rts + +# the <ea> is stacked correctly for all but extended and packed which +# the <ea>s are 8 bytes too large. +# it would make no sense to have a pre-decrement to a7 in supervisor +# mode so we don't even worry about this tricky case here : ) +dcea_pd: + mov.l %a0,%d0 # pass amt to dec by + bsr.l dec_areg # dec addr register + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + + cmpi.b %d0,&0xc # is opsize ext or packed? + beq.b dcea_pd2 # yes + rts +dcea_pd2: + sub.l &0x8,%a0 # correct <ea> + mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack + rts + +######################################################################### +# XDEF **************************************************************** # +# _calc_ea_fout(): calculate correct stacked <ea> for extended # +# and packed data opclass 3 operations. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# a0 = return correct effective address # +# # +# ALGORITHM *********************************************************** # +# For opclass 3 extended and packed data operations, the <ea> # +# stacked for the exception is incorrect for -(an) and (an)+ addressing # +# modes. Also, while we're at it, the index register itself must get # +# updated. # +# So, for -(an), we must subtract 8 off of the stacked <ea> value # +# and return that value as the correct <ea> and store that value in An. # +# For (an)+, the stacked <ea> is correct but we must adjust An by +12. # +# # +######################################################################### + +# This calc_ea is currently used to retrieve the correct <ea> +# for fmove outs of type extended and packed. + global _calc_ea_fout +_calc_ea_fout: + mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word + mov.l %d0,%d1 # make a copy + + andi.w &0x38,%d0 # extract mode field + andi.l &0x7,%d1 # extract reg field + + cmpi.b %d0,&0x18 # is mode (An)+ ? + beq.b ceaf_pi # yes + + cmpi.b %d0,&0x20 # is mode -(An) ? + beq.w ceaf_pd # yes + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + rts + +# (An)+ : extended and packed fmove out +# : stacked <ea> is correct +# : "An" not updated +ceaf_pi: + mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 + mov.l EXC_EA(%a6),%a0 + jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) + + swbeg &0x8 +tbl_ceaf_pi: + short ceaf_pi0 - tbl_ceaf_pi + short ceaf_pi1 - tbl_ceaf_pi + short ceaf_pi2 - tbl_ceaf_pi + short ceaf_pi3 - tbl_ceaf_pi + short ceaf_pi4 - tbl_ceaf_pi + short ceaf_pi5 - tbl_ceaf_pi + short ceaf_pi6 - tbl_ceaf_pi + short ceaf_pi7 - tbl_ceaf_pi + +ceaf_pi0: + addi.l &0xc,EXC_DREGS+0x8(%a6) + rts +ceaf_pi1: + addi.l &0xc,EXC_DREGS+0xc(%a6) + rts +ceaf_pi2: + add.l &0xc,%a2 + rts +ceaf_pi3: + add.l &0xc,%a3 + rts +ceaf_pi4: + add.l &0xc,%a4 + rts +ceaf_pi5: + add.l &0xc,%a5 + rts +ceaf_pi6: + addi.l &0xc,EXC_A6(%a6) + rts +ceaf_pi7: + mov.b &mia7_flg,SPCOND_FLG(%a6) + addi.l &0xc,EXC_A7(%a6) + rts + +# -(An) : extended and packed fmove out +# : stacked <ea> = actual <ea> + 8 +# : "An" not updated +ceaf_pd: + mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 + mov.l EXC_EA(%a6),%a0 + sub.l &0x8,%a0 + sub.l &0x8,EXC_EA(%a6) + jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) + + swbeg &0x8 +tbl_ceaf_pd: + short ceaf_pd0 - tbl_ceaf_pd + short ceaf_pd1 - tbl_ceaf_pd + short ceaf_pd2 - tbl_ceaf_pd + short ceaf_pd3 - tbl_ceaf_pd + short ceaf_pd4 - tbl_ceaf_pd + short ceaf_pd5 - tbl_ceaf_pd + short ceaf_pd6 - tbl_ceaf_pd + short ceaf_pd7 - tbl_ceaf_pd + +ceaf_pd0: + mov.l %a0,EXC_DREGS+0x8(%a6) + rts +ceaf_pd1: + mov.l %a0,EXC_DREGS+0xc(%a6) + rts +ceaf_pd2: + mov.l %a0,%a2 + rts +ceaf_pd3: + mov.l %a0,%a3 + rts +ceaf_pd4: + mov.l %a0,%a4 + rts +ceaf_pd5: + mov.l %a0,%a5 + rts +ceaf_pd6: + mov.l %a0,EXC_A6(%a6) + rts +ceaf_pd7: + mov.l %a0,EXC_A7(%a6) + mov.b &mda7_flg,SPCOND_FLG(%a6) + rts + +######################################################################### +# XDEF **************************************************************** # +# _load_fop(): load operand for unimplemented FP exception # +# # +# XREF **************************************************************** # +# set_tag_x() - determine ext prec optype tag # +# set_tag_s() - determine sgl prec optype tag # +# set_tag_d() - determine dbl prec optype tag # +# unnorm_fix() - convert normalized number to denorm or zero # +# norm() - normalize a denormalized number # +# get_packed() - fetch a packed operand from memory # +# _dcalc_ea() - calculate <ea>, fixing An in process # +# # +# _imem_read_{word,long}() - read from instruction memory # +# _dmem_read() - read from data memory # +# _dmem_read_{byte,word,long}() - read from data memory # +# # +# facc_in_{b,w,l,d,x}() - mem read failed; special exit point # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If memory access doesn't fail: # +# FP_SRC(a6) = source operand in extended precision # +# FP_DST(a6) = destination operand in extended precision # +# # +# ALGORITHM *********************************************************** # +# This is called from the Unimplemented FP exception handler in # +# order to load the source and maybe destination operand into # +# FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load # +# the source and destination from the FP register file. Set the optype # +# tags for both if dyadic, one for monadic. If a number is an UNNORM, # +# convert it to a DENORM or a ZERO. # +# If the instruction is opclass two (memory->reg), then fetch # +# the destination from the register file and the source operand from # +# memory. Tag and fix both as above w/ opclass zero instructions. # +# If the source operand is byte,word,long, or single, it may be # +# in the data register file. If it's actually out in memory, use one of # +# the mem_read() routines to fetch it. If the mem_read() access returns # +# a failing value, exit through the special facc_in() routine which # +# will create an access error exception frame from the current exception # +# frame. # +# Immediate data and regular data accesses are separated because # +# if an immediate data access fails, the resulting fault status # +# longword stacked for the access error exception must have the # +# instruction bit set. # +# # +######################################################################### + + global _load_fop +_load_fop: + +# 15 13 12 10 9 7 6 0 +# / \ / \ / \ / \ +# --------------------------------- +# | opclass | RX | RY | EXTENSION | (2nd word of general FP instruction) +# --------------------------------- +# + +# bfextu EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass +# cmpi.b %d0, &0x2 # which class is it? ('000,'010,'011) +# beq.w op010 # handle <ea> -> fpn +# bgt.w op011 # handle fpn -> <ea> + +# we're not using op011 for now... + btst &0x6,EXC_CMDREG(%a6) + bne.b op010 + +############################ +# OPCLASS '000: reg -> reg # +############################ +op000: + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension word lo + btst &0x5,%d0 # testing extension bits + beq.b op000_src # (bit 5 == 0) => monadic + btst &0x4,%d0 # (bit 5 == 1) + beq.b op000_dst # (bit 4 == 0) => dyadic + and.w &0x007f,%d0 # extract extension bits {6:0} + cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ? + bne.b op000_src # it's an fcmp + +op000_dst: + bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field + bsr.l load_fpn2 # fetch dst fpreg into FP_DST + + bsr.l set_tag_x # get dst optype tag + + cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM? + beq.b op000_dst_unnorm # yes +op000_dst_cont: + mov.b %d0, DTAG(%a6) # store the dst optype tag + +op000_src: + bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field + bsr.l load_fpn1 # fetch src fpreg into FP_SRC + + bsr.l set_tag_x # get src optype tag + + cmpi.b %d0, &UNNORM # is src fpreg an UNNORM? + beq.b op000_src_unnorm # yes +op000_src_cont: + mov.b %d0, STAG(%a6) # store the src optype tag + rts + +op000_dst_unnorm: + bsr.l unnorm_fix # fix the dst UNNORM + bra.b op000_dst_cont +op000_src_unnorm: + bsr.l unnorm_fix # fix the src UNNORM + bra.b op000_src_cont + +############################# +# OPCLASS '010: <ea> -> reg # +############################# +op010: + mov.w EXC_CMDREG(%a6),%d0 # fetch extension word + btst &0x5,%d0 # testing extension bits + beq.b op010_src # (bit 5 == 0) => monadic + btst &0x4,%d0 # (bit 5 == 1) + beq.b op010_dst # (bit 4 == 0) => dyadic + and.w &0x007f,%d0 # extract extension bits {6:0} + cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ? + bne.b op010_src # it's an fcmp + +op010_dst: + bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field + bsr.l load_fpn2 # fetch dst fpreg ptr + + bsr.l set_tag_x # get dst type tag + + cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM? + beq.b op010_dst_unnorm # yes +op010_dst_cont: + mov.b %d0, DTAG(%a6) # store the dst optype tag + +op010_src: + bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field + + bfextu EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field + bne.w fetch_from_mem # src op is in memory + +op010_dreg: + clr.b STAG(%a6) # either NORM or ZERO + bfextu EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field + + mov.w (tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype + jmp (tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg + +op010_dst_unnorm: + bsr.l unnorm_fix # fix the dst UNNORM + bra.b op010_dst_cont + + swbeg &0x8 +tbl_op010_dreg: + short opd_long - tbl_op010_dreg + short opd_sgl - tbl_op010_dreg + short tbl_op010_dreg - tbl_op010_dreg + short tbl_op010_dreg - tbl_op010_dreg + short opd_word - tbl_op010_dreg + short tbl_op010_dreg - tbl_op010_dreg + short opd_byte - tbl_op010_dreg + short tbl_op010_dreg - tbl_op010_dreg + +# +# LONG: can be either NORM or ZERO... +# +opd_long: + bsr.l fetch_dreg # fetch long in d0 + fmov.l %d0, %fp0 # load a long + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + fbeq.w opd_long_zero # long is a ZERO + rts +opd_long_zero: + mov.b &ZERO, STAG(%a6) # set ZERO optype flag + rts + +# +# WORD: can be either NORM or ZERO... +# +opd_word: + bsr.l fetch_dreg # fetch word in d0 + fmov.w %d0, %fp0 # load a word + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + fbeq.w opd_word_zero # WORD is a ZERO + rts +opd_word_zero: + mov.b &ZERO, STAG(%a6) # set ZERO optype flag + rts + +# +# BYTE: can be either NORM or ZERO... +# +opd_byte: + bsr.l fetch_dreg # fetch word in d0 + fmov.b %d0, %fp0 # load a byte + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + fbeq.w opd_byte_zero # byte is a ZERO + rts +opd_byte_zero: + mov.b &ZERO, STAG(%a6) # set ZERO optype flag + rts + +# +# SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM +# +# separate SNANs and DENORMs so they can be loaded w/ special care. +# all others can simply be moved "in" using fmove. +# +opd_sgl: + bsr.l fetch_dreg # fetch sgl in d0 + mov.l %d0,L_SCR1(%a6) + + lea L_SCR1(%a6), %a0 # pass: ptr to the sgl + bsr.l set_tag_s # determine sgl type + mov.b %d0, STAG(%a6) # save the src tag + + cmpi.b %d0, &SNAN # is it an SNAN? + beq.w get_sgl_snan # yes + + cmpi.b %d0, &DENORM # is it a DENORM? + beq.w get_sgl_denorm # yes + + fmov.s (%a0), %fp0 # no, so can load it regular + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + rts + +############################################################################## + +######################################################################### +# fetch_from_mem(): # +# - src is out in memory. must: # +# (1) calc ea - must read AFTER you know the src type since # +# if the ea is -() or ()+, need to know # of bytes. # +# (2) read it in from either user or supervisor space # +# (3) if (b || w || l) then simply read in # +# if (s || d || x) then check for SNAN,UNNORM,DENORM # +# if (packed) then punt for now # +# INPUT: # +# %d0 : src type field # +######################################################################### +fetch_from_mem: + clr.b STAG(%a6) # either NORM or ZERO + + mov.w (tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field + jmp (tbl_fp_type.b,%pc,%d0.w*1) + + swbeg &0x8 +tbl_fp_type: + short load_long - tbl_fp_type + short load_sgl - tbl_fp_type + short load_ext - tbl_fp_type + short load_packed - tbl_fp_type + short load_word - tbl_fp_type + short load_dbl - tbl_fp_type + short load_byte - tbl_fp_type + short tbl_fp_type - tbl_fp_type + +######################################### +# load a LONG into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 4 bytes into L_SCR1 # +# (3) fmov.l into %fp0 # +######################################### +load_long: + movq.l &0x4, %d0 # pass: 4 (bytes) + bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 + + cmpi.b SPCOND_FLG(%a6),&immed_flg + beq.b load_long_immed + + bsr.l _dmem_read_long # fetch src operand from memory + + tst.l %d1 # did dfetch fail? + bne.l facc_in_l # yes + +load_long_cont: + fmov.l %d0, %fp0 # read into %fp0;convert to xprec + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + + fbeq.w load_long_zero # src op is a ZERO + rts +load_long_zero: + mov.b &ZERO, STAG(%a6) # set optype tag to ZERO + rts + +load_long_immed: + bsr.l _imem_read_long # fetch src operand immed data + + tst.l %d1 # did ifetch fail? + bne.l funimp_iacc # yes + bra.b load_long_cont + +######################################### +# load a WORD into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 2 bytes into L_SCR1 # +# (3) fmov.w into %fp0 # +######################################### +load_word: + movq.l &0x2, %d0 # pass: 2 (bytes) + bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 + + cmpi.b SPCOND_FLG(%a6),&immed_flg + beq.b load_word_immed + + bsr.l _dmem_read_word # fetch src operand from memory + + tst.l %d1 # did dfetch fail? + bne.l facc_in_w # yes + +load_word_cont: + fmov.w %d0, %fp0 # read into %fp0;convert to xprec + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + + fbeq.w load_word_zero # src op is a ZERO + rts +load_word_zero: + mov.b &ZERO, STAG(%a6) # set optype tag to ZERO + rts + +load_word_immed: + bsr.l _imem_read_word # fetch src operand immed data + + tst.l %d1 # did ifetch fail? + bne.l funimp_iacc # yes + bra.b load_word_cont + +######################################### +# load a BYTE into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 1 byte into L_SCR1 # +# (3) fmov.b into %fp0 # +######################################### +load_byte: + movq.l &0x1, %d0 # pass: 1 (byte) + bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 + + cmpi.b SPCOND_FLG(%a6),&immed_flg + beq.b load_byte_immed + + bsr.l _dmem_read_byte # fetch src operand from memory + + tst.l %d1 # did dfetch fail? + bne.l facc_in_b # yes + +load_byte_cont: + fmov.b %d0, %fp0 # read into %fp0;convert to xprec + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + + fbeq.w load_byte_zero # src op is a ZERO + rts +load_byte_zero: + mov.b &ZERO, STAG(%a6) # set optype tag to ZERO + rts + +load_byte_immed: + bsr.l _imem_read_word # fetch src operand immed data + + tst.l %d1 # did ifetch fail? + bne.l funimp_iacc # yes + bra.b load_byte_cont + +######################################### +# load a SGL into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 4 bytes into L_SCR1 # +# (3) fmov.s into %fp0 # +######################################### +load_sgl: + movq.l &0x4, %d0 # pass: 4 (bytes) + bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 + + cmpi.b SPCOND_FLG(%a6),&immed_flg + beq.b load_sgl_immed + + bsr.l _dmem_read_long # fetch src operand from memory + mov.l %d0, L_SCR1(%a6) # store src op on stack + + tst.l %d1 # did dfetch fail? + bne.l facc_in_l # yes + +load_sgl_cont: + lea L_SCR1(%a6), %a0 # pass: ptr to sgl src op + bsr.l set_tag_s # determine src type tag + mov.b %d0, STAG(%a6) # save src optype tag on stack + + cmpi.b %d0, &DENORM # is it a sgl DENORM? + beq.w get_sgl_denorm # yes + + cmpi.b %d0, &SNAN # is it a sgl SNAN? + beq.w get_sgl_snan # yes + + fmov.s L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + rts + +load_sgl_immed: + bsr.l _imem_read_long # fetch src operand immed data + + tst.l %d1 # did ifetch fail? + bne.l funimp_iacc # yes + bra.b load_sgl_cont + +# must convert sgl denorm format to an Xprec denorm fmt suitable for +# normalization... +# %a0 : points to sgl denorm +get_sgl_denorm: + clr.w FP_SRC_EX(%a6) + bfextu (%a0){&9:&23}, %d0 # fetch sgl hi(_mantissa) + lsl.l &0x8, %d0 + mov.l %d0, FP_SRC_HI(%a6) # set ext hi(_mantissa) + clr.l FP_SRC_LO(%a6) # set ext lo(_mantissa) + + clr.w FP_SRC_EX(%a6) + btst &0x7, (%a0) # is sgn bit set? + beq.b sgl_dnrm_norm + bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value + +sgl_dnrm_norm: + lea FP_SRC(%a6), %a0 + bsr.l norm # normalize number + mov.w &0x3f81, %d1 # xprec exp = 0x3f81 + sub.w %d0, %d1 # exp = 0x3f81 - shft amt. + or.w %d1, FP_SRC_EX(%a6) # {sgn,exp} + + mov.b &NORM, STAG(%a6) # fix src type tag + rts + +# convert sgl to ext SNAN +# %a0 : points to sgl SNAN +get_sgl_snan: + mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN + bfextu (%a0){&9:&23}, %d0 + lsl.l &0x8, %d0 # extract and insert hi(man) + mov.l %d0, FP_SRC_HI(%a6) + clr.l FP_SRC_LO(%a6) + + btst &0x7, (%a0) # see if sign of SNAN is set + beq.b no_sgl_snan_sgn + bset &0x7, FP_SRC_EX(%a6) +no_sgl_snan_sgn: + rts + +######################################### +# load a DBL into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 8 bytes into L_SCR(1,2)# +# (3) fmov.d into %fp0 # +######################################### +load_dbl: + movq.l &0x8, %d0 # pass: 8 (bytes) + bsr.l _dcalc_ea # calc <ea>; <ea> in %a0 + + cmpi.b SPCOND_FLG(%a6),&immed_flg + beq.b load_dbl_immed + + lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space + movq.l &0x8, %d0 # pass: # bytes to read + bsr.l _dmem_read # fetch src operand from memory + + tst.l %d1 # did dfetch fail? + bne.l facc_in_d # yes + +load_dbl_cont: + lea L_SCR1(%a6), %a0 # pass: ptr to input dbl + bsr.l set_tag_d # determine src type tag + mov.b %d0, STAG(%a6) # set src optype tag + + cmpi.b %d0, &DENORM # is it a dbl DENORM? + beq.w get_dbl_denorm # yes + + cmpi.b %d0, &SNAN # is it a dbl SNAN? + beq.w get_dbl_snan # yes + + fmov.d L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec + fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC + rts + +load_dbl_immed: + lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space + movq.l &0x8, %d0 # pass: # bytes to read + bsr.l _imem_read # fetch src operand from memory + + tst.l %d1 # did ifetch fail? + bne.l funimp_iacc # yes + bra.b load_dbl_cont + +# must convert dbl denorm format to an Xprec denorm fmt suitable for +# normalization... +# %a0 : loc. of dbl denorm +get_dbl_denorm: + clr.w FP_SRC_EX(%a6) + bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa) + mov.l %d0, FP_SRC_HI(%a6) + bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa) + mov.l &0xb, %d1 + lsl.l %d1, %d0 + mov.l %d0, FP_SRC_LO(%a6) + + btst &0x7, (%a0) # is sgn bit set? + beq.b dbl_dnrm_norm + bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value + +dbl_dnrm_norm: + lea FP_SRC(%a6), %a0 + bsr.l norm # normalize number + mov.w &0x3c01, %d1 # xprec exp = 0x3c01 + sub.w %d0, %d1 # exp = 0x3c01 - shft amt. + or.w %d1, FP_SRC_EX(%a6) # {sgn,exp} + + mov.b &NORM, STAG(%a6) # fix src type tag + rts + +# convert dbl to ext SNAN +# %a0 : points to dbl SNAN +get_dbl_snan: + mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN + + bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa) + mov.l %d0, FP_SRC_HI(%a6) + bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa) + mov.l &0xb, %d1 + lsl.l %d1, %d0 + mov.l %d0, FP_SRC_LO(%a6) + + btst &0x7, (%a0) # see if sign of SNAN is set + beq.b no_dbl_snan_sgn + bset &0x7, FP_SRC_EX(%a6) +no_dbl_snan_sgn: + rts + +################################################# +# load a Xprec into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 12 bytes into L_SCR(1,2) # +# (3) fmov.x into %fp0 # +################################################# +load_ext: + mov.l &0xc, %d0 # pass: 12 (bytes) + bsr.l _dcalc_ea # calc <ea> + + lea FP_SRC(%a6), %a1 # pass: ptr to input ext tmp space + mov.l &0xc, %d0 # pass: # of bytes to read + bsr.l _dmem_read # fetch src operand from memory + + tst.l %d1 # did dfetch fail? + bne.l facc_in_x # yes + + lea FP_SRC(%a6), %a0 # pass: ptr to src op + bsr.l set_tag_x # determine src type tag + + cmpi.b %d0, &UNNORM # is the src op an UNNORM? + beq.b load_ext_unnorm # yes + + mov.b %d0, STAG(%a6) # store the src optype tag + rts + +load_ext_unnorm: + bsr.l unnorm_fix # fix the src UNNORM + mov.b %d0, STAG(%a6) # store the src optype tag + rts + +################################################# +# load a packed into %fp0: # +# -number can't fault # +# (1) calc ea # +# (2) read 12 bytes into L_SCR(1,2,3) # +# (3) fmov.x into %fp0 # +################################################# +load_packed: + bsr.l get_packed + + lea FP_SRC(%a6),%a0 # pass ptr to src op + bsr.l set_tag_x # determine src type tag + cmpi.b %d0,&UNNORM # is the src op an UNNORM ZERO? + beq.b load_packed_unnorm # yes + + mov.b %d0,STAG(%a6) # store the src optype tag + rts + +load_packed_unnorm: + bsr.l unnorm_fix # fix the UNNORM ZERO + mov.b %d0,STAG(%a6) # store the src optype tag + rts + +######################################################################### +# XDEF **************************************************************** # +# fout(): move from fp register to memory or data register # +# # +# XREF **************************************************************** # +# _round() - needed to create EXOP for sgl/dbl precision # +# norm() - needed to create EXOP for extended precision # +# ovf_res() - create default overflow result for sgl/dbl precision# +# unf_res() - create default underflow result for sgl/dbl prec. # +# dst_dbl() - create rounded dbl precision result. # +# dst_sgl() - create rounded sgl precision result. # +# fetch_dreg() - fetch dynamic k-factor reg for packed. # +# bindec() - convert FP binary number to packed number. # +# _mem_write() - write data to memory. # +# _mem_write2() - write data to memory unless supv mode -(a7) exc.# +# _dmem_write_{byte,word,long}() - write data to memory. # +# store_dreg_{b,w,l}() - store data to data register file. # +# facc_out_{b,w,l,d,x}() - data access error occurred. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 : intermediate underflow or overflow result if # +# OVFL/UNFL occurred for a sgl or dbl operand # +# # +# ALGORITHM *********************************************************** # +# This routine is accessed by many handlers that need to do an # +# opclass three move of an operand out to memory. # +# Decode an fmove out (opclass 3) instruction to determine if # +# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # +# register or memory. The algorithm uses a standard "fmove" to create # +# the rounded result. Also, since exceptions are disabled, this also # +# create the correct OPERR default result if appropriate. # +# For sgl or dbl precision, overflow or underflow can occur. If # +# either occurs and is enabled, the EXOP. # +# For extended precision, the stacked <ea> must be fixed along # +# w/ the address index register as appropriate w/ _calc_ea_fout(). If # +# the source is a denorm and if underflow is enabled, an EXOP must be # +# created. # +# For packed, the k-factor must be fetched from the instruction # +# word or a data register. The <ea> must be fixed as w/ extended # +# precision. Then, bindec() is called to create the appropriate # +# packed result. # +# If at any time an access error is flagged by one of the move- # +# to-memory routines, then a special exit must be made so that the # +# access error can be handled properly. # +# # +######################################################################### + + global fout +fout: + bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt + mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index + jmp (tbl_fout.b,%pc,%a1) # jump to routine + + swbeg &0x8 +tbl_fout: + short fout_long - tbl_fout + short fout_sgl - tbl_fout + short fout_ext - tbl_fout + short fout_pack - tbl_fout + short fout_word - tbl_fout + short fout_dbl - tbl_fout + short fout_byte - tbl_fout + short fout_pack - tbl_fout + +################################################################# +# fmove.b out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +fout_byte: + tst.b STAG(%a6) # is operand normalized? + bne.b fout_byte_denorm # no + + fmovm.x SRC(%a0),&0x80 # load value + +fout_byte_norm: + fmov.l %d0,%fpcr # insert rnd prec,mode + + fmov.b %fp0,%d0 # exec move out w/ correct rnd mode + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch FPSR + or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_byte_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_byte # write byte + + tst.l %d1 # did dstore fail? + bne.l facc_out_b # yes + + rts + +fout_byte_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_b + rts + +fout_byte_denorm: + mov.l SRC_EX(%a0),%d1 + andi.l &0x80000000,%d1 # keep DENORM sign + ori.l &0x00800000,%d1 # make smallest sgl + fmov.s %d1,%fp0 + bra.b fout_byte_norm + +################################################################# +# fmove.w out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +fout_word: + tst.b STAG(%a6) # is operand normalized? + bne.b fout_word_denorm # no + + fmovm.x SRC(%a0),&0x80 # load value + +fout_word_norm: + fmov.l %d0,%fpcr # insert rnd prec:mode + + fmov.w %fp0,%d0 # exec move out w/ correct rnd mode + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch FPSR + or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_word_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_word # write word + + tst.l %d1 # did dstore fail? + bne.l facc_out_w # yes + + rts + +fout_word_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_w + rts + +fout_word_denorm: + mov.l SRC_EX(%a0),%d1 + andi.l &0x80000000,%d1 # keep DENORM sign + ori.l &0x00800000,%d1 # make smallest sgl + fmov.s %d1,%fp0 + bra.b fout_word_norm + +################################################################# +# fmove.l out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +fout_long: + tst.b STAG(%a6) # is operand normalized? + bne.b fout_long_denorm # no + + fmovm.x SRC(%a0),&0x80 # load value + +fout_long_norm: + fmov.l %d0,%fpcr # insert rnd prec:mode + + fmov.l %fp0,%d0 # exec move out w/ correct rnd mode + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch FPSR + or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits + +fout_long_write: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_long_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + rts + +fout_long_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + rts + +fout_long_denorm: + mov.l SRC_EX(%a0),%d1 + andi.l &0x80000000,%d1 # keep DENORM sign + ori.l &0x00800000,%d1 # make smallest sgl + fmov.s %d1,%fp0 + bra.b fout_long_norm + +################################################################# +# fmove.x out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +# The DENORM causes an Underflow exception. +fout_ext: + +# we copy the extended precision result to FP_SCR0 so that the reserved +# 16-bit field gets zeroed. we do this since we promise not to disturb +# what's at SRC(a0). + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + clr.w 2+FP_SCR0_EX(%a6) # clear reserved field + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + fmovm.x SRC(%a0),&0x80 # return result + + bsr.l _calc_ea_fout # fix stacked <ea> + + mov.l %a0,%a1 # pass: dst addr + lea FP_SCR0(%a6),%a0 # pass: src addr + mov.l &0xc,%d0 # pass: opsize is 12 bytes + +# we must not yet write the extended precision data to the stack +# in the pre-decrement case from supervisor mode or else we'll corrupt +# the stack frame. so, leave it in FP_SRC for now and deal with it later... + cmpi.b SPCOND_FLG(%a6),&mda7_flg + beq.b fout_ext_a7 + + bsr.l _dmem_write # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + tst.b STAG(%a6) # is operand normalized? + bne.b fout_ext_denorm # no + rts + +# the number is a DENORM. must set the underflow exception bit +fout_ext_denorm: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit + + mov.b FPCR_ENABLE(%a6),%d0 + andi.b &0x0a,%d0 # is UNFL or INEX enabled? + bne.b fout_ext_exc # yes + rts + +# we don't want to do the write if the exception occurred in supervisor mode +# so _mem_write2() handles this for us. +fout_ext_a7: + bsr.l _mem_write2 # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + tst.b STAG(%a6) # is operand normalized? + bne.b fout_ext_denorm # no + rts + +fout_ext_exc: + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the mantissa + neg.w %d0 # new exp = -(shft amt) + andi.w &0x7fff,%d0 + andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign + or.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +fout_ext_err: + mov.l EXC_A6(%a6),(%a6) # fix stacked a6 + bra.l facc_out_x + +######################################################################### +# fmove.s out ########################################################### +######################################################################### +fout_sgl: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack + +# +# operand is a normalized number. first, we check to see if the move out +# would cause either an underflow or overflow. these cases are handled +# separately. otherwise, set the FPCR to the proper rounding mode and +# execute the move. +# + mov.w SRC_EX(%a0),%d0 # extract exponent + andi.w &0x7fff,%d0 # strip sign + + cmpi.w %d0,&SGL_HI # will operand overflow? + bgt.w fout_sgl_ovfl # yes; go handle OVFL + beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL + cmpi.w %d0,&SGL_LO # will operand underflow? + blt.w fout_sgl_unfl # yes; go handle underflow + +# +# NORMs(in range) can be stored out by a simple "fmov.s" +# Unnormalized inputs can come through this point. +# +fout_sgl_exg: + fmovm.x SRC(%a0),&0x80 # fetch fop from stack + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmov.s %fp0,%d0 # store does convert and round + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex + +fout_sgl_exg_write: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_sgl_exg_write_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + rts + +fout_sgl_exg_write_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + rts + +# +# here, we know that the operand would UNFL if moved out to single prec, +# so, denorm and round and then use generic store single routine to +# write the value to memory. +# +fout_sgl_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.l %a0,-(%sp) + + clr.l %d0 # pass: S.F. = 0 + + cmpi.b STAG(%a6),&DENORM # fetch src optype tag + bne.b fout_sgl_unfl_cont # let DENORMs fall through + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the DENORM + +fout_sgl_unfl_cont: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calc default underflow result + + lea FP_SCR0(%a6),%a0 # pass: ptr to fop + bsr.l dst_sgl # convert to single prec + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_sgl_unfl_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.b fout_sgl_unfl_chkexc + +fout_sgl_unfl_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + +fout_sgl_unfl_chkexc: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_unfl # yes + addq.l &0x4,%sp + rts + +# +# it's definitely an overflow so call ovf_res to get the correct answer +# +fout_sgl_ovfl: + tst.b 3+SRC_HI(%a0) # is result inexact? + bne.b fout_sgl_ovfl_inex2 + tst.l SRC_LO(%a0) # is result inexact? + bne.b fout_sgl_ovfl_inex2 + ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex + bra.b fout_sgl_ovfl_cont +fout_sgl_ovfl_inex2: + ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 + +fout_sgl_ovfl_cont: + mov.l %a0,-(%sp) + +# call ovf_res() w/ sgl prec and the correct rnd mode to create the default +# overflow result. DON'T save the returned ccodes from ovf_res() since +# fmove out doesn't alter them. + tst.b SRC_EX(%a0) # is operand negative? + smi %d1 # set if so + mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode + bsr.l ovf_res # calc OVFL result + fmovm.x (%a0),&0x80 # load default overflow result + fmov.s %fp0,%d0 # store to single + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_sgl_ovfl_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.b fout_sgl_ovfl_chkexc + +fout_sgl_ovfl_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + +fout_sgl_ovfl_chkexc: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_ovfl # yes + addq.l &0x4,%sp + rts + +# +# move out MAY overflow: +# (1) force the exp to 0x3fff +# (2) do a move w/ appropriate rnd mode +# (3) if exp still equals zero, then insert original exponent +# for the correct result. +# if exp now equals one, then it overflowed so call ovf_res. +# +fout_sgl_may_ovfl: + mov.w SRC_EX(%a0),%d1 # fetch current sign + andi.w &0x8000,%d1 # keep it,clear exp + ori.w &0x3fff,%d1 # insert exp = 0 + mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # need absolute value + fcmp.b %fp0,&0x2 # did exponent increase? + fblt.w fout_sgl_exg # no; go finish NORM + bra.w fout_sgl_ovfl # yes; go handle overflow + +################ + +fout_sd_exc_unfl: + mov.l (%sp)+,%a0 + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + cmpi.b STAG(%a6),&DENORM # was src a DENORM? + bne.b fout_sd_exc_cont # no + + lea FP_SCR0(%a6),%a0 + bsr.l norm + neg.l %d0 + andi.w &0x7fff,%d0 + bfins %d0,FP_SCR0_EX(%a6){&1:&15} + bra.b fout_sd_exc_cont + +fout_sd_exc: +fout_sd_exc_ovfl: + mov.l (%sp)+,%a0 # restore a0 + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + +fout_sd_exc_cont: + bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit + sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit + lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM + + mov.b 3+L_SCR3(%a6),%d1 + lsr.b &0x4,%d1 + andi.w &0x0c,%d1 + swap %d1 + mov.b 3+L_SCR3(%a6),%d1 + lsr.b &0x4,%d1 + andi.w &0x03,%d1 + clr.l %d0 # pass: zero g,r,s + bsr.l _round # round the DENORM + + tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? + beq.b fout_sd_exc_done # no + bset &0x7,FP_SCR0_EX(%a6) # yes + +fout_sd_exc_done: + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +################################################################# +# fmove.d out ################################################### +################################################################# +fout_dbl: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack + +# +# operand is a normalized number. first, we check to see if the move out +# would cause either an underflow or overflow. these cases are handled +# separately. otherwise, set the FPCR to the proper rounding mode and +# execute the move. +# + mov.w SRC_EX(%a0),%d0 # extract exponent + andi.w &0x7fff,%d0 # strip sign + + cmpi.w %d0,&DBL_HI # will operand overflow? + bgt.w fout_dbl_ovfl # yes; go handle OVFL + beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL + cmpi.w %d0,&DBL_LO # will operand underflow? + blt.w fout_dbl_unfl # yes; go handle underflow + +# +# NORMs(in range) can be stored out by a simple "fmov.d" +# Unnormalized inputs can come through this point. +# +fout_dbl_exg: + fmovm.x SRC(%a0),&0x80 # fetch fop from stack + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmov.d %fp0,L_SCR1(%a6) # store does convert and round + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d0 # save FPSR + + or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex + + mov.l EXC_EA(%a6),%a1 # pass: dst addr + lea L_SCR1(%a6),%a0 # pass: src addr + movq.l &0x8,%d0 # pass: opsize is 8 bytes + bsr.l _dmem_write # store dbl fop to memory + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + rts # no; so we're finished + +# +# here, we know that the operand would UNFL if moved out to double prec, +# so, denorm and round and then use generic store double routine to +# write the value to memory. +# +fout_dbl_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.l %a0,-(%sp) + + clr.l %d0 # pass: S.F. = 0 + + cmpi.b STAG(%a6),&DENORM # fetch src optype tag + bne.b fout_dbl_unfl_cont # let DENORMs fall through + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the DENORM + +fout_dbl_unfl_cont: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calc default underflow result + + lea FP_SCR0(%a6),%a0 # pass: ptr to fop + bsr.l dst_dbl # convert to single prec + mov.l %d0,L_SCR1(%a6) + mov.l %d1,L_SCR2(%a6) + + mov.l EXC_EA(%a6),%a1 # pass: dst addr + lea L_SCR1(%a6),%a0 # pass: src addr + movq.l &0x8,%d0 # pass: opsize is 8 bytes + bsr.l _dmem_write # store dbl fop to memory + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_unfl # yes + addq.l &0x4,%sp + rts + +# +# it's definitely an overflow so call ovf_res to get the correct answer +# +fout_dbl_ovfl: + mov.w 2+SRC_LO(%a0),%d0 + andi.w &0x7ff,%d0 + bne.b fout_dbl_ovfl_inex2 + + ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex + bra.b fout_dbl_ovfl_cont +fout_dbl_ovfl_inex2: + ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 + +fout_dbl_ovfl_cont: + mov.l %a0,-(%sp) + +# call ovf_res() w/ dbl prec and the correct rnd mode to create the default +# overflow result. DON'T save the returned ccodes from ovf_res() since +# fmove out doesn't alter them. + tst.b SRC_EX(%a0) # is operand negative? + smi %d1 # set if so + mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode + bsr.l ovf_res # calc OVFL result + fmovm.x (%a0),&0x80 # load default overflow result + fmov.d %fp0,L_SCR1(%a6) # store to double + + mov.l EXC_EA(%a6),%a1 # pass: dst addr + lea L_SCR1(%a6),%a0 # pass: src addr + movq.l &0x8,%d0 # pass: opsize is 8 bytes + bsr.l _dmem_write # store dbl fop to memory + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_ovfl # yes + addq.l &0x4,%sp + rts + +# +# move out MAY overflow: +# (1) force the exp to 0x3fff +# (2) do a move w/ appropriate rnd mode +# (3) if exp still equals zero, then insert original exponent +# for the correct result. +# if exp now equals one, then it overflowed so call ovf_res. +# +fout_dbl_may_ovfl: + mov.w SRC_EX(%a0),%d1 # fetch current sign + andi.w &0x8000,%d1 # keep it,clear exp + ori.w &0x3fff,%d1 # insert exp = 0 + mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # need absolute value + fcmp.b %fp0,&0x2 # did exponent increase? + fblt.w fout_dbl_exg # no; go finish NORM + bra.w fout_dbl_ovfl # yes; go handle overflow + +######################################################################### +# XDEF **************************************************************** # +# dst_dbl(): create double precision value from extended prec. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to source operand in extended precision # +# # +# OUTPUT ************************************************************** # +# d0 = hi(double precision result) # +# d1 = lo(double precision result) # +# # +# ALGORITHM *********************************************************** # +# # +# Changes extended precision to double precision. # +# Note: no attempt is made to round the extended value to double. # +# dbl_sign = ext_sign # +# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # +# get rid of ext integer bit # +# dbl_mant = ext_mant{62:12} # +# # +# --------------- --------------- --------------- # +# extended -> |s| exp | |1| ms mant | | ls mant | # +# --------------- --------------- --------------- # +# 95 64 63 62 32 31 11 0 # +# | | # +# | | # +# | | # +# v v # +# --------------- --------------- # +# double -> |s|exp| mant | | mant | # +# --------------- --------------- # +# 63 51 32 31 0 # +# # +######################################################################### + +dst_dbl: + clr.l %d0 # clear d0 + mov.w FTEMP_EX(%a0),%d0 # get exponent + subi.w &EXT_BIAS,%d0 # subtract extended precision bias + addi.w &DBL_BIAS,%d0 # add double precision bias + tst.b FTEMP_HI(%a0) # is number a denorm? + bmi.b dst_get_dupper # no + subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 +dst_get_dupper: + swap %d0 # d0 now in upper word + lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp + tst.b FTEMP_EX(%a0) # test sign + bpl.b dst_get_dman # if postive, go process mantissa + bset &0x1f,%d0 # if negative, set sign +dst_get_dman: + mov.l FTEMP_HI(%a0),%d1 # get ms mantissa + bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms + or.l %d1,%d0 # put these bits in ms word of double + mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack + mov.l FTEMP_HI(%a0),%d1 # get ms mantissa + mov.l &21,%d0 # load shift count + lsl.l %d0,%d1 # put lower 11 bits in upper bits + mov.l %d1,L_SCR2(%a6) # build lower lword in memory + mov.l FTEMP_LO(%a0),%d1 # get ls mantissa + bfextu %d1{&0:&21},%d0 # get ls 21 bits of double + mov.l L_SCR2(%a6),%d1 + or.l %d0,%d1 # put them in double result + mov.l L_SCR1(%a6),%d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# dst_sgl(): create single precision value from extended prec # +# # +# XREF **************************************************************** # +# # +# INPUT *************************************************************** # +# a0 = pointer to source operand in extended precision # +# # +# OUTPUT ************************************************************** # +# d0 = single precision result # +# # +# ALGORITHM *********************************************************** # +# # +# Changes extended precision to single precision. # +# sgl_sign = ext_sign # +# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # +# get rid of ext integer bit # +# sgl_mant = ext_mant{62:12} # +# # +# --------------- --------------- --------------- # +# extended -> |s| exp | |1| ms mant | | ls mant | # +# --------------- --------------- --------------- # +# 95 64 63 62 40 32 31 12 0 # +# | | # +# | | # +# | | # +# v v # +# --------------- # +# single -> |s|exp| mant | # +# --------------- # +# 31 22 0 # +# # +######################################################################### + +dst_sgl: + clr.l %d0 + mov.w FTEMP_EX(%a0),%d0 # get exponent + subi.w &EXT_BIAS,%d0 # subtract extended precision bias + addi.w &SGL_BIAS,%d0 # add single precision bias + tst.b FTEMP_HI(%a0) # is number a denorm? + bmi.b dst_get_supper # no + subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 +dst_get_supper: + swap %d0 # put exp in upper word of d0 + lsl.l &0x7,%d0 # shift it into single exp bits + tst.b FTEMP_EX(%a0) # test sign + bpl.b dst_get_sman # if positive, continue + bset &0x1f,%d0 # if negative, put in sign first +dst_get_sman: + mov.l FTEMP_HI(%a0),%d1 # get ms mantissa + andi.l &0x7fffff00,%d1 # get upper 23 bits of ms + lsr.l &0x8,%d1 # and put them flush right + or.l %d1,%d0 # put these bits in ms word of single + rts + +############################################################################## +fout_pack: + bsr.l _calc_ea_fout # fetch the <ea> + mov.l %a0,-(%sp) + + mov.b STAG(%a6),%d0 # fetch input type + bne.w fout_pack_not_norm # input is not NORM + +fout_pack_norm: + btst &0x4,EXC_CMDREG(%a6) # static or dynamic? + beq.b fout_pack_s # static + +fout_pack_d: + mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg + lsr.b &0x4,%d1 + andi.w &0x7,%d1 + + bsr.l fetch_dreg # fetch Dn w/ k-factor + + bra.b fout_pack_type +fout_pack_s: + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field + +fout_pack_type: + bfexts %d0{&25:&7},%d0 # extract k-factor + mov.l %d0,-(%sp) + + lea FP_SRC(%a6),%a0 # pass: ptr to input + +# bindec is currently scrambling FP_SRC for denorm inputs. +# we'll have to change this, but for now, tough luck!!! + bsr.l bindec # convert xprec to packed + +# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields + andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields + + mov.l (%sp)+,%d0 + + tst.b 3+FP_SCR0_EX(%a6) + bne.b fout_pack_set + tst.l FP_SCR0_HI(%a6) + bne.b fout_pack_set + tst.l FP_SCR0_LO(%a6) + bne.b fout_pack_set + +# add the extra condition that only if the k-factor was zero, too, should +# we zero the exponent + tst.l %d0 + bne.b fout_pack_set +# "mantissa" is all zero which means that the answer is zero. but, the '040 +# algorithm allows the exponent to be non-zero. the 881/2 do not. therefore, +# if the mantissa is zero, I will zero the exponent, too. +# the question now is whether the exponents sign bit is allowed to be non-zero +# for a zero, also... + andi.w &0xf000,FP_SCR0(%a6) + +fout_pack_set: + + lea FP_SCR0(%a6),%a0 # pass: src addr + +fout_pack_write: + mov.l (%sp)+,%a1 # pass: dst addr + mov.l &0xc,%d0 # pass: opsize is 12 bytes + + cmpi.b SPCOND_FLG(%a6),&mda7_flg + beq.b fout_pack_a7 + + bsr.l _dmem_write # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + rts + +# we don't want to do the write if the exception occurred in supervisor mode +# so _mem_write2() handles this for us. +fout_pack_a7: + bsr.l _mem_write2 # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + rts + +fout_pack_not_norm: + cmpi.b %d0,&DENORM # is it a DENORM? + beq.w fout_pack_norm # yes + lea FP_SRC(%a6),%a0 + clr.w 2+FP_SRC_EX(%a6) + cmpi.b %d0,&SNAN # is it an SNAN? + beq.b fout_pack_snan # yes + bra.b fout_pack_write # no + +fout_pack_snan: + ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP + bset &0x6,FP_SRC_HI(%a6) # set snan bit + bra.b fout_pack_write + +######################################################################### +# XDEF **************************************************************** # +# fetch_dreg(): fetch register according to index in d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# d0 = value of register fetched # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1 which can range from zero # +# to fifteen, load the corresponding register file value (where # +# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # +# stack. The rest should still be in their original places. # +# # +######################################################################### + +# this routine leaves d1 intact for subsequent store_dreg calls. + global fetch_dreg +fetch_dreg: + mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 + jmp (tbl_fdreg.b,%pc,%d0.w*1) + +tbl_fdreg: + short fdreg0 - tbl_fdreg + short fdreg1 - tbl_fdreg + short fdreg2 - tbl_fdreg + short fdreg3 - tbl_fdreg + short fdreg4 - tbl_fdreg + short fdreg5 - tbl_fdreg + short fdreg6 - tbl_fdreg + short fdreg7 - tbl_fdreg + short fdreg8 - tbl_fdreg + short fdreg9 - tbl_fdreg + short fdrega - tbl_fdreg + short fdregb - tbl_fdreg + short fdregc - tbl_fdreg + short fdregd - tbl_fdreg + short fdrege - tbl_fdreg + short fdregf - tbl_fdreg + +fdreg0: + mov.l EXC_DREGS+0x0(%a6),%d0 + rts +fdreg1: + mov.l EXC_DREGS+0x4(%a6),%d0 + rts +fdreg2: + mov.l %d2,%d0 + rts +fdreg3: + mov.l %d3,%d0 + rts +fdreg4: + mov.l %d4,%d0 + rts +fdreg5: + mov.l %d5,%d0 + rts +fdreg6: + mov.l %d6,%d0 + rts +fdreg7: + mov.l %d7,%d0 + rts +fdreg8: + mov.l EXC_DREGS+0x8(%a6),%d0 + rts +fdreg9: + mov.l EXC_DREGS+0xc(%a6),%d0 + rts +fdrega: + mov.l %a2,%d0 + rts +fdregb: + mov.l %a3,%d0 + rts +fdregc: + mov.l %a4,%d0 + rts +fdregd: + mov.l %a5,%d0 + rts +fdrege: + mov.l (%a6),%d0 + rts +fdregf: + mov.l EXC_A7(%a6),%d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# store_dreg_l(): store longword to data register specified by d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = longowrd value to store # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# (data register is updated) # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1, store the longword value # +# in d0 to the corresponding data register. D0/D1 are on the stack # +# while the rest are in their initial places. # +# # +######################################################################### + + global store_dreg_l +store_dreg_l: + mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 + jmp (tbl_sdregl.b,%pc,%d1.w*1) + +tbl_sdregl: + short sdregl0 - tbl_sdregl + short sdregl1 - tbl_sdregl + short sdregl2 - tbl_sdregl + short sdregl3 - tbl_sdregl + short sdregl4 - tbl_sdregl + short sdregl5 - tbl_sdregl + short sdregl6 - tbl_sdregl + short sdregl7 - tbl_sdregl + +sdregl0: + mov.l %d0,EXC_DREGS+0x0(%a6) + rts +sdregl1: + mov.l %d0,EXC_DREGS+0x4(%a6) + rts +sdregl2: + mov.l %d0,%d2 + rts +sdregl3: + mov.l %d0,%d3 + rts +sdregl4: + mov.l %d0,%d4 + rts +sdregl5: + mov.l %d0,%d5 + rts +sdregl6: + mov.l %d0,%d6 + rts +sdregl7: + mov.l %d0,%d7 + rts + +######################################################################### +# XDEF **************************************************************** # +# store_dreg_w(): store word to data register specified by d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = word value to store # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# (data register is updated) # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1, store the word value # +# in d0 to the corresponding data register. D0/D1 are on the stack # +# while the rest are in their initial places. # +# # +######################################################################### + + global store_dreg_w +store_dreg_w: + mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 + jmp (tbl_sdregw.b,%pc,%d1.w*1) + +tbl_sdregw: + short sdregw0 - tbl_sdregw + short sdregw1 - tbl_sdregw + short sdregw2 - tbl_sdregw + short sdregw3 - tbl_sdregw + short sdregw4 - tbl_sdregw + short sdregw5 - tbl_sdregw + short sdregw6 - tbl_sdregw + short sdregw7 - tbl_sdregw + +sdregw0: + mov.w %d0,2+EXC_DREGS+0x0(%a6) + rts +sdregw1: + mov.w %d0,2+EXC_DREGS+0x4(%a6) + rts +sdregw2: + mov.w %d0,%d2 + rts +sdregw3: + mov.w %d0,%d3 + rts +sdregw4: + mov.w %d0,%d4 + rts +sdregw5: + mov.w %d0,%d5 + rts +sdregw6: + mov.w %d0,%d6 + rts +sdregw7: + mov.w %d0,%d7 + rts + +######################################################################### +# XDEF **************************************************************** # +# store_dreg_b(): store byte to data register specified by d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = byte value to store # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# (data register is updated) # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1, store the byte value # +# in d0 to the corresponding data register. D0/D1 are on the stack # +# while the rest are in their initial places. # +# # +######################################################################### + + global store_dreg_b +store_dreg_b: + mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 + jmp (tbl_sdregb.b,%pc,%d1.w*1) + +tbl_sdregb: + short sdregb0 - tbl_sdregb + short sdregb1 - tbl_sdregb + short sdregb2 - tbl_sdregb + short sdregb3 - tbl_sdregb + short sdregb4 - tbl_sdregb + short sdregb5 - tbl_sdregb + short sdregb6 - tbl_sdregb + short sdregb7 - tbl_sdregb + +sdregb0: + mov.b %d0,3+EXC_DREGS+0x0(%a6) + rts +sdregb1: + mov.b %d0,3+EXC_DREGS+0x4(%a6) + rts +sdregb2: + mov.b %d0,%d2 + rts +sdregb3: + mov.b %d0,%d3 + rts +sdregb4: + mov.b %d0,%d4 + rts +sdregb5: + mov.b %d0,%d5 + rts +sdregb6: + mov.b %d0,%d6 + rts +sdregb7: + mov.b %d0,%d7 + rts + +######################################################################### +# XDEF **************************************************************** # +# inc_areg(): increment an address register by the value in d0 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = amount to increment by # +# d1 = index of address register to increment # +# # +# OUTPUT ************************************************************** # +# (address register is updated) # +# # +# ALGORITHM *********************************************************** # +# Typically used for an instruction w/ a post-increment <ea>, # +# this routine adds the increment value in d0 to the address register # +# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # +# in their original places. # +# For a7, if the increment amount is one, then we have to # +# increment by two. For any a7 update, set the mia7_flag so that if # +# an access error exception occurs later in emulation, this address # +# register update can be undone. # +# # +######################################################################### + + global inc_areg +inc_areg: + mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 + jmp (tbl_iareg.b,%pc,%d1.w*1) + +tbl_iareg: + short iareg0 - tbl_iareg + short iareg1 - tbl_iareg + short iareg2 - tbl_iareg + short iareg3 - tbl_iareg + short iareg4 - tbl_iareg + short iareg5 - tbl_iareg + short iareg6 - tbl_iareg + short iareg7 - tbl_iareg + +iareg0: add.l %d0,EXC_DREGS+0x8(%a6) + rts +iareg1: add.l %d0,EXC_DREGS+0xc(%a6) + rts +iareg2: add.l %d0,%a2 + rts +iareg3: add.l %d0,%a3 + rts +iareg4: add.l %d0,%a4 + rts +iareg5: add.l %d0,%a5 + rts +iareg6: add.l %d0,(%a6) + rts +iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) + cmpi.b %d0,&0x1 + beq.b iareg7b + add.l %d0,EXC_A7(%a6) + rts +iareg7b: + addq.l &0x2,EXC_A7(%a6) + rts + +######################################################################### +# XDEF **************************************************************** # +# dec_areg(): decrement an address register by the value in d0 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = amount to decrement by # +# d1 = index of address register to decrement # +# # +# OUTPUT ************************************************************** # +# (address register is updated) # +# # +# ALGORITHM *********************************************************** # +# Typically used for an instruction w/ a pre-decrement <ea>, # +# this routine adds the decrement value in d0 to the address register # +# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # +# in their original places. # +# For a7, if the decrement amount is one, then we have to # +# decrement by two. For any a7 update, set the mda7_flag so that if # +# an access error exception occurs later in emulation, this address # +# register update can be undone. # +# # +######################################################################### + + global dec_areg +dec_areg: + mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 + jmp (tbl_dareg.b,%pc,%d1.w*1) + +tbl_dareg: + short dareg0 - tbl_dareg + short dareg1 - tbl_dareg + short dareg2 - tbl_dareg + short dareg3 - tbl_dareg + short dareg4 - tbl_dareg + short dareg5 - tbl_dareg + short dareg6 - tbl_dareg + short dareg7 - tbl_dareg + +dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) + rts +dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) + rts +dareg2: sub.l %d0,%a2 + rts +dareg3: sub.l %d0,%a3 + rts +dareg4: sub.l %d0,%a4 + rts +dareg5: sub.l %d0,%a5 + rts +dareg6: sub.l %d0,(%a6) + rts +dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) + cmpi.b %d0,&0x1 + beq.b dareg7b + sub.l %d0,EXC_A7(%a6) + rts +dareg7b: + subq.l &0x2,EXC_A7(%a6) + rts + +############################################################################## + +######################################################################### +# XDEF **************************************************************** # +# load_fpn1(): load FP register value into FP_SRC(a6). # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = index of FP register to load # +# # +# OUTPUT ************************************************************** # +# FP_SRC(a6) = value loaded from FP register file # +# # +# ALGORITHM *********************************************************** # +# Using the index in d0, load FP_SRC(a6) with a number from the # +# FP register file. # +# # +######################################################################### + + global load_fpn1 +load_fpn1: + mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 + jmp (tbl_load_fpn1.b,%pc,%d0.w*1) + +tbl_load_fpn1: + short load_fpn1_0 - tbl_load_fpn1 + short load_fpn1_1 - tbl_load_fpn1 + short load_fpn1_2 - tbl_load_fpn1 + short load_fpn1_3 - tbl_load_fpn1 + short load_fpn1_4 - tbl_load_fpn1 + short load_fpn1_5 - tbl_load_fpn1 + short load_fpn1_6 - tbl_load_fpn1 + short load_fpn1_7 - tbl_load_fpn1 + +load_fpn1_0: + mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) + mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) + mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_1: + mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) + mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) + mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_2: + fmovm.x &0x20, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_3: + fmovm.x &0x10, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_4: + fmovm.x &0x08, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_5: + fmovm.x &0x04, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_6: + fmovm.x &0x02, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_7: + fmovm.x &0x01, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts + +############################################################################# + +######################################################################### +# XDEF **************************************************************** # +# load_fpn2(): load FP register value into FP_DST(a6). # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = index of FP register to load # +# # +# OUTPUT ************************************************************** # +# FP_DST(a6) = value loaded from FP register file # +# # +# ALGORITHM *********************************************************** # +# Using the index in d0, load FP_DST(a6) with a number from the # +# FP register file. # +# # +######################################################################### + + global load_fpn2 +load_fpn2: + mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 + jmp (tbl_load_fpn2.b,%pc,%d0.w*1) + +tbl_load_fpn2: + short load_fpn2_0 - tbl_load_fpn2 + short load_fpn2_1 - tbl_load_fpn2 + short load_fpn2_2 - tbl_load_fpn2 + short load_fpn2_3 - tbl_load_fpn2 + short load_fpn2_4 - tbl_load_fpn2 + short load_fpn2_5 - tbl_load_fpn2 + short load_fpn2_6 - tbl_load_fpn2 + short load_fpn2_7 - tbl_load_fpn2 + +load_fpn2_0: + mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) + mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) + mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_1: + mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) + mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) + mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_2: + fmovm.x &0x20, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_3: + fmovm.x &0x10, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_4: + fmovm.x &0x08, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_5: + fmovm.x &0x04, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_6: + fmovm.x &0x02, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_7: + fmovm.x &0x01, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts + +############################################################################# + +######################################################################### +# XDEF **************************************************************** # +# store_fpreg(): store an fp value to the fpreg designated d0. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# fp0 = extended precision value to store # +# d0 = index of floating-point register # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# Store the value in fp0 to the FP register designated by the # +# value in d0. The FP number can be DENORM or SNAN so we have to be # +# careful that we don't take an exception here. # +# # +######################################################################### + + global store_fpreg +store_fpreg: + mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 + jmp (tbl_store_fpreg.b,%pc,%d0.w*1) + +tbl_store_fpreg: + short store_fpreg_0 - tbl_store_fpreg + short store_fpreg_1 - tbl_store_fpreg + short store_fpreg_2 - tbl_store_fpreg + short store_fpreg_3 - tbl_store_fpreg + short store_fpreg_4 - tbl_store_fpreg + short store_fpreg_5 - tbl_store_fpreg + short store_fpreg_6 - tbl_store_fpreg + short store_fpreg_7 - tbl_store_fpreg + +store_fpreg_0: + fmovm.x &0x80, EXC_FP0(%a6) + rts +store_fpreg_1: + fmovm.x &0x80, EXC_FP1(%a6) + rts +store_fpreg_2: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x20 + rts +store_fpreg_3: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x10 + rts +store_fpreg_4: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x08 + rts +store_fpreg_5: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x04 + rts +store_fpreg_6: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x02 + rts +store_fpreg_7: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x01 + rts + +######################################################################### +# XDEF **************************************************************** # +# _denorm(): denormalize an intermediate result # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = points to the operand to be denormalized # +# (in the internal extended format) # +# # +# d0 = rounding precision # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to the denormalized result # +# (in the internal extended format) # +# # +# d0 = guard,round,sticky # +# # +# ALGORITHM *********************************************************** # +# According to the exponent underflow threshold for the given # +# precision, shift the mantissa bits to the right in order raise the # +# exponent of the operand to the threshold value. While shifting the # +# mantissa bits right, maintain the value of the guard, round, and # +# sticky bits. # +# other notes: # +# (1) _denorm() is called by the underflow routines # +# (2) _denorm() does NOT affect the status register # +# # +######################################################################### + +# +# table of exponent threshold values for each precision +# +tbl_thresh: + short 0x0 + short sgl_thresh + short dbl_thresh + + global _denorm +_denorm: +# +# Load the exponent threshold for the precision selected and check +# to see if (threshold - exponent) is > 65 in which case we can +# simply calculate the sticky bit and zero the mantissa. otherwise +# we have to call the denormalization routine. +# + lsr.b &0x2, %d0 # shift prec to lo bits + mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold + mov.w %d1, %d0 # copy d1 into d0 + sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp + cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) + bpl.b denorm_set_stky # yes; just calc sticky + + clr.l %d0 # clear g,r,s + btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? + beq.b denorm_call # no; don't change anything + bset &29, %d0 # yes; set sticky bit + +denorm_call: + bsr.l dnrm_lp # denormalize the number + rts + +# +# all bit would have been shifted off during the denorm so simply +# calculate if the sticky should be set and clear the entire mantissa. +# +denorm_set_stky: + mov.l &0x20000000, %d0 # set sticky bit in return value + mov.w %d1, FTEMP_EX(%a0) # load exp with threshold + clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) + clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) + rts + +# # +# dnrm_lp(): normalize exponent/mantissa to specified threshhold # +# # +# INPUT: # +# %a0 : points to the operand to be denormalized # +# %d0{31:29} : initial guard,round,sticky # +# %d1{15:0} : denormalization threshold # +# OUTPUT: # +# %a0 : points to the denormalized operand # +# %d0{31:29} : final guard,round,sticky # +# # + +# *** Local Equates *** # +set GRS, L_SCR2 # g,r,s temp storage +set FTEMP_LO2, L_SCR1 # FTEMP_LO copy + + global dnrm_lp +dnrm_lp: + +# +# make a copy of FTEMP_LO and place the g,r,s bits directly after it +# in memory so as to make the bitfield extraction for denormalization easier. +# + mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy + mov.l %d0, GRS(%a6) # place g,r,s after it + +# +# check to see how much less than the underflow threshold the operand +# exponent is. +# + mov.l %d1, %d0 # copy the denorm threshold + sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent + ble.b dnrm_no_lp # d1 <= 0 + cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? + blt.b case_1 # yes + cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? + blt.b case_2 # yes + bra.w case_3 # (d1 >= 64) + +# +# No normalization necessary +# +dnrm_no_lp: + mov.l GRS(%a6), %d0 # restore original g,r,s + rts + +# +# case (0<d1<32) +# +# %d0 = denorm threshold +# %d1 = "n" = amt to shift +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> +# --------------------------------------------------------- +# |0.....0| NEW_HI | NEW_FTEMP_LO |grs | +# --------------------------------------------------------- +# +case_1: + mov.l %d2, -(%sp) # create temp storage + + mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold + mov.l &32, %d0 + sub.w %d1, %d0 # %d0 = 32 - %d1 + + cmpi.w %d1, &29 # is shft amt >= 29 + blt.b case1_extract # no; no fix needed + mov.b GRS(%a6), %d2 + or.b %d2, 3+FTEMP_LO2(%a6) + +case1_extract: + bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI + bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO + bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S + + mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI + mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO + + bftst %d0{&2:&30} # were bits shifted off? + beq.b case1_sticky_clear # no; go finish + bset &rnd_stky_bit, %d0 # yes; set sticky bit + +case1_sticky_clear: + and.l &0xe0000000, %d0 # clear all but G,R,S + mov.l (%sp)+, %d2 # restore temp register + rts + +# +# case (32<=d1<64) +# +# %d0 = denorm threshold +# %d1 = "n" = amt to shift +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> +# \ \ \ +# \ \ \ +# \ \ ------------------- +# \ -------------------- \ +# ------------------- \ \ +# \ \ \ +# \ \ \ +# \ \ \ +# <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> +# --------------------------------------------------------- +# |0...............0|0....0| NEW_LO |grs | +# --------------------------------------------------------- +# +case_2: + mov.l %d2, -(%sp) # create temp storage + + mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold + subi.w &0x20, %d1 # %d1 now between 0 and 32 + mov.l &0x20, %d0 + sub.w %d1, %d0 # %d0 = 32 - %d1 + +# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize +# the number of bits to check for the sticky detect. +# it only plays a role in shift amounts of 61-63. + mov.b GRS(%a6), %d2 + or.b %d2, 3+FTEMP_LO2(%a6) + + bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO + bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S + + bftst %d1{&2:&30} # were any bits shifted off? + bne.b case2_set_sticky # yes; set sticky bit + bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? + bne.b case2_set_sticky # yes; set sticky bit + + mov.l %d1, %d0 # move new G,R,S to %d0 + bra.b case2_end + +case2_set_sticky: + mov.l %d1, %d0 # move new G,R,S to %d0 + bset &rnd_stky_bit, %d0 # set sticky bit + +case2_end: + clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 + mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO + and.l &0xe0000000, %d0 # clear all but G,R,S + + mov.l (%sp)+,%d2 # restore temp register + rts + +# +# case (d1>=64) +# +# %d0 = denorm threshold +# %d1 = amt to shift +# +case_3: + mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold + + cmpi.w %d1, &65 # is shift amt > 65? + blt.b case3_64 # no; it's == 64 + beq.b case3_65 # no; it's == 65 + +# +# case (d1>65) +# +# Shift value is > 65 and out of range. All bits are shifted off. +# Return a zero mantissa with the sticky bit set +# + clr.l FTEMP_HI(%a0) # clear hi(mantissa) + clr.l FTEMP_LO(%a0) # clear lo(mantissa) + mov.l &0x20000000, %d0 # set sticky bit + rts + +# +# case (d1 == 64) +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-------(32)------> +# \ \ +# \ \ +# \ \ +# \ ------------------------------ +# ------------------------------- \ +# \ \ +# \ \ +# \ \ +# <-------(32)------> +# --------------------------------------------------------- +# |0...............0|0................0|grs | +# --------------------------------------------------------- +# +case3_64: + mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) + mov.l %d0, %d1 # make a copy + and.l &0xc0000000, %d0 # extract G,R + and.l &0x3fffffff, %d1 # extract other bits + + bra.b case3_complete + +# +# case (d1 == 65) +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-------(32)------> +# \ \ +# \ \ +# \ \ +# \ ------------------------------ +# -------------------------------- \ +# \ \ +# \ \ +# \ \ +# <-------(31)-----> +# --------------------------------------------------------- +# |0...............0|0................0|0rs | +# --------------------------------------------------------- +# +case3_65: + mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) + and.l &0x80000000, %d0 # extract R bit + lsr.l &0x1, %d0 # shift high bit into R bit + and.l &0x7fffffff, %d1 # extract other bits + +case3_complete: +# last operation done was an "and" of the bits shifted off so the condition +# codes are already set so branch accordingly. + bne.b case3_set_sticky # yes; go set new sticky + tst.l FTEMP_LO(%a0) # were any bits shifted off? + bne.b case3_set_sticky # yes; go set new sticky + tst.b GRS(%a6) # were any bits shifted off? + bne.b case3_set_sticky # yes; go set new sticky + +# +# no bits were shifted off so don't set the sticky bit. +# the guard and +# the entire mantissa is zero. +# + clr.l FTEMP_HI(%a0) # clear hi(mantissa) + clr.l FTEMP_LO(%a0) # clear lo(mantissa) + rts + +# +# some bits were shifted off so set the sticky bit. +# the entire mantissa is zero. +# +case3_set_sticky: + bset &rnd_stky_bit,%d0 # set new sticky bit + clr.l FTEMP_HI(%a0) # clear hi(mantissa) + clr.l FTEMP_LO(%a0) # clear lo(mantissa) + rts + +######################################################################### +# XDEF **************************************************************** # +# _round(): round result according to precision/mode # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = ptr to input operand in internal extended format # +# d1(hi) = contains rounding precision: # +# ext = $0000xxxx # +# sgl = $0004xxxx # +# dbl = $0008xxxx # +# d1(lo) = contains rounding mode: # +# RN = $xxxx0000 # +# RZ = $xxxx0001 # +# RM = $xxxx0002 # +# RP = $xxxx0003 # +# d0{31:29} = contains the g,r,s bits (extended) # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to rounded result # +# # +# ALGORITHM *********************************************************** # +# On return the value pointed to by a0 is correctly rounded, # +# a0 is preserved and the g-r-s bits in d0 are cleared. # +# The result is not typed - the tag field is invalid. The # +# result is still in the internal extended format. # +# # +# The INEX bit of USER_FPSR will be set if the rounded result was # +# inexact (i.e. if any of the g-r-s bits were set). # +# # +######################################################################### + + global _round +_round: +# +# ext_grs() looks at the rounding precision and sets the appropriate +# G,R,S bits. +# If (G,R,S == 0) then result is exact and round is done, else set +# the inex flag in status reg and continue. +# + bsr.l ext_grs # extract G,R,S + + tst.l %d0 # are G,R,S zero? + beq.w truncate # yes; round is complete + + or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex + +# +# Use rounding mode as an index into a jump table for these modes. +# All of the following assumes grs != 0. +# + mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset + jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler + +tbl_mode: + short rnd_near - tbl_mode + short truncate - tbl_mode # RZ always truncates + short rnd_mnus - tbl_mode + short rnd_plus - tbl_mode + +################################################################# +# ROUND PLUS INFINITY # +# # +# If sign of fp number = 0 (positive), then add 1 to l. # +################################################################# +rnd_plus: + tst.b FTEMP_SGN(%a0) # check for sign + bmi.w truncate # if positive then truncate + + mov.l &0xffffffff, %d0 # force g,r,s to be all f's + swap %d1 # set up d1 for round prec. + + cmpi.b %d1, &s_mode # is prec = sgl? + beq.w add_sgl # yes + bgt.w add_dbl # no; it's dbl + bra.w add_ext # no; it's ext + +################################################################# +# ROUND MINUS INFINITY # +# # +# If sign of fp number = 1 (negative), then add 1 to l. # +################################################################# +rnd_mnus: + tst.b FTEMP_SGN(%a0) # check for sign + bpl.w truncate # if negative then truncate + + mov.l &0xffffffff, %d0 # force g,r,s to be all f's + swap %d1 # set up d1 for round prec. + + cmpi.b %d1, &s_mode # is prec = sgl? + beq.w add_sgl # yes + bgt.w add_dbl # no; it's dbl + bra.w add_ext # no; it's ext + +################################################################# +# ROUND NEAREST # +# # +# If (g=1), then add 1 to l and if (r=s=0), then clear l # +# Note that this will round to even in case of a tie. # +################################################################# +rnd_near: + asl.l &0x1, %d0 # shift g-bit to c-bit + bcc.w truncate # if (g=1) then + + swap %d1 # set up d1 for round prec. + + cmpi.b %d1, &s_mode # is prec = sgl? + beq.w add_sgl # yes + bgt.w add_dbl # no; it's dbl + bra.w add_ext # no; it's ext + +# *** LOCAL EQUATES *** +set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec +set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec + +######################### +# ADD SINGLE # +######################### +add_sgl: + add.l &ad_1_sgl, FTEMP_HI(%a0) + bcc.b scc_clr # no mantissa overflow + roxr.w FTEMP_HI(%a0) # shift v-bit back in + roxr.w FTEMP_HI+2(%a0) # shift v-bit back in + add.w &0x1, FTEMP_EX(%a0) # and incr exponent +scc_clr: + tst.l %d0 # test for rs = 0 + bne.b sgl_done + and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit +sgl_done: + and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit + clr.l FTEMP_LO(%a0) # clear d2 + rts + +######################### +# ADD EXTENDED # +######################### +add_ext: + addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit + bcc.b xcc_clr # test for carry out + addq.l &1,FTEMP_HI(%a0) # propagate carry + bcc.b xcc_clr + roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_LO(%a0) + roxr.w FTEMP_LO+2(%a0) + add.w &0x1,FTEMP_EX(%a0) # and inc exp +xcc_clr: + tst.l %d0 # test rs = 0 + bne.b add_ext_done + and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit +add_ext_done: + rts + +######################### +# ADD DOUBLE # +######################### +add_dbl: + add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb + bcc.b dcc_clr # no carry + addq.l &0x1, FTEMP_HI(%a0) # propagate carry + bcc.b dcc_clr # no carry + + roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_LO(%a0) + roxr.w FTEMP_LO+2(%a0) + addq.w &0x1, FTEMP_EX(%a0) # incr exponent +dcc_clr: + tst.l %d0 # test for rs = 0 + bne.b dbl_done + and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit + +dbl_done: + and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit + rts + +########################### +# Truncate all other bits # +########################### +truncate: + swap %d1 # select rnd prec + + cmpi.b %d1, &s_mode # is prec sgl? + beq.w sgl_done # yes + bgt.b dbl_done # no; it's dbl + rts # no; it's ext + + +# +# ext_grs(): extract guard, round and sticky bits according to +# rounding precision. +# +# INPUT +# d0 = extended precision g,r,s (in d0{31:29}) +# d1 = {PREC,ROUND} +# OUTPUT +# d0{31:29} = guard, round, sticky +# +# The ext_grs extract the guard/round/sticky bits according to the +# selected rounding precision. It is called by the round subroutine +# only. All registers except d0 are kept intact. d0 becomes an +# updated guard,round,sticky in d0{31:29} +# +# Notes: the ext_grs uses the round PREC, and therefore has to swap d1 +# prior to usage, and needs to restore d1 to original. this +# routine is tightly tied to the round routine and not meant to +# uphold standard subroutine calling practices. +# + +ext_grs: + swap %d1 # have d1.w point to round precision + tst.b %d1 # is rnd prec = extended? + bne.b ext_grs_not_ext # no; go handle sgl or dbl + +# +# %d0 actually already hold g,r,s since _round() had it before calling +# this function. so, as long as we don't disturb it, we are "returning" it. +# +ext_grs_ext: + swap %d1 # yes; return to correct positions + rts + +ext_grs_not_ext: + movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} + + cmpi.b %d1, &s_mode # is rnd prec = sgl? + bne.b ext_grs_dbl # no; go handle dbl + +# +# sgl: +# 96 64 40 32 0 +# ----------------------------------------------------- +# | EXP |XXXXXXX| |xx | |grs| +# ----------------------------------------------------- +# <--(24)--->nn\ / +# ee --------------------- +# ww | +# v +# gr new sticky +# +ext_grs_sgl: + bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right + mov.l &30, %d2 # of the sgl prec. limits + lsl.l %d2, %d3 # shift g-r bits to MSB of d3 + mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test + and.l &0x0000003f, %d2 # s bit is the or of all other + bne.b ext_grs_st_stky # bits to the right of g-r + tst.l FTEMP_LO(%a0) # test lower mantissa + bne.b ext_grs_st_stky # if any are set, set sticky + tst.l %d0 # test original g,r,s + bne.b ext_grs_st_stky # if any are set, set sticky + bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit + +# +# dbl: +# 96 64 32 11 0 +# ----------------------------------------------------- +# | EXP |XXXXXXX| | |xx |grs| +# ----------------------------------------------------- +# nn\ / +# ee ------- +# ww | +# v +# gr new sticky +# +ext_grs_dbl: + bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right + mov.l &30, %d2 # of the dbl prec. limits + lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 + mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test + and.l &0x000001ff, %d2 # s bit is the or-ing of all + bne.b ext_grs_st_stky # other bits to the right of g-r + tst.l %d0 # test word original g,r,s + bne.b ext_grs_st_stky # if any are set, set sticky + bra.b ext_grs_end_sd # if clear, exit + +ext_grs_st_stky: + bset &rnd_stky_bit, %d3 # set sticky bit +ext_grs_end_sd: + mov.l %d3, %d0 # return grs to d0 + + movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} + + swap %d1 # restore d1 to original + rts + +######################################################################### +# norm(): normalize the mantissa of an extended precision input. the # +# input operand should not be normalized already. # +# # +# XDEF **************************************************************** # +# norm() # +# # +# XREF **************************************************************** # +# none # +# # +# INPUT *************************************************************** # +# a0 = pointer fp extended precision operand to normalize # +# # +# OUTPUT ************************************************************** # +# d0 = number of bit positions the mantissa was shifted # +# a0 = the input operand's mantissa is normalized; the exponent # +# is unchanged. # +# # +######################################################################### + global norm +norm: + mov.l %d2, -(%sp) # create some temp regs + mov.l %d3, -(%sp) + + mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) + mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) + + bfffo %d0{&0:&32}, %d2 # how many places to shift? + beq.b norm_lo # hi(man) is all zeroes! + +norm_hi: + lsl.l %d2, %d0 # left shift hi(man) + bfextu %d1{&0:%d2}, %d3 # extract lo bits + + or.l %d3, %d0 # create hi(man) + lsl.l %d2, %d1 # create lo(man) + + mov.l %d0, FTEMP_HI(%a0) # store new hi(man) + mov.l %d1, FTEMP_LO(%a0) # store new lo(man) + + mov.l %d2, %d0 # return shift amount + + mov.l (%sp)+, %d3 # restore temp regs + mov.l (%sp)+, %d2 + + rts + +norm_lo: + bfffo %d1{&0:&32}, %d2 # how many places to shift? + lsl.l %d2, %d1 # shift lo(man) + add.l &32, %d2 # add 32 to shft amount + + mov.l %d1, FTEMP_HI(%a0) # store hi(man) + clr.l FTEMP_LO(%a0) # lo(man) is now zero + + mov.l %d2, %d0 # return shift amount + + mov.l (%sp)+, %d3 # restore temp regs + mov.l (%sp)+, %d2 + + rts + +######################################################################### +# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # +# - returns corresponding optype tag # +# # +# XDEF **************************************************************** # +# unnorm_fix() # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa # +# # +# INPUT *************************************************************** # +# a0 = pointer to unnormalized extended precision number # +# # +# OUTPUT ************************************************************** # +# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # +# a0 = input operand has been converted to a norm, denorm, or # +# zero; both the exponent and mantissa are changed. # +# # +######################################################################### + + global unnorm_fix +unnorm_fix: + bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? + bne.b unnorm_shift # hi(man) is not all zeroes + +# +# hi(man) is all zeroes so see if any bits in lo(man) are set +# +unnorm_chk_lo: + bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? + beq.w unnorm_zero # yes + + add.w &32, %d0 # no; fix shift distance + +# +# d0 = # shifts needed for complete normalization +# +unnorm_shift: + clr.l %d1 # clear top word + mov.w FTEMP_EX(%a0), %d1 # extract exponent + and.w &0x7fff, %d1 # strip off sgn + + cmp.w %d0, %d1 # will denorm push exp < 0? + bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 + +# +# exponent would not go < 0. therefore, number stays normalized +# + sub.w %d0, %d1 # shift exponent value + mov.w FTEMP_EX(%a0), %d0 # load old exponent + and.w &0x8000, %d0 # save old sign + or.w %d0, %d1 # {sgn,new exp} + mov.w %d1, FTEMP_EX(%a0) # insert new exponent + + bsr.l norm # normalize UNNORM + + mov.b &NORM, %d0 # return new optype tag + rts + +# +# exponent would go < 0, so only denormalize until exp = 0 +# +unnorm_nrm_zero: + cmp.b %d1, &32 # is exp <= 32? + bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent + + bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) + mov.l %d0, FTEMP_HI(%a0) # save new hi(man) + + mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) + lsl.l %d1, %d0 # extract new lo(man) + mov.l %d0, FTEMP_LO(%a0) # save new lo(man) + + and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 + + mov.b &DENORM, %d0 # return new optype tag + rts + +# +# only mantissa bits set are in lo(man) +# +unnorm_nrm_zero_lrg: + sub.w &32, %d1 # adjust shft amt by 32 + + mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) + lsl.l %d1, %d0 # left shift lo(man) + + mov.l %d0, FTEMP_HI(%a0) # store new hi(man) + clr.l FTEMP_LO(%a0) # lo(man) = 0 + + and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 + + mov.b &DENORM, %d0 # return new optype tag + rts + +# +# whole mantissa is zero so this UNNORM is actually a zero +# +unnorm_zero: + and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero + + mov.b &ZERO, %d0 # fix optype tag + rts + +######################################################################### +# XDEF **************************************************************** # +# set_tag_x(): return the optype of the input ext fp number # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# If it's an unnormalized zero, alter the operand and force it # +# to be a normal zero. # +# # +######################################################################### + + global set_tag_x +set_tag_x: + mov.w FTEMP_EX(%a0), %d0 # extract exponent + andi.w &0x7fff, %d0 # strip off sign + cmpi.w %d0, &0x7fff # is (EXP == MAX)? + beq.b inf_or_nan_x +not_inf_or_nan_x: + btst &0x7,FTEMP_HI(%a0) + beq.b not_norm_x +is_norm_x: + mov.b &NORM, %d0 + rts +not_norm_x: + tst.w %d0 # is exponent = 0? + bne.b is_unnorm_x +not_unnorm_x: + tst.l FTEMP_HI(%a0) + bne.b is_denorm_x + tst.l FTEMP_LO(%a0) + bne.b is_denorm_x +is_zero_x: + mov.b &ZERO, %d0 + rts +is_denorm_x: + mov.b &DENORM, %d0 + rts +# must distinguish now "Unnormalized zeroes" which we +# must convert to zero. +is_unnorm_x: + tst.l FTEMP_HI(%a0) + bne.b is_unnorm_reg_x + tst.l FTEMP_LO(%a0) + bne.b is_unnorm_reg_x +# it's an "unnormalized zero". let's convert it to an actual zero... + andi.w &0x8000,FTEMP_EX(%a0) # clear exponent + mov.b &ZERO, %d0 + rts +is_unnorm_reg_x: + mov.b &UNNORM, %d0 + rts +inf_or_nan_x: + tst.l FTEMP_LO(%a0) + bne.b is_nan_x + mov.l FTEMP_HI(%a0), %d0 + and.l &0x7fffffff, %d0 # msb is a don't care! + bne.b is_nan_x +is_inf_x: + mov.b &INF, %d0 + rts +is_nan_x: + btst &0x6, FTEMP_HI(%a0) + beq.b is_snan_x + mov.b &QNAN, %d0 + rts +is_snan_x: + mov.b &SNAN, %d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# set_tag_d(): return the optype of the input dbl fp number # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = points to double precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# # +######################################################################### + + global set_tag_d +set_tag_d: + mov.l FTEMP(%a0), %d0 + mov.l %d0, %d1 + + andi.l &0x7ff00000, %d0 + beq.b zero_or_denorm_d + + cmpi.l %d0, &0x7ff00000 + beq.b inf_or_nan_d + +is_norm_d: + mov.b &NORM, %d0 + rts +zero_or_denorm_d: + and.l &0x000fffff, %d1 + bne is_denorm_d + tst.l 4+FTEMP(%a0) + bne is_denorm_d +is_zero_d: + mov.b &ZERO, %d0 + rts +is_denorm_d: + mov.b &DENORM, %d0 + rts +inf_or_nan_d: + and.l &0x000fffff, %d1 + bne is_nan_d + tst.l 4+FTEMP(%a0) + bne is_nan_d +is_inf_d: + mov.b &INF, %d0 + rts +is_nan_d: + btst &19, %d1 + bne is_qnan_d +is_snan_d: + mov.b &SNAN, %d0 + rts +is_qnan_d: + mov.b &QNAN, %d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# set_tag_s(): return the optype of the input sgl fp number # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to single precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# # +######################################################################### + + global set_tag_s +set_tag_s: + mov.l FTEMP(%a0), %d0 + mov.l %d0, %d1 + + andi.l &0x7f800000, %d0 + beq.b zero_or_denorm_s + + cmpi.l %d0, &0x7f800000 + beq.b inf_or_nan_s + +is_norm_s: + mov.b &NORM, %d0 + rts +zero_or_denorm_s: + and.l &0x007fffff, %d1 + bne is_denorm_s +is_zero_s: + mov.b &ZERO, %d0 + rts +is_denorm_s: + mov.b &DENORM, %d0 + rts +inf_or_nan_s: + and.l &0x007fffff, %d1 + bne is_nan_s +is_inf_s: + mov.b &INF, %d0 + rts +is_nan_s: + btst &22, %d1 + bne is_qnan_s +is_snan_s: + mov.b &SNAN, %d0 + rts +is_qnan_s: + mov.b &QNAN, %d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# unf_res(): routine to produce default underflow result of a # +# scaled extended precision number; this is used by # +# fadd/fdiv/fmul/etc. emulation routines. # +# unf_res4(): same as above but for fsglmul/fsgldiv which use # +# single round prec and extended prec mode. # +# # +# XREF **************************************************************** # +# _denorm() - denormalize according to scale factor # +# _round() - round denormalized number according to rnd prec # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precison operand # +# d0 = scale factor # +# d1 = rounding precision/mode # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to default underflow result in extended precision # +# d0.b = result FPSR_cc which caller may or may not want to save # +# # +# ALGORITHM *********************************************************** # +# Convert the input operand to "internal format" which means the # +# exponent is extended to 16 bits and the sign is stored in the unused # +# portion of the extended precison operand. Denormalize the number # +# according to the scale factor passed in d0. Then, round the # +# denormalized result. # +# Set the FPSR_exc bits as appropriate but return the cc bits in # +# d0 in case the caller doesn't want to save them (as is the case for # +# fmove out). # +# unf_res4() for fsglmul/fsgldiv forces the denorm to extended # +# precision and the rounding mode to single. # +# # +######################################################################### + global unf_res +unf_res: + mov.l %d1, -(%sp) # save rnd prec,mode on stack + + btst &0x7, FTEMP_EX(%a0) # make "internal" format + sne FTEMP_SGN(%a0) + + mov.w FTEMP_EX(%a0), %d1 # extract exponent + and.w &0x7fff, %d1 + sub.w %d0, %d1 + mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent + + mov.l %a0, -(%sp) # save operand ptr during calls + + mov.l 0x4(%sp),%d0 # pass rnd prec. + andi.w &0x00c0,%d0 + lsr.w &0x4,%d0 + bsr.l _denorm # denorm result + + mov.l (%sp),%a0 + mov.w 0x6(%sp),%d1 # load prec:mode into %d1 + andi.w &0xc0,%d1 # extract rnd prec + lsr.w &0x4,%d1 + swap %d1 + mov.w 0x6(%sp),%d1 + andi.w &0x30,%d1 + lsr.w &0x4,%d1 + bsr.l _round # round the denorm + + mov.l (%sp)+, %a0 + +# result is now rounded properly. convert back to normal format + bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue + tst.b FTEMP_SGN(%a0) # is "internal result" sign set? + beq.b unf_res_chkifzero # no; result is positive + bset &0x7, FTEMP_EX(%a0) # set result sgn + clr.b FTEMP_SGN(%a0) # clear temp sign + +# the number may have become zero after rounding. set ccodes accordingly. +unf_res_chkifzero: + clr.l %d0 + tst.l FTEMP_HI(%a0) # is value now a zero? + bne.b unf_res_cont # no + tst.l FTEMP_LO(%a0) + bne.b unf_res_cont # no +# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit + bset &z_bit, %d0 # yes; set zero ccode bit + +unf_res_cont: + +# +# can inex1 also be set along with unfl and inex2??? +# +# we know that underflow has occurred. aunfl should be set if INEX2 is also set. +# + btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? + beq.b unf_res_end # no + bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl + +unf_res_end: + add.l &0x4, %sp # clear stack + rts + +# unf_res() for fsglmul() and fsgldiv(). + global unf_res4 +unf_res4: + mov.l %d1,-(%sp) # save rnd prec,mode on stack + + btst &0x7,FTEMP_EX(%a0) # make "internal" format + sne FTEMP_SGN(%a0) + + mov.w FTEMP_EX(%a0),%d1 # extract exponent + and.w &0x7fff,%d1 + sub.w %d0,%d1 + mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent + + mov.l %a0,-(%sp) # save operand ptr during calls + + clr.l %d0 # force rnd prec = ext + bsr.l _denorm # denorm result + + mov.l (%sp),%a0 + mov.w &s_mode,%d1 # force rnd prec = sgl + swap %d1 + mov.w 0x6(%sp),%d1 # load rnd mode + andi.w &0x30,%d1 # extract rnd prec + lsr.w &0x4,%d1 + bsr.l _round # round the denorm + + mov.l (%sp)+,%a0 + +# result is now rounded properly. convert back to normal format + bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue + tst.b FTEMP_SGN(%a0) # is "internal result" sign set? + beq.b unf_res4_chkifzero # no; result is positive + bset &0x7,FTEMP_EX(%a0) # set result sgn + clr.b FTEMP_SGN(%a0) # clear temp sign + +# the number may have become zero after rounding. set ccodes accordingly. +unf_res4_chkifzero: + clr.l %d0 + tst.l FTEMP_HI(%a0) # is value now a zero? + bne.b unf_res4_cont # no + tst.l FTEMP_LO(%a0) + bne.b unf_res4_cont # no +# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit + bset &z_bit,%d0 # yes; set zero ccode bit + +unf_res4_cont: + +# +# can inex1 also be set along with unfl and inex2??? +# +# we know that underflow has occurred. aunfl should be set if INEX2 is also set. +# + btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? + beq.b unf_res4_end # no + bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl + +unf_res4_end: + add.l &0x4,%sp # clear stack + rts + +######################################################################### +# XDEF **************************************************************** # +# ovf_res(): routine to produce the default overflow result of # +# an overflowing number. # +# ovf_res2(): same as above but the rnd mode/prec are passed # +# differently. # +# # +# XREF **************************************************************** # +# none # +# # +# INPUT *************************************************************** # +# d1.b = '-1' => (-); '0' => (+) # +# ovf_res(): # +# d0 = rnd mode/prec # +# ovf_res2(): # +# hi(d0) = rnd prec # +# lo(d0) = rnd mode # +# # +# OUTPUT ************************************************************** # +# a0 = points to extended precision result # +# d0.b = condition code bits # +# # +# ALGORITHM *********************************************************** # +# The default overflow result can be determined by the sign of # +# the result and the rounding mode/prec in effect. These bits are # +# concatenated together to create an index into the default result # +# table. A pointer to the correct result is returned in a0. The # +# resulting condition codes are returned in d0 in case the caller # +# doesn't want FPSR_cc altered (as is the case for fmove out). # +# # +######################################################################### + + global ovf_res +ovf_res: + andi.w &0x10,%d1 # keep result sign + lsr.b &0x4,%d0 # shift prec/mode + or.b %d0,%d1 # concat the two + mov.w %d1,%d0 # make a copy + lsl.b &0x1,%d1 # multiply d1 by 2 + bra.b ovf_res_load + + global ovf_res2 +ovf_res2: + and.w &0x10, %d1 # keep result sign + or.b %d0, %d1 # insert rnd mode + swap %d0 + or.b %d0, %d1 # insert rnd prec + mov.w %d1, %d0 # make a copy + lsl.b &0x1, %d1 # shift left by 1 + +# +# use the rounding mode, precision, and result sign as in index into the +# two tables below to fetch the default result and the result ccodes. +# +ovf_res_load: + mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes + lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr + + rts + +tbl_ovfl_cc: + byte 0x2, 0x0, 0x0, 0x2 + byte 0x2, 0x0, 0x0, 0x2 + byte 0x2, 0x0, 0x0, 0x2 + byte 0x0, 0x0, 0x0, 0x0 + byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 + byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 + byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 + +tbl_ovfl_result: + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN + long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ + long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP + + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN + long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ + long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP + + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN + long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ + long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP + + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN + long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM + long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP + + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN + long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM + long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP + + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN + long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM + long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP + +######################################################################### +# XDEF **************************************************************** # +# get_packed(): fetch a packed operand from memory and then # +# convert it to a floating-point binary number. # +# # +# XREF **************************************************************** # +# _dcalc_ea() - calculate the correct <ea> # +# _mem_read() - fetch the packed operand from memory # +# facc_in_x() - the fetch failed so jump to special exit code # +# decbin() - convert packed to binary extended precision # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If no failure on _mem_read(): # +# FP_SRC(a6) = packed operand now as a binary FP number # +# # +# ALGORITHM *********************************************************** # +# Get the correct <ea> whihc is the value on the exception stack # +# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # +# Then, fetch the operand from memory. If the fetch fails, exit # +# through facc_in_x(). # +# If the packed operand is a ZERO,NAN, or INF, convert it to # +# its binary representation here. Else, call decbin() which will # +# convert the packed value to an extended precision binary value. # +# # +######################################################################### + +# the stacked <ea> for packed is correct except for -(An). +# the base reg must be updated for both -(An) and (An)+. + global get_packed +get_packed: + mov.l &0xc,%d0 # packed is 12 bytes + bsr.l _dcalc_ea # fetch <ea>; correct An + + lea FP_SRC(%a6),%a1 # pass: ptr to super dst + mov.l &0xc,%d0 # pass: 12 bytes + bsr.l _dmem_read # read packed operand + + tst.l %d1 # did dfetch fail? + bne.l facc_in_x # yes + +# The packed operand is an INF or a NAN if the exponent field is all ones. + bfextu FP_SRC(%a6){&1:&15},%d0 # get exp + cmpi.w %d0,&0x7fff # INF or NAN? + bne.b gp_try_zero # no + rts # operand is an INF or NAN + +# The packed operand is a zero if the mantissa is all zero, else it's +# a normal packed op. +gp_try_zero: + mov.b 3+FP_SRC(%a6),%d0 # get byte 4 + andi.b &0x0f,%d0 # clear all but last nybble + bne.b gp_not_spec # not a zero + tst.l FP_SRC_HI(%a6) # is lw 2 zero? + bne.b gp_not_spec # not a zero + tst.l FP_SRC_LO(%a6) # is lw 3 zero? + bne.b gp_not_spec # not a zero + rts # operand is a ZERO +gp_not_spec: + lea FP_SRC(%a6),%a0 # pass: ptr to packed op + bsr.l decbin # convert to extended + fmovm.x &0x80,FP_SRC(%a6) # make this the srcop + rts + +######################################################################### +# decbin(): Converts normalized packed bcd value pointed to by register # +# a0 to extended-precision value in fp0. # +# # +# INPUT *************************************************************** # +# a0 = pointer to normalized packed bcd value # +# # +# OUTPUT ************************************************************** # +# fp0 = exact fp representation of the packed bcd value. # +# # +# ALGORITHM *********************************************************** # +# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # +# and NaN operands are dispatched without entering this routine) # +# value in 68881/882 format at location (a0). # +# # +# A1. Convert the bcd exponent to binary by successive adds and # +# muls. Set the sign according to SE. Subtract 16 to compensate # +# for the mantissa which is to be interpreted as 17 integer # +# digits, rather than 1 integer and 16 fraction digits. # +# Note: this operation can never overflow. # +# # +# A2. Convert the bcd mantissa to binary by successive # +# adds and muls in FP0. Set the sign according to SM. # +# The mantissa digits will be converted with the decimal point # +# assumed following the least-significant digit. # +# Note: this operation can never overflow. # +# # +# A3. Count the number of leading/trailing zeros in the # +# bcd string. If SE is positive, count the leading zeros; # +# if negative, count the trailing zeros. Set the adjusted # +# exponent equal to the exponent from A1 and the zero count # +# added if SM = 1 and subtracted if SM = 0. Scale the # +# mantissa the equivalent of forcing in the bcd value: # +# # +# SM = 0 a non-zero digit in the integer position # +# SM = 1 a non-zero digit in Mant0, lsd of the fraction # +# # +# this will insure that any value, regardless of its # +# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # +# consistently. # +# # +# A4. Calculate the factor 10^exp in FP1 using a table of # +# 10^(2^n) values. To reduce the error in forming factors # +# greater than 10^27, a directed rounding scheme is used with # +# tables rounded to RN, RM, and RP, according to the table # +# in the comments of the pwrten section. # +# # +# A5. Form the final binary number by scaling the mantissa by # +# the exponent factor. This is done by multiplying the # +# mantissa in FP0 by the factor in FP1 if the adjusted # +# exponent sign is positive, and dividing FP0 by FP1 if # +# it is negative. # +# # +# Clean up and return. Check if the final mul or div was inexact. # +# If so, set INEX1 in USER_FPSR. # +# # +######################################################################### + +# +# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded +# to nearest, minus, and plus, respectively. The tables include +# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding +# is required until the power is greater than 27, however, all +# tables include the first 5 for ease of indexing. +# +RTABLE: + byte 0,0,0,0 + byte 2,3,2,3 + byte 2,3,3,2 + byte 3,2,2,3 + + set FNIBS,7 + set FSTRT,0 + + set ESTRT,4 + set EDIGITS,2 + + global decbin +decbin: + mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input + mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it + mov.l 0x8(%a0),FP_SCR0_LO(%a6) + + lea FP_SCR0(%a6),%a0 + + movm.l &0x3c00,-(%sp) # save d2-d5 + fmovm.x &0x1,-(%sp) # save fp1 +# +# Calculate exponent: +# 1. Copy bcd value in memory for use as a working copy. +# 2. Calculate absolute value of exponent in d1 by mul and add. +# 3. Correct for exponent sign. +# 4. Subtract 16 to compensate for interpreting the mant as all integer digits. +# (i.e., all digits assumed left of the decimal point.) +# +# Register usage: +# +# calc_e: +# (*) d0: temp digit storage +# (*) d1: accumulator for binary exponent +# (*) d2: digit count +# (*) d3: offset pointer +# ( ) d4: first word of bcd +# ( ) a0: pointer to working bcd value +# ( ) a6: pointer to original bcd value +# (*) FP_SCR1: working copy of original bcd value +# (*) L_SCR1: copy of original exponent word +# +calc_e: + mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part + mov.l &ESTRT,%d3 # counter to pick up digits + mov.l (%a0),%d4 # get first word of bcd + clr.l %d1 # zero d1 for accumulator +e_gd: + mulu.l &0xa,%d1 # mul partial product by one digit place + bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 + add.l %d0,%d1 # d1 = d1 + d0 + addq.b &4,%d3 # advance d3 to the next digit + dbf.w %d2,e_gd # if we have used all 3 digits, exit loop + btst &30,%d4 # get SE + beq.b e_pos # don't negate if pos + neg.l %d1 # negate before subtracting +e_pos: + sub.l &16,%d1 # sub to compensate for shift of mant + bge.b e_save # if still pos, do not neg + neg.l %d1 # now negative, make pos and set SE + or.l &0x40000000,%d4 # set SE in d4, + or.l &0x40000000,(%a0) # and in working bcd +e_save: + mov.l %d1,-(%sp) # save exp on stack +# +# +# Calculate mantissa: +# 1. Calculate absolute value of mantissa in fp0 by mul and add. +# 2. Correct for mantissa sign. +# (i.e., all digits assumed left of the decimal point.) +# +# Register usage: +# +# calc_m: +# (*) d0: temp digit storage +# (*) d1: lword counter +# (*) d2: digit count +# (*) d3: offset pointer +# ( ) d4: words 2 and 3 of bcd +# ( ) a0: pointer to working bcd value +# ( ) a6: pointer to original bcd value +# (*) fp0: mantissa accumulator +# ( ) FP_SCR1: working copy of original bcd value +# ( ) L_SCR1: copy of original exponent word +# +calc_m: + mov.l &1,%d1 # word counter, init to 1 + fmov.s &0x00000000,%fp0 # accumulator +# +# +# Since the packed number has a long word between the first & second parts, +# get the integer digit then skip down & get the rest of the +# mantissa. We will unroll the loop once. +# + bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word + fadd.b %d0,%fp0 # add digit to sum in fp0 +# +# +# Get the rest of the mantissa. +# +loadlw: + mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 + mov.l &FSTRT,%d3 # counter to pick up digits + mov.l &FNIBS,%d2 # reset number of digits per a0 ptr +md2b: + fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 + bfextu %d4{%d3:&4},%d0 # get the digit and zero extend + fadd.b %d0,%fp0 # fp0 = fp0 + digit +# +# +# If all the digits (8) in that long word have been converted (d2=0), +# then inc d1 (=2) to point to the next long word and reset d3 to 0 +# to initialize the digit offset, and set d2 to 7 for the digit count; +# else continue with this long word. +# + addq.b &4,%d3 # advance d3 to the next digit + dbf.w %d2,md2b # check for last digit in this lw +nextlw: + addq.l &1,%d1 # inc lw pointer in mantissa + cmp.l %d1,&2 # test for last lw + ble.b loadlw # if not, get last one +# +# Check the sign of the mant and make the value in fp0 the same sign. +# +m_sign: + btst &31,(%a0) # test sign of the mantissa + beq.b ap_st_z # if clear, go to append/strip zeros + fneg.x %fp0 # if set, negate fp0 +# +# Append/strip zeros: +# +# For adjusted exponents which have an absolute value greater than 27*, +# this routine calculates the amount needed to normalize the mantissa +# for the adjusted exponent. That number is subtracted from the exp +# if the exp was positive, and added if it was negative. The purpose +# of this is to reduce the value of the exponent and the possibility +# of error in calculation of pwrten. +# +# 1. Branch on the sign of the adjusted exponent. +# 2p.(positive exp) +# 2. Check M16 and the digits in lwords 2 and 3 in decending order. +# 3. Add one for each zero encountered until a non-zero digit. +# 4. Subtract the count from the exp. +# 5. Check if the exp has crossed zero in #3 above; make the exp abs +# and set SE. +# 6. Multiply the mantissa by 10**count. +# 2n.(negative exp) +# 2. Check the digits in lwords 3 and 2 in decending order. +# 3. Add one for each zero encountered until a non-zero digit. +# 4. Add the count to the exp. +# 5. Check if the exp has crossed zero in #3 above; clear SE. +# 6. Divide the mantissa by 10**count. +# +# *Why 27? If the adjusted exponent is within -28 < expA < 28, than +# any adjustment due to append/strip zeros will drive the resultane +# exponent towards zero. Since all pwrten constants with a power +# of 27 or less are exact, there is no need to use this routine to +# attempt to lessen the resultant exponent. +# +# Register usage: +# +# ap_st_z: +# (*) d0: temp digit storage +# (*) d1: zero count +# (*) d2: digit count +# (*) d3: offset pointer +# ( ) d4: first word of bcd +# (*) d5: lword counter +# ( ) a0: pointer to working bcd value +# ( ) FP_SCR1: working copy of original bcd value +# ( ) L_SCR1: copy of original exponent word +# +# +# First check the absolute value of the exponent to see if this +# routine is necessary. If so, then check the sign of the exponent +# and do append (+) or strip (-) zeros accordingly. +# This section handles a positive adjusted exponent. +# +ap_st_z: + mov.l (%sp),%d1 # load expA for range test + cmp.l %d1,&27 # test is with 27 + ble.w pwrten # if abs(expA) <28, skip ap/st zeros + btst &30,(%a0) # check sign of exp + bne.b ap_st_n # if neg, go to neg side + clr.l %d1 # zero count reg + mov.l (%a0),%d4 # load lword 1 to d4 + bfextu %d4{&28:&4},%d0 # get M16 in d0 + bne.b ap_p_fx # if M16 is non-zero, go fix exp + addq.l &1,%d1 # inc zero count + mov.l &1,%d5 # init lword counter + mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 + bne.b ap_p_cl # if lw 2 is zero, skip it + addq.l &8,%d1 # and inc count by 8 + addq.l &1,%d5 # inc lword counter + mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 +ap_p_cl: + clr.l %d3 # init offset reg + mov.l &7,%d2 # init digit counter +ap_p_gd: + bfextu %d4{%d3:&4},%d0 # get digit + bne.b ap_p_fx # if non-zero, go to fix exp + addq.l &4,%d3 # point to next digit + addq.l &1,%d1 # inc digit counter + dbf.w %d2,ap_p_gd # get next digit +ap_p_fx: + mov.l %d1,%d0 # copy counter to d2 + mov.l (%sp),%d1 # get adjusted exp from memory + sub.l %d0,%d1 # subtract count from exp + bge.b ap_p_fm # if still pos, go to pwrten + neg.l %d1 # now its neg; get abs + mov.l (%a0),%d4 # load lword 1 to d4 + or.l &0x40000000,%d4 # and set SE in d4 + or.l &0x40000000,(%a0) # and in memory +# +# Calculate the mantissa multiplier to compensate for the striping of +# zeros from the mantissa. +# +ap_p_fm: + lea.l PTENRN(%pc),%a1 # get address of power-of-ten table + clr.l %d3 # init table index + fmov.s &0x3f800000,%fp1 # init fp1 to 1 + mov.l &3,%d2 # init d2 to count bits in counter +ap_p_el: + asr.l &1,%d0 # shift lsb into carry + bcc.b ap_p_en # if 1, mul fp1 by pwrten factor + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +ap_p_en: + add.l &12,%d3 # inc d3 to next rtable entry + tst.l %d0 # check if d0 is zero + bne.b ap_p_el # if not, get next bit + fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) + bra.b pwrten # go calc pwrten +# +# This section handles a negative adjusted exponent. +# +ap_st_n: + clr.l %d1 # clr counter + mov.l &2,%d5 # set up d5 to point to lword 3 + mov.l (%a0,%d5.L*4),%d4 # get lword 3 + bne.b ap_n_cl # if not zero, check digits + sub.l &1,%d5 # dec d5 to point to lword 2 + addq.l &8,%d1 # inc counter by 8 + mov.l (%a0,%d5.L*4),%d4 # get lword 2 +ap_n_cl: + mov.l &28,%d3 # point to last digit + mov.l &7,%d2 # init digit counter +ap_n_gd: + bfextu %d4{%d3:&4},%d0 # get digit + bne.b ap_n_fx # if non-zero, go to exp fix + subq.l &4,%d3 # point to previous digit + addq.l &1,%d1 # inc digit counter + dbf.w %d2,ap_n_gd # get next digit +ap_n_fx: + mov.l %d1,%d0 # copy counter to d0 + mov.l (%sp),%d1 # get adjusted exp from memory + sub.l %d0,%d1 # subtract count from exp + bgt.b ap_n_fm # if still pos, go fix mantissa + neg.l %d1 # take abs of exp and clr SE + mov.l (%a0),%d4 # load lword 1 to d4 + and.l &0xbfffffff,%d4 # and clr SE in d4 + and.l &0xbfffffff,(%a0) # and in memory +# +# Calculate the mantissa multiplier to compensate for the appending of +# zeros to the mantissa. +# +ap_n_fm: + lea.l PTENRN(%pc),%a1 # get address of power-of-ten table + clr.l %d3 # init table index + fmov.s &0x3f800000,%fp1 # init fp1 to 1 + mov.l &3,%d2 # init d2 to count bits in counter +ap_n_el: + asr.l &1,%d0 # shift lsb into carry + bcc.b ap_n_en # if 1, mul fp1 by pwrten factor + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +ap_n_en: + add.l &12,%d3 # inc d3 to next rtable entry + tst.l %d0 # check if d0 is zero + bne.b ap_n_el # if not, get next bit + fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) +# +# +# Calculate power-of-ten factor from adjusted and shifted exponent. +# +# Register usage: +# +# pwrten: +# (*) d0: temp +# ( ) d1: exponent +# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp +# (*) d3: FPCR work copy +# ( ) d4: first word of bcd +# (*) a1: RTABLE pointer +# calc_p: +# (*) d0: temp +# ( ) d1: exponent +# (*) d3: PWRTxx table index +# ( ) a0: pointer to working copy of bcd +# (*) a1: PWRTxx pointer +# (*) fp1: power-of-ten accumulator +# +# Pwrten calculates the exponent factor in the selected rounding mode +# according to the following table: +# +# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode +# +# ANY ANY RN RN +# +# + + RP RP +# - + RP RM +# + - RP RM +# - - RP RP +# +# + + RM RM +# - + RM RP +# + - RM RP +# - - RM RM +# +# + + RZ RM +# - + RZ RM +# + - RZ RP +# - - RZ RP +# +# +pwrten: + mov.l USER_FPCR(%a6),%d3 # get user's FPCR + bfextu %d3{&26:&2},%d2 # isolate rounding mode bits + mov.l (%a0),%d4 # reload 1st bcd word to d4 + asl.l &2,%d2 # format d2 to be + bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} + add.l %d0,%d2 # in d2 as index into RTABLE + lea.l RTABLE(%pc),%a1 # load rtable base + mov.b (%a1,%d2),%d0 # load new rounding bits from table + clr.l %d3 # clear d3 to force no exc and extended + bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR + fmov.l %d3,%fpcr # write new FPCR + asr.l &1,%d0 # write correct PTENxx table + bcc.b not_rp # to a1 + lea.l PTENRP(%pc),%a1 # it is RP + bra.b calc_p # go to init section +not_rp: + asr.l &1,%d0 # keep checking + bcc.b not_rm + lea.l PTENRM(%pc),%a1 # it is RM + bra.b calc_p # go to init section +not_rm: + lea.l PTENRN(%pc),%a1 # it is RN +calc_p: + mov.l %d1,%d0 # copy exp to d0;use d0 + bpl.b no_neg # if exp is negative, + neg.l %d0 # invert it + or.l &0x40000000,(%a0) # and set SE bit +no_neg: + clr.l %d3 # table index + fmov.s &0x3f800000,%fp1 # init fp1 to 1 +e_loop: + asr.l &1,%d0 # shift next bit into carry + bcc.b e_next # if zero, skip the mul + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +e_next: + add.l &12,%d3 # inc d3 to next rtable entry + tst.l %d0 # check if d0 is zero + bne.b e_loop # not zero, continue shifting +# +# +# Check the sign of the adjusted exp and make the value in fp0 the +# same sign. If the exp was pos then multiply fp1*fp0; +# else divide fp0/fp1. +# +# Register Usage: +# norm: +# ( ) a0: pointer to working bcd value +# (*) fp0: mantissa accumulator +# ( ) fp1: scaling factor - 10**(abs(exp)) +# +pnorm: + btst &30,(%a0) # test the sign of the exponent + beq.b mul # if clear, go to multiply +div: + fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp + bra.b end_dec +mul: + fmul.x %fp1,%fp0 # exp is positive, so multiply by exp +# +# +# Clean up and return with result in fp0. +# +# If the final mul/div in decbin incurred an inex exception, +# it will be inex2, but will be reported as inex1 by get_op. +# +end_dec: + fmov.l %fpsr,%d0 # get status register + bclr &inex2_bit+8,%d0 # test for inex2 and clear it + beq.b no_exc # skip this if no exc + ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX +no_exc: + add.l &0x4,%sp # clear 1 lw param + fmovm.x (%sp)+,&0x40 # restore fp1 + movm.l (%sp)+,&0x3c # restore d2-d5 + fmov.l &0x0,%fpcr + fmov.l &0x0,%fpsr + rts + +######################################################################### +# bindec(): Converts an input in extended precision format to bcd format# +# # +# INPUT *************************************************************** # +# a0 = pointer to the input extended precision value in memory. # +# the input may be either normalized, unnormalized, or # +# denormalized. # +# d0 = contains the k-factor sign-extended to 32-bits. # +# # +# OUTPUT ************************************************************** # +# FP_SCR0(a6) = bcd format result on the stack. # +# # +# ALGORITHM *********************************************************** # +# # +# A1. Set RM and size ext; Set SIGMA = sign of input. # +# The k-factor is saved for use in d7. Clear the # +# BINDEC_FLG for separating normalized/denormalized # +# input. If input is unnormalized or denormalized, # +# normalize it. # +# # +# A2. Set X = abs(input). # +# # +# A3. Compute ILOG. # +# ILOG is the log base 10 of the input value. It is # +# approximated by adding e + 0.f when the original # +# value is viewed as 2^^e * 1.f in extended precision. # +# This value is stored in d6. # +# # +# A4. Clr INEX bit. # +# The operation in A3 above may have set INEX2. # +# # +# A5. Set ICTR = 0; # +# ICTR is a flag used in A13. It must be set before the # +# loop entry A6. # +# # +# A6. Calculate LEN. # +# LEN is the number of digits to be displayed. The # +# k-factor can dictate either the total number of digits, # +# if it is a positive number, or the number of digits # +# after the decimal point which are to be included as # +# significant. See the 68882 manual for examples. # +# If LEN is computed to be greater than 17, set OPERR in # +# USER_FPSR. LEN is stored in d4. # +# # +# A7. Calculate SCALE. # +# SCALE is equal to 10^ISCALE, where ISCALE is the number # +# of decimal places needed to insure LEN integer digits # +# in the output before conversion to bcd. LAMBDA is the # +# sign of ISCALE, used in A9. Fp1 contains # +# 10^^(abs(ISCALE)) using a rounding mode which is a # +# function of the original rounding mode and the signs # +# of ISCALE and X. A table is given in the code. # +# # +# A8. Clr INEX; Force RZ. # +# The operation in A3 above may have set INEX2. # +# RZ mode is forced for the scaling operation to insure # +# only one rounding error. The grs bits are collected in # +# the INEX flag for use in A10. # +# # +# A9. Scale X -> Y. # +# The mantissa is scaled to the desired number of # +# significant digits. The excess digits are collected # +# in INEX2. # +# # +# A10. Or in INEX. # +# If INEX is set, round error occurred. This is # +# compensated for by 'or-ing' in the INEX2 flag to # +# the lsb of Y. # +# # +# A11. Restore original FPCR; set size ext. # +# Perform FINT operation in the user's rounding mode. # +# Keep the size to extended. # +# # +# A12. Calculate YINT = FINT(Y) according to user's rounding # +# mode. The FPSP routine sintd0 is used. The output # +# is in fp0. # +# # +# A13. Check for LEN digits. # +# If the int operation results in more than LEN digits, # +# or less than LEN -1 digits, adjust ILOG and repeat from # +# A6. This test occurs only on the first pass. If the # +# result is exactly 10^LEN, decrement ILOG and divide # +# the mantissa by 10. # +# # +# A14. Convert the mantissa to bcd. # +# The binstr routine is used to convert the LEN digit # +# mantissa to bcd in memory. The input to binstr is # +# to be a fraction; i.e. (mantissa)/10^LEN and adjusted # +# such that the decimal point is to the left of bit 63. # +# The bcd digits are stored in the correct position in # +# the final string area in memory. # +# # +# A15. Convert the exponent to bcd. # +# As in A14 above, the exp is converted to bcd and the # +# digits are stored in the final string. # +# Test the length of the final exponent string. If the # +# length is 4, set operr. # +# # +# A16. Write sign bits to final string. # +# # +######################################################################### + +set BINDEC_FLG, EXC_TEMP # DENORM flag + +# Constants in extended precision +PLOG2: + long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 +PLOG2UP1: + long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 + +# Constants in single precision +FONE: + long 0x3F800000,0x00000000,0x00000000,0x00000000 +FTWO: + long 0x40000000,0x00000000,0x00000000,0x00000000 +FTEN: + long 0x41200000,0x00000000,0x00000000,0x00000000 +F4933: + long 0x459A2800,0x00000000,0x00000000,0x00000000 + +RBDTBL: + byte 0,0,0,0 + byte 3,3,2,2 + byte 3,2,2,3 + byte 2,3,3,2 + +# Implementation Notes: +# +# The registers are used as follows: +# +# d0: scratch; LEN input to binstr +# d1: scratch +# d2: upper 32-bits of mantissa for binstr +# d3: scratch;lower 32-bits of mantissa for binstr +# d4: LEN +# d5: LAMBDA/ICTR +# d6: ILOG +# d7: k-factor +# a0: ptr for original operand/final result +# a1: scratch pointer +# a2: pointer to FP_X; abs(original value) in ext +# fp0: scratch +# fp1: scratch +# fp2: scratch +# F_SCR1: +# F_SCR2: +# L_SCR1: +# L_SCR2: + + global bindec +bindec: + movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} + fmovm.x &0x7,-(%sp) # {%fp0-%fp2} + +# A1. Set RM and size ext. Set SIGMA = sign input; +# The k-factor is saved for use in d7. Clear BINDEC_FLG for +# separating normalized/denormalized input. If the input +# is a denormalized number, set the BINDEC_FLG memory word +# to signal denorm. If the input is unnormalized, normalize +# the input and test for denormalized result. +# + fmov.l &rm_mode*0x10,%fpcr # set RM and ext + mov.l (%a0),L_SCR2(%a6) # save exponent for sign check + mov.l %d0,%d7 # move k-factor to d7 + + clr.b BINDEC_FLG(%a6) # clr norm/denorm flag + cmpi.b STAG(%a6),&DENORM # is input a DENORM? + bne.w A2_str # no; input is a NORM + +# +# Normalize the denorm +# +un_de_norm: + mov.w (%a0),%d0 + and.w &0x7fff,%d0 # strip sign of normalized exp + mov.l 4(%a0),%d1 + mov.l 8(%a0),%d2 +norm_loop: + sub.w &1,%d0 + lsl.l &1,%d2 + roxl.l &1,%d1 + tst.l %d1 + bge.b norm_loop +# +# Test if the normalized input is denormalized +# + tst.w %d0 + bgt.b pos_exp # if greater than zero, it is a norm + st BINDEC_FLG(%a6) # set flag for denorm +pos_exp: + and.w &0x7fff,%d0 # strip sign of normalized exp + mov.w %d0,(%a0) + mov.l %d1,4(%a0) + mov.l %d2,8(%a0) + +# A2. Set X = abs(input). +# +A2_str: + mov.l (%a0),FP_SCR1(%a6) # move input to work space + mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space + mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space + and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) + +# A3. Compute ILOG. +# ILOG is the log base 10 of the input value. It is approx- +# imated by adding e + 0.f when the original value is viewed +# as 2^^e * 1.f in extended precision. This value is stored +# in d6. +# +# Register usage: +# Input/Output +# d0: k-factor/exponent +# d2: x/x +# d3: x/x +# d4: x/x +# d5: x/x +# d6: x/ILOG +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: x/x +# a2: x/x +# fp0: x/float(ILOG) +# fp1: x/x +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X)/Abs(X) with $3fff exponent +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + + tst.b BINDEC_FLG(%a6) # check for denorm + beq.b A3_cont # if clr, continue with norm + mov.l &-4933,%d6 # force ILOG = -4933 + bra.b A4_str +A3_cont: + mov.w FP_SCR1(%a6),%d0 # move exp to d0 + mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff + fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f + sub.w &0x3fff,%d0 # strip off bias + fadd.w %d0,%fp0 # add in exp + fsub.s FONE(%pc),%fp0 # subtract off 1.0 + fbge.w pos_res # if pos, branch + fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 + fmov.l %fp0,%d6 # put ILOG in d6 as a lword + bra.b A4_str # go move out ILOG +pos_res: + fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 + fmov.l %fp0,%d6 # put ILOG in d6 as a lword + + +# A4. Clr INEX bit. +# The operation in A3 above may have set INEX2. + +A4_str: + fmov.l &0,%fpsr # zero all of fpsr - nothing needed + + +# A5. Set ICTR = 0; +# ICTR is a flag used in A13. It must be set before the +# loop entry A6. The lower word of d5 is used for ICTR. + + clr.w %d5 # clear ICTR + +# A6. Calculate LEN. +# LEN is the number of digits to be displayed. The k-factor +# can dictate either the total number of digits, if it is +# a positive number, or the number of digits after the +# original decimal point which are to be included as +# significant. See the 68882 manual for examples. +# If LEN is computed to be greater than 17, set OPERR in +# USER_FPSR. LEN is stored in d4. +# +# Register usage: +# Input/Output +# d0: exponent/Unchanged +# d2: x/x/scratch +# d3: x/x +# d4: exc picture/LEN +# d5: ICTR/Unchanged +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: x/x +# a2: x/x +# fp0: float(ILOG)/Unchanged +# fp1: x/x +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X) with $3fff exponent/Unchanged +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + +A6_str: + tst.l %d7 # branch on sign of k + ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k + mov.l %d7,%d4 # if k > 0, LEN = k + bra.b len_ck # skip to LEN check +k_neg: + mov.l %d6,%d4 # first load ILOG to d4 + sub.l %d7,%d4 # subtract off k + addq.l &1,%d4 # add in the 1 +len_ck: + tst.l %d4 # LEN check: branch on sign of LEN + ble.b LEN_ng # if neg, set LEN = 1 + cmp.l %d4,&17 # test if LEN > 17 + ble.b A7_str # if not, forget it + mov.l &17,%d4 # set max LEN = 17 + tst.l %d7 # if negative, never set OPERR + ble.b A7_str # if positive, continue + or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR + bra.b A7_str # finished here +LEN_ng: + mov.l &1,%d4 # min LEN is 1 + + +# A7. Calculate SCALE. +# SCALE is equal to 10^ISCALE, where ISCALE is the number +# of decimal places needed to insure LEN integer digits +# in the output before conversion to bcd. LAMBDA is the sign +# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using +# the rounding mode as given in the following table (see +# Coonen, p. 7.23 as ref.; however, the SCALE variable is +# of opposite sign in bindec.sa from Coonen). +# +# Initial USE +# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] +# ---------------------------------------------- +# RN 00 0 0 00/0 RN +# RN 00 0 1 00/0 RN +# RN 00 1 0 00/0 RN +# RN 00 1 1 00/0 RN +# RZ 01 0 0 11/3 RP +# RZ 01 0 1 11/3 RP +# RZ 01 1 0 10/2 RM +# RZ 01 1 1 10/2 RM +# RM 10 0 0 11/3 RP +# RM 10 0 1 10/2 RM +# RM 10 1 0 10/2 RM +# RM 10 1 1 11/3 RP +# RP 11 0 0 10/2 RM +# RP 11 0 1 11/3 RP +# RP 11 1 0 11/3 RP +# RP 11 1 1 10/2 RM +# +# Register usage: +# Input/Output +# d0: exponent/scratch - final is 0 +# d2: x/0 or 24 for A9 +# d3: x/scratch - offset ptr into PTENRM array +# d4: LEN/Unchanged +# d5: 0/ICTR:LAMBDA +# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: x/ptr to PTENRM array +# a2: x/x +# fp0: float(ILOG)/Unchanged +# fp1: x/10^ISCALE +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X) with $3fff exponent/Unchanged +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + +A7_str: + tst.l %d7 # test sign of k + bgt.b k_pos # if pos and > 0, skip this + cmp.l %d7,%d6 # test k - ILOG + blt.b k_pos # if ILOG >= k, skip this + mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k +k_pos: + mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 + addq.l &1,%d0 # add the 1 + sub.l %d4,%d0 # sub off LEN + swap %d5 # use upper word of d5 for LAMBDA + clr.w %d5 # set it zero initially + clr.w %d2 # set up d2 for very small case + tst.l %d0 # test sign of ISCALE + bge.b iscale # if pos, skip next inst + addq.w &1,%d5 # if neg, set LAMBDA true + cmp.l %d0,&0xffffecd4 # test iscale <= -4908 + bgt.b no_inf # if false, skip rest + add.l &24,%d0 # add in 24 to iscale + mov.l &24,%d2 # put 24 in d2 for A9 +no_inf: + neg.l %d0 # and take abs of ISCALE +iscale: + fmov.s FONE(%pc),%fp1 # init fp1 to 1 + bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits + lsl.w &1,%d1 # put them in bits 2:1 + add.w %d5,%d1 # add in LAMBDA + lsl.w &1,%d1 # put them in bits 3:1 + tst.l L_SCR2(%a6) # test sign of original x + bge.b x_pos # if pos, don't set bit 0 + addq.l &1,%d1 # if neg, set bit 0 +x_pos: + lea.l RBDTBL(%pc),%a2 # load rbdtbl base + mov.b (%a2,%d1),%d3 # load d3 with new rmode + lsl.l &4,%d3 # put bits in proper position + fmov.l %d3,%fpcr # load bits into fpu + lsr.l &4,%d3 # put bits in proper position + tst.b %d3 # decode new rmode for pten table + bne.b not_rn # if zero, it is RN + lea.l PTENRN(%pc),%a1 # load a1 with RN table base + bra.b rmode # exit decode +not_rn: + lsr.b &1,%d3 # get lsb in carry + bcc.b not_rp2 # if carry clear, it is RM + lea.l PTENRP(%pc),%a1 # load a1 with RP table base + bra.b rmode # exit decode +not_rp2: + lea.l PTENRM(%pc),%a1 # load a1 with RM table base +rmode: + clr.l %d3 # clr table index +e_loop2: + lsr.l &1,%d0 # shift next bit into carry + bcc.b e_next2 # if zero, skip the mul + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +e_next2: + add.l &12,%d3 # inc d3 to next pwrten table entry + tst.l %d0 # test if ISCALE is zero + bne.b e_loop2 # if not, loop + +# A8. Clr INEX; Force RZ. +# The operation in A3 above may have set INEX2. +# RZ mode is forced for the scaling operation to insure +# only one rounding error. The grs bits are collected in +# the INEX flag for use in A10. +# +# Register usage: +# Input/Output + + fmov.l &0,%fpsr # clr INEX + fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode + +# A9. Scale X -> Y. +# The mantissa is scaled to the desired number of significant +# digits. The excess digits are collected in INEX2. If mul, +# Check d2 for excess 10 exponential value. If not zero, +# the iscale value would have caused the pwrten calculation +# to overflow. Only a negative iscale can cause this, so +# multiply by 10^(d2), which is now only allowed to be 24, +# with a multiply by 10^8 and 10^16, which is exact since +# 10^24 is exact. If the input was denormalized, we must +# create a busy stack frame with the mul command and the +# two operands, and allow the fpu to complete the multiply. +# +# Register usage: +# Input/Output +# d0: FPCR with RZ mode/Unchanged +# d2: 0 or 24/unchanged +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: ptr to PTENRM array/Unchanged +# a2: x/x +# fp0: float(ILOG)/X adjusted for SCALE (Y) +# fp1: 10^ISCALE/Unchanged +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X) with $3fff exponent/Unchanged +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + +A9_str: + fmov.x (%a0),%fp0 # load X from memory + fabs.x %fp0 # use abs(X) + tst.w %d5 # LAMBDA is in lower word of d5 + bne.b sc_mul # if neg (LAMBDA = 1), scale by mul + fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 + bra.w A10_st # branch to A10 + +sc_mul: + tst.b BINDEC_FLG(%a6) # check for denorm + beq.w A9_norm # if norm, continue with mul + +# for DENORM, we must calculate: +# fp0 = input_op * 10^ISCALE * 10^24 +# since the input operand is a DENORM, we can't multiply it directly. +# so, we do the multiplication of the exponents and mantissas separately. +# in this way, we avoid underflow on intermediate stages of the +# multiplication and guarantee a result without exception. + fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack + + mov.w (%sp),%d3 # grab exponent + andi.w &0x7fff,%d3 # clear sign + ori.w &0x8000,(%a0) # make DENORM exp negative + add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp + subi.w &0x3fff,%d3 # subtract BIAS + add.w 36(%a1),%d3 + subi.w &0x3fff,%d3 # subtract BIAS + add.w 48(%a1),%d3 + subi.w &0x3fff,%d3 # subtract BIAS + + bmi.w sc_mul_err # is result is DENORM, punt!!! + + andi.w &0x8000,(%sp) # keep sign + or.w %d3,(%sp) # insert new exponent + andi.w &0x7fff,(%a0) # clear sign bit on DENORM again + mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk + mov.l 0x4(%a0),-(%sp) + mov.l &0x3fff0000,-(%sp) # force exp to zero + fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 + fmul.x (%sp)+,%fp0 + +# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 +# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 + mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa + mov.l 36+4(%a1),-(%sp) + mov.l &0x3fff0000,-(%sp) # force exp to zero + mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa + mov.l 48+4(%a1),-(%sp) + mov.l &0x3fff0000,-(%sp)# force exp to zero + fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 + fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 + bra.b A10_st + +sc_mul_err: + bra.b sc_mul_err + +A9_norm: + tst.w %d2 # test for small exp case + beq.b A9_con # if zero, continue as normal + fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 + fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 +A9_con: + fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 + +# A10. Or in INEX. +# If INEX is set, round error occurred. This is compensated +# for by 'or-ing' in the INEX2 flag to the lsb of Y. +# +# Register usage: +# Input/Output +# d0: FPCR with RZ mode/FPSR with INEX2 isolated +# d2: x/x +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: ptr to PTENxx array/Unchanged +# a2: x/ptr to FP_SCR1(a6) +# fp0: Y/Y with lsb adjusted +# fp1: 10^ISCALE/Unchanged +# fp2: x/x + +A10_st: + fmov.l %fpsr,%d0 # get FPSR + fmov.x %fp0,FP_SCR1(%a6) # move Y to memory + lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 + btst &9,%d0 # check if INEX2 set + beq.b A11_st # if clear, skip rest + or.l &1,8(%a2) # or in 1 to lsb of mantissa + fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu + + +# A11. Restore original FPCR; set size ext. +# Perform FINT operation in the user's rounding mode. Keep +# the size to extended. The sintdo entry point in the sint +# routine expects the FPCR value to be in USER_FPCR for +# mode and precision. The original FPCR is saved in L_SCR1. + +A11_st: + mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later + and.l &0x00000030,USER_FPCR(%a6) # set size to ext, +# ;block exceptions + + +# A12. Calculate YINT = FINT(Y) according to user's rounding mode. +# The FPSP routine sintd0 is used. The output is in fp0. +# +# Register usage: +# Input/Output +# d0: FPSR with AINEX cleared/FPCR with size set to ext +# d2: x/x/scratch +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/Unchanged +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/src ptr for sintdo +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored +# fp0: Y/YINT +# fp1: 10^ISCALE/Unchanged +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Y adjusted for inex/Y with original exponent +# L_SCR1:x/original USER_FPCR +# L_SCR2:first word of X packed/Unchanged + +A12_st: + movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} + mov.l L_SCR1(%a6),-(%sp) + mov.l L_SCR2(%a6),-(%sp) + + lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) + fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) + tst.l L_SCR2(%a6) # test sign of original operand + bge.b do_fint12 # if pos, use Y + or.l &0x80000000,(%a0) # if neg, use -Y +do_fint12: + mov.l USER_FPSR(%a6),-(%sp) +# bsr sintdo # sint routine returns int in fp0 + + fmov.l USER_FPCR(%a6),%fpcr + fmov.l &0x0,%fpsr # clear the AEXC bits!!! +## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode +## andi.l &0x00000030,%d0 +## fmov.l %d0,%fpcr + fint.x FP_SCR1(%a6),%fp0 # do fint() + fmov.l %fpsr,%d0 + or.w %d0,FPSR_EXCEPT(%a6) +## fmov.l &0x0,%fpcr +## fmov.l %fpsr,%d0 # don't keep ccodes +## or.w %d0,FPSR_EXCEPT(%a6) + + mov.b (%sp),USER_FPSR(%a6) + add.l &4,%sp + + mov.l (%sp)+,L_SCR2(%a6) + mov.l (%sp)+,L_SCR1(%a6) + movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} + + mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent + mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR + +# A13. Check for LEN digits. +# If the int operation results in more than LEN digits, +# or less than LEN -1 digits, adjust ILOG and repeat from +# A6. This test occurs only on the first pass. If the +# result is exactly 10^LEN, decrement ILOG and divide +# the mantissa by 10. The calculation of 10^LEN cannot +# be inexact, since all powers of ten upto 10^27 are exact +# in extended precision, so the use of a previous power-of-ten +# table will introduce no error. +# +# +# Register usage: +# Input/Output +# d0: FPCR with size set to ext/scratch final = 0 +# d2: x/x +# d3: x/scratch final = x +# d4: LEN/LEN adjusted +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG/ILOG adjusted +# d7: k-factor/Unchanged +# a0: pointer into memory for packed bcd string formation +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: int portion of Y/abs(YINT) adjusted +# fp1: 10^ISCALE/Unchanged +# fp2: x/10^LEN +# F_SCR1:x/x +# F_SCR2:Y with original exponent/Unchanged +# L_SCR1:original USER_FPCR/Unchanged +# L_SCR2:first word of X packed/Unchanged + +A13_st: + swap %d5 # put ICTR in lower word of d5 + tst.w %d5 # check if ICTR = 0 + bne not_zr # if non-zero, go to second test +# +# Compute 10^(LEN-1) +# + fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 + mov.l %d4,%d0 # put LEN in d0 + subq.l &1,%d0 # d0 = LEN -1 + clr.l %d3 # clr table index +l_loop: + lsr.l &1,%d0 # shift next bit into carry + bcc.b l_next # if zero, skip the mul + fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) +l_next: + add.l &12,%d3 # inc d3 to next pwrten table entry + tst.l %d0 # test if LEN is zero + bne.b l_loop # if not, loop +# +# 10^LEN-1 is computed for this test and A14. If the input was +# denormalized, check only the case in which YINT > 10^LEN. +# + tst.b BINDEC_FLG(%a6) # check if input was norm + beq.b A13_con # if norm, continue with checking + fabs.x %fp0 # take abs of YINT + bra test_2 +# +# Compare abs(YINT) to 10^(LEN-1) and 10^LEN +# +A13_con: + fabs.x %fp0 # take abs of YINT + fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) + fbge.w test_2 # if greater, do next test + subq.l &1,%d6 # subtract 1 from ILOG + mov.w &1,%d5 # set ICTR + fmov.l &rm_mode*0x10,%fpcr # set rmode to RM + fmul.s FTEN(%pc),%fp2 # compute 10^LEN + bra.w A6_str # return to A6 and recompute YINT +test_2: + fmul.s FTEN(%pc),%fp2 # compute 10^LEN + fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN + fblt.w A14_st # if less, all is ok, go to A14 + fbgt.w fix_ex # if greater, fix and redo + fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 + addq.l &1,%d6 # and inc ILOG + bra.b A14_st # and continue elsewhere +fix_ex: + addq.l &1,%d6 # increment ILOG by 1 + mov.w &1,%d5 # set ICTR + fmov.l &rm_mode*0x10,%fpcr # set rmode to RM + bra.w A6_str # return to A6 and recompute YINT +# +# Since ICTR <> 0, we have already been through one adjustment, +# and shouldn't have another; this is to check if abs(YINT) = 10^LEN +# 10^LEN is again computed using whatever table is in a1 since the +# value calculated cannot be inexact. +# +not_zr: + fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 + mov.l %d4,%d0 # put LEN in d0 + clr.l %d3 # clr table index +z_loop: + lsr.l &1,%d0 # shift next bit into carry + bcc.b z_next # if zero, skip the mul + fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) +z_next: + add.l &12,%d3 # inc d3 to next pwrten table entry + tst.l %d0 # test if LEN is zero + bne.b z_loop # if not, loop + fabs.x %fp0 # get abs(YINT) + fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN + fbneq.w A14_st # if not, skip this + fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 + addq.l &1,%d6 # and inc ILOG by 1 + addq.l &1,%d4 # and inc LEN + fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN + +# A14. Convert the mantissa to bcd. +# The binstr routine is used to convert the LEN digit +# mantissa to bcd in memory. The input to binstr is +# to be a fraction; i.e. (mantissa)/10^LEN and adjusted +# such that the decimal point is to the left of bit 63. +# The bcd digits are stored in the correct position in +# the final string area in memory. +# +# +# Register usage: +# Input/Output +# d0: x/LEN call to binstr - final is 0 +# d1: x/0 +# d2: x/ms 32-bits of mant of abs(YINT) +# d3: x/ls 32-bits of mant of abs(YINT) +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG +# d7: k-factor/Unchanged +# a0: pointer into memory for packed bcd string formation +# /ptr to first mantissa byte in result string +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: int portion of Y/abs(YINT) adjusted +# fp1: 10^ISCALE/Unchanged +# fp2: 10^LEN/Unchanged +# F_SCR1:x/Work area for final result +# F_SCR2:Y with original exponent/Unchanged +# L_SCR1:original USER_FPCR/Unchanged +# L_SCR2:first word of X packed/Unchanged + +A14_st: + fmov.l &rz_mode*0x10,%fpcr # force rz for conversion + fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN + lea.l FP_SCR0(%a6),%a0 + fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory + mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 + mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 + clr.l 4(%a0) # zero word 2 of FP_RES + clr.l 8(%a0) # zero word 3 of FP_RES + mov.l (%a0),%d0 # move exponent to d0 + swap %d0 # put exponent in lower word + beq.b no_sft # if zero, don't shift + sub.l &0x3ffd,%d0 # sub bias less 2 to make fract + tst.l %d0 # check if > 1 + bgt.b no_sft # if so, don't shift + neg.l %d0 # make exp positive +m_loop: + lsr.l &1,%d2 # shift d2:d3 right, add 0s + roxr.l &1,%d3 # the number of places + dbf.w %d0,m_loop # given in d0 +no_sft: + tst.l %d2 # check for mantissa of zero + bne.b no_zr # if not, go on + tst.l %d3 # continue zero check + beq.b zer_m # if zero, go directly to binstr +no_zr: + clr.l %d1 # put zero in d1 for addx + add.l &0x00000080,%d3 # inc at bit 7 + addx.l %d1,%d2 # continue inc + and.l &0xffffff80,%d3 # strip off lsb not used by 882 +zer_m: + mov.l %d4,%d0 # put LEN in d0 for binstr call + addq.l &3,%a0 # a0 points to M16 byte in result + bsr binstr # call binstr to convert mant + + +# A15. Convert the exponent to bcd. +# As in A14 above, the exp is converted to bcd and the +# digits are stored in the final string. +# +# Digits are stored in L_SCR1(a6) on return from BINDEC as: +# +# 32 16 15 0 +# ----------------------------------------- +# | 0 | e3 | e2 | e1 | e4 | X | X | X | +# ----------------------------------------- +# +# And are moved into their proper places in FP_SCR0. If digit e4 +# is non-zero, OPERR is signaled. In all cases, all 4 digits are +# written as specified in the 881/882 manual for packed decimal. +# +# Register usage: +# Input/Output +# d0: x/LEN call to binstr - final is 0 +# d1: x/scratch (0);shift count for final exponent packing +# d2: x/ms 32-bits of exp fraction/scratch +# d3: x/ls 32-bits of exp fraction +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG +# d7: k-factor/Unchanged +# a0: ptr to result string/ptr to L_SCR1(a6) +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: abs(YINT) adjusted/float(ILOG) +# fp1: 10^ISCALE/Unchanged +# fp2: 10^LEN/Unchanged +# F_SCR1:Work area for final result/BCD result +# F_SCR2:Y with original exponent/ILOG/10^4 +# L_SCR1:original USER_FPCR/Exponent digits on return from binstr +# L_SCR2:first word of X packed/Unchanged + +A15_st: + tst.b BINDEC_FLG(%a6) # check for denorm + beq.b not_denorm + ftest.x %fp0 # test for zero + fbeq.w den_zero # if zero, use k-factor or 4933 + fmov.l %d6,%fp0 # float ILOG + fabs.x %fp0 # get abs of ILOG + bra.b convrt +den_zero: + tst.l %d7 # check sign of the k-factor + blt.b use_ilog # if negative, use ILOG + fmov.s F4933(%pc),%fp0 # force exponent to 4933 + bra.b convrt # do it +use_ilog: + fmov.l %d6,%fp0 # float ILOG + fabs.x %fp0 # get abs of ILOG + bra.b convrt +not_denorm: + ftest.x %fp0 # test for zero + fbneq.w not_zero # if zero, force exponent + fmov.s FONE(%pc),%fp0 # force exponent to 1 + bra.b convrt # do it +not_zero: + fmov.l %d6,%fp0 # float ILOG + fabs.x %fp0 # get abs of ILOG +convrt: + fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 + fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory + mov.l 4(%a2),%d2 # move word 2 to d2 + mov.l 8(%a2),%d3 # move word 3 to d3 + mov.w (%a2),%d0 # move exp to d0 + beq.b x_loop_fin # if zero, skip the shift + sub.w &0x3ffd,%d0 # subtract off bias + neg.w %d0 # make exp positive +x_loop: + lsr.l &1,%d2 # shift d2:d3 right + roxr.l &1,%d3 # the number of places + dbf.w %d0,x_loop # given in d0 +x_loop_fin: + clr.l %d1 # put zero in d1 for addx + add.l &0x00000080,%d3 # inc at bit 6 + addx.l %d1,%d2 # continue inc + and.l &0xffffff80,%d3 # strip off lsb not used by 882 + mov.l &4,%d0 # put 4 in d0 for binstr call + lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits + bsr binstr # call binstr to convert exp + mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 + mov.l &12,%d1 # use d1 for shift count + lsr.l %d1,%d0 # shift d0 right by 12 + bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 + lsr.l %d1,%d0 # shift d0 right by 12 + bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 + tst.b %d0 # check if e4 is zero + beq.b A16_st # if zero, skip rest + or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR + + +# A16. Write sign bits to final string. +# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). +# +# Register usage: +# Input/Output +# d0: x/scratch - final is x +# d2: x/x +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG/ILOG adjusted +# d7: k-factor/Unchanged +# a0: ptr to L_SCR1(a6)/Unchanged +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: float(ILOG)/Unchanged +# fp1: 10^ISCALE/Unchanged +# fp2: 10^LEN/Unchanged +# F_SCR1:BCD result with correct signs +# F_SCR2:ILOG/10^4 +# L_SCR1:Exponent digits on return from binstr +# L_SCR2:first word of X packed/Unchanged + +A16_st: + clr.l %d0 # clr d0 for collection of signs + and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 + tst.l L_SCR2(%a6) # check sign of original mantissa + bge.b mant_p # if pos, don't set SM + mov.l &2,%d0 # move 2 in to d0 for SM +mant_p: + tst.l %d6 # check sign of ILOG + bge.b wr_sgn # if pos, don't set SE + addq.l &1,%d0 # set bit 0 in d0 for SE +wr_sgn: + bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 + +# Clean up and restore all registers used. + + fmov.l &0,%fpsr # clear possible inex2/ainex bits + fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} + movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} + rts + + global PTENRN +PTENRN: + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 + + global PTENRP +PTENRP: + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 + + global PTENRM +PTENRM: + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 + +######################################################################### +# binstr(): Converts a 64-bit binary integer to bcd. # +# # +# INPUT *************************************************************** # +# d2:d3 = 64-bit binary integer # +# d0 = desired length (LEN) # +# a0 = pointer to start in memory for bcd characters # +# (This pointer must point to byte 4 of the first # +# lword of the packed decimal memory string.) # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to LEN bcd digits representing the 64-bit integer. # +# # +# ALGORITHM *********************************************************** # +# The 64-bit binary is assumed to have a decimal point before # +# bit 63. The fraction is multiplied by 10 using a mul by 2 # +# shift and a mul by 8 shift. The bits shifted out of the # +# msb form a decimal digit. This process is iterated until # +# LEN digits are formed. # +# # +# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # +# digit formed will be assumed the least significant. This is # +# to force the first byte formed to have a 0 in the upper 4 bits. # +# # +# A2. Beginning of the loop: # +# Copy the fraction in d2:d3 to d4:d5. # +# # +# A3. Multiply the fraction in d2:d3 by 8 using bit-field # +# extracts and shifts. The three msbs from d2 will go into d1. # +# # +# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # +# will be collected by the carry. # +# # +# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # +# into d2:d3. D1 will contain the bcd digit formed. # +# # +# A6. Test d7. If zero, the digit formed is the ms digit. If non- # +# zero, it is the ls digit. Put the digit in its place in the # +# upper word of d0. If it is the ls digit, write the word # +# from d0 to memory. # +# # +# A7. Decrement d6 (LEN counter) and repeat the loop until zero. # +# # +######################################################################### + +# Implementation Notes: +# +# The registers are used as follows: +# +# d0: LEN counter +# d1: temp used to form the digit +# d2: upper 32-bits of fraction for mul by 8 +# d3: lower 32-bits of fraction for mul by 8 +# d4: upper 32-bits of fraction for mul by 2 +# d5: lower 32-bits of fraction for mul by 2 +# d6: temp for bit-field extracts +# d7: byte digit formation word;digit count {0,1} +# a0: pointer into memory for packed bcd string formation +# + + global binstr +binstr: + movm.l &0xff00,-(%sp) # {%d0-%d7} + +# +# A1: Init d7 +# + mov.l &1,%d7 # init d7 for second digit + subq.l &1,%d0 # for dbf d0 would have LEN+1 passes +# +# A2. Copy d2:d3 to d4:d5. Start loop. +# +loop: + mov.l %d2,%d4 # copy the fraction before muls + mov.l %d3,%d5 # to d4:d5 +# +# A3. Multiply d2:d3 by 8; extract msbs into d1. +# + bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 + asl.l &3,%d2 # shift d2 left by 3 places + bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 + asl.l &3,%d3 # shift d3 left by 3 places + or.l %d6,%d2 # or in msbs from d3 into d2 +# +# A4. Multiply d4:d5 by 2; add carry out to d1. +# + asl.l &1,%d5 # mul d5 by 2 + roxl.l &1,%d4 # mul d4 by 2 + swap %d6 # put 0 in d6 lower word + addx.w %d6,%d1 # add in extend from mul by 2 +# +# A5. Add mul by 8 to mul by 2. D1 contains the digit formed. +# + add.l %d5,%d3 # add lower 32 bits + nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) + addx.l %d4,%d2 # add with extend upper 32 bits + nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) + addx.w %d6,%d1 # add in extend from add to d1 + swap %d6 # with d6 = 0; put 0 in upper word +# +# A6. Test d7 and branch. +# + tst.w %d7 # if zero, store digit & to loop + beq.b first_d # if non-zero, form byte & write +sec_d: + swap %d7 # bring first digit to word d7b + asl.w &4,%d7 # first digit in upper 4 bits d7b + add.w %d1,%d7 # add in ls digit to d7b + mov.b %d7,(%a0)+ # store d7b byte in memory + swap %d7 # put LEN counter in word d7a + clr.w %d7 # set d7a to signal no digits done + dbf.w %d0,loop # do loop some more! + bra.b end_bstr # finished, so exit +first_d: + swap %d7 # put digit word in d7b + mov.w %d1,%d7 # put new digit in d7b + swap %d7 # put LEN counter in word d7a + addq.w &1,%d7 # set d7a to signal first digit done + dbf.w %d0,loop # do loop some more! + swap %d7 # put last digit in string + lsl.w &4,%d7 # move it to upper 4 bits + mov.b %d7,(%a0)+ # store it in memory string +# +# Clean up and return with result in fp0. +# +end_bstr: + movm.l (%sp)+,&0xff # {%d0-%d7} + rts + +######################################################################### +# XDEF **************************************************************** # +# facc_in_b(): dmem_read_byte failed # +# facc_in_w(): dmem_read_word failed # +# facc_in_l(): dmem_read_long failed # +# facc_in_d(): dmem_read of dbl prec failed # +# facc_in_x(): dmem_read of ext prec failed # +# # +# facc_out_b(): dmem_write_byte failed # +# facc_out_w(): dmem_write_word failed # +# facc_out_l(): dmem_write_long failed # +# facc_out_d(): dmem_write of dbl prec failed # +# facc_out_x(): dmem_write of ext prec failed # +# # +# XREF **************************************************************** # +# _real_access() - exit through access error handler # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# Flow jumps here when an FP data fetch call gets an error # +# result. This means the operating system wants an access error frame # +# made out of the current exception stack frame. # +# So, we first call restore() which makes sure that any updated # +# -(an)+ register gets returned to its pre-exception value and then # +# we change the stack to an access error stack frame. # +# # +######################################################################### + +facc_in_b: + movq.l &0x1,%d0 # one byte + bsr.w restore # fix An + + mov.w &0x0121,EXC_VOFF(%a6) # set FSLW + bra.w facc_finish + +facc_in_w: + movq.l &0x2,%d0 # two bytes + bsr.w restore # fix An + + mov.w &0x0141,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_in_l: + movq.l &0x4,%d0 # four bytes + bsr.w restore # fix An + + mov.w &0x0101,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_in_d: + movq.l &0x8,%d0 # eight bytes + bsr.w restore # fix An + + mov.w &0x0161,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_in_x: + movq.l &0xc,%d0 # twelve bytes + bsr.w restore # fix An + + mov.w &0x0161,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +################################################################ + +facc_out_b: + movq.l &0x1,%d0 # one byte + bsr.w restore # restore An + + mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_w: + movq.l &0x2,%d0 # two bytes + bsr.w restore # restore An + + mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_l: + movq.l &0x4,%d0 # four bytes + bsr.w restore # restore An + + mov.w &0x0081,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_d: + movq.l &0x8,%d0 # eight bytes + bsr.w restore # restore An + + mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_x: + mov.l &0xc,%d0 # twelve bytes + bsr.w restore # restore An + + mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW + +# here's where we actually create the access error frame from the +# current exception stack frame. +facc_finish: + mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + mov.l (%sp),-(%sp) # store SR, hi(PC) + mov.l 0x8(%sp),0x4(%sp) # store lo(PC) + mov.l 0xc(%sp),0x8(%sp) # store EA + mov.l &0x00000001,0xc(%sp) # store FSLW + mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) + mov.w &0x4008,0x6(%sp) # store voff + + btst &0x5,(%sp) # supervisor or user mode? + beq.b facc_out2 # user + bset &0x2,0xd(%sp) # set supervisor TM bit + +facc_out2: + bra.l _real_access + +################################################################## + +# if the effective addressing mode was predecrement or postincrement, +# the emulation has already changed its value to the correct post- +# instruction value. but since we're exiting to the access error +# handler, then AN must be returned to its pre-instruction value. +# we do that here. +restore: + mov.b EXC_OPWORD+0x1(%a6),%d1 + andi.b &0x38,%d1 # extract opmode + cmpi.b %d1,&0x18 # postinc? + beq.w rest_inc + cmpi.b %d1,&0x20 # predec? + beq.w rest_dec + rts + +rest_inc: + mov.b EXC_OPWORD+0x1(%a6),%d1 + andi.w &0x0007,%d1 # fetch An + + mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 + jmp (tbl_rest_inc.b,%pc,%d1.w*1) + +tbl_rest_inc: + short ri_a0 - tbl_rest_inc + short ri_a1 - tbl_rest_inc + short ri_a2 - tbl_rest_inc + short ri_a3 - tbl_rest_inc + short ri_a4 - tbl_rest_inc + short ri_a5 - tbl_rest_inc + short ri_a6 - tbl_rest_inc + short ri_a7 - tbl_rest_inc + +ri_a0: + sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 + rts +ri_a1: + sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 + rts +ri_a2: + sub.l %d0,%a2 # fix a2 + rts +ri_a3: + sub.l %d0,%a3 # fix a3 + rts +ri_a4: + sub.l %d0,%a4 # fix a4 + rts +ri_a5: + sub.l %d0,%a5 # fix a5 + rts +ri_a6: + sub.l %d0,(%a6) # fix stacked a6 + rts +# if it's a fmove out instruction, we don't have to fix a7 +# because we hadn't changed it yet. if it's an opclass two +# instruction (data moved in) and the exception was in supervisor +# mode, then also also wasn't updated. if it was user mode, then +# restore the correct a7 which is in the USP currently. +ri_a7: + cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? + bne.b ri_a7_done # out + + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.b ri_a7_done # supervisor + movc %usp,%a0 # restore USP + sub.l %d0,%a0 + movc %a0,%usp +ri_a7_done: + rts + +# need to invert adjustment value if the <ea> was predec +rest_dec: + neg.l %d0 + bra.b rest_inc diff --git a/arch/m68k/ifpsp060/src/ftest.S b/arch/m68k/ifpsp060/src/ftest.S new file mode 100644 index 00000000000..2edcbae0fd5 --- /dev/null +++ b/arch/m68k/ifpsp060/src/ftest.S @@ -0,0 +1,1456 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +############################################# +set SREGS, -64 +set IREGS, -128 +set IFPREGS, -224 +set SFPREGS, -320 +set IFPCREGS, -332 +set SFPCREGS, -344 +set ICCR, -346 +set SCCR, -348 +set TESTCTR, -352 +set DATA, -384 + +############################################# +TESTTOP: + bra.l _060TESTS_ + short 0x0000 + + bra.l _060TESTS_unimp + short 0x0000 + + bra.l _060TESTS_enable + short 0x0000 + +start_str: + string "Testing 68060 FPSP started:\n" + +start_str_unimp: + string "Testing 68060 FPSP unimplemented instruction started:\n" + +start_str_enable: + string "Testing 68060 FPSP exception enabled started:\n" + +pass_str: + string "passed\n" + +fail_str: + string " failed\n" + + align 0x4 +chk_test: + tst.l %d0 + bne.b test_fail +test_pass: + pea pass_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + rts +test_fail: + mov.l %d1,-(%sp) + bsr.l _print_num + addq.l &0x4,%sp + + pea fail_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + rts + +############################################# +_060TESTS_: + link %a6,&-384 + + movm.l &0x3f3c,-(%sp) + fmovm.x &0xff,-(%sp) + + pea start_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + +### effadd + clr.l TESTCTR(%a6) + pea effadd_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l effadd_0 + + bsr.l chk_test + +### unsupp + clr.l TESTCTR(%a6) + pea unsupp_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l unsupp_0 + + bsr.l chk_test + +### ovfl non-maskable + clr.l TESTCTR(%a6) + pea ovfl_nm_str(%pc) + bsr.l _print_str + bsr.l ovfl_nm_0 + + bsr.l chk_test + +### unfl non-maskable + clr.l TESTCTR(%a6) + pea unfl_nm_str(%pc) + bsr.l _print_str + bsr.l unfl_nm_0 + + bsr.l chk_test + + movm.l (%sp)+,&0x3cfc + fmovm.x (%sp)+,&0xff + + unlk %a6 + rts + +_060TESTS_unimp: + link %a6,&-384 + + movm.l &0x3f3c,-(%sp) + fmovm.x &0xff,-(%sp) + + pea start_str_unimp(%pc) + bsr.l _print_str + addq.l &0x4,%sp + +### unimp + clr.l TESTCTR(%a6) + pea unimp_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l unimp_0 + + bsr.l chk_test + + movm.l (%sp)+,&0x3cfc + fmovm.x (%sp)+,&0xff + + unlk %a6 + rts + +_060TESTS_enable: + link %a6,&-384 + + movm.l &0x3f3c,-(%sp) + fmovm.x &0xff,-(%sp) + + pea start_str_enable(%pc) + bsr.l _print_str + addq.l &0x4,%sp + +### snan + clr.l TESTCTR(%a6) + pea snan_str(%pc) + bsr.l _print_str + bsr.l snan_0 + + bsr.l chk_test + +### operr + clr.l TESTCTR(%a6) + pea operr_str(%pc) + bsr.l _print_str + bsr.l operr_0 + + bsr.l chk_test + +### ovfl + clr.l TESTCTR(%a6) + pea ovfl_str(%pc) + bsr.l _print_str + bsr.l ovfl_0 + + bsr.l chk_test + +### unfl + clr.l TESTCTR(%a6) + pea unfl_str(%pc) + bsr.l _print_str + bsr.l unfl_0 + + bsr.l chk_test + +### dz + clr.l TESTCTR(%a6) + pea dz_str(%pc) + bsr.l _print_str + bsr.l dz_0 + + bsr.l chk_test + +### inexact + clr.l TESTCTR(%a6) + pea inex_str(%pc) + bsr.l _print_str + bsr.l inex_0 + + bsr.l chk_test + + movm.l (%sp)+,&0x3cfc + fmovm.x (%sp)+,&0xff + + unlk %a6 + rts + +############################################# +############################################# + +unimp_str: + string "\tUnimplemented FP instructions..." + + align 0x4 +unimp_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x40000000,DATA+0x0(%a6) + mov.l &0xc90fdaa2,DATA+0x4(%a6) + mov.l &0x2168c235,DATA+0x8(%a6) + + mov.w &0x0000,%cc +unimp_0_pc: + fsin.x DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0xbfbf0000,IFPREGS+0x0(%a6) + mov.l &0x80000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x08000208,IFPCREGS+0x4(%a6) + lea unimp_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +unimp_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x3ffe0000,DATA+0x0(%a6) + mov.l &0xc90fdaa2,DATA+0x4(%a6) + mov.l &0x2168c235,DATA+0x8(%a6) + + mov.w &0x0000,%cc +unimp_1_pc: + ftan.x DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x3fff0000,IFPREGS+0x0(%a6) + mov.l &0x80000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x00000208,IFPCREGS+0x4(%a6) + lea unimp_1_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# fmovecr +unimp_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.w &0x0000,%cc +unimp_2_pc: + fmovcr.x &0x31,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x40000000,IFPREGS+0x0(%a6) + mov.l &0x935d8ddd,IFPREGS+0x4(%a6) + mov.l &0xaaa8ac17,IFPREGS+0x8(%a6) + mov.l &0x00000208,IFPCREGS+0x4(%a6) + lea unimp_2_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# fscc +unimp_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + fmov.l &0x0f000000,%fpsr + mov.l &0x00,%d7 + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.w &0x0000,%cc +unimp_3_pc: + fsgt %d7 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.l &0x0f008080,IFPCREGS+0x4(%a6) + lea unimp_3_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# fdbcc +unimp_4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + fmov.l &0x0f000000,%fpsr + mov.l &0x2,%d7 + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.w &0x0000,%cc +unimp_4_pc: + fdbgt.w %d7,unimp_4_pc + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.w &0xffff,IREGS+28+2(%a6) + mov.l &0x0f008080,IFPCREGS+0x4(%a6) + lea unimp_4_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# ftrapcc +unimp_5: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + fmov.l &0x0f000000,%fpsr + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.w &0x0000,%cc +unimp_5_pc: + ftpgt.l &0xabcdef01 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.l &0x0f008080,IFPCREGS+0x4(%a6) + lea unimp_5_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +############################################# + +effadd_str: + string "\tUnimplemented <ea>..." + + align 0x4 +effadd_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmov.b &0x2,%fp0 + + mov.w &0x0000,%cc +effadd_0_pc: + fmul.x &0xc00000008000000000000000,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0xc0010000,IFPREGS+0x0(%a6) + mov.l &0x80000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x08000000,IFPCREGS+0x4(%a6) + lea effadd_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +effadd_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.w &0x0000,%cc +effadd_1_pc: + fabs.p &0xc12300012345678912345678,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x3e660000,IFPREGS+0x0(%a6) + mov.l &0xd0ed23e8,IFPREGS+0x4(%a6) + mov.l &0xd14035bc,IFPREGS+0x8(%a6) + mov.l &0x00000108,IFPCREGS+0x4(%a6) + lea effadd_1_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +fmovml_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmovm.l &0xffffffffffffffff,%fpcr,%fpsr + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.l &0x0000fff0,IFPCREGS+0x0(%a6) + mov.l &0x0ffffff8,IFPCREGS+0x4(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +fmovml_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmovm.l &0xffffffffffffffff,%fpcr,%fpiar + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.l &0x0000fff0,IFPCREGS+0x0(%a6) + mov.l &0xffffffff,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +fmovml_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmovm.l &0xffffffffffffffff,%fpsr,%fpiar + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.l &0x0ffffff8,IFPCREGS+0x4(%a6) + mov.l &0xffffffff,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +fmovml_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmovm.l &0xffffffffffffffffffffffff,%fpcr,%fpsr,%fpiar + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + mov.l &0x0000fff0,IFPCREGS+0x0(%a6) + mov.l &0x0ffffff8,IFPCREGS+0x4(%a6) + mov.l &0xffffffff,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# fmovmx dynamic +fmovmx_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + fmov.b &0x1,%fp0 + fmov.b &0x2,%fp1 + fmov.b &0x3,%fp2 + fmov.b &0x4,%fp3 + fmov.b &0x5,%fp4 + fmov.b &0x6,%fp5 + fmov.b &0x7,%fp6 + fmov.b &0x8,%fp7 + + fmov.l &0x0,%fpiar + mov.l &0xffffffaa,%d0 + + mov.w &0x0000,ICCR(%a6) + movm.l &0xffff,IREGS(%a6) + + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + + mov.w &0x0000,%cc + + fmovm.x %d0,-(%sp) + + mov.w %cc,SCCR(%a6) + + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + fmov.s &0x7f800000,%fp1 + fmov.s &0x7f800000,%fp3 + fmov.s &0x7f800000,%fp5 + fmov.s &0x7f800000,%fp7 + + fmov.x (%sp)+,%fp1 + fmov.x (%sp)+,%fp3 + fmov.x (%sp)+,%fp5 + fmov.x (%sp)+,%fp7 + + movm.l &0xffff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +fmovmx_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + fmov.b &0x1,%fp0 + fmov.b &0x2,%fp1 + fmov.b &0x3,%fp2 + fmov.b &0x4,%fp3 + fmov.b &0x5,%fp4 + fmov.b &0x6,%fp5 + fmov.b &0x7,%fp6 + fmov.b &0x8,%fp7 + + fmov.x %fp6,-(%sp) + fmov.x %fp4,-(%sp) + fmov.x %fp2,-(%sp) + fmov.x %fp0,-(%sp) + + fmovm.x &0xff,IFPREGS(%a6) + + fmov.s &0x7f800000,%fp6 + fmov.s &0x7f800000,%fp4 + fmov.s &0x7f800000,%fp2 + fmov.s &0x7f800000,%fp0 + + fmov.l &0x0,%fpiar + fmov.l &0x0,%fpsr + mov.l &0xffffffaa,%d0 + + mov.w &0x0000,ICCR(%a6) + movm.l &0xffff,IREGS(%a6) + + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.w &0x0000,%cc + + fmovm.x (%sp)+,%d0 + + mov.w %cc,SCCR(%a6) + + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + movm.l &0xffff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +fmovmx_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + fmov.b &0x1,%fp0 + fmov.b &0x2,%fp1 + fmov.b &0x3,%fp2 + fmov.b &0x4,%fp3 + fmov.b &0x5,%fp4 + fmov.b &0x6,%fp5 + fmov.b &0x7,%fp6 + fmov.b &0x8,%fp7 + + fmov.l &0x0,%fpiar + mov.l &0xffffff00,%d0 + + mov.w &0x0000,ICCR(%a6) + movm.l &0xffff,IREGS(%a6) + + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + + mov.w &0x0000,%cc + + fmovm.x %d0,-(%sp) + + mov.w %cc,SCCR(%a6) + + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + movm.l &0xffff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +########################################################### + +# This test will take a non-maskable overflow directly. +ovfl_nm_str: + string "\tNon-maskable overflow..." + + align 0x4 +ovfl_nm_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmov.b &0x2,%fp0 + mov.l &0x7ffe0000,DATA+0x0(%a6) + mov.l &0x80000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + + mov.w &0x0000,%cc +ovfl_nm_0_pc: + fmul.x DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x7fff0000,IFPREGS+0x0(%a6) + mov.l &0x00000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x02001048,IFPCREGS+0x4(%a6) + lea ovfl_nm_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +########################################################### + +# This test will take an overflow directly. +ovfl_str: + string "\tEnabled overflow..." + + align 0x4 +ovfl_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmov.l &0x00001000,%fpcr + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + fmov.b &0x2,%fp0 + mov.l &0x7ffe0000,DATA+0x0(%a6) + mov.l &0x80000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + + mov.w &0x0000,%cc +ovfl_0_pc: + fmul.x DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x7fff0000,IFPREGS+0x0(%a6) + mov.l &0x00000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x02001048,IFPCREGS+0x4(%a6) + lea ovfl_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +# This test will take an underflow directly. +unfl_str: + string "\tEnabled underflow..." + + align 0x4 +unfl_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmov.l &0x00000800,%fpcr + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x00000000,DATA+0x0(%a6) + mov.l &0x80000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + fmovm.x DATA(%a6),&0x80 + + mov.w &0x0000,%cc +unfl_0_pc: + fdiv.b &0x2,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x00000000,IFPREGS+0x0(%a6) + mov.l &0x40000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x00000800,IFPCREGS+0x4(%a6) + lea unfl_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +# This test will take a non-maskable underflow directly. +unfl_nm_str: + string "\tNon-maskable underflow..." + + align 0x4 +unfl_nm_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x00000000,DATA+0x0(%a6) + mov.l &0x80000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + fmovm.x DATA(%a6),&0x80 + + mov.w &0x0000,%cc +unfl_nm_0_pc: + fdiv.b &0x2,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x00000000,IFPREGS+0x0(%a6) + mov.l &0x40000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x00000800,IFPCREGS+0x4(%a6) + lea unfl_nm_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +inex_str: + string "\tEnabled inexact..." + + align 0x4 +inex_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmov.l &0x00000200,%fpcr # enable inexact + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x50000000,DATA+0x0(%a6) + mov.l &0x80000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + fmovm.x DATA(%a6),&0x80 + + mov.w &0x0000,%cc +inex_0_pc: + fadd.b &0x2,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x50000000,IFPREGS+0x0(%a6) + mov.l &0x80000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x00000208,IFPCREGS+0x4(%a6) + lea inex_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +snan_str: + string "\tEnabled SNAN..." + + align 0x4 +snan_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmov.l &0x00004000,%fpcr # enable SNAN + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0xffff0000,DATA+0x0(%a6) + mov.l &0x00000000,DATA+0x4(%a6) + mov.l &0x00000001,DATA+0x8(%a6) + fmovm.x DATA(%a6),&0x80 + + mov.w &0x0000,%cc +snan_0_pc: + fadd.b &0x2,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0xffff0000,IFPREGS+0x0(%a6) + mov.l &0x00000000,IFPREGS+0x4(%a6) + mov.l &0x00000001,IFPREGS+0x8(%a6) + mov.l &0x09004080,IFPCREGS+0x4(%a6) + lea snan_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +operr_str: + string "\tEnabled OPERR..." + + align 0x4 +operr_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmov.l &0x00002000,%fpcr # enable OPERR + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0xffff0000,DATA+0x0(%a6) + mov.l &0x00000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + fmovm.x DATA(%a6),&0x80 + + mov.w &0x0000,%cc +operr_0_pc: + fadd.s &0x7f800000,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0xffff0000,IFPREGS+0x0(%a6) + mov.l &0x00000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x01002080,IFPCREGS+0x4(%a6) + lea operr_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +dz_str: + string "\tEnabled DZ..." + + align 0x4 +dz_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmov.l &0x00000400,%fpcr # enable DZ + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x40000000,DATA+0x0(%a6) + mov.l &0x80000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + fmovm.x DATA(%a6),&0x80 + + mov.w &0x0000,%cc +dz_0_pc: + fdiv.b &0x0,%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x40000000,IFPREGS+0x0(%a6) + mov.l &0x80000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x02000410,IFPCREGS+0x4(%a6) + lea dz_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +##################################################################### + +unsupp_str: + string "\tUnimplemented data type/format..." + +# an unnormalized number + align 0x4 +unsupp_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0xc03f0000,DATA+0x0(%a6) + mov.l &0x00000000,DATA+0x4(%a6) + mov.l &0x00000001,DATA+0x8(%a6) + fmov.b &0x2,%fp0 + mov.w &0x0000,%cc +unsupp_0_pc: + fmul.x DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0xc0010000,IFPREGS+0x0(%a6) + mov.l &0x80000000,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x08000000,IFPCREGS+0x4(%a6) + lea unsupp_0_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# a denormalized number +unsupp_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0x80000000,DATA+0x0(%a6) + mov.l &0x01000000,DATA+0x4(%a6) + mov.l &0x00000000,DATA+0x8(%a6) + fmov.l &0x7fffffff,%fp0 + + mov.w &0x0000,%cc +unsupp_1_pc: + fmul.x DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x80170000,IFPREGS+0x0(%a6) + mov.l &0xfffffffe,IFPREGS+0x4(%a6) + mov.l &0x00000000,IFPREGS+0x8(%a6) + mov.l &0x08000000,IFPCREGS+0x4(%a6) + lea unsupp_1_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + +# packed +unsupp_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + fmovm.x DEF_FPREGS(%pc),&0xff + fmovm.l DEF_FPCREGS(%pc),%fpcr,%fpsr,%fpiar + + mov.w &0x0000,ICCR(%a6) + movm.l &0x7fff,IREGS(%a6) + fmovm.x &0xff,IFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,IFPCREGS(%a6) + + mov.l &0xc1230001,DATA+0x0(%a6) + mov.l &0x23456789,DATA+0x4(%a6) + mov.l &0x12345678,DATA+0x8(%a6) + + mov.w &0x0000,%cc +unsupp_2_pc: + fabs.p DATA(%a6),%fp0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + fmovm.x &0xff,SFPREGS(%a6) + fmovm.l %fpcr,%fpsr,%fpiar,SFPCREGS(%a6) + + mov.l &0x3e660000,IFPREGS+0x0(%a6) + mov.l &0xd0ed23e8,IFPREGS+0x4(%a6) + mov.l &0xd14035bc,IFPREGS+0x8(%a6) + mov.l &0x00000108,IFPCREGS+0x4(%a6) + lea unsupp_2_pc(%pc),%a0 + mov.l %a0,IFPCREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + bsr.l chkfpregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +########################################################### +########################################################### + +chkregs: + lea IREGS(%a6),%a0 + lea SREGS(%a6),%a1 + mov.l &14,%d0 +chkregs_loop: + cmp.l (%a0)+,(%a1)+ + bne.l chkregs_error + dbra.w %d0,chkregs_loop + + mov.w ICCR(%a6),%d0 + mov.w SCCR(%a6),%d1 + cmp.w %d0,%d1 + bne.l chkregs_error + + clr.l %d0 + rts + +chkregs_error: + movq.l &0x1,%d0 + rts + +error: + mov.l TESTCTR(%a6),%d1 + movq.l &0x1,%d0 + rts + +chkfpregs: + lea IFPREGS(%a6),%a0 + lea SFPREGS(%a6),%a1 + mov.l &23,%d0 +chkfpregs_loop: + cmp.l (%a0)+,(%a1)+ + bne.l chkfpregs_error + dbra.w %d0,chkfpregs_loop + + lea IFPCREGS(%a6),%a0 + lea SFPCREGS(%a6),%a1 + cmp.l (%a0)+,(%a1)+ + bne.l chkfpregs_error + cmp.l (%a0)+,(%a1)+ + bne.l chkfpregs_error + cmp.l (%a0)+,(%a1)+ + bne.l chkfpregs_error + + clr.l %d0 + rts + +chkfpregs_error: + movq.l &0x1,%d0 + rts + +DEF_REGS: + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + +DEF_FPREGS: + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + long 0x7fff0000, 0xffffffff, 0xffffffff + +DEF_FPCREGS: + long 0x00000000, 0x00000000, 0x00000000 + +############################################################ + +_print_str: + mov.l %d0,-(%sp) + mov.l (TESTTOP-0x80+0x0,%pc),%d0 + pea (TESTTOP-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +_print_num: + mov.l %d0,-(%sp) + mov.l (TESTTOP-0x80+0x4,%pc),%d0 + pea (TESTTOP-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +############################################################ diff --git a/arch/m68k/ifpsp060/src/ilsp.S b/arch/m68k/ifpsp060/src/ilsp.S new file mode 100644 index 00000000000..afa7422cddb --- /dev/null +++ b/arch/m68k/ifpsp060/src/ilsp.S @@ -0,0 +1,932 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# litop.s: +# This file is appended to the top of the 060FPLSP package +# and contains the entry points into the package. The user, in +# effect, branches to one of the branch table entries located here. +# + + bra.l _060LSP__idivs64_ + short 0x0000 + bra.l _060LSP__idivu64_ + short 0x0000 + + bra.l _060LSP__imuls64_ + short 0x0000 + bra.l _060LSP__imulu64_ + short 0x0000 + + bra.l _060LSP__cmp2_Ab_ + short 0x0000 + bra.l _060LSP__cmp2_Aw_ + short 0x0000 + bra.l _060LSP__cmp2_Al_ + short 0x0000 + bra.l _060LSP__cmp2_Db_ + short 0x0000 + bra.l _060LSP__cmp2_Dw_ + short 0x0000 + bra.l _060LSP__cmp2_Dl_ + short 0x0000 + +# leave room for future possible aditions. + align 0x200 + +######################################################################### +# XDEF **************************************************************** # +# _060LSP__idivu64_(): Emulate 64-bit unsigned div instruction. # +# _060LSP__idivs64_(): Emulate 64-bit signed div instruction. # +# # +# This is the library version which is accessed as a subroutine # +# and therefore does not work exactly like the 680X0 div{s,u}.l # +# 64-bit divide instruction. # +# # +# XREF **************************************************************** # +# None. # +# # +# INPUT *************************************************************** # +# 0x4(sp) = divisor # +# 0x8(sp) = hi(dividend) # +# 0xc(sp) = lo(dividend) # +# 0x10(sp) = pointer to location to place quotient/remainder # +# # +# OUTPUT ************************************************************** # +# 0x10(sp) = points to location of remainder/quotient. # +# remainder is in first longword, quotient is in 2nd. # +# # +# ALGORITHM *********************************************************** # +# If the operands are signed, make them unsigned and save the # +# sign info for later. Separate out special cases like divide-by-zero # +# or 32-bit divides if possible. Else, use a special math algorithm # +# to calculate the result. # +# Restore sign info if signed instruction. Set the condition # +# codes before performing the final "rts". If the divisor was equal to # +# zero, then perform a divide-by-zero using a 16-bit implemented # +# divide instruction. This way, the operating system can record that # +# the event occurred even though it may not point to the correct place. # +# # +######################################################################### + +set POSNEG, -1 +set NDIVISOR, -2 +set NDIVIDEND, -3 +set DDSECOND, -4 +set DDNORMAL, -8 +set DDQUOTIENT, -12 +set DIV64_CC, -16 + +########## +# divs.l # +########## + global _060LSP__idivs64_ +_060LSP__idivs64_: +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-16 + movm.l &0x3f00,-(%sp) # save d2-d7 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,DIV64_CC(%a6) + st POSNEG(%a6) # signed operation + bra.b ldiv64_cont + +########## +# divu.l # +########## + global _060LSP__idivu64_ +_060LSP__idivu64_: +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-16 + movm.l &0x3f00,-(%sp) # save d2-d7 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,DIV64_CC(%a6) + sf POSNEG(%a6) # unsigned operation + +ldiv64_cont: + mov.l 0x8(%a6),%d7 # fetch divisor + + beq.w ldiv64eq0 # divisor is = 0!!! + + mov.l 0xc(%a6), %d5 # get dividend hi + mov.l 0x10(%a6), %d6 # get dividend lo + +# separate signed and unsigned divide + tst.b POSNEG(%a6) # signed or unsigned? + beq.b ldspecialcases # use positive divide + +# save the sign of the divisor +# make divisor unsigned if it's negative + tst.l %d7 # chk sign of divisor + slt NDIVISOR(%a6) # save sign of divisor + bpl.b ldsgndividend + neg.l %d7 # complement negative divisor + +# save the sign of the dividend +# make dividend unsigned if it's negative +ldsgndividend: + tst.l %d5 # chk sign of hi(dividend) + slt NDIVIDEND(%a6) # save sign of dividend + bpl.b ldspecialcases + + mov.w &0x0, %cc # clear 'X' cc bit + negx.l %d6 # complement signed dividend + negx.l %d5 + +# extract some special cases: +# - is (dividend == 0) ? +# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) +ldspecialcases: + tst.l %d5 # is (hi(dividend) == 0) + bne.b ldnormaldivide # no, so try it the long way + + tst.l %d6 # is (lo(dividend) == 0), too + beq.w lddone # yes, so (dividend == 0) + + cmp.l %d7,%d6 # is (divisor <= lo(dividend)) + bls.b ld32bitdivide # yes, so use 32 bit divide + + exg %d5,%d6 # q = 0, r = dividend + bra.w ldivfinish # can't divide, we're done. + +ld32bitdivide: + tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! + + bra.b ldivfinish + +ldnormaldivide: +# last special case: +# - is hi(dividend) >= divisor ? if yes, then overflow + cmp.l %d7,%d5 + bls.b lddovf # answer won't fit in 32 bits + +# perform the divide algorithm: + bsr.l ldclassical # do int divide + +# separate into signed and unsigned finishes. +ldivfinish: + tst.b POSNEG(%a6) # do divs, divu separately + beq.b lddone # divu has no processing!!! + +# it was a divs.l, so ccode setting is a little more complicated... + tst.b NDIVIDEND(%a6) # remainder has same sign + beq.b ldcc # as dividend. + neg.l %d5 # sgn(rem) = sgn(dividend) +ldcc: + mov.b NDIVISOR(%a6), %d0 + eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative + beq.b ldqpos # branch to quot positive + +# 0x80000000 is the largest number representable as a 32-bit negative +# number. the negative of 0x80000000 is 0x80000000. + cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? + bhi.b lddovf + + neg.l %d6 # make (-quot) 2's comp + + bra.b lddone + +ldqpos: + btst &0x1f, %d6 # will (+quot) fit in 32 bits? + bne.b lddovf + +lddone: +# if the register numbers are the same, only the quotient gets saved. +# so, if we always save the quotient second, we save ourselves a cmp&beq + andi.w &0x10,DIV64_CC(%a6) + mov.w DIV64_CC(%a6),%cc + tst.l %d6 # may set 'N' ccode bit + +# here, the result is in d1 and d0. the current strategy is to save +# the values at the location pointed to by a0. +# use movm here to not disturb the condition codes. +ldexit: + movm.l &0x0060,([0x14,%a6]) # save result + +# EPILOGUE BEGIN ######################################################## +# fmovm.l (%sp)+,&0x0 # restore no fpregs + movm.l (%sp)+,&0x00fc # restore d2-d7 + unlk %a6 +# EPILOGUE END ########################################################## + + rts + +# the result should be the unchanged dividend +lddovf: + mov.l 0xc(%a6), %d5 # get dividend hi + mov.l 0x10(%a6), %d6 # get dividend lo + + andi.w &0x1c,DIV64_CC(%a6) + ori.w &0x02,DIV64_CC(%a6) # set 'V' ccode bit + mov.w DIV64_CC(%a6),%cc + + bra.b ldexit + +ldiv64eq0: + mov.l 0xc(%a6),([0x14,%a6]) + mov.l 0x10(%a6),([0x14,%a6],0x4) + + mov.w DIV64_CC(%a6),%cc + +# EPILOGUE BEGIN ######################################################## +# fmovm.l (%sp)+,&0x0 # restore no fpregs + movm.l (%sp)+,&0x00fc # restore d2-d7 + unlk %a6 +# EPILOGUE END ########################################################## + + divu.w &0x0,%d0 # force a divbyzero exception + rts + +########################################################################### +######################################################################### +# This routine uses the 'classical' Algorithm D from Donald Knuth's # +# Art of Computer Programming, vol II, Seminumerical Algorithms. # +# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # +# where U,V are words of the quadword dividend and longword divisor, # +# and U1, V1 are the most significant words. # +# # +# The most sig. longword of the 64 bit dividend must be in %d5, least # +# in %d6. The divisor must be in the variable ddivisor, and the # +# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # +# The quotient is returned in %d6, remainder in %d5, unless the # +# v (overflow) bit is set in the saved %ccr. If overflow, the dividend # +# is unchanged. # +######################################################################### +ldclassical: +# if the divisor msw is 0, use simpler algorithm then the full blown +# one at ddknuth: + + cmpi.l %d7, &0xffff + bhi.b lddknuth # go use D. Knuth algorithm + +# Since the divisor is only a word (and larger than the mslw of the dividend), +# a simpler algorithm may be used : +# In the general case, four quotient words would be created by +# dividing the divisor word into each dividend word. In this case, +# the first two quotient words must be zero, or overflow would occur. +# Since we already checked this case above, we can treat the most significant +# longword of the dividend as (0) remainder (see Knuth) and merely complete +# the last two divisions to get a quotient longword and word remainder: + + clr.l %d1 + swap %d5 # same as r*b if previous step rqd + swap %d6 # get u3 to lsw position + mov.w %d6, %d5 # rb + u3 + + divu.w %d7, %d5 + + mov.w %d5, %d1 # first quotient word + swap %d6 # get u4 + mov.w %d6, %d5 # rb + u4 + + divu.w %d7, %d5 + + swap %d1 + mov.w %d5, %d1 # 2nd quotient 'digit' + clr.w %d5 + swap %d5 # now remainder + mov.l %d1, %d6 # and quotient + + rts + +lddknuth: +# In this algorithm, the divisor is treated as a 2 digit (word) number +# which is divided into a 3 digit (word) dividend to get one quotient +# digit (word). After subtraction, the dividend is shifted and the +# process repeated. Before beginning, the divisor and quotient are +# 'normalized' so that the process of estimating the quotient digit +# will yield verifiably correct results.. + + clr.l DDNORMAL(%a6) # count of shifts for normalization + clr.b DDSECOND(%a6) # clear flag for quotient digits + clr.l %d1 # %d1 will hold trial quotient +lddnchk: + btst &31, %d7 # must we normalize? first word of + bne.b lddnormalized # divisor (V1) must be >= 65536/2 + addq.l &0x1, DDNORMAL(%a6) # count normalization shifts + lsl.l &0x1, %d7 # shift the divisor + lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 + roxl.l &0x1, %d5 # shift u1,u2 + bra.w lddnchk +lddnormalized: + +# Now calculate an estimate of the quotient words (msw first, then lsw). +# The comments use subscripts for the first quotient digit determination. + mov.l %d7, %d3 # divisor + mov.l %d5, %d2 # dividend mslw + swap %d2 + swap %d3 + cmp.w %d2, %d3 # V1 = U1 ? + bne.b lddqcalc1 + mov.w &0xffff, %d1 # use max trial quotient word + bra.b lddadj0 +lddqcalc1: + mov.l %d5, %d1 + + divu.w %d3, %d1 # use quotient of mslw/msw + + andi.l &0x0000ffff, %d1 # zero any remainder +lddadj0: + +# now test the trial quotient and adjust. This step plus the +# normalization assures (according to Knuth) that the trial +# quotient will be at worst 1 too large. + mov.l %d6, -(%sp) + clr.w %d6 # word u3 left + swap %d6 # in lsw position +lddadj1: mov.l %d7, %d3 + mov.l %d1, %d2 + mulu.w %d7, %d2 # V2q + swap %d3 + mulu.w %d1, %d3 # V1q + mov.l %d5, %d4 # U1U2 + sub.l %d3, %d4 # U1U2 - V1q + + swap %d4 + + mov.w %d4,%d0 + mov.w %d6,%d4 # insert lower word (U3) + + tst.w %d0 # is upper word set? + bne.w lddadjd1 + +# add.l %d6, %d4 # (U1U2 - V1q) + U3 + + cmp.l %d2, %d4 + bls.b lddadjd1 # is V2q > (U1U2-V1q) + U3 ? + subq.l &0x1, %d1 # yes, decrement and recheck + bra.b lddadj1 +lddadjd1: +# now test the word by multiplying it by the divisor (V1V2) and comparing +# the 3 digit (word) result with the current dividend words + mov.l %d5, -(%sp) # save %d5 (%d6 already saved) + mov.l %d1, %d6 + swap %d6 # shift answer to ms 3 words + mov.l %d7, %d5 + bsr.l ldmm2 + mov.l %d5, %d2 # now %d2,%d3 are trial*divisor + mov.l %d6, %d3 + mov.l (%sp)+, %d5 # restore dividend + mov.l (%sp)+, %d6 + sub.l %d3, %d6 + subx.l %d2, %d5 # subtract double precision + bcc ldd2nd # no carry, do next quotient digit + subq.l &0x1, %d1 # q is one too large +# need to add back divisor longword to current ms 3 digits of dividend +# - according to Knuth, this is done only 2 out of 65536 times for random +# divisor, dividend selection. + clr.l %d2 + mov.l %d7, %d3 + swap %d3 + clr.w %d3 # %d3 now ls word of divisor + add.l %d3, %d6 # aligned with 3rd word of dividend + addx.l %d2, %d5 + mov.l %d7, %d3 + clr.w %d3 # %d3 now ms word of divisor + swap %d3 # aligned with 2nd word of dividend + add.l %d3, %d5 +ldd2nd: + tst.b DDSECOND(%a6) # both q words done? + bne.b lddremain +# first quotient digit now correct. store digit and shift the +# (subtracted) dividend + mov.w %d1, DDQUOTIENT(%a6) + clr.l %d1 + swap %d5 + swap %d6 + mov.w %d6, %d5 + clr.w %d6 + st DDSECOND(%a6) # second digit + bra.w lddnormalized +lddremain: +# add 2nd word to quotient, get the remainder. + mov.w %d1, DDQUOTIENT+2(%a6) +# shift down one word/digit to renormalize remainder. + mov.w %d5, %d6 + swap %d6 + swap %d5 + mov.l DDNORMAL(%a6), %d7 # get norm shift count + beq.b lddrn + subq.l &0x1, %d7 # set for loop count +lddnlp: + lsr.l &0x1, %d5 # shift into %d6 + roxr.l &0x1, %d6 + dbf %d7, lddnlp +lddrn: + mov.l %d6, %d5 # remainder + mov.l DDQUOTIENT(%a6), %d6 # quotient + + rts +ldmm2: +# factors for the 32X32->64 multiplication are in %d5 and %d6. +# returns 64 bit result in %d5 (hi) %d6(lo). +# destroys %d2,%d3,%d4. + +# multiply hi,lo words of each factor to get 4 intermediate products + mov.l %d6, %d2 + mov.l %d6, %d3 + mov.l %d5, %d4 + swap %d3 + swap %d4 + mulu.w %d5, %d6 # %d6 <- lsw*lsw + mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source + mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest + mulu.w %d4, %d3 # %d3 <- msw*msw +# now use swap and addx to consolidate to two longwords + clr.l %d4 + swap %d6 + add.w %d5, %d6 # add msw of l*l to lsw of m*l product + addx.w %d4, %d3 # add any carry to m*m product + add.w %d2, %d6 # add in lsw of other m*l product + addx.w %d4, %d3 # add any carry to m*m product + swap %d6 # %d6 is low 32 bits of final product + clr.w %d5 + clr.w %d2 # lsw of two mixed products used, + swap %d5 # now use msws of longwords + swap %d2 + add.l %d2, %d5 + add.l %d3, %d5 # %d5 now ms 32 bits of final product + rts + +######################################################################### +# XDEF **************************************************************** # +# _060LSP__imulu64_(): Emulate 64-bit unsigned mul instruction # +# _060LSP__imuls64_(): Emulate 64-bit signed mul instruction. # +# # +# This is the library version which is accessed as a subroutine # +# and therefore does not work exactly like the 680X0 mul{s,u}.l # +# 64-bit multiply instruction. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# 0x4(sp) = multiplier # +# 0x8(sp) = multiplicand # +# 0xc(sp) = pointer to location to place 64-bit result # +# # +# OUTPUT ************************************************************** # +# 0xc(sp) = points to location of 64-bit result # +# # +# ALGORITHM *********************************************************** # +# Perform the multiply in pieces using 16x16->32 unsigned # +# multiplies and "add" instructions. # +# Set the condition codes as appropriate before performing an # +# "rts". # +# # +######################################################################### + +set MUL64_CC, -4 + + global _060LSP__imulu64_ +_060LSP__imulu64_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,MUL64_CC(%a6) # save incoming ccodes + + mov.l 0x8(%a6),%d0 # store multiplier in d0 + beq.w mulu64_zero # handle zero separately + + mov.l 0xc(%a6),%d1 # get multiplicand in d1 + beq.w mulu64_zero # handle zero separately + +######################################################################### +# 63 32 0 # +# ---------------------------- # +# | hi(mplier) * hi(mplicand)| # +# ---------------------------- # +# ----------------------------- # +# | hi(mplier) * lo(mplicand) | # +# ----------------------------- # +# ----------------------------- # +# | lo(mplier) * hi(mplicand) | # +# ----------------------------- # +# | ----------------------------- # +# --|-- | lo(mplier) * lo(mplicand) | # +# | ----------------------------- # +# ======================================================== # +# -------------------------------------------------------- # +# | hi(result) | lo(result) | # +# -------------------------------------------------------- # +######################################################################### +mulu64_alg: +# load temp registers with operands + mov.l %d0,%d2 # mr in d2 + mov.l %d0,%d3 # mr in d3 + mov.l %d1,%d4 # md in d4 + swap %d3 # hi(mr) in lo d3 + swap %d4 # hi(md) in lo d4 + +# complete necessary multiplies: + mulu.w %d1,%d0 # [1] lo(mr) * lo(md) + mulu.w %d3,%d1 # [2] hi(mr) * lo(md) + mulu.w %d4,%d2 # [3] lo(mr) * hi(md) + mulu.w %d4,%d3 # [4] hi(mr) * hi(md) + +# add lo portions of [2],[3] to hi portion of [1]. +# add carries produced from these adds to [4]. +# lo([1]) is the final lo 16 bits of the result. + clr.l %d4 # load d4 w/ zero value + swap %d0 # hi([1]) <==> lo([1]) + add.w %d1,%d0 # hi([1]) + lo([2]) + addx.l %d4,%d3 # [4] + carry + add.w %d2,%d0 # hi([1]) + lo([3]) + addx.l %d4,%d3 # [4] + carry + swap %d0 # lo([1]) <==> hi([1]) + +# lo portions of [2],[3] have been added in to final result. +# now, clear lo, put hi in lo reg, and add to [4] + clr.w %d1 # clear lo([2]) + clr.w %d2 # clear hi([3]) + swap %d1 # hi([2]) in lo d1 + swap %d2 # hi([3]) in lo d2 + add.l %d2,%d1 # [4] + hi([2]) + add.l %d3,%d1 # [4] + hi([3]) + +# now, grab the condition codes. only one that can be set is 'N'. +# 'N' CAN be set if the operation is unsigned if bit 63 is set. + mov.w MUL64_CC(%a6),%d4 + andi.b &0x10,%d4 # keep old 'X' bit + tst.l %d1 # may set 'N' bit + bpl.b mulu64_ddone + ori.b &0x8,%d4 # set 'N' bit +mulu64_ddone: + mov.w %d4,%cc + +# here, the result is in d1 and d0. the current strategy is to save +# the values at the location pointed to by a0. +# use movm here to not disturb the condition codes. +mulu64_end: + exg %d1,%d0 + movm.l &0x0003,([0x10,%a6]) # save result + +# EPILOGUE BEGIN ######################################################## +# fmovm.l (%sp)+,&0x0 # restore no fpregs + movm.l (%sp)+,&0x001c # restore d2-d4 + unlk %a6 +# EPILOGUE END ########################################################## + + rts + +# one or both of the operands is zero so the result is also zero. +# save the zero result to the register file and set the 'Z' ccode bit. +mulu64_zero: + clr.l %d0 + clr.l %d1 + + mov.w MUL64_CC(%a6),%d4 + andi.b &0x10,%d4 + ori.b &0x4,%d4 + mov.w %d4,%cc # set 'Z' ccode bit + + bra.b mulu64_end + +########## +# muls.l # +########## + global _060LSP__imuls64_ +_060LSP__imuls64_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3c00,-(%sp) # save d2-d5 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,MUL64_CC(%a6) # save incoming ccodes + + mov.l 0x8(%a6),%d0 # store multiplier in d0 + beq.b mulu64_zero # handle zero separately + + mov.l 0xc(%a6),%d1 # get multiplicand in d1 + beq.b mulu64_zero # handle zero separately + + clr.b %d5 # clear sign tag + tst.l %d0 # is multiplier negative? + bge.b muls64_chk_md_sgn # no + neg.l %d0 # make multiplier positive + + ori.b &0x1,%d5 # save multiplier sgn + +# the result sign is the exclusive or of the operand sign bits. +muls64_chk_md_sgn: + tst.l %d1 # is multiplicand negative? + bge.b muls64_alg # no + neg.l %d1 # make multiplicand positive + + eori.b &0x1,%d5 # calculate correct sign + +######################################################################### +# 63 32 0 # +# ---------------------------- # +# | hi(mplier) * hi(mplicand)| # +# ---------------------------- # +# ----------------------------- # +# | hi(mplier) * lo(mplicand) | # +# ----------------------------- # +# ----------------------------- # +# | lo(mplier) * hi(mplicand) | # +# ----------------------------- # +# | ----------------------------- # +# --|-- | lo(mplier) * lo(mplicand) | # +# | ----------------------------- # +# ======================================================== # +# -------------------------------------------------------- # +# | hi(result) | lo(result) | # +# -------------------------------------------------------- # +######################################################################### +muls64_alg: +# load temp registers with operands + mov.l %d0,%d2 # mr in d2 + mov.l %d0,%d3 # mr in d3 + mov.l %d1,%d4 # md in d4 + swap %d3 # hi(mr) in lo d3 + swap %d4 # hi(md) in lo d4 + +# complete necessary multiplies: + mulu.w %d1,%d0 # [1] lo(mr) * lo(md) + mulu.w %d3,%d1 # [2] hi(mr) * lo(md) + mulu.w %d4,%d2 # [3] lo(mr) * hi(md) + mulu.w %d4,%d3 # [4] hi(mr) * hi(md) + +# add lo portions of [2],[3] to hi portion of [1]. +# add carries produced from these adds to [4]. +# lo([1]) is the final lo 16 bits of the result. + clr.l %d4 # load d4 w/ zero value + swap %d0 # hi([1]) <==> lo([1]) + add.w %d1,%d0 # hi([1]) + lo([2]) + addx.l %d4,%d3 # [4] + carry + add.w %d2,%d0 # hi([1]) + lo([3]) + addx.l %d4,%d3 # [4] + carry + swap %d0 # lo([1]) <==> hi([1]) + +# lo portions of [2],[3] have been added in to final result. +# now, clear lo, put hi in lo reg, and add to [4] + clr.w %d1 # clear lo([2]) + clr.w %d2 # clear hi([3]) + swap %d1 # hi([2]) in lo d1 + swap %d2 # hi([3]) in lo d2 + add.l %d2,%d1 # [4] + hi([2]) + add.l %d3,%d1 # [4] + hi([3]) + + tst.b %d5 # should result be signed? + beq.b muls64_done # no + +# result should be a signed negative number. +# compute 2's complement of the unsigned number: +# -negate all bits and add 1 +muls64_neg: + not.l %d0 # negate lo(result) bits + not.l %d1 # negate hi(result) bits + addq.l &1,%d0 # add 1 to lo(result) + addx.l %d4,%d1 # add carry to hi(result) + +muls64_done: + mov.w MUL64_CC(%a6),%d4 + andi.b &0x10,%d4 # keep old 'X' bit + tst.l %d1 # may set 'N' bit + bpl.b muls64_ddone + ori.b &0x8,%d4 # set 'N' bit +muls64_ddone: + mov.w %d4,%cc + +# here, the result is in d1 and d0. the current strategy is to save +# the values at the location pointed to by a0. +# use movm here to not disturb the condition codes. +muls64_end: + exg %d1,%d0 + movm.l &0x0003,([0x10,%a6]) # save result at (a0) + +# EPILOGUE BEGIN ######################################################## +# fmovm.l (%sp)+,&0x0 # restore no fpregs + movm.l (%sp)+,&0x003c # restore d2-d5 + unlk %a6 +# EPILOGUE END ########################################################## + + rts + +# one or both of the operands is zero so the result is also zero. +# save the zero result to the register file and set the 'Z' ccode bit. +muls64_zero: + clr.l %d0 + clr.l %d1 + + mov.w MUL64_CC(%a6),%d4 + andi.b &0x10,%d4 + ori.b &0x4,%d4 + mov.w %d4,%cc # set 'Z' ccode bit + + bra.b muls64_end + +######################################################################### +# XDEF **************************************************************** # +# _060LSP__cmp2_Ab_(): Emulate "cmp2.b An,<ea>". # +# _060LSP__cmp2_Aw_(): Emulate "cmp2.w An,<ea>". # +# _060LSP__cmp2_Al_(): Emulate "cmp2.l An,<ea>". # +# _060LSP__cmp2_Db_(): Emulate "cmp2.b Dn,<ea>". # +# _060LSP__cmp2_Dw_(): Emulate "cmp2.w Dn,<ea>". # +# _060LSP__cmp2_Dl_(): Emulate "cmp2.l Dn,<ea>". # +# # +# This is the library version which is accessed as a subroutine # +# and therefore does not work exactly like the 680X0 "cmp2" # +# instruction. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# 0x4(sp) = Rn # +# 0x8(sp) = pointer to boundary pair # +# # +# OUTPUT ************************************************************** # +# cc = condition codes are set correctly # +# # +# ALGORITHM *********************************************************** # +# In the interest of simplicity, all operands are converted to # +# longword size whether the operation is byte, word, or long. The # +# bounds are sign extended accordingly. If Rn is a data regsiter, Rn is # +# also sign extended. If Rn is an address register, it need not be sign # +# extended since the full register is always used. # +# The condition codes are set correctly before the final "rts". # +# # +######################################################################### + +set CMP2_CC, -4 + + global _060LSP__cmp2_Ab_ +_060LSP__cmp2_Ab_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,CMP2_CC(%a6) + mov.l 0x8(%a6), %d2 # get regval + + mov.b ([0xc,%a6],0x0),%d0 + mov.b ([0xc,%a6],0x1),%d1 + + extb.l %d0 # sign extend lo bnd + extb.l %d1 # sign extend hi bnd + bra.w l_cmp2_cmp # go do the compare emulation + + global _060LSP__cmp2_Aw_ +_060LSP__cmp2_Aw_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,CMP2_CC(%a6) + mov.l 0x8(%a6), %d2 # get regval + + mov.w ([0xc,%a6],0x0),%d0 + mov.w ([0xc,%a6],0x2),%d1 + + ext.l %d0 # sign extend lo bnd + ext.l %d1 # sign extend hi bnd + bra.w l_cmp2_cmp # go do the compare emulation + + global _060LSP__cmp2_Al_ +_060LSP__cmp2_Al_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,CMP2_CC(%a6) + mov.l 0x8(%a6), %d2 # get regval + + mov.l ([0xc,%a6],0x0),%d0 + mov.l ([0xc,%a6],0x4),%d1 + bra.w l_cmp2_cmp # go do the compare emulation + + global _060LSP__cmp2_Db_ +_060LSP__cmp2_Db_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,CMP2_CC(%a6) + mov.l 0x8(%a6), %d2 # get regval + + mov.b ([0xc,%a6],0x0),%d0 + mov.b ([0xc,%a6],0x1),%d1 + + extb.l %d0 # sign extend lo bnd + extb.l %d1 # sign extend hi bnd + +# operation is a data register compare. +# sign extend byte to long so we can do simple longword compares. + extb.l %d2 # sign extend data byte + bra.w l_cmp2_cmp # go do the compare emulation + + global _060LSP__cmp2_Dw_ +_060LSP__cmp2_Dw_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,CMP2_CC(%a6) + mov.l 0x8(%a6), %d2 # get regval + + mov.w ([0xc,%a6],0x0),%d0 + mov.w ([0xc,%a6],0x2),%d1 + + ext.l %d0 # sign extend lo bnd + ext.l %d1 # sign extend hi bnd + +# operation is a data register compare. +# sign extend word to long so we can do simple longword compares. + ext.l %d2 # sign extend data word + bra.w l_cmp2_cmp # go emulate compare + + global _060LSP__cmp2_Dl_ +_060LSP__cmp2_Dl_: + +# PROLOGUE BEGIN ######################################################## + link.w %a6,&-4 + movm.l &0x3800,-(%sp) # save d2-d4 +# fmovm.l &0x0,-(%sp) # save no fpregs +# PROLOGUE END ########################################################## + + mov.w %cc,CMP2_CC(%a6) + mov.l 0x8(%a6), %d2 # get regval + + mov.l ([0xc,%a6],0x0),%d0 + mov.l ([0xc,%a6],0x4),%d1 + +# +# To set the ccodes correctly: +# (1) save 'Z' bit from (Rn - lo) +# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) +# (3) keep 'X', 'N', and 'V' from before instruction +# (4) combine ccodes +# +l_cmp2_cmp: + sub.l %d0, %d2 # (Rn - lo) + mov.w %cc, %d3 # fetch resulting ccodes + andi.b &0x4, %d3 # keep 'Z' bit + sub.l %d0, %d1 # (hi - lo) + cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) + + mov.w %cc, %d4 # fetch resulting ccodes + or.b %d4, %d3 # combine w/ earlier ccodes + andi.b &0x5, %d3 # keep 'Z' and 'N' + + mov.w CMP2_CC(%a6), %d4 # fetch old ccodes + andi.b &0x1a, %d4 # keep 'X','N','V' bits + or.b %d3, %d4 # insert new ccodes + mov.w %d4,%cc # save new ccodes + +# EPILOGUE BEGIN ######################################################## +# fmovm.l (%sp)+,&0x0 # restore no fpregs + movm.l (%sp)+,&0x001c # restore d2-d4 + unlk %a6 +# EPILOGUE END ########################################################## + + rts diff --git a/arch/m68k/ifpsp060/src/isp.S b/arch/m68k/ifpsp060/src/isp.S new file mode 100644 index 00000000000..b269091d9df --- /dev/null +++ b/arch/m68k/ifpsp060/src/isp.S @@ -0,0 +1,4299 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# ireal.s: +# This file is appended to the top of the 060ISP package +# and contains the entry points into the package. The user, in +# effect, branches to one of the branch table entries located +# after _060ISP_TABLE. +# Also, subroutine stubs exist in this file (_isp_done for +# example) that are referenced by the ISP package itself in order +# to call a given routine. The stub routine actually performs the +# callout. The ISP code does a "bsr" to the stub routine. This +# extra layer of hierarchy adds a slight performance penalty but +# it makes the ISP code easier to read and more mainatinable. +# + +set _off_chk, 0x00 +set _off_divbyzero, 0x04 +set _off_trace, 0x08 +set _off_access, 0x0c +set _off_done, 0x10 + +set _off_cas, 0x14 +set _off_cas2, 0x18 +set _off_lock, 0x1c +set _off_unlock, 0x20 + +set _off_imr, 0x40 +set _off_dmr, 0x44 +set _off_dmw, 0x48 +set _off_irw, 0x4c +set _off_irl, 0x50 +set _off_drb, 0x54 +set _off_drw, 0x58 +set _off_drl, 0x5c +set _off_dwb, 0x60 +set _off_dww, 0x64 +set _off_dwl, 0x68 + +_060ISP_TABLE: + +# Here's the table of ENTRY POINTS for those linking the package. + bra.l _isp_unimp + short 0x0000 + + bra.l _isp_cas + short 0x0000 + + bra.l _isp_cas2 + short 0x0000 + + bra.l _isp_cas_finish + short 0x0000 + + bra.l _isp_cas2_finish + short 0x0000 + + bra.l _isp_cas_inrange + short 0x0000 + + bra.l _isp_cas_terminate + short 0x0000 + + bra.l _isp_cas_restart + short 0x0000 + + space 64 + +############################################################# + + global _real_chk +_real_chk: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_chk,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_divbyzero +_real_divbyzero: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_trace +_real_trace: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_trace,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_access +_real_access: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_access,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _isp_done +_isp_done: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_done,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +####################################### + + global _real_cas +_real_cas: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_cas,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_cas2 +_real_cas2: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_lock_page +_real_lock_page: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_lock,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_unlock_page +_real_unlock_page: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +####################################### + + global _imem_read +_imem_read: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_imr,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read +_dmem_read: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write +_dmem_write: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _imem_read_word +_imem_read_word: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_irw,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _imem_read_long +_imem_read_long: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_irl,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_byte +_dmem_read_byte: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_drb,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_word +_dmem_read_word: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_drw,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_long +_dmem_read_long: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_drl,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_byte +_dmem_write_byte: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_word +_dmem_write_word: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_dww,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_long +_dmem_write_long: + mov.l %d0,-(%sp) + mov.l (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0 + pea.l (_060ISP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +# +# This file contains a set of define statements for constants +# in oreder to promote readability within the core code itself. +# + +set LOCAL_SIZE, 96 # stack frame size(bytes) +set LV, -LOCAL_SIZE # stack offset + +set EXC_ISR, 0x4 # stack status register +set EXC_IPC, 0x6 # stack pc +set EXC_IVOFF, 0xa # stacked vector offset + +set EXC_AREGS, LV+64 # offset of all address regs +set EXC_DREGS, LV+32 # offset of all data regs + +set EXC_A7, EXC_AREGS+(7*4) # offset of a7 +set EXC_A6, EXC_AREGS+(6*4) # offset of a6 +set EXC_A5, EXC_AREGS+(5*4) # offset of a5 +set EXC_A4, EXC_AREGS+(4*4) # offset of a4 +set EXC_A3, EXC_AREGS+(3*4) # offset of a3 +set EXC_A2, EXC_AREGS+(2*4) # offset of a2 +set EXC_A1, EXC_AREGS+(1*4) # offset of a1 +set EXC_A0, EXC_AREGS+(0*4) # offset of a0 +set EXC_D7, EXC_DREGS+(7*4) # offset of d7 +set EXC_D6, EXC_DREGS+(6*4) # offset of d6 +set EXC_D5, EXC_DREGS+(5*4) # offset of d5 +set EXC_D4, EXC_DREGS+(4*4) # offset of d4 +set EXC_D3, EXC_DREGS+(3*4) # offset of d3 +set EXC_D2, EXC_DREGS+(2*4) # offset of d2 +set EXC_D1, EXC_DREGS+(1*4) # offset of d1 +set EXC_D0, EXC_DREGS+(0*4) # offset of d0 + +set EXC_TEMP, LV+16 # offset of temp stack space + +set EXC_SAVVAL, LV+12 # offset of old areg value +set EXC_SAVREG, LV+11 # offset of old areg index + +set SPCOND_FLG, LV+10 # offset of spc condition flg + +set EXC_CC, LV+8 # offset of cc register +set EXC_EXTWPTR, LV+4 # offset of current PC +set EXC_EXTWORD, LV+2 # offset of current ext opword +set EXC_OPWORD, LV+0 # offset of current opword + +########################### +# SPecial CONDition FLaGs # +########################### +set mia7_flg, 0x04 # (a7)+ flag +set mda7_flg, 0x08 # -(a7) flag +set ichk_flg, 0x10 # chk exception flag +set idbyz_flg, 0x20 # divbyzero flag +set restore_flg, 0x40 # restore -(an)+ flag +set immed_flg, 0x80 # immediate data flag + +set mia7_bit, 0x2 # (a7)+ bit +set mda7_bit, 0x3 # -(a7) bit +set ichk_bit, 0x4 # chk exception bit +set idbyz_bit, 0x5 # divbyzero bit +set restore_bit, 0x6 # restore -(a7)+ bit +set immed_bit, 0x7 # immediate data bit + +######### +# Misc. # +######### +set BYTE, 1 # len(byte) == 1 byte +set WORD, 2 # len(word) == 2 bytes +set LONG, 4 # len(longword) == 4 bytes + +######################################################################### +# XDEF **************************************************************** # +# _isp_unimp(): 060ISP entry point for Unimplemented Instruction # +# # +# This handler should be the first code executed upon taking the # +# "Unimplemented Integer Instruction" exception in an operating # +# system. # +# # +# XREF **************************************************************** # +# _imem_read_{word,long}() - read instruction word/longword # +# _mul64() - emulate 64-bit multiply # +# _div64() - emulate 64-bit divide # +# _moveperipheral() - emulate "movep" # +# _compandset() - emulate misaligned "cas" # +# _compandset2() - emulate "cas2" # +# _chk2_cmp2() - emulate "cmp2" and "chk2" # +# _isp_done() - "callout" for normal final exit # +# _real_trace() - "callout" for Trace exception # +# _real_chk() - "callout" for Chk exception # +# _real_divbyzero() - "callout" for DZ exception # +# _real_access() - "callout" for access error exception # +# # +# INPUT *************************************************************** # +# - The system stack contains the Unimp Int Instr stack frame # +# # +# OUTPUT ************************************************************** # +# If Trace exception: # +# - The system stack changed to contain Trace exc stack frame # +# If Chk exception: # +# - The system stack changed to contain Chk exc stack frame # +# If DZ exception: # +# - The system stack changed to contain DZ exc stack frame # +# If access error exception: # +# - The system stack changed to contain access err exc stk frame # +# Else: # +# - Results saved as appropriate # +# # +# ALGORITHM *********************************************************** # +# This handler fetches the first instruction longword from # +# memory and decodes it to determine which of the unimplemented # +# integer instructions caused this exception. This handler then calls # +# one of _mul64(), _div64(), _moveperipheral(), _compandset(), # +# _compandset2(), or _chk2_cmp2() as appropriate. # +# Some of these instructions, by their nature, may produce other # +# types of exceptions. "div" can produce a divide-by-zero exception, # +# and "chk2" can cause a "Chk" exception. In both cases, the current # +# exception stack frame must be converted to an exception stack frame # +# of the correct exception type and an exit must be made through # +# _real_divbyzero() or _real_chk() as appropriate. In addition, all # +# instructions may be executing while Trace is enabled. If so, then # +# a Trace exception stack frame must be created and an exit made # +# through _real_trace(). # +# Meanwhile, if any read or write to memory using the # +# _mem_{read,write}() "callout"s returns a failing value, then an # +# access error frame must be created and an exit made through # +# _real_access(). # +# If none of these occur, then a normal exit is made through # +# _isp_done(). # +# # +# This handler, upon entry, saves almost all user-visible # +# address and data registers to the stack. Although this may seem to # +# cause excess memory traffic, it was found that due to having to # +# access these register files for things like data retrieval and <ea> # +# calculations, it was more efficient to have them on the stack where # +# they could be accessed by indexing rather than to make subroutine # +# calls to retrieve a register of a particular index. # +# # +######################################################################### + + global _isp_unimp +_isp_unimp: + link.w %a6,&-LOCAL_SIZE # create room for stack frame + + movm.l &0x3fff,EXC_DREGS(%a6) # store d0-d7/a0-a5 + mov.l (%a6),EXC_A6(%a6) # store a6 + + btst &0x5,EXC_ISR(%a6) # from s or u mode? + bne.b uieh_s # supervisor mode +uieh_u: + mov.l %usp,%a0 # fetch user stack pointer + mov.l %a0,EXC_A7(%a6) # store a7 + bra.b uieh_cont +uieh_s: + lea 0xc(%a6),%a0 + mov.l %a0,EXC_A7(%a6) # store corrected sp + +############################################################################### + +uieh_cont: + clr.b SPCOND_FLG(%a6) # clear "special case" flag + + mov.w EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack + mov.l EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack + +# +# fetch the opword and first extension word pointed to by the stacked pc +# and store them to the stack for now +# + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch opword & extword + mov.l %d0,EXC_OPWORD(%a6) # store extword on stack + + +######################################################################### +# muls.l 0100 1100 00 |<ea>| 0*** 1100 0000 0*** # +# mulu.l 0100 1100 00 |<ea>| 0*** 0100 0000 0*** # +# # +# divs.l 0100 1100 01 |<ea>| 0*** 1100 0000 0*** # +# divu.l 0100 1100 01 |<ea>| 0*** 0100 0000 0*** # +# # +# movep.w m2r 0000 ***1 00 001*** | <displacement> | # +# movep.l m2r 0000 ***1 01 001*** | <displacement> | # +# movep.w r2m 0000 ***1 10 001*** | <displacement> | # +# movep.l r2m 0000 ***1 11 001*** | <displacement> | # +# # +# cas.w 0000 1100 11 |<ea>| 0000 000* **00 0*** # +# cas.l 0000 1110 11 |<ea>| 0000 000* **00 0*** # +# # +# cas2.w 0000 1100 11 111100 **** 000* **00 0*** # +# **** 000* **00 0*** # +# cas2.l 0000 1110 11 111100 **** 000* **00 0*** # +# **** 000* **00 0*** # +# # +# chk2.b 0000 0000 11 |<ea>| **** 1000 0000 0000 # +# chk2.w 0000 0010 11 |<ea>| **** 1000 0000 0000 # +# chk2.l 0000 0100 11 |<ea>| **** 1000 0000 0000 # +# # +# cmp2.b 0000 0000 11 |<ea>| **** 0000 0000 0000 # +# cmp2.w 0000 0010 11 |<ea>| **** 0000 0000 0000 # +# cmp2.l 0000 0100 11 |<ea>| **** 0000 0000 0000 # +######################################################################### + +# +# using bit 14 of the operation word, separate into 2 groups: +# (group1) mul64, div64 +# (group2) movep, chk2, cmp2, cas2, cas +# + btst &0x1e,%d0 # group1 or group2 + beq.b uieh_group2 # go handle group2 + +# +# now, w/ group1, make mul64's decode the fastest since it will +# most likely be used the most. +# +uieh_group1: + btst &0x16,%d0 # test for div64 + bne.b uieh_div64 # go handle div64 + +uieh_mul64: +# mul64() may use ()+ addressing and may, therefore, alter a7 + + bsr.l _mul64 # _mul64() + + btst &0x5,EXC_ISR(%a6) # supervisor mode? + beq.w uieh_done + btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? + beq.w uieh_done # no + btst &0x7,EXC_ISR(%a6) # is trace enabled? + bne.w uieh_trace_a7 # yes + bra.w uieh_a7 # no + +uieh_div64: +# div64() may use ()+ addressing and may, therefore, alter a7. +# div64() may take a divide by zero exception. + + bsr.l _div64 # _div64() + +# here, we sort out all of the special cases that may have happened. + btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed? + bne.b uieh_div64_a7 # yes +uieh_div64_dbyz: + btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? + bne.w uieh_divbyzero # yes + bra.w uieh_done # no +uieh_div64_a7: + btst &0x5,EXC_ISR(%a6) # supervisor mode? + beq.b uieh_div64_dbyz # no +# here, a7 has been incremented by 4 bytes in supervisor mode. we still +# may have the following 3 cases: +# (i) (a7)+ +# (ii) (a7)+; trace +# (iii) (a7)+; divide-by-zero +# + btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur? + bne.w uieh_divbyzero_a7 # yes + tst.b EXC_ISR(%a6) # no; is trace enabled? + bmi.w uieh_trace_a7 # yes + bra.w uieh_a7 # no + +# +# now, w/ group2, make movep's decode the fastest since it will +# most likely be used the most. +# +uieh_group2: + btst &0x18,%d0 # test for not movep + beq.b uieh_not_movep + + + bsr.l _moveperipheral # _movep() + bra.w uieh_done + +uieh_not_movep: + btst &0x1b,%d0 # test for chk2,cmp2 + beq.b uieh_chk2cmp2 # go handle chk2,cmp2 + + swap %d0 # put opword in lo word + cmpi.b %d0,&0xfc # test for cas2 + beq.b uieh_cas2 # go handle cas2 + +uieh_cas: + + bsr.l _compandset # _cas() + +# the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor +# mode are simply not considered valid and therefore are not handled. + + bra.w uieh_done + +uieh_cas2: + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # read extension word + + tst.l %d1 # ifetch error? + bne.w isp_iacc # yes + + bsr.l _compandset2 # _cas2() + bra.w uieh_done + +uieh_chk2cmp2: +# chk2 may take a chk exception + + bsr.l _chk2_cmp2 # _chk2_cmp2() + +# here we check to see if a chk trap should be taken + cmpi.b SPCOND_FLG(%a6),&ichk_flg + bne.w uieh_done + bra.b uieh_chk_trap + +########################################################################### + +# +# the required emulation has been completed. now, clean up the necessary stack +# info and prepare for rte +# +uieh_done: + mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes + +# if exception occurred in user mode, then we have to restore a7 in case it +# changed. we don't have to update a7 for supervisor mose because that case +# doesn't flow through here + btst &0x5,EXC_ISR(%a6) # user or supervisor? + bne.b uieh_finish # supervisor + + mov.l EXC_A7(%a6),%a0 # fetch user stack pointer + mov.l %a0,%usp # restore it + +uieh_finish: + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + + btst &0x7,EXC_ISR(%a6) # is trace mode on? + bne.b uieh_trace # yes;go handle trace mode + + mov.l EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame + mov.l EXC_A6(%a6),(%a6) # prepare new a6 for unlink + unlk %a6 # unlink stack frame + bra.l _isp_done + +# +# The instruction that was just emulated was also being traced. The trace +# trap for this instruction will be lost unless we jump to the trace handler. +# So, here we create a Trace Exception format number two exception stack +# frame from the Unimplemented Integer Intruction Exception stack frame +# format number zero and jump to the user supplied hook "_real_trace()". +# +# UIEH FRAME TRACE FRAME +# ***************** ***************** +# * 0x0 * 0x0f4 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x024 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# ->* Old * ***************** +# from link -->* A6 * * SR * +# ***************** ***************** +# /* A7 * * New * <-- for final unlink +# / * * * A6 * +# link frame < ***************** ***************** +# \ ~ ~ ~ ~ +# \***************** ***************** +# +uieh_trace: + mov.l EXC_A6(%a6),-0x4(%a6) + mov.w EXC_ISR(%a6),0x0(%a6) + mov.l EXC_IPC(%a6),0x8(%a6) + mov.l EXC_EXTWPTR(%a6),0x2(%a6) + mov.w &0x2024,0x6(%a6) + sub.l &0x4,%a6 + unlk %a6 + bra.l _real_trace + +# +# UIEH FRAME CHK FRAME +# ***************** ***************** +# * 0x0 * 0x0f4 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x018 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# (4 words) ***************** +# * SR * +# ***************** +# (6 words) +# +# the chk2 instruction should take a chk trap. so, here we must create a +# chk stack frame from an unimplemented integer instruction exception frame +# and jump to the user supplied entry point "_real_chk()". +# +uieh_chk_trap: + mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + + mov.w EXC_ISR(%a6),(%a6) # put new SR on stack + mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack + mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack + mov.w &0x2018,0x6(%a6) # put Vector Offset on stack + + mov.l EXC_A6(%a6),%a6 # restore a6 + add.l &LOCAL_SIZE,%sp # clear stack frame + + bra.l _real_chk + +# +# UIEH FRAME DIVBYZERO FRAME +# ***************** ***************** +# * 0x0 * 0x0f4 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x014 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# (4 words) ***************** +# * SR * +# ***************** +# (6 words) +# +# the divide instruction should take an integer divide by zero trap. so, here +# we must create a divbyzero stack frame from an unimplemented integer +# instruction exception frame and jump to the user supplied entry point +# "_real_divbyzero()". +# +uieh_divbyzero: + mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + + mov.w EXC_ISR(%a6),(%a6) # put new SR on stack + mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack + mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack + mov.w &0x2014,0x6(%a6) # put Vector Offset on stack + + mov.l EXC_A6(%a6),%a6 # restore a6 + add.l &LOCAL_SIZE,%sp # clear stack frame + + bra.l _real_divbyzero + +# +# DIVBYZERO FRAME +# ***************** +# * Current * +# UIEH FRAME * PC * +# ***************** ***************** +# * 0x0 * 0x0f4 * * 0x2 * 0x014 * +# ***************** ***************** +# * Current * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# (4 words) (6 words) +# +# the divide instruction should take an integer divide by zero trap. so, here +# we must create a divbyzero stack frame from an unimplemented integer +# instruction exception frame and jump to the user supplied entry point +# "_real_divbyzero()". +# +# However, we must also deal with the fact that (a7)+ was used from supervisor +# mode, thereby shifting the stack frame up 4 bytes. +# +uieh_divbyzero_a7: + mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + + mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack + mov.w &0x2014,0xa(%a6) # put Vector Offset on stack + mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack + + mov.l EXC_A6(%a6),%a6 # restore a6 + add.l &4+LOCAL_SIZE,%sp # clear stack frame + + bra.l _real_divbyzero + +# +# TRACE FRAME +# ***************** +# * Current * +# UIEH FRAME * PC * +# ***************** ***************** +# * 0x0 * 0x0f4 * * 0x2 * 0x024 * +# ***************** ***************** +# * Current * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# (4 words) (6 words) +# +# +# The instruction that was just emulated was also being traced. The trace +# trap for this instruction will be lost unless we jump to the trace handler. +# So, here we create a Trace Exception format number two exception stack +# frame from the Unimplemented Integer Intruction Exception stack frame +# format number zero and jump to the user supplied hook "_real_trace()". +# +# However, we must also deal with the fact that (a7)+ was used from supervisor +# mode, thereby shifting the stack frame up 4 bytes. +# +uieh_trace_a7: + mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + + mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack + mov.w &0x2024,0xa(%a6) # put Vector Offset on stack + mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack + + mov.l EXC_A6(%a6),%a6 # restore a6 + add.l &4+LOCAL_SIZE,%sp # clear stack frame + + bra.l _real_trace + +# +# UIEH FRAME +# ***************** +# * 0x0 * 0x0f4 * +# UIEH FRAME ***************** +# ***************** * Next * +# * 0x0 * 0x0f4 * * PC * +# ***************** ***************** +# * Current * * SR * +# * PC * ***************** +# ***************** (4 words) +# * SR * +# ***************** +# (4 words) +uieh_a7: + mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + + mov.w &0x00f4,0xe(%a6) # put Vector Offset on stack + mov.l EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack + mov.w EXC_ISR(%a6),0x8(%a6) # put SR on stack + + mov.l EXC_A6(%a6),%a6 # restore a6 + add.l &8+LOCAL_SIZE,%sp # clear stack frame + bra.l _isp_done + +########## + +# this is the exit point if a data read or write fails. +# a0 = failing address +# d0 = fslw +isp_dacc: + mov.l %a0,(%a6) # save address + mov.l %d0,-0x4(%a6) # save partial fslw + + lea -64(%a6),%sp + movm.l (%sp)+,&0x7fff # restore d0-d7/a0-a6 + + mov.l 0xc(%sp),-(%sp) # move voff,hi(pc) + mov.l 0x4(%sp),0x10(%sp) # store fslw + mov.l 0xc(%sp),0x4(%sp) # store sr,lo(pc) + mov.l 0x8(%sp),0xc(%sp) # store address + mov.l (%sp)+,0x4(%sp) # store voff,hi(pc) + mov.w &0x4008,0x6(%sp) # store new voff + + bra.b isp_acc_exit + +# this is the exit point if an instruction word read fails. +# FSLW: +# misaligned = true +# read = true +# size = word +# instruction = true +# software emulation error = true +isp_iacc: + movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5 + unlk %a6 # unlink frame + sub.w &0x8,%sp # make room for acc frame + mov.l 0x8(%sp),(%sp) # store sr,lo(pc) + mov.w 0xc(%sp),0x4(%sp) # store hi(pc) + mov.w &0x4008,0x6(%sp) # store new voff + mov.l 0x2(%sp),0x8(%sp) # store address (=pc) + mov.l &0x09428001,0xc(%sp) # store fslw + +isp_acc_exit: + btst &0x5,(%sp) # user or supervisor? + beq.b isp_acc_exit2 # user + bset &0x2,0xd(%sp) # set supervisor TM bit +isp_acc_exit2: + bra.l _real_access + +# if the addressing mode was (an)+ or -(an), the address register must +# be restored to its pre-exception value before entering _real_access. +isp_restore: + cmpi.b SPCOND_FLG(%a6),&restore_flg # do we need a restore? + bne.b isp_restore_done # no + clr.l %d0 + mov.b EXC_SAVREG(%a6),%d0 # regno to restore + mov.l EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value +isp_restore_done: + rts + +######################################################################### +# XDEF **************************************************************** # +# _calc_ea(): routine to calculate effective address # +# # +# XREF **************************************************************** # +# _imem_read_word() - read instruction word # +# _imem_read_long() - read instruction longword # +# _dmem_read_long() - read data longword (for memory indirect) # +# isp_iacc() - handle instruction access error exception # +# isp_dacc() - handle data access error exception # +# # +# INPUT *************************************************************** # +# d0 = number of bytes related to effective address (w,l) # +# # +# OUTPUT ************************************************************** # +# If exiting through isp_dacc... # +# a0 = failing address # +# d0 = FSLW # +# elsif exiting though isp_iacc... # +# none # +# else # +# a0 = effective address # +# # +# ALGORITHM *********************************************************** # +# The effective address type is decoded from the opword residing # +# on the stack. A jump table is used to vector to a routine for the # +# appropriate mode. Since none of the emulated integer instructions # +# uses byte-sized operands, only handle word and long operations. # +# # +# Dn,An - shouldn't enter here # +# (An) - fetch An value from stack # +# -(An) - fetch An value from stack; return decr value; # +# place decr value on stack; store old value in case of # +# future access error; if -(a7), set mda7_flg in # +# SPCOND_FLG # +# (An)+ - fetch An value from stack; return value; # +# place incr value on stack; store old value in case of # +# future access error; if (a7)+, set mia7_flg in # +# SPCOND_FLG # +# (d16,An) - fetch An value from stack; read d16 using # +# _imem_read_word(); fetch may fail -> branch to # +# isp_iacc() # +# (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch # +# address; fetch may fail # +# #<data> - return address of immediate value; set immed_flg # +# in SPCOND_FLG # +# (d16,PC) - fetch stacked PC value; read d16 using # +# _imem_read_word(); fetch may fail -> branch to # +# isp_iacc() # +# everything else - read needed displacements as appropriate w/ # +# _imem_read_{word,long}(); read may fail; if memory # +# indirect, read indirect address using # +# _dmem_read_long() which may also fail # +# # +######################################################################### + + global _calc_ea +_calc_ea: + mov.l %d0,%a0 # move # bytes to a0 + +# MODE and REG are taken from the EXC_OPWORD. + mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word + mov.w %d0,%d1 # make a copy + + andi.w &0x3f,%d0 # extract mode field + andi.l &0x7,%d1 # extract reg field + +# jump to the corresponding function for each {MODE,REG} pair. + mov.w (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance + jmp (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode + + swbeg &64 +tbl_ea_mode: + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + + short addr_ind_a0 - tbl_ea_mode + short addr_ind_a1 - tbl_ea_mode + short addr_ind_a2 - tbl_ea_mode + short addr_ind_a3 - tbl_ea_mode + short addr_ind_a4 - tbl_ea_mode + short addr_ind_a5 - tbl_ea_mode + short addr_ind_a6 - tbl_ea_mode + short addr_ind_a7 - tbl_ea_mode + + short addr_ind_p_a0 - tbl_ea_mode + short addr_ind_p_a1 - tbl_ea_mode + short addr_ind_p_a2 - tbl_ea_mode + short addr_ind_p_a3 - tbl_ea_mode + short addr_ind_p_a4 - tbl_ea_mode + short addr_ind_p_a5 - tbl_ea_mode + short addr_ind_p_a6 - tbl_ea_mode + short addr_ind_p_a7 - tbl_ea_mode + + short addr_ind_m_a0 - tbl_ea_mode + short addr_ind_m_a1 - tbl_ea_mode + short addr_ind_m_a2 - tbl_ea_mode + short addr_ind_m_a3 - tbl_ea_mode + short addr_ind_m_a4 - tbl_ea_mode + short addr_ind_m_a5 - tbl_ea_mode + short addr_ind_m_a6 - tbl_ea_mode + short addr_ind_m_a7 - tbl_ea_mode + + short addr_ind_disp_a0 - tbl_ea_mode + short addr_ind_disp_a1 - tbl_ea_mode + short addr_ind_disp_a2 - tbl_ea_mode + short addr_ind_disp_a3 - tbl_ea_mode + short addr_ind_disp_a4 - tbl_ea_mode + short addr_ind_disp_a5 - tbl_ea_mode + short addr_ind_disp_a6 - tbl_ea_mode + short addr_ind_disp_a7 - tbl_ea_mode + + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + short _addr_ind_ext - tbl_ea_mode + + short abs_short - tbl_ea_mode + short abs_long - tbl_ea_mode + short pc_ind - tbl_ea_mode + short pc_ind_ext - tbl_ea_mode + short immediate - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + short tbl_ea_mode - tbl_ea_mode + +################################### +# Address register indirect: (An) # +################################### +addr_ind_a0: + mov.l EXC_A0(%a6),%a0 # Get current a0 + rts + +addr_ind_a1: + mov.l EXC_A1(%a6),%a0 # Get current a1 + rts + +addr_ind_a2: + mov.l EXC_A2(%a6),%a0 # Get current a2 + rts + +addr_ind_a3: + mov.l EXC_A3(%a6),%a0 # Get current a3 + rts + +addr_ind_a4: + mov.l EXC_A4(%a6),%a0 # Get current a4 + rts + +addr_ind_a5: + mov.l EXC_A5(%a6),%a0 # Get current a5 + rts + +addr_ind_a6: + mov.l EXC_A6(%a6),%a0 # Get current a6 + rts + +addr_ind_a7: + mov.l EXC_A7(%a6),%a0 # Get current a7 + rts + +##################################################### +# Address register indirect w/ postincrement: (An)+ # +##################################################### +addr_ind_p_a0: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A0(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A0(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x0,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a1: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A1(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A1(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x1,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a2: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A2(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A2(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x2,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a3: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A3(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A3(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x3,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a4: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A4(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A4(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x4,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a5: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A5(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A5(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x5,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a6: + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A6(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A6(%a6) # save incremented value + + mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error + mov.b &0x6,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_p_a7: + mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag + + mov.l %a0,%d0 # copy no. bytes + mov.l EXC_A7(%a6),%a0 # load current value + add.l %a0,%d0 # increment + mov.l %d0,EXC_A7(%a6) # save incremented value + rts + +#################################################### +# Address register indirect w/ predecrement: -(An) # +#################################################### +addr_ind_m_a0: + mov.l EXC_A0(%a6),%d0 # Get current a0 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A0(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x0,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a1: + mov.l EXC_A1(%a6),%d0 # Get current a1 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A1(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x1,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a2: + mov.l EXC_A2(%a6),%d0 # Get current a2 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A2(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x2,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a3: + mov.l EXC_A3(%a6),%d0 # Get current a3 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A3(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x3,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a4: + mov.l EXC_A4(%a6),%d0 # Get current a4 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A4(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x4,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a5: + mov.l EXC_A5(%a6),%d0 # Get current a5 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A5(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x5,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a6: + mov.l EXC_A6(%a6),%d0 # Get current a6 + mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A6(%a6) # Save decr value + mov.l %d0,%a0 + + mov.b &0x6,EXC_SAVREG(%a6) # save regno, too + mov.b &restore_flg,SPCOND_FLG(%a6) # set flag + rts + +addr_ind_m_a7: + mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag + + mov.l EXC_A7(%a6),%d0 # Get current a7 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A7(%a6) # Save decr value + mov.l %d0,%a0 + rts + +######################################################## +# Address register indirect w/ displacement: (d16, An) # +######################################################## +addr_ind_disp_a0: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A0(%a6),%a0 # a0 + d16 + rts + +addr_ind_disp_a1: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A1(%a6),%a0 # a1 + d16 + rts + +addr_ind_disp_a2: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A2(%a6),%a0 # a2 + d16 + rts + +addr_ind_disp_a3: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A3(%a6),%a0 # a3 + d16 + rts + +addr_ind_disp_a4: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A4(%a6),%a0 # a4 + d16 + rts + +addr_ind_disp_a5: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A5(%a6),%a0 # a5 + d16 + rts + +addr_ind_disp_a6: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A6(%a6),%a0 # a6 + d16 + rts + +addr_ind_disp_a7: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + add.l EXC_A7(%a6),%a0 # a7 + d16 + rts + +######################################################################## +# Address register indirect w/ index(8-bit displacement): (dn, An, Xn) # +# " " " w/ " (base displacement): (bd, An, Xn) # +# Memory indirect postindexed: ([bd, An], Xn, od) # +# Memory indirect preindexed: ([bd, An, Xn], od) # +######################################################################## +_addr_ind_ext: + mov.l %d1,-(%sp) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch extword in d0 + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.l (%sp)+,%d1 + + mov.l (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0 + + btst &0x8,%d0 + beq.b addr_ind_index_8bit # for ext word or not? + + movm.l &0x3c00,-(%sp) # save d2-d5 + + mov.l %d0,%d5 # put extword in d5 + mov.l %a0,%d3 # put base in d3 + + bra.l calc_mem_ind # calc memory indirect + +addr_ind_index_8bit: + mov.l %d2,-(%sp) # save old d2 + + mov.l %d0,%d1 + rol.w &0x4,%d1 + andi.w &0xf,%d1 # extract index regno + + mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value + + btst &0xb,%d0 # is it word or long? + bne.b aii8_long + ext.l %d1 # sign extend word index +aii8_long: + mov.l %d0,%d2 + rol.w &0x7,%d2 + andi.l &0x3,%d2 # extract scale value + + lsl.l %d2,%d1 # shift index by scale + + extb.l %d0 # sign extend displacement + add.l %d1,%d0 # index + disp + add.l %d0,%a0 # An + (index + disp) + + mov.l (%sp)+,%d2 # restore old d2 + rts + +###################### +# Immediate: #<data> # +######################################################################### +# word, long: <ea> of the data is the current extension word # +# pointer value. new extension word pointer is simply the old # +# plus the number of bytes in the data type(2 or 4). # +######################################################################### +immediate: + mov.b &immed_flg,SPCOND_FLG(%a6) # set immediate flag + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch extension word ptr + rts + +########################### +# Absolute short: (XXX).W # +########################### +abs_short: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch short address + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # return <ea> in a0 + rts + +########################## +# Absolute long: (XXX).L # +########################## +abs_long: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch long address + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.l %d0,%a0 # return <ea> in a0 + rts + +####################################################### +# Program counter indirect w/ displacement: (d16, PC) # +####################################################### +pc_ind: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch word displacement + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 + +# _imem_read_word() increased the extwptr by 2. need to adjust here. + subq.l &0x2,%a0 # adjust <ea> + + rts + +########################################################## +# PC indirect w/ index(8-bit displacement): (d8, PC, An) # +# " " w/ " (base displacement): (bd, PC, An) # +# PC memory indirect postindexed: ([bd, PC], Xn, od) # +# PC memory indirect preindexed: ([bd, PC, Xn], od) # +########################################################## +pc_ind_ext: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch ext word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 + subq.l &0x2,%a0 # adjust base + + btst &0x8,%d0 # is disp only 8 bits? + beq.b pc_ind_index_8bit # yes + +# the indexed addressing mode uses a base displacement of size +# word or long + movm.l &0x3c00,-(%sp) # save d2-d5 + + mov.l %d0,%d5 # put extword in d5 + mov.l %a0,%d3 # put base in d3 + + bra.l calc_mem_ind # calc memory indirect + +pc_ind_index_8bit: + mov.l %d2,-(%sp) # create a temp register + + mov.l %d0,%d1 # make extword copy + rol.w &0x4,%d1 # rotate reg num into place + andi.w &0xf,%d1 # extract register number + + mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value + + btst &0xb,%d0 # is index word or long? + bne.b pii8_long # long + ext.l %d1 # sign extend word index +pii8_long: + mov.l %d0,%d2 # make extword copy + rol.w &0x7,%d2 # rotate scale value into place + andi.l &0x3,%d2 # extract scale value + + lsl.l %d2,%d1 # shift index by scale + + extb.l %d0 # sign extend displacement + add.l %d1,%d0 # index + disp + add.l %d0,%a0 # An + (index + disp) + + mov.l (%sp)+,%d2 # restore temp register + + rts + +# a5 = exc_extwptr (global to uaeh) +# a4 = exc_opword (global to uaeh) +# a3 = exc_dregs (global to uaeh) + +# d2 = index (internal " " ) +# d3 = base (internal " " ) +# d4 = od (internal " " ) +# d5 = extword (internal " " ) +calc_mem_ind: + btst &0x6,%d5 # is the index suppressed? + beq.b calc_index + clr.l %d2 # yes, so index = 0 + bra.b base_supp_ck +calc_index: + bfextu %d5{&16:&4},%d2 + mov.l (EXC_DREGS,%a6,%d2.w*4),%d2 + btst &0xb,%d5 # is index word or long? + bne.b no_ext + ext.l %d2 +no_ext: + bfextu %d5{&21:&2},%d0 + lsl.l %d0,%d2 +base_supp_ck: + btst &0x7,%d5 # is the bd suppressed? + beq.b no_base_sup + clr.l %d3 +no_base_sup: + bfextu %d5{&26:&2},%d0 # get bd size +# beq.l _error # if (size == 0) it's reserved + cmpi.b %d0,&2 + blt.b no_bd + beq.b get_word_bd + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + bra.b chk_ind +get_word_bd: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + ext.l %d0 # sign extend bd + +chk_ind: + add.l %d0,%d3 # base += bd +no_bd: + bfextu %d5{&30:&2},%d0 # is od suppressed? + beq.w aii_bd + cmpi.b %d0,&0x2 + blt.b null_od + beq.b word_od + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + bra.b add_them + +word_od: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + ext.l %d0 # sign extend od + bra.b add_them + +null_od: + clr.l %d0 +add_them: + mov.l %d0,%d4 + btst &0x2,%d5 # pre or post indexing? + beq.b pre_indexed + + mov.l %d3,%a0 + bsr.l _dmem_read_long + + tst.l %d1 # dfetch error? + bne.b calc_ea_err # yes + + add.l %d2,%d0 # <ea> += index + add.l %d4,%d0 # <ea> += od + bra.b done_ea + +pre_indexed: + add.l %d2,%d3 # preindexing + mov.l %d3,%a0 + bsr.l _dmem_read_long + + tst.l %d1 # ifetch error? + bne.b calc_ea_err # yes + + add.l %d4,%d0 # ea += od + bra.b done_ea + +aii_bd: + add.l %d2,%d3 # ea = (base + bd) + index + mov.l %d3,%d0 +done_ea: + mov.l %d0,%a0 + + movm.l (%sp)+,&0x003c # restore d2-d5 + rts + +# if dmem_read_long() returns a fail message in d1, the package +# must create an access error frame. here, we pass a skeleton fslw +# and the failing address to the routine that creates the new frame. +# FSLW: +# read = true +# size = longword +# TM = data +# software emulation error = true +calc_ea_err: + mov.l %d3,%a0 # pass failing address + mov.l &0x01010001,%d0 # pass fslw + bra.l isp_dacc + +######################################################################### +# XDEF **************************************************************** # +# _moveperipheral(): routine to emulate movep instruction # +# # +# XREF **************************************************************** # +# _dmem_read_byte() - read byte from memory # +# _dmem_write_byte() - write byte to memory # +# isp_dacc() - handle data access error exception # +# # +# INPUT *************************************************************** # +# none # +# # +# OUTPUT ************************************************************** # +# If exiting through isp_dacc... # +# a0 = failing address # +# d0 = FSLW # +# else # +# none # +# # +# ALGORITHM *********************************************************** # +# Decode the movep instruction words stored at EXC_OPWORD and # +# either read or write the required bytes from/to memory. Use the # +# _dmem_{read,write}_byte() routines. If one of the memory routines # +# returns a failing value, we must pass the failing address and a FSLW # +# to the _isp_dacc() routine. # +# Since this instruction is used to access peripherals, make sure # +# to only access the required bytes. # +# # +######################################################################### + +########################### +# movep.(w,l) Dx,(d,Ay) # +# movep.(w,l) (d,Ay),Dx # +########################### + global _moveperipheral +_moveperipheral: + mov.w EXC_OPWORD(%a6),%d1 # fetch the opcode word + + mov.b %d1,%d0 + and.w &0x7,%d0 # extract Ay from opcode word + + mov.l (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay + + add.w EXC_EXTWORD(%a6),%a0 # add: an + sgn_ext(disp) + + btst &0x7,%d1 # (reg 2 mem) or (mem 2 reg) + beq.w mem2reg + +# reg2mem: fetch dx, then write it to memory +reg2mem: + mov.w %d1,%d0 + rol.w &0x7,%d0 + and.w &0x7,%d0 # extract Dx from opcode word + + mov.l (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx + + btst &0x6,%d1 # word or long operation? + beq.b r2mwtrans + +# a0 = dst addr +# d0 = Dx +r2mltrans: + mov.l %d0,%d2 # store data + mov.l %a0,%a2 # store addr + rol.l &0x8,%d2 + mov.l %d2,%d0 + + bsr.l _dmem_write_byte # os : write hi + + tst.l %d1 # dfetch error? + bne.w movp_write_err # yes + + add.w &0x2,%a2 # incr addr + mov.l %a2,%a0 + rol.l &0x8,%d2 + mov.l %d2,%d0 + + bsr.l _dmem_write_byte # os : write lo + + tst.l %d1 # dfetch error? + bne.w movp_write_err # yes + + add.w &0x2,%a2 # incr addr + mov.l %a2,%a0 + rol.l &0x8,%d2 + mov.l %d2,%d0 + + bsr.l _dmem_write_byte # os : write lo + + tst.l %d1 # dfetch error? + bne.w movp_write_err # yes + + add.w &0x2,%a2 # incr addr + mov.l %a2,%a0 + rol.l &0x8,%d2 + mov.l %d2,%d0 + + bsr.l _dmem_write_byte # os : write lo + + tst.l %d1 # dfetch error? + bne.w movp_write_err # yes + + rts + +# a0 = dst addr +# d0 = Dx +r2mwtrans: + mov.l %d0,%d2 # store data + mov.l %a0,%a2 # store addr + lsr.w &0x8,%d0 + + bsr.l _dmem_write_byte # os : write hi + + tst.l %d1 # dfetch error? + bne.w movp_write_err # yes + + add.w &0x2,%a2 + mov.l %a2,%a0 + mov.l %d2,%d0 + + bsr.l _dmem_write_byte # os : write lo + + tst.l %d1 # dfetch error? + bne.w movp_write_err # yes + + rts + +# mem2reg: read bytes from memory. +# determines the dest register, and then writes the bytes into it. +mem2reg: + btst &0x6,%d1 # word or long operation? + beq.b m2rwtrans + +# a0 = dst addr +m2rltrans: + mov.l %a0,%a2 # store addr + + bsr.l _dmem_read_byte # read first byte + + tst.l %d1 # dfetch error? + bne.w movp_read_err # yes + + mov.l %d0,%d2 + + add.w &0x2,%a2 # incr addr by 2 bytes + mov.l %a2,%a0 + + bsr.l _dmem_read_byte # read second byte + + tst.l %d1 # dfetch error? + bne.w movp_read_err # yes + + lsl.w &0x8,%d2 + mov.b %d0,%d2 # append bytes + + add.w &0x2,%a2 # incr addr by 2 bytes + mov.l %a2,%a0 + + bsr.l _dmem_read_byte # read second byte + + tst.l %d1 # dfetch error? + bne.w movp_read_err # yes + + lsl.l &0x8,%d2 + mov.b %d0,%d2 # append bytes + + add.w &0x2,%a2 # incr addr by 2 bytes + mov.l %a2,%a0 + + bsr.l _dmem_read_byte # read second byte + + tst.l %d1 # dfetch error? + bne.w movp_read_err # yes + + lsl.l &0x8,%d2 + mov.b %d0,%d2 # append bytes + + mov.b EXC_OPWORD(%a6),%d1 + lsr.b &0x1,%d1 + and.w &0x7,%d1 # extract Dx from opcode word + + mov.l %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx + + rts + +# a0 = dst addr +m2rwtrans: + mov.l %a0,%a2 # store addr + + bsr.l _dmem_read_byte # read first byte + + tst.l %d1 # dfetch error? + bne.w movp_read_err # yes + + mov.l %d0,%d2 + + add.w &0x2,%a2 # incr addr by 2 bytes + mov.l %a2,%a0 + + bsr.l _dmem_read_byte # read second byte + + tst.l %d1 # dfetch error? + bne.w movp_read_err # yes + + lsl.w &0x8,%d2 + mov.b %d0,%d2 # append bytes + + mov.b EXC_OPWORD(%a6),%d1 + lsr.b &0x1,%d1 + and.w &0x7,%d1 # extract Dx from opcode word + + mov.w %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx + + rts + +# if dmem_{read,write}_byte() returns a fail message in d1, the package +# must create an access error frame. here, we pass a skeleton fslw +# and the failing address to the routine that creates the new frame. +# FSLW: +# write = true +# size = byte +# TM = data +# software emulation error = true +movp_write_err: + mov.l %a2,%a0 # pass failing address + mov.l &0x00a10001,%d0 # pass fslw + bra.l isp_dacc + +# FSLW: +# read = true +# size = byte +# TM = data +# software emulation error = true +movp_read_err: + mov.l %a2,%a0 # pass failing address + mov.l &0x01210001,%d0 # pass fslw + bra.l isp_dacc + +######################################################################### +# XDEF **************************************************************** # +# _chk2_cmp2(): routine to emulate chk2/cmp2 instructions # +# # +# XREF **************************************************************** # +# _calc_ea(): calculate effective address # +# _dmem_read_long(): read operands # +# _dmem_read_word(): read operands # +# isp_dacc(): handle data access error exception # +# # +# INPUT *************************************************************** # +# none # +# # +# OUTPUT ************************************************************** # +# If exiting through isp_dacc... # +# a0 = failing address # +# d0 = FSLW # +# else # +# none # +# # +# ALGORITHM *********************************************************** # +# First, calculate the effective address, then fetch the byte, # +# word, or longword sized operands. Then, in the interest of # +# simplicity, all operands are converted to longword size whether the # +# operation is byte, word, or long. The bounds are sign extended # +# accordingly. If Rn is a data regsiter, Rn is also sign extended. If # +# Rn is an address register, it need not be sign extended since the # +# full register is always used. # +# The comparisons are made and the condition codes calculated. # +# If the instruction is chk2 and the Rn value is out-of-bounds, set # +# the ichk_flg in SPCOND_FLG. # +# If the memory fetch returns a failing value, pass the failing # +# address and FSLW to the isp_dacc() routine. # +# # +######################################################################### + + global _chk2_cmp2 +_chk2_cmp2: + +# passing size parameter doesn't matter since chk2 & cmp2 can't do +# either predecrement, postincrement, or immediate. + bsr.l _calc_ea # calculate <ea> + + mov.b EXC_EXTWORD(%a6), %d0 # fetch hi extension word + rol.b &0x4, %d0 # rotate reg bits into lo + and.w &0xf, %d0 # extract reg bits + + mov.l (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval + + cmpi.b EXC_OPWORD(%a6), &0x2 # what size is operation? + blt.b chk2_cmp2_byte # size == byte + beq.b chk2_cmp2_word # size == word + +# the bounds are longword size. call routine to read the lower +# bound into d0 and the higher bound into d1. +chk2_cmp2_long: + mov.l %a0,%a2 # save copy of <ea> + bsr.l _dmem_read_long # fetch long lower bound + + tst.l %d1 # dfetch error? + bne.w chk2_cmp2_err_l # yes + + mov.l %d0,%d3 # save long lower bound + addq.l &0x4,%a2 + mov.l %a2,%a0 # pass <ea> of long upper bound + bsr.l _dmem_read_long # fetch long upper bound + + tst.l %d1 # dfetch error? + bne.w chk2_cmp2_err_l # yes + + mov.l %d0,%d1 # long upper bound in d1 + mov.l %d3,%d0 # long lower bound in d0 + bra.w chk2_cmp2_compare # go do the compare emulation + +# the bounds are word size. fetch them in one subroutine call by +# reading a longword. sign extend both. if it's a data operation, +# sign extend Rn to long, also. +chk2_cmp2_word: + mov.l %a0,%a2 + bsr.l _dmem_read_long # fetch 2 word bounds + + tst.l %d1 # dfetch error? + bne.w chk2_cmp2_err_l # yes + + mov.w %d0, %d1 # place hi in %d1 + swap %d0 # place lo in %d0 + + ext.l %d0 # sign extend lo bnd + ext.l %d1 # sign extend hi bnd + + btst &0x7, EXC_EXTWORD(%a6) # address compare? + bne.w chk2_cmp2_compare # yes; don't sign extend + +# operation is a data register compare. +# sign extend word to long so we can do simple longword compares. + ext.l %d2 # sign extend data word + bra.w chk2_cmp2_compare # go emulate compare + +# the bounds are byte size. fetch them in one subroutine call by +# reading a word. sign extend both. if it's a data operation, +# sign extend Rn to long, also. +chk2_cmp2_byte: + mov.l %a0,%a2 + bsr.l _dmem_read_word # fetch 2 byte bounds + + tst.l %d1 # dfetch error? + bne.w chk2_cmp2_err_w # yes + + mov.b %d0, %d1 # place hi in %d1 + lsr.w &0x8, %d0 # place lo in %d0 + + extb.l %d0 # sign extend lo bnd + extb.l %d1 # sign extend hi bnd + + btst &0x7, EXC_EXTWORD(%a6) # address compare? + bne.b chk2_cmp2_compare # yes; don't sign extend + +# operation is a data register compare. +# sign extend byte to long so we can do simple longword compares. + extb.l %d2 # sign extend data byte + +# +# To set the ccodes correctly: +# (1) save 'Z' bit from (Rn - lo) +# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi)) +# (3) keep 'X', 'N', and 'V' from before instruction +# (4) combine ccodes +# +chk2_cmp2_compare: + sub.l %d0, %d2 # (Rn - lo) + mov.w %cc, %d3 # fetch resulting ccodes + andi.b &0x4, %d3 # keep 'Z' bit + sub.l %d0, %d1 # (hi - lo) + cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi)) + + mov.w %cc, %d4 # fetch resulting ccodes + or.b %d4, %d3 # combine w/ earlier ccodes + andi.b &0x5, %d3 # keep 'Z' and 'N' + + mov.w EXC_CC(%a6), %d4 # fetch old ccodes + andi.b &0x1a, %d4 # keep 'X','N','V' bits + or.b %d3, %d4 # insert new ccodes + mov.w %d4, EXC_CC(%a6) # save new ccodes + + btst &0x3, EXC_EXTWORD(%a6) # separate chk2,cmp2 + bne.b chk2_finish # it's a chk2 + + rts + +# this code handles the only difference between chk2 and cmp2. chk2 would +# have trapped out if the value was out of bounds. we check this by seeing +# if the 'N' bit was set by the operation. +chk2_finish: + btst &0x0, %d4 # is 'N' bit set? + bne.b chk2_trap # yes;chk2 should trap + rts +chk2_trap: + mov.b &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag + rts + +# if dmem_read_{long,word}() returns a fail message in d1, the package +# must create an access error frame. here, we pass a skeleton fslw +# and the failing address to the routine that creates the new frame. +# FSLW: +# read = true +# size = longword +# TM = data +# software emulation error = true +chk2_cmp2_err_l: + mov.l %a2,%a0 # pass failing address + mov.l &0x01010001,%d0 # pass fslw + bra.l isp_dacc + +# FSLW: +# read = true +# size = word +# TM = data +# software emulation error = true +chk2_cmp2_err_w: + mov.l %a2,%a0 # pass failing address + mov.l &0x01410001,%d0 # pass fslw + bra.l isp_dacc + +######################################################################### +# XDEF **************************************************************** # +# _div64(): routine to emulate div{u,s}.l <ea>,Dr:Dq # +# 64/32->32r:32q # +# # +# XREF **************************************************************** # +# _calc_ea() - calculate effective address # +# isp_iacc() - handle instruction access error exception # +# isp_dacc() - handle data access error exception # +# isp_restore() - restore An on access error w/ -() or ()+ # +# # +# INPUT *************************************************************** # +# none # +# # +# OUTPUT ************************************************************** # +# If exiting through isp_dacc... # +# a0 = failing address # +# d0 = FSLW # +# else # +# none # +# # +# ALGORITHM *********************************************************** # +# First, decode the operand location. If it's in Dn, fetch from # +# the stack. If it's in memory, use _calc_ea() to calculate the # +# effective address. Use _dmem_read_long() to fetch at that address. # +# Unless the operand is immediate data. Then use _imem_read_long(). # +# Send failures to isp_dacc() or isp_iacc() as appropriate. # +# If the operands are signed, make them unsigned and save the # +# sign info for later. Separate out special cases like divide-by-zero # +# or 32-bit divides if possible. Else, use a special math algorithm # +# to calculate the result. # +# Restore sign info if signed instruction. Set the condition # +# codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the # +# quotient and remainder in the appropriate data registers on the stack.# +# # +######################################################################### + +set NDIVISOR, EXC_TEMP+0x0 +set NDIVIDEND, EXC_TEMP+0x1 +set NDRSAVE, EXC_TEMP+0x2 +set NDQSAVE, EXC_TEMP+0x4 +set DDSECOND, EXC_TEMP+0x6 +set DDQUOTIENT, EXC_TEMP+0x8 +set DDNORMAL, EXC_TEMP+0xc + + global _div64 +############# +# div(u,s)l # +############# +_div64: + mov.b EXC_OPWORD+1(%a6), %d0 + andi.b &0x38, %d0 # extract src mode + + bne.w dcontrolmodel_s # %dn dest or control mode? + + mov.b EXC_OPWORD+1(%a6), %d0 # extract Dn from opcode + andi.w &0x7, %d0 + mov.l (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register + +dgotsrcl: + beq.w div64eq0 # divisor is = 0!!! + + mov.b EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword + mov.b EXC_EXTWORD(%a6), %d1 # extract Dq from extword + and.w &0x7, %d0 + lsr.b &0x4, %d1 + and.w &0x7, %d1 + mov.w %d0, NDRSAVE(%a6) # save Dr for later + mov.w %d1, NDQSAVE(%a6) # save Dq for later + +# fetch %dr and %dq directly off stack since all regs are saved there + mov.l (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi + mov.l (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo + +# separate signed and unsigned divide + btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? + beq.b dspecialcases # use positive divide + +# save the sign of the divisor +# make divisor unsigned if it's negative + tst.l %d7 # chk sign of divisor + slt NDIVISOR(%a6) # save sign of divisor + bpl.b dsgndividend + neg.l %d7 # complement negative divisor + +# save the sign of the dividend +# make dividend unsigned if it's negative +dsgndividend: + tst.l %d5 # chk sign of hi(dividend) + slt NDIVIDEND(%a6) # save sign of dividend + bpl.b dspecialcases + + mov.w &0x0, %cc # clear 'X' cc bit + negx.l %d6 # complement signed dividend + negx.l %d5 + +# extract some special cases: +# - is (dividend == 0) ? +# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div) +dspecialcases: + tst.l %d5 # is (hi(dividend) == 0) + bne.b dnormaldivide # no, so try it the long way + + tst.l %d6 # is (lo(dividend) == 0), too + beq.w ddone # yes, so (dividend == 0) + + cmp.l %d7,%d6 # is (divisor <= lo(dividend)) + bls.b d32bitdivide # yes, so use 32 bit divide + + exg %d5,%d6 # q = 0, r = dividend + bra.w divfinish # can't divide, we're done. + +d32bitdivide: + tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! + + bra.b divfinish + +dnormaldivide: +# last special case: +# - is hi(dividend) >= divisor ? if yes, then overflow + cmp.l %d7,%d5 + bls.b ddovf # answer won't fit in 32 bits + +# perform the divide algorithm: + bsr.l dclassical # do int divide + +# separate into signed and unsigned finishes. +divfinish: + btst &0x3, EXC_EXTWORD(%a6) # do divs, divu separately + beq.b ddone # divu has no processing!!! + +# it was a divs.l, so ccode setting is a little more complicated... + tst.b NDIVIDEND(%a6) # remainder has same sign + beq.b dcc # as dividend. + neg.l %d5 # sgn(rem) = sgn(dividend) +dcc: + mov.b NDIVISOR(%a6), %d0 + eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative + beq.b dqpos # branch to quot positive + +# 0x80000000 is the largest number representable as a 32-bit negative +# number. the negative of 0x80000000 is 0x80000000. + cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? + bhi.b ddovf + + neg.l %d6 # make (-quot) 2's comp + + bra.b ddone + +dqpos: + btst &0x1f, %d6 # will (+quot) fit in 32 bits? + bne.b ddovf + +ddone: +# at this point, result is normal so ccodes are set based on result. + mov.w EXC_CC(%a6), %cc + tst.l %d6 # set %ccode bits + mov.w %cc, EXC_CC(%a6) + + mov.w NDRSAVE(%a6), %d0 # get Dr off stack + mov.w NDQSAVE(%a6), %d1 # get Dq off stack + +# if the register numbers are the same, only the quotient gets saved. +# so, if we always save the quotient second, we save ourselves a cmp&beq + mov.l %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder + mov.l %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient + + rts + +ddovf: + bset &0x1, EXC_CC+1(%a6) # 'V' set on overflow + bclr &0x0, EXC_CC+1(%a6) # 'C' cleared on overflow + + rts + +div64eq0: + andi.b &0x1e, EXC_CC+1(%a6) # clear 'C' bit on divbyzero + ori.b &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag + rts + +########################################################################### +######################################################################### +# This routine uses the 'classical' Algorithm D from Donald Knuth's # +# Art of Computer Programming, vol II, Seminumerical Algorithms. # +# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, # +# where U,V are words of the quadword dividend and longword divisor, # +# and U1, V1 are the most significant words. # +# # +# The most sig. longword of the 64 bit dividend must be in %d5, least # +# in %d6. The divisor must be in the variable ddivisor, and the # +# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). # +# The quotient is returned in %d6, remainder in %d5, unless the # +# v (overflow) bit is set in the saved %ccr. If overflow, the dividend # +# is unchanged. # +######################################################################### +dclassical: +# if the divisor msw is 0, use simpler algorithm then the full blown +# one at ddknuth: + + cmpi.l %d7, &0xffff + bhi.b ddknuth # go use D. Knuth algorithm + +# Since the divisor is only a word (and larger than the mslw of the dividend), +# a simpler algorithm may be used : +# In the general case, four quotient words would be created by +# dividing the divisor word into each dividend word. In this case, +# the first two quotient words must be zero, or overflow would occur. +# Since we already checked this case above, we can treat the most significant +# longword of the dividend as (0) remainder (see Knuth) and merely complete +# the last two divisions to get a quotient longword and word remainder: + + clr.l %d1 + swap %d5 # same as r*b if previous step rqd + swap %d6 # get u3 to lsw position + mov.w %d6, %d5 # rb + u3 + + divu.w %d7, %d5 + + mov.w %d5, %d1 # first quotient word + swap %d6 # get u4 + mov.w %d6, %d5 # rb + u4 + + divu.w %d7, %d5 + + swap %d1 + mov.w %d5, %d1 # 2nd quotient 'digit' + clr.w %d5 + swap %d5 # now remainder + mov.l %d1, %d6 # and quotient + + rts + +ddknuth: +# In this algorithm, the divisor is treated as a 2 digit (word) number +# which is divided into a 3 digit (word) dividend to get one quotient +# digit (word). After subtraction, the dividend is shifted and the +# process repeated. Before beginning, the divisor and quotient are +# 'normalized' so that the process of estimating the quotient digit +# will yield verifiably correct results.. + + clr.l DDNORMAL(%a6) # count of shifts for normalization + clr.b DDSECOND(%a6) # clear flag for quotient digits + clr.l %d1 # %d1 will hold trial quotient +ddnchk: + btst &31, %d7 # must we normalize? first word of + bne.b ddnormalized # divisor (V1) must be >= 65536/2 + addq.l &0x1, DDNORMAL(%a6) # count normalization shifts + lsl.l &0x1, %d7 # shift the divisor + lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 + roxl.l &0x1, %d5 # shift u1,u2 + bra.w ddnchk +ddnormalized: + +# Now calculate an estimate of the quotient words (msw first, then lsw). +# The comments use subscripts for the first quotient digit determination. + mov.l %d7, %d3 # divisor + mov.l %d5, %d2 # dividend mslw + swap %d2 + swap %d3 + cmp.w %d2, %d3 # V1 = U1 ? + bne.b ddqcalc1 + mov.w &0xffff, %d1 # use max trial quotient word + bra.b ddadj0 +ddqcalc1: + mov.l %d5, %d1 + + divu.w %d3, %d1 # use quotient of mslw/msw + + andi.l &0x0000ffff, %d1 # zero any remainder +ddadj0: + +# now test the trial quotient and adjust. This step plus the +# normalization assures (according to Knuth) that the trial +# quotient will be at worst 1 too large. + mov.l %d6, -(%sp) + clr.w %d6 # word u3 left + swap %d6 # in lsw position +ddadj1: mov.l %d7, %d3 + mov.l %d1, %d2 + mulu.w %d7, %d2 # V2q + swap %d3 + mulu.w %d1, %d3 # V1q + mov.l %d5, %d4 # U1U2 + sub.l %d3, %d4 # U1U2 - V1q + + swap %d4 + + mov.w %d4,%d0 + mov.w %d6,%d4 # insert lower word (U3) + + tst.w %d0 # is upper word set? + bne.w ddadjd1 + +# add.l %d6, %d4 # (U1U2 - V1q) + U3 + + cmp.l %d2, %d4 + bls.b ddadjd1 # is V2q > (U1U2-V1q) + U3 ? + subq.l &0x1, %d1 # yes, decrement and recheck + bra.b ddadj1 +ddadjd1: +# now test the word by multiplying it by the divisor (V1V2) and comparing +# the 3 digit (word) result with the current dividend words + mov.l %d5, -(%sp) # save %d5 (%d6 already saved) + mov.l %d1, %d6 + swap %d6 # shift answer to ms 3 words + mov.l %d7, %d5 + bsr.l dmm2 + mov.l %d5, %d2 # now %d2,%d3 are trial*divisor + mov.l %d6, %d3 + mov.l (%sp)+, %d5 # restore dividend + mov.l (%sp)+, %d6 + sub.l %d3, %d6 + subx.l %d2, %d5 # subtract double precision + bcc dd2nd # no carry, do next quotient digit + subq.l &0x1, %d1 # q is one too large +# need to add back divisor longword to current ms 3 digits of dividend +# - according to Knuth, this is done only 2 out of 65536 times for random +# divisor, dividend selection. + clr.l %d2 + mov.l %d7, %d3 + swap %d3 + clr.w %d3 # %d3 now ls word of divisor + add.l %d3, %d6 # aligned with 3rd word of dividend + addx.l %d2, %d5 + mov.l %d7, %d3 + clr.w %d3 # %d3 now ms word of divisor + swap %d3 # aligned with 2nd word of dividend + add.l %d3, %d5 +dd2nd: + tst.b DDSECOND(%a6) # both q words done? + bne.b ddremain +# first quotient digit now correct. store digit and shift the +# (subtracted) dividend + mov.w %d1, DDQUOTIENT(%a6) + clr.l %d1 + swap %d5 + swap %d6 + mov.w %d6, %d5 + clr.w %d6 + st DDSECOND(%a6) # second digit + bra.w ddnormalized +ddremain: +# add 2nd word to quotient, get the remainder. + mov.w %d1, DDQUOTIENT+2(%a6) +# shift down one word/digit to renormalize remainder. + mov.w %d5, %d6 + swap %d6 + swap %d5 + mov.l DDNORMAL(%a6), %d7 # get norm shift count + beq.b ddrn + subq.l &0x1, %d7 # set for loop count +ddnlp: + lsr.l &0x1, %d5 # shift into %d6 + roxr.l &0x1, %d6 + dbf %d7, ddnlp +ddrn: + mov.l %d6, %d5 # remainder + mov.l DDQUOTIENT(%a6), %d6 # quotient + + rts +dmm2: +# factors for the 32X32->64 multiplication are in %d5 and %d6. +# returns 64 bit result in %d5 (hi) %d6(lo). +# destroys %d2,%d3,%d4. + +# multiply hi,lo words of each factor to get 4 intermediate products + mov.l %d6, %d2 + mov.l %d6, %d3 + mov.l %d5, %d4 + swap %d3 + swap %d4 + mulu.w %d5, %d6 # %d6 <- lsw*lsw + mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source + mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest + mulu.w %d4, %d3 # %d3 <- msw*msw +# now use swap and addx to consolidate to two longwords + clr.l %d4 + swap %d6 + add.w %d5, %d6 # add msw of l*l to lsw of m*l product + addx.w %d4, %d3 # add any carry to m*m product + add.w %d2, %d6 # add in lsw of other m*l product + addx.w %d4, %d3 # add any carry to m*m product + swap %d6 # %d6 is low 32 bits of final product + clr.w %d5 + clr.w %d2 # lsw of two mixed products used, + swap %d5 # now use msws of longwords + swap %d2 + add.l %d2, %d5 + add.l %d3, %d5 # %d5 now ms 32 bits of final product + rts + +########## +dcontrolmodel_s: + movq.l &LONG,%d0 + bsr.l _calc_ea # calc <ea> + + cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? + beq.b dimmed # yes + + mov.l %a0,%a2 + bsr.l _dmem_read_long # fetch divisor from <ea> + + tst.l %d1 # dfetch error? + bne.b div64_err # yes + + mov.l %d0, %d7 + bra.w dgotsrcl + +# we have to split out immediate data here because it must be read using +# imem_read() instead of dmem_read(). this becomes especially important +# if the fetch runs into some deadly fault. +dimmed: + addq.l &0x4,EXC_EXTWPTR(%a6) + bsr.l _imem_read_long # read immediate value + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.l %d0,%d7 + bra.w dgotsrcl + +########## + +# if dmem_read_long() returns a fail message in d1, the package +# must create an access error frame. here, we pass a skeleton fslw +# and the failing address to the routine that creates the new frame. +# also, we call isp_restore in case the effective addressing mode was +# (an)+ or -(an) in which case the previous "an" value must be restored. +# FSLW: +# read = true +# size = longword +# TM = data +# software emulation error = true +div64_err: + bsr.l isp_restore # restore addr reg + mov.l %a2,%a0 # pass failing address + mov.l &0x01010001,%d0 # pass fslw + bra.l isp_dacc + +######################################################################### +# XDEF **************************************************************** # +# _mul64(): routine to emulate mul{u,s}.l <ea>,Dh:Dl 32x32->64 # +# # +# XREF **************************************************************** # +# _calc_ea() - calculate effective address # +# isp_iacc() - handle instruction access error exception # +# isp_dacc() - handle data access error exception # +# isp_restore() - restore An on access error w/ -() or ()+ # +# # +# INPUT *************************************************************** # +# none # +# # +# OUTPUT ************************************************************** # +# If exiting through isp_dacc... # +# a0 = failing address # +# d0 = FSLW # +# else # +# none # +# # +# ALGORITHM *********************************************************** # +# First, decode the operand location. If it's in Dn, fetch from # +# the stack. If it's in memory, use _calc_ea() to calculate the # +# effective address. Use _dmem_read_long() to fetch at that address. # +# Unless the operand is immediate data. Then use _imem_read_long(). # +# Send failures to isp_dacc() or isp_iacc() as appropriate. # +# If the operands are signed, make them unsigned and save the # +# sign info for later. Perform the multiplication using 16x16->32 # +# unsigned multiplies and "add" instructions. Store the high and low # +# portions of the result in the appropriate data registers on the # +# stack. Calculate the condition codes, also. # +# # +######################################################################### + +############# +# mul(u,s)l # +############# + global _mul64 +_mul64: + mov.b EXC_OPWORD+1(%a6), %d0 # extract src {mode,reg} + cmpi.b %d0, &0x7 # is src mode Dn or other? + bgt.w mul64_memop # src is in memory + +# multiplier operand in the data register file. +# must extract the register number and fetch the operand from the stack. +mul64_regop: + andi.w &0x7, %d0 # extract Dn + mov.l (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier + +# multiplier is in %d3. now, extract Dl and Dh fields and fetch the +# multiplicand from the data register specified by Dl. +mul64_multiplicand: + mov.w EXC_EXTWORD(%a6), %d2 # fetch ext word + clr.w %d1 # clear Dh reg + mov.b %d2, %d1 # grab Dh + rol.w &0x4, %d2 # align Dl byte + andi.w &0x7, %d2 # extract Dl + + mov.l (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand + +# check for the case of "zero" result early + tst.l %d4 # test multiplicand + beq.w mul64_zero # handle zero separately + tst.l %d3 # test multiplier + beq.w mul64_zero # handle zero separately + +# multiplier is in %d3 and multiplicand is in %d4. +# if the operation is to be signed, then the operands are converted +# to unsigned and the result sign is saved for the end. + clr.b EXC_TEMP(%a6) # clear temp space + btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned? + beq.b mul64_alg # unsigned; skip sgn calc + + tst.l %d3 # is multiplier negative? + bge.b mul64_chk_md_sgn # no + neg.l %d3 # make multiplier positive + ori.b &0x1, EXC_TEMP(%a6) # save multiplier sgn + +# the result sign is the exclusive or of the operand sign bits. +mul64_chk_md_sgn: + tst.l %d4 # is multiplicand negative? + bge.b mul64_alg # no + neg.l %d4 # make multiplicand positive + eori.b &0x1, EXC_TEMP(%a6) # calculate correct sign + +######################################################################### +# 63 32 0 # +# ---------------------------- # +# | hi(mplier) * hi(mplicand)| # +# ---------------------------- # +# ----------------------------- # +# | hi(mplier) * lo(mplicand) | # +# ----------------------------- # +# ----------------------------- # +# | lo(mplier) * hi(mplicand) | # +# ----------------------------- # +# | ----------------------------- # +# --|-- | lo(mplier) * lo(mplicand) | # +# | ----------------------------- # +# ======================================================== # +# -------------------------------------------------------- # +# | hi(result) | lo(result) | # +# -------------------------------------------------------- # +######################################################################### +mul64_alg: +# load temp registers with operands + mov.l %d3, %d5 # mr in %d5 + mov.l %d3, %d6 # mr in %d6 + mov.l %d4, %d7 # md in %d7 + swap %d6 # hi(mr) in lo %d6 + swap %d7 # hi(md) in lo %d7 + +# complete necessary multiplies: + mulu.w %d4, %d3 # [1] lo(mr) * lo(md) + mulu.w %d6, %d4 # [2] hi(mr) * lo(md) + mulu.w %d7, %d5 # [3] lo(mr) * hi(md) + mulu.w %d7, %d6 # [4] hi(mr) * hi(md) + +# add lo portions of [2],[3] to hi portion of [1]. +# add carries produced from these adds to [4]. +# lo([1]) is the final lo 16 bits of the result. + clr.l %d7 # load %d7 w/ zero value + swap %d3 # hi([1]) <==> lo([1]) + add.w %d4, %d3 # hi([1]) + lo([2]) + addx.l %d7, %d6 # [4] + carry + add.w %d5, %d3 # hi([1]) + lo([3]) + addx.l %d7, %d6 # [4] + carry + swap %d3 # lo([1]) <==> hi([1]) + +# lo portions of [2],[3] have been added in to final result. +# now, clear lo, put hi in lo reg, and add to [4] + clr.w %d4 # clear lo([2]) + clr.w %d5 # clear hi([3]) + swap %d4 # hi([2]) in lo %d4 + swap %d5 # hi([3]) in lo %d5 + add.l %d5, %d4 # [4] + hi([2]) + add.l %d6, %d4 # [4] + hi([3]) + +# unsigned result is now in {%d4,%d3} + tst.b EXC_TEMP(%a6) # should result be signed? + beq.b mul64_done # no + +# result should be a signed negative number. +# compute 2's complement of the unsigned number: +# -negate all bits and add 1 +mul64_neg: + not.l %d3 # negate lo(result) bits + not.l %d4 # negate hi(result) bits + addq.l &1, %d3 # add 1 to lo(result) + addx.l %d7, %d4 # add carry to hi(result) + +# the result is saved to the register file. +# for '040 compatibility, if Dl == Dh then only the hi(result) is +# saved. so, saving hi after lo accomplishes this without need to +# check Dl,Dh equality. +mul64_done: + mov.l %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result) + mov.w &0x0, %cc + mov.l %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result) + +# now, grab the condition codes. only one that can be set is 'N'. +# 'N' CAN be set if the operation is unsigned if bit 63 is set. + mov.w %cc, %d7 # fetch %ccr to see if 'N' set + andi.b &0x8, %d7 # extract 'N' bit + +mul64_ccode_set: + mov.b EXC_CC+1(%a6), %d6 # fetch previous %ccr + andi.b &0x10, %d6 # all but 'X' bit changes + + or.b %d7, %d6 # group 'X' and 'N' + mov.b %d6, EXC_CC+1(%a6) # save new %ccr + + rts + +# one or both of the operands is zero so the result is also zero. +# save the zero result to the register file and set the 'Z' ccode bit. +mul64_zero: + clr.l (EXC_DREGS,%a6,%d2.w*4) # save lo(result) + clr.l (EXC_DREGS,%a6,%d1.w*4) # save hi(result) + + movq.l &0x4, %d7 # set 'Z' ccode bit + bra.b mul64_ccode_set # finish ccode set + +########## + +# multiplier operand is in memory at the effective address. +# must calculate the <ea> and go fetch the 32-bit operand. +mul64_memop: + movq.l &LONG, %d0 # pass # of bytes + bsr.l _calc_ea # calculate <ea> + + cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode? + beq.b mul64_immed # yes + + mov.l %a0,%a2 + bsr.l _dmem_read_long # fetch src from addr (%a0) + + tst.l %d1 # dfetch error? + bne.w mul64_err # yes + + mov.l %d0, %d3 # store multiplier in %d3 + + bra.w mul64_multiplicand + +# we have to split out immediate data here because it must be read using +# imem_read() instead of dmem_read(). this becomes especially important +# if the fetch runs into some deadly fault. +mul64_immed: + addq.l &0x4,EXC_EXTWPTR(%a6) + bsr.l _imem_read_long # read immediate value + + tst.l %d1 # ifetch error? + bne.l isp_iacc # yes + + mov.l %d0,%d3 + bra.w mul64_multiplicand + +########## + +# if dmem_read_long() returns a fail message in d1, the package +# must create an access error frame. here, we pass a skeleton fslw +# and the failing address to the routine that creates the new frame. +# also, we call isp_restore in case the effective addressing mode was +# (an)+ or -(an) in which case the previous "an" value must be restored. +# FSLW: +# read = true +# size = longword +# TM = data +# software emulation error = true +mul64_err: + bsr.l isp_restore # restore addr reg + mov.l %a2,%a0 # pass failing address + mov.l &0x01010001,%d0 # pass fslw + bra.l isp_dacc + +######################################################################### +# XDEF **************************************************************** # +# _compandset2(): routine to emulate cas2() # +# (internal to package) # +# # +# _isp_cas2_finish(): store ccodes, store compare regs # +# (external to package) # +# # +# XREF **************************************************************** # +# _real_lock_page() - "callout" to lock op's page from page-outs # +# _cas_terminate2() - access error exit # +# _real_cas2() - "callout" to core cas2 emulation code # +# _real_unlock_page() - "callout" to unlock page # +# # +# INPUT *************************************************************** # +# _compandset2(): # +# d0 = instruction extension word # +# # +# _isp_cas2_finish(): # +# see cas2 core emulation code # +# # +# OUTPUT ************************************************************** # +# _compandset2(): # +# see cas2 core emulation code # +# # +# _isp_cas_finish(): # +# None (register file or memroy changed as appropriate) # +# # +# ALGORITHM *********************************************************** # +# compandset2(): # +# Decode the instruction and fetch the appropriate Update and # +# Compare operands. Then call the "callout" _real_lock_page() for each # +# memory operand address so that the operating system can keep these # +# pages from being paged out. If either _real_lock_page() fails, exit # +# through _cas_terminate2(). Don't forget to unlock the 1st locked page # +# using _real_unlock_paged() if the 2nd lock-page fails. # +# Finally, branch to the core cas2 emulation code by calling the # +# "callout" _real_cas2(). # +# # +# _isp_cas2_finish(): # +# Re-perform the comparison so we can determine the condition # +# codes which were too much trouble to keep around during the locked # +# emulation. Then unlock each operands page by calling the "callout" # +# _real_unlock_page(). # +# # +######################################################################### + +set ADDR1, EXC_TEMP+0xc +set ADDR2, EXC_TEMP+0x0 +set DC2, EXC_TEMP+0xa +set DC1, EXC_TEMP+0x8 + + global _compandset2 +_compandset2: + mov.l %d0,EXC_TEMP+0x4(%a6) # store for possible restart + mov.l %d0,%d1 # extension word in d0 + + rol.w &0x4,%d0 + andi.w &0xf,%d0 # extract Rn2 + mov.l (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2 + mov.l %a1,ADDR2(%a6) + + mov.l %d1,%d0 + + lsr.w &0x6,%d1 + andi.w &0x7,%d1 # extract Du2 + mov.l (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op + + andi.w &0x7,%d0 # extract Dc2 + mov.l (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op + mov.w %d0,DC2(%a6) + + mov.w EXC_EXTWORD(%a6),%d0 + mov.l %d0,%d1 + + rol.w &0x4,%d0 + andi.w &0xf,%d0 # extract Rn1 + mov.l (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1 + mov.l %a0,ADDR1(%a6) + + mov.l %d1,%d0 + + lsr.w &0x6,%d1 + andi.w &0x7,%d1 # extract Du1 + mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op + + andi.w &0x7,%d0 # extract Dc1 + mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op + mov.w %d0,DC1(%a6) + + btst &0x1,EXC_OPWORD(%a6) # word or long? + sne %d7 + + btst &0x5,EXC_ISR(%a6) # user or supervisor? + sne %d6 + + mov.l %a0,%a2 + mov.l %a1,%a3 + + mov.l %d7,%d1 # pass size + mov.l %d6,%d0 # pass mode + bsr.l _real_lock_page # lock page + mov.l %a2,%a0 + tst.l %d0 # error? + bne.l _cas_terminate2 # yes + + mov.l %d7,%d1 # pass size + mov.l %d6,%d0 # pass mode + mov.l %a3,%a0 # pass addr + bsr.l _real_lock_page # lock page + mov.l %a3,%a0 + tst.l %d0 # error? + bne.b cas_preterm # yes + + mov.l %a2,%a0 + mov.l %a3,%a1 + + bra.l _real_cas2 + +# if the 2nd lock attempt fails, then we must still unlock the +# first page(s). +cas_preterm: + mov.l %d0,-(%sp) # save FSLW + mov.l %d7,%d1 # pass size + mov.l %d6,%d0 # pass mode + mov.l %a2,%a0 # pass ADDR1 + bsr.l _real_unlock_page # unlock first page(s) + mov.l (%sp)+,%d0 # restore FSLW + mov.l %a3,%a0 # pass failing addr + bra.l _cas_terminate2 + +############################################################# + + global _isp_cas2_finish +_isp_cas2_finish: + btst &0x1,EXC_OPWORD(%a6) + bne.b cas2_finish_l + + mov.w EXC_CC(%a6),%cc # load old ccodes + cmp.w %d0,%d2 + bne.b cas2_finish_w_save + cmp.w %d1,%d3 +cas2_finish_w_save: + mov.w %cc,EXC_CC(%a6) # save new ccodes + + tst.b %d4 # update compare reg? + bne.b cas2_finish_w_done # no + + mov.w DC2(%a6),%d3 # fetch Dc2 + mov.w %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op + + mov.w DC1(%a6),%d2 # fetch Dc1 + mov.w %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op + +cas2_finish_w_done: + btst &0x5,EXC_ISR(%a6) + sne %d2 + mov.l %d2,%d0 # pass mode + sf %d1 # pass size + mov.l ADDR1(%a6),%a0 # pass ADDR1 + bsr.l _real_unlock_page # unlock page + + mov.l %d2,%d0 # pass mode + sf %d1 # pass size + mov.l ADDR2(%a6),%a0 # pass ADDR2 + bsr.l _real_unlock_page # unlock page + rts + +cas2_finish_l: + mov.w EXC_CC(%a6),%cc # load old ccodes + cmp.l %d0,%d2 + bne.b cas2_finish_l_save + cmp.l %d1,%d3 +cas2_finish_l_save: + mov.w %cc,EXC_CC(%a6) # save new ccodes + + tst.b %d4 # update compare reg? + bne.b cas2_finish_l_done # no + + mov.w DC2(%a6),%d3 # fetch Dc2 + mov.l %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op + + mov.w DC1(%a6),%d2 # fetch Dc1 + mov.l %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op + +cas2_finish_l_done: + btst &0x5,EXC_ISR(%a6) + sne %d2 + mov.l %d2,%d0 # pass mode + st %d1 # pass size + mov.l ADDR1(%a6),%a0 # pass ADDR1 + bsr.l _real_unlock_page # unlock page + + mov.l %d2,%d0 # pass mode + st %d1 # pass size + mov.l ADDR2(%a6),%a0 # pass ADDR2 + bsr.l _real_unlock_page # unlock page + rts + +######## + global cr_cas2 +cr_cas2: + mov.l EXC_TEMP+0x4(%a6),%d0 + bra.w _compandset2 + +######################################################################### +# XDEF **************************************************************** # +# _compandset(): routine to emulate cas w/ misaligned <ea> # +# (internal to package) # +# _isp_cas_finish(): routine called when cas emulation completes # +# (external and internal to package) # +# _isp_cas_restart(): restart cas emulation after a fault # +# (external to package) # +# _isp_cas_terminate(): create access error stack frame on fault # +# (external and internal to package) # +# _isp_cas_inrange(): checks whether instr addess is within range # +# of core cas/cas2emulation code # +# (external to package) # +# # +# XREF **************************************************************** # +# _calc_ea(): calculate effective address # +# # +# INPUT *************************************************************** # +# compandset(): # +# none # +# _isp_cas_restart(): # +# d6 = previous sfc/dfc # +# _isp_cas_finish(): # +# _isp_cas_terminate(): # +# a0 = failing address # +# d0 = FSLW # +# d6 = previous sfc/dfc # +# _isp_cas_inrange(): # +# a0 = instruction address to be checked # +# # +# OUTPUT ************************************************************** # +# compandset(): # +# none # +# _isp_cas_restart(): # +# a0 = effective address # +# d7 = word or longword flag # +# _isp_cas_finish(): # +# a0 = effective address # +# _isp_cas_terminate(): # +# initial register set before emulation exception # +# _isp_cas_inrange(): # +# d0 = 0 => in range; -1 => out of range # +# # +# ALGORITHM *********************************************************** # +# # +# compandset(): # +# First, calculate the effective address. Then, decode the # +# instruction word and fetch the "compare" (DC) and "update" (Du) # +# operands. # +# Next, call the external routine _real_lock_page() so that the # +# operating system can keep this page from being paged out while we're # +# in this routine. If this call fails, jump to _cas_terminate2(). # +# The routine then branches to _real_cas(). This external routine # +# that actually emulates cas can be supplied by the external os or # +# made to point directly back into the 060ISP which has a routine for # +# this purpose. # +# # +# _isp_cas_finish(): # +# Either way, after emulation, the package is re-entered at # +# _isp_cas_finish(). This routine re-compares the operands in order to # +# set the condition codes. Finally, these routines will call # +# _real_unlock_page() in order to unlock the pages that were previously # +# locked. # +# # +# _isp_cas_restart(): # +# This routine can be entered from an access error handler where # +# the emulation sequence should be re-started from the beginning. # +# # +# _isp_cas_terminate(): # +# This routine can be entered from an access error handler where # +# an emulation operand access failed and the operating system would # +# like an access error stack frame created instead of the current # +# unimplemented integer instruction frame. # +# Also, the package enters here if a call to _real_lock_page() # +# fails. # +# # +# _isp_cas_inrange(): # +# Checks to see whether the instruction address passed to it in # +# a0 is within the software package cas/cas2 emulation routines. This # +# can be helpful for an operating system to determine whether an access # +# error during emulation was due to a cas/cas2 emulation access. # +# # +######################################################################### + +set DC, EXC_TEMP+0x8 +set ADDR, EXC_TEMP+0x4 + + global _compandset +_compandset: + btst &0x1,EXC_OPWORD(%a6) # word or long operation? + bne.b compandsetl # long + +compandsetw: + movq.l &0x2,%d0 # size = 2 bytes + bsr.l _calc_ea # a0 = calculated <ea> + mov.l %a0,ADDR(%a6) # save <ea> for possible restart + sf %d7 # clear d7 for word size + bra.b compandsetfetch + +compandsetl: + movq.l &0x4,%d0 # size = 4 bytes + bsr.l _calc_ea # a0 = calculated <ea> + mov.l %a0,ADDR(%a6) # save <ea> for possible restart + st %d7 # set d7 for longword size + +compandsetfetch: + mov.w EXC_EXTWORD(%a6),%d0 # fetch cas extension word + mov.l %d0,%d1 # make a copy + + lsr.w &0x6,%d0 + andi.w &0x7,%d0 # extract Du + mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand + + andi.w &0x7,%d1 # extract Dc + mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand + mov.w %d1,DC(%a6) # save Dc + + btst &0x5,EXC_ISR(%a6) # which mode for exception? + sne %d6 # set on supervisor mode + + mov.l %a0,%a2 # save temporarily + mov.l %d7,%d1 # pass size + mov.l %d6,%d0 # pass mode + bsr.l _real_lock_page # lock page + tst.l %d0 # did error occur? + bne.w _cas_terminate2 # yes, clean up the mess + mov.l %a2,%a0 # pass addr in a0 + + bra.l _real_cas + +######## + global _isp_cas_finish +_isp_cas_finish: + btst &0x1,EXC_OPWORD(%a6) + bne.b cas_finish_l + +# just do the compare again since it's faster than saving the ccodes +# from the locked routine... +cas_finish_w: + mov.w EXC_CC(%a6),%cc # restore cc + cmp.w %d0,%d4 # do word compare + mov.w %cc,EXC_CC(%a6) # save cc + + tst.b %d1 # update compare reg? + bne.b cas_finish_w_done # no + + mov.w DC(%a6),%d3 + mov.w %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination + +cas_finish_w_done: + mov.l ADDR(%a6),%a0 # pass addr + sf %d1 # pass size + btst &0x5,EXC_ISR(%a6) + sne %d0 # pass mode + bsr.l _real_unlock_page # unlock page + rts + +# just do the compare again since it's faster than saving the ccodes +# from the locked routine... +cas_finish_l: + mov.w EXC_CC(%a6),%cc # restore cc + cmp.l %d0,%d4 # do longword compare + mov.w %cc,EXC_CC(%a6) # save cc + + tst.b %d1 # update compare reg? + bne.b cas_finish_l_done # no + + mov.w DC(%a6),%d3 + mov.l %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination + +cas_finish_l_done: + mov.l ADDR(%a6),%a0 # pass addr + st %d1 # pass size + btst &0x5,EXC_ISR(%a6) + sne %d0 # pass mode + bsr.l _real_unlock_page # unlock page + rts + +######## + + global _isp_cas_restart +_isp_cas_restart: + mov.l %d6,%sfc # restore previous sfc + mov.l %d6,%dfc # restore previous dfc + + cmpi.b EXC_OPWORD+1(%a6),&0xfc # cas or cas2? + beq.l cr_cas2 # cas2 +cr_cas: + mov.l ADDR(%a6),%a0 # load <ea> + btst &0x1,EXC_OPWORD(%a6) # word or long operation? + sne %d7 # set d7 accordingly + bra.w compandsetfetch + +######## + +# At this stage, it would be nice if d0 held the FSLW. + global _isp_cas_terminate +_isp_cas_terminate: + mov.l %d6,%sfc # restore previous sfc + mov.l %d6,%dfc # restore previous dfc + + global _cas_terminate2 +_cas_terminate2: + mov.l %a0,%a2 # copy failing addr to a2 + + mov.l %d0,-(%sp) + bsr.l isp_restore # restore An (if ()+ or -()) + mov.l (%sp)+,%d0 + + addq.l &0x4,%sp # remove sub return addr + subq.l &0x8,%sp # make room for bigger stack + subq.l &0x8,%a6 # shift frame ptr down, too + mov.l &26,%d1 # want to move 51 longwords + lea 0x8(%sp),%a0 # get address of old stack + lea 0x0(%sp),%a1 # get address of new stack +cas_term_cont: + mov.l (%a0)+,(%a1)+ # move a longword + dbra.w %d1,cas_term_cont # keep going + + mov.w &0x4008,EXC_IVOFF(%a6) # put new stk fmt, voff + mov.l %a2,EXC_IVOFF+0x2(%a6) # put faulting addr on stack + mov.l %d0,EXC_IVOFF+0x6(%a6) # put FSLW on stack + movm.l EXC_DREGS(%a6),&0x3fff # restore user regs + unlk %a6 # unlink stack frame + bra.l _real_access + +######## + + global _isp_cas_inrange +_isp_cas_inrange: + clr.l %d0 # clear return result + lea _CASHI(%pc),%a1 # load end of CAS core code + cmp.l %a1,%a0 # is PC in range? + blt.b cin_no # no + lea _CASLO(%pc),%a1 # load begin of CAS core code + cmp.l %a0,%a1 # is PC in range? + blt.b cin_no # no + rts # yes; return d0 = 0 +cin_no: + mov.l &-0x1,%d0 # out of range; return d0 = -1 + rts + +################################################################# +################################################################# +################################################################# +# This is the start of the cas and cas2 "core" emulation code. # +# This is the section that may need to be replaced by the host # +# OS if it is too operating system-specific. # +# Please refer to the package documentation to see how to # +# "replace" this section, if necessary. # +################################################################# +################################################################# +################################################################# + +# ###### ## ###### #### +# # # # # # # +# # ###### ###### # +# # # # # # +# ###### # # ###### ###### + +######################################################################### +# XDEF **************************************************************** # +# _isp_cas2(): "core" emulation code for the cas2 instruction # +# # +# XREF **************************************************************** # +# _isp_cas2_finish() - only exit point for this emulation code; # +# do clean-up; calculate ccodes; store # +# Compare Ops if appropriate. # +# # +# INPUT *************************************************************** # +# *see chart below* # +# # +# OUTPUT ************************************************************** # +# *see chart below* # +# # +# ALGORITHM *********************************************************** # +# (1) Make several copies of the effective address. # +# (2) Save current SR; Then mask off all maskable interrupts. # +# (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set # +# according to whether exception occurred in user or # +# supervisor mode. # +# (4) Use "plpaw" instruction to pre-load ATC with effective # +# address pages(s). THIS SHOULD NOT FAULT!!! The relevant # +# page(s) should have already been made resident prior to # +# entering this routine. # +# (5) Push the operand lines from the cache w/ "cpushl". # +# In the 68040, this was done within the locked region. In # +# the 68060, it is done outside of the locked region. # +# (6) Use "plpar" instruction to do a re-load of ATC entries for # +# ADDR1 since ADDR2 entries may have pushed ADDR1 out of the # +# ATC. # +# (7) Pre-fetch the core emulation instructions by executing # +# one branch within each physical line (16 bytes) of the code # +# before actually executing the code. # +# (8) Load the BUSCR w/ the bus lock value. # +# (9) Fetch the source operands using "moves". # +# (10)Do the compares. If both equal, go to step (13). # +# (11)Unequal. No update occurs. But, we do write the DST1 op # +# back to itself (as w/ the '040) so we can gracefully unlock # +# the bus (and assert LOCKE*) using BUSCR and the final move. # +# (12)Exit. # +# (13)Write update operand to the DST locations. Use BUSCR to # +# assert LOCKE* for the final write operation. # +# (14)Exit. # +# # +# The algorithm is actually implemented slightly differently # +# depending on the size of the operation and the misalignment of the # +# operands. A misaligned operand must be written in aligned chunks or # +# else the BUSCR register control gets confused. # +# # +######################################################################### + +################################################################# +# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # +# ENTERING _isp_cas2(). # +# # +# D0 = xxxxxxxx # +# D1 = xxxxxxxx # +# D2 = cmp operand 1 # +# D3 = cmp operand 2 # +# D4 = update oper 1 # +# D5 = update oper 2 # +# D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode # +# D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word # +# A0 = ADDR1 # +# A1 = ADDR2 # +# A2 = xxxxxxxx # +# A3 = xxxxxxxx # +# A4 = xxxxxxxx # +# A5 = xxxxxxxx # +# A6 = frame pointer # +# A7 = stack pointer # +################################################################# + +# align 0x1000 +# beginning label used by _isp_cas_inrange() + global _CASLO +_CASLO: + + global _isp_cas2 +_isp_cas2: + tst.b %d6 # user or supervisor mode? + bne.b cas2_supervisor # supervisor +cas2_user: + movq.l &0x1,%d0 # load user data fc + bra.b cas2_cont +cas2_supervisor: + movq.l &0x5,%d0 # load supervisor data fc +cas2_cont: + tst.b %d7 # word or longword? + beq.w cas2w # word + +#### +cas2l: + mov.l %a0,%a2 # copy ADDR1 + mov.l %a1,%a3 # copy ADDR2 + mov.l %a0,%a4 # copy ADDR1 + mov.l %a1,%a5 # copy ADDR2 + + addq.l &0x3,%a4 # ADDR1+3 + addq.l &0x3,%a5 # ADDR2+3 + mov.l %a2,%d1 # ADDR1 + +# mask interrupts levels 0-6. save old mask value. + mov.w %sr,%d7 # save current SR + ori.w &0x0700,%sr # inhibit interrupts + +# load the SFC and DFC with the appropriate mode. + movc %sfc,%d6 # save old SFC/DFC + movc %d0,%sfc # store new SFC + movc %d0,%dfc # store new DFC + +# pre-load the operand ATC. no page faults should occur here because +# _real_lock_page() should have taken care of this. + plpaw (%a2) # load atc for ADDR1 + plpaw (%a4) # load atc for ADDR1+3 + plpaw (%a3) # load atc for ADDR2 + plpaw (%a5) # load atc for ADDR2+3 + +# push the operand lines from the cache if they exist. + cpushl %dc,(%a2) # push line for ADDR1 + cpushl %dc,(%a4) # push line for ADDR1+3 + cpushl %dc,(%a3) # push line for ADDR2 + cpushl %dc,(%a5) # push line for ADDR2+2 + + mov.l %d1,%a2 # ADDR1 + addq.l &0x3,%d1 + mov.l %d1,%a4 # ADDR1+3 +# if ADDR1 was ATC resident before the above "plpaw" and was executed +# and it was the next entry scheduled for replacement and ADDR2 +# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 +# entries from the ATC. so, we do a second set of "plpa"s. + plpar (%a2) # load atc for ADDR1 + plpar (%a4) # load atc for ADDR1+3 + +# load the BUSCR values. + mov.l &0x80000000,%a2 # assert LOCK* buscr value + mov.l &0xa0000000,%a3 # assert LOCKE* buscr value + mov.l &0x00000000,%a4 # buscr unlock value + +# there are three possible mis-aligned cases for longword cas. they +# are separated because the final write which asserts LOCKE* must +# be aligned. + mov.l %a0,%d0 # is ADDR1 misaligned? + andi.b &0x3,%d0 + beq.b CAS2L_ENTER # no + cmpi.b %d0,&0x2 + beq.w CAS2L2_ENTER # yes; word misaligned + bra.w CAS2L3_ENTER # yes; byte misaligned + +# +# D0 = dst operand 1 <- +# D1 = dst operand 2 <- +# D2 = cmp operand 1 +# D3 = cmp operand 2 +# D4 = update oper 1 +# D5 = update oper 2 +# D6 = old SFC/DFC +# D7 = old SR +# A0 = ADDR1 +# A1 = ADDR2 +# A2 = bus LOCK* value +# A3 = bus LOCKE* value +# A4 = bus unlock value +# A5 = xxxxxxxx +# + align 0x10 +CAS2L_START: + movc %a2,%buscr # assert LOCK* + movs.l (%a1),%d1 # fetch Dest2[31:0] + movs.l (%a0),%d0 # fetch Dest1[31:0] + bra.b CAS2L_CONT +CAS2L_ENTER: + bra.b ~+16 + +CAS2L_CONT: + cmp.l %d0,%d2 # Dest1 - Compare1 + bne.b CAS2L_NOUPDATE + cmp.l %d1,%d3 # Dest2 - Compare2 + bne.b CAS2L_NOUPDATE + movs.l %d5,(%a1) # Update2[31:0] -> DEST2 + bra.b CAS2L_UPDATE + bra.b ~+16 + +CAS2L_UPDATE: + movc %a3,%buscr # assert LOCKE* + movs.l %d4,(%a0) # Update1[31:0] -> DEST1 + movc %a4,%buscr # unlock the bus + bra.b cas2l_update_done + bra.b ~+16 + +CAS2L_NOUPDATE: + movc %a3,%buscr # assert LOCKE* + movs.l %d0,(%a0) # Dest1[31:0] -> DEST1 + movc %a4,%buscr # unlock the bus + bra.b cas2l_noupdate_done + bra.b ~+16 + +CAS2L_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CAS2L_START + +#### + +################################################################# +# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # +# ENTERING _isp_cas2(). # +# # +# D0 = destination[31:0] operand 1 # +# D1 = destination[31:0] operand 2 # +# D2 = cmp[31:0] operand 1 # +# D3 = cmp[31:0] operand 2 # +# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # +# D5 = xxxxxxxx # +# D6 = xxxxxxxx # +# D7 = xxxxxxxx # +# A0 = xxxxxxxx # +# A1 = xxxxxxxx # +# A2 = xxxxxxxx # +# A3 = xxxxxxxx # +# A4 = xxxxxxxx # +# A5 = xxxxxxxx # +# A6 = frame pointer # +# A7 = stack pointer # +################################################################# + +cas2l_noupdate_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + sf %d4 # indicate no update was done + bra.l _isp_cas2_finish + +cas2l_update_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + st %d4 # indicate update was done + bra.l _isp_cas2_finish +#### + + align 0x10 +CAS2L2_START: + movc %a2,%buscr # assert LOCK* + movs.l (%a1),%d1 # fetch Dest2[31:0] + movs.l (%a0),%d0 # fetch Dest1[31:0] + bra.b CAS2L2_CONT +CAS2L2_ENTER: + bra.b ~+16 + +CAS2L2_CONT: + cmp.l %d0,%d2 # Dest1 - Compare1 + bne.b CAS2L2_NOUPDATE + cmp.l %d1,%d3 # Dest2 - Compare2 + bne.b CAS2L2_NOUPDATE + movs.l %d5,(%a1) # Update2[31:0] -> Dest2 + bra.b CAS2L2_UPDATE + bra.b ~+16 + +CAS2L2_UPDATE: + swap %d4 # get Update1[31:16] + movs.w %d4,(%a0)+ # Update1[31:16] -> DEST1 + movc %a3,%buscr # assert LOCKE* + swap %d4 # get Update1[15:0] + bra.b CAS2L2_UPDATE2 + bra.b ~+16 + +CAS2L2_UPDATE2: + movs.w %d4,(%a0) # Update1[15:0] -> DEST1+0x2 + movc %a4,%buscr # unlock the bus + bra.w cas2l_update_done + nop + bra.b ~+16 + +CAS2L2_NOUPDATE: + swap %d0 # get Dest1[31:16] + movs.w %d0,(%a0)+ # Dest1[31:16] -> DEST1 + movc %a3,%buscr # assert LOCKE* + swap %d0 # get Dest1[15:0] + bra.b CAS2L2_NOUPDATE2 + bra.b ~+16 + +CAS2L2_NOUPDATE2: + movs.w %d0,(%a0) # Dest1[15:0] -> DEST1+0x2 + movc %a4,%buscr # unlock the bus + bra.w cas2l_noupdate_done + nop + bra.b ~+16 + +CAS2L2_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CAS2L2_START + +################################# + + align 0x10 +CAS2L3_START: + movc %a2,%buscr # assert LOCK* + movs.l (%a1),%d1 # fetch Dest2[31:0] + movs.l (%a0),%d0 # fetch Dest1[31:0] + bra.b CAS2L3_CONT +CAS2L3_ENTER: + bra.b ~+16 + +CAS2L3_CONT: + cmp.l %d0,%d2 # Dest1 - Compare1 + bne.b CAS2L3_NOUPDATE + cmp.l %d1,%d3 # Dest2 - Compare2 + bne.b CAS2L3_NOUPDATE + movs.l %d5,(%a1) # Update2[31:0] -> DEST2 + bra.b CAS2L3_UPDATE + bra.b ~+16 + +CAS2L3_UPDATE: + rol.l &0x8,%d4 # get Update1[31:24] + movs.b %d4,(%a0)+ # Update1[31:24] -> DEST1 + swap %d4 # get Update1[23:8] + movs.w %d4,(%a0)+ # Update1[23:8] -> DEST1+0x1 + bra.b CAS2L3_UPDATE2 + bra.b ~+16 + +CAS2L3_UPDATE2: + rol.l &0x8,%d4 # get Update1[7:0] + movc %a3,%buscr # assert LOCKE* + movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x3 + bra.b CAS2L3_UPDATE3 + nop + bra.b ~+16 + +CAS2L3_UPDATE3: + movc %a4,%buscr # unlock the bus + bra.w cas2l_update_done + nop + nop + nop + bra.b ~+16 + +CAS2L3_NOUPDATE: + rol.l &0x8,%d0 # get Dest1[31:24] + movs.b %d0,(%a0)+ # Dest1[31:24] -> DEST1 + swap %d0 # get Dest1[23:8] + movs.w %d0,(%a0)+ # Dest1[23:8] -> DEST1+0x1 + bra.b CAS2L3_NOUPDATE2 + bra.b ~+16 + +CAS2L3_NOUPDATE2: + rol.l &0x8,%d0 # get Dest1[7:0] + movc %a3,%buscr # assert LOCKE* + movs.b %d0,(%a0) # Update1[7:0] -> DEST1+0x3 + bra.b CAS2L3_NOUPDATE3 + nop + bra.b ~+16 + +CAS2L3_NOUPDATE3: + movc %a4,%buscr # unlock the bus + bra.w cas2l_noupdate_done + nop + nop + nop + bra.b ~+14 + +CAS2L3_FILLER: + nop + nop + nop + nop + nop + nop + bra.w CAS2L3_START + +############################################################# +############################################################# + +cas2w: + mov.l %a0,%a2 # copy ADDR1 + mov.l %a1,%a3 # copy ADDR2 + mov.l %a0,%a4 # copy ADDR1 + mov.l %a1,%a5 # copy ADDR2 + + addq.l &0x1,%a4 # ADDR1+1 + addq.l &0x1,%a5 # ADDR2+1 + mov.l %a2,%d1 # ADDR1 + +# mask interrupt levels 0-6. save old mask value. + mov.w %sr,%d7 # save current SR + ori.w &0x0700,%sr # inhibit interrupts + +# load the SFC and DFC with the appropriate mode. + movc %sfc,%d6 # save old SFC/DFC + movc %d0,%sfc # store new SFC + movc %d0,%dfc # store new DFC + +# pre-load the operand ATC. no page faults should occur because +# _real_lock_page() should have taken care of this. + plpaw (%a2) # load atc for ADDR1 + plpaw (%a4) # load atc for ADDR1+1 + plpaw (%a3) # load atc for ADDR2 + plpaw (%a5) # load atc for ADDR2+1 + +# push the operand cache lines from the cache if they exist. + cpushl %dc,(%a2) # push line for ADDR1 + cpushl %dc,(%a4) # push line for ADDR1+1 + cpushl %dc,(%a3) # push line for ADDR2 + cpushl %dc,(%a5) # push line for ADDR2+1 + + mov.l %d1,%a2 # ADDR1 + addq.l &0x3,%d1 + mov.l %d1,%a4 # ADDR1+3 +# if ADDR1 was ATC resident before the above "plpaw" and was executed +# and it was the next entry scheduled for replacement and ADDR2 +# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1 +# entries from the ATC. so, we do a second set of "plpa"s. + plpar (%a2) # load atc for ADDR1 + plpar (%a4) # load atc for ADDR1+3 + +# load the BUSCR values. + mov.l &0x80000000,%a2 # assert LOCK* buscr value + mov.l &0xa0000000,%a3 # assert LOCKE* buscr value + mov.l &0x00000000,%a4 # buscr unlock value + +# there are two possible mis-aligned cases for word cas. they +# are separated because the final write which asserts LOCKE* must +# be aligned. + mov.l %a0,%d0 # is ADDR1 misaligned? + btst &0x0,%d0 + bne.w CAS2W2_ENTER # yes + bra.b CAS2W_ENTER # no + +# +# D0 = dst operand 1 <- +# D1 = dst operand 2 <- +# D2 = cmp operand 1 +# D3 = cmp operand 2 +# D4 = update oper 1 +# D5 = update oper 2 +# D6 = old SFC/DFC +# D7 = old SR +# A0 = ADDR1 +# A1 = ADDR2 +# A2 = bus LOCK* value +# A3 = bus LOCKE* value +# A4 = bus unlock value +# A5 = xxxxxxxx +# + align 0x10 +CAS2W_START: + movc %a2,%buscr # assert LOCK* + movs.w (%a1),%d1 # fetch Dest2[15:0] + movs.w (%a0),%d0 # fetch Dest1[15:0] + bra.b CAS2W_CONT2 +CAS2W_ENTER: + bra.b ~+16 + +CAS2W_CONT2: + cmp.w %d0,%d2 # Dest1 - Compare1 + bne.b CAS2W_NOUPDATE + cmp.w %d1,%d3 # Dest2 - Compare2 + bne.b CAS2W_NOUPDATE + movs.w %d5,(%a1) # Update2[15:0] -> DEST2 + bra.b CAS2W_UPDATE + bra.b ~+16 + +CAS2W_UPDATE: + movc %a3,%buscr # assert LOCKE* + movs.w %d4,(%a0) # Update1[15:0] -> DEST1 + movc %a4,%buscr # unlock the bus + bra.b cas2w_update_done + bra.b ~+16 + +CAS2W_NOUPDATE: + movc %a3,%buscr # assert LOCKE* + movs.w %d0,(%a0) # Dest1[15:0] -> DEST1 + movc %a4,%buscr # unlock the bus + bra.b cas2w_noupdate_done + bra.b ~+16 + +CAS2W_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CAS2W_START + +#### + +################################################################# +# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # +# ENTERING _isp_cas2(). # +# # +# D0 = destination[15:0] operand 1 # +# D1 = destination[15:0] operand 2 # +# D2 = cmp[15:0] operand 1 # +# D3 = cmp[15:0] operand 2 # +# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # +# D5 = xxxxxxxx # +# D6 = xxxxxxxx # +# D7 = xxxxxxxx # +# A0 = xxxxxxxx # +# A1 = xxxxxxxx # +# A2 = xxxxxxxx # +# A3 = xxxxxxxx # +# A4 = xxxxxxxx # +# A5 = xxxxxxxx # +# A6 = frame pointer # +# A7 = stack pointer # +################################################################# + +cas2w_noupdate_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + sf %d4 # indicate no update was done + bra.l _isp_cas2_finish + +cas2w_update_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + st %d4 # indicate update was done + bra.l _isp_cas2_finish +#### + + align 0x10 +CAS2W2_START: + movc %a2,%buscr # assert LOCK* + movs.w (%a1),%d1 # fetch Dest2[15:0] + movs.w (%a0),%d0 # fetch Dest1[15:0] + bra.b CAS2W2_CONT2 +CAS2W2_ENTER: + bra.b ~+16 + +CAS2W2_CONT2: + cmp.w %d0,%d2 # Dest1 - Compare1 + bne.b CAS2W2_NOUPDATE + cmp.w %d1,%d3 # Dest2 - Compare2 + bne.b CAS2W2_NOUPDATE + movs.w %d5,(%a1) # Update2[15:0] -> DEST2 + bra.b CAS2W2_UPDATE + bra.b ~+16 + +CAS2W2_UPDATE: + ror.l &0x8,%d4 # get Update1[15:8] + movs.b %d4,(%a0)+ # Update1[15:8] -> DEST1 + movc %a3,%buscr # assert LOCKE* + rol.l &0x8,%d4 # get Update1[7:0] + bra.b CAS2W2_UPDATE2 + bra.b ~+16 + +CAS2W2_UPDATE2: + movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x1 + movc %a4,%buscr # unlock the bus + bra.w cas2w_update_done + nop + bra.b ~+16 + +CAS2W2_NOUPDATE: + ror.l &0x8,%d0 # get Dest1[15:8] + movs.b %d0,(%a0)+ # Dest1[15:8] -> DEST1 + movc %a3,%buscr # assert LOCKE* + rol.l &0x8,%d0 # get Dest1[7:0] + bra.b CAS2W2_NOUPDATE2 + bra.b ~+16 + +CAS2W2_NOUPDATE2: + movs.b %d0,(%a0) # Dest1[7:0] -> DEST1+0x1 + movc %a4,%buscr # unlock the bus + bra.w cas2w_noupdate_done + nop + bra.b ~+16 + +CAS2W2_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CAS2W2_START + +# ###### ## ###### +# # # # # +# # ###### ###### +# # # # # +# ###### # # ###### + +######################################################################### +# XDEF **************************************************************** # +# _isp_cas(): "core" emulation code for the cas instruction # +# # +# XREF **************************************************************** # +# _isp_cas_finish() - only exit point for this emulation code; # +# do clean-up # +# # +# INPUT *************************************************************** # +# *see entry chart below* # +# # +# OUTPUT ************************************************************** # +# *see exit chart below* # +# # +# ALGORITHM *********************************************************** # +# (1) Make several copies of the effective address. # +# (2) Save current SR; Then mask off all maskable interrupts. # +# (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set # +# SFC/DFC according to whether exception occurred in user or # +# supervisor mode. # +# (4) Use "plpaw" instruction to pre-load ATC with efective # +# address page(s). THIS SHOULD NOT FAULT!!! The relevant # +# page(s) should have been made resident prior to entering # +# this routine. # +# (5) Push the operand lines from the cache w/ "cpushl". # +# In the 68040, this was done within the locked region. In # +# the 68060, it is done outside of the locked region. # +# (6) Pre-fetch the core emulation instructions by executing one # +# branch within each physical line (16 bytes) of the code # +# before actually executing the code. # +# (7) Load the BUSCR with the bus lock value. # +# (8) Fetch the source operand. # +# (9) Do the compare. If equal, go to step (12). # +# (10)Unequal. No update occurs. But, we do write the DST op back # +# to itself (as w/ the '040) so we can gracefully unlock # +# the bus (and assert LOCKE*) using BUSCR and the final move. # +# (11)Exit. # +# (12)Write update operand to the DST location. Use BUSCR to # +# assert LOCKE* for the final write operation. # +# (13)Exit. # +# # +# The algorithm is actually implemented slightly differently # +# depending on the size of the operation and the misalignment of the # +# operand. A misaligned operand must be written in aligned chunks or # +# else the BUSCR register control gets confused. # +# # +######################################################################### + +######################################################### +# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON # +# ENTERING _isp_cas(). # +# # +# D0 = xxxxxxxx # +# D1 = xxxxxxxx # +# D2 = update operand # +# D3 = xxxxxxxx # +# D4 = compare operand # +# D5 = xxxxxxxx # +# D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00) # +# D7 = longword ('xxxxxxff) or word size ('xxxxxx00) # +# A0 = ADDR # +# A1 = xxxxxxxx # +# A2 = xxxxxxxx # +# A3 = xxxxxxxx # +# A4 = xxxxxxxx # +# A5 = xxxxxxxx # +# A6 = frame pointer # +# A7 = stack pointer # +######################################################### + + global _isp_cas +_isp_cas: + tst.b %d6 # user or supervisor mode? + bne.b cas_super # supervisor +cas_user: + movq.l &0x1,%d0 # load user data fc + bra.b cas_cont +cas_super: + movq.l &0x5,%d0 # load supervisor data fc + +cas_cont: + tst.b %d7 # word or longword? + bne.w casl # longword + +#### +casw: + mov.l %a0,%a1 # make copy for plpaw1 + mov.l %a0,%a2 # make copy for plpaw2 + addq.l &0x1,%a2 # plpaw2 points to end of word + + mov.l %d2,%d3 # d3 = update[7:0] + lsr.w &0x8,%d2 # d2 = update[15:8] + +# mask interrupt levels 0-6. save old mask value. + mov.w %sr,%d7 # save current SR + ori.w &0x0700,%sr # inhibit interrupts + +# load the SFC and DFC with the appropriate mode. + movc %sfc,%d6 # save old SFC/DFC + movc %d0,%sfc # load new sfc + movc %d0,%dfc # load new dfc + +# pre-load the operand ATC. no page faults should occur here because +# _real_lock_page() should have taken care of this. + plpaw (%a1) # load atc for ADDR + plpaw (%a2) # load atc for ADDR+1 + +# push the operand lines from the cache if they exist. + cpushl %dc,(%a1) # push dirty data + cpushl %dc,(%a2) # push dirty data + +# load the BUSCR values. + mov.l &0x80000000,%a1 # assert LOCK* buscr value + mov.l &0xa0000000,%a2 # assert LOCKE* buscr value + mov.l &0x00000000,%a3 # buscr unlock value + +# pre-load the instruction cache for the following algorithm. +# this will minimize the number of cycles that LOCK* will be asserted. + bra.b CASW_ENTER # start pre-loading icache + +# +# D0 = dst operand <- +# D1 = update[15:8] operand +# D2 = update[7:0] operand +# D3 = xxxxxxxx +# D4 = compare[15:0] operand +# D5 = xxxxxxxx +# D6 = old SFC/DFC +# D7 = old SR +# A0 = ADDR +# A1 = bus LOCK* value +# A2 = bus LOCKE* value +# A3 = bus unlock value +# A4 = xxxxxxxx +# A5 = xxxxxxxx +# + align 0x10 +CASW_START: + movc %a1,%buscr # assert LOCK* + movs.w (%a0),%d0 # fetch Dest[15:0] + cmp.w %d0,%d4 # Dest - Compare + bne.b CASW_NOUPDATE + bra.b CASW_UPDATE +CASW_ENTER: + bra.b ~+16 + +CASW_UPDATE: + movs.b %d2,(%a0)+ # Update[15:8] -> DEST + movc %a2,%buscr # assert LOCKE* + movs.b %d3,(%a0) # Update[7:0] -> DEST+0x1 + bra.b CASW_UPDATE2 + bra.b ~+16 + +CASW_UPDATE2: + movc %a3,%buscr # unlock the bus + bra.b casw_update_done + nop + nop + nop + nop + bra.b ~+16 + +CASW_NOUPDATE: + ror.l &0x8,%d0 # get Dest[15:8] + movs.b %d0,(%a0)+ # Dest[15:8] -> DEST + movc %a2,%buscr # assert LOCKE* + rol.l &0x8,%d0 # get Dest[7:0] + bra.b CASW_NOUPDATE2 + bra.b ~+16 + +CASW_NOUPDATE2: + movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x1 + movc %a3,%buscr # unlock the bus + bra.b casw_noupdate_done + nop + nop + bra.b ~+16 + +CASW_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CASW_START + +################################################################# +# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # +# CALLING _isp_cas_finish(). # +# # +# D0 = destination[15:0] operand # +# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # +# D2 = xxxxxxxx # +# D3 = xxxxxxxx # +# D4 = compare[15:0] operand # +# D5 = xxxxxxxx # +# D6 = xxxxxxxx # +# D7 = xxxxxxxx # +# A0 = xxxxxxxx # +# A1 = xxxxxxxx # +# A2 = xxxxxxxx # +# A3 = xxxxxxxx # +# A4 = xxxxxxxx # +# A5 = xxxxxxxx # +# A6 = frame pointer # +# A7 = stack pointer # +################################################################# + +casw_noupdate_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + sf %d1 # indicate no update was done + bra.l _isp_cas_finish + +casw_update_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + st %d1 # indicate update was done + bra.l _isp_cas_finish + +################ + +# there are two possible mis-aligned cases for longword cas. they +# are separated because the final write which asserts LOCKE* must +# be an aligned write. +casl: + mov.l %a0,%a1 # make copy for plpaw1 + mov.l %a0,%a2 # make copy for plpaw2 + addq.l &0x3,%a2 # plpaw2 points to end of longword + + mov.l %a0,%d1 # byte or word misaligned? + btst &0x0,%d1 + bne.w casl2 # byte misaligned + + mov.l %d2,%d3 # d3 = update[15:0] + swap %d2 # d2 = update[31:16] + +# mask interrupts levels 0-6. save old mask value. + mov.w %sr,%d7 # save current SR + ori.w &0x0700,%sr # inhibit interrupts + +# load the SFC and DFC with the appropriate mode. + movc %sfc,%d6 # save old SFC/DFC + movc %d0,%sfc # load new sfc + movc %d0,%dfc # load new dfc + +# pre-load the operand ATC. no page faults should occur here because +# _real_lock_page() should have taken care of this. + plpaw (%a1) # load atc for ADDR + plpaw (%a2) # load atc for ADDR+3 + +# push the operand lines from the cache if they exist. + cpushl %dc,(%a1) # push dirty data + cpushl %dc,(%a2) # push dirty data + +# load the BUSCR values. + mov.l &0x80000000,%a1 # assert LOCK* buscr value + mov.l &0xa0000000,%a2 # assert LOCKE* buscr value + mov.l &0x00000000,%a3 # buscr unlock value + + bra.b CASL_ENTER # start pre-loading icache + +# +# D0 = dst operand <- +# D1 = xxxxxxxx +# D2 = update[31:16] operand +# D3 = update[15:0] operand +# D4 = compare[31:0] operand +# D5 = xxxxxxxx +# D6 = old SFC/DFC +# D7 = old SR +# A0 = ADDR +# A1 = bus LOCK* value +# A2 = bus LOCKE* value +# A3 = bus unlock value +# A4 = xxxxxxxx +# A5 = xxxxxxxx +# + align 0x10 +CASL_START: + movc %a1,%buscr # assert LOCK* + movs.l (%a0),%d0 # fetch Dest[31:0] + cmp.l %d0,%d4 # Dest - Compare + bne.b CASL_NOUPDATE + bra.b CASL_UPDATE +CASL_ENTER: + bra.b ~+16 + +CASL_UPDATE: + movs.w %d2,(%a0)+ # Update[31:16] -> DEST + movc %a2,%buscr # assert LOCKE* + movs.w %d3,(%a0) # Update[15:0] -> DEST+0x2 + bra.b CASL_UPDATE2 + bra.b ~+16 + +CASL_UPDATE2: + movc %a3,%buscr # unlock the bus + bra.b casl_update_done + nop + nop + nop + nop + bra.b ~+16 + +CASL_NOUPDATE: + swap %d0 # get Dest[31:16] + movs.w %d0,(%a0)+ # Dest[31:16] -> DEST + swap %d0 # get Dest[15:0] + movc %a2,%buscr # assert LOCKE* + bra.b CASL_NOUPDATE2 + bra.b ~+16 + +CASL_NOUPDATE2: + movs.w %d0,(%a0) # Dest[15:0] -> DEST+0x2 + movc %a3,%buscr # unlock the bus + bra.b casl_noupdate_done + nop + nop + bra.b ~+16 + +CASL_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CASL_START + +################################################################# +# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON # +# CALLING _isp_cas_finish(). # +# # +# D0 = destination[31:0] operand # +# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required # +# D2 = xxxxxxxx # +# D3 = xxxxxxxx # +# D4 = compare[31:0] operand # +# D5 = xxxxxxxx # +# D6 = xxxxxxxx # +# D7 = xxxxxxxx # +# A0 = xxxxxxxx # +# A1 = xxxxxxxx # +# A2 = xxxxxxxx # +# A3 = xxxxxxxx # +# A4 = xxxxxxxx # +# A5 = xxxxxxxx # +# A6 = frame pointer # +# A7 = stack pointer # +################################################################# + +casl_noupdate_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupt mask level. + mov.w %d7,%sr # restore old SR + + sf %d1 # indicate no update was done + bra.l _isp_cas_finish + +casl_update_done: + +# restore previous SFC/DFC value. + movc %d6,%sfc # restore old SFC + movc %d6,%dfc # restore old DFC + +# restore previous interrupts mask level. + mov.w %d7,%sr # restore old SR + + st %d1 # indicate update was done + bra.l _isp_cas_finish + +####################################### +casl2: + mov.l %d2,%d5 # d5 = Update[7:0] + lsr.l &0x8,%d2 + mov.l %d2,%d3 # d3 = Update[23:8] + swap %d2 # d2 = Update[31:24] + +# mask interrupts levels 0-6. save old mask value. + mov.w %sr,%d7 # save current SR + ori.w &0x0700,%sr # inhibit interrupts + +# load the SFC and DFC with the appropriate mode. + movc %sfc,%d6 # save old SFC/DFC + movc %d0,%sfc # load new sfc + movc %d0,%dfc # load new dfc + +# pre-load the operand ATC. no page faults should occur here because +# _real_lock_page() should have taken care of this already. + plpaw (%a1) # load atc for ADDR + plpaw (%a2) # load atc for ADDR+3 + +# puch the operand lines from the cache if they exist. + cpushl %dc,(%a1) # push dirty data + cpushl %dc,(%a2) # push dirty data + +# load the BUSCR values. + mov.l &0x80000000,%a1 # assert LOCK* buscr value + mov.l &0xa0000000,%a2 # assert LOCKE* buscr value + mov.l &0x00000000,%a3 # buscr unlock value + +# pre-load the instruction cache for the following algorithm. +# this will minimize the number of cycles that LOCK* will be asserted. + bra.b CASL2_ENTER # start pre-loading icache + +# +# D0 = dst operand <- +# D1 = xxxxxxxx +# D2 = update[31:24] operand +# D3 = update[23:8] operand +# D4 = compare[31:0] operand +# D5 = update[7:0] operand +# D6 = old SFC/DFC +# D7 = old SR +# A0 = ADDR +# A1 = bus LOCK* value +# A2 = bus LOCKE* value +# A3 = bus unlock value +# A4 = xxxxxxxx +# A5 = xxxxxxxx +# + align 0x10 +CASL2_START: + movc %a1,%buscr # assert LOCK* + movs.l (%a0),%d0 # fetch Dest[31:0] + cmp.l %d0,%d4 # Dest - Compare + bne.b CASL2_NOUPDATE + bra.b CASL2_UPDATE +CASL2_ENTER: + bra.b ~+16 + +CASL2_UPDATE: + movs.b %d2,(%a0)+ # Update[31:24] -> DEST + movs.w %d3,(%a0)+ # Update[23:8] -> DEST+0x1 + movc %a2,%buscr # assert LOCKE* + bra.b CASL2_UPDATE2 + bra.b ~+16 + +CASL2_UPDATE2: + movs.b %d5,(%a0) # Update[7:0] -> DEST+0x3 + movc %a3,%buscr # unlock the bus + bra.w casl_update_done + nop + bra.b ~+16 + +CASL2_NOUPDATE: + rol.l &0x8,%d0 # get Dest[31:24] + movs.b %d0,(%a0)+ # Dest[31:24] -> DEST + swap %d0 # get Dest[23:8] + movs.w %d0,(%a0)+ # Dest[23:8] -> DEST+0x1 + bra.b CASL2_NOUPDATE2 + bra.b ~+16 + +CASL2_NOUPDATE2: + rol.l &0x8,%d0 # get Dest[7:0] + movc %a2,%buscr # assert LOCKE* + movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x3 + bra.b CASL2_NOUPDATE3 + nop + bra.b ~+16 + +CASL2_NOUPDATE3: + movc %a3,%buscr # unlock the bus + bra.w casl_noupdate_done + nop + nop + nop + bra.b ~+16 + +CASL2_FILLER: + nop + nop + nop + nop + nop + nop + nop + bra.b CASL2_START + +#### +#### +# end label used by _isp_cas_inrange() + global _CASHI +_CASHI: diff --git a/arch/m68k/ifpsp060/src/itest.S b/arch/m68k/ifpsp060/src/itest.S new file mode 100644 index 00000000000..ba4a30cbcbe --- /dev/null +++ b/arch/m68k/ifpsp060/src/itest.S @@ -0,0 +1,6386 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +############################################# +set SREGS, -64 +set IREGS, -128 +set SCCR, -130 +set ICCR, -132 +set TESTCTR, -136 +set EAMEM, -140 +set EASTORE, -144 +set DATA, -160 + +############################################# +TESTTOP: + bra.l _060TESTS_ + +start_str: + string "Testing 68060 ISP started:\n" + +pass_str: + string "passed\n" +fail_str: + string " failed\n" + + align 0x4 +chk_test: + tst.l %d0 + bne.b test_fail +test_pass: + pea pass_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + rts +test_fail: + mov.l %d1,-(%sp) + bsr.l _print_num + addq.l &0x4,%sp + + pea fail_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + rts + +############################################# +_060TESTS_: + link %a6,&-160 + + movm.l &0x3f3c,-(%sp) + + pea start_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + +### mul + clr.l TESTCTR(%a6) + pea mulul_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l mulul_0 + + bsr.l chk_test + +### div + clr.l TESTCTR(%a6) + pea divul_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l divul_0 + + bsr.l chk_test + +### cmp2 + clr.l TESTCTR(%a6) + pea cmp2_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l cmp2_1 + + bsr.l chk_test + +### movp + clr.l TESTCTR(%a6) + pea movp_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l movp_0 + + bsr.l chk_test + +### ea + clr.l TESTCTR(%a6) + pea ea_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + mov.l &0x2,EAMEM(%a6) + bsr.l ea_0 + + bsr.l chk_test + +### cas + clr.l TESTCTR(%a6) + pea cas_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l cas0 + + bsr.l chk_test + +### cas2 + clr.l TESTCTR(%a6) + pea cas2_str(%pc) + bsr.l _print_str + addq.l &0x4,%sp + + bsr.l cas20 + + bsr.l chk_test + +### + movm.l (%sp)+,&0x3cfc + + unlk %a6 + rts + +############################################# +############################################# + +mulul_str: + string "\t64-bit multiply..." + + align 0x4 +mulul_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d1 + mov.l &0x99999999,%d2 + mov.l &0x88888888,%d3 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + clr.l IREGS+0x8(%a6) + clr.l IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x77777777,%d1 + mov.l &0x99999999,%d2 + mov.l &0x00000000,%d3 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + clr.l IREGS+0x8(%a6) + clr.l IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x00000010,%d1 + mov.l &0x66666666,%d2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l %d1,%d2:%d2 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000006,IREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x55555555,%d1 + mov.l &0x00000000,%d2 + mov.l &0x00000003,%d3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000000,IREGS+0x8(%a6) + mov.l &0xffffffff,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x40000000,%d1 + mov.l &0x00000000,%d2 + mov.l &0x00000004,%d3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000001,IREGS+0x8(%a6) + mov.l &0x00000000,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_5: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xffffffff,%d1 + mov.l &0x00000000,%d2 + mov.l &0xffffffff,%d3 + + mov.w &0x0008,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xfffffffe,IREGS+0x8(%a6) + mov.l &0x00000001,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_6: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x80000000,%d1 + mov.l &0x00000000,%d2 + mov.l &0xffffffff,%d3 + + mov.w &0x00000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + muls.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000000,IREGS+0x8(%a6) + mov.l &0x80000000,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_7: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x80000000,%d1 + mov.l &0x00000000,%d2 + mov.l &0x00000001,%d3 + + mov.w &0x0008,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + muls.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xffffffff,IREGS+0x8(%a6) + mov.l &0x80000000,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +mulul_8: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x00000001,%d1 + mov.l &0x00000000,%d2 + mov.l &0x80000000,%d3 + + mov.w &0x0008,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + muls.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xffffffff,IREGS+0x8(%a6) + mov.l &0x80000000,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +############################################# + +movp_str: + string "\tmovep..." + + align 0x4 +############################### +# movep.w %d0,(0x0,%a0) # +############################### +movp_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.w &0xaaaa,%d0 + clr.b 0x0(%a0) + clr.b 0x2(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d0,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x2(%a0),%d1 + lsl.w &0x8,%d1 + mov.b 0x0(%a0),%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w %d0,(0x0,%a0) # +############################### +movp_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x4(%a6),%a0 + mov.w &0xaaaa,%d0 + clr.l -0x4(%a0) + clr.l (%a0) + clr.l 0x4(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d0,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + tst.l -0x4(%a0) + bne.l error + tst.l 0x4(%a0) + bne.l error + cmpi.l (%a0),&0xaa00aa00 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +##################################################### +# movep.w %d0,(0x0,%a0) # +# - this test has %cc initially equal to zero # +##################################################### +movp_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.w &0xaaaa,%d0 + clr.b 0x0(%a0) + clr.b 0x2(%a0) + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d0,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x2(%a0),%d1 + lsl.w &0x8,%d1 + mov.b 0x0(%a0),%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w (0x0,%a0),%d0 # +############################### +movp_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.b &0xaa,0x0(%a0) + mov.b &0xaa,0x2(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w (0x0,%a0),%d0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.w &0xaaaa,IREGS+0x2(%a6) + + mov.w &0xaaaa,%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.l %d0,(0x0,%a0) # +############################### +movp_4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.l &0xaaaaaaaa,%d0 + clr.b 0x0(%a0) + clr.b 0x2(%a0) + clr.b 0x4(%a0) + clr.b 0x6(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l %d0,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x6(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x4(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x2(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x0(%a0),%d1 + + cmp.l %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.l %d0,(0x0,%a0) # +############################### +movp_5: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x4(%a6),%a0 + mov.l &0xaaaaaaaa,%d0 + clr.l -0x4(%a0) + clr.l (%a0) + clr.l 0x4(%a0) + clr.l 0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l %d0,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + tst.l -0x4(%a0) + bne.l error + tst.l 0x8(%a0) + bne.l error + cmpi.l (%a0),&0xaa00aa00 + bne.l error + cmpi.l 0x4(%a0),&0xaa00aa00 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.l (0x0,%a0),%d0 # +############################### +movp_6: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.b &0xaa,0x0(%a0) + mov.b &0xaa,0x2(%a0) + mov.b &0xaa,0x4(%a0) + mov.b &0xaa,0x6(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l (0x0,%a0),%d0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xaaaaaaaa,IREGS(%a6) + + mov.l &0xaaaaaaaa,%d1 + + cmp.l %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w %d7,(0x0,%a0) # +############################### +movp_7: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.w &0xaaaa,%d7 + clr.b 0x0(%a0) + clr.b 0x2(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d7,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x2(%a0),%d1 + lsl.w &0x8,%d1 + mov.b 0x0(%a0),%d1 + + cmp.w %d7,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w (0x0,%a0),%d7 # +############################### +movp_8: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.b &0xaa,0x0(%a0) + mov.b &0xaa,0x2(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w (0x0,%a0),%d7 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.w &0xaaaa,IREGS+30(%a6) + + mov.w &0xaaaa,%d1 + + cmp.w %d7,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w %d0,(0x0,%a0) # +############################### +movp_9: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.w &0xaaaa,%d0 + clr.b 0x0(%a0) + clr.b 0x2(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d0,(0x0,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x2(%a0),%d1 + lsl.w &0x8,%d1 + mov.b 0x0(%a0),%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w %d0,(0x8,%a0) # +############################### +movp_10: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.w &0xaaaa,%d0 + clr.b 0x0+0x8(%a0) + clr.b 0x2+0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d0,(0x8,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x2+0x8(%a0),%d1 + lsl.w &0x8,%d1 + mov.b 0x0+0x8(%a0),%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.w (0x8,%a0),%d0 # +############################### +movp_11: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.b &0xaa,0x0+0x8(%a0) + mov.b &0xaa,0x2+0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w (0x8,%a0),%d0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.w &0xaaaa,IREGS+0x2(%a6) + + mov.w &0xaaaa,%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.l %d0,(0x8,%a0) # +############################### +movp_12: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.l &0xaaaaaaaa,%d0 + clr.b 0x0+0x8(%a0) + clr.b 0x2+0x8(%a0) + clr.b 0x4+0x8(%a0) + clr.b 0x6+0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l %d0,(0x8,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x6+0x8(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x4+0x8(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x2+0x8(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x0+0x8(%a0),%d1 + + cmp.l %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +############################### +# movep.l (0x8,%a0),%d0 # +############################### +movp_13: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA(%a6),%a0 + mov.b &0xaa,0x0+0x8(%a0) + mov.b &0xaa,0x2+0x8(%a0) + mov.b &0xaa,0x4+0x8(%a0) + mov.b &0xaa,0x6+0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l (0x8,%a0),%d0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xaaaaaaaa,IREGS(%a6) + + mov.l &0xaaaaaaaa,%d1 + + cmp.l %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +################################ +# movep.w %d0,(-0x8,%a0) # +################################ +movp_14: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x8(%a6),%a0 + mov.w &0xaaaa,%d0 + clr.b 0x0-0x8(%a0) + clr.b 0x2-0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w %d0,(-0x8,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x2-0x8(%a0),%d1 + lsl.w &0x8,%d1 + mov.b 0x0-0x8(%a0),%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +################################ +# movep.w (-0x8,%a0),%d0 # +################################ +movp_15: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x8(%a6),%a0 + mov.b &0xaa,0x0-0x8(%a0) + mov.b &0xaa,0x2-0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.w (-0x8,%a0),%d0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.w &0xaaaa,IREGS+0x2(%a6) + + mov.w &0xaaaa,%d1 + + cmp.w %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +################################ +# movep.l %d0,(-0x8,%a0) # +################################ +movp_16: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x8(%a6),%a0 + mov.l &0xaaaaaaaa,%d0 + clr.b 0x0-0x8(%a0) + clr.b 0x2-0x8(%a0) + clr.b 0x4-0x8(%a0) + clr.b 0x8-0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l %d0,(-0x8,%a0) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + mov.b 0x6-0x8(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x4-0x8(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x2-0x8(%a0),%d1 + lsl.l &0x8,%d1 + mov.b 0x0-0x8(%a0),%d1 + + cmp.l %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + +################################ +# movep.l (-0x8,%a0),%d0 # +################################ +movp_17: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x8(%a6),%a0 + mov.b &0xaa,0x0-0x8(%a0) + mov.b &0xaa,0x2-0x8(%a0) + mov.b &0xaa,0x4-0x8(%a0) + mov.b &0xaa,0x8-0x8(%a0) + + mov.w &0x001f,ICCR(%a6) + mov.w &0x1f,%cc + movm.l &0x7fff,IREGS(%a6) + + movp.l (-0x8,%a0),%d0 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xaaaaaaaa,IREGS(%a6) + + mov.l &0xaaaaaaaa,%d1 + + cmp.l %d0,%d1 + bne.l error + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +########################################################### + +divul_str: + string "\t64-bit divide..." + + align 0x4 +divul_0: + addq.l &0x1,TESTCTR(%a6) + +# movm.l DEF_REGS(%pc),&0x3fff + +# clr.l %d1 +# mov.l &0x99999999,%d2 +# mov.l &0x88888888,%d3 + +# mov.w &0x001e,ICCR(%a6) +# mov.w &0x001f,%cc +# movm.l &0x7fff,IREGS(%a6) + +# divu.l %d1,%d2:%d3 + +# mov.w %cc,SCCR(%a6) +# movm.l &0x7fff,SREGS(%a6) + +# bsr.l chkregs +# tst.b %d0 +# bne.l error + +divul_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x00000001,%d1 + mov.l &0x00000000,%d2 + mov.l &0x00000000,%d3 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x44444444,%d1 + mov.l &0x00000000,%d2 + mov.l &0x55555555,%d3 + + mov.w &0x0010,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x11111111,IREGS+0x8(%a6) + mov.l &0x00000001,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x55555555,%d1 + mov.l &0x00000000,%d2 + mov.l &0x44444444,%d3 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x44444444,IREGS+0x8(%a6) + mov.l &0x00000000,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x11111111,%d1 + mov.l &0x44444444,%d2 + mov.l &0x44444444,%d3 + + mov.w &0x001e,ICCR(%a6) + mov.w &0x001d,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_5: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xfffffffe,%d1 + mov.l &0x00000001,%d2 + mov.l &0x00000002,%d3 + + mov.w &0x001e,ICCR(%a6) + mov.w &0x001d,%cc + movm.l &0x7fff,IREGS(%a6) + + divs.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_6: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xfffffffe,%d1 + mov.l &0x00000001,%d2 + mov.l &0x00000000,%d3 + + mov.w &0x0018,ICCR(%a6) + mov.w &0x001d,%cc + movm.l &0x7fff,IREGS(%a6) + + divs.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000000,IREGS+0x8(%a6) + mov.l &0x80000000,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_7: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x00000002,%d1 + mov.l &0x00000001,%d2 + mov.l &0x00000000,%d3 + + mov.w &0x001e,ICCR(%a6) + mov.w &0x001d,%cc + movm.l &0x7fff,IREGS(%a6) + + divs.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_8: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xffffffff,%d1 + mov.l &0xfffffffe,%d2 + mov.l &0xffffffff,%d3 + + mov.w &0x0008,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_9: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xffffffff,%d1 + mov.l &0xfffffffe,%d2 + mov.l &0xffffffff,%d3 + + mov.w &0x0008,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l &0xffffffff,%d2:%d2 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0xffffffff,IREGS+0x8(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +divul_10: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x0000ffff,%d1 + mov.l &0x00000001,%d2 + mov.l &0x55555555,%d3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + divu.l %d1,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x0000aaab,IREGS+0x8(%a6) + mov.l &0x00015556,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +########################################################### + +cas_str: + string "\tcas..." + + align 0x4 +cas0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + + mov.w &0xaaaa,(%a0) + + mov.w &0xaaaa,%d1 + mov.w &0xbbbb,%d2 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas.w %d1,%d2,(%a0) # Dc,Du,<ea> + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d3 + mov.w &0xbbbb,IREGS+0xc+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + + mov.w &0xeeee,(%a0) + + mov.w &0x0000aaaa,%d1 + mov.w &0x0000bbbb,%d2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas.w %d1,%d2,(%a0) # Dc,Du,<ea> + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d3 + mov.w &0xeeee,IREGS+0x4+0x2(%a6) + mov.w &0xeeee,IREGS+0xc+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x2(%a6),%a0 + + mov.l &0xaaaaaaaa,(%a0) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas.l %d1,%d2,(%a0) # Dc,Du,<ea> + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d3 + mov.l &0xbbbbbbbb,IREGS+0xc(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x2(%a6),%a0 + + mov.l &0xeeeeeeee,(%a0) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas.l %d1,%d2,(%a0) # Dc,Du,<ea> + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d3 + mov.l &0xeeeeeeee,IREGS+0x4(%a6) + mov.l &0xeeeeeeee,IREGS+0xc(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + + mov.l &0xaaaaaaaa,(%a0) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas.l %d1,%d2,(%a0) # Dc,Du,<ea> + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d3 + mov.l &0xbbbbbbbb,IREGS+0xc(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas5: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + + mov.l &0x7fffffff,(%a0) + + mov.l &0x80000000,%d1 + mov.l &0xbbbbbbbb,%d2 + + mov.w &0x001b,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas.l %d1,%d2,(%a0) # Dc,Du,<ea> + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d3 + mov.l &0x7fffffff,IREGS+0x4(%a6) + mov.l &0x7fffffff,IREGS+0xc(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +########################################################### + +cas2_str: + string "\tcas2..." + + align 0x4 +cas20: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x0(%a6),%a0 + lea DATA+0x4(%a6),%a1 + + mov.l &0xaaaaaaaa,(%a0) + mov.l &0xbbbbbbbb,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xcccccccc,IREGS+0x14(%a6) + mov.l &0xdddddddd,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas21: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + lea DATA+0x5(%a6),%a1 + + mov.l &0xaaaaaaaa,(%a0) + mov.l &0xbbbbbbbb,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xcccccccc,IREGS+0x14(%a6) + mov.l &0xdddddddd,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas22: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x2(%a6),%a0 + lea DATA+0x6(%a6),%a1 + + mov.l &0xaaaaaaaa,(%a0) + mov.l &0xbbbbbbbb,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xcccccccc,IREGS+0x14(%a6) + mov.l &0xdddddddd,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas23: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x0(%a6),%a0 + lea DATA+0x4(%a6),%a1 + + mov.l &0xeeeeeeee,(%a0) + mov.l &0xbbbbbbbb,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xeeeeeeee,IREGS+0x4(%a6) + mov.l &0xbbbbbbbb,IREGS+0x8(%a6) + mov.l &0xeeeeeeee,IREGS+0x14(%a6) + mov.l &0xbbbbbbbb,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas24: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + lea DATA+0x5(%a6),%a1 + + mov.l &0xeeeeeeee,(%a0) + mov.l &0xbbbbbbbb,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xeeeeeeee,IREGS+0x4(%a6) + mov.l &0xbbbbbbbb,IREGS+0x8(%a6) + mov.l &0xeeeeeeee,IREGS+0x14(%a6) + mov.l &0xbbbbbbbb,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas25: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x2(%a6),%a0 + lea DATA+0x6(%a6),%a1 + + mov.l &0xeeeeeeee,(%a0) + mov.l &0xbbbbbbbb,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xeeeeeeee,IREGS+0x4(%a6) + mov.l &0xbbbbbbbb,IREGS+0x8(%a6) + mov.l &0xeeeeeeee,IREGS+0x14(%a6) + mov.l &0xbbbbbbbb,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas26: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x0(%a6),%a0 + lea DATA+0x4(%a6),%a1 + + mov.l &0xaaaaaaaa,(%a0) + mov.l &0xeeeeeeee,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xaaaaaaaa,IREGS+0x4(%a6) + mov.l &0xeeeeeeee,IREGS+0x8(%a6) + mov.l &0xaaaaaaaa,IREGS+0x14(%a6) + mov.l &0xeeeeeeee,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas27: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + lea DATA+0x5(%a6),%a1 + + mov.l &0xaaaaaaaa,(%a0) + mov.l &0xeeeeeeee,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0xbbbbbbbb,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xaaaaaaaa,IREGS+0x4(%a6) + mov.l &0xeeeeeeee,IREGS+0x8(%a6) + mov.l &0xaaaaaaaa,IREGS+0x14(%a6) + mov.l &0xeeeeeeee,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas28: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x2(%a6),%a0 + lea DATA+0x6(%a6),%a1 + + mov.l &0xaaaaaaaa,(%a0) + mov.l &0x7fffffff,(%a1) + + mov.l &0xaaaaaaaa,%d1 + mov.l &0x80000000,%d2 + mov.l &0xcccccccc,%d3 + mov.l &0xdddddddd,%d4 + + mov.w &0x000b,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.l %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.l (%a0),%d5 + mov.l (%a1),%d6 + mov.l &0xaaaaaaaa,IREGS+0x4(%a6) + mov.l &0x7fffffff,IREGS+0x8(%a6) + mov.l &0xaaaaaaaa,IREGS+0x14(%a6) + mov.l &0x7fffffff,IREGS+0x18(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +################################## +cas29: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x0(%a6),%a0 + lea DATA+0x4(%a6),%a1 + + mov.w &0xaaaa,(%a0) + mov.w &0xbbbb,(%a1) + + mov.w &0xaaaa,%d1 + mov.w &0xbbbb,%d2 + mov.w &0xcccc,%d3 + mov.w &0xdddd,%d4 + + mov.w &0x0014,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d5 + mov.w (%a1),%d6 + mov.w &0xcccc,IREGS+0x14+0x2(%a6) + mov.w &0xdddd,IREGS+0x18+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas210: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + lea DATA+0x5(%a6),%a1 + + mov.w &0xaaaa,(%a0) + mov.w &0xbbbb,(%a1) + + mov.w &0xaaaa,%d1 + mov.w &0xbbbb,%d2 + mov.w &0xcccc,%d3 + mov.w &0xdddd,%d4 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d5 + mov.w (%a1),%d6 + mov.w &0xcccc,IREGS+0x14+0x2(%a6) + mov.w &0xdddd,IREGS+0x18+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas211: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x0(%a6),%a0 + lea DATA+0x4(%a6),%a1 + + mov.w &0xeeee,(%a0) + mov.w &0xbbbb,(%a1) + + mov.w &0xaaaa,%d1 + mov.w &0xbbbb,%d2 + mov.w &0xcccc,%d3 + mov.w &0xdddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d5 + mov.w (%a1),%d6 + mov.w &0xeeee,IREGS+0x4+0x2(%a6) + mov.w &0xbbbb,IREGS+0x8+0x2(%a6) + mov.w &0xeeee,IREGS+0x14+0x2(%a6) + mov.w &0xbbbb,IREGS+0x18+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas212: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + lea DATA+0x5(%a6),%a1 + + mov.w &0xeeee,(%a0) + mov.w &0xbbbb,(%a1) + + mov.w &0xaaaa,%d1 + mov.w &0xbbbb,%d2 + mov.w &0xcccc,%d3 + mov.w &0xdddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d5 + mov.w (%a1),%d6 + mov.w &0xeeee,IREGS+0x4+0x2(%a6) + mov.w &0xbbbb,IREGS+0x8+0x2(%a6) + mov.w &0xeeee,IREGS+0x14+0x2(%a6) + mov.w &0xbbbb,IREGS+0x18+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas213: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x0(%a6),%a0 + lea DATA+0x4(%a6),%a1 + + mov.w &0xaaaa,(%a0) + mov.w &0xeeee,(%a1) + + mov.w &0xaaaa,%d1 + mov.w &0xbbbb,%d2 + mov.w &0xcccc,%d3 + mov.w &0xdddd,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d5 + mov.w (%a1),%d6 + mov.w &0xaaaa,IREGS+0x4+0x2(%a6) + mov.w &0xeeee,IREGS+0x8+0x2(%a6) + mov.w &0xaaaa,IREGS+0x14+0x2(%a6) + mov.w &0xeeee,IREGS+0x18+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cas214: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + lea DATA+0x1(%a6),%a0 + lea DATA+0x5(%a6),%a1 + + mov.w &0xaaaa,(%a0) + mov.w &0x7fff,(%a1) + + mov.w &0xaaaa,%d1 + mov.w &0x8000,%d2 + mov.w &0xcccc,%d3 + mov.w &0xdddd,%d4 + + mov.w &0x001b,ICCR(%a6) + mov.w &0x0010,%cc + movm.l &0x7fff,IREGS(%a6) + + cas2.w %d1:%d2,%d3:%d4,(%a0):(%a1) # Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) + + mov.w %cc,SCCR(%a6) + mov.w (%a0),%d5 + mov.w (%a1),%d6 + mov.w &0xaaaa,IREGS+0x4+0x2(%a6) + mov.w &0x7fff,IREGS+0x8+0x2(%a6) + mov.w &0xaaaa,IREGS+0x14+0x2(%a6) + mov.w &0x7fff,IREGS+0x18+0x2(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +########################################################### + +cmp2_str: + string "\tcmp2,chk2..." + + align 0x4 +# unsigned - small,small +cmp2_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0x2040,DATA(%a6) + mov.l &0x11111120,%d1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0x2040,DATA(%a6) + mov.l &0x00000040,%a1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0x2040,DATA(%a6) + mov.l &0x11111130,%d1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + chk2.b DATA(%a6),%d1 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0x2040,DATA(%a6) + mov.l &0x00000010,%a1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_5: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0x2040,DATA(%a6) + mov.l &0x11111150,%d1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_6: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0x2040,DATA(%a6) + mov.l &0x00000090,%a1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +# unsigned - small,large +cmp2_7: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x2000a000,DATA(%a6) + mov.l &0x11112000,%d1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.w %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_8: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x2000a000,DATA(%a6) + mov.l &0xffffa000,%a1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.w %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_9: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x2000a000,DATA(%a6) + mov.l &0x11113000,%d1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + chk2.w DATA(%a6),%d1 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_10: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x2000a000,DATA(%a6) + mov.l &0xffff9000,%a1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.w %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_11: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x2000a000,DATA(%a6) + mov.l &0x11111000,%d1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.w %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_12: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0x2000a000,DATA(%a6) + mov.l &0xffffb000,%a1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.w %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +# unsigned - large,large +cmp2_13: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xa0000000,DATA(%a6) + mov.l &0xc0000000,DATA+0x4(%a6) + mov.l &0xa0000000,%d1 + + mov.w &0x000c,ICCR(%a6) + mov.w &0x0008,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.l %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_14: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xa0000000,DATA(%a6) + mov.l &0xc0000000,DATA+0x4(%a6) + mov.l &0xc0000000,%a1 + + mov.w &0x000c,ICCR(%a6) + mov.w &0x0008,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.l %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_15: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xa0000000,DATA(%a6) + mov.l &0xc0000000,DATA+0x4(%a6) + mov.l &0xb0000000,%d1 + + mov.w &0x0008,ICCR(%a6) + mov.w &0x0008,%cc + movm.l &0x7fff,IREGS(%a6) + + chk2.l DATA(%a6),%d1 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_16: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xa0000000,DATA(%a6) + mov.l &0xc0000000,DATA+0x4(%a6) + mov.l &0x10000000,%a1 + + mov.w &0x0009,ICCR(%a6) + mov.w &0x0008,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.l %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_17: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xa0000000,DATA(%a6) + mov.l &0xc0000000,DATA+0x4(%a6) + mov.l &0x90000000,%d1 + + mov.w &0x0009,ICCR(%a6) + mov.w &0x0008,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.l %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_18: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l &0xa0000000,DATA(%a6) + mov.l &0xc0000000,DATA+0x4(%a6) + mov.l &0xd0000000,%a1 + + mov.w &0x0009,ICCR(%a6) + mov.w &0x0008,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.l %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +# signed - negative,positive +cmp2_19: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa040,DATA(%a6) + mov.l &0x111111a0,%d1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_20: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa040,DATA(%a6) + mov.l &0x00000040,%a1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + chk2.b DATA(%a6),%a1 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_21: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa040,DATA(%a6) + mov.l &0x111111b0,%d1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_22: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa040,DATA(%a6) + mov.l &0x00000010,%a1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_23: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa040,DATA(%a6) + mov.l &0x11111190,%d1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_24: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa040,DATA(%a6) + mov.l &0x00000050,%a1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +# signed - negative,negative +cmp2_25: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa0c0,DATA(%a6) + mov.l &0x111111a0,%d1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_26: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa0c0,DATA(%a6) + mov.l &0xffffffc0,%a1 + + mov.w &0x0004,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_27: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa0c0,DATA(%a6) + mov.l &0x111111b0,%d1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + chk2.b DATA(%a6),%d1 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_28: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa0c0,DATA(%a6) + mov.l &0x11111190,%a1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_29: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa0c0,DATA(%a6) + mov.l &0x111111d0,%d1 + + mov.w &0x0001,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %d1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +cmp2_30: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.w &0xa0c0,DATA(%a6) + mov.l &0x00000050,%a1 + + mov.w &0x001b,ICCR(%a6) + mov.w &0x001f,%cc + movm.l &0x7fff,IREGS(%a6) + + cmp2.b %a1,DATA(%a6) + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +########################################################### + +ea_str: + string "\tEffective addresses..." + + align 0x4 +ea_0: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a0),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_1: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a0)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a0 + mov.l %a0,IREGS+0x20(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_2: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a6),%a0 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a0),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a0 + mov.l %a0,IREGS+0x20(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_3: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x1000(%a6),%a0 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (-0x1000,%a0),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_4: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a0 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a0),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_5: + addq.l &0x1,TESTCTR(%a6) + +# movm.l DEF_REGS(%pc),&0x3fff + +# clr.l %d2 +# mov.l &0x00000002,%d3 + +# mov.w &0x0000,ICCR(%a6) +# mov.w &0x0000,%cc +# movm.l &0xffff,IREGS(%a6) + +# mulu.l EAMEM.w,%d2:%d3 + +# mov.w %cc,SCCR(%a6) +# movm.l &0xffff,SREGS(%a6) +# mov.l &0x00000004,IREGS+0xc(%a6) + +# bsr.l chkregs +# tst.b %d0 +# bne.l error + +ea_6: + addq.l &0x1,TESTCTR(%a6) + +# movm.l DEF_REGS(%pc),&0x3fff + +# clr.l %d2 +# mov.l &0x00000002,%d3 + +# mov.w &0x0000,ICCR(%a6) +# mov.w &0x0000,%cc +# movm.l &0xffff,IREGS(%a6) + +# mulu.l EAMEM.l,%d2:%d3 + +# mov.w %cc,SCCR(%a6) +# movm.l &0xffff,SREGS(%a6) +# mov.l &0x00000004,IREGS+0xc(%a6) + +# bsr.l chkregs +# tst.b %d0 +# bne.l error + +ea_7: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l &0x00000002,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_8: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_8_next +ea_8_mem: + long 0x00000002 +ea_8_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_8_mem.w,%pc),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_9: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a6),%a1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a0 + mov.l %a0,IREGS+0x24(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_10: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a6),%a2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a0 + mov.l %a0,IREGS+0x28(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_11: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a6),%a3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a3),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a0 + mov.l %a0,IREGS+0x2c(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_12: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a6),%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a0 + mov.l %a0,IREGS+0x30(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_13: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a6),%a5 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a5),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a0 + mov.l %a0,IREGS+0x34(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_14: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x4(%a1),%a6 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l -(%a6),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + lea EAMEM(%a1),%a0 + mov.l %a0,IREGS+0x38(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_15: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + clr.l %d2 + mov.l &0x00000002,%d3 + mov.l %a7,%a0 + lea EAMEM+0x4(%a6),%a7 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l -(%a7),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM(%a6),%a1 + mov.l %a1,IREGS+0x3c(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_16: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_17: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.w*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_18: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.w*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_19: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.w*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_20: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.l*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_21: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.l*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_22: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.l*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_23: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%d4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_24: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a0,%a4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_25: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (-0x10.b,%a0,%a4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_26: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a1 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a1,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_27: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a2 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a2,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_28: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a3,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_29: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a4 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a4,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_30: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a5 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a5,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_31: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a1),%a6 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l (0x10.b,%a6,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_32: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + mov.l %a7,%a0 + lea EAMEM(%a6),%a7 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.b,%a7,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_33: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_34: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_35: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a3),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_36: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_37: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a5 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a5),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_38: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a1),%a6 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l (%a6),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_39: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + mov.l %a7,%a0 + lea EAMEM(%a6),%a7 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a7),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_40: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a1)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a0 + mov.l %a0,IREGS+0x24(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_41: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a2)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a0 + mov.l %a0,IREGS+0x28(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_42: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a3)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a0 + mov.l %a0,IREGS+0x2c(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_43: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a4)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a0 + mov.l %a0,IREGS+0x30(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_44: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a5 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a5)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a0 + mov.l %a0,IREGS+0x34(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_45: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a1),%a6 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l (%a6)+,%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + lea EAMEM+0x4(%a1),%a0 + mov.l %a0,IREGS+0x38(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_46: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + mov.l %a7,%a0 + lea EAMEM(%a6),%a7 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (%a7)+,%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + lea EAMEM+0x4(%a6),%a1 + mov.l %a1,IREGS+0x3c(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_47: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a1 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_48: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a2 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_49: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a3),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_50: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_51: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a5 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a5),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_52: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a1),%a6 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l (0x1000,%a6),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_53: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + mov.l %a7,%a0 + lea EAMEM-0x1000(%a6),%a7 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x1000,%a7),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_54: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x1000(%a6),%a0 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (-0x1000,%a0),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_55: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_55_next + +ea_55_data: + long 0x00000002 +ea_55_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_55_data.w,%pc),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_56: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_57: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.w*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_58: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.w*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_59: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.w*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_60: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.l*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_61: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.l*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_62: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.l*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_63: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x10.w,%a3,%d4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_64: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (-0x10.w,%a3,%a4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_65: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (0x00.w,%a3,%za4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_66: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l %a3,%a4 + add.l &0x10,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (-0x10.w,%za3,%a4.l*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_67: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (-0x10.l,%a3,%a4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_68: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_68_next +ea_68_mem: + long 0x00000002 +ea_68_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_68_mem+0x10.w,%pc,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_69: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_69_next +ea_69_mem: + long 0x00000002 +ea_69_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_69_mem+0x10.w,%pc,%d4.w*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_70: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_70_next +ea_70_mem: + long 0x00000002 +ea_70_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_70_mem+0x10.w,%pc,%d4.w*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_71: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_71_next +ea_71_mem: + long 0x00000002 +ea_71_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_71_mem+0x10.w,%pc,%d4.w*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_72: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_72_next +ea_72_mem: + long 0x00000002 +ea_72_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_72_mem+0x10.w,%pc,%d4.l*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_73: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_73_next +ea_73_mem: + long 0x00000002 +ea_73_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_73_mem+0x10.w,%pc,%d4.l*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_74: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_74_next +ea_74_mem: + long 0x00000002 +ea_74_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_74_mem+0x10.w,%pc,%d4.l*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_75: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_75_next +ea_75_mem: + long 0x00000002 +ea_75_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0x7fff,IREGS(%a6) + + mulu.l (ea_75_mem+0x10.w,%pc,%d4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0x7fff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_76: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_76_next +ea_76_mem: + long 0x00000002 +ea_76_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &-0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_76_mem+0x10.w,%pc,%a4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_77: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_77_next +ea_77_mem: + long 0x00000002 +ea_77_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a3 + mov.l &0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_77_mem+0x00.w,%pc,%za4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_78: + addq.l &0x1,TESTCTR(%a6) + +# movm.l DEF_REGS(%pc),&0x3fff + +# clr.l %d2 +# mov.l &0x00000002,%d3 +# lea EAMEM,%a3 +# mov.l %a3,%a4 +# add.l &0x10,%a4 + +# mov.w &0x0000,ICCR(%a6) +# mov.w &0x0000,%cc +# movm.l &0xffff,IREGS(%a6) + +# mulu.l (EAMEM-0x10.w,%zpc,%a4.l*1),%d2:%d3 + +# mov.w %cc,SCCR(%a6) +# movm.l &0xffff,SREGS(%a6) +# mov.l &0x00000004,IREGS+0xc(%a6) + +# bsr.l chkregs +# tst.b %d0 +# bne.l error + +ea_79: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM,%a3 + mov.l &0x2,%a4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_79_mem-0x10.l,%pc,%a4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bra.b ea_79_next +ea_79_mem: + long 0x00000002 +ea_79_next: + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_80: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_80_next +ea_80_mem: + long 0x00000002 +ea_80_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a1 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_80_mem+0x10.b,%pc,%d4.w*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_81: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_81_next +ea_81_mem: + long 0x00000002 +ea_81_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_81_mem+0x10.b,%pc,%d4.w*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_82: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_82_next +ea_82_mem: + long 0x00000002 +ea_82_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_82_mem+0x10.b,%pc,%d4.w*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_83: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_83_next +ea_83_mem: + long 0x00000002 +ea_83_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_83_mem+0x10.b,%pc,%d4.w*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_84: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_84_next +ea_84_mem: + long 0x00000002 +ea_84_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_84_mem+0x10.b,%pc,%d4.l*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_85: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_85_next +ea_85_mem: + long 0x00000002 +ea_85_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_85_mem+0x10.b,%pc,%d4.l*2),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_86: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_86_next +ea_86_mem: + long 0x00000002 +ea_86_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_86_mem+0x10.b,%pc,%d4.l*4),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_87: + addq.l &0x1,TESTCTR(%a6) + + bra.b ea_87_next +ea_87_mem: + long 0x00000002 +ea_87_next: + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_87_mem+0x10.b,%pc,%d4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_88: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a6),%a0 + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l (ea_88_mem+0x10.b,%pc,%d4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bra.b ea_88_next +ea_88_mem: + long 0x00000002 +ea_88_next: + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_89: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.w*1],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_90: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.w*2],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_91: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.w*4],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_92: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.w*8],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_93: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.l*1],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_94: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.l*2],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_95: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.l*4],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_96: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4,%d4.l*8],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_97: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.l,%a4,%d4.l*8],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_98: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x00.l,%a4,%zd4.l*8],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_99: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([%a4,%zd4.l*8],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_100: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + add.l %a4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.l,%za4,%d4.l*1],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_101: + addq.l &0x1,TESTCTR(%a6) + +# movm.l DEF_REGS(%pc),&0x3fff + +# clr.l %d2 +# mov.l &0x00000002,%d3 +# lea EAMEM(%a6),%a3 +# lea EASTORE(%a6),%a4 +# mov.l %a3,(%a4) +# mov.l &-0x10,%d4 + +# mov.w &0x0000,ICCR(%a6) +# mov.w &0x0000,%cc +# movm.l &0xffff,IREGS(%a6) + +# mulu.l ([EASTORE.l,%za4,%zd4.l*1]),%d2:%d3 + +# mov.w %cc,SCCR(%a6) +# movm.l &0xffff,SREGS(%a6) +# mov.l &0x00000004,IREGS+0xc(%a6) + +# bsr.l chkregs +# tst.b %d0 +# bne.l error + +ea_102: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x1000(%a1),%a3 + lea EASTORE(%a1),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%a6 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l ([0x10.w,%a4,%a6.l*8],-0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_103: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x1000(%a1),%a3 + lea EASTORE(%a1),%a4 + mov.l %a3,(%a4) + mov.l &0x2,%a6 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l ([-0x10.w,%a4,%a6.l*8],-0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_104: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.w*1,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_105: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.w*2,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_106: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.w*4,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_107: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.w*8,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_108: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.l*1,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_109: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.w*2,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_110: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.l*4,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_111: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.w,%a4],%d4.l*8,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_112: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.l,%a4],%d4.l*8,0x10.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_113: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a4 + mov.l %a3,(%a4) + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x00.l,%a4],%zd4.l*8,0x20.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_114: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a7,%a0 + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%a6),%a3 + lea EASTORE(%a6),%a7 + mov.l %a3,(%a7) + mov.l &0x20,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([%a7],%d4.l*1),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_115: + addq.l &0x1,TESTCTR(%a6) + +# movm.l DEF_REGS(%pc),&0x3fff + +# clr.l %d2 +# mov.l &0x00000002,%d3 +# lea EAMEM-0x20(%pc),%a3 +# lea EASTORE(%pc),%a4 +# mov.l %a3,(%a4) +# mov.l &0x2,%d4 + +# mov.w &0x0000,ICCR(%a6) +# mov.w &0x0000,%cc +# movm.l &0xffff,IREGS(%a6) + +# mulu.l ([EASTORE.l,%za4],%zd4.l*8,0x20.l),%d2:%d3 + +# mov.w %cc,SCCR(%a6) +# movm.l &0xffff,SREGS(%a6) +# mov.l &0x00000004,IREGS+0xc(%a6) + +# bsr.l chkregs +# tst.b %d0 +# bne.l error + +ea_116: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a6,%a1 + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%a1),%a3 + lea EASTORE(%a1),%a6 + mov.l %a3,(%a6) + add.l &0x10,%a6 + mov.l &-0x2,%a5 + + mov.w &0x0000,ICCR(%a1) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a1) + + mulu.l ([-0x10.w,%a6],%a5.l*8,0x10.l),%d2:%d3 + + mov.w %cc,SCCR(%a1) + movm.l &0xffff,SREGS(%a1) + mov.l &0x00000004,IREGS+0xc(%a1) + + mov.l %a1,%a6 + + bsr.l chkregs + tst.b %d0 + bne.l error + + mov.l TESTCTR(%a6),%d1 + clr.l %d0 + rts + +ea_117: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.w*1],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_118: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.w*2],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_119: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.w*4],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_120: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.w*8],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_121: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.l*1],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_122: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.l*2],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_123: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.l*4],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_124: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x10.w,%pc,%d4.l*8],0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_125: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + mulu.l ([EASTORE+0x10.l,%pc,%d4.l*8],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_126: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE+0x00.l,%pc,%zd4.l*8],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_127: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l %a4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([%zpc,%d4.l*1],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_128: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + add.l %a4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([0x10.l,%zpc,%d4.l*1],0x1000.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_129: + addq.l &0x1,TESTCTR(%a6) + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &-0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.l,%zpc,%zd4.l*1]),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_130: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &0x2,%a6 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE-0x10.w,%pc,%a6.l*8],-0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_131: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a7,%a0 + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM+0x1000(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &0x2,%a7 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE-0x10.w,%pc,%a7.l*8],-0x1000.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_132: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.w*1,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_133: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.w*2,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_134: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.w*4,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_135: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.w*8,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_136: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x10,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.l*1,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_137: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x8,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.w*2,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_138: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.l*4,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_139: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%d4.l*8,0x10.w),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_140: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + sub.l &0x10,%a4 + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.l,%pc],%d4.l*8,0x10.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_141: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &0x2,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.l,%pc],%zd4.l*8,0x20.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_142: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM-0x20(%pc),%a3 + lea EASTORE(%pc),%a4 + mov.l %a3,(%a4) + mov.l &0x4,%d4 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.l,%zpc],%d4.l*8),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + bsr.l chkregs + tst.b %d0 + bne.l error + +ea_143: + addq.l &0x1,TESTCTR(%a6) + + movm.l DEF_REGS(%pc),&0x3fff + + mov.l %a7,%a0 + clr.l %d2 + mov.l &0x00000002,%d3 + lea EAMEM(%pc),%a3 + lea EASTORE(%pc),%a6 + mov.l %a3,(%a6) + add.l &0x10,%a6 + mov.l &-0x2,%a7 + + mov.w &0x0000,ICCR(%a6) + mov.w &0x0000,%cc + movm.l &0xffff,IREGS(%a6) + + mulu.l ([EASTORE.w,%pc],%a7.l*8,0x10.l),%d2:%d3 + + mov.w %cc,SCCR(%a6) + movm.l &0xffff,SREGS(%a6) + mov.l &0x00000004,IREGS+0xc(%a6) + + mov.l %a0,%a7 + bsr.l chkregs + tst.b %d0 + bne.l error + + clr.l %d0 + rts + +########################################################### +########################################################### +chkregs: + lea IREGS(%a6),%a0 + lea SREGS(%a6),%a1 + mov.l &14,%d0 +chkregs_loop: + cmp.l (%a0)+,(%a1)+ + bne.l chkregs_error + dbra.w %d0,chkregs_loop + + mov.w ICCR(%a6),%d0 + mov.w SCCR(%a6),%d1 + cmp.w %d0,%d1 + bne.l chkregs_error + + clr.l %d0 + rts + +chkregs_error: + movq.l &0x1,%d0 + rts + +error: + mov.l TESTCTR(%a6),%d1 + movq.l &0x1,%d0 + rts + +DEF_REGS: + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + long 0xacacacac, 0xacacacac, 0xacacacac, 0xacacacac + +############################################################ + +_print_str: + mov.l %d0,-(%sp) + mov.l (TESTTOP-0x80+0x0,%pc),%d0 + pea (TESTTOP-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +_print_num: + mov.l %d0,-(%sp) + mov.l (TESTTOP-0x80+0x4,%pc),%d0 + pea (TESTTOP-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +############################################################ diff --git a/arch/m68k/ifpsp060/src/pfpsp.S b/arch/m68k/ifpsp060/src/pfpsp.S new file mode 100644 index 00000000000..0c997c436be --- /dev/null +++ b/arch/m68k/ifpsp060/src/pfpsp.S @@ -0,0 +1,14745 @@ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP +M68000 Hi-Performance Microprocessor Division +M68060 Software Package +Production Release P1.00 -- October 10, 1994 + +M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. + +THE SOFTWARE is provided on an "AS IS" basis and without warranty. +To the maximum extent permitted by applicable law, +MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, +INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE +and any warranty against infringement with regard to the SOFTWARE +(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. + +To the maximum extent permitted by applicable law, +IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER +(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, +BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) +ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. +Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. + +You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE +so long as this entire notice is retained without alteration in any modified and/or +redistributed versions, and that such modified versions are clearly identified as such. +No licenses are granted by implication, estoppel or otherwise under any patents +or trademarks of Motorola, Inc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# freal.s: +# This file is appended to the top of the 060FPSP package +# and contains the entry points into the package. The user, in +# effect, branches to one of the branch table entries located +# after _060FPSP_TABLE. +# Also, subroutine stubs exist in this file (_fpsp_done for +# example) that are referenced by the FPSP package itself in order +# to call a given routine. The stub routine actually performs the +# callout. The FPSP code does a "bsr" to the stub routine. This +# extra layer of hierarchy adds a slight performance penalty but +# it makes the FPSP code easier to read and more mainatinable. +# + +set _off_bsun, 0x00 +set _off_snan, 0x04 +set _off_operr, 0x08 +set _off_ovfl, 0x0c +set _off_unfl, 0x10 +set _off_dz, 0x14 +set _off_inex, 0x18 +set _off_fline, 0x1c +set _off_fpu_dis, 0x20 +set _off_trap, 0x24 +set _off_trace, 0x28 +set _off_access, 0x2c +set _off_done, 0x30 + +set _off_imr, 0x40 +set _off_dmr, 0x44 +set _off_dmw, 0x48 +set _off_irw, 0x4c +set _off_irl, 0x50 +set _off_drb, 0x54 +set _off_drw, 0x58 +set _off_drl, 0x5c +set _off_dwb, 0x60 +set _off_dww, 0x64 +set _off_dwl, 0x68 + +_060FPSP_TABLE: + +############################################################### + +# Here's the table of ENTRY POINTS for those linking the package. + bra.l _fpsp_snan + short 0x0000 + bra.l _fpsp_operr + short 0x0000 + bra.l _fpsp_ovfl + short 0x0000 + bra.l _fpsp_unfl + short 0x0000 + bra.l _fpsp_dz + short 0x0000 + bra.l _fpsp_inex + short 0x0000 + bra.l _fpsp_fline + short 0x0000 + bra.l _fpsp_unsupp + short 0x0000 + bra.l _fpsp_effadd + short 0x0000 + + space 56 + +############################################################### + global _fpsp_done +_fpsp_done: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_ovfl +_real_ovfl: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_unfl +_real_unfl: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_inex +_real_inex: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_bsun +_real_bsun: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_operr +_real_operr: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_snan +_real_snan: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_dz +_real_dz: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_fline +_real_fline: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_fpu_disabled +_real_fpu_disabled: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_trap +_real_trap: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_trace +_real_trace: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _real_access +_real_access: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +####################################### + + global _imem_read +_imem_read: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read +_dmem_read: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write +_dmem_write: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _imem_read_word +_imem_read_word: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _imem_read_long +_imem_read_long: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_byte +_dmem_read_byte: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_word +_dmem_read_word: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_read_long +_dmem_read_long: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_byte +_dmem_write_byte: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_word +_dmem_write_word: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + + global _dmem_write_long +_dmem_write_long: + mov.l %d0,-(%sp) + mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 + pea.l (_060FPSP_TABLE-0x80,%pc,%d0) + mov.l 0x4(%sp),%d0 + rtd &0x4 + +# +# This file contains a set of define statements for constants +# in order to promote readability within the corecode itself. +# + +set LOCAL_SIZE, 192 # stack frame size(bytes) +set LV, -LOCAL_SIZE # stack offset + +set EXC_SR, 0x4 # stack status register +set EXC_PC, 0x6 # stack pc +set EXC_VOFF, 0xa # stacked vector offset +set EXC_EA, 0xc # stacked <ea> + +set EXC_FP, 0x0 # frame pointer + +set EXC_AREGS, -68 # offset of all address regs +set EXC_DREGS, -100 # offset of all data regs +set EXC_FPREGS, -36 # offset of all fp regs + +set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 +set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 +set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 +set EXC_A5, EXC_AREGS+(5*4) +set EXC_A4, EXC_AREGS+(4*4) +set EXC_A3, EXC_AREGS+(3*4) +set EXC_A2, EXC_AREGS+(2*4) +set EXC_A1, EXC_AREGS+(1*4) +set EXC_A0, EXC_AREGS+(0*4) +set EXC_D7, EXC_DREGS+(7*4) +set EXC_D6, EXC_DREGS+(6*4) +set EXC_D5, EXC_DREGS+(5*4) +set EXC_D4, EXC_DREGS+(4*4) +set EXC_D3, EXC_DREGS+(3*4) +set EXC_D2, EXC_DREGS+(2*4) +set EXC_D1, EXC_DREGS+(1*4) +set EXC_D0, EXC_DREGS+(0*4) + +set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 +set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 +set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) + +set FP_SCR1, LV+80 # fp scratch 1 +set FP_SCR1_EX, FP_SCR1+0 +set FP_SCR1_SGN, FP_SCR1+2 +set FP_SCR1_HI, FP_SCR1+4 +set FP_SCR1_LO, FP_SCR1+8 + +set FP_SCR0, LV+68 # fp scratch 0 +set FP_SCR0_EX, FP_SCR0+0 +set FP_SCR0_SGN, FP_SCR0+2 +set FP_SCR0_HI, FP_SCR0+4 +set FP_SCR0_LO, FP_SCR0+8 + +set FP_DST, LV+56 # fp destination operand +set FP_DST_EX, FP_DST+0 +set FP_DST_SGN, FP_DST+2 +set FP_DST_HI, FP_DST+4 +set FP_DST_LO, FP_DST+8 + +set FP_SRC, LV+44 # fp source operand +set FP_SRC_EX, FP_SRC+0 +set FP_SRC_SGN, FP_SRC+2 +set FP_SRC_HI, FP_SRC+4 +set FP_SRC_LO, FP_SRC+8 + +set USER_FPIAR, LV+40 # FP instr address register + +set USER_FPSR, LV+36 # FP status register +set FPSR_CC, USER_FPSR+0 # FPSR condition codes +set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte +set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte +set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte + +set USER_FPCR, LV+32 # FP control register +set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable +set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control + +set L_SCR3, LV+28 # integer scratch 3 +set L_SCR2, LV+24 # integer scratch 2 +set L_SCR1, LV+20 # integer scratch 1 + +set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) + +set EXC_TEMP2, LV+24 # temporary space +set EXC_TEMP, LV+16 # temporary space + +set DTAG, LV+15 # destination operand type +set STAG, LV+14 # source operand type + +set SPCOND_FLG, LV+10 # flag: special case (see below) + +set EXC_CC, LV+8 # saved condition codes +set EXC_EXTWPTR, LV+4 # saved current PC (active) +set EXC_EXTWORD, LV+2 # saved extension word +set EXC_CMDREG, LV+2 # saved extension word +set EXC_OPWORD, LV+0 # saved operation word + +################################ + +# Helpful macros + +set FTEMP, 0 # offsets within an +set FTEMP_EX, 0 # extended precision +set FTEMP_SGN, 2 # value saved in memory. +set FTEMP_HI, 4 +set FTEMP_LO, 8 +set FTEMP_GRS, 12 + +set LOCAL, 0 # offsets within an +set LOCAL_EX, 0 # extended precision +set LOCAL_SGN, 2 # value saved in memory. +set LOCAL_HI, 4 +set LOCAL_LO, 8 +set LOCAL_GRS, 12 + +set DST, 0 # offsets within an +set DST_EX, 0 # extended precision +set DST_HI, 4 # value saved in memory. +set DST_LO, 8 + +set SRC, 0 # offsets within an +set SRC_EX, 0 # extended precision +set SRC_HI, 4 # value saved in memory. +set SRC_LO, 8 + +set SGL_LO, 0x3f81 # min sgl prec exponent +set SGL_HI, 0x407e # max sgl prec exponent +set DBL_LO, 0x3c01 # min dbl prec exponent +set DBL_HI, 0x43fe # max dbl prec exponent +set EXT_LO, 0x0 # min ext prec exponent +set EXT_HI, 0x7ffe # max ext prec exponent + +set EXT_BIAS, 0x3fff # extended precision bias +set SGL_BIAS, 0x007f # single precision bias +set DBL_BIAS, 0x03ff # double precision bias + +set NORM, 0x00 # operand type for STAG/DTAG +set ZERO, 0x01 # operand type for STAG/DTAG +set INF, 0x02 # operand type for STAG/DTAG +set QNAN, 0x03 # operand type for STAG/DTAG +set DENORM, 0x04 # operand type for STAG/DTAG +set SNAN, 0x05 # operand type for STAG/DTAG +set UNNORM, 0x06 # operand type for STAG/DTAG + +################## +# FPSR/FPCR bits # +################## +set neg_bit, 0x3 # negative result +set z_bit, 0x2 # zero result +set inf_bit, 0x1 # infinite result +set nan_bit, 0x0 # NAN result + +set q_sn_bit, 0x7 # sign bit of quotient byte + +set bsun_bit, 7 # branch on unordered +set snan_bit, 6 # signalling NAN +set operr_bit, 5 # operand error +set ovfl_bit, 4 # overflow +set unfl_bit, 3 # underflow +set dz_bit, 2 # divide by zero +set inex2_bit, 1 # inexact result 2 +set inex1_bit, 0 # inexact result 1 + +set aiop_bit, 7 # accrued inexact operation bit +set aovfl_bit, 6 # accrued overflow bit +set aunfl_bit, 5 # accrued underflow bit +set adz_bit, 4 # accrued dz bit +set ainex_bit, 3 # accrued inexact bit + +############################# +# FPSR individual bit masks # +############################# +set neg_mask, 0x08000000 # negative bit mask (lw) +set inf_mask, 0x02000000 # infinity bit mask (lw) +set z_mask, 0x04000000 # zero bit mask (lw) +set nan_mask, 0x01000000 # nan bit mask (lw) + +set neg_bmask, 0x08 # negative bit mask (byte) +set inf_bmask, 0x02 # infinity bit mask (byte) +set z_bmask, 0x04 # zero bit mask (byte) +set nan_bmask, 0x01 # nan bit mask (byte) + +set bsun_mask, 0x00008000 # bsun exception mask +set snan_mask, 0x00004000 # snan exception mask +set operr_mask, 0x00002000 # operr exception mask +set ovfl_mask, 0x00001000 # overflow exception mask +set unfl_mask, 0x00000800 # underflow exception mask +set dz_mask, 0x00000400 # dz exception mask +set inex2_mask, 0x00000200 # inex2 exception mask +set inex1_mask, 0x00000100 # inex1 exception mask + +set aiop_mask, 0x00000080 # accrued illegal operation +set aovfl_mask, 0x00000040 # accrued overflow +set aunfl_mask, 0x00000020 # accrued underflow +set adz_mask, 0x00000010 # accrued divide by zero +set ainex_mask, 0x00000008 # accrued inexact + +###################################### +# FPSR combinations used in the FPSP # +###################################### +set dzinf_mask, inf_mask+dz_mask+adz_mask +set opnan_mask, nan_mask+operr_mask+aiop_mask +set nzi_mask, 0x01ffffff #clears N, Z, and I +set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask +set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask +set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask +set inx1a_mask, inex1_mask+ainex_mask +set inx2a_mask, inex2_mask+ainex_mask +set snaniop_mask, nan_mask+snan_mask+aiop_mask +set snaniop2_mask, snan_mask+aiop_mask +set naniop_mask, nan_mask+aiop_mask +set neginf_mask, neg_mask+inf_mask +set infaiop_mask, inf_mask+aiop_mask +set negz_mask, neg_mask+z_mask +set opaop_mask, operr_mask+aiop_mask +set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask +set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask + +######### +# misc. # +######### +set rnd_stky_bit, 29 # stky bit pos in longword + +set sign_bit, 0x7 # sign bit +set signan_bit, 0x6 # signalling nan bit + +set sgl_thresh, 0x3f81 # minimum sgl exponent +set dbl_thresh, 0x3c01 # minimum dbl exponent + +set x_mode, 0x0 # extended precision +set s_mode, 0x4 # single precision +set d_mode, 0x8 # double precision + +set rn_mode, 0x0 # round-to-nearest +set rz_mode, 0x1 # round-to-zero +set rm_mode, 0x2 # round-tp-minus-infinity +set rp_mode, 0x3 # round-to-plus-infinity + +set mantissalen, 64 # length of mantissa in bits + +set BYTE, 1 # len(byte) == 1 byte +set WORD, 2 # len(word) == 2 bytes +set LONG, 4 # len(longword) == 2 bytes + +set BSUN_VEC, 0xc0 # bsun vector offset +set INEX_VEC, 0xc4 # inexact vector offset +set DZ_VEC, 0xc8 # dz vector offset +set UNFL_VEC, 0xcc # unfl vector offset +set OPERR_VEC, 0xd0 # operr vector offset +set OVFL_VEC, 0xd4 # ovfl vector offset +set SNAN_VEC, 0xd8 # snan vector offset + +########################### +# SPecial CONDition FLaGs # +########################### +set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception +set fbsun_flg, 0x02 # flag bit: bsun exception +set mia7_flg, 0x04 # flag bit: (a7)+ <ea> +set mda7_flg, 0x08 # flag bit: -(a7) <ea> +set fmovm_flg, 0x40 # flag bit: fmovm instruction +set immed_flg, 0x80 # flag bit: &<data> <ea> + +set ftrapcc_bit, 0x0 +set fbsun_bit, 0x1 +set mia7_bit, 0x2 +set mda7_bit, 0x3 +set immed_bit, 0x7 + +################################## +# TRANSCENDENTAL "LAST-OP" FLAGS # +################################## +set FMUL_OP, 0x0 # fmul instr performed last +set FDIV_OP, 0x1 # fdiv performed last +set FADD_OP, 0x2 # fadd performed last +set FMOV_OP, 0x3 # fmov performed last + +############# +# CONSTANTS # +############# +T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD +T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL + +PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 +PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 + +TWOBYPI: + long 0x3FE45F30,0x6DC9C883 + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Overflow exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # +# _real_ovfl() - "callout" for Overflow exception enabled code # +# _real_inex() - "callout" for Inexact exception enabled code # +# _real_trace() - "callout" for Trace exception code # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Ovfl exception stack frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# Overflow Exception enabled: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# Overflow Exception disabled: # +# - The system stack is unchanged # +# - The "exception present" flag in the fsave frame is cleared # +# # +# ALGORITHM *********************************************************** # +# On the 060, if an FP overflow is present as the result of any # +# instruction, the 060 will take an overflow exception whether the # +# exception is enabled or disabled in the FPCR. For the disabled case, # +# This handler emulates the instruction to determine what the correct # +# default result should be for the operation. This default result is # +# then stored in either the FP regfile, data regfile, or memory. # +# Finally, the handler exits through the "callout" _fpsp_done() # +# denoting that no exceptional conditions exist within the machine. # +# If the exception is enabled, then this handler must create the # +# exceptional operand and plave it in the fsave state frame, and store # +# the default result (only if the instruction is opclass 3). For # +# exceptions enabled, this handler must exit through the "callout" # +# _real_ovfl() so that the operating system enabled overflow handler # +# can handle this case. # +# Two other conditions exist. First, if overflow was disabled # +# but the inexact exception was enabled, this handler must exit # +# through the "callout" _real_inex() regardless of whether the result # +# was inexact. # +# Also, in the case of an opclass three instruction where # +# overflow was disabled and the trace exception was enabled, this # +# handler must exit through the "callout" _real_trace(). # +# # +######################################################################### + + global _fpsp_ovfl +_fpsp_ovfl: + +#$# sub.l &24,%sp # make room for src/dst + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? + bne.w fovfl_out + + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +# since, I believe, only NORMs and DENORMs can come through here, +# maybe we can avoid the subroutine call. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # maybe NORM,DENORM + +# bit five of the fp extension word separates the monadic and dyadic operations +# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos +# will never take this exception. + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b fovfl_extract # monadic + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fovfl_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +fovfl_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +fovfl_extract: + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) +#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) +#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) +#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + +# maybe we can make these entry points ONLY the OVFL entry points of each routine. + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# the operation has been emulated. the result is in fp0. +# the EXOP, if an exception occurred, is in fp1. +# we must save the default result regardless of whether +# traps are enabled or disabled. + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l store_fpreg + +# the exceptional possibilities we have left ourselves with are ONLY overflow +# and inexact. and, the inexact is such that overflow occurred and was disabled +# but inexact was enabled. + btst &ovfl_bit,FPCR_ENABLE(%a6) + bne.b fovfl_ovfl_on + + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.b fovfl_inex_on + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + bra.l _fpsp_done + +# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP +# in fp1. now, simply jump to _real_ovfl()! +fovfl_ovfl_on: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack + + mov.w &0xe005,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_ovfl + +# overflow occurred but is disabled. meanwhile, inexact is enabled. therefore, +# we must jump to real_inex(). +fovfl_inex_on: + + fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack + + mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_inex + +######################################################################## +fovfl_out: + + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) + +# the src operand is definitely a NORM(!), so tag it as such + mov.b &NORM,STAG(%a6) # set src optype tag + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + bsr.l fout + + btst &ovfl_bit,FPCR_ENABLE(%a6) + bne.w fovfl_ovfl_on + + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.w fovfl_inex_on + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + + btst &0x7,(%sp) # is trace on? + beq.l _fpsp_done # no + + fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 + bra.l _real_trace + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Underflow exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # +# _real_ovfl() - "callout" for Overflow exception enabled code # +# _real_inex() - "callout" for Inexact exception enabled code # +# _real_trace() - "callout" for Trace exception code # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Unfl exception stack frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# Underflow Exception enabled: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# Underflow Exception disabled: # +# - The system stack is unchanged # +# - The "exception present" flag in the fsave frame is cleared # +# # +# ALGORITHM *********************************************************** # +# On the 060, if an FP underflow is present as the result of any # +# instruction, the 060 will take an underflow exception whether the # +# exception is enabled or disabled in the FPCR. For the disabled case, # +# This handler emulates the instruction to determine what the correct # +# default result should be for the operation. This default result is # +# then stored in either the FP regfile, data regfile, or memory. # +# Finally, the handler exits through the "callout" _fpsp_done() # +# denoting that no exceptional conditions exist within the machine. # +# If the exception is enabled, then this handler must create the # +# exceptional operand and plave it in the fsave state frame, and store # +# the default result (only if the instruction is opclass 3). For # +# exceptions enabled, this handler must exit through the "callout" # +# _real_unfl() so that the operating system enabled overflow handler # +# can handle this case. # +# Two other conditions exist. First, if underflow was disabled # +# but the inexact exception was enabled and the result was inexact, # +# this handler must exit through the "callout" _real_inex(). # +# was inexact. # +# Also, in the case of an opclass three instruction where # +# underflow was disabled and the trace exception was enabled, this # +# handler must exit through the "callout" _real_trace(). # +# # +######################################################################### + + global _fpsp_unfl +_fpsp_unfl: + +#$# sub.l &24,%sp # make room for src/dst + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? + bne.w funfl_out + + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # maybe NORM,DENORM + +# bit five of the fp ext word separates the monadic and dyadic operations +# that can pass through fpsp_unfl(). remember that fcmp, and ftst +# will never take this exception. + btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? + beq.b funfl_extract # monadic + +# now, what's left that's not dyadic is fsincos. we can distinguish it +# from all dyadics by the '0110xxx pattern + btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? + bne.b funfl_extract # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b funfl_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +funfl_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +funfl_extract: + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) +#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) +#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) +#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + andi.l &0x00ff01ff,USER_FPSR(%a6) + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + +# maybe we can make these entry points ONLY the OVFL entry points of each routine. + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l store_fpreg + +# The `060 FPU multiplier hardware is such that if the result of a +# multiply operation is the smallest possible normalized number +# (0x00000000_80000000_00000000), then the machine will take an +# underflow exception. Since this is incorrect, we need to check +# if our emulation, after re-doing the operation, decided that +# no underflow was called for. We do these checks only in +# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this +# special case will simply exit gracefully with the correct result. + +# the exceptional possibilities we have left ourselves with are ONLY overflow +# and inexact. and, the inexact is such that overflow occurred and was disabled +# but inexact was enabled. + btst &unfl_bit,FPCR_ENABLE(%a6) + bne.b funfl_unfl_on + +funfl_chkinex: + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.b funfl_inex_on + +funfl_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + bra.l _fpsp_done + +# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP +# in fp1 (don't forget to save fp0). what to do now? +# well, we simply have to get to go to _real_unfl()! +funfl_unfl_on: + +# The `060 FPU multiplier hardware is such that if the result of a +# multiply operation is the smallest possible normalized number +# (0x00000000_80000000_00000000), then the machine will take an +# underflow exception. Since this is incorrect, we check here to see +# if our emulation, after re-doing the operation, decided that +# no underflow was called for. + btst &unfl_bit,FPSR_EXCEPT(%a6) + beq.w funfl_chkinex + +funfl_unfl_on2: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack + + mov.w &0xe003,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_unfl + +# undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore, +# we must jump to real_inex(). +funfl_inex_on: + +# The `060 FPU multiplier hardware is such that if the result of a +# multiply operation is the smallest possible normalized number +# (0x00000000_80000000_00000000), then the machine will take an +# underflow exception. +# But, whether bogus or not, if inexact is enabled AND it occurred, +# then we have to branch to real_inex. + + btst &inex2_bit,FPSR_EXCEPT(%a6) + beq.w funfl_exit + +funfl_inex_on2: + + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack + + mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) # save exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! + + unlk %a6 + + bra.l _real_inex + +####################################################################### +funfl_out: + + +#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) +#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) +#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) + +# the src operand is definitely a NORM(!), so tag it as such + mov.b &NORM,STAG(%a6) # set src optype tag + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + bsr.l fout + + btst &unfl_bit,FPCR_ENABLE(%a6) + bne.w funfl_unfl_on2 + + btst &inex2_bit,FPCR_ENABLE(%a6) + bne.w funfl_inex_on2 + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 +#$# add.l &24,%sp + + btst &0x7,(%sp) # is trace on? + beq.l _fpsp_done # no + + fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 + bra.l _real_trace + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # +# Data Type" exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Unimplemented Data Type exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_{word,long}() - read instruction word/longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# load_fpn1() - load src operand from FP regfile # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _real_inex() - "callout" to operating system inexact handler # +# _fpsp_done() - "callout" for exit; work all done # +# _real_trace() - "callout" for Trace enabled exception # +# funimp_skew() - adjust fsave src ops to "incorrect" value # +# _real_snan() - "callout" for SNAN exception # +# _real_operr() - "callout" for OPERR exception # +# _real_ovfl() - "callout" for OVFL exception # +# _real_unfl() - "callout" for UNFL exception # +# get_packed() - fetch packed operand from memory # +# # +# INPUT *************************************************************** # +# - The system stack contains the "Unimp Data Type" stk frame # +# - The fsave frame contains the ssrc op (for UNNORM/DENORM) # +# # +# OUTPUT ************************************************************** # +# If Inexact exception (opclass 3): # +# - The system stack is changed to an Inexact exception stk frame # +# If SNAN exception (opclass 3): # +# - The system stack is changed to an SNAN exception stk frame # +# If OPERR exception (opclass 3): # +# - The system stack is changed to an OPERR exception stk frame # +# If OVFL exception (opclass 3): # +# - The system stack is changed to an OVFL exception stk frame # +# If UNFL exception (opclass 3): # +# - The system stack is changed to an UNFL exception stack frame # +# If Trace exception enabled: # +# - The system stack is changed to a Trace exception stack frame # +# Else: (normal case) # +# - Correct result has been stored as appropriate # +# # +# ALGORITHM *********************************************************** # +# Two main instruction types can enter here: (1) DENORM or UNNORM # +# unimplemented data types. These can be either opclass 0,2 or 3 # +# instructions, and (2) PACKED unimplemented data format instructions # +# also of opclasses 0,2, or 3. # +# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # +# operand from the fsave state frame and the dst operand (if dyadic) # +# from the FP register file. The instruction is then emulated by # +# choosing an emulation routine from a table of routines indexed by # +# instruction type. Once the instruction has been emulated and result # +# saved, then we check to see if any enabled exceptions resulted from # +# instruction emulation. If none, then we exit through the "callout" # +# _fpsp_done(). If there is an enabled FP exception, then we insert # +# this exception into the FPU in the fsave state frame and then exit # +# through _fpsp_done(). # +# PACKED opclass 0 and 2 is similar in how the instruction is # +# emulated and exceptions handled. The differences occur in how the # +# handler loads the packed op (by calling get_packed() routine) and # +# by the fact that a Trace exception could be pending for PACKED ops. # +# If a Trace exception is pending, then the current exception stack # +# frame is changed to a Trace exception stack frame and an exit is # +# made through _real_trace(). # +# For UNNORM/DENORM opclass 3, the actual move out to memory is # +# performed by calling the routine fout(). If no exception should occur # +# as the result of emulation, then an exit either occurs through # +# _fpsp_done() or through _real_trace() if a Trace exception is pending # +# (a Trace stack frame must be created here, too). If an FP exception # +# should occur, then we must create an exception stack frame of that # +# type and jump to either _real_snan(), _real_operr(), _real_inex(), # +# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # +# emulation is performed in a similar manner. # +# # +######################################################################### + +# +# (1) DENORM and UNNORM (unimplemented) data types: +# +# post-instruction +# ***************** +# * EA * +# pre-instruction * * +# ***************** ***************** +# * 0x0 * 0x0dc * * 0x3 * 0x0dc * +# ***************** ***************** +# * Next * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# +# (2) PACKED format (unsupported) opclasses two and three: +# ***************** +# * EA * +# * * +# ***************** +# * 0x2 * 0x0dc * +# ***************** +# * Next * +# * PC * +# ***************** +# * SR * +# ***************** +# + global _fpsp_unsupp +_fpsp_unsupp: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # save fp state + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + + btst &0x5,EXC_SR(%a6) # user or supervisor mode? + bne.b fu_s +fu_u: + mov.l %usp,%a0 # fetch user stack pointer + mov.l %a0,EXC_A7(%a6) # save on stack + bra.b fu_cont +# if the exception is an opclass zero or two unimplemented data type +# exception, then the a7' calculated here is wrong since it doesn't +# stack an ea. however, we don't need an a7' for this case anyways. +fu_s: + lea 0x4+EXC_EA(%a6),%a0 # load old a7' + mov.l %a0,EXC_A7(%a6) # save on stack + +fu_cont: + +# the FPIAR holds the "current PC" of the faulting instruction +# the FPIAR should be set correctly for ALL exceptions passing through +# this point. + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD + +############################ + + clr.b SPCOND_FLG(%a6) # clear special condition flag + +# Separate opclass three (fpn-to-mem) ops since they have a different +# stack frame and protocol. + btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? + bne.w fu_out # yes + +# Separate packed opclass two instructions. + bfextu EXC_CMDREG(%a6){&0:&6},%d0 + cmpi.b %d0,&0x13 + beq.w fu_in_pack + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field + andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + +# Opclass two w/ memory-to-fpn operation will have an incorrect extended +# precision format if the src format was single or double and the +# source data type was an INF, NAN, DENORM, or UNNORM + lea FP_SRC(%a6),%a0 # pass ptr to input + bsr.l fix_skewed_ops + +# we don't know whether the src operand or the dst operand (or both) is the +# UNNORM or DENORM. call the function that tags the operand type. if the +# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2 # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO + +fu_op2: + mov.b %d0,STAG(%a6) # save src optype tag + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + +# bit five of the fp extension word separates the monadic and dyadic operations +# at this point + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b fu_extract # monadic + cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? + beq.b fu_extract # yes, so it's monadic, too + + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +fu_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +fu_extract: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# +# Exceptions in order of precedence: +# BSUN : none +# SNAN : all dyadic ops +# OPERR : fsqrt(-NORM) +# OVFL : all except ftst,fcmp +# UNFL : all except ftst,fcmp +# DZ : fdiv +# INEX2 : all except ftst,fcmp +# INEX1 : none (packed doesn't go through here) +# + +# we determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set + bne.b fu_in_ena # some are enabled + +fu_in_cont: +# fcmp and ftst do not store any result. + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension + andi.b &0x38,%d0 # extract bits 3-5 + cmpi.b %d0,&0x38 # is instr fcmp or ftst? + beq.b fu_in_exit # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l store_fpreg # store the result + +fu_in_exit: + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + bra.l _fpsp_done + +fu_in_ena: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b fu_in_exc # there is at least one set + +# +# No exceptions occurred that were also enabled. Now: +# +# if (OVFL && ovfl_disabled && inexact_enabled) { +# branch to _real_inex() (even if the result was exact!); +# } else { +# save the result in the proper fp reg (unless the op is fcmp or ftst); +# return; +# } +# + btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? + beq.b fu_in_cont # no + +fu_in_ovflchk: + btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? + beq.b fu_in_cont # no + bra.w fu_in_exc_ovfl # go insert overflow frame + +# +# An exception occurred and that exception was enabled: +# +# shift enabled exception field into lo byte of d0; +# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || +# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { +# /* +# * this is the case where we must call _real_inex() now or else +# * there will be no other way to pass it the exceptional operand +# */ +# call _real_inex(); +# } else { +# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; +# } +# +fu_in_exc: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? (6) + bne.b fu_in_exc_exit # no + +# the enabled exception was inexact + btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? + bne.w fu_in_exc_unfl # yes + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? + bne.w fu_in_exc_ovfl # yes + +# here, we insert the correct fsave status value into the fsave frame for the +# corresponding exception. the operand in the fsave frame should be the original +# src operand. +fu_in_exc_exit: + mov.l %d0,-(%sp) # save d0 + bsr.l funimp_skew # skew sgl or dbl inputs + mov.l (%sp)+,%d0 # restore d0 + + mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore src op + + unlk %a6 + + bra.l _fpsp_done + +tbl_except: + short 0xe000,0xe006,0xe004,0xe005 + short 0xe003,0xe002,0xe001,0xe001 + +fu_in_exc_unfl: + mov.w &0x4,%d0 + bra.b fu_in_exc_exit +fu_in_exc_ovfl: + mov.w &0x03,%d0 + bra.b fu_in_exc_exit + +# If the input operand to this operation was opclass two and a single +# or double precision denorm, inf, or nan, the operand needs to be +# "corrected" in order to have the proper equivalent extended precision +# number. + global fix_skewed_ops +fix_skewed_ops: + bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt + cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? + beq.b fso_sgl # yes + cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? + beq.b fso_dbl # yes + rts # no + +fso_sgl: + mov.w LOCAL_EX(%a0),%d0 # fetch src exponent + andi.w &0x7fff,%d0 # strip sign + cmpi.w %d0,&0x3f80 # is |exp| == $3f80? + beq.b fso_sgl_dnrm_zero # yes + cmpi.w %d0,&0x407f # no; is |exp| == $407f? + beq.b fso_infnan # yes + rts # no + +fso_sgl_dnrm_zero: + andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit + beq.b fso_zero # it's a skewed zero +fso_sgl_dnrm: +# here, we count on norm not to alter a0... + bsr.l norm # normalize mantissa + neg.w %d0 # -shft amt + addi.w &0x3f81,%d0 # adjust new exponent + andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent + or.w %d0,LOCAL_EX(%a0) # insert new exponent + rts + +fso_zero: + andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent + rts + +fso_infnan: + andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit + ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff + rts + +fso_dbl: + mov.w LOCAL_EX(%a0),%d0 # fetch src exponent + andi.w &0x7fff,%d0 # strip sign + cmpi.w %d0,&0x3c00 # is |exp| == $3c00? + beq.b fso_dbl_dnrm_zero # yes + cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? + beq.b fso_infnan # yes + rts # no + +fso_dbl_dnrm_zero: + andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit + bne.b fso_dbl_dnrm # it's a skewed denorm + tst.l LOCAL_LO(%a0) # is it a zero? + beq.b fso_zero # yes +fso_dbl_dnrm: +# here, we count on norm not to alter a0... + bsr.l norm # normalize mantissa + neg.w %d0 # -shft amt + addi.w &0x3c01,%d0 # adjust new exponent + andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent + or.w %d0,LOCAL_EX(%a0) # insert new exponent + rts + +################################################################# + +# fmove out took an unimplemented data type exception. +# the src operand is in FP_SRC. Call _fout() to write out the result and +# to determine which exceptions, if any, to take. +fu_out: + +# Separate packed move outs from the UNNORM and DENORM move outs. + bfextu EXC_CMDREG(%a6){&3:&3},%d0 + cmpi.b %d0,&0x3 + beq.w fu_out_pack + cmpi.b %d0,&0x7 + beq.w fu_out_pack + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field. +# fmove out doesn't affect ccodes. + and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + +# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine +# call here. just figure out what it is... + mov.w FP_SRC_EX(%a6),%d0 # get exponent + andi.w &0x7fff,%d0 # strip sign + beq.b fu_out_denorm # it's a DENORM + + lea FP_SRC(%a6),%a0 + bsr.l unnorm_fix # yes; fix it + + mov.b %d0,STAG(%a6) + + bra.b fu_out_cont +fu_out_denorm: + mov.b &DENORM,STAG(%a6) +fu_out_cont: + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + mov.l (%a6),EXC_A6(%a6) # in case a6 changes + bsr.l fout # call fmove out routine + +# Exceptions in order of precedence: +# BSUN : none +# SNAN : none +# OPERR : fmove.{b,w,l} out of large UNNORM +# OVFL : fmove.{s,d} +# UNFL : fmove.{s,d,x} +# DZ : none +# INEX2 : all +# INEX1 : none (packed doesn't travel through here) + +# determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w fu_out_ena # some are enabled + +fu_out_done: + + mov.l EXC_A6(%a6),(%a6) # in case a6 changed + +# on extended precision opclass three instructions using pre-decrement or +# post-increment addressing mode, the address register is not updated. is the +# address register was the stack pointer used from user mode, then let's update +# it here. if it was used from supervisor mode, then we have to handle this +# as a special case. + btst &0x5,EXC_SR(%a6) + bne.b fu_out_done_s + + mov.l EXC_A7(%a6),%a0 # restore a7 + mov.l %a0,%usp + +fu_out_done_cont: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + btst &0x7,(%sp) # is trace on? + bne.b fu_out_trace # yes + + bra.l _fpsp_done + +# is the ea mode pre-decrement of the stack pointer from supervisor mode? +# ("fmov.x fpm,-(a7)") if so, +fu_out_done_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.b fu_out_done_cont + +# the extended precision result is still in fp0. but, we need to save it +# somewhere on the stack until we can copy it to its final resting place. +# here, we're counting on the top of the stack to be the old place-holders +# for fp0/fp1 which have already been restored. that way, we can write +# over those destinations with the shifted stack frame. + fmovm.x &0x80,FP_SRC(%a6) # put answer on stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + +# now, copy the result to the proper place on the stack + mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) + mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) + mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + btst &0x7,(%sp) + bne.b fu_out_trace + + bra.l _fpsp_done + +fu_out_ena: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b fu_out_exc # there is at least one set + +# no exceptions were set. +# if a disabled overflow occurred and inexact was enabled but the result +# was exact, then a branch to _real_inex() is made. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? + beq.w fu_out_done # no + +fu_out_ovflchk: + btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? + beq.w fu_out_done # no + bra.w fu_inex # yes + +# +# The fp move out that took the "Unimplemented Data Type" exception was +# being traced. Since the stack frames are similar, get the "current" PC +# from FPIAR and put it in the trace stack frame then jump to _real_trace(). +# +# UNSUPP FRAME TRACE FRAME +# ***************** ***************** +# * EA * * Current * +# * * * PC * +# ***************** ***************** +# * 0x3 * 0x0dc * * 0x2 * 0x024 * +# ***************** ***************** +# * Next * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +# +fu_out_trace: + mov.w &0x2024,0x6(%sp) + fmov.l %fpiar,0x8(%sp) + bra.l _real_trace + +# an exception occurred and that exception was enabled. +fu_out_exc: + subi.l &24,%d0 # fix offset to be 0-8 + +# we don't mess with the existing fsave frame. just re-insert it and +# jump to the "_real_{}()" handler... + mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 + jmp (tbl_fu_out.b,%pc,%d0.w*1) + + swbeg &0x8 +tbl_fu_out: + short tbl_fu_out - tbl_fu_out # BSUN can't happen + short tbl_fu_out - tbl_fu_out # SNAN can't happen + short fu_operr - tbl_fu_out # OPERR + short fu_ovfl - tbl_fu_out # OVFL + short fu_unfl - tbl_fu_out # UNFL + short tbl_fu_out - tbl_fu_out # DZ can't happen + short fu_inex - tbl_fu_out # INEX2 + short tbl_fu_out - tbl_fu_out # INEX1 won't make it here + +# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just +# frestore it. +fu_snan: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 + mov.w &0xe006,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) + + unlk %a6 + + + bra.l _real_snan + +fu_operr: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 + mov.w &0xe004,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) + + unlk %a6 + + + bra.l _real_operr + +fu_ovfl: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 + mov.w &0xe005,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) # restore EXOP + + unlk %a6 + + bra.l _real_ovfl + +# underflow can happen for extended precision. extended precision opclass +# three instruction exceptions don't update the stack pointer. so, if the +# exception occurred from user mode, then simply update a7 and exit normally. +# if the exception occurred from supervisor mode, check if +fu_unfl: + mov.l EXC_A6(%a6),(%a6) # restore a6 + + btst &0x5,EXC_SR(%a6) + bne.w fu_unfl_s + + mov.l EXC_A7(%a6),%a0 # restore a7 whether we need + mov.l %a0,%usp # to or not... + +fu_unfl_cont: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc + mov.w &0xe003,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) # restore EXOP + + unlk %a6 + + bra.l _real_unfl + +fu_unfl_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? + bne.b fu_unfl_cont + +# the extended precision result is still in fp0. but, we need to save it +# somewhere on the stack until we can copy it to its final resting place +# (where the exc frame is currently). make sure it's not at the top of the +# frame or it will get overwritten when the exc stack frame is shifted "down". + fmovm.x &0x80,FP_SRC(%a6) # put answer on stack + fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc + mov.w &0xe003,2+FP_DST(%a6) + + frestore FP_DST(%a6) # restore EXOP + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, copy the result to the proper place on the stack + mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) + mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) + mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + bra.l _real_unfl + +# fmove in and out enter here. +fu_inex: + fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) + + frestore FP_SRC(%a6) # restore EXOP + + unlk %a6 + + + bra.l _real_inex + +######################################################################### +######################################################################### +fu_in_pack: + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field + andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + bsr.l get_packed # fetch packed src operand + + lea FP_SRC(%a6),%a0 # pass ptr to src + bsr.l set_tag_x # set src optype tag + + mov.b %d0,STAG(%a6) # save src optype tag + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + +# bit five of the fp extension word separates the monadic and dyadic operations +# at this point + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b fu_extract_p # monadic + cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? + beq.b fu_extract_p # yes, so it's monadic, too + + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2_done_p # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +fu_op2_done_p: + mov.b %d0,DTAG(%a6) # save dst optype tag + +fu_extract_p: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# +# Exceptions in order of precedence: +# BSUN : none +# SNAN : all dyadic ops +# OPERR : fsqrt(-NORM) +# OVFL : all except ftst,fcmp +# UNFL : all except ftst,fcmp +# DZ : fdiv +# INEX2 : all except ftst,fcmp +# INEX1 : all +# + +# we determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w fu_in_ena_p # some are enabled + +fu_in_cont_p: +# fcmp and ftst do not store any result. + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension + andi.b &0x38,%d0 # extract bits 3-5 + cmpi.b %d0,&0x38 # is instr fcmp or ftst? + beq.b fu_in_exit_p # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l store_fpreg # store the result + +fu_in_exit_p: + + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.w fu_in_exit_s_p # supervisor + + mov.l EXC_A7(%a6),%a0 # update user a7 + mov.l %a0,%usp + +fu_in_exit_cont_p: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel stack frame + + btst &0x7,(%sp) # is trace on? + bne.w fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +# the exception occurred in supervisor mode. check to see if the +# addressing mode was (a7)+. if so, we'll need to shift the +# stack frame "up". +fu_in_exit_s_p: + btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ + beq.b fu_in_exit_cont_p # no + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel stack frame + +# shift the stack frame "up". we don't really care about the <ea> field. + mov.l 0x4(%sp),0x10(%sp) + mov.l 0x0(%sp),0xc(%sp) + add.l &0xc,%sp + + btst &0x7,(%sp) # is trace on? + bne.w fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +fu_in_ena_p: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b fu_in_exc_p # at least one was set + +# +# No exceptions occurred that were also enabled. Now: +# +# if (OVFL && ovfl_disabled && inexact_enabled) { +# branch to _real_inex() (even if the result was exact!); +# } else { +# save the result in the proper fp reg (unless the op is fcmp or ftst); +# return; +# } +# + btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? + beq.w fu_in_cont_p # no + +fu_in_ovflchk_p: + btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? + beq.w fu_in_cont_p # no + bra.w fu_in_exc_ovfl_p # do _real_inex() now + +# +# An exception occurred and that exception was enabled: +# +# shift enabled exception field into lo byte of d0; +# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || +# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { +# /* +# * this is the case where we must call _real_inex() now or else +# * there will be no other way to pass it the exceptional operand +# */ +# call _real_inex(); +# } else { +# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; +# } +# +fu_in_exc_p: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) + blt.b fu_in_exc_exit_p # no + +# the enabled exception was inexact + btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? + bne.w fu_in_exc_unfl_p # yes + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? + bne.w fu_in_exc_ovfl_p # yes + +# here, we insert the correct fsave status value into the fsave frame for the +# corresponding exception. the operand in the fsave frame should be the original +# src operand. +# as a reminder for future predicted pain and agony, we are passing in fsave the +# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. +# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! +fu_in_exc_exit_p: + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.w fu_in_exc_exit_s_p # supervisor + + mov.l EXC_A7(%a6),%a0 # update user a7 + mov.l %a0,%usp + +fu_in_exc_exit_cont_p: + mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore src op + + unlk %a6 + + btst &0x7,(%sp) # is trace enabled? + bne.w fu_trace_p # yes + + bra.l _fpsp_done + +tbl_except_p: + short 0xe000,0xe006,0xe004,0xe005 + short 0xe003,0xe002,0xe001,0xe001 + +fu_in_exc_ovfl_p: + mov.w &0x3,%d0 + bra.w fu_in_exc_exit_p + +fu_in_exc_unfl_p: + mov.w &0x4,%d0 + bra.w fu_in_exc_exit_p + +fu_in_exc_exit_s_p: + btst &mia7_bit,SPCOND_FLG(%a6) + beq.b fu_in_exc_exit_cont_p + + mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore src op + + unlk %a6 # unravel stack frame + +# shift stack frame "up". who cares about <ea> field. + mov.l 0x4(%sp),0x10(%sp) + mov.l 0x0(%sp),0xc(%sp) + add.l &0xc,%sp + + btst &0x7,(%sp) # is trace on? + bne.b fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +# +# The opclass two PACKED instruction that took an "Unimplemented Data Type" +# exception was being traced. Make the "current" PC the FPIAR and put it in the +# trace stack frame then jump to _real_trace(). +# +# UNSUPP FRAME TRACE FRAME +# ***************** ***************** +# * EA * * Current * +# * * * PC * +# ***************** ***************** +# * 0x2 * 0x0dc * * 0x2 * 0x024 * +# ***************** ***************** +# * Next * * Next * +# * PC * * PC * +# ***************** ***************** +# * SR * * SR * +# ***************** ***************** +fu_trace_p: + mov.w &0x2024,0x6(%sp) + fmov.l %fpiar,0x8(%sp) + + bra.l _real_trace + +######################################################### +######################################################### +fu_out_pack: + + +# I'm not sure at this point what FPSR bits are valid for this instruction. +# so, since the emulation routines re-create them anyways, zero exception field. +# fmove out doesn't affect ccodes. + and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l load_fpn1 + +# unlike other opclass 3, unimplemented data type exceptions, packed must be +# able to detect all operand types. + lea FP_SRC(%a6),%a0 + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b fu_op2_p # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO + +fu_op2_p: + mov.b %d0,STAG(%a6) # save src optype tag + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + mov.l (%a6),EXC_A6(%a6) # in case a6 changes + bsr.l fout # call fmove out routine + +# Exceptions in order of precedence: +# BSUN : no +# SNAN : yes +# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) +# OVFL : no +# UNFL : no +# DZ : no +# INEX2 : yes +# INEX1 : no + +# determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.w fu_out_ena_p # some are enabled + +fu_out_exit_p: + mov.l EXC_A6(%a6),(%a6) # restore a6 + + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.b fu_out_exit_s_p # supervisor + + mov.l EXC_A7(%a6),%a0 # update user a7 + mov.l %a0,%usp + +fu_out_exit_cont_p: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel stack frame + + btst &0x7,(%sp) # is trace on? + bne.w fu_trace_p # yes + + bra.l _fpsp_done # exit to os + +# the exception occurred in supervisor mode. check to see if the +# addressing mode was -(a7). if so, we'll need to shift the +# stack frame "down". +fu_out_exit_s_p: + btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) + beq.b fu_out_exit_cont_p # no + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + +# now, copy the result to the proper place on the stack + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + btst &0x7,(%sp) + bne.w fu_trace_p + + bra.l _fpsp_done + +fu_out_ena_p: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled + bfffo %d0{&24:&8},%d0 # find highest priority exception + beq.w fu_out_exit_p + + mov.l EXC_A6(%a6),(%a6) # restore a6 + +# an exception occurred and that exception was enabled. +# the only exception possible on packed move out are INEX, OPERR, and SNAN. +fu_out_exc_p: + cmpi.b %d0,&0x1a + bgt.w fu_inex_p2 + beq.w fu_operr_p + +fu_snan_p: + btst &0x5,EXC_SR(%a6) + bne.b fu_snan_s_p + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + bra.w fu_snan + +fu_snan_s_p: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.w fu_snan + +# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. +# the strategy is to move the exception frame "down" 12 bytes. then, we +# can store the default result where the exception frame was. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 + mov.w &0xe006,2+FP_SRC(%a6) # set fsave status + + frestore FP_SRC(%a6) # restore src operand + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, we copy the default result to its proper location + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + + bra.l _real_snan + +fu_operr_p: + btst &0x5,EXC_SR(%a6) + bne.w fu_operr_p_s + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + bra.w fu_operr + +fu_operr_p_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.w fu_operr + +# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. +# the strategy is to move the exception frame "down" 12 bytes. then, we +# can store the default result where the exception frame was. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 + mov.w &0xe004,2+FP_SRC(%a6) # set fsave status + + frestore FP_SRC(%a6) # restore src operand + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, we copy the default result to its proper location + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + + bra.l _real_operr + +fu_inex_p2: + btst &0x5,EXC_SR(%a6) + bne.w fu_inex_s_p2 + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp + bra.w fu_inex + +fu_inex_s_p2: + cmpi.b SPCOND_FLG(%a6),&mda7_flg + bne.w fu_inex + +# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. +# the strategy is to move the exception frame "down" 12 bytes. then, we +# can store the default result where the exception frame was. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 + mov.w &0xe001,2+FP_SRC(%a6) # set fsave status + + frestore FP_SRC(%a6) # restore src operand + + mov.l (%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + +# now, we copy the default result to its proper location + mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) + mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) + mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + + bra.l _real_inex + +######################################################################### + +# +# if we're stuffing a source operand back into an fsave frame then we +# have to make sure that for single or double source operands that the +# format stuffed is as weird as the hardware usually makes it. +# + global funimp_skew +funimp_skew: + bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier + cmpi.b %d0,&0x1 # was src sgl? + beq.b funimp_skew_sgl # yes + cmpi.b %d0,&0x5 # was src dbl? + beq.b funimp_skew_dbl # yes + rts + +funimp_skew_sgl: + mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent + andi.w &0x7fff,%d0 # strip sign + beq.b funimp_skew_sgl_not + cmpi.w %d0,&0x3f80 + bgt.b funimp_skew_sgl_not + neg.w %d0 # make exponent negative + addi.w &0x3f81,%d0 # find amt to shift + mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) + lsr.l %d0,%d1 # shift it + bset &31,%d1 # set j-bit + mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) + andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent + ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent +funimp_skew_sgl_not: + rts + +funimp_skew_dbl: + mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent + andi.w &0x7fff,%d0 # strip sign + beq.b funimp_skew_dbl_not + cmpi.w %d0,&0x3c00 + bgt.b funimp_skew_dbl_not + + tst.b FP_SRC_EX(%a6) # make "internal format" + smi.b 0x2+FP_SRC(%a6) + mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign + clr.l %d0 # clear g,r,s + lea FP_SRC(%a6),%a0 # pass ptr to src op + mov.w &0x3c01,%d1 # pass denorm threshold + bsr.l dnrm_lp # denorm it + mov.w &0x3c00,%d0 # new exponent + tst.b 0x2+FP_SRC(%a6) # is sign set? + beq.b fss_dbl_denorm_done # no + bset &15,%d0 # set sign +fss_dbl_denorm_done: + bset &0x7,FP_SRC_HI(%a6) # set j-bit + mov.w %d0,FP_SRC_EX(%a6) # insert new exponent +funimp_skew_dbl_not: + rts + +######################################################################### + global _mem_write2 +_mem_write2: + btst &0x5,EXC_SR(%a6) + beq.l _dmem_write + mov.l 0x0(%a0),FP_DST_EX(%a6) + mov.l 0x4(%a0),FP_DST_HI(%a6) + mov.l 0x8(%a0),FP_DST_LO(%a6) + clr.l %d1 + rts + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # +# effective address" exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Unimplemented Effective Address exception in an operating # +# system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# decbin() - convert packed data to FP binary data # +# _real_fpu_disabled() - "callout" for "FPU disabled" exception # +# _real_access() - "callout" for access error exception # +# _mem_read() - read extended immediate operand from memory # +# _fpsp_done() - "callout" for exit; work all done # +# _real_trace() - "callout" for Trace enabled exception # +# fmovm_dynamic() - emulate dynamic fmovm instruction # +# fmovm_ctrl() - emulate fmovm control instruction # +# # +# INPUT *************************************************************** # +# - The system stack contains the "Unimplemented <ea>" stk frame # +# # +# OUTPUT ************************************************************** # +# If access error: # +# - The system stack is changed to an access error stack frame # +# If FPU disabled: # +# - The system stack is changed to an FPU disabled stack frame # +# If Trace exception enabled: # +# - The system stack is changed to a Trace exception stack frame # +# Else: (normal case) # +# - None (correct result has been stored as appropriate) # +# # +# ALGORITHM *********************************************************** # +# This exception handles 3 types of operations: # +# (1) FP Instructions using extended precision or packed immediate # +# addressing mode. # +# (2) The "fmovm.x" instruction w/ dynamic register specification. # +# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # +# # +# For immediate data operations, the data is read in w/ a # +# _mem_read() "callout", converted to FP binary (if packed), and used # +# as the source operand to the instruction specified by the instruction # +# word. If no FP exception should be reported ads a result of the # +# emulation, then the result is stored to the destination register and # +# the handler exits through _fpsp_done(). If an enabled exc has been # +# signalled as a result of emulation, then an fsave state frame # +# corresponding to the FP exception type must be entered into the 060 # +# FPU before exiting. In either the enabled or disabled cases, we # +# must also check if a Trace exception is pending, in which case, we # +# must create a Trace exception stack frame from the current exception # +# stack frame. If no Trace is pending, we simply exit through # +# _fpsp_done(). # +# For "fmovm.x", call the routine fmovm_dynamic() which will # +# decode and emulate the instruction. No FP exceptions can be pending # +# as a result of this operation emulation. A Trace exception can be # +# pending, though, which means the current stack frame must be changed # +# to a Trace stack frame and an exit made through _real_trace(). # +# For the case of "fmovm.x Dn,-(a7)", where the offending instruction # +# was executed from supervisor mode, this handler must store the FP # +# register file values to the system stack by itself since # +# fmovm_dynamic() can't handle this. A normal exit is made through # +# fpsp_done(). # +# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # +# Again, a Trace exception may be pending and an exit made through # +# _real_trace(). Else, a normal exit is made through _fpsp_done(). # +# # +# Before any of the above is attempted, it must be checked to # +# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # +# before the "FPU disabled" exception, but the "FPU disabled" exception # +# has higher priority, we check the disabled bit in the PCR. If set, # +# then we must create an 8 word "FPU disabled" exception stack frame # +# from the current 4 word exception stack frame. This includes # +# reproducing the effective address of the instruction to put on the # +# new stack frame. # +# # +# In the process of all emulation work, if a _mem_read() # +# "callout" returns a failing result indicating an access error, then # +# we must create an access error stack frame from the current stack # +# frame. This information includes a faulting address and a fault- # +# status-longword. These are created within this handler. # +# # +######################################################################### + + global _fpsp_effadd +_fpsp_effadd: + +# This exception type takes priority over the "Line F Emulator" +# exception. Therefore, the FPU could be disabled when entering here. +# So, we must check to see if it's disabled and handle that case separately. + mov.l %d0,-(%sp) # save d0 + movc %pcr,%d0 # load proc cr + btst &0x1,%d0 # is FPU disabled? + bne.w iea_disabled # yes + mov.l (%sp)+,%d0 # restore d0 + + link %a6,&-LOCAL_SIZE # init stack frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# PC of instruction that took the exception is the PC in the frame + mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD + +######################################################################### + + tst.w %d0 # is operation fmovem? + bmi.w iea_fmovm # yes + +# +# here, we will have: +# fabs fdabs fsabs facos fmod +# fadd fdadd fsadd fasin frem +# fcmp fatan fscale +# fdiv fddiv fsdiv fatanh fsin +# fint fcos fsincos +# fintrz fcosh fsinh +# fmove fdmove fsmove fetox ftan +# fmul fdmul fsmul fetoxm1 ftanh +# fneg fdneg fsneg fgetexp ftentox +# fsgldiv fgetman ftwotox +# fsglmul flog10 +# fsqrt flog2 +# fsub fdsub fssub flogn +# ftst flognp1 +# which can all use f<op>.{x,p} +# so, now it's immediate data extended precision AND PACKED FORMAT! +# +iea_op: + andi.l &0x00ff00ff,USER_FPSR(%a6) + + btst &0xa,%d0 # is src fmt x or p? + bne.b iea_op_pack # packed + + + mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> + lea FP_SRC(%a6),%a1 # pass: ptr to super addr + mov.l &0xc,%d0 # pass: 12 bytes + bsr.l _imem_read # read extended immediate + + tst.l %d1 # did ifetch fail? + bne.w iea_iacc # yes + + bra.b iea_op_setsrc + +iea_op_pack: + + mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> + lea FP_SRC(%a6),%a1 # pass: ptr to super dst + mov.l &0xc,%d0 # pass: 12 bytes + bsr.l _imem_read # read packed operand + + tst.l %d1 # did ifetch fail? + bne.w iea_iacc # yes + +# The packed operand is an INF or a NAN if the exponent field is all ones. + bfextu FP_SRC(%a6){&1:&15},%d0 # get exp + cmpi.w %d0,&0x7fff # INF or NAN? + beq.b iea_op_setsrc # operand is an INF or NAN + +# The packed operand is a zero if the mantissa is all zero, else it's +# a normal packed op. + mov.b 3+FP_SRC(%a6),%d0 # get byte 4 + andi.b &0x0f,%d0 # clear all but last nybble + bne.b iea_op_gp_not_spec # not a zero + tst.l FP_SRC_HI(%a6) # is lw 2 zero? + bne.b iea_op_gp_not_spec # not a zero + tst.l FP_SRC_LO(%a6) # is lw 3 zero? + beq.b iea_op_setsrc # operand is a ZERO +iea_op_gp_not_spec: + lea FP_SRC(%a6),%a0 # pass: ptr to packed op + bsr.l decbin # convert to extended + fmovm.x &0x80,FP_SRC(%a6) # make this the srcop + +iea_op_setsrc: + addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer + +# FP_SRC now holds the src operand. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # could be ANYTHING!!! + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b iea_op_getdst # no + bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO + mov.b %d0,STAG(%a6) # set new optype tag +iea_op_getdst: + clr.b STORE_FLG(%a6) # clear "store result" boolean + + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b iea_op_extract # monadic + btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? + bne.b iea_op_spec # yes + +iea_op_loaddst: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno + bsr.l load_fpn2 # load dst operand + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + mov.b %d0,DTAG(%a6) # could be ANYTHING!!! + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b iea_op_extract # no + bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO + mov.b %d0,DTAG(%a6) # set new optype tag + bra.b iea_op_extract + +# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic +iea_op_spec: + btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? + beq.b iea_op_extract # yes +# now, we're left with ftst and fcmp. so, first let's tag them so that they don't +# store a result. then, only fcmp will branch back and pick up a dst operand. + st STORE_FLG(%a6) # don't store a final result + btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? + beq.b iea_op_loaddst # yes + +iea_op_extract: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + fmov.l &0x0,%fpcr + fmov.l &0x0,%fpsr + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# +# Exceptions in order of precedence: +# BSUN : none +# SNAN : all operations +# OPERR : all reg-reg or mem-reg operations that can normally operr +# OVFL : same as OPERR +# UNFL : same as OPERR +# DZ : same as OPERR +# INEX2 : same as OPERR +# INEX1 : all packed immediate operations +# + +# we determine the highest priority exception(if any) set by the +# emulation routine that has also been enabled by the user. + mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled + bne.b iea_op_ena # some are enabled + +# now, we save the result, unless, of course, the operation was ftst or fcmp. +# these don't save results. +iea_op_save: + tst.b STORE_FLG(%a6) # does this op store a result? + bne.b iea_op_exit1 # exit with no frestore + +iea_op_store: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno + bsr.l store_fpreg # store the result + +iea_op_exit1: + mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" + mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 # unravel the frame + + btst &0x7,(%sp) # is trace on? + bne.w iea_op_trace # yes + + bra.l _fpsp_done # exit to os + +iea_op_ena: + and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set + bfffo %d0{&24:&8},%d0 # find highest priority exception + bne.b iea_op_exc # at least one was set + +# no exception occurred. now, did a disabled, exact overflow occur with inexact +# enabled? if so, then we have to stuff an overflow frame into the FPU. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? + beq.b iea_op_save + +iea_op_ovfl: + btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? + beq.b iea_op_store # no + bra.b iea_op_exc_ovfl # yes + +# an enabled exception occurred. we have to insert the exception type back into +# the machine. +iea_op_exc: + subi.l &24,%d0 # fix offset to be 0-8 + cmpi.b %d0,&0x6 # is exception INEX? + bne.b iea_op_exc_force # no + +# the enabled exception was inexact. so, if it occurs with an overflow +# or underflow that was disabled, then we have to force an overflow or +# underflow frame. + btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? + bne.b iea_op_exc_ovfl # yes + btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? + bne.b iea_op_exc_unfl # yes + +iea_op_exc_force: + mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) + bra.b iea_op_exit2 # exit with frestore + +tbl_iea_except: + short 0xe002, 0xe006, 0xe004, 0xe005 + short 0xe003, 0xe002, 0xe001, 0xe001 + +iea_op_exc_ovfl: + mov.w &0xe005,2+FP_SRC(%a6) + bra.b iea_op_exit2 + +iea_op_exc_unfl: + mov.w &0xe003,2+FP_SRC(%a6) + +iea_op_exit2: + mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" + mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) # restore exceptional state + + unlk %a6 # unravel the frame + + btst &0x7,(%sp) # is trace on? + bne.b iea_op_trace # yes + + bra.l _fpsp_done # exit to os + +# +# The opclass two instruction that took an "Unimplemented Effective Address" +# exception was being traced. Make the "current" PC the FPIAR and put it in +# the trace stack frame then jump to _real_trace(). +# +# UNIMP EA FRAME TRACE FRAME +# ***************** ***************** +# * 0x0 * 0x0f0 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x024 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# ***************** +# * SR * +# ***************** +iea_op_trace: + mov.l (%sp),-(%sp) # shift stack frame "down" + mov.w 0x8(%sp),0x4(%sp) + mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 + fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR + + bra.l _real_trace + +######################################################################### +iea_fmovm: + btst &14,%d0 # ctrl or data reg + beq.w iea_fmovm_ctrl + +iea_fmovm_data: + + btst &0x5,EXC_SR(%a6) # user or supervisor mode + bne.b iea_fmovm_data_s + +iea_fmovm_data_u: + mov.l %usp,%a0 + mov.l %a0,EXC_A7(%a6) # store current a7 + bsr.l fmovm_dynamic # do dynamic fmovm + mov.l EXC_A7(%a6),%a0 # load possibly new a7 + mov.l %a0,%usp # update usp + bra.w iea_fmovm_exit + +iea_fmovm_data_s: + clr.b SPCOND_FLG(%a6) + lea 0x2+EXC_VOFF(%a6),%a0 + mov.l %a0,EXC_A7(%a6) + bsr.l fmovm_dynamic # do dynamic fmovm + + cmpi.b SPCOND_FLG(%a6),&mda7_flg + beq.w iea_fmovm_data_predec + cmpi.b SPCOND_FLG(%a6),&mia7_flg + bne.w iea_fmovm_exit + +# right now, d0 = the size. +# the data has been fetched from the supervisor stack, but we have not +# incremented the stack pointer by the appropriate number of bytes. +# do it here. +iea_fmovm_data_postinc: + btst &0x7,EXC_SR(%a6) + bne.b iea_fmovm_data_pi_trace + + mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) + mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) + mov.w &0x00f0,(EXC_VOFF,%a6,%d0) + + lea (EXC_SR,%a6,%d0),%a0 + mov.l %a0,EXC_SR(%a6) + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + mov.l (%sp)+,%sp + bra.l _fpsp_done + +iea_fmovm_data_pi_trace: + mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) + mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) + mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) + mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) + + lea (EXC_SR-0x4,%a6,%d0),%a0 + mov.l %a0,EXC_SR(%a6) + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + mov.l (%sp)+,%sp + bra.l _real_trace + +# right now, d1 = size and d0 = the strg. +iea_fmovm_data_predec: + mov.b %d1,EXC_VOFF(%a6) # store strg + mov.b %d0,0x1+EXC_VOFF(%a6) # store size + + fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + mov.l (%a6),-(%sp) # make a copy of a6 + mov.l %d0,-(%sp) # save d0 + mov.l %d1,-(%sp) # save d1 + mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC + + clr.l %d0 + mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size + neg.l %d0 # get negative of size + + btst &0x7,EXC_SR(%a6) # is trace enabled? + beq.b iea_fmovm_data_p2 + + mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) + mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) + mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) + mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) + + pea (%a6,%d0) # create final sp + bra.b iea_fmovm_data_p3 + +iea_fmovm_data_p2: + mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) + mov.l (%sp)+,(EXC_PC,%a6,%d0) + mov.w &0x00f0,(EXC_VOFF,%a6,%d0) + + pea (0x4,%a6,%d0) # create final sp + +iea_fmovm_data_p3: + clr.l %d1 + mov.b EXC_VOFF(%a6),%d1 # fetch strg + + tst.b %d1 + bpl.b fm_1 + fmovm.x &0x80,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_1: + lsl.b &0x1,%d1 + bpl.b fm_2 + fmovm.x &0x40,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_2: + lsl.b &0x1,%d1 + bpl.b fm_3 + fmovm.x &0x20,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_3: + lsl.b &0x1,%d1 + bpl.b fm_4 + fmovm.x &0x10,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_4: + lsl.b &0x1,%d1 + bpl.b fm_5 + fmovm.x &0x08,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_5: + lsl.b &0x1,%d1 + bpl.b fm_6 + fmovm.x &0x04,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_6: + lsl.b &0x1,%d1 + bpl.b fm_7 + fmovm.x &0x02,(0x4+0x8,%a6,%d0) + addi.l &0xc,%d0 +fm_7: + lsl.b &0x1,%d1 + bpl.b fm_end + fmovm.x &0x01,(0x4+0x8,%a6,%d0) +fm_end: + mov.l 0x4(%sp),%d1 + mov.l 0x8(%sp),%d0 + mov.l 0xc(%sp),%a6 + mov.l (%sp)+,%sp + + btst &0x7,(%sp) # is trace enabled? + beq.l _fpsp_done + bra.l _real_trace + +######################################################################### +iea_fmovm_ctrl: + + bsr.l fmovm_ctrl # load ctrl regs + +iea_fmovm_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + btst &0x7,EXC_SR(%a6) # is trace on? + bne.b iea_fmovm_trace # yes + + mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC + + unlk %a6 # unravel the frame + + bra.l _fpsp_done # exit to os + +# +# The control reg instruction that took an "Unimplemented Effective Address" +# exception was being traced. The "Current PC" for the trace frame is the +# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. +# After fixing the stack frame, jump to _real_trace(). +# +# UNIMP EA FRAME TRACE FRAME +# ***************** ***************** +# * 0x0 * 0x0f0 * * Current * +# ***************** * PC * +# * Current * ***************** +# * PC * * 0x2 * 0x024 * +# ***************** ***************** +# * SR * * Next * +# ***************** * PC * +# ***************** +# * SR * +# ***************** +# this ain't a pretty solution, but it works: +# -restore a6 (not with unlk) +# -shift stack frame down over where old a6 used to be +# -add LOCAL_SIZE to stack pointer +iea_fmovm_trace: + mov.l (%a6),%a6 # restore frame pointer + mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) + mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) + mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) + mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 + add.l &LOCAL_SIZE,%sp # clear stack frame + + bra.l _real_trace + +######################################################################### +# The FPU is disabled and so we should really have taken the "Line +# F Emulator" exception. So, here we create an 8-word stack frame +# from our 4-word stack frame. This means we must calculate the length +# the faulting instruction to get the "next PC". This is trivial for +# immediate operands but requires some extra work for fmovm dynamic +# which can use most addressing modes. +iea_disabled: + mov.l (%sp)+,%d0 # restore d0 + + link %a6,&-LOCAL_SIZE # init stack frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + +# PC of instruction that took the exception is the PC in the frame + mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD + + tst.w %d0 # is instr fmovm? + bmi.b iea_dis_fmovm # yes +# instruction is using an extended precision immediate operand. therefore, +# the total instruction length is 16 bytes. +iea_dis_immed: + mov.l &0x10,%d0 # 16 bytes of instruction + bra.b iea_dis_cont +iea_dis_fmovm: + btst &0xe,%d0 # is instr fmovm ctrl + bne.b iea_dis_fmovm_data # no +# the instruction is a fmovm.l with 2 or 3 registers. + bfextu %d0{&19:&3},%d1 + mov.l &0xc,%d0 + cmpi.b %d1,&0x7 # move all regs? + bne.b iea_dis_cont + addq.l &0x4,%d0 + bra.b iea_dis_cont +# the instruction is an fmovm.x dynamic which can use many addressing +# modes and thus can have several different total instruction lengths. +# call fmovm_calc_ea which will go through the ea calc process and, +# as a by-product, will tell us how long the instruction is. +iea_dis_fmovm_data: + clr.l %d0 + bsr.l fmovm_calc_ea + mov.l EXC_EXTWPTR(%a6),%d0 + sub.l EXC_PC(%a6),%d0 +iea_dis_cont: + mov.w %d0,EXC_VOFF(%a6) # store stack shift value + + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + +# here, we actually create the 8-word frame from the 4-word frame, +# with the "next PC" as additional info. +# the <ea> field is let as undefined. + subq.l &0x8,%sp # make room for new stack + mov.l %d0,-(%sp) # save d0 + mov.w 0xc(%sp),0x4(%sp) # move SR + mov.l 0xe(%sp),0x6(%sp) # move Current PC + clr.l %d0 + mov.w 0x12(%sp),%d0 + mov.l 0x6(%sp),0x10(%sp) # move Current PC + add.l %d0,0x6(%sp) # make Next PC + mov.w &0x402c,0xa(%sp) # insert offset,frame format + mov.l (%sp)+,%d0 # restore d0 + + bra.l _real_fpu_disabled + +########## + +iea_iacc: + movc %pcr,%d0 + btst &0x1,%d0 + bne.b iea_iacc_cont + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack +iea_iacc_cont: + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + subq.w &0x8,%sp # make stack frame bigger + mov.l 0x8(%sp),(%sp) # store SR,hi(PC) + mov.w 0xc(%sp),0x4(%sp) # store lo(PC) + mov.w &0x4008,0x6(%sp) # store voff + mov.l 0x2(%sp),0x8(%sp) # store ea + mov.l &0x09428001,0xc(%sp) # store fslw + +iea_acc_done: + btst &0x5,(%sp) # user or supervisor mode? + beq.b iea_acc_done2 # user + bset &0x2,0xd(%sp) # set supervisor TM bit + +iea_acc_done2: + bra.l _real_access + +iea_dacc: + lea -LOCAL_SIZE(%a6),%sp + + movc %pcr,%d1 + btst &0x1,%d1 + bne.b iea_dacc_cont + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack + fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs +iea_dacc_cont: + mov.l (%a6),%a6 + + mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) + mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) + mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) + mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) + mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) + mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) + + movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 + add.w &LOCAL_SIZE-0x4,%sp + + bra.b iea_acc_done + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_operr(): 060FPSP entry point for FP Operr exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Operand Error exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# _real_operr() - "callout" to operating system operr handler # +# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # +# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # +# facc_out_{b,w,l}() - store to memory took access error (opcl 3) # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Operr exception frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# No access error: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# # +# ALGORITHM *********************************************************** # +# In a system where the FP Operr exception is enabled, the goal # +# is to get to the handler specified at _real_operr(). But, on the 060, # +# for opclass zero and two instruction taking this exception, the # +# input operand in the fsave frame may be incorrect for some cases # +# and needs to be corrected. This handler calls fix_skewed_ops() to # +# do just this and then exits through _real_operr(). # +# For opclass 3 instructions, the 060 doesn't store the default # +# operr result out to memory or data register file as it should. # +# This code must emulate the move out before finally exiting through # +# _real_inex(). The move out, if to memory, is performed using # +# _mem_write() "callout" routines that may return a failing result. # +# In this special case, the handler must exit through facc_out() # +# which creates an access error stack frame from the current operr # +# stack frame. # +# # +######################################################################### + + global _fpsp_operr +_fpsp_operr: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &13,%d0 # is instr an fmove out? + bne.b foperr_out # fmove out + + +# here, we simply see if the operand in the fsave frame needs to be "unskewed". +# this would be the case for opclass two operations with a source infinity or +# denorm operand in the sgl or dbl format. NANs also become skewed, but can't +# cause an operr so we don't need to check for them here. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +foperr_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_operr + +######################################################################## + +# +# the hardware does not save the default result to memory on enabled +# operand error exceptions. we do this here before passing control to +# the user operand error handler. +# +# byte, word, and long destination format operations can pass +# through here. we simply need to test the sign of the src +# operand and save the appropriate minimum or maximum integer value +# to the effective address as pointed to by the stacked effective address. +# +# although packed opclass three operations can take operand error +# exceptions, they won't pass through here since they are caught +# first by the unsupported data format exception handler. that handler +# sends them directly to _real_operr() if necessary. +# +foperr_out: + + mov.w FP_SRC_EX(%a6),%d1 # fetch exponent + andi.w &0x7fff,%d1 + cmpi.w %d1,&0x7fff + bne.b foperr_out_not_qnan +# the operand is either an infinity or a QNAN. + tst.l FP_SRC_LO(%a6) + bne.b foperr_out_qnan + mov.l FP_SRC_HI(%a6),%d1 + andi.l &0x7fffffff,%d1 + beq.b foperr_out_not_qnan +foperr_out_qnan: + mov.l FP_SRC_HI(%a6),L_SCR1(%a6) + bra.b foperr_out_jmp + +foperr_out_not_qnan: + mov.l &0x7fffffff,%d1 + tst.b FP_SRC_EX(%a6) + bpl.b foperr_out_not_qnan2 + addq.l &0x1,%d1 +foperr_out_not_qnan2: + mov.l %d1,L_SCR1(%a6) + +foperr_out_jmp: + bfextu %d0{&19:&3},%d0 # extract dst format field + mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg + mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 + jmp (tbl_operr.b,%pc,%a0) + +tbl_operr: + short foperr_out_l - tbl_operr # long word integer + short tbl_operr - tbl_operr # sgl prec shouldn't happen + short tbl_operr - tbl_operr # ext prec shouldn't happen + short foperr_exit - tbl_operr # packed won't enter here + short foperr_out_w - tbl_operr # word integer + short tbl_operr - tbl_operr # dbl prec shouldn't happen + short foperr_out_b - tbl_operr # byte integer + short tbl_operr - tbl_operr # packed won't enter here + +foperr_out_b: + mov.b L_SCR1(%a6),%d0 # load positive default result + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b foperr_out_b_save_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_byte # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_b # yes + + bra.w foperr_exit +foperr_out_b_save_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_b # store result to regfile + bra.w foperr_exit + +foperr_out_w: + mov.w L_SCR1(%a6),%d0 # load positive default result + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b foperr_out_w_save_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_word # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_w # yes + + bra.w foperr_exit +foperr_out_w_save_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_w # store result to regfile + bra.w foperr_exit + +foperr_out_l: + mov.l L_SCR1(%a6),%d0 # load positive default result + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b foperr_out_l_save_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_long # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.w foperr_exit +foperr_out_l_save_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_l # store result to regfile + bra.w foperr_exit + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Signalling NAN exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# _real_snan() - "callout" to operating system SNAN handler # +# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # +# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # +# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # +# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP SNAN exception frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# No access error: # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# # +# ALGORITHM *********************************************************** # +# In a system where the FP SNAN exception is enabled, the goal # +# is to get to the handler specified at _real_snan(). But, on the 060, # +# for opclass zero and two instructions taking this exception, the # +# input operand in the fsave frame may be incorrect for some cases # +# and needs to be corrected. This handler calls fix_skewed_ops() to # +# do just this and then exits through _real_snan(). # +# For opclass 3 instructions, the 060 doesn't store the default # +# SNAN result out to memory or data register file as it should. # +# This code must emulate the move out before finally exiting through # +# _real_snan(). The move out, if to memory, is performed using # +# _mem_write() "callout" routines that may return a failing result. # +# In this special case, the handler must exit through facc_out() # +# which creates an access error stack frame from the current SNAN # +# stack frame. # +# For the case of an extended precision opclass 3 instruction, # +# if the effective addressing mode was -() or ()+, then the address # +# register must get updated by calling _calc_ea_fout(). If the <ea> # +# was -(a7) from supervisor mode, then the exception frame currently # +# on the system stack must be carefully moved "down" to make room # +# for the operand being moved. # +# # +######################################################################### + + global _fpsp_snan +_fpsp_snan: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &13,%d0 # is instr an fmove out? + bne.w fsnan_out # fmove out + + +# here, we simply see if the operand in the fsave frame needs to be "unskewed". +# this would be the case for opclass two operations with a source infinity or +# denorm operand in the sgl or dbl format. NANs also become skewed and must be +# fixed here. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +fsnan_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_snan + +######################################################################## + +# +# the hardware does not save the default result to memory on enabled +# snan exceptions. we do this here before passing control to +# the user snan handler. +# +# byte, word, long, and packed destination format operations can pass +# through here. since packed format operations already were handled by +# fpsp_unsupp(), then we need to do nothing else for them here. +# for byte, word, and long, we simply need to test the sign of the src +# operand and save the appropriate minimum or maximum integer value +# to the effective address as pointed to by the stacked effective address. +# +fsnan_out: + + bfextu %d0{&19:&3},%d0 # extract dst format field + mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg + mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 + jmp (tbl_snan.b,%pc,%a0) + +tbl_snan: + short fsnan_out_l - tbl_snan # long word integer + short fsnan_out_s - tbl_snan # sgl prec shouldn't happen + short fsnan_out_x - tbl_snan # ext prec shouldn't happen + short tbl_snan - tbl_snan # packed needs no help + short fsnan_out_w - tbl_snan # word integer + short fsnan_out_d - tbl_snan # dbl prec shouldn't happen + short fsnan_out_b - tbl_snan # byte integer + short tbl_snan - tbl_snan # packed needs no help + +fsnan_out_b: + mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN + bset &6,%d0 # set SNAN bit + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_b_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_byte # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_b # yes + + bra.w fsnan_exit +fsnan_out_b_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_b # store result to regfile + bra.w fsnan_exit + +fsnan_out_w: + mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN + bset &14,%d0 # set SNAN bit + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_w_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_word # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_w # yes + + bra.w fsnan_exit +fsnan_out_w_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_w # store result to regfile + bra.w fsnan_exit + +fsnan_out_l: + mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN + bset &30,%d0 # set SNAN bit + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_l_dn # yes + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_long # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.w fsnan_exit +fsnan_out_l_dn: + andi.w &0x0007,%d1 + bsr.l store_dreg_l # store result to regfile + bra.w fsnan_exit + +fsnan_out_s: + cmpi.b %d1,&0x7 # is <ea> mode a data reg? + ble.b fsnan_out_d_dn # yes + mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign + andi.l &0x80000000,%d0 # keep sign + ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit + mov.l FP_SRC_HI(%a6),%d1 # load mantissa + lsr.l &0x8,%d1 # shift mantissa for sgl + or.l %d1,%d0 # create sgl SNAN + mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result + bsr.l _dmem_write_long # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.w fsnan_exit +fsnan_out_d_dn: + mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign + andi.l &0x80000000,%d0 # keep sign + ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit + mov.l %d1,-(%sp) + mov.l FP_SRC_HI(%a6),%d1 # load mantissa + lsr.l &0x8,%d1 # shift mantissa for sgl + or.l %d1,%d0 # create sgl SNAN + mov.l (%sp)+,%d1 + andi.w &0x0007,%d1 + bsr.l store_dreg_l # store result to regfile + bra.w fsnan_exit + +fsnan_out_d: + mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign + andi.l &0x80000000,%d0 # keep sign + ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit + mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa + mov.l %d0,FP_SCR0_EX(%a6) # store to temp space + mov.l &11,%d0 # load shift amt + lsr.l %d0,%d1 + or.l %d1,FP_SCR0_EX(%a6) # create dbl hi + mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa + andi.l &0x000007ff,%d1 + ror.l %d0,%d1 + mov.l %d1,FP_SCR0_HI(%a6) # store to temp space + mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa + lsr.l %d0,%d1 + or.l %d1,FP_SCR0_HI(%a6) # create dbl lo + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + mov.l EXC_EA(%a6),%a1 # pass: dst addr + movq.l &0x8,%d0 # pass: size of 8 bytes + bsr.l _dmem_write # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + bra.w fsnan_exit + +# for extended precision, if the addressing mode is pre-decrement or +# post-increment, then the address register did not get updated. +# in addition, for pre-decrement, the stacked <ea> is incorrect. +fsnan_out_x: + clr.b SPCOND_FLG(%a6) # clear special case flag + + mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) + clr.w 2+FP_SCR0(%a6) + mov.l FP_SRC_HI(%a6),%d0 + bset &30,%d0 + mov.l %d0,FP_SCR0_HI(%a6) + mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) + + btst &0x5,EXC_SR(%a6) # supervisor mode exception? + bne.b fsnan_out_x_s # yes + + mov.l %usp,%a0 # fetch user stack pointer + mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() + mov.l (%a6),EXC_A6(%a6) + + bsr.l _calc_ea_fout # find the correct ea,update An + mov.l %a0,%a1 + mov.l %a0,EXC_EA(%a6) # stack correct <ea> + + mov.l EXC_A7(%a6),%a0 + mov.l %a0,%usp # restore user stack pointer + mov.l EXC_A6(%a6),(%a6) + +fsnan_out_x_save: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + movq.l &0xc,%d0 # pass: size of extended + bsr.l _dmem_write # write the default result + + tst.l %d1 # did dstore fail? + bne.l facc_out_x # yes + + bra.w fsnan_exit + +fsnan_out_x_s: + mov.l (%a6),EXC_A6(%a6) + + bsr.l _calc_ea_fout # find the correct ea,update An + mov.l %a0,%a1 + mov.l %a0,EXC_EA(%a6) # stack correct <ea> + + mov.l EXC_A6(%a6),(%a6) + + cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? + bne.b fsnan_out_x_save # no + +# the operation was "fmove.x SNAN,-(a7)" from supervisor mode. + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + mov.l EXC_A6(%a6),%a6 # restore frame pointer + + mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) + mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) + mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) + + mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) + mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) + mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) + + add.l &LOCAL_SIZE-0x8,%sp + + bra.l _real_snan + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # +# # +# This handler should be the first code executed upon taking the # +# FP Inexact exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword # +# fix_skewed_ops() - adjust src operand in fsave frame # +# set_tag_x() - determine optype of src/dst operands # +# store_fpreg() - store opclass 0 or 2 result to FP regfile # +# unnorm_fix() - change UNNORM operands to NORM or ZERO # +# load_fpn2() - load dst operand from FP regfile # +# smovcr() - emulate an "fmovcr" instruction # +# fout() - emulate an opclass 3 instruction # +# tbl_unsupp - add of table of emulation routines for opclass 0,2 # +# _real_inex() - "callout" to operating system inexact handler # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP Inexact exception frame # +# - The fsave frame contains the source operand # +# # +# OUTPUT ************************************************************** # +# - The system stack is unchanged # +# - The fsave frame contains the adjusted src op for opclass 0,2 # +# # +# ALGORITHM *********************************************************** # +# In a system where the FP Inexact exception is enabled, the goal # +# is to get to the handler specified at _real_inex(). But, on the 060, # +# for opclass zero and two instruction taking this exception, the # +# hardware doesn't store the correct result to the destination FP # +# register as did the '040 and '881/2. This handler must emulate the # +# instruction in order to get this value and then store it to the # +# correct register before calling _real_inex(). # +# For opclass 3 instructions, the 060 doesn't store the default # +# inexact result out to memory or data register file as it should. # +# This code must emulate the move out by calling fout() before finally # +# exiting through _real_inex(). # +# # +######################################################################### + + global _fpsp_inex +_fpsp_inex: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + btst &13,%d0 # is instr an fmove out? + bne.w finex_out # fmove out + + +# the hardware, for "fabs" and "fneg" w/ a long source format, puts the +# longword integer directly into the upper longword of the mantissa along +# w/ an exponent value of 0x401e. we convert this to extended precision here. + bfextu %d0{&19:&3},%d0 # fetch instr size + bne.b finex_cont # instr size is not long + cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? + bne.b finex_cont # no + fmov.l &0x0,%fpcr + fmov.l FP_SRC_HI(%a6),%fp0 # load integer src + fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision + mov.w &0xe001,0x2+FP_SRC(%a6) + +finex_cont: + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +# Here, we zero the ccode and exception byte field since we're going to +# emulate the whole instruction. Notice, though, that we don't kill the +# INEX1 bit. This is because a packed op has long since been converted +# to extended before arriving here. Therefore, we need to retain the +# INEX1 bit from when the operand was first converted. + andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field + + fmov.l &0x0,%fpcr # zero current control regs + fmov.l &0x0,%fpsr + + bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg + cmpi.b %d1,&0x17 # is op an fmovecr? + beq.w finex_fmovcr # yes + + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l set_tag_x # tag the operand type + mov.b %d0,STAG(%a6) # maybe NORM,DENORM + +# bits four and five of the fp extension word separate the monadic and dyadic +# operations that can pass through fpsp_inex(). remember that fcmp and ftst +# will never take this exception, but fsincos will. + btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? + beq.b finex_extract # monadic + + btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? + bne.b finex_extract # yes + + bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg + bsr.l load_fpn2 # load dst into FP_DST + + lea FP_DST(%a6),%a0 # pass: ptr to dst op + bsr.l set_tag_x # tag the operand type + cmpi.b %d0,&UNNORM # is operand an UNNORM? + bne.b finex_op2_done # no + bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO +finex_op2_done: + mov.b %d0,DTAG(%a6) # save dst optype tag + +finex_extract: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode + + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.w &0x007f,%d1 # extract extension + + lea FP_SRC(%a6),%a0 + lea FP_DST(%a6),%a1 + + mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr + jsr (tbl_unsupp.l,%pc,%d1.l*1) + +# the operation has been emulated. the result is in fp0. +finex_save: + bfextu EXC_CMDREG(%a6){&6:&3},%d0 + bsr.l store_fpreg + +finex_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_inex + +finex_fmovcr: + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode + mov.b 1+EXC_CMDREG(%a6),%d1 + andi.l &0x0000007f,%d1 # pass rom offset + bsr.l smovcr + bra.b finex_save + +######################################################################## + +# +# the hardware does not save the default result to memory on enabled +# inexact exceptions. we do this here before passing control to +# the user inexact handler. +# +# byte, word, and long destination format operations can pass +# through here. so can double and single precision. +# although packed opclass three operations can take inexact +# exceptions, they won't pass through here since they are caught +# first by the unsupported data format exception handler. that handler +# sends them directly to _real_inex() if necessary. +# +finex_out: + + mov.b &NORM,STAG(%a6) # src is a NORM + + clr.l %d0 + mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode + + andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field + + lea FP_SRC(%a6),%a0 # pass ptr to src operand + + bsr.l fout # store the default result + + bra.b finex_exit + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_dz(): 060FPSP entry point for FP DZ exception. # +# # +# This handler should be the first code executed upon taking # +# the FP DZ exception in an operating system. # +# # +# XREF **************************************************************** # +# _imem_read_long() - read instruction longword from memory # +# fix_skewed_ops() - adjust fsave operand # +# _real_dz() - "callout" exit point from FP DZ handler # +# # +# INPUT *************************************************************** # +# - The system stack contains the FP DZ exception stack. # +# - The fsave frame contains the source operand. # +# # +# OUTPUT ************************************************************** # +# - The system stack contains the FP DZ exception stack. # +# - The fsave frame contains the adjusted source operand. # +# # +# ALGORITHM *********************************************************** # +# In a system where the DZ exception is enabled, the goal is to # +# get to the handler specified at _real_dz(). But, on the 060, when the # +# exception is taken, the input operand in the fsave state frame may # +# be incorrect for some cases and need to be adjusted. So, this package # +# adjusts the operand using fix_skewed_ops() and then branches to # +# _real_dz(). # +# # +######################################################################### + + global _fpsp_dz +_fpsp_dz: + + link.w %a6,&-LOCAL_SIZE # init stack frame + + fsave FP_SRC(%a6) # grab the "busy" frame + + movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 + fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs + fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack + +# the FPIAR holds the "current PC" of the faulting instruction + mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch the instruction words + mov.l %d0,EXC_OPWORD(%a6) + +############################################################################## + + +# here, we simply see if the operand in the fsave frame needs to be "unskewed". +# this would be the case for opclass two operations with a source zero +# in the sgl or dbl format. + lea FP_SRC(%a6),%a0 # pass: ptr to src op + bsr.l fix_skewed_ops # fix src op + +fdz_exit: + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + frestore FP_SRC(%a6) + + unlk %a6 + bra.l _real_dz + +######################################################################### +# XDEF **************************************************************** # +# _fpsp_fline(): 060FPSP entry point for "Line F emulator" # +# exception when the "reduced" version of the # +# FPSP is implemented that does not emulate # +# FP unimplemented instructions. # +# # +# This handler should be the first code executed upon taking a # +# "Line F Emulator" exception in an operating system integrating # +# the reduced version of 060FPSP. # +# # +# XREF **************************************************************** # +# _real_fpu_disabled() - Handle "FPU disabled" exceptions # +# _real_fline() - Handle all other cases (treated equally) # +# # +# INPUT *************************************************************** # +# - The system stack contains a "Line F Emulator" exception # +# stack frame. # +# # +# OUTPUT ************************************************************** # +# - The system stack is unchanged. # +# # +# ALGORITHM *********************************************************** # +# When a "Line F Emulator" exception occurs in a system where # +# "FPU Unimplemented" instructions will not be emulated, the exception # +# can occur because then FPU is disabled or the instruction is to be # +# classifed as "Line F". This module determines which case exists and # +# calls the appropriate "callout". # +# # +######################################################################### + + global _fpsp_fline +_fpsp_fline: + +# check to see if the FPU is disabled. if so, jump to the OS entry +# point for that condition. + cmpi.w 0x6(%sp),&0x402c + beq.l _real_fpu_disabled + + bra.l _real_fline + +######################################################################### +# XDEF **************************************************************** # +# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # +# # +# XREF **************************************************************** # +# inc_areg() - increment an address register # +# dec_areg() - decrement an address register # +# # +# INPUT *************************************************************** # +# d0 = number of bytes to adjust <ea> by # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# "Dummy" CALCulate Effective Address: # +# The stacked <ea> for FP unimplemented instructions and opclass # +# two packed instructions is correct with the exception of... # +# # +# 1) -(An) : The register is not updated regardless of size. # +# Also, for extended precision and packed, the # +# stacked <ea> value is 8 bytes too big # +# 2) (An)+ : The register is not updated. # +# 3) #<data> : The upper longword of the immediate operand is # +# stacked b,w,l and s sizes are completely stacked. # +# d,x, and p are not. # +# # +######################################################################### + + global _dcalc_ea +_dcalc_ea: + mov.l %d0, %a0 # move # bytes to %a0 + + mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word + mov.l %d0, %d1 # make a copy + + andi.w &0x38, %d0 # extract mode field + andi.l &0x7, %d1 # extract reg field + + cmpi.b %d0,&0x18 # is mode (An)+ ? + beq.b dcea_pi # yes + + cmpi.b %d0,&0x20 # is mode -(An) ? + beq.b dcea_pd # yes + + or.w %d1,%d0 # concat mode,reg + cmpi.b %d0,&0x3c # is mode #<data>? + + beq.b dcea_imm # yes + + mov.l EXC_EA(%a6),%a0 # return <ea> + rts + +# need to set immediate data flag here since we'll need to do +# an imem_read to fetch this later. +dcea_imm: + mov.b &immed_flg,SPCOND_FLG(%a6) + lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> + rts + +# here, the <ea> is stacked correctly. however, we must update the +# address register... +dcea_pi: + mov.l %a0,%d0 # pass amt to inc by + bsr.l inc_areg # inc addr register + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + rts + +# the <ea> is stacked correctly for all but extended and packed which +# the <ea>s are 8 bytes too large. +# it would make no sense to have a pre-decrement to a7 in supervisor +# mode so we don't even worry about this tricky case here : ) +dcea_pd: + mov.l %a0,%d0 # pass amt to dec by + bsr.l dec_areg # dec addr register + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + + cmpi.b %d0,&0xc # is opsize ext or packed? + beq.b dcea_pd2 # yes + rts +dcea_pd2: + sub.l &0x8,%a0 # correct <ea> + mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack + rts + +######################################################################### +# XDEF **************************************************************** # +# _calc_ea_fout(): calculate correct stacked <ea> for extended # +# and packed data opclass 3 operations. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# a0 = return correct effective address # +# # +# ALGORITHM *********************************************************** # +# For opclass 3 extended and packed data operations, the <ea> # +# stacked for the exception is incorrect for -(an) and (an)+ addressing # +# modes. Also, while we're at it, the index register itself must get # +# updated. # +# So, for -(an), we must subtract 8 off of the stacked <ea> value # +# and return that value as the correct <ea> and store that value in An. # +# For (an)+, the stacked <ea> is correct but we must adjust An by +12. # +# # +######################################################################### + +# This calc_ea is currently used to retrieve the correct <ea> +# for fmove outs of type extended and packed. + global _calc_ea_fout +_calc_ea_fout: + mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word + mov.l %d0,%d1 # make a copy + + andi.w &0x38,%d0 # extract mode field + andi.l &0x7,%d1 # extract reg field + + cmpi.b %d0,&0x18 # is mode (An)+ ? + beq.b ceaf_pi # yes + + cmpi.b %d0,&0x20 # is mode -(An) ? + beq.w ceaf_pd # yes + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + rts + +# (An)+ : extended and packed fmove out +# : stacked <ea> is correct +# : "An" not updated +ceaf_pi: + mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 + mov.l EXC_EA(%a6),%a0 + jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) + + swbeg &0x8 +tbl_ceaf_pi: + short ceaf_pi0 - tbl_ceaf_pi + short ceaf_pi1 - tbl_ceaf_pi + short ceaf_pi2 - tbl_ceaf_pi + short ceaf_pi3 - tbl_ceaf_pi + short ceaf_pi4 - tbl_ceaf_pi + short ceaf_pi5 - tbl_ceaf_pi + short ceaf_pi6 - tbl_ceaf_pi + short ceaf_pi7 - tbl_ceaf_pi + +ceaf_pi0: + addi.l &0xc,EXC_DREGS+0x8(%a6) + rts +ceaf_pi1: + addi.l &0xc,EXC_DREGS+0xc(%a6) + rts +ceaf_pi2: + add.l &0xc,%a2 + rts +ceaf_pi3: + add.l &0xc,%a3 + rts +ceaf_pi4: + add.l &0xc,%a4 + rts +ceaf_pi5: + add.l &0xc,%a5 + rts +ceaf_pi6: + addi.l &0xc,EXC_A6(%a6) + rts +ceaf_pi7: + mov.b &mia7_flg,SPCOND_FLG(%a6) + addi.l &0xc,EXC_A7(%a6) + rts + +# -(An) : extended and packed fmove out +# : stacked <ea> = actual <ea> + 8 +# : "An" not updated +ceaf_pd: + mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 + mov.l EXC_EA(%a6),%a0 + sub.l &0x8,%a0 + sub.l &0x8,EXC_EA(%a6) + jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) + + swbeg &0x8 +tbl_ceaf_pd: + short ceaf_pd0 - tbl_ceaf_pd + short ceaf_pd1 - tbl_ceaf_pd + short ceaf_pd2 - tbl_ceaf_pd + short ceaf_pd3 - tbl_ceaf_pd + short ceaf_pd4 - tbl_ceaf_pd + short ceaf_pd5 - tbl_ceaf_pd + short ceaf_pd6 - tbl_ceaf_pd + short ceaf_pd7 - tbl_ceaf_pd + +ceaf_pd0: + mov.l %a0,EXC_DREGS+0x8(%a6) + rts +ceaf_pd1: + mov.l %a0,EXC_DREGS+0xc(%a6) + rts +ceaf_pd2: + mov.l %a0,%a2 + rts +ceaf_pd3: + mov.l %a0,%a3 + rts +ceaf_pd4: + mov.l %a0,%a4 + rts +ceaf_pd5: + mov.l %a0,%a5 + rts +ceaf_pd6: + mov.l %a0,EXC_A6(%a6) + rts +ceaf_pd7: + mov.l %a0,EXC_A7(%a6) + mov.b &mda7_flg,SPCOND_FLG(%a6) + rts + +# +# This table holds the offsets of the emulation routines for each individual +# math operation relative to the address of this table. Included are +# routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because +# this table is for the version if the 060FPSP without transcendentals. +# The location within the table is determined by the extension bits of the +# operation longword. +# + + swbeg &109 +tbl_unsupp: + long fin - tbl_unsupp # 00: fmove + long fint - tbl_unsupp # 01: fint + long tbl_unsupp - tbl_unsupp # 02: fsinh + long fintrz - tbl_unsupp # 03: fintrz + long fsqrt - tbl_unsupp # 04: fsqrt + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp # 06: flognp1 + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp # 08: fetoxm1 + long tbl_unsupp - tbl_unsupp # 09: ftanh + long tbl_unsupp - tbl_unsupp # 0a: fatan + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp # 0c: fasin + long tbl_unsupp - tbl_unsupp # 0d: fatanh + long tbl_unsupp - tbl_unsupp # 0e: fsin + long tbl_unsupp - tbl_unsupp # 0f: ftan + long tbl_unsupp - tbl_unsupp # 10: fetox + long tbl_unsupp - tbl_unsupp # 11: ftwotox + long tbl_unsupp - tbl_unsupp # 12: ftentox + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp # 14: flogn + long tbl_unsupp - tbl_unsupp # 15: flog10 + long tbl_unsupp - tbl_unsupp # 16: flog2 + long tbl_unsupp - tbl_unsupp + long fabs - tbl_unsupp # 18: fabs + long tbl_unsupp - tbl_unsupp # 19: fcosh + long fneg - tbl_unsupp # 1a: fneg + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp # 1c: facos + long tbl_unsupp - tbl_unsupp # 1d: fcos + long tbl_unsupp - tbl_unsupp # 1e: fgetexp + long tbl_unsupp - tbl_unsupp # 1f: fgetman + long fdiv - tbl_unsupp # 20: fdiv + long tbl_unsupp - tbl_unsupp # 21: fmod + long fadd - tbl_unsupp # 22: fadd + long fmul - tbl_unsupp # 23: fmul + long fsgldiv - tbl_unsupp # 24: fsgldiv + long tbl_unsupp - tbl_unsupp # 25: frem + long tbl_unsupp - tbl_unsupp # 26: fscale + long fsglmul - tbl_unsupp # 27: fsglmul + long fsub - tbl_unsupp # 28: fsub + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp # 30: fsincos + long tbl_unsupp - tbl_unsupp # 31: fsincos + long tbl_unsupp - tbl_unsupp # 32: fsincos + long tbl_unsupp - tbl_unsupp # 33: fsincos + long tbl_unsupp - tbl_unsupp # 34: fsincos + long tbl_unsupp - tbl_unsupp # 35: fsincos + long tbl_unsupp - tbl_unsupp # 36: fsincos + long tbl_unsupp - tbl_unsupp # 37: fsincos + long fcmp - tbl_unsupp # 38: fcmp + long tbl_unsupp - tbl_unsupp + long ftst - tbl_unsupp # 3a: ftst + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fsin - tbl_unsupp # 40: fsmove + long fssqrt - tbl_unsupp # 41: fssqrt + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fdin - tbl_unsupp # 44: fdmove + long fdsqrt - tbl_unsupp # 45: fdsqrt + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fsabs - tbl_unsupp # 58: fsabs + long tbl_unsupp - tbl_unsupp + long fsneg - tbl_unsupp # 5a: fsneg + long tbl_unsupp - tbl_unsupp + long fdabs - tbl_unsupp # 5c: fdabs + long tbl_unsupp - tbl_unsupp + long fdneg - tbl_unsupp # 5e: fdneg + long tbl_unsupp - tbl_unsupp + long fsdiv - tbl_unsupp # 60: fsdiv + long tbl_unsupp - tbl_unsupp + long fsadd - tbl_unsupp # 62: fsadd + long fsmul - tbl_unsupp # 63: fsmul + long fddiv - tbl_unsupp # 64: fddiv + long tbl_unsupp - tbl_unsupp + long fdadd - tbl_unsupp # 66: fdadd + long fdmul - tbl_unsupp # 67: fdmul + long fssub - tbl_unsupp # 68: fssub + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long tbl_unsupp - tbl_unsupp + long fdsub - tbl_unsupp # 6c: fdsub + +################################################# +# Add this here so non-fp modules can compile. +# (smovcr is called from fpsp_inex.) + global smovcr +smovcr: + bra.b smovcr + +######################################################################### +# XDEF **************************************************************** # +# fmovm_dynamic(): emulate "fmovm" dynamic instruction # +# # +# XREF **************************************************************** # +# fetch_dreg() - fetch data register # +# {i,d,}mem_read() - fetch data from memory # +# _mem_write() - write data to memory # +# iea_iacc() - instruction memory access error occurred # +# iea_dacc() - data memory access error occurred # +# restore() - restore An index regs if access error occurred # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If instr is "fmovm Dn,-(A7)" from supervisor mode, # +# d0 = size of dump # +# d1 = Dn # +# Else if instruction access error, # +# d0 = FSLW # +# Else if data access error, # +# d0 = FSLW # +# a0 = address of fault # +# Else # +# none. # +# # +# ALGORITHM *********************************************************** # +# The effective address must be calculated since this is entered # +# from an "Unimplemented Effective Address" exception handler. So, we # +# have our own fcalc_ea() routine here. If an access error is flagged # +# by a _{i,d,}mem_read() call, we must exit through the special # +# handler. # +# The data register is determined and its value loaded to get the # +# string of FP registers affected. This value is used as an index into # +# a lookup table such that we can determine the number of bytes # +# involved. # +# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # +# to read in all FP values. Again, _mem_read() may fail and require a # +# special exit. # +# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # +# to write all FP values. _mem_write() may also fail. # +# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # +# then we return the size of the dump and the string to the caller # +# so that the move can occur outside of this routine. This special # +# case is required so that moves to the system stack are handled # +# correctly. # +# # +# DYNAMIC: # +# fmovm.x dn, <ea> # +# fmovm.x <ea>, dn # +# # +# <WORD 1> <WORD2> # +# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # +# # +# & = (0): predecrement addressing mode # +# (1): postincrement or control addressing mode # +# @ = (0): move listed regs from memory to the FPU # +# (1): move listed regs from the FPU to memory # +# $$$ : index of data register holding reg select mask # +# # +# NOTES: # +# If the data register holds a zero, then the # +# instruction is a nop. # +# # +######################################################################### + + global fmovm_dynamic +fmovm_dynamic: + +# extract the data register in which the bit string resides... + mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword + andi.w &0x70,%d1 # extract reg bits + lsr.b &0x4,%d1 # shift into lo bits + +# fetch the bit string into d0... + bsr.l fetch_dreg # fetch reg string + + andi.l &0x000000ff,%d0 # keep only lo byte + + mov.l %d0,-(%sp) # save strg + mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 + mov.l %d0,-(%sp) # save size + bsr.l fmovm_calc_ea # calculate <ea> + mov.l (%sp)+,%d0 # restore size + mov.l (%sp)+,%d1 # restore strg + +# if the bit string is a zero, then the operation is a no-op +# but, make sure that we've calculated ea and advanced the opword pointer + beq.w fmovm_data_done + +# separate move ins from move outs... + btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? + beq.w fmovm_data_in # it's a move out + +############# +# MOVE OUT: # +############# +fmovm_data_out: + btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? + bne.w fmovm_out_ctrl # control + +############################ +fmovm_out_predec: +# for predecrement mode, the bit string is the opposite of both control +# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) +# here, we convert it to be just like the others... + mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 + + btst &0x5,EXC_SR(%a6) # user or supervisor mode? + beq.b fmovm_out_ctrl # user + +fmovm_out_predec_s: + cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? + bne.b fmovm_out_ctrl + +# the operation was unfortunately an: fmovm.x dn,-(sp) +# called from supervisor mode. +# we're also passing "size" and "strg" back to the calling routine + rts + +############################ +fmovm_out_ctrl: + mov.l %a0,%a1 # move <ea> to a1 + + sub.l %d0,%sp # subtract size of dump + lea (%sp),%a0 + + tst.b %d1 # should FP0 be moved? + bpl.b fmovm_out_ctrl_fp1 # no + + mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes + mov.l 0x4+EXC_FP0(%a6),(%a0)+ + mov.l 0x8+EXC_FP0(%a6),(%a0)+ + +fmovm_out_ctrl_fp1: + lsl.b &0x1,%d1 # should FP1 be moved? + bpl.b fmovm_out_ctrl_fp2 # no + + mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes + mov.l 0x4+EXC_FP1(%a6),(%a0)+ + mov.l 0x8+EXC_FP1(%a6),(%a0)+ + +fmovm_out_ctrl_fp2: + lsl.b &0x1,%d1 # should FP2 be moved? + bpl.b fmovm_out_ctrl_fp3 # no + + fmovm.x &0x20,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp3: + lsl.b &0x1,%d1 # should FP3 be moved? + bpl.b fmovm_out_ctrl_fp4 # no + + fmovm.x &0x10,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp4: + lsl.b &0x1,%d1 # should FP4 be moved? + bpl.b fmovm_out_ctrl_fp5 # no + + fmovm.x &0x08,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp5: + lsl.b &0x1,%d1 # should FP5 be moved? + bpl.b fmovm_out_ctrl_fp6 # no + + fmovm.x &0x04,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp6: + lsl.b &0x1,%d1 # should FP6 be moved? + bpl.b fmovm_out_ctrl_fp7 # no + + fmovm.x &0x02,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_fp7: + lsl.b &0x1,%d1 # should FP7 be moved? + bpl.b fmovm_out_ctrl_done # no + + fmovm.x &0x01,(%a0) # yes + add.l &0xc,%a0 + +fmovm_out_ctrl_done: + mov.l %a1,L_SCR1(%a6) + + lea (%sp),%a0 # pass: supervisor src + mov.l %d0,-(%sp) # save size + bsr.l _dmem_write # copy data to user mem + + mov.l (%sp)+,%d0 + add.l %d0,%sp # clear fpreg data from stack + + tst.l %d1 # did dstore err? + bne.w fmovm_out_err # yes + + rts + +############ +# MOVE IN: # +############ +fmovm_data_in: + mov.l %a0,L_SCR1(%a6) + + sub.l %d0,%sp # make room for fpregs + lea (%sp),%a1 + + mov.l %d1,-(%sp) # save bit string for later + mov.l %d0,-(%sp) # save # of bytes + + bsr.l _dmem_read # copy data from user mem + + mov.l (%sp)+,%d0 # retrieve # of bytes + + tst.l %d1 # did dfetch fail? + bne.w fmovm_in_err # yes + + mov.l (%sp)+,%d1 # load bit string + + lea (%sp),%a0 # addr of stack + + tst.b %d1 # should FP0 be moved? + bpl.b fmovm_data_in_fp1 # no + + mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes + mov.l (%a0)+,0x4+EXC_FP0(%a6) + mov.l (%a0)+,0x8+EXC_FP0(%a6) + +fmovm_data_in_fp1: + lsl.b &0x1,%d1 # should FP1 be moved? + bpl.b fmovm_data_in_fp2 # no + + mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes + mov.l (%a0)+,0x4+EXC_FP1(%a6) + mov.l (%a0)+,0x8+EXC_FP1(%a6) + +fmovm_data_in_fp2: + lsl.b &0x1,%d1 # should FP2 be moved? + bpl.b fmovm_data_in_fp3 # no + + fmovm.x (%a0)+,&0x20 # yes + +fmovm_data_in_fp3: + lsl.b &0x1,%d1 # should FP3 be moved? + bpl.b fmovm_data_in_fp4 # no + + fmovm.x (%a0)+,&0x10 # yes + +fmovm_data_in_fp4: + lsl.b &0x1,%d1 # should FP4 be moved? + bpl.b fmovm_data_in_fp5 # no + + fmovm.x (%a0)+,&0x08 # yes + +fmovm_data_in_fp5: + lsl.b &0x1,%d1 # should FP5 be moved? + bpl.b fmovm_data_in_fp6 # no + + fmovm.x (%a0)+,&0x04 # yes + +fmovm_data_in_fp6: + lsl.b &0x1,%d1 # should FP6 be moved? + bpl.b fmovm_data_in_fp7 # no + + fmovm.x (%a0)+,&0x02 # yes + +fmovm_data_in_fp7: + lsl.b &0x1,%d1 # should FP7 be moved? + bpl.b fmovm_data_in_done # no + + fmovm.x (%a0)+,&0x01 # yes + +fmovm_data_in_done: + add.l %d0,%sp # remove fpregs from stack + rts + +##################################### + +fmovm_data_done: + rts + +############################################################################## + +# +# table indexed by the operation's bit string that gives the number +# of bytes that will be moved. +# +# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) +# +tbl_fmovm_size: + byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 + byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 + +# +# table to convert a pre-decrement bit string into a post-increment +# or control bit string. +# ex: 0x00 ==> 0x00 +# 0x01 ==> 0x80 +# 0x02 ==> 0x40 +# . +# . +# 0xfd ==> 0xbf +# 0xfe ==> 0x7f +# 0xff ==> 0xff +# +tbl_fmovm_convert: + byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 + byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 + byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 + byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 + byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 + byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 + byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec + byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc + byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 + byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 + byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea + byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa + byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 + byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 + byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee + byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe + byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 + byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 + byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 + byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 + byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 + byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 + byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed + byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd + byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 + byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 + byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb + byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb + byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 + byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 + byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef + byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff + + global fmovm_calc_ea +############################################### +# _fmovm_calc_ea: calculate effective address # +############################################### +fmovm_calc_ea: + mov.l %d0,%a0 # move # bytes to a0 + +# currently, MODE and REG are taken from the EXC_OPWORD. this could be +# easily changed if they were inputs passed in registers. + mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word + mov.w %d0,%d1 # make a copy + + andi.w &0x3f,%d0 # extract mode field + andi.l &0x7,%d1 # extract reg field + +# jump to the corresponding function for each {MODE,REG} pair. + mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance + jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode + + swbeg &64 +tbl_fea_mode: + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + + short faddr_ind_a0 - tbl_fea_mode + short faddr_ind_a1 - tbl_fea_mode + short faddr_ind_a2 - tbl_fea_mode + short faddr_ind_a3 - tbl_fea_mode + short faddr_ind_a4 - tbl_fea_mode + short faddr_ind_a5 - tbl_fea_mode + short faddr_ind_a6 - tbl_fea_mode + short faddr_ind_a7 - tbl_fea_mode + + short faddr_ind_p_a0 - tbl_fea_mode + short faddr_ind_p_a1 - tbl_fea_mode + short faddr_ind_p_a2 - tbl_fea_mode + short faddr_ind_p_a3 - tbl_fea_mode + short faddr_ind_p_a4 - tbl_fea_mode + short faddr_ind_p_a5 - tbl_fea_mode + short faddr_ind_p_a6 - tbl_fea_mode + short faddr_ind_p_a7 - tbl_fea_mode + + short faddr_ind_m_a0 - tbl_fea_mode + short faddr_ind_m_a1 - tbl_fea_mode + short faddr_ind_m_a2 - tbl_fea_mode + short faddr_ind_m_a3 - tbl_fea_mode + short faddr_ind_m_a4 - tbl_fea_mode + short faddr_ind_m_a5 - tbl_fea_mode + short faddr_ind_m_a6 - tbl_fea_mode + short faddr_ind_m_a7 - tbl_fea_mode + + short faddr_ind_disp_a0 - tbl_fea_mode + short faddr_ind_disp_a1 - tbl_fea_mode + short faddr_ind_disp_a2 - tbl_fea_mode + short faddr_ind_disp_a3 - tbl_fea_mode + short faddr_ind_disp_a4 - tbl_fea_mode + short faddr_ind_disp_a5 - tbl_fea_mode + short faddr_ind_disp_a6 - tbl_fea_mode + short faddr_ind_disp_a7 - tbl_fea_mode + + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + short faddr_ind_ext - tbl_fea_mode + + short fabs_short - tbl_fea_mode + short fabs_long - tbl_fea_mode + short fpc_ind - tbl_fea_mode + short fpc_ind_ext - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + short tbl_fea_mode - tbl_fea_mode + +################################### +# Address register indirect: (An) # +################################### +faddr_ind_a0: + mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 + rts + +faddr_ind_a1: + mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 + rts + +faddr_ind_a2: + mov.l %a2,%a0 # Get current a2 + rts + +faddr_ind_a3: + mov.l %a3,%a0 # Get current a3 + rts + +faddr_ind_a4: + mov.l %a4,%a0 # Get current a4 + rts + +faddr_ind_a5: + mov.l %a5,%a0 # Get current a5 + rts + +faddr_ind_a6: + mov.l (%a6),%a0 # Get current a6 + rts + +faddr_ind_a7: + mov.l EXC_A7(%a6),%a0 # Get current a7 + rts + +##################################################### +# Address register indirect w/ postincrement: (An)+ # +##################################################### +faddr_ind_p_a0: + mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a1: + mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a2: + mov.l %a2,%d0 # Get current a2 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a2 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a3: + mov.l %a3,%d0 # Get current a3 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a3 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a4: + mov.l %a4,%d0 # Get current a4 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a4 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a5: + mov.l %a5,%d0 # Get current a5 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,%a5 # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a6: + mov.l (%a6),%d0 # Get current a6 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,(%a6) # Save incr value + mov.l %d0,%a0 + rts + +faddr_ind_p_a7: + mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag + + mov.l EXC_A7(%a6),%d0 # Get current a7 + mov.l %d0,%d1 + add.l %a0,%d1 # Increment + mov.l %d1,EXC_A7(%a6) # Save incr value + mov.l %d0,%a0 + rts + +#################################################### +# Address register indirect w/ predecrement: -(An) # +#################################################### +faddr_ind_m_a0: + mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a1: + mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a2: + mov.l %a2,%d0 # Get current a2 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a2 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a3: + mov.l %a3,%d0 # Get current a3 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a3 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a4: + mov.l %a4,%d0 # Get current a4 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a4 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a5: + mov.l %a5,%d0 # Get current a5 + sub.l %a0,%d0 # Decrement + mov.l %d0,%a5 # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a6: + mov.l (%a6),%d0 # Get current a6 + sub.l %a0,%d0 # Decrement + mov.l %d0,(%a6) # Save decr value + mov.l %d0,%a0 + rts + +faddr_ind_m_a7: + mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag + + mov.l EXC_A7(%a6),%d0 # Get current a7 + sub.l %a0,%d0 # Decrement + mov.l %d0,EXC_A7(%a6) # Save decr value + mov.l %d0,%a0 + rts + +######################################################## +# Address register indirect w/ displacement: (d16, An) # +######################################################## +faddr_ind_disp_a0: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 + rts + +faddr_ind_disp_a1: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 + rts + +faddr_ind_disp_a2: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a2,%a0 # a2 + d16 + rts + +faddr_ind_disp_a3: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a3,%a0 # a3 + d16 + rts + +faddr_ind_disp_a4: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a4,%a0 # a4 + d16 + rts + +faddr_ind_disp_a5: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l %a5,%a0 # a5 + d16 + rts + +faddr_ind_disp_a6: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l (%a6),%a0 # a6 + d16 + rts + +faddr_ind_disp_a7: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_A7(%a6),%a0 # a7 + d16 + rts + +######################################################################## +# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # +# " " " w/ " (base displacement): (bd, An, Xn) # +# Memory indirect postindexed: ([bd, An], Xn, od) # +# Memory indirect preindexed: ([bd, An, Xn], od) # +######################################################################## +faddr_ind_ext: + addq.l &0x8,%d1 + bsr.l fetch_dreg # fetch base areg + mov.l %d0,-(%sp) + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch extword in d0 + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l (%sp)+,%a0 + + btst &0x8,%d0 + bne.w fcalc_mem_ind + + mov.l %d0,L_SCR1(%a6) # hold opword + + mov.l %d0,%d1 + rol.w &0x4,%d1 + andi.w &0xf,%d1 # extract index regno + +# count on fetch_dreg() not to alter a0... + bsr.l fetch_dreg # fetch index + + mov.l %d2,-(%sp) # save d2 + mov.l L_SCR1(%a6),%d2 # fetch opword + + btst &0xb,%d2 # is it word or long? + bne.b faii8_long + ext.l %d0 # sign extend word index +faii8_long: + mov.l %d2,%d1 + rol.w &0x7,%d1 + andi.l &0x3,%d1 # extract scale value + + lsl.l %d1,%d0 # shift index by scale + + extb.l %d2 # sign extend displacement + add.l %d2,%d0 # index + disp + add.l %d0,%a0 # An + (index + disp) + + mov.l (%sp)+,%d2 # restore old d2 + rts + +########################### +# Absolute short: (XXX).W # +########################### +fabs_short: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch short address + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # return <ea> in a0 + rts + +########################## +# Absolute long: (XXX).L # +########################## +fabs_long: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch long address + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,%a0 # return <ea> in a0 + rts + +####################################################### +# Program counter indirect w/ displacement: (d16, PC) # +####################################################### +fpc_ind: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch word displacement + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.w %d0,%a0 # sign extend displacement + + add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 + +# _imem_read_word() increased the extwptr by 2. need to adjust here. + subq.l &0x2,%a0 # adjust <ea> + rts + +########################################################## +# PC indirect w/ index(8-bit displacement): (d8, PC, An) # +# " " w/ " (base displacement): (bd, PC, An) # +# PC memory indirect postindexed: ([bd, PC], Xn, od) # +# PC memory indirect preindexed: ([bd, PC, Xn], od) # +########################################################## +fpc_ind_ext: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word # fetch ext word + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 + subq.l &0x2,%a0 # adjust base + + btst &0x8,%d0 # is disp only 8 bits? + bne.w fcalc_mem_ind # calc memory indirect + + mov.l %d0,L_SCR1(%a6) # store opword + + mov.l %d0,%d1 # make extword copy + rol.w &0x4,%d1 # rotate reg num into place + andi.w &0xf,%d1 # extract register number + +# count on fetch_dreg() not to alter a0... + bsr.l fetch_dreg # fetch index + + mov.l %d2,-(%sp) # save d2 + mov.l L_SCR1(%a6),%d2 # fetch opword + + btst &0xb,%d2 # is index word or long? + bne.b fpii8_long # long + ext.l %d0 # sign extend word index +fpii8_long: + mov.l %d2,%d1 + rol.w &0x7,%d1 # rotate scale value into place + andi.l &0x3,%d1 # extract scale value + + lsl.l %d1,%d0 # shift index by scale + + extb.l %d2 # sign extend displacement + add.l %d2,%d0 # disp + index + add.l %d0,%a0 # An + (index + disp) + + mov.l (%sp)+,%d2 # restore temp register + rts + +# d2 = index +# d3 = base +# d4 = od +# d5 = extword +fcalc_mem_ind: + btst &0x6,%d0 # is the index suppressed? + beq.b fcalc_index + + movm.l &0x3c00,-(%sp) # save d2-d5 + + mov.l %d0,%d5 # put extword in d5 + mov.l %a0,%d3 # put base in d3 + + clr.l %d2 # yes, so index = 0 + bra.b fbase_supp_ck + +# index: +fcalc_index: + mov.l %d0,L_SCR1(%a6) # save d0 (opword) + bfextu %d0{&16:&4},%d1 # fetch dreg index + bsr.l fetch_dreg + + movm.l &0x3c00,-(%sp) # save d2-d5 + mov.l %d0,%d2 # put index in d2 + mov.l L_SCR1(%a6),%d5 + mov.l %a0,%d3 + + btst &0xb,%d5 # is index word or long? + bne.b fno_ext + ext.l %d2 + +fno_ext: + bfextu %d5{&21:&2},%d0 + lsl.l %d0,%d2 + +# base address (passed as parameter in d3): +# we clear the value here if it should actually be suppressed. +fbase_supp_ck: + btst &0x7,%d5 # is the bd suppressed? + beq.b fno_base_sup + clr.l %d3 + +# base displacement: +fno_base_sup: + bfextu %d5{&26:&2},%d0 # get bd size +# beq.l fmovm_error # if (size == 0) it's reserved + + cmpi.b %d0,&0x2 + blt.b fno_bd + beq.b fget_word_bd + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + bra.b fchk_ind + +fget_word_bd: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + ext.l %d0 # sign extend bd + +fchk_ind: + add.l %d0,%d3 # base += bd + +# outer displacement: +fno_bd: + bfextu %d5{&30:&2},%d0 # is od suppressed? + beq.w faii_bd + + cmpi.b %d0,&0x2 + blt.b fnull_od + beq.b fword_od + + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + bra.b fadd_them + +fword_od: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_word + + tst.l %d1 # did ifetch fail? + bne.l fcea_iacc # yes + + ext.l %d0 # sign extend od + bra.b fadd_them + +fnull_od: + clr.l %d0 + +fadd_them: + mov.l %d0,%d4 + + btst &0x2,%d5 # pre or post indexing? + beq.b fpre_indexed + + mov.l %d3,%a0 + bsr.l _dmem_read_long + + tst.l %d1 # did dfetch fail? + bne.w fcea_err # yes + + add.l %d2,%d0 # <ea> += index + add.l %d4,%d0 # <ea> += od + bra.b fdone_ea + +fpre_indexed: + add.l %d2,%d3 # preindexing + mov.l %d3,%a0 + bsr.l _dmem_read_long + + tst.l %d1 # did dfetch fail? + bne.w fcea_err # yes + + add.l %d4,%d0 # ea += od + bra.b fdone_ea + +faii_bd: + add.l %d2,%d3 # ea = (base + bd) + index + mov.l %d3,%d0 +fdone_ea: + mov.l %d0,%a0 + + movm.l (%sp)+,&0x003c # restore d2-d5 + rts + +######################################################### +fcea_err: + mov.l %d3,%a0 + + movm.l (%sp)+,&0x003c # restore d2-d5 + mov.w &0x0101,%d0 + bra.l iea_dacc + +fcea_iacc: + movm.l (%sp)+,&0x003c # restore d2-d5 + bra.l iea_iacc + +fmovm_out_err: + bsr.l restore + mov.w &0x00e1,%d0 + bra.b fmovm_err + +fmovm_in_err: + bsr.l restore + mov.w &0x0161,%d0 + +fmovm_err: + mov.l L_SCR1(%a6),%a0 + bra.l iea_dacc + +######################################################################### +# XDEF **************************************************************** # +# fmovm_ctrl(): emulate fmovm.l of control registers instr # +# # +# XREF **************************************************************** # +# _imem_read_long() - read longword from memory # +# iea_iacc() - _imem_read_long() failed; error recovery # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If _imem_read_long() doesn't fail: # +# USER_FPCR(a6) = new FPCR value # +# USER_FPSR(a6) = new FPSR value # +# USER_FPIAR(a6) = new FPIAR value # +# # +# ALGORITHM *********************************************************** # +# Decode the instruction type by looking at the extension word # +# in order to see how many control registers to fetch from memory. # +# Fetch them using _imem_read_long(). If this fetch fails, exit through # +# the special access error exit handler iea_iacc(). # +# # +# Instruction word decoding: # +# # +# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # +# # +# WORD1 WORD2 # +# 1111 0010 00 111100 100$ $$00 0000 0000 # +# # +# $$$ (100): FPCR # +# (010): FPSR # +# (001): FPIAR # +# (000): FPIAR # +# # +######################################################################### + + global fmovm_ctrl +fmovm_ctrl: + mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits + cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? + beq.w fctrl_in_7 # yes + cmpi.b %d0,&0x98 # fpcr & fpsr ? + beq.w fctrl_in_6 # yes + cmpi.b %d0,&0x94 # fpcr & fpiar ? + beq.b fctrl_in_5 # yes + +# fmovem.l #<data>, fpsr/fpiar +fctrl_in_3: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPSR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPIAR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack + rts + +# fmovem.l #<data>, fpcr/fpiar +fctrl_in_5: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPCR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPIAR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack + rts + +# fmovem.l #<data>, fpcr/fpsr +fctrl_in_6: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPCR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPSR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem + rts + +# fmovem.l #<data>, fpcr/fpsr/fpiar +fctrl_in_7: + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPCR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPSR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem + mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr + addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr + bsr.l _imem_read_long # fetch FPIAR from mem + + tst.l %d1 # did ifetch fail? + bne.l iea_iacc # yes + + mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem + rts + +########################################################################## + +######################################################################### +# XDEF **************************************************************** # +# addsub_scaler2(): scale inputs to fadd/fsub such that no # +# OVFL/UNFL exceptions will result # +# # +# XREF **************************************************************** # +# norm() - normalize mantissa after adjusting exponent # +# # +# INPUT *************************************************************** # +# FP_SRC(a6) = fp op1(src) # +# FP_DST(a6) = fp op2(dst) # +# # +# OUTPUT ************************************************************** # +# FP_SRC(a6) = fp op1 scaled(src) # +# FP_DST(a6) = fp op2 scaled(dst) # +# d0 = scale amount # +# # +# ALGORITHM *********************************************************** # +# If the DST exponent is > the SRC exponent, set the DST exponent # +# equal to 0x3fff and scale the SRC exponent by the value that the # +# DST exponent was scaled by. If the SRC exponent is greater or equal, # +# do the opposite. Return this scale factor in d0. # +# If the two exponents differ by > the number of mantissa bits # +# plus two, then set the smallest exponent to a very small value as a # +# quick shortcut. # +# # +######################################################################### + + global addsub_scaler2 +addsub_scaler2: + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + mov.w SRC_EX(%a0),%d0 + mov.w DST_EX(%a1),%d1 + mov.w %d0,FP_SCR0_EX(%a6) + mov.w %d1,FP_SCR1_EX(%a6) + + andi.w &0x7fff,%d0 + andi.w &0x7fff,%d1 + mov.w %d0,L_SCR1(%a6) # store src exponent + mov.w %d1,2+L_SCR1(%a6) # store dst exponent + + cmp.w %d0, %d1 # is src exp >= dst exp? + bge.l src_exp_ge2 + +# dst exp is > src exp; scale dst to exp = 0x3fff +dst_exp_gt2: + bsr.l scale_to_zero_dst + mov.l %d0,-(%sp) # save scale factor + + cmpi.b STAG(%a6),&DENORM # is dst denormalized? + bne.b cmpexp12 + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the denorm; result is new exp + neg.w %d0 # new exp = -(shft val) + mov.w %d0,L_SCR1(%a6) # inset new exp + +cmpexp12: + mov.w 2+L_SCR1(%a6),%d0 + subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp + + cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? + bge.b quick_scale12 + + mov.w L_SCR1(%a6),%d0 + add.w 0x2(%sp),%d0 # scale src exponent by scale factor + mov.w FP_SCR0_EX(%a6),%d1 + and.w &0x8000,%d1 + or.w %d1,%d0 # concat {sgn,new exp} + mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +quick_scale12: + andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent + bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +# src exp is >= dst exp; scale src to exp = 0x3fff +src_exp_ge2: + bsr.l scale_to_zero_src + mov.l %d0,-(%sp) # save scale factor + + cmpi.b DTAG(%a6),&DENORM # is dst denormalized? + bne.b cmpexp22 + lea FP_SCR1(%a6),%a0 + bsr.l norm # normalize the denorm; result is new exp + neg.w %d0 # new exp = -(shft val) + mov.w %d0,2+L_SCR1(%a6) # inset new exp + +cmpexp22: + mov.w L_SCR1(%a6),%d0 + subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp + + cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? + bge.b quick_scale22 + + mov.w 2+L_SCR1(%a6),%d0 + add.w 0x2(%sp),%d0 # scale dst exponent by scale factor + mov.w FP_SCR1_EX(%a6),%d1 + andi.w &0x8000,%d1 + or.w %d1,%d0 # concat {sgn,new exp} + mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +quick_scale22: + andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent + bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 + + mov.l (%sp)+,%d0 # return SCALE factor + rts + +########################################################################## + +######################################################################### +# XDEF **************************************************************** # +# scale_to_zero_src(): scale the exponent of extended precision # +# value at FP_SCR0(a6). # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa if the operand was a DENORM # +# # +# INPUT *************************************************************** # +# FP_SCR0(a6) = extended precision operand to be scaled # +# # +# OUTPUT ************************************************************** # +# FP_SCR0(a6) = scaled extended precision operand # +# d0 = scale value # +# # +# ALGORITHM *********************************************************** # +# Set the exponent of the input operand to 0x3fff. Save the value # +# of the difference between the original and new exponent. Then, # +# normalize the operand if it was a DENORM. Add this normalization # +# value to the previous value. Return the result. # +# # +######################################################################### + + global scale_to_zero_src +scale_to_zero_src: + mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} + mov.w %d1,%d0 # make a copy + + andi.l &0x7fff,%d1 # extract operand's exponent + + andi.w &0x8000,%d0 # extract operand's sgn + or.w &0x3fff,%d0 # insert new operand's exponent(=0) + + mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent + + cmpi.b STAG(%a6),&DENORM # is operand normalized? + beq.b stzs_denorm # normalize the DENORM + +stzs_norm: + mov.l &0x3fff,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + + rts + +stzs_denorm: + lea FP_SCR0(%a6),%a0 # pass ptr to src op + bsr.l norm # normalize denorm + neg.l %d0 # new exponent = -(shft val) + mov.l %d0,%d1 # prepare for op_norm call + bra.b stzs_norm # finish scaling + +### + +######################################################################### +# XDEF **************************************************************** # +# scale_sqrt(): scale the input operand exponent so a subsequent # +# fsqrt operation won't take an exception. # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa if the operand was a DENORM # +# # +# INPUT *************************************************************** # +# FP_SCR0(a6) = extended precision operand to be scaled # +# # +# OUTPUT ************************************************************** # +# FP_SCR0(a6) = scaled extended precision operand # +# d0 = scale value # +# # +# ALGORITHM *********************************************************** # +# If the input operand is a DENORM, normalize it. # +# If the exponent of the input operand is even, set the exponent # +# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # +# exponent of the input operand is off, set the exponent to ox3fff and # +# return a scale factor of "(exp-0x3fff)/2". # +# # +######################################################################### + + global scale_sqrt +scale_sqrt: + cmpi.b STAG(%a6),&DENORM # is operand normalized? + beq.b ss_denorm # normalize the DENORM + + mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} + andi.l &0x7fff,%d1 # extract operand's exponent + + andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn + + btst &0x0,%d1 # is exp even or odd? + beq.b ss_norm_even + + ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + mov.l &0x3fff,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +ss_norm_even: + ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + mov.l &0x3ffe,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +ss_denorm: + lea FP_SCR0(%a6),%a0 # pass ptr to src op + bsr.l norm # normalize denorm + + btst &0x0,%d0 # is exp even or odd? + beq.b ss_denorm_even + + ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + add.l &0x3fff,%d0 + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +ss_denorm_even: + ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) + + add.l &0x3ffe,%d0 + asr.l &0x1,%d0 # divide scale factor by 2 + rts + +### + +######################################################################### +# XDEF **************************************************************** # +# scale_to_zero_dst(): scale the exponent of extended precision # +# value at FP_SCR1(a6). # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa if the operand was a DENORM # +# # +# INPUT *************************************************************** # +# FP_SCR1(a6) = extended precision operand to be scaled # +# # +# OUTPUT ************************************************************** # +# FP_SCR1(a6) = scaled extended precision operand # +# d0 = scale value # +# # +# ALGORITHM *********************************************************** # +# Set the exponent of the input operand to 0x3fff. Save the value # +# of the difference between the original and new exponent. Then, # +# normalize the operand if it was a DENORM. Add this normalization # +# value to the previous value. Return the result. # +# # +######################################################################### + + global scale_to_zero_dst +scale_to_zero_dst: + mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} + mov.w %d1,%d0 # make a copy + + andi.l &0x7fff,%d1 # extract operand's exponent + + andi.w &0x8000,%d0 # extract operand's sgn + or.w &0x3fff,%d0 # insert new operand's exponent(=0) + + mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent + + cmpi.b DTAG(%a6),&DENORM # is operand normalized? + beq.b stzd_denorm # normalize the DENORM + +stzd_norm: + mov.l &0x3fff,%d0 + sub.l %d1,%d0 # scale = BIAS + (-exp) + rts + +stzd_denorm: + lea FP_SCR1(%a6),%a0 # pass ptr to dst op + bsr.l norm # normalize denorm + neg.l %d0 # new exponent = -(shft val) + mov.l %d0,%d1 # prepare for op_norm call + bra.b stzd_norm # finish scaling + +########################################################################## + +######################################################################### +# XDEF **************************************************************** # +# res_qnan(): return default result w/ QNAN operand for dyadic # +# res_snan(): return default result w/ SNAN operand for dyadic # +# res_qnan_1op(): return dflt result w/ QNAN operand for monadic # +# res_snan_1op(): return dflt result w/ SNAN operand for monadic # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# FP_SRC(a6) = pointer to extended precision src operand # +# FP_DST(a6) = pointer to extended precision dst operand # +# # +# OUTPUT ************************************************************** # +# fp0 = default result # +# # +# ALGORITHM *********************************************************** # +# If either operand (but not both operands) of an operation is a # +# nonsignalling NAN, then that NAN is returned as the result. If both # +# operands are nonsignalling NANs, then the destination operand # +# nonsignalling NAN is returned as the result. # +# If either operand to an operation is a signalling NAN (SNAN), # +# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # +# enable bit is set in the FPCR, then the trap is taken and the # +# destination is not modified. If the SNAN trap enable bit is not set, # +# then the SNAN is converted to a nonsignalling NAN (by setting the # +# SNAN bit in the operand to one), and the operation continues as # +# described in the preceding paragraph, for nonsignalling NANs. # +# Make sure the appropriate FPSR bits are set before exiting. # +# # +######################################################################### + + global res_qnan + global res_snan +res_qnan: +res_snan: + cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? + beq.b dst_snan2 + cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? + beq.b dst_qnan2 +src_nan: + cmp.b STAG(%a6), &QNAN + beq.b src_qnan2 + global res_snan_1op +res_snan_1op: +src_snan2: + bset &0x6, FP_SRC_HI(%a6) # set SNAN bit + or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) + lea FP_SRC(%a6), %a0 + bra.b nan_comp + global res_qnan_1op +res_qnan_1op: +src_qnan2: + or.l &nan_mask, USER_FPSR(%a6) + lea FP_SRC(%a6), %a0 + bra.b nan_comp +dst_snan2: + or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) + bset &0x6, FP_DST_HI(%a6) # set SNAN bit + lea FP_DST(%a6), %a0 + bra.b nan_comp +dst_qnan2: + lea FP_DST(%a6), %a0 + cmp.b STAG(%a6), &SNAN + bne nan_done + or.l &aiop_mask+snan_mask, USER_FPSR(%a6) +nan_done: + or.l &nan_mask, USER_FPSR(%a6) +nan_comp: + btst &0x7, FTEMP_EX(%a0) # is NAN neg? + beq.b nan_not_neg + or.l &neg_mask, USER_FPSR(%a6) +nan_not_neg: + fmovm.x (%a0), &0x80 + rts + +######################################################################### +# XDEF **************************************************************** # +# res_operr(): return default result during operand error # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# fp0 = default operand error result # +# # +# ALGORITHM *********************************************************** # +# An nonsignalling NAN is returned as the default result when # +# an operand error occurs for the following cases: # +# # +# Multiply: (Infinity x Zero) # +# Divide : (Zero / Zero) || (Infinity / Infinity) # +# # +######################################################################### + + global res_operr +res_operr: + or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) + fmovm.x nan_return(%pc), &0x80 + rts + +nan_return: + long 0x7fff0000, 0xffffffff, 0xffffffff + +######################################################################### +# XDEF **************************************************************** # +# _denorm(): denormalize an intermediate result # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = points to the operand to be denormalized # +# (in the internal extended format) # +# # +# d0 = rounding precision # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to the denormalized result # +# (in the internal extended format) # +# # +# d0 = guard,round,sticky # +# # +# ALGORITHM *********************************************************** # +# According to the exponent underflow threshold for the given # +# precision, shift the mantissa bits to the right in order raise the # +# exponent of the operand to the threshold value. While shifting the # +# mantissa bits right, maintain the value of the guard, round, and # +# sticky bits. # +# other notes: # +# (1) _denorm() is called by the underflow routines # +# (2) _denorm() does NOT affect the status register # +# # +######################################################################### + +# +# table of exponent threshold values for each precision +# +tbl_thresh: + short 0x0 + short sgl_thresh + short dbl_thresh + + global _denorm +_denorm: +# +# Load the exponent threshold for the precision selected and check +# to see if (threshold - exponent) is > 65 in which case we can +# simply calculate the sticky bit and zero the mantissa. otherwise +# we have to call the denormalization routine. +# + lsr.b &0x2, %d0 # shift prec to lo bits + mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold + mov.w %d1, %d0 # copy d1 into d0 + sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp + cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) + bpl.b denorm_set_stky # yes; just calc sticky + + clr.l %d0 # clear g,r,s + btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? + beq.b denorm_call # no; don't change anything + bset &29, %d0 # yes; set sticky bit + +denorm_call: + bsr.l dnrm_lp # denormalize the number + rts + +# +# all bit would have been shifted off during the denorm so simply +# calculate if the sticky should be set and clear the entire mantissa. +# +denorm_set_stky: + mov.l &0x20000000, %d0 # set sticky bit in return value + mov.w %d1, FTEMP_EX(%a0) # load exp with threshold + clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) + clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) + rts + +# # +# dnrm_lp(): normalize exponent/mantissa to specified threshhold # +# # +# INPUT: # +# %a0 : points to the operand to be denormalized # +# %d0{31:29} : initial guard,round,sticky # +# %d1{15:0} : denormalization threshold # +# OUTPUT: # +# %a0 : points to the denormalized operand # +# %d0{31:29} : final guard,round,sticky # +# # + +# *** Local Equates *** # +set GRS, L_SCR2 # g,r,s temp storage +set FTEMP_LO2, L_SCR1 # FTEMP_LO copy + + global dnrm_lp +dnrm_lp: + +# +# make a copy of FTEMP_LO and place the g,r,s bits directly after it +# in memory so as to make the bitfield extraction for denormalization easier. +# + mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy + mov.l %d0, GRS(%a6) # place g,r,s after it + +# +# check to see how much less than the underflow threshold the operand +# exponent is. +# + mov.l %d1, %d0 # copy the denorm threshold + sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent + ble.b dnrm_no_lp # d1 <= 0 + cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? + blt.b case_1 # yes + cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? + blt.b case_2 # yes + bra.w case_3 # (d1 >= 64) + +# +# No normalization necessary +# +dnrm_no_lp: + mov.l GRS(%a6), %d0 # restore original g,r,s + rts + +# +# case (0<d1<32) +# +# %d0 = denorm threshold +# %d1 = "n" = amt to shift +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# \ \ \ \ +# <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> +# --------------------------------------------------------- +# |0.....0| NEW_HI | NEW_FTEMP_LO |grs | +# --------------------------------------------------------- +# +case_1: + mov.l %d2, -(%sp) # create temp storage + + mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold + mov.l &32, %d0 + sub.w %d1, %d0 # %d0 = 32 - %d1 + + cmpi.w %d1, &29 # is shft amt >= 29 + blt.b case1_extract # no; no fix needed + mov.b GRS(%a6), %d2 + or.b %d2, 3+FTEMP_LO2(%a6) + +case1_extract: + bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI + bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO + bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S + + mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI + mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO + + bftst %d0{&2:&30} # were bits shifted off? + beq.b case1_sticky_clear # no; go finish + bset &rnd_stky_bit, %d0 # yes; set sticky bit + +case1_sticky_clear: + and.l &0xe0000000, %d0 # clear all but G,R,S + mov.l (%sp)+, %d2 # restore temp register + rts + +# +# case (32<=d1<64) +# +# %d0 = denorm threshold +# %d1 = "n" = amt to shift +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> +# \ \ \ +# \ \ \ +# \ \ ------------------- +# \ -------------------- \ +# ------------------- \ \ +# \ \ \ +# \ \ \ +# \ \ \ +# <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> +# --------------------------------------------------------- +# |0...............0|0....0| NEW_LO |grs | +# --------------------------------------------------------- +# +case_2: + mov.l %d2, -(%sp) # create temp storage + + mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold + subi.w &0x20, %d1 # %d1 now between 0 and 32 + mov.l &0x20, %d0 + sub.w %d1, %d0 # %d0 = 32 - %d1 + +# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize +# the number of bits to check for the sticky detect. +# it only plays a role in shift amounts of 61-63. + mov.b GRS(%a6), %d2 + or.b %d2, 3+FTEMP_LO2(%a6) + + bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO + bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S + + bftst %d1{&2:&30} # were any bits shifted off? + bne.b case2_set_sticky # yes; set sticky bit + bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? + bne.b case2_set_sticky # yes; set sticky bit + + mov.l %d1, %d0 # move new G,R,S to %d0 + bra.b case2_end + +case2_set_sticky: + mov.l %d1, %d0 # move new G,R,S to %d0 + bset &rnd_stky_bit, %d0 # set sticky bit + +case2_end: + clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 + mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO + and.l &0xe0000000, %d0 # clear all but G,R,S + + mov.l (%sp)+,%d2 # restore temp register + rts + +# +# case (d1>=64) +# +# %d0 = denorm threshold +# %d1 = amt to shift +# +case_3: + mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold + + cmpi.w %d1, &65 # is shift amt > 65? + blt.b case3_64 # no; it's == 64 + beq.b case3_65 # no; it's == 65 + +# +# case (d1>65) +# +# Shift value is > 65 and out of range. All bits are shifted off. +# Return a zero mantissa with the sticky bit set +# + clr.l FTEMP_HI(%a0) # clear hi(mantissa) + clr.l FTEMP_LO(%a0) # clear lo(mantissa) + mov.l &0x20000000, %d0 # set sticky bit + rts + +# +# case (d1 == 64) +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-------(32)------> +# \ \ +# \ \ +# \ \ +# \ ------------------------------ +# ------------------------------- \ +# \ \ +# \ \ +# \ \ +# <-------(32)------> +# --------------------------------------------------------- +# |0...............0|0................0|grs | +# --------------------------------------------------------- +# +case3_64: + mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) + mov.l %d0, %d1 # make a copy + and.l &0xc0000000, %d0 # extract G,R + and.l &0x3fffffff, %d1 # extract other bits + + bra.b case3_complete + +# +# case (d1 == 65) +# +# --------------------------------------------------------- +# | FTEMP_HI | FTEMP_LO |grs000.........000| +# --------------------------------------------------------- +# <-------(32)------> +# \ \ +# \ \ +# \ \ +# \ ------------------------------ +# -------------------------------- \ +# \ \ +# \ \ +# \ \ +# <-------(31)-----> +# --------------------------------------------------------- +# |0...............0|0................0|0rs | +# --------------------------------------------------------- +# +case3_65: + mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) + and.l &0x80000000, %d0 # extract R bit + lsr.l &0x1, %d0 # shift high bit into R bit + and.l &0x7fffffff, %d1 # extract other bits + +case3_complete: +# last operation done was an "and" of the bits shifted off so the condition +# codes are already set so branch accordingly. + bne.b case3_set_sticky # yes; go set new sticky + tst.l FTEMP_LO(%a0) # were any bits shifted off? + bne.b case3_set_sticky # yes; go set new sticky + tst.b GRS(%a6) # were any bits shifted off? + bne.b case3_set_sticky # yes; go set new sticky + +# +# no bits were shifted off so don't set the sticky bit. +# the guard and +# the entire mantissa is zero. +# + clr.l FTEMP_HI(%a0) # clear hi(mantissa) + clr.l FTEMP_LO(%a0) # clear lo(mantissa) + rts + +# +# some bits were shifted off so set the sticky bit. +# the entire mantissa is zero. +# +case3_set_sticky: + bset &rnd_stky_bit,%d0 # set new sticky bit + clr.l FTEMP_HI(%a0) # clear hi(mantissa) + clr.l FTEMP_LO(%a0) # clear lo(mantissa) + rts + +######################################################################### +# XDEF **************************************************************** # +# _round(): round result according to precision/mode # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = ptr to input operand in internal extended format # +# d1(hi) = contains rounding precision: # +# ext = $0000xxxx # +# sgl = $0004xxxx # +# dbl = $0008xxxx # +# d1(lo) = contains rounding mode: # +# RN = $xxxx0000 # +# RZ = $xxxx0001 # +# RM = $xxxx0002 # +# RP = $xxxx0003 # +# d0{31:29} = contains the g,r,s bits (extended) # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to rounded result # +# # +# ALGORITHM *********************************************************** # +# On return the value pointed to by a0 is correctly rounded, # +# a0 is preserved and the g-r-s bits in d0 are cleared. # +# The result is not typed - the tag field is invalid. The # +# result is still in the internal extended format. # +# # +# The INEX bit of USER_FPSR will be set if the rounded result was # +# inexact (i.e. if any of the g-r-s bits were set). # +# # +######################################################################### + + global _round +_round: +# +# ext_grs() looks at the rounding precision and sets the appropriate +# G,R,S bits. +# If (G,R,S == 0) then result is exact and round is done, else set +# the inex flag in status reg and continue. +# + bsr.l ext_grs # extract G,R,S + + tst.l %d0 # are G,R,S zero? + beq.w truncate # yes; round is complete + + or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex + +# +# Use rounding mode as an index into a jump table for these modes. +# All of the following assumes grs != 0. +# + mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset + jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler + +tbl_mode: + short rnd_near - tbl_mode + short truncate - tbl_mode # RZ always truncates + short rnd_mnus - tbl_mode + short rnd_plus - tbl_mode + +################################################################# +# ROUND PLUS INFINITY # +# # +# If sign of fp number = 0 (positive), then add 1 to l. # +################################################################# +rnd_plus: + tst.b FTEMP_SGN(%a0) # check for sign + bmi.w truncate # if positive then truncate + + mov.l &0xffffffff, %d0 # force g,r,s to be all f's + swap %d1 # set up d1 for round prec. + + cmpi.b %d1, &s_mode # is prec = sgl? + beq.w add_sgl # yes + bgt.w add_dbl # no; it's dbl + bra.w add_ext # no; it's ext + +################################################################# +# ROUND MINUS INFINITY # +# # +# If sign of fp number = 1 (negative), then add 1 to l. # +################################################################# +rnd_mnus: + tst.b FTEMP_SGN(%a0) # check for sign + bpl.w truncate # if negative then truncate + + mov.l &0xffffffff, %d0 # force g,r,s to be all f's + swap %d1 # set up d1 for round prec. + + cmpi.b %d1, &s_mode # is prec = sgl? + beq.w add_sgl # yes + bgt.w add_dbl # no; it's dbl + bra.w add_ext # no; it's ext + +################################################################# +# ROUND NEAREST # +# # +# If (g=1), then add 1 to l and if (r=s=0), then clear l # +# Note that this will round to even in case of a tie. # +################################################################# +rnd_near: + asl.l &0x1, %d0 # shift g-bit to c-bit + bcc.w truncate # if (g=1) then + + swap %d1 # set up d1 for round prec. + + cmpi.b %d1, &s_mode # is prec = sgl? + beq.w add_sgl # yes + bgt.w add_dbl # no; it's dbl + bra.w add_ext # no; it's ext + +# *** LOCAL EQUATES *** +set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec +set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec + +######################### +# ADD SINGLE # +######################### +add_sgl: + add.l &ad_1_sgl, FTEMP_HI(%a0) + bcc.b scc_clr # no mantissa overflow + roxr.w FTEMP_HI(%a0) # shift v-bit back in + roxr.w FTEMP_HI+2(%a0) # shift v-bit back in + add.w &0x1, FTEMP_EX(%a0) # and incr exponent +scc_clr: + tst.l %d0 # test for rs = 0 + bne.b sgl_done + and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit +sgl_done: + and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit + clr.l FTEMP_LO(%a0) # clear d2 + rts + +######################### +# ADD EXTENDED # +######################### +add_ext: + addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit + bcc.b xcc_clr # test for carry out + addq.l &1,FTEMP_HI(%a0) # propagate carry + bcc.b xcc_clr + roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_LO(%a0) + roxr.w FTEMP_LO+2(%a0) + add.w &0x1,FTEMP_EX(%a0) # and inc exp +xcc_clr: + tst.l %d0 # test rs = 0 + bne.b add_ext_done + and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit +add_ext_done: + rts + +######################### +# ADD DOUBLE # +######################### +add_dbl: + add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb + bcc.b dcc_clr # no carry + addq.l &0x1, FTEMP_HI(%a0) # propagate carry + bcc.b dcc_clr # no carry + + roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit + roxr.w FTEMP_LO(%a0) + roxr.w FTEMP_LO+2(%a0) + addq.w &0x1, FTEMP_EX(%a0) # incr exponent +dcc_clr: + tst.l %d0 # test for rs = 0 + bne.b dbl_done + and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit + +dbl_done: + and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit + rts + +########################### +# Truncate all other bits # +########################### +truncate: + swap %d1 # select rnd prec + + cmpi.b %d1, &s_mode # is prec sgl? + beq.w sgl_done # yes + bgt.b dbl_done # no; it's dbl + rts # no; it's ext + + +# +# ext_grs(): extract guard, round and sticky bits according to +# rounding precision. +# +# INPUT +# d0 = extended precision g,r,s (in d0{31:29}) +# d1 = {PREC,ROUND} +# OUTPUT +# d0{31:29} = guard, round, sticky +# +# The ext_grs extract the guard/round/sticky bits according to the +# selected rounding precision. It is called by the round subroutine +# only. All registers except d0 are kept intact. d0 becomes an +# updated guard,round,sticky in d0{31:29} +# +# Notes: the ext_grs uses the round PREC, and therefore has to swap d1 +# prior to usage, and needs to restore d1 to original. this +# routine is tightly tied to the round routine and not meant to +# uphold standard subroutine calling practices. +# + +ext_grs: + swap %d1 # have d1.w point to round precision + tst.b %d1 # is rnd prec = extended? + bne.b ext_grs_not_ext # no; go handle sgl or dbl + +# +# %d0 actually already hold g,r,s since _round() had it before calling +# this function. so, as long as we don't disturb it, we are "returning" it. +# +ext_grs_ext: + swap %d1 # yes; return to correct positions + rts + +ext_grs_not_ext: + movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} + + cmpi.b %d1, &s_mode # is rnd prec = sgl? + bne.b ext_grs_dbl # no; go handle dbl + +# +# sgl: +# 96 64 40 32 0 +# ----------------------------------------------------- +# | EXP |XXXXXXX| |xx | |grs| +# ----------------------------------------------------- +# <--(24)--->nn\ / +# ee --------------------- +# ww | +# v +# gr new sticky +# +ext_grs_sgl: + bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right + mov.l &30, %d2 # of the sgl prec. limits + lsl.l %d2, %d3 # shift g-r bits to MSB of d3 + mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test + and.l &0x0000003f, %d2 # s bit is the or of all other + bne.b ext_grs_st_stky # bits to the right of g-r + tst.l FTEMP_LO(%a0) # test lower mantissa + bne.b ext_grs_st_stky # if any are set, set sticky + tst.l %d0 # test original g,r,s + bne.b ext_grs_st_stky # if any are set, set sticky + bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit + +# +# dbl: +# 96 64 32 11 0 +# ----------------------------------------------------- +# | EXP |XXXXXXX| | |xx |grs| +# ----------------------------------------------------- +# nn\ / +# ee ------- +# ww | +# v +# gr new sticky +# +ext_grs_dbl: + bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right + mov.l &30, %d2 # of the dbl prec. limits + lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 + mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test + and.l &0x000001ff, %d2 # s bit is the or-ing of all + bne.b ext_grs_st_stky # other bits to the right of g-r + tst.l %d0 # test word original g,r,s + bne.b ext_grs_st_stky # if any are set, set sticky + bra.b ext_grs_end_sd # if clear, exit + +ext_grs_st_stky: + bset &rnd_stky_bit, %d3 # set sticky bit +ext_grs_end_sd: + mov.l %d3, %d0 # return grs to d0 + + movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} + + swap %d1 # restore d1 to original + rts + +######################################################################### +# norm(): normalize the mantissa of an extended precision input. the # +# input operand should not be normalized already. # +# # +# XDEF **************************************************************** # +# norm() # +# # +# XREF **************************************************************** # +# none # +# # +# INPUT *************************************************************** # +# a0 = pointer fp extended precision operand to normalize # +# # +# OUTPUT ************************************************************** # +# d0 = number of bit positions the mantissa was shifted # +# a0 = the input operand's mantissa is normalized; the exponent # +# is unchanged. # +# # +######################################################################### + global norm +norm: + mov.l %d2, -(%sp) # create some temp regs + mov.l %d3, -(%sp) + + mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) + mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) + + bfffo %d0{&0:&32}, %d2 # how many places to shift? + beq.b norm_lo # hi(man) is all zeroes! + +norm_hi: + lsl.l %d2, %d0 # left shift hi(man) + bfextu %d1{&0:%d2}, %d3 # extract lo bits + + or.l %d3, %d0 # create hi(man) + lsl.l %d2, %d1 # create lo(man) + + mov.l %d0, FTEMP_HI(%a0) # store new hi(man) + mov.l %d1, FTEMP_LO(%a0) # store new lo(man) + + mov.l %d2, %d0 # return shift amount + + mov.l (%sp)+, %d3 # restore temp regs + mov.l (%sp)+, %d2 + + rts + +norm_lo: + bfffo %d1{&0:&32}, %d2 # how many places to shift? + lsl.l %d2, %d1 # shift lo(man) + add.l &32, %d2 # add 32 to shft amount + + mov.l %d1, FTEMP_HI(%a0) # store hi(man) + clr.l FTEMP_LO(%a0) # lo(man) is now zero + + mov.l %d2, %d0 # return shift amount + + mov.l (%sp)+, %d3 # restore temp regs + mov.l (%sp)+, %d2 + + rts + +######################################################################### +# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # +# - returns corresponding optype tag # +# # +# XDEF **************************************************************** # +# unnorm_fix() # +# # +# XREF **************************************************************** # +# norm() - normalize the mantissa # +# # +# INPUT *************************************************************** # +# a0 = pointer to unnormalized extended precision number # +# # +# OUTPUT ************************************************************** # +# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # +# a0 = input operand has been converted to a norm, denorm, or # +# zero; both the exponent and mantissa are changed. # +# # +######################################################################### + + global unnorm_fix +unnorm_fix: + bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? + bne.b unnorm_shift # hi(man) is not all zeroes + +# +# hi(man) is all zeroes so see if any bits in lo(man) are set +# +unnorm_chk_lo: + bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? + beq.w unnorm_zero # yes + + add.w &32, %d0 # no; fix shift distance + +# +# d0 = # shifts needed for complete normalization +# +unnorm_shift: + clr.l %d1 # clear top word + mov.w FTEMP_EX(%a0), %d1 # extract exponent + and.w &0x7fff, %d1 # strip off sgn + + cmp.w %d0, %d1 # will denorm push exp < 0? + bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 + +# +# exponent would not go < 0. therefore, number stays normalized +# + sub.w %d0, %d1 # shift exponent value + mov.w FTEMP_EX(%a0), %d0 # load old exponent + and.w &0x8000, %d0 # save old sign + or.w %d0, %d1 # {sgn,new exp} + mov.w %d1, FTEMP_EX(%a0) # insert new exponent + + bsr.l norm # normalize UNNORM + + mov.b &NORM, %d0 # return new optype tag + rts + +# +# exponent would go < 0, so only denormalize until exp = 0 +# +unnorm_nrm_zero: + cmp.b %d1, &32 # is exp <= 32? + bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent + + bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) + mov.l %d0, FTEMP_HI(%a0) # save new hi(man) + + mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) + lsl.l %d1, %d0 # extract new lo(man) + mov.l %d0, FTEMP_LO(%a0) # save new lo(man) + + and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 + + mov.b &DENORM, %d0 # return new optype tag + rts + +# +# only mantissa bits set are in lo(man) +# +unnorm_nrm_zero_lrg: + sub.w &32, %d1 # adjust shft amt by 32 + + mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) + lsl.l %d1, %d0 # left shift lo(man) + + mov.l %d0, FTEMP_HI(%a0) # store new hi(man) + clr.l FTEMP_LO(%a0) # lo(man) = 0 + + and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 + + mov.b &DENORM, %d0 # return new optype tag + rts + +# +# whole mantissa is zero so this UNNORM is actually a zero +# +unnorm_zero: + and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero + + mov.b &ZERO, %d0 # fix optype tag + rts + +######################################################################### +# XDEF **************************************************************** # +# set_tag_x(): return the optype of the input ext fp number # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# If it's an unnormalized zero, alter the operand and force it # +# to be a normal zero. # +# # +######################################################################### + + global set_tag_x +set_tag_x: + mov.w FTEMP_EX(%a0), %d0 # extract exponent + andi.w &0x7fff, %d0 # strip off sign + cmpi.w %d0, &0x7fff # is (EXP == MAX)? + beq.b inf_or_nan_x +not_inf_or_nan_x: + btst &0x7,FTEMP_HI(%a0) + beq.b not_norm_x +is_norm_x: + mov.b &NORM, %d0 + rts +not_norm_x: + tst.w %d0 # is exponent = 0? + bne.b is_unnorm_x +not_unnorm_x: + tst.l FTEMP_HI(%a0) + bne.b is_denorm_x + tst.l FTEMP_LO(%a0) + bne.b is_denorm_x +is_zero_x: + mov.b &ZERO, %d0 + rts +is_denorm_x: + mov.b &DENORM, %d0 + rts +# must distinguish now "Unnormalized zeroes" which we +# must convert to zero. +is_unnorm_x: + tst.l FTEMP_HI(%a0) + bne.b is_unnorm_reg_x + tst.l FTEMP_LO(%a0) + bne.b is_unnorm_reg_x +# it's an "unnormalized zero". let's convert it to an actual zero... + andi.w &0x8000,FTEMP_EX(%a0) # clear exponent + mov.b &ZERO, %d0 + rts +is_unnorm_reg_x: + mov.b &UNNORM, %d0 + rts +inf_or_nan_x: + tst.l FTEMP_LO(%a0) + bne.b is_nan_x + mov.l FTEMP_HI(%a0), %d0 + and.l &0x7fffffff, %d0 # msb is a don't care! + bne.b is_nan_x +is_inf_x: + mov.b &INF, %d0 + rts +is_nan_x: + btst &0x6, FTEMP_HI(%a0) + beq.b is_snan_x + mov.b &QNAN, %d0 + rts +is_snan_x: + mov.b &SNAN, %d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# set_tag_d(): return the optype of the input dbl fp number # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = points to double precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# # +######################################################################### + + global set_tag_d +set_tag_d: + mov.l FTEMP(%a0), %d0 + mov.l %d0, %d1 + + andi.l &0x7ff00000, %d0 + beq.b zero_or_denorm_d + + cmpi.l %d0, &0x7ff00000 + beq.b inf_or_nan_d + +is_norm_d: + mov.b &NORM, %d0 + rts +zero_or_denorm_d: + and.l &0x000fffff, %d1 + bne is_denorm_d + tst.l 4+FTEMP(%a0) + bne is_denorm_d +is_zero_d: + mov.b &ZERO, %d0 + rts +is_denorm_d: + mov.b &DENORM, %d0 + rts +inf_or_nan_d: + and.l &0x000fffff, %d1 + bne is_nan_d + tst.l 4+FTEMP(%a0) + bne is_nan_d +is_inf_d: + mov.b &INF, %d0 + rts +is_nan_d: + btst &19, %d1 + bne is_qnan_d +is_snan_d: + mov.b &SNAN, %d0 + rts +is_qnan_d: + mov.b &QNAN, %d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# set_tag_s(): return the optype of the input sgl fp number # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to single precision operand # +# # +# OUTPUT ************************************************************** # +# d0 = value of type tag # +# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # +# # +# ALGORITHM *********************************************************** # +# Simply test the exponent, j-bit, and mantissa values to # +# determine the type of operand. # +# # +######################################################################### + + global set_tag_s +set_tag_s: + mov.l FTEMP(%a0), %d0 + mov.l %d0, %d1 + + andi.l &0x7f800000, %d0 + beq.b zero_or_denorm_s + + cmpi.l %d0, &0x7f800000 + beq.b inf_or_nan_s + +is_norm_s: + mov.b &NORM, %d0 + rts +zero_or_denorm_s: + and.l &0x007fffff, %d1 + bne is_denorm_s +is_zero_s: + mov.b &ZERO, %d0 + rts +is_denorm_s: + mov.b &DENORM, %d0 + rts +inf_or_nan_s: + and.l &0x007fffff, %d1 + bne is_nan_s +is_inf_s: + mov.b &INF, %d0 + rts +is_nan_s: + btst &22, %d1 + bne is_qnan_s +is_snan_s: + mov.b &SNAN, %d0 + rts +is_qnan_s: + mov.b &QNAN, %d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# unf_res(): routine to produce default underflow result of a # +# scaled extended precision number; this is used by # +# fadd/fdiv/fmul/etc. emulation routines. # +# unf_res4(): same as above but for fsglmul/fsgldiv which use # +# single round prec and extended prec mode. # +# # +# XREF **************************************************************** # +# _denorm() - denormalize according to scale factor # +# _round() - round denormalized number according to rnd prec # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precison operand # +# d0 = scale factor # +# d1 = rounding precision/mode # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to default underflow result in extended precision # +# d0.b = result FPSR_cc which caller may or may not want to save # +# # +# ALGORITHM *********************************************************** # +# Convert the input operand to "internal format" which means the # +# exponent is extended to 16 bits and the sign is stored in the unused # +# portion of the extended precison operand. Denormalize the number # +# according to the scale factor passed in d0. Then, round the # +# denormalized result. # +# Set the FPSR_exc bits as appropriate but return the cc bits in # +# d0 in case the caller doesn't want to save them (as is the case for # +# fmove out). # +# unf_res4() for fsglmul/fsgldiv forces the denorm to extended # +# precision and the rounding mode to single. # +# # +######################################################################### + global unf_res +unf_res: + mov.l %d1, -(%sp) # save rnd prec,mode on stack + + btst &0x7, FTEMP_EX(%a0) # make "internal" format + sne FTEMP_SGN(%a0) + + mov.w FTEMP_EX(%a0), %d1 # extract exponent + and.w &0x7fff, %d1 + sub.w %d0, %d1 + mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent + + mov.l %a0, -(%sp) # save operand ptr during calls + + mov.l 0x4(%sp),%d0 # pass rnd prec. + andi.w &0x00c0,%d0 + lsr.w &0x4,%d0 + bsr.l _denorm # denorm result + + mov.l (%sp),%a0 + mov.w 0x6(%sp),%d1 # load prec:mode into %d1 + andi.w &0xc0,%d1 # extract rnd prec + lsr.w &0x4,%d1 + swap %d1 + mov.w 0x6(%sp),%d1 + andi.w &0x30,%d1 + lsr.w &0x4,%d1 + bsr.l _round # round the denorm + + mov.l (%sp)+, %a0 + +# result is now rounded properly. convert back to normal format + bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue + tst.b FTEMP_SGN(%a0) # is "internal result" sign set? + beq.b unf_res_chkifzero # no; result is positive + bset &0x7, FTEMP_EX(%a0) # set result sgn + clr.b FTEMP_SGN(%a0) # clear temp sign + +# the number may have become zero after rounding. set ccodes accordingly. +unf_res_chkifzero: + clr.l %d0 + tst.l FTEMP_HI(%a0) # is value now a zero? + bne.b unf_res_cont # no + tst.l FTEMP_LO(%a0) + bne.b unf_res_cont # no +# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit + bset &z_bit, %d0 # yes; set zero ccode bit + +unf_res_cont: + +# +# can inex1 also be set along with unfl and inex2??? +# +# we know that underflow has occurred. aunfl should be set if INEX2 is also set. +# + btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? + beq.b unf_res_end # no + bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl + +unf_res_end: + add.l &0x4, %sp # clear stack + rts + +# unf_res() for fsglmul() and fsgldiv(). + global unf_res4 +unf_res4: + mov.l %d1,-(%sp) # save rnd prec,mode on stack + + btst &0x7,FTEMP_EX(%a0) # make "internal" format + sne FTEMP_SGN(%a0) + + mov.w FTEMP_EX(%a0),%d1 # extract exponent + and.w &0x7fff,%d1 + sub.w %d0,%d1 + mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent + + mov.l %a0,-(%sp) # save operand ptr during calls + + clr.l %d0 # force rnd prec = ext + bsr.l _denorm # denorm result + + mov.l (%sp),%a0 + mov.w &s_mode,%d1 # force rnd prec = sgl + swap %d1 + mov.w 0x6(%sp),%d1 # load rnd mode + andi.w &0x30,%d1 # extract rnd prec + lsr.w &0x4,%d1 + bsr.l _round # round the denorm + + mov.l (%sp)+,%a0 + +# result is now rounded properly. convert back to normal format + bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue + tst.b FTEMP_SGN(%a0) # is "internal result" sign set? + beq.b unf_res4_chkifzero # no; result is positive + bset &0x7,FTEMP_EX(%a0) # set result sgn + clr.b FTEMP_SGN(%a0) # clear temp sign + +# the number may have become zero after rounding. set ccodes accordingly. +unf_res4_chkifzero: + clr.l %d0 + tst.l FTEMP_HI(%a0) # is value now a zero? + bne.b unf_res4_cont # no + tst.l FTEMP_LO(%a0) + bne.b unf_res4_cont # no +# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit + bset &z_bit,%d0 # yes; set zero ccode bit + +unf_res4_cont: + +# +# can inex1 also be set along with unfl and inex2??? +# +# we know that underflow has occurred. aunfl should be set if INEX2 is also set. +# + btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? + beq.b unf_res4_end # no + bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl + +unf_res4_end: + add.l &0x4,%sp # clear stack + rts + +######################################################################### +# XDEF **************************************************************** # +# ovf_res(): routine to produce the default overflow result of # +# an overflowing number. # +# ovf_res2(): same as above but the rnd mode/prec are passed # +# differently. # +# # +# XREF **************************************************************** # +# none # +# # +# INPUT *************************************************************** # +# d1.b = '-1' => (-); '0' => (+) # +# ovf_res(): # +# d0 = rnd mode/prec # +# ovf_res2(): # +# hi(d0) = rnd prec # +# lo(d0) = rnd mode # +# # +# OUTPUT ************************************************************** # +# a0 = points to extended precision result # +# d0.b = condition code bits # +# # +# ALGORITHM *********************************************************** # +# The default overflow result can be determined by the sign of # +# the result and the rounding mode/prec in effect. These bits are # +# concatenated together to create an index into the default result # +# table. A pointer to the correct result is returned in a0. The # +# resulting condition codes are returned in d0 in case the caller # +# doesn't want FPSR_cc altered (as is the case for fmove out). # +# # +######################################################################### + + global ovf_res +ovf_res: + andi.w &0x10,%d1 # keep result sign + lsr.b &0x4,%d0 # shift prec/mode + or.b %d0,%d1 # concat the two + mov.w %d1,%d0 # make a copy + lsl.b &0x1,%d1 # multiply d1 by 2 + bra.b ovf_res_load + + global ovf_res2 +ovf_res2: + and.w &0x10, %d1 # keep result sign + or.b %d0, %d1 # insert rnd mode + swap %d0 + or.b %d0, %d1 # insert rnd prec + mov.w %d1, %d0 # make a copy + lsl.b &0x1, %d1 # shift left by 1 + +# +# use the rounding mode, precision, and result sign as in index into the +# two tables below to fetch the default result and the result ccodes. +# +ovf_res_load: + mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes + lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr + + rts + +tbl_ovfl_cc: + byte 0x2, 0x0, 0x0, 0x2 + byte 0x2, 0x0, 0x0, 0x2 + byte 0x2, 0x0, 0x0, 0x2 + byte 0x0, 0x0, 0x0, 0x0 + byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 + byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 + byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 + +tbl_ovfl_result: + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN + long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ + long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP + + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN + long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ + long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP + + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN + long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ + long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM + long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP + + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + long 0x00000000,0x00000000,0x00000000,0x00000000 + + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN + long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM + long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP + + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN + long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM + long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP + + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN + long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ + long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM + long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP + +######################################################################### +# XDEF **************************************************************** # +# fout(): move from fp register to memory or data register # +# # +# XREF **************************************************************** # +# _round() - needed to create EXOP for sgl/dbl precision # +# norm() - needed to create EXOP for extended precision # +# ovf_res() - create default overflow result for sgl/dbl precision# +# unf_res() - create default underflow result for sgl/dbl prec. # +# dst_dbl() - create rounded dbl precision result. # +# dst_sgl() - create rounded sgl precision result. # +# fetch_dreg() - fetch dynamic k-factor reg for packed. # +# bindec() - convert FP binary number to packed number. # +# _mem_write() - write data to memory. # +# _mem_write2() - write data to memory unless supv mode -(a7) exc.# +# _dmem_write_{byte,word,long}() - write data to memory. # +# store_dreg_{b,w,l}() - store data to data register file. # +# facc_out_{b,w,l,d,x}() - data access error occurred. # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 : intermediate underflow or overflow result if # +# OVFL/UNFL occurred for a sgl or dbl operand # +# # +# ALGORITHM *********************************************************** # +# This routine is accessed by many handlers that need to do an # +# opclass three move of an operand out to memory. # +# Decode an fmove out (opclass 3) instruction to determine if # +# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # +# register or memory. The algorithm uses a standard "fmove" to create # +# the rounded result. Also, since exceptions are disabled, this also # +# create the correct OPERR default result if appropriate. # +# For sgl or dbl precision, overflow or underflow can occur. If # +# either occurs and is enabled, the EXOP. # +# For extended precision, the stacked <ea> must be fixed along # +# w/ the address index register as appropriate w/ _calc_ea_fout(). If # +# the source is a denorm and if underflow is enabled, an EXOP must be # +# created. # +# For packed, the k-factor must be fetched from the instruction # +# word or a data register. The <ea> must be fixed as w/ extended # +# precision. Then, bindec() is called to create the appropriate # +# packed result. # +# If at any time an access error is flagged by one of the move- # +# to-memory routines, then a special exit must be made so that the # +# access error can be handled properly. # +# # +######################################################################### + + global fout +fout: + bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt + mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index + jmp (tbl_fout.b,%pc,%a1) # jump to routine + + swbeg &0x8 +tbl_fout: + short fout_long - tbl_fout + short fout_sgl - tbl_fout + short fout_ext - tbl_fout + short fout_pack - tbl_fout + short fout_word - tbl_fout + short fout_dbl - tbl_fout + short fout_byte - tbl_fout + short fout_pack - tbl_fout + +################################################################# +# fmove.b out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +fout_byte: + tst.b STAG(%a6) # is operand normalized? + bne.b fout_byte_denorm # no + + fmovm.x SRC(%a0),&0x80 # load value + +fout_byte_norm: + fmov.l %d0,%fpcr # insert rnd prec,mode + + fmov.b %fp0,%d0 # exec move out w/ correct rnd mode + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch FPSR + or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_byte_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_byte # write byte + + tst.l %d1 # did dstore fail? + bne.l facc_out_b # yes + + rts + +fout_byte_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_b + rts + +fout_byte_denorm: + mov.l SRC_EX(%a0),%d1 + andi.l &0x80000000,%d1 # keep DENORM sign + ori.l &0x00800000,%d1 # make smallest sgl + fmov.s %d1,%fp0 + bra.b fout_byte_norm + +################################################################# +# fmove.w out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +fout_word: + tst.b STAG(%a6) # is operand normalized? + bne.b fout_word_denorm # no + + fmovm.x SRC(%a0),&0x80 # load value + +fout_word_norm: + fmov.l %d0,%fpcr # insert rnd prec:mode + + fmov.w %fp0,%d0 # exec move out w/ correct rnd mode + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch FPSR + or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_word_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_word # write word + + tst.l %d1 # did dstore fail? + bne.l facc_out_w # yes + + rts + +fout_word_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_w + rts + +fout_word_denorm: + mov.l SRC_EX(%a0),%d1 + andi.l &0x80000000,%d1 # keep DENORM sign + ori.l &0x00800000,%d1 # make smallest sgl + fmov.s %d1,%fp0 + bra.b fout_word_norm + +################################################################# +# fmove.l out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +fout_long: + tst.b STAG(%a6) # is operand normalized? + bne.b fout_long_denorm # no + + fmovm.x SRC(%a0),&0x80 # load value + +fout_long_norm: + fmov.l %d0,%fpcr # insert rnd prec:mode + + fmov.l %fp0,%d0 # exec move out w/ correct rnd mode + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch FPSR + or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits + +fout_long_write: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_long_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + rts + +fout_long_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + rts + +fout_long_denorm: + mov.l SRC_EX(%a0),%d1 + andi.l &0x80000000,%d1 # keep DENORM sign + ori.l &0x00800000,%d1 # make smallest sgl + fmov.s %d1,%fp0 + bra.b fout_long_norm + +################################################################# +# fmove.x out ################################################### +################################################################# + +# Only "Unimplemented Data Type" exceptions enter here. The operand +# is either a DENORM or a NORM. +# The DENORM causes an Underflow exception. +fout_ext: + +# we copy the extended precision result to FP_SCR0 so that the reserved +# 16-bit field gets zeroed. we do this since we promise not to disturb +# what's at SRC(a0). + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + clr.w 2+FP_SCR0_EX(%a6) # clear reserved field + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + fmovm.x SRC(%a0),&0x80 # return result + + bsr.l _calc_ea_fout # fix stacked <ea> + + mov.l %a0,%a1 # pass: dst addr + lea FP_SCR0(%a6),%a0 # pass: src addr + mov.l &0xc,%d0 # pass: opsize is 12 bytes + +# we must not yet write the extended precision data to the stack +# in the pre-decrement case from supervisor mode or else we'll corrupt +# the stack frame. so, leave it in FP_SRC for now and deal with it later... + cmpi.b SPCOND_FLG(%a6),&mda7_flg + beq.b fout_ext_a7 + + bsr.l _dmem_write # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + tst.b STAG(%a6) # is operand normalized? + bne.b fout_ext_denorm # no + rts + +# the number is a DENORM. must set the underflow exception bit +fout_ext_denorm: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit + + mov.b FPCR_ENABLE(%a6),%d0 + andi.b &0x0a,%d0 # is UNFL or INEX enabled? + bne.b fout_ext_exc # yes + rts + +# we don't want to do the write if the exception occurred in supervisor mode +# so _mem_write2() handles this for us. +fout_ext_a7: + bsr.l _mem_write2 # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + tst.b STAG(%a6) # is operand normalized? + bne.b fout_ext_denorm # no + rts + +fout_ext_exc: + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the mantissa + neg.w %d0 # new exp = -(shft amt) + andi.w &0x7fff,%d0 + andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign + or.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +fout_ext_err: + mov.l EXC_A6(%a6),(%a6) # fix stacked a6 + bra.l facc_out_x + +######################################################################### +# fmove.s out ########################################################### +######################################################################### +fout_sgl: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack + +# +# operand is a normalized number. first, we check to see if the move out +# would cause either an underflow or overflow. these cases are handled +# separately. otherwise, set the FPCR to the proper rounding mode and +# execute the move. +# + mov.w SRC_EX(%a0),%d0 # extract exponent + andi.w &0x7fff,%d0 # strip sign + + cmpi.w %d0,&SGL_HI # will operand overflow? + bgt.w fout_sgl_ovfl # yes; go handle OVFL + beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL + cmpi.w %d0,&SGL_LO # will operand underflow? + blt.w fout_sgl_unfl # yes; go handle underflow + +# +# NORMs(in range) can be stored out by a simple "fmov.s" +# Unnormalized inputs can come through this point. +# +fout_sgl_exg: + fmovm.x SRC(%a0),&0x80 # fetch fop from stack + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmov.s %fp0,%d0 # store does convert and round + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex + +fout_sgl_exg_write: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_sgl_exg_write_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + rts + +fout_sgl_exg_write_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + rts + +# +# here, we know that the operand would UNFL if moved out to single prec, +# so, denorm and round and then use generic store single routine to +# write the value to memory. +# +fout_sgl_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.l %a0,-(%sp) + + clr.l %d0 # pass: S.F. = 0 + + cmpi.b STAG(%a6),&DENORM # fetch src optype tag + bne.b fout_sgl_unfl_cont # let DENORMs fall through + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the DENORM + +fout_sgl_unfl_cont: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calc default underflow result + + lea FP_SCR0(%a6),%a0 # pass: ptr to fop + bsr.l dst_sgl # convert to single prec + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_sgl_unfl_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.b fout_sgl_unfl_chkexc + +fout_sgl_unfl_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + +fout_sgl_unfl_chkexc: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_unfl # yes + addq.l &0x4,%sp + rts + +# +# it's definitely an overflow so call ovf_res to get the correct answer +# +fout_sgl_ovfl: + tst.b 3+SRC_HI(%a0) # is result inexact? + bne.b fout_sgl_ovfl_inex2 + tst.l SRC_LO(%a0) # is result inexact? + bne.b fout_sgl_ovfl_inex2 + ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex + bra.b fout_sgl_ovfl_cont +fout_sgl_ovfl_inex2: + ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 + +fout_sgl_ovfl_cont: + mov.l %a0,-(%sp) + +# call ovf_res() w/ sgl prec and the correct rnd mode to create the default +# overflow result. DON'T save the returned ccodes from ovf_res() since +# fmove out doesn't alter them. + tst.b SRC_EX(%a0) # is operand negative? + smi %d1 # set if so + mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode + bsr.l ovf_res # calc OVFL result + fmovm.x (%a0),&0x80 # load default overflow result + fmov.s %fp0,%d0 # store to single + + mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode + andi.b &0x38,%d1 # is mode == 0? (Dreg dst) + beq.b fout_sgl_ovfl_dn # must save to integer regfile + + mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct + bsr.l _dmem_write_long # write long + + tst.l %d1 # did dstore fail? + bne.l facc_out_l # yes + + bra.b fout_sgl_ovfl_chkexc + +fout_sgl_ovfl_dn: + mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn + andi.w &0x7,%d1 + bsr.l store_dreg_l + +fout_sgl_ovfl_chkexc: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_ovfl # yes + addq.l &0x4,%sp + rts + +# +# move out MAY overflow: +# (1) force the exp to 0x3fff +# (2) do a move w/ appropriate rnd mode +# (3) if exp still equals zero, then insert original exponent +# for the correct result. +# if exp now equals one, then it overflowed so call ovf_res. +# +fout_sgl_may_ovfl: + mov.w SRC_EX(%a0),%d1 # fetch current sign + andi.w &0x8000,%d1 # keep it,clear exp + ori.w &0x3fff,%d1 # insert exp = 0 + mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # need absolute value + fcmp.b %fp0,&0x2 # did exponent increase? + fblt.w fout_sgl_exg # no; go finish NORM + bra.w fout_sgl_ovfl # yes; go handle overflow + +################ + +fout_sd_exc_unfl: + mov.l (%sp)+,%a0 + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + cmpi.b STAG(%a6),&DENORM # was src a DENORM? + bne.b fout_sd_exc_cont # no + + lea FP_SCR0(%a6),%a0 + bsr.l norm + neg.l %d0 + andi.w &0x7fff,%d0 + bfins %d0,FP_SCR0_EX(%a6){&1:&15} + bra.b fout_sd_exc_cont + +fout_sd_exc: +fout_sd_exc_ovfl: + mov.l (%sp)+,%a0 # restore a0 + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + +fout_sd_exc_cont: + bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit + sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit + lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM + + mov.b 3+L_SCR3(%a6),%d1 + lsr.b &0x4,%d1 + andi.w &0x0c,%d1 + swap %d1 + mov.b 3+L_SCR3(%a6),%d1 + lsr.b &0x4,%d1 + andi.w &0x03,%d1 + clr.l %d0 # pass: zero g,r,s + bsr.l _round # round the DENORM + + tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? + beq.b fout_sd_exc_done # no + bset &0x7,FP_SCR0_EX(%a6) # yes + +fout_sd_exc_done: + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +################################################################# +# fmove.d out ################################################### +################################################################# +fout_dbl: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack + +# +# operand is a normalized number. first, we check to see if the move out +# would cause either an underflow or overflow. these cases are handled +# separately. otherwise, set the FPCR to the proper rounding mode and +# execute the move. +# + mov.w SRC_EX(%a0),%d0 # extract exponent + andi.w &0x7fff,%d0 # strip sign + + cmpi.w %d0,&DBL_HI # will operand overflow? + bgt.w fout_dbl_ovfl # yes; go handle OVFL + beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL + cmpi.w %d0,&DBL_LO # will operand underflow? + blt.w fout_dbl_unfl # yes; go handle underflow + +# +# NORMs(in range) can be stored out by a simple "fmov.d" +# Unnormalized inputs can come through this point. +# +fout_dbl_exg: + fmovm.x SRC(%a0),&0x80 # fetch fop from stack + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmov.d %fp0,L_SCR1(%a6) # store does convert and round + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d0 # save FPSR + + or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex + + mov.l EXC_EA(%a6),%a1 # pass: dst addr + lea L_SCR1(%a6),%a0 # pass: src addr + movq.l &0x8,%d0 # pass: opsize is 8 bytes + bsr.l _dmem_write # store dbl fop to memory + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + rts # no; so we're finished + +# +# here, we know that the operand would UNFL if moved out to double prec, +# so, denorm and round and then use generic store double routine to +# write the value to memory. +# +fout_dbl_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.l %a0,-(%sp) + + clr.l %d0 # pass: S.F. = 0 + + cmpi.b STAG(%a6),&DENORM # fetch src optype tag + bne.b fout_dbl_unfl_cont # let DENORMs fall through + + lea FP_SCR0(%a6),%a0 + bsr.l norm # normalize the DENORM + +fout_dbl_unfl_cont: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calc default underflow result + + lea FP_SCR0(%a6),%a0 # pass: ptr to fop + bsr.l dst_dbl # convert to single prec + mov.l %d0,L_SCR1(%a6) + mov.l %d1,L_SCR2(%a6) + + mov.l EXC_EA(%a6),%a1 # pass: dst addr + lea L_SCR1(%a6),%a0 # pass: src addr + movq.l &0x8,%d0 # pass: opsize is 8 bytes + bsr.l _dmem_write # store dbl fop to memory + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_unfl # yes + addq.l &0x4,%sp + rts + +# +# it's definitely an overflow so call ovf_res to get the correct answer +# +fout_dbl_ovfl: + mov.w 2+SRC_LO(%a0),%d0 + andi.w &0x7ff,%d0 + bne.b fout_dbl_ovfl_inex2 + + ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex + bra.b fout_dbl_ovfl_cont +fout_dbl_ovfl_inex2: + ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 + +fout_dbl_ovfl_cont: + mov.l %a0,-(%sp) + +# call ovf_res() w/ dbl prec and the correct rnd mode to create the default +# overflow result. DON'T save the returned ccodes from ovf_res() since +# fmove out doesn't alter them. + tst.b SRC_EX(%a0) # is operand negative? + smi %d1 # set if so + mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode + bsr.l ovf_res # calc OVFL result + fmovm.x (%a0),&0x80 # load default overflow result + fmov.d %fp0,L_SCR1(%a6) # store to double + + mov.l EXC_EA(%a6),%a1 # pass: dst addr + lea L_SCR1(%a6),%a0 # pass: src addr + movq.l &0x8,%d0 # pass: opsize is 8 bytes + bsr.l _dmem_write # store dbl fop to memory + + tst.l %d1 # did dstore fail? + bne.l facc_out_d # yes + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0a,%d1 # is UNFL or INEX enabled? + bne.w fout_sd_exc_ovfl # yes + addq.l &0x4,%sp + rts + +# +# move out MAY overflow: +# (1) force the exp to 0x3fff +# (2) do a move w/ appropriate rnd mode +# (3) if exp still equals zero, then insert original exponent +# for the correct result. +# if exp now equals one, then it overflowed so call ovf_res. +# +fout_dbl_may_ovfl: + mov.w SRC_EX(%a0),%d1 # fetch current sign + andi.w &0x8000,%d1 # keep it,clear exp + ori.w &0x3fff,%d1 # insert exp = 0 + mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # need absolute value + fcmp.b %fp0,&0x2 # did exponent increase? + fblt.w fout_dbl_exg # no; go finish NORM + bra.w fout_dbl_ovfl # yes; go handle overflow + +######################################################################### +# XDEF **************************************************************** # +# dst_dbl(): create double precision value from extended prec. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# a0 = pointer to source operand in extended precision # +# # +# OUTPUT ************************************************************** # +# d0 = hi(double precision result) # +# d1 = lo(double precision result) # +# # +# ALGORITHM *********************************************************** # +# # +# Changes extended precision to double precision. # +# Note: no attempt is made to round the extended value to double. # +# dbl_sign = ext_sign # +# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # +# get rid of ext integer bit # +# dbl_mant = ext_mant{62:12} # +# # +# --------------- --------------- --------------- # +# extended -> |s| exp | |1| ms mant | | ls mant | # +# --------------- --------------- --------------- # +# 95 64 63 62 32 31 11 0 # +# | | # +# | | # +# | | # +# v v # +# --------------- --------------- # +# double -> |s|exp| mant | | mant | # +# --------------- --------------- # +# 63 51 32 31 0 # +# # +######################################################################### + +dst_dbl: + clr.l %d0 # clear d0 + mov.w FTEMP_EX(%a0),%d0 # get exponent + subi.w &EXT_BIAS,%d0 # subtract extended precision bias + addi.w &DBL_BIAS,%d0 # add double precision bias + tst.b FTEMP_HI(%a0) # is number a denorm? + bmi.b dst_get_dupper # no + subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 +dst_get_dupper: + swap %d0 # d0 now in upper word + lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp + tst.b FTEMP_EX(%a0) # test sign + bpl.b dst_get_dman # if postive, go process mantissa + bset &0x1f,%d0 # if negative, set sign +dst_get_dman: + mov.l FTEMP_HI(%a0),%d1 # get ms mantissa + bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms + or.l %d1,%d0 # put these bits in ms word of double + mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack + mov.l FTEMP_HI(%a0),%d1 # get ms mantissa + mov.l &21,%d0 # load shift count + lsl.l %d0,%d1 # put lower 11 bits in upper bits + mov.l %d1,L_SCR2(%a6) # build lower lword in memory + mov.l FTEMP_LO(%a0),%d1 # get ls mantissa + bfextu %d1{&0:&21},%d0 # get ls 21 bits of double + mov.l L_SCR2(%a6),%d1 + or.l %d0,%d1 # put them in double result + mov.l L_SCR1(%a6),%d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# dst_sgl(): create single precision value from extended prec # +# # +# XREF **************************************************************** # +# # +# INPUT *************************************************************** # +# a0 = pointer to source operand in extended precision # +# # +# OUTPUT ************************************************************** # +# d0 = single precision result # +# # +# ALGORITHM *********************************************************** # +# # +# Changes extended precision to single precision. # +# sgl_sign = ext_sign # +# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # +# get rid of ext integer bit # +# sgl_mant = ext_mant{62:12} # +# # +# --------------- --------------- --------------- # +# extended -> |s| exp | |1| ms mant | | ls mant | # +# --------------- --------------- --------------- # +# 95 64 63 62 40 32 31 12 0 # +# | | # +# | | # +# | | # +# v v # +# --------------- # +# single -> |s|exp| mant | # +# --------------- # +# 31 22 0 # +# # +######################################################################### + +dst_sgl: + clr.l %d0 + mov.w FTEMP_EX(%a0),%d0 # get exponent + subi.w &EXT_BIAS,%d0 # subtract extended precision bias + addi.w &SGL_BIAS,%d0 # add single precision bias + tst.b FTEMP_HI(%a0) # is number a denorm? + bmi.b dst_get_supper # no + subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 +dst_get_supper: + swap %d0 # put exp in upper word of d0 + lsl.l &0x7,%d0 # shift it into single exp bits + tst.b FTEMP_EX(%a0) # test sign + bpl.b dst_get_sman # if positive, continue + bset &0x1f,%d0 # if negative, put in sign first +dst_get_sman: + mov.l FTEMP_HI(%a0),%d1 # get ms mantissa + andi.l &0x7fffff00,%d1 # get upper 23 bits of ms + lsr.l &0x8,%d1 # and put them flush right + or.l %d1,%d0 # put these bits in ms word of single + rts + +############################################################################## +fout_pack: + bsr.l _calc_ea_fout # fetch the <ea> + mov.l %a0,-(%sp) + + mov.b STAG(%a6),%d0 # fetch input type + bne.w fout_pack_not_norm # input is not NORM + +fout_pack_norm: + btst &0x4,EXC_CMDREG(%a6) # static or dynamic? + beq.b fout_pack_s # static + +fout_pack_d: + mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg + lsr.b &0x4,%d1 + andi.w &0x7,%d1 + + bsr.l fetch_dreg # fetch Dn w/ k-factor + + bra.b fout_pack_type +fout_pack_s: + mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field + +fout_pack_type: + bfexts %d0{&25:&7},%d0 # extract k-factor + mov.l %d0,-(%sp) + + lea FP_SRC(%a6),%a0 # pass: ptr to input + +# bindec is currently scrambling FP_SRC for denorm inputs. +# we'll have to change this, but for now, tough luck!!! + bsr.l bindec # convert xprec to packed + +# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields + andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields + + mov.l (%sp)+,%d0 + + tst.b 3+FP_SCR0_EX(%a6) + bne.b fout_pack_set + tst.l FP_SCR0_HI(%a6) + bne.b fout_pack_set + tst.l FP_SCR0_LO(%a6) + bne.b fout_pack_set + +# add the extra condition that only if the k-factor was zero, too, should +# we zero the exponent + tst.l %d0 + bne.b fout_pack_set +# "mantissa" is all zero which means that the answer is zero. but, the '040 +# algorithm allows the exponent to be non-zero. the 881/2 do not. therefore, +# if the mantissa is zero, I will zero the exponent, too. +# the question now is whether the exponents sign bit is allowed to be non-zero +# for a zero, also... + andi.w &0xf000,FP_SCR0(%a6) + +fout_pack_set: + + lea FP_SCR0(%a6),%a0 # pass: src addr + +fout_pack_write: + mov.l (%sp)+,%a1 # pass: dst addr + mov.l &0xc,%d0 # pass: opsize is 12 bytes + + cmpi.b SPCOND_FLG(%a6),&mda7_flg + beq.b fout_pack_a7 + + bsr.l _dmem_write # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + rts + +# we don't want to do the write if the exception occurred in supervisor mode +# so _mem_write2() handles this for us. +fout_pack_a7: + bsr.l _mem_write2 # write ext prec number to memory + + tst.l %d1 # did dstore fail? + bne.w fout_ext_err # yes + + rts + +fout_pack_not_norm: + cmpi.b %d0,&DENORM # is it a DENORM? + beq.w fout_pack_norm # yes + lea FP_SRC(%a6),%a0 + clr.w 2+FP_SRC_EX(%a6) + cmpi.b %d0,&SNAN # is it an SNAN? + beq.b fout_pack_snan # yes + bra.b fout_pack_write # no + +fout_pack_snan: + ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP + bset &0x6,FP_SRC_HI(%a6) # set snan bit + bra.b fout_pack_write + +######################################################################### +# XDEF **************************************************************** # +# fmul(): emulates the fmul instruction # +# fsmul(): emulates the fsmul instruction # +# fdmul(): emulates the fdmul instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res() - return default underflow result # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a multiply # +# instruction won't cause an exception. Use the regular fmul to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + align 0x10 +tbl_fmul_ovfl: + long 0x3fff - 0x7ffe # ext_max + long 0x3fff - 0x407e # sgl_max + long 0x3fff - 0x43fe # dbl_max +tbl_fmul_unfl: + long 0x3fff + 0x0001 # ext_unfl + long 0x3fff - 0x3f80 # sgl_unfl + long 0x3fff - 0x3c00 # dbl_unfl + + global fsmul +fsmul: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fmul + + global fdmul +fdmul: + andi.b &0x30,%d0 + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fmul +fmul: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + bne.w fmul_not_norm # optimize on non-norm input + +fmul_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # scale src exponent + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # scale dst exponent + + add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 + + mov.w 2+L_SCR3(%a6),%d1 # fetch precision + lsr.b &0x6,%d1 # shift to lo bits + mov.l (%sp)+,%d0 # load S.F. + cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? + beq.w fmul_may_ovfl # result may rnd to overflow + blt.w fmul_ovfl # result will overflow + + cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? + beq.w fmul_may_unfl # result may rnd to no unfl + bgt.w fmul_unfl # result will underflow + +# +# NORMAL: +# - the result of the multiply operation will neither overflow nor underflow. +# - do the multiply to the proper precision and rounding mode. +# - scale the result exponent using the scale factor. if both operands were +# normalized then we really don't need to go through this scaling. but for now, +# this will do. +# +fmul_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fmul_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# OVERFLOW: +# - the result of the multiply operation is an overflow. +# - do the multiply to the proper precision and rounding mode in order to +# set the inexact bits. +# - calculate the default result and return it in fp0. +# - if overflow or inexact is enabled, we need a multiply result rounded to +# extended precision. if the original operation was extended, then we have this +# result. if the original operation was single or double, we have to do another +# multiply using extended precision and the correct rounding mode. the result +# of this operation then has its exponent scaled by -0x6000 to create the +# exceptional operand. +# +fmul_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +# save setting this until now because this is where fmul_may_ovfl may jump in +fmul_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fmul_ovfl_ena # yes + +# calculate the default result +fmul_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled; Create EXOP: +# - if precision is extended, then we have the EXOP. simply bias the exponent +# with an extra -0x6000. if the precision is single or double, we need to +# calculate a result rounded to extended precision. +# +fmul_ovfl_ena: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # test the rnd prec + bne.b fmul_ovfl_ena_sd # it's sgl or dbl + +fmul_ovfl_ena_cont: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 # clear sign bit + andi.w &0x8000,%d2 # keep old sign + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fmul_ovfl_dis + +fmul_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # keep rnd mode only + fmov.l %d1,%fpcr # set FPCR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + bra.b fmul_ovfl_ena_cont + +# +# may OVERFLOW: +# - the result of the multiply operation MAY overflow. +# - do the multiply to the proper precision and rounding mode in order to +# set the inexact bits. +# - calculate the default result and return it in fp0. +# +fmul_may_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fmul_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fmul_normal_exit + +# +# UNDERFLOW: +# - the result of the multiply operation is an underflow. +# - do the multiply to the proper precision and rounding mode in order to +# set the inexact bits. +# - calculate the default result and return it in fp0. +# - if overflow or inexact is enabled, we need a multiply result rounded to +# extended precision. if the original operation was extended, then we have this +# result. if the original operation was single or double, we have to do another +# multiply using extended precision and the correct rounding mode. the result +# of this operation then has its exponent scaled by -0x6000 to create the +# exceptional operand. +# +fmul_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + +# for fun, let's use only extended precision, round to zero. then, let +# the unf_res() routine figure out all the rest. +# will we get the correct answer. + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fmul_unfl_ena # yes + +fmul_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fmul_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fmul_unfl_ena_sd # no, sgl or dbl + +# if the rnd mode is anything but RZ, then we have to re-do the above +# multiplication becuase we used RZ for all. + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fmul_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp1 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fmul_unfl_dis + +fmul_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # use only rnd mode + fmov.l %d1,%fpcr # set FPCR + + bra.b fmul_unfl_ena_cont + +# MAY UNDERFLOW: +# -use the correct rounding mode and precision. this code favors operations +# that do not underflow. +fmul_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp0 # execute multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| > 2.b? + fbgt.w fmul_normal_exit # no; no underflow occurred + fblt.w fmul_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 2. but, +# we don't know if the result was an underflow that rounded up to a 2 or +# a normalized number that rounded down to a 2. so, redo the entire operation +# using RZ as the rounding mode to see what the pre-rounded result is. +# this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst operand + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert RZ + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fmul.x FP_SCR0(%a6),%fp1 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x2 # is |result| < 2.b? + fbge.w fmul_normal_exit # no; no underflow occurred + bra.w fmul_unfl # yes, underflow occurred + +################################################################################ + +# +# Multiply: inputs are not both normalized; what are they? +# +fmul_not_norm: + mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fmul_op.b,%pc,%d1.w) + + swbeg &48 +tbl_fmul_op: + short fmul_norm - tbl_fmul_op # NORM x NORM + short fmul_zero - tbl_fmul_op # NORM x ZERO + short fmul_inf_src - tbl_fmul_op # NORM x INF + short fmul_res_qnan - tbl_fmul_op # NORM x QNAN + short fmul_norm - tbl_fmul_op # NORM x DENORM + short fmul_res_snan - tbl_fmul_op # NORM x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_zero - tbl_fmul_op # ZERO x NORM + short fmul_zero - tbl_fmul_op # ZERO x ZERO + short fmul_res_operr - tbl_fmul_op # ZERO x INF + short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN + short fmul_zero - tbl_fmul_op # ZERO x DENORM + short fmul_res_snan - tbl_fmul_op # ZERO x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_inf_dst - tbl_fmul_op # INF x NORM + short fmul_res_operr - tbl_fmul_op # INF x ZERO + short fmul_inf_dst - tbl_fmul_op # INF x INF + short fmul_res_qnan - tbl_fmul_op # INF x QNAN + short fmul_inf_dst - tbl_fmul_op # INF x DENORM + short fmul_res_snan - tbl_fmul_op # INF x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_res_qnan - tbl_fmul_op # QNAN x NORM + short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO + short fmul_res_qnan - tbl_fmul_op # QNAN x INF + short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN + short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM + short fmul_res_snan - tbl_fmul_op # QNAN x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_norm - tbl_fmul_op # NORM x NORM + short fmul_zero - tbl_fmul_op # NORM x ZERO + short fmul_inf_src - tbl_fmul_op # NORM x INF + short fmul_res_qnan - tbl_fmul_op # NORM x QNAN + short fmul_norm - tbl_fmul_op # NORM x DENORM + short fmul_res_snan - tbl_fmul_op # NORM x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + + short fmul_res_snan - tbl_fmul_op # SNAN x NORM + short fmul_res_snan - tbl_fmul_op # SNAN x ZERO + short fmul_res_snan - tbl_fmul_op # SNAN x INF + short fmul_res_snan - tbl_fmul_op # SNAN x QNAN + short fmul_res_snan - tbl_fmul_op # SNAN x DENORM + short fmul_res_snan - tbl_fmul_op # SNAN x SNAN + short tbl_fmul_op - tbl_fmul_op # + short tbl_fmul_op - tbl_fmul_op # + +fmul_res_operr: + bra.l res_operr +fmul_res_snan: + bra.l res_snan +fmul_res_qnan: + bra.l res_qnan + +# +# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) +# + global fmul_zero # global for fsglmul +fmul_zero: + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fmul_zero_p # result ZERO is pos. +fmul_zero_n: + fmov.s &0x80000000,%fp0 # load -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N + rts +fmul_zero_p: + fmov.s &0x00000000,%fp0 # load +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# Multiply: (inf x inf) || (inf x norm) || (inf x denorm) +# +# Note: The j-bit for an infinity is a don't-care. However, to be +# strictly compatible w/ the 68881/882, we make sure to return an +# INF w/ the j-bit set if the input INF j-bit was set. Destination +# INFs take priority. +# + global fmul_inf_dst # global for fsglmul +fmul_inf_dst: + fmovm.x DST(%a1),&0x80 # return INF result in fp0 + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fmul_inf_dst_p # result INF is pos. +fmul_inf_dst_n: + fabs.x %fp0 # clear result sign + fneg.x %fp0 # set result sign + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N + rts +fmul_inf_dst_p: + fabs.x %fp0 # clear result sign + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + + global fmul_inf_src # global for fsglmul +fmul_inf_src: + fmovm.x SRC(%a0),&0x80 # return INF result in fp0 + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fmul_inf_dst_p # result INF is pos. + bra.b fmul_inf_dst_n + +######################################################################### +# XDEF **************************************************************** # +# fin(): emulates the fmove instruction # +# fsin(): emulates the fsmove instruction # +# fdin(): emulates the fdmove instruction # +# # +# XREF **************************************************************** # +# norm() - normalize mantissa for EXOP on denorm # +# scale_to_zero_src() - scale src exponent to zero # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan_1op() - return QNAN result # +# res_snan_1op() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round prec/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Norms can be emulated w/ a regular fmove instruction. For # +# sgl/dbl, must scale exponent and perform an "fmove". Check to see # +# if the result would have overflowed/underflowed. If so, use unf_res() # +# or ovf_res() to return the default result. Also return EXOP if # +# exception is enabled. If no exception, return the default result. # +# Unnorms don't pass through here. # +# # +######################################################################### + + global fsin +fsin: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fin + + global fdin +fdin: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl precision + + global fin +fin: + mov.l %d0,L_SCR3(%a6) # store rnd info + + mov.b STAG(%a6),%d1 # fetch src optype tag + bne.w fin_not_norm # optimize on non-norm input + +# +# FP MOVE IN: NORMs and DENORMs ONLY! +# +fin_norm: + andi.b &0xc0,%d0 # is precision extended? + bne.w fin_not_ext # no, so go handle dbl or sgl + +# +# precision selected is extended. so...we cannot get an underflow +# or overflow because of rounding to the correct precision. so... +# skip the scaling and unscaling... +# + tst.b SRC_EX(%a0) # is the operand negative? + bpl.b fin_norm_done # no + bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit +fin_norm_done: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + rts + +# +# for an extended precision DENORM, the UNFL exception bit is set +# the accrued bit is NOT set in this instance(no inexactness!) +# +fin_denorm: + andi.b &0xc0,%d0 # is precision extended? + bne.w fin_not_ext # no, so go handle dbl or sgl + + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + tst.b SRC_EX(%a0) # is the operand negative? + bpl.b fin_denorm_done # no + bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit +fin_denorm_done: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? + bne.b fin_denorm_unfl_ena # yes + rts + +# +# the input is an extended DENORM and underflow is enabled in the FPCR. +# normalize the mantissa and add the bias of 0x6000 to the resulting negative +# exponent and insert back into the operand. +# +fin_denorm_unfl_ena: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + bsr.l norm # normalize result + neg.w %d0 # new exponent = -(shft val) + addi.w &0x6000,%d0 # add new bias to exponent + mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp + andi.w &0x8000,%d1 # keep old sign + andi.w &0x7fff,%d0 # clear sign position + or.w %d1,%d0 # concat new exo,old sign + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +# +# operand is to be rounded to single or double precision +# +fin_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.b fin_dbl + +# +# operand is to be rounded to single precision +# +fin_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? + bge.w fin_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407e # will move in overflow? + beq.w fin_sd_may_ovfl # maybe; go check + blt.w fin_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved into the fp reg file +# +fin_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # perform move + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fin_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exponent + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fin_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? + bge.w fin_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? + beq.w fin_sd_may_ovfl # maybe; go check + blt.w fin_sd_ovfl # yes; go handle overflow + bra.w fin_sd_normal # no; ho handle normalized op + +# +# operand WILL underflow when moved in to the fp register file +# +fin_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + tst.b FP_SCR0_EX(%a6) # is operand negative? + bpl.b fin_sd_unfl_tst + bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit + +# if underflow or inexact is enabled, then go calculate the EXOP first. +fin_sd_unfl_tst: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fin_sd_unfl_ena # yes + +fin_sd_unfl_dis: + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow or inexact is enabled. +# therefore, we must return the result rounded to extended precision. +# +fin_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # subtract scale factor + andi.w &0x8000,%d2 # extract old sign + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fin_sd_unfl_dis + +# +# operand WILL overflow. +# +fin_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # perform move + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fin_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fin_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fin_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fin_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + sub.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fin_sd_ovfl_dis + +# +# the move in MAY overflow. so... +# +fin_sd_may_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fmov.x FP_SCR0(%a6),%fp0 # perform the move + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fin_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fin_sd_normal_exit + +########################################################################## + +# +# operand is not a NORM: check its optype and branch accordingly +# +fin_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fin_denorm + cmpi.b %d1,&SNAN # weed out SNANs + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNANs + beq.l res_qnan_1op + +# +# do the fmove in; at this point, only possible ops are ZERO and INF. +# use fmov to determine ccodes. +# prec:mode should be zero at this point but it won't affect answer anyways. +# + fmov.x SRC(%a0),%fp0 # do fmove in + fmov.l %fpsr,%d0 # no exceptions possible + rol.l &0x8,%d0 # put ccodes in lo byte + mov.b %d0,FPSR_CC(%a6) # insert correct ccodes + rts + +######################################################################### +# XDEF **************************************************************** # +# fdiv(): emulates the fdiv instruction # +# fsdiv(): emulates the fsdiv instruction # +# fddiv(): emulates the fddiv instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res() - return default underflow result # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a divide # +# instruction won't cause an exception. Use the regular fdiv to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + align 0x10 +tbl_fdiv_unfl: + long 0x3fff - 0x0000 # ext_unfl + long 0x3fff - 0x3f81 # sgl_unfl + long 0x3fff - 0x3c01 # dbl_unfl + +tbl_fdiv_ovfl: + long 0x3fff - 0x7ffe # ext overflow exponent + long 0x3fff - 0x407e # sgl overflow exponent + long 0x3fff - 0x43fe # dbl overflow exponent + + global fsdiv +fsdiv: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fdiv + + global fddiv +fddiv: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fdiv +fdiv: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fdiv_not_norm # optimize on non-norm input + +# +# DIVIDE: NORMs and DENORMs ONLY! +# +fdiv_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # scale src exponent + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # scale dst exponent + + neg.l (%sp) # SCALE FACTOR = scale1 - scale2 + add.l %d0,(%sp) + + mov.w 2+L_SCR3(%a6),%d1 # fetch precision + lsr.b &0x6,%d1 # shift to lo bits + mov.l (%sp)+,%d0 # load S.F. + cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? + ble.w fdiv_may_ovfl # result will overflow + + cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? + beq.w fdiv_may_unfl # maybe + bgt.w fdiv_unfl # yes; go handle underflow + +fdiv_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # save FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # perform divide + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fdiv_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store result on stack + mov.l %d2,-(%sp) # store d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +tbl_fdiv_ovfl2: + long 0x7fff + long 0x407f + long 0x43ff + +fdiv_no_ovfl: + mov.l (%sp)+,%d0 # restore scale factor + bra.b fdiv_normal_exit + +fdiv_may_ovfl: + mov.l %d0,-(%sp) # save scale factor + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # set FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d0 + fmov.l &0x0,%fpcr + + or.l %d0,USER_FPSR(%a6) # save INEX,N + + fmovm.x &0x01,-(%sp) # save result to stack + mov.w (%sp),%d0 # fetch new exponent + add.l &0xc,%sp # clear result from stack + andi.l &0x7fff,%d0 # strip sign + sub.l (%sp),%d0 # add scale factor + cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) + blt.b fdiv_no_ovfl + mov.l (%sp)+,%d0 + +fdiv_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fdiv_ovfl_ena # yes + +fdiv_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +fdiv_ovfl_ena: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl + +fdiv_ovfl_ena_cont: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 # clear sign bit + andi.w &0x8000,%d2 # keep old sign + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fdiv_ovfl_dis + +fdiv_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst operand + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # keep rnd mode + fmov.l %d1,%fpcr # set FPCR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l &0x0,%fpcr # clear FPCR + bra.b fdiv_ovfl_ena_cont + +fdiv_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fdiv_unfl_ena # yes + +fdiv_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fdiv_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fdiv_unfl_ena_sd # no, sgl or dbl + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fdiv_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp1 # execute divide + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factoer + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exp + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fdiv_unfl_dis + +fdiv_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # use only rnd mode + fmov.l %d1,%fpcr # set FPCR + + bra.b fdiv_unfl_ena_cont + +# +# the divide operation MAY underflow: +# +fdiv_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x1 # is |result| > 1.b? + fbgt.w fdiv_normal_exit # no; no underflow occurred + fblt.w fdiv_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 1. but, +# we don't know if the result was an underflow that rounded up to a 1 +# or a normalized number that rounded down to a 1. so, redo the entire +# operation using RZ as the rounding mode to see what the pre-rounded +# result is. this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert RZ + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fdiv.x FP_SCR0(%a6),%fp1 # execute divide + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x1 # is |result| < 1.b? + fbge.w fdiv_normal_exit # no; no underflow occurred + bra.w fdiv_unfl # yes; underflow occurred + +############################################################################ + +# +# Divide: inputs are not both normalized; what are they? +# +fdiv_not_norm: + mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fdiv_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fdiv_op: + short fdiv_norm - tbl_fdiv_op # NORM / NORM + short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO + short fdiv_zero_load - tbl_fdiv_op # NORM / INF + short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN + short fdiv_norm - tbl_fdiv_op # NORM / DENORM + short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM + short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO + short fdiv_zero_load - tbl_fdiv_op # ZERO / INF + short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN + short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM + short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_inf_dst - tbl_fdiv_op # INF / NORM + short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO + short fdiv_res_operr - tbl_fdiv_op # INF / INF + short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN + short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM + short fdiv_res_snan - tbl_fdiv_op # INF / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM + short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO + short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF + short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN + short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM + short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_norm - tbl_fdiv_op # DENORM / NORM + short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO + short fdiv_zero_load - tbl_fdiv_op # DENORM / INF + short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN + short fdiv_norm - tbl_fdiv_op # DENORM / DENORM + short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + + short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM + short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO + short fdiv_res_snan - tbl_fdiv_op # SNAN / INF + short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN + short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM + short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN + short tbl_fdiv_op - tbl_fdiv_op # + short tbl_fdiv_op - tbl_fdiv_op # + +fdiv_res_qnan: + bra.l res_qnan +fdiv_res_snan: + bra.l res_snan +fdiv_res_operr: + bra.l res_operr + + global fdiv_zero_load # global for fsgldiv +fdiv_zero_load: + mov.b SRC_EX(%a0),%d0 # result sign is exclusive + mov.b DST_EX(%a1),%d1 # or of input signs. + eor.b %d0,%d1 + bpl.b fdiv_zero_load_p # result is positive + fmov.s &0x80000000,%fp0 # load a -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N + rts +fdiv_zero_load_p: + fmov.s &0x00000000,%fp0 # load a +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# The destination was In Range and the source was a ZERO. The result, +# therefore, is an INF w/ the proper sign. +# So, determine the sign and return a new INF (w/ the j-bit cleared). +# + global fdiv_inf_load # global for fsgldiv +fdiv_inf_load: + ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ + mov.b SRC_EX(%a0),%d0 # load both signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bpl.b fdiv_inf_load_p # result is positive + fmov.s &0xff800000,%fp0 # make result -INF + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N + rts +fdiv_inf_load_p: + fmov.s &0x7f800000,%fp0 # make result +INF + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +# +# The destination was an INF w/ an In Range or ZERO source, the result is +# an INF w/ the proper sign. +# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the +# dst INF is set, then then j-bit of the result INF is also set). +# + global fdiv_inf_dst # global for fsgldiv +fdiv_inf_dst: + mov.b DST_EX(%a1),%d0 # load both signs + mov.b SRC_EX(%a0),%d1 + eor.b %d0,%d1 + bpl.b fdiv_inf_dst_p # result is positive + + fmovm.x DST(%a1),&0x80 # return result in fp0 + fabs.x %fp0 # clear sign bit + fneg.x %fp0 # set sign bit + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fdiv_inf_dst_p: + fmovm.x DST(%a1),&0x80 # return result in fp0 + fabs.x %fp0 # return positive INF + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +######################################################################### +# XDEF **************************************************************** # +# fneg(): emulates the fneg instruction # +# fsneg(): emulates the fsneg instruction # +# fdneg(): emulates the fdneg instruction # +# # +# XREF **************************************************************** # +# norm() - normalize a denorm to provide EXOP # +# scale_to_zero_src() - scale sgl/dbl source exponent # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan_1op() - return QNAN result # +# res_snan_1op() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, zeroes, and infinities as special cases. Separate # +# norms/denorms into ext/sgl/dbl precisions. Extended precision can be # +# emulated by simply setting sign bit. Sgl/dbl operands must be scaled # +# and an actual fneg performed to see if overflow/underflow would have # +# occurred. If so, return default underflow/overflow result. Else, # +# scale the result exponent and return result. FPSR gets set based on # +# the result value. # +# # +######################################################################### + + global fsneg +fsneg: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fneg + + global fdneg +fdneg: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fneg +fneg: + mov.l %d0,L_SCR3(%a6) # store rnd info + mov.b STAG(%a6),%d1 + bne.w fneg_not_norm # optimize on non-norm input + +# +# NEGATE SIGN : norms and denorms ONLY! +# +fneg_norm: + andi.b &0xc0,%d0 # is precision extended? + bne.w fneg_not_ext # no; go handle sgl or dbl + +# +# precision selected is extended. so...we can not get an underflow +# or overflow because of rounding to the correct precision. so... +# skip the scaling and unscaling... +# + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d0 + eori.w &0x8000,%d0 # negate sign + bpl.b fneg_norm_load # sign is positive + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit +fneg_norm_load: + mov.w %d0,FP_SCR0_EX(%a6) + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# for an extended precision DENORM, the UNFL exception bit is set +# the accrued bit is NOT set in this instance(no inexactness!) +# +fneg_denorm: + andi.b &0xc0,%d0 # is precision extended? + bne.b fneg_not_ext # no; go handle sgl or dbl + + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d0 + eori.w &0x8000,%d0 # negate sign + bpl.b fneg_denorm_done # no + mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit +fneg_denorm_done: + mov.w %d0,FP_SCR0_EX(%a6) + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + + btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? + bne.b fneg_ext_unfl_ena # yes + rts + +# +# the input is an extended DENORM and underflow is enabled in the FPCR. +# normalize the mantissa and add the bias of 0x6000 to the resulting negative +# exponent and insert back into the operand. +# +fneg_ext_unfl_ena: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + bsr.l norm # normalize result + neg.w %d0 # new exponent = -(shft val) + addi.w &0x6000,%d0 # add new bias to exponent + mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp + andi.w &0x8000,%d1 # keep old sign + andi.w &0x7fff,%d0 # clear sign position + or.w %d1,%d0 # concat old sign, new exponent + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +# +# operand is either single or double +# +fneg_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.b fneg_dbl + +# +# operand is to be rounded to single precision +# +fneg_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? + bge.w fneg_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407e # will move in overflow? + beq.w fneg_sd_may_ovfl # maybe; go check + blt.w fneg_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved in to the fp reg file +# +fneg_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fneg.x FP_SCR0(%a6),%fp0 # perform negation + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fneg_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp + mov.w %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fneg_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? + bge.b fneg_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? + beq.w fneg_sd_may_ovfl # maybe; go check + blt.w fneg_sd_ovfl # yes; go handle overflow + bra.w fneg_sd_normal # no; ho handle normalized op + +# +# operand WILL underflow when moved in to the fp register file +# +fneg_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + eori.b &0x80,FP_SCR0_EX(%a6) # negate sign + bpl.b fneg_sd_unfl_tst + bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit + +# if underflow or inexact is enabled, go calculate EXOP first. +fneg_sd_unfl_tst: + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fneg_sd_unfl_ena # yes + +fneg_sd_unfl_dis: + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow is enabled. +# therefore, we must return the result rounded to extended precision. +# +fneg_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # subtract scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat new sign,new exp + mov.w %d1,FP_SCR1_EX(%a6) # insert new exp + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fneg_sd_unfl_dis + +# +# operand WILL overflow. +# +fneg_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fneg.x FP_SCR0(%a6),%fp0 # perform negation + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fneg_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fneg_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fneg_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fneg_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat sign,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fneg_sd_ovfl_dis + +# +# the move in MAY underflow. so... +# +fneg_sd_may_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fneg.x FP_SCR0(%a6),%fp0 # perform negation + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fneg_sd_normal_exit + +########################################################################## + +# +# input is not normalized; what is it? +# +fneg_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fneg_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNAN + beq.l res_qnan_1op + +# +# do the fneg; at this point, only possible ops are ZERO and INF. +# use fneg to determine ccodes. +# prec:mode should be zero at this point but it won't affect answer anyways. +# + fneg.x SRC_EX(%a0),%fp0 # do fneg + fmov.l %fpsr,%d0 + rol.l &0x8,%d0 # put ccodes in lo byte + mov.b %d0,FPSR_CC(%a6) # insert correct ccodes + rts + +######################################################################### +# XDEF **************************************************************** # +# ftst(): emulates the ftest instruction # +# # +# XREF **************************************************************** # +# res{s,q}nan_1op() - set NAN result for monadic instruction # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# # +# OUTPUT ************************************************************** # +# none # +# # +# ALGORITHM *********************************************************** # +# Check the source operand tag (STAG) and set the FPCR according # +# to the operand type and sign. # +# # +######################################################################### + + global ftst +ftst: + mov.b STAG(%a6),%d1 + bne.b ftst_not_norm # optimize on non-norm input + +# +# Norm: +# +ftst_norm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_norm_m # yes + rts +ftst_norm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +# +# input is not normalized; what is it? +# +ftst_not_norm: + cmpi.b %d1,&ZERO # weed out ZERO + beq.b ftst_zero + cmpi.b %d1,&INF # weed out INF + beq.b ftst_inf + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNAN + beq.l res_qnan_1op + +# +# Denorm: +# +ftst_denorm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_denorm_m # yes + rts +ftst_denorm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts + +# +# Infinity: +# +ftst_inf: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_inf_m # yes +ftst_inf_p: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts +ftst_inf_m: + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits + rts + +# +# Zero: +# +ftst_zero: + tst.b SRC_EX(%a0) # is operand negative? + bmi.b ftst_zero_m # yes +ftst_zero_p: + mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit + rts +ftst_zero_m: + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +######################################################################### +# XDEF **************************************************************** # +# fint(): emulates the fint instruction # +# # +# XREF **************************************************************** # +# res_{s,q}nan_1op() - set NAN result for monadic operation # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round precision/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# # +# ALGORITHM *********************************************************** # +# Separate according to operand type. Unnorms don't pass through # +# here. For norms, load the rounding mode/prec, execute a "fint", then # +# store the resulting FPSR bits. # +# For denorms, force the j-bit to a one and do the same as for # +# norms. Denorms are so low that the answer will either be a zero or a # +# one. # +# For zeroes/infs/NANs, return the same while setting the FPSR # +# as appropriate. # +# # +######################################################################### + + global fint +fint: + mov.b STAG(%a6),%d1 + bne.b fint_not_norm # optimize on non-norm input + +# +# Norm: +# +fint_norm: + andi.b &0x30,%d0 # set prec = ext + + fmov.l %d0,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fint.x SRC(%a0),%fp0 # execute fint + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d0 # save FPSR + or.l %d0,USER_FPSR(%a6) # set exception bits + + rts + +# +# input is not normalized; what is it? +# +fint_not_norm: + cmpi.b %d1,&ZERO # weed out ZERO + beq.b fint_zero + cmpi.b %d1,&INF # weed out INF + beq.b fint_inf + cmpi.b %d1,&DENORM # weed out DENORM + beq.b fint_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + bra.l res_qnan_1op # weed out QNAN + +# +# Denorm: +# +# for DENORMs, the result will be either (+/-)ZERO or (+/-)1. +# also, the INEX2 and AINEX exception bits will be set. +# so, we could either set these manually or force the DENORM +# to a very small NORM and ship it to the NORM routine. +# I do the latter. +# +fint_denorm: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp + mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM + lea FP_SCR0(%a6),%a0 + bra.b fint_norm + +# +# Zero: +# +fint_zero: + tst.b SRC_EX(%a0) # is ZERO negative? + bmi.b fint_zero_m # yes +fint_zero_p: + fmov.s &0x00000000,%fp0 # return +ZERO in fp0 + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fint_zero_m: + fmov.s &0x80000000,%fp0 # return -ZERO in fp0 + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +# +# Infinity: +# +fint_inf: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + tst.b SRC_EX(%a0) # is INF negative? + bmi.b fint_inf_m # yes +fint_inf_p: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts +fint_inf_m: + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits + rts + +######################################################################### +# XDEF **************************************************************** # +# fintrz(): emulates the fintrz instruction # +# # +# XREF **************************************************************** # +# res_{s,q}nan_1op() - set NAN result for monadic operation # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = round precision/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# # +# ALGORITHM *********************************************************** # +# Separate according to operand type. Unnorms don't pass through # +# here. For norms, load the rounding mode/prec, execute a "fintrz", # +# then store the resulting FPSR bits. # +# For denorms, force the j-bit to a one and do the same as for # +# norms. Denorms are so low that the answer will either be a zero or a # +# one. # +# For zeroes/infs/NANs, return the same while setting the FPSR # +# as appropriate. # +# # +######################################################################### + + global fintrz +fintrz: + mov.b STAG(%a6),%d1 + bne.b fintrz_not_norm # optimize on non-norm input + +# +# Norm: +# +fintrz_norm: + fmov.l &0x0,%fpsr # clear FPSR + + fintrz.x SRC(%a0),%fp0 # execute fintrz + + fmov.l %fpsr,%d0 # save FPSR + or.l %d0,USER_FPSR(%a6) # set exception bits + + rts + +# +# input is not normalized; what is it? +# +fintrz_not_norm: + cmpi.b %d1,&ZERO # weed out ZERO + beq.b fintrz_zero + cmpi.b %d1,&INF # weed out INF + beq.b fintrz_inf + cmpi.b %d1,&DENORM # weed out DENORM + beq.b fintrz_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + bra.l res_qnan_1op # weed out QNAN + +# +# Denorm: +# +# for DENORMs, the result will be (+/-)ZERO. +# also, the INEX2 and AINEX exception bits will be set. +# so, we could either set these manually or force the DENORM +# to a very small NORM and ship it to the NORM routine. +# I do the latter. +# +fintrz_denorm: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp + mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM + lea FP_SCR0(%a6),%a0 + bra.b fintrz_norm + +# +# Zero: +# +fintrz_zero: + tst.b SRC_EX(%a0) # is ZERO negative? + bmi.b fintrz_zero_m # yes +fintrz_zero_p: + fmov.s &0x00000000,%fp0 # return +ZERO in fp0 + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fintrz_zero_m: + fmov.s &0x80000000,%fp0 # return -ZERO in fp0 + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +# +# Infinity: +# +fintrz_inf: + fmovm.x SRC(%a0),&0x80 # return result in fp0 + tst.b SRC_EX(%a0) # is INF negative? + bmi.b fintrz_inf_m # yes +fintrz_inf_p: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts +fintrz_inf_m: + mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits + rts + +######################################################################### +# XDEF **************************************************************** # +# fabs(): emulates the fabs instruction # +# fsabs(): emulates the fsabs instruction # +# fdabs(): emulates the fdabs instruction # +# # +# XREF **************************************************************** # +# norm() - normalize denorm mantissa to provide EXOP # +# scale_to_zero_src() - make exponent. = 0; get scale factor # +# unf_res() - calculate underflow result # +# ovf_res() - calculate overflow result # +# res_{s,q}nan_1op() - set NAN result for monadic operation # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 = rnd precision/mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Simply clear sign for extended precision norm. Ext prec denorm # +# gets an EXOP created for it since it's an underflow. # +# Double and single precision can overflow and underflow. First, # +# scale the operand such that the exponent is zero. Perform an "fabs" # +# using the correct rnd mode/prec. Check to see if the original # +# exponent would take an exception. If so, use unf_res() or ovf_res() # +# to calculate the default result. Also, create the EXOP for the # +# exceptional case. If no exception should occur, insert the correct # +# result exponent and return. # +# Unnorms don't pass through here. # +# # +######################################################################### + + global fsabs +fsabs: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fabs + + global fdabs +fdabs: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl precision + + global fabs +fabs: + mov.l %d0,L_SCR3(%a6) # store rnd info + mov.b STAG(%a6),%d1 + bne.w fabs_not_norm # optimize on non-norm input + +# +# ABSOLUTE VALUE: norms and denorms ONLY! +# +fabs_norm: + andi.b &0xc0,%d0 # is precision extended? + bne.b fabs_not_ext # no; go handle sgl or dbl + +# +# precision selected is extended. so...we can not get an underflow +# or overflow because of rounding to the correct precision. so... +# skip the scaling and unscaling... +# + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d1 + bclr &15,%d1 # force absolute value + mov.w %d1,FP_SCR0_EX(%a6) # insert exponent + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# for an extended precision DENORM, the UNFL exception bit is set +# the accrued bit is NOT set in this instance(no inexactness!) +# +fabs_denorm: + andi.b &0xc0,%d0 # is precision extended? + bne.b fabs_not_ext # no + + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + mov.w SRC_EX(%a0),%d0 + bclr &15,%d0 # clear sign + mov.w %d0,FP_SCR0_EX(%a6) # insert exponent + + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + + btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? + bne.b fabs_ext_unfl_ena + rts + +# +# the input is an extended DENORM and underflow is enabled in the FPCR. +# normalize the mantissa and add the bias of 0x6000 to the resulting negative +# exponent and insert back into the operand. +# +fabs_ext_unfl_ena: + lea FP_SCR0(%a6),%a0 # pass: ptr to operand + bsr.l norm # normalize result + neg.w %d0 # new exponent = -(shft val) + addi.w &0x6000,%d0 # add new bias to exponent + mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp + andi.w &0x8000,%d1 # keep old sign + andi.w &0x7fff,%d0 # clear sign position + or.w %d1,%d0 # concat old sign, new exponent + mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + rts + +# +# operand is either single or double +# +fabs_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.b fabs_dbl + +# +# operand is to be rounded to single precision +# +fabs_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? + bge.w fabs_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407e # will move in overflow? + beq.w fabs_sd_may_ovfl # maybe; go check + blt.w fabs_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved in to the fp reg file +# +fabs_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fabs.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fabs_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fabs_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? + bge.b fabs_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? + beq.w fabs_sd_may_ovfl # maybe; go check + blt.w fabs_sd_ovfl # yes; go handle overflow + bra.w fabs_sd_normal # no; ho handle normalized op + +# +# operand WILL underflow when moved in to the fp register file +# +fabs_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + bclr &0x7,FP_SCR0_EX(%a6) # force absolute value + +# if underflow or inexact is enabled, go calculate EXOP first. + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fabs_sd_unfl_ena # yes + +fabs_sd_unfl_dis: + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow is enabled. +# therefore, we must return the result rounded to extended precision. +# +fabs_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # subtract scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat new sign,new exp + mov.w %d1,FP_SCR1_EX(%a6) # insert new exp + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fabs_sd_unfl_dis + +# +# operand WILL overflow. +# +fabs_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fabs.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fabs_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fabs_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fabs_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fabs_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat sign,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fabs_sd_ovfl_dis + +# +# the move in MAY underflow. so... +# +fabs_sd_may_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fabs.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fabs_sd_normal_exit + +########################################################################## + +# +# input is not normalized; what is it? +# +fabs_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fabs_denorm + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + cmpi.b %d1,&QNAN # weed out QNAN + beq.l res_qnan_1op + + fabs.x SRC(%a0),%fp0 # force absolute value + + cmpi.b %d1,&INF # weed out INF + beq.b fabs_inf +fabs_zero: + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fabs_inf: + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts + +######################################################################### +# XDEF **************************************************************** # +# fcmp(): fp compare op routine # +# # +# XREF **************************************************************** # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 = round prec/mode # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# Handle NANs and denorms as special cases. For everything else, # +# just use the actual fcmp instruction to produce the correct condition # +# codes. # +# # +######################################################################### + + global fcmp +fcmp: + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 + bne.b fcmp_not_norm # optimize on non-norm input + +# +# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs +# +fcmp_norm: + fmovm.x DST(%a1),&0x80 # load dst op + + fcmp.x %fp0,SRC(%a0) # do compare + + fmov.l %fpsr,%d0 # save FPSR + rol.l &0x8,%d0 # extract ccode bits + mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) + + rts + +# +# fcmp: inputs are not both normalized; what are they? +# +fcmp_not_norm: + mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fcmp_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fcmp_op: + short fcmp_norm - tbl_fcmp_op # NORM - NORM + short fcmp_norm - tbl_fcmp_op # NORM - ZERO + short fcmp_norm - tbl_fcmp_op # NORM - INF + short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN + short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM + short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_norm - tbl_fcmp_op # ZERO - NORM + short fcmp_norm - tbl_fcmp_op # ZERO - ZERO + short fcmp_norm - tbl_fcmp_op # ZERO - INF + short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN + short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM + short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_norm - tbl_fcmp_op # INF - NORM + short fcmp_norm - tbl_fcmp_op # INF - ZERO + short fcmp_norm - tbl_fcmp_op # INF - INF + short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN + short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM + short fcmp_res_snan - tbl_fcmp_op # INF - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM + short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO + short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF + short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN + short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM + short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM + short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO + short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF + short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN + short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM + short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + + short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM + short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO + short fcmp_res_snan - tbl_fcmp_op # SNAN - INF + short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN + short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM + short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN + short tbl_fcmp_op - tbl_fcmp_op # + short tbl_fcmp_op - tbl_fcmp_op # + +# unlike all other functions for QNAN and SNAN, fcmp does NOT set the +# 'N' bit for a negative QNAN or SNAN input so we must squelch it here. +fcmp_res_qnan: + bsr.l res_qnan + andi.b &0xf7,FPSR_CC(%a6) + rts +fcmp_res_snan: + bsr.l res_snan + andi.b &0xf7,FPSR_CC(%a6) + rts + +# +# DENORMs are a little more difficult. +# If you have a 2 DENORMs, then you can just force the j-bit to a one +# and use the fcmp_norm routine. +# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one +# and use the fcmp_norm routine. +# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. +# But with a DENORM and a NORM of the same sign, the neg bit is set if the +# (1) signs are (+) and the DENORM is the dst or +# (2) signs are (-) and the DENORM is the src +# + +fcmp_dnrm_s: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),%d0 + bset &31,%d0 # DENORM src; make into small norm + mov.l %d0,FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a0 + bra.w fcmp_norm + +fcmp_dnrm_d: + mov.l DST_EX(%a1),FP_SCR0_EX(%a6) + mov.l DST_HI(%a1),%d0 + bset &31,%d0 # DENORM src; make into small norm + mov.l %d0,FP_SCR0_HI(%a6) + mov.l DST_LO(%a1),FP_SCR0_LO(%a6) + lea FP_SCR0(%a6),%a1 + bra.w fcmp_norm + +fcmp_dnrm_sd: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l DST_HI(%a1),%d0 + bset &31,%d0 # DENORM dst; make into small norm + mov.l %d0,FP_SCR1_HI(%a6) + mov.l SRC_HI(%a0),%d0 + bset &31,%d0 # DENORM dst; make into small norm + mov.l %d0,FP_SCR0_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + lea FP_SCR1(%a6),%a1 + lea FP_SCR0(%a6),%a0 + bra.w fcmp_norm + +fcmp_nrm_dnrm: + mov.b SRC_EX(%a0),%d0 # determine if like signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bmi.w fcmp_dnrm_s + +# signs are the same, so must determine the answer ourselves. + tst.b %d0 # is src op negative? + bmi.b fcmp_nrm_dnrm_m # yes + rts +fcmp_nrm_dnrm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts + +fcmp_dnrm_nrm: + mov.b SRC_EX(%a0),%d0 # determine if like signs + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bmi.w fcmp_dnrm_d + +# signs are the same, so must determine the answer ourselves. + tst.b %d0 # is src op negative? + bpl.b fcmp_dnrm_nrm_m # no + rts +fcmp_dnrm_nrm_m: + mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts + +######################################################################### +# XDEF **************************************************************** # +# fsglmul(): emulates the fsglmul instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res4() - return default underflow result for sglop # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a multiply # +# instruction won't cause an exception. Use the regular fsglmul to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + global fsglmul +fsglmul: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 + + bne.w fsglmul_not_norm # optimize on non-norm input + +fsglmul_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # scale exponent + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # scale dst exponent + + add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 + + cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? + beq.w fsglmul_may_ovfl # result may rnd to overflow + blt.w fsglmul_ovfl # result will overflow + + cmpi.l %d0,&0x3fff+0x0001 # would result unfl? + beq.w fsglmul_may_unfl # result may rnd to no unfl + bgt.w fsglmul_unfl # result will underflow + +fsglmul_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsglmul_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +fsglmul_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsglmul_ovfl_tst: + +# save setting this until now because this is where fsglmul_may_ovfl may jump in + or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsglmul_ovfl_ena # yes + +fsglmul_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + andi.b &0x30,%d0 # force prec = ext + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +fsglmul_ovfl_ena: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + andi.w &0x8000,%d2 # keep old sign + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fsglmul_ovfl_dis + +fsglmul_may_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| >= 2.b? + fbge.w fsglmul_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fsglmul_normal_exit + +fsglmul_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsglmul_unfl_ena # yes + +fsglmul_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res4 # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fsglmul_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fsglmul_unfl_dis + +fsglmul_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x2 # is |result| > 2.b? + fbgt.w fsglmul_normal_exit # no; no underflow occurred + fblt.w fsglmul_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 2. but, +# we don't know if the result was an underflow that rounded up to a 2 or +# a normalized number that rounded down to a 2. so, redo the entire operation +# using RZ as the rounding mode to see what the pre-rounded result is. +# this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert RZ + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x2 # is |result| < 2.b? + fbge.w fsglmul_normal_exit # no; no underflow occurred + bra.w fsglmul_unfl # yes, underflow occurred + +############################################################################## + +# +# Single Precision Multiply: inputs are not both normalized; what are they? +# +fsglmul_not_norm: + mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fsglmul_op: + short fsglmul_norm - tbl_fsglmul_op # NORM x NORM + short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO + short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF + short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN + short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM + short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO + short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF + short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN + short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM + short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO + short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF + short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN + short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN + short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_norm - tbl_fsglmul_op # NORM x NORM + short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO + short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF + short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN + short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM + short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN + short tbl_fsglmul_op - tbl_fsglmul_op # + short tbl_fsglmul_op - tbl_fsglmul_op # + +fsglmul_res_operr: + bra.l res_operr +fsglmul_res_snan: + bra.l res_snan +fsglmul_res_qnan: + bra.l res_qnan +fsglmul_zero: + bra.l fmul_zero +fsglmul_inf_src: + bra.l fmul_inf_src +fsglmul_inf_dst: + bra.l fmul_inf_dst + +######################################################################### +# XDEF **************************************************************** # +# fsgldiv(): emulates the fsgldiv instruction # +# # +# XREF **************************************************************** # +# scale_to_zero_src() - scale src exponent to zero # +# scale_to_zero_dst() - scale dst exponent to zero # +# unf_res4() - return default underflow result for sglop # +# ovf_res() - return default overflow result # +# res_qnan() - return QNAN result # +# res_snan() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a divide # +# instruction won't cause an exception. Use the regular fsgldiv to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + global fsgldiv +fsgldiv: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fsgldiv_not_norm # optimize on non-norm input + +# +# DIVIDE: NORMs and DENORMs ONLY! +# +fsgldiv_norm: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_to_zero_src # calculate scale factor 1 + mov.l %d0,-(%sp) # save scale factor 1 + + bsr.l scale_to_zero_dst # calculate scale factor 2 + + neg.l (%sp) # S.F. = scale1 - scale2 + add.l %d0,(%sp) + + mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode + lsr.b &0x6,%d1 + mov.l (%sp)+,%d0 + cmpi.l %d0,&0x3fff-0x7ffe + ble.w fsgldiv_may_ovfl + + cmpi.l %d0,&0x3fff-0x0000 # will result underflow? + beq.w fsgldiv_may_unfl # maybe + bgt.w fsgldiv_unfl # yes; go handle underflow + +fsgldiv_normal: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # save FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsgldiv_normal_exit: + fmovm.x &0x80,FP_SCR0(%a6) # store result on stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +fsgldiv_may_ovfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # set FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide + + fmov.l %fpsr,%d1 + fmov.l &0x0,%fpcr + + or.l %d1,USER_FPSR(%a6) # save INEX,N + + fmovm.x &0x01,-(%sp) # save result to stack + mov.w (%sp),%d1 # fetch new exponent + add.l &0xc,%sp # clear result + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + cmp.l %d1,&0x7fff # did divide overflow? + blt.b fsgldiv_normal_exit + +fsgldiv_ovfl_tst: + or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsgldiv_ovfl_ena # yes + +fsgldiv_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + andi.b &0x30,%d0 # kill precision + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +fsgldiv_ovfl_ena: + fmovm.x &0x80,FP_SCR0(%a6) # move result to stack + + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract new bias + andi.w &0x7fff,%d1 # clear ms bit + or.w %d2,%d1 # concat old sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fsgldiv_ovfl_dis + +fsgldiv_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsgldiv_unfl_ena # yes + +fsgldiv_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res4 # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# UNFL is enabled. +# +fsgldiv_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add bias + andi.w &0x7fff,%d1 # clear top bit + or.w %d2,%d1 # concat old sign, new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.b fsgldiv_unfl_dis + +# +# the divide operation MAY underflow: +# +fsgldiv_may_unfl: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fabs.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x1 # is |result| > 1.b? + fbgt.w fsgldiv_normal_exit # no; no underflow occurred + fblt.w fsgldiv_unfl # yes; underflow occurred + +# +# we still don't know if underflow occurred. result is ~ equal to 1. but, +# we don't know if the result was an underflow that rounded up to a 1 +# or a normalized number that rounded down to a 1. so, redo the entire +# operation using RZ as the rounding mode to see what the pre-rounded +# result is. this case should be relatively rare. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 + + clr.l %d1 # clear scratch register + ori.b &rz_mode*0x10,%d1 # force RZ rnd mode + + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide + + fmov.l &0x0,%fpcr # clear FPCR + fabs.x %fp1 # make absolute value + fcmp.b %fp1,&0x1 # is |result| < 1.b? + fbge.w fsgldiv_normal_exit # no; no underflow occurred + bra.w fsgldiv_unfl # yes; underflow occurred + +############################################################################ + +# +# Divide: inputs are not both normalized; what are they? +# +fsgldiv_not_norm: + mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fsgldiv_op: + short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM + short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO + short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN + short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM + short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO + short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN + short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM + short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO + short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN + short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN + short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM + short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO + short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF + short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN + short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM + short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN + short tbl_fsgldiv_op - tbl_fsgldiv_op # + short tbl_fsgldiv_op - tbl_fsgldiv_op # + +fsgldiv_res_qnan: + bra.l res_qnan +fsgldiv_res_snan: + bra.l res_snan +fsgldiv_res_operr: + bra.l res_operr +fsgldiv_inf_load: + bra.l fdiv_inf_load +fsgldiv_zero_load: + bra.l fdiv_zero_load +fsgldiv_inf_dst: + bra.l fdiv_inf_dst + +######################################################################### +# XDEF **************************************************************** # +# fadd(): emulates the fadd instruction # +# fsadd(): emulates the fadd instruction # +# fdadd(): emulates the fdadd instruction # +# # +# XREF **************************************************************** # +# addsub_scaler2() - scale the operands so they won't take exc # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan() - set QNAN result # +# res_snan() - set SNAN result # +# res_operr() - set OPERR result # +# scale_to_zero_src() - set src operand exponent equal to zero # +# scale_to_zero_dst() - set dst operand exponent equal to zero # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Do addition after scaling exponents such that exception won't # +# occur. Then, check result exponent to see if exception would have # +# occurred. If so, return default result and maybe EXOP. Else, insert # +# the correct result exponent and return. Set FPSR bits as appropriate. # +# # +######################################################################### + + global fsadd +fsadd: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fadd + + global fdadd +fdadd: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fadd +fadd: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fadd_not_norm # optimize on non-norm input + +# +# ADD: norms and denorms +# +fadd_norm: + bsr.l addsub_scaler2 # scale exponents + +fadd_zero_entry: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fadd.x FP_SCR0(%a6),%fp0 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch INEX2,N,Z + + or.l %d1,USER_FPSR(%a6) # save exc and ccode bits + + fbeq.w fadd_zero_exit # if result is zero, end now + + mov.l %d2,-(%sp) # save d2 + + fmovm.x &0x01,-(%sp) # save result to stack + + mov.w 2+L_SCR3(%a6),%d1 + lsr.b &0x6,%d1 + + mov.w (%sp),%d2 # fetch new sign, exp + andi.l &0x7fff,%d2 # strip sign + sub.l %d0,%d2 # add scale factor + + cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? + bge.b fadd_ovfl # yes + + cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? + blt.w fadd_unfl # yes + beq.w fadd_may_unfl # maybe; go find out + +fadd_normal: + mov.w (%sp),%d1 + andi.w &0x8000,%d1 # keep sign + or.w %d2,%d1 # concat sign,new exp + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x80 # return result in fp0 + + mov.l (%sp)+,%d2 # restore d2 + rts + +fadd_zero_exit: +# fmov.s &0x00000000,%fp0 # return zero in fp0 + rts + +tbl_fadd_ovfl: + long 0x7fff # ext ovfl + long 0x407f # sgl ovfl + long 0x43ff # dbl ovfl + +tbl_fadd_unfl: + long 0x0000 # ext unfl + long 0x3f81 # sgl unfl + long 0x3c01 # dbl unfl + +fadd_ovfl: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fadd_ovfl_ena # yes + + add.l &0xc,%sp +fadd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fadd_ovfl_ena: + mov.b L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl + +fadd_ovfl_ena_cont: + mov.w (%sp),%d1 + andi.w &0x8000,%d1 # keep sign + subi.l &0x6000,%d2 # add extra bias + andi.w &0x7fff,%d2 + or.w %d2,%d1 # concat sign,new exp + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x40 # return EXOP in fp1 + bra.b fadd_ovfl_dis + +fadd_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # keep rnd mode + fmov.l %d1,%fpcr # set FPCR + + fadd.x FP_SCR0(%a6),%fp0 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + + add.l &0xc,%sp + fmovm.x &0x01,-(%sp) + bra.b fadd_ovfl_ena_cont + +fadd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + add.l &0xc,%sp + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fadd.x FP_SCR0(%a6),%fp0 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save status + + or.l %d1,USER_FPSR(%a6) # save INEX,N + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fadd_unfl_ena # yes + +fadd_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fadd_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fadd_unfl_ena_sd # no; sgl or dbl + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fadd_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fadd.x FP_SCR0(%a6),%fp1 # execute multiply + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # save result to stack + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 # clear top bit + or.w %d2,%d1 # concat sign,new exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fadd_unfl_dis + +fadd_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # use only rnd mode + fmov.l %d1,%fpcr # set FPCR + + bra.b fadd_unfl_ena_cont + +# +# result is equal to the smallest normalized number in the selected precision +# if the precision is extended, this result could not have come from an +# underflow that rounded up. +# +fadd_may_unfl: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 + beq.w fadd_normal # yes; no underflow occurred + + mov.l 0x4(%sp),%d1 # extract hi(man) + cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? + bne.w fadd_normal # no; no underflow occurred + + tst.l 0x8(%sp) # is lo(man) = 0x0? + bne.w fadd_normal # no; no underflow occurred + + btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? + beq.w fadd_normal # no; no underflow occurred + +# +# ok, so now the result has a exponent equal to the smallest normalized +# exponent for the selected precision. also, the mantissa is equal to +# 0x8000000000000000 and this mantissa is the result of rounding non-zero +# g,r,s. +# now, we must determine whether the pre-rounded result was an underflow +# rounded "up" or a normalized number rounded "down". +# so, we do this be re-executing the add using RZ as the rounding mode and +# seeing if the new result is smaller or equal to the current result. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert rnd mode + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fadd.x FP_SCR0(%a6),%fp1 # execute add + + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # compare absolute values + fabs.x %fp1 + fcmp.x %fp0,%fp1 # is first result > second? + + fbgt.w fadd_unfl # yes; it's an underflow + bra.w fadd_normal # no; it's not an underflow + +########################################################################## + +# +# Add: inputs are not both normalized; what are they? +# +fadd_not_norm: + mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fadd_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fadd_op: + short fadd_norm - tbl_fadd_op # NORM + NORM + short fadd_zero_src - tbl_fadd_op # NORM + ZERO + short fadd_inf_src - tbl_fadd_op # NORM + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_norm - tbl_fadd_op # NORM + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_zero_dst - tbl_fadd_op # ZERO + NORM + short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO + short fadd_inf_src - tbl_fadd_op # ZERO + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_inf_dst - tbl_fadd_op # INF + NORM + short fadd_inf_dst - tbl_fadd_op # INF + ZERO + short fadd_inf_2 - tbl_fadd_op # INF + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_inf_dst - tbl_fadd_op # INF + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_res_qnan - tbl_fadd_op # QNAN + NORM + short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO + short fadd_res_qnan - tbl_fadd_op # QNAN + INF + short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN + short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM + short fadd_res_snan - tbl_fadd_op # QNAN + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_norm - tbl_fadd_op # DENORM + NORM + short fadd_zero_src - tbl_fadd_op # DENORM + ZERO + short fadd_inf_src - tbl_fadd_op # DENORM + INF + short fadd_res_qnan - tbl_fadd_op # NORM + QNAN + short fadd_norm - tbl_fadd_op # DENORM + DENORM + short fadd_res_snan - tbl_fadd_op # NORM + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + + short fadd_res_snan - tbl_fadd_op # SNAN + NORM + short fadd_res_snan - tbl_fadd_op # SNAN + ZERO + short fadd_res_snan - tbl_fadd_op # SNAN + INF + short fadd_res_snan - tbl_fadd_op # SNAN + QNAN + short fadd_res_snan - tbl_fadd_op # SNAN + DENORM + short fadd_res_snan - tbl_fadd_op # SNAN + SNAN + short tbl_fadd_op - tbl_fadd_op # + short tbl_fadd_op - tbl_fadd_op # + +fadd_res_qnan: + bra.l res_qnan +fadd_res_snan: + bra.l res_snan + +# +# both operands are ZEROes +# +fadd_zero_2: + mov.b SRC_EX(%a0),%d0 # are the signs opposite + mov.b DST_EX(%a1),%d1 + eor.b %d0,%d1 + bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) + +# the signs are the same. so determine whether they are positive or negative +# and return the appropriately signed zero. + tst.b %d0 # are ZEROes positive or negative? + bmi.b fadd_zero_rm # negative + fmov.s &0x00000000,%fp0 # return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# the ZEROes have opposite signs: +# - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. +# - -ZERO is returned in the case of RM. +# +fadd_zero_2_chk_rm: + mov.b 3+L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # extract rnd mode + cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? + beq.b fadd_zero_rm # yes + fmov.s &0x00000000,%fp0 # return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +fadd_zero_rm: + fmov.s &0x80000000,%fp0 # return -ZERO + mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z + rts + +# +# one operand is a ZERO and the other is a DENORM or NORM. scale +# the DENORM or NORM and jump to the regular fadd routine. +# +fadd_zero_dst: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # scale the operand + clr.w FP_SCR1_EX(%a6) + clr.l FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + bra.w fadd_zero_entry # go execute fadd + +fadd_zero_src: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + bsr.l scale_to_zero_dst # scale the operand + clr.w FP_SCR0_EX(%a6) + clr.l FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + bra.w fadd_zero_entry # go execute fadd + +# +# both operands are INFs. an OPERR will result if the INFs have +# different signs. else, an INF of the same sign is returned +# +fadd_inf_2: + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d1,%d0 + bmi.l res_operr # weed out (-INF)+(+INF) + +# ok, so it's not an OPERR. but, we do have to remember to return the +# src INF since that's where the 881/882 gets the j-bit from... + +# +# operands are INF and one of {ZERO, INF, DENORM, NORM} +# +fadd_inf_src: + fmovm.x SRC(%a0),&0x80 # return src INF + tst.b SRC_EX(%a0) # is INF positive? + bpl.b fadd_inf_done # yes; we're done + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +# +# operands are INF and one of {ZERO, INF, DENORM, NORM} +# +fadd_inf_dst: + fmovm.x DST(%a1),&0x80 # return dst INF + tst.b DST_EX(%a1) # is INF positive? + bpl.b fadd_inf_done # yes; we're done + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fadd_inf_done: + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +######################################################################### +# XDEF **************************************************************** # +# fsub(): emulates the fsub instruction # +# fssub(): emulates the fssub instruction # +# fdsub(): emulates the fdsub instruction # +# # +# XREF **************************************************************** # +# addsub_scaler2() - scale the operands so they won't take exc # +# ovf_res() - return default overflow result # +# unf_res() - return default underflow result # +# res_qnan() - set QNAN result # +# res_snan() - set SNAN result # +# res_operr() - set OPERR result # +# scale_to_zero_src() - set src operand exponent equal to zero # +# scale_to_zero_dst() - set dst operand exponent equal to zero # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# a1 = pointer to extended precision destination operand # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms into extended, single, and double precision. # +# Do subtraction after scaling exponents such that exception won't# +# occur. Then, check result exponent to see if exception would have # +# occurred. If so, return default result and maybe EXOP. Else, insert # +# the correct result exponent and return. Set FPSR bits as appropriate. # +# # +######################################################################### + + global fssub +fssub: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl prec + bra.b fsub + + global fdsub +fdsub: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl prec + + global fsub +fsub: + mov.l %d0,L_SCR3(%a6) # store rnd info + + clr.w %d1 + mov.b DTAG(%a6),%d1 + lsl.b &0x3,%d1 + or.b STAG(%a6),%d1 # combine src tags + + bne.w fsub_not_norm # optimize on non-norm input + +# +# SUB: norms and denorms +# +fsub_norm: + bsr.l addsub_scaler2 # scale exponents + +fsub_zero_entry: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsub.x FP_SCR0(%a6),%fp0 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # fetch INEX2, N, Z + + or.l %d1,USER_FPSR(%a6) # save exc and ccode bits + + fbeq.w fsub_zero_exit # if result zero, end now + + mov.l %d2,-(%sp) # save d2 + + fmovm.x &0x01,-(%sp) # save result to stack + + mov.w 2+L_SCR3(%a6),%d1 + lsr.b &0x6,%d1 + + mov.w (%sp),%d2 # fetch new exponent + andi.l &0x7fff,%d2 # strip sign + sub.l %d0,%d2 # add scale factor + + cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? + bge.b fsub_ovfl # yes + + cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? + blt.w fsub_unfl # yes + beq.w fsub_may_unfl # maybe; go find out + +fsub_normal: + mov.w (%sp),%d1 + andi.w &0x8000,%d1 # keep sign + or.w %d2,%d1 # insert new exponent + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x80 # return result in fp0 + + mov.l (%sp)+,%d2 # restore d2 + rts + +fsub_zero_exit: +# fmov.s &0x00000000,%fp0 # return zero in fp0 + rts + +tbl_fsub_ovfl: + long 0x7fff # ext ovfl + long 0x407f # sgl ovfl + long 0x43ff # dbl ovfl + +tbl_fsub_unfl: + long 0x0000 # ext unfl + long 0x3f81 # sgl unfl + long 0x3c01 # dbl unfl + +fsub_ovfl: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsub_ovfl_ena # yes + + add.l &0xc,%sp +fsub_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass prec:rnd + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fsub_ovfl_ena: + mov.b L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fsub_ovfl_ena_sd # no + +fsub_ovfl_ena_cont: + mov.w (%sp),%d1 # fetch {sgn,exp} + andi.w &0x8000,%d1 # keep sign + subi.l &0x6000,%d2 # subtract new bias + andi.w &0x7fff,%d2 # clear top bit + or.w %d2,%d1 # concat sign,exp + mov.w %d1,(%sp) # insert new exponent + + fmovm.x (%sp)+,&0x40 # return EXOP in fp1 + bra.b fsub_ovfl_dis + +fsub_ovfl_ena_sd: + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # clear rnd prec + fmov.l %d1,%fpcr # set FPCR + + fsub.x FP_SCR0(%a6),%fp0 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + + add.l &0xc,%sp + fmovm.x &0x01,-(%sp) + bra.b fsub_ovfl_ena_cont + +fsub_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + add.l &0xc,%sp + + fmovm.x FP_SCR1(%a6),&0x80 # load dst op + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsub.x FP_SCR0(%a6),%fp0 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save status + + or.l %d1,USER_FPSR(%a6) + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsub_unfl_ena # yes + +fsub_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # 'Z' may have been set + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + mov.l (%sp)+,%d2 # restore d2 + rts + +fsub_unfl_ena: + fmovm.x FP_SCR1(%a6),&0x40 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # is precision extended? + bne.b fsub_unfl_ena_sd # no + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + +fsub_unfl_ena_cont: + fmov.l &0x0,%fpsr # clear FPSR + + fsub.x FP_SCR0(%a6),%fp1 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + + fmovm.x &0x40,FP_SCR0(%a6) # store result to stack + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + addi.l &0x6000,%d1 # subtract new bias + andi.w &0x7fff,%d1 # clear top bit + or.w %d2,%d1 # concat sgn,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + bra.w fsub_unfl_dis + +fsub_unfl_ena_sd: + mov.l L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # clear rnd prec + fmov.l %d1,%fpcr # set FPCR + + bra.b fsub_unfl_ena_cont + +# +# result is equal to the smallest normalized number in the selected precision +# if the precision is extended, this result could not have come from an +# underflow that rounded up. +# +fsub_may_unfl: + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # fetch rnd prec + beq.w fsub_normal # yes; no underflow occurred + + mov.l 0x4(%sp),%d1 + cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? + bne.w fsub_normal # no; no underflow occurred + + tst.l 0x8(%sp) # is lo(man) = 0x0? + bne.w fsub_normal # no; no underflow occurred + + btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? + beq.w fsub_normal # no; no underflow occurred + +# +# ok, so now the result has a exponent equal to the smallest normalized +# exponent for the selected precision. also, the mantissa is equal to +# 0x8000000000000000 and this mantissa is the result of rounding non-zero +# g,r,s. +# now, we must determine whether the pre-rounded result was an underflow +# rounded "up" or a normalized number rounded "down". +# so, we do this be re-executing the add using RZ as the rounding mode and +# seeing if the new result is smaller or equal to the current result. +# + fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 + + mov.l L_SCR3(%a6),%d1 + andi.b &0xc0,%d1 # keep rnd prec + ori.b &rz_mode*0x10,%d1 # insert rnd mode + fmov.l %d1,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsub.x FP_SCR0(%a6),%fp1 # execute subtract + + fmov.l &0x0,%fpcr # clear FPCR + + fabs.x %fp0 # compare absolute values + fabs.x %fp1 + fcmp.x %fp0,%fp1 # is first result > second? + + fbgt.w fsub_unfl # yes; it's an underflow + bra.w fsub_normal # no; it's not an underflow + +########################################################################## + +# +# Sub: inputs are not both normalized; what are they? +# +fsub_not_norm: + mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 + jmp (tbl_fsub_op.b,%pc,%d1.w*1) + + swbeg &48 +tbl_fsub_op: + short fsub_norm - tbl_fsub_op # NORM - NORM + short fsub_zero_src - tbl_fsub_op # NORM - ZERO + short fsub_inf_src - tbl_fsub_op # NORM - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_norm - tbl_fsub_op # NORM - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_zero_dst - tbl_fsub_op # ZERO - NORM + short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO + short fsub_inf_src - tbl_fsub_op # ZERO - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_inf_dst - tbl_fsub_op # INF - NORM + short fsub_inf_dst - tbl_fsub_op # INF - ZERO + short fsub_inf_2 - tbl_fsub_op # INF - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_inf_dst - tbl_fsub_op # INF - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_res_qnan - tbl_fsub_op # QNAN - NORM + short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO + short fsub_res_qnan - tbl_fsub_op # QNAN - INF + short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN + short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM + short fsub_res_snan - tbl_fsub_op # QNAN - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_norm - tbl_fsub_op # DENORM - NORM + short fsub_zero_src - tbl_fsub_op # DENORM - ZERO + short fsub_inf_src - tbl_fsub_op # DENORM - INF + short fsub_res_qnan - tbl_fsub_op # NORM - QNAN + short fsub_norm - tbl_fsub_op # DENORM - DENORM + short fsub_res_snan - tbl_fsub_op # NORM - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + + short fsub_res_snan - tbl_fsub_op # SNAN - NORM + short fsub_res_snan - tbl_fsub_op # SNAN - ZERO + short fsub_res_snan - tbl_fsub_op # SNAN - INF + short fsub_res_snan - tbl_fsub_op # SNAN - QNAN + short fsub_res_snan - tbl_fsub_op # SNAN - DENORM + short fsub_res_snan - tbl_fsub_op # SNAN - SNAN + short tbl_fsub_op - tbl_fsub_op # + short tbl_fsub_op - tbl_fsub_op # + +fsub_res_qnan: + bra.l res_qnan +fsub_res_snan: + bra.l res_snan + +# +# both operands are ZEROes +# +fsub_zero_2: + mov.b SRC_EX(%a0),%d0 + mov.b DST_EX(%a1),%d1 + eor.b %d1,%d0 + bpl.b fsub_zero_2_chk_rm + +# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO + tst.b %d0 # is dst negative? + bmi.b fsub_zero_2_rm # yes + fmov.s &0x00000000,%fp0 # no; return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +# +# the ZEROes have the same signs: +# - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP +# - -ZERO is returned in the case of RM. +# +fsub_zero_2_chk_rm: + mov.b 3+L_SCR3(%a6),%d1 + andi.b &0x30,%d1 # extract rnd mode + cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? + beq.b fsub_zero_2_rm # yes + fmov.s &0x00000000,%fp0 # no; return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set Z + rts + +fsub_zero_2_rm: + fmov.s &0x80000000,%fp0 # return -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG + rts + +# +# one operand is a ZERO and the other is a DENORM or a NORM. +# scale the DENORM or NORM and jump to the regular fsub routine. +# +fsub_zero_dst: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + bsr.l scale_to_zero_src # scale the operand + clr.w FP_SCR1_EX(%a6) + clr.l FP_SCR1_HI(%a6) + clr.l FP_SCR1_LO(%a6) + bra.w fsub_zero_entry # go execute fsub + +fsub_zero_src: + mov.w DST_EX(%a1),FP_SCR1_EX(%a6) + mov.l DST_HI(%a1),FP_SCR1_HI(%a6) + mov.l DST_LO(%a1),FP_SCR1_LO(%a6) + bsr.l scale_to_zero_dst # scale the operand + clr.w FP_SCR0_EX(%a6) + clr.l FP_SCR0_HI(%a6) + clr.l FP_SCR0_LO(%a6) + bra.w fsub_zero_entry # go execute fsub + +# +# both operands are INFs. an OPERR will result if the INFs have the +# same signs. else, +# +fsub_inf_2: + mov.b SRC_EX(%a0),%d0 # exclusive or the signs + mov.b DST_EX(%a1),%d1 + eor.b %d1,%d0 + bpl.l res_operr # weed out (-INF)+(+INF) + +# ok, so it's not an OPERR. but we do have to remember to return +# the src INF since that's where the 881/882 gets the j-bit. + +fsub_inf_src: + fmovm.x SRC(%a0),&0x80 # return src INF + fneg.x %fp0 # invert sign + fbge.w fsub_inf_done # sign is now positive + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fsub_inf_dst: + fmovm.x DST(%a1),&0x80 # return dst INF + tst.b DST_EX(%a1) # is INF negative? + bpl.b fsub_inf_done # no + mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG + rts + +fsub_inf_done: + mov.b &inf_bmask,FPSR_CC(%a6) # set INF + rts + +######################################################################### +# XDEF **************************************************************** # +# fsqrt(): emulates the fsqrt instruction # +# fssqrt(): emulates the fssqrt instruction # +# fdsqrt(): emulates the fdsqrt instruction # +# # +# XREF **************************************************************** # +# scale_sqrt() - scale the source operand # +# unf_res() - return default underflow result # +# ovf_res() - return default overflow result # +# res_qnan_1op() - return QNAN result # +# res_snan_1op() - return SNAN result # +# # +# INPUT *************************************************************** # +# a0 = pointer to extended precision source operand # +# d0 rnd prec,mode # +# # +# OUTPUT ************************************************************** # +# fp0 = result # +# fp1 = EXOP (if exception occurred) # +# # +# ALGORITHM *********************************************************** # +# Handle NANs, infinities, and zeroes as special cases. Divide # +# norms/denorms into ext/sgl/dbl precision. # +# For norms/denorms, scale the exponents such that a sqrt # +# instruction won't cause an exception. Use the regular fsqrt to # +# compute a result. Check if the regular operands would have taken # +# an exception. If so, return the default overflow/underflow result # +# and return the EXOP if exceptions are enabled. Else, scale the # +# result operand to the proper exponent. # +# # +######################################################################### + + global fssqrt +fssqrt: + andi.b &0x30,%d0 # clear rnd prec + ori.b &s_mode*0x10,%d0 # insert sgl precision + bra.b fsqrt + + global fdsqrt +fdsqrt: + andi.b &0x30,%d0 # clear rnd prec + ori.b &d_mode*0x10,%d0 # insert dbl precision + + global fsqrt +fsqrt: + mov.l %d0,L_SCR3(%a6) # store rnd info + clr.w %d1 + mov.b STAG(%a6),%d1 + bne.w fsqrt_not_norm # optimize on non-norm input + +# +# SQUARE ROOT: norms and denorms ONLY! +# +fsqrt_norm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.l res_operr # yes + + andi.b &0xc0,%d0 # is precision extended? + bne.b fsqrt_not_ext # no; go handle sgl or dbl + + fmov.l L_SCR3(%a6),%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsqrt.x (%a0),%fp0 # execute square root + + fmov.l %fpsr,%d1 + or.l %d1,USER_FPSR(%a6) # set N,INEX + + rts + +fsqrt_denorm: + tst.b SRC_EX(%a0) # is operand negative? + bmi.l res_operr # yes + + andi.b &0xc0,%d0 # is precision extended? + bne.b fsqrt_not_ext # no; go handle sgl or dbl + + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_sqrt # calculate scale factor + + bra.w fsqrt_sd_normal + +# +# operand is either single or double +# +fsqrt_not_ext: + cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec + bne.w fsqrt_dbl + +# +# operand is to be rounded to single precision +# +fsqrt_sgl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_sqrt # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? + beq.w fsqrt_sd_may_unfl + bgt.w fsqrt_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x407f # will move in overflow? + beq.w fsqrt_sd_may_ovfl # maybe; go check + blt.w fsqrt_sd_ovfl # yes; go handle overflow + +# +# operand will NOT overflow or underflow when moved in to the fp reg file +# +fsqrt_sd_normal: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save FPSR + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsqrt_sd_normal_exit: + mov.l %d2,-(%sp) # save d2 + fmovm.x &0x80,FP_SCR0(%a6) # store out result + mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + sub.l %d0,%d1 # add scale factor + andi.w &0x8000,%d2 # keep old sign + or.w %d1,%d2 # concat old sign,new exp + mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent + mov.l (%sp)+,%d2 # restore d2 + fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 + rts + +# +# operand is to be rounded to double precision +# +fsqrt_dbl: + mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) + mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) + mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) + + bsr.l scale_sqrt # calculate scale factor + + cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? + beq.w fsqrt_sd_may_unfl + bgt.b fsqrt_sd_unfl # yes; go handle underflow + cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? + beq.w fsqrt_sd_may_ovfl # maybe; go check + blt.w fsqrt_sd_ovfl # yes; go handle overflow + bra.w fsqrt_sd_normal # no; ho handle normalized op + +# we're on the line here and the distinguising characteristic is whether +# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number +# elsewise fall through to underflow. +fsqrt_sd_may_unfl: + btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? + bne.w fsqrt_sd_normal # yes, so no underflow + +# +# operand WILL underflow when moved in to the fp register file +# +fsqrt_sd_unfl: + bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit + + fmov.l &rz_mode*0x10,%fpcr # set FPCR + fmov.l &0x0,%fpsr # clear FPSR + + fsqrt.x FP_SCR0(%a6),%fp0 # execute square root + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +# if underflow or inexact is enabled, go calculate EXOP first. + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x0b,%d1 # is UNFL or INEX enabled? + bne.b fsqrt_sd_unfl_ena # yes + +fsqrt_sd_unfl_dis: + fmovm.x &0x80,FP_SCR0(%a6) # store out result + + lea FP_SCR0(%a6),%a0 # pass: result addr + mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode + bsr.l unf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode + fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 + rts + +# +# operand will underflow AND underflow is enabled. +# therefore, we must return the result rounded to extended precision. +# +fsqrt_sd_unfl_ena: + mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) + mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) + mov.w FP_SCR0_EX(%a6),%d1 # load current exponent + + mov.l %d2,-(%sp) # save d2 + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # subtract scale factor + addi.l &0x6000,%d1 # add new bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat new sign,new exp + mov.w %d1,FP_SCR1_EX(%a6) # insert new exp + fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fsqrt_sd_unfl_dis + +# +# operand WILL overflow. +# +fsqrt_sd_ovfl: + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsqrt.x FP_SCR0(%a6),%fp0 # perform square root + + fmov.l &0x0,%fpcr # clear FPCR + fmov.l %fpsr,%d1 # save FPSR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + +fsqrt_sd_ovfl_tst: + or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex + + mov.b FPCR_ENABLE(%a6),%d1 + andi.b &0x13,%d1 # is OVFL or INEX enabled? + bne.b fsqrt_sd_ovfl_ena # yes + +# +# OVFL is not enabled; therefore, we must create the default result by +# calling ovf_res(). +# +fsqrt_sd_ovfl_dis: + btst &neg_bit,FPSR_CC(%a6) # is result negative? + sne %d1 # set sign param accordingly + mov.l L_SCR3(%a6),%d0 # pass: prec,mode + bsr.l ovf_res # calculate default result + or.b %d0,FPSR_CC(%a6) # set INF,N if applicable + fmovm.x (%a0),&0x80 # return default result in fp0 + rts + +# +# OVFL is enabled. +# the INEX2 bit has already been updated by the round to the correct precision. +# now, round to extended(and don't alter the FPSR). +# +fsqrt_sd_ovfl_ena: + mov.l %d2,-(%sp) # save d2 + mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} + mov.l %d1,%d2 # make a copy + andi.l &0x7fff,%d1 # strip sign + andi.w &0x8000,%d2 # keep old sign + sub.l %d0,%d1 # add scale factor + subi.l &0x6000,%d1 # subtract bias + andi.w &0x7fff,%d1 + or.w %d2,%d1 # concat sign,exp + mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent + fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 + mov.l (%sp)+,%d2 # restore d2 + bra.b fsqrt_sd_ovfl_dis + +# +# the move in MAY underflow. so... +# +fsqrt_sd_may_ovfl: + btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? + bne.w fsqrt_sd_ovfl # yes, so overflow + + fmov.l &0x0,%fpsr # clear FPSR + fmov.l L_SCR3(%a6),%fpcr # set FPCR + + fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute + + fmov.l %fpsr,%d1 # save status + fmov.l &0x0,%fpcr # clear FPCR + + or.l %d1,USER_FPSR(%a6) # save INEX2,N + + fmov.x %fp0,%fp1 # make a copy of result + fcmp.b %fp1,&0x1 # is |result| >= 1.b? + fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred + +# no, it didn't overflow; we have correct result + bra.w fsqrt_sd_normal_exit + +########################################################################## + +# +# input is not normalized; what is it? +# +fsqrt_not_norm: + cmpi.b %d1,&DENORM # weed out DENORM + beq.w fsqrt_denorm + cmpi.b %d1,&ZERO # weed out ZERO + beq.b fsqrt_zero + cmpi.b %d1,&INF # weed out INF + beq.b fsqrt_inf + cmpi.b %d1,&SNAN # weed out SNAN + beq.l res_snan_1op + bra.l res_qnan_1op + +# +# fsqrt(+0) = +0 +# fsqrt(-0) = -0 +# fsqrt(+INF) = +INF +# fsqrt(-INF) = OPERR +# +fsqrt_zero: + tst.b SRC_EX(%a0) # is ZERO positive or negative? + bmi.b fsqrt_zero_m # negative +fsqrt_zero_p: + fmov.s &0x00000000,%fp0 # return +ZERO + mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit + rts +fsqrt_zero_m: + fmov.s &0x80000000,%fp0 # return -ZERO + mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits + rts + +fsqrt_inf: + tst.b SRC_EX(%a0) # is INF positive or negative? + bmi.l res_operr # negative +fsqrt_inf_p: + fmovm.x SRC(%a0),&0x80 # return +INF in fp0 + mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit + rts + +######################################################################### +# XDEF **************************************************************** # +# fetch_dreg(): fetch register according to index in d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# d0 = value of register fetched # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1 which can range from zero # +# to fifteen, load the corresponding register file value (where # +# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # +# stack. The rest should still be in their original places. # +# # +######################################################################### + +# this routine leaves d1 intact for subsequent store_dreg calls. + global fetch_dreg +fetch_dreg: + mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 + jmp (tbl_fdreg.b,%pc,%d0.w*1) + +tbl_fdreg: + short fdreg0 - tbl_fdreg + short fdreg1 - tbl_fdreg + short fdreg2 - tbl_fdreg + short fdreg3 - tbl_fdreg + short fdreg4 - tbl_fdreg + short fdreg5 - tbl_fdreg + short fdreg6 - tbl_fdreg + short fdreg7 - tbl_fdreg + short fdreg8 - tbl_fdreg + short fdreg9 - tbl_fdreg + short fdrega - tbl_fdreg + short fdregb - tbl_fdreg + short fdregc - tbl_fdreg + short fdregd - tbl_fdreg + short fdrege - tbl_fdreg + short fdregf - tbl_fdreg + +fdreg0: + mov.l EXC_DREGS+0x0(%a6),%d0 + rts +fdreg1: + mov.l EXC_DREGS+0x4(%a6),%d0 + rts +fdreg2: + mov.l %d2,%d0 + rts +fdreg3: + mov.l %d3,%d0 + rts +fdreg4: + mov.l %d4,%d0 + rts +fdreg5: + mov.l %d5,%d0 + rts +fdreg6: + mov.l %d6,%d0 + rts +fdreg7: + mov.l %d7,%d0 + rts +fdreg8: + mov.l EXC_DREGS+0x8(%a6),%d0 + rts +fdreg9: + mov.l EXC_DREGS+0xc(%a6),%d0 + rts +fdrega: + mov.l %a2,%d0 + rts +fdregb: + mov.l %a3,%d0 + rts +fdregc: + mov.l %a4,%d0 + rts +fdregd: + mov.l %a5,%d0 + rts +fdrege: + mov.l (%a6),%d0 + rts +fdregf: + mov.l EXC_A7(%a6),%d0 + rts + +######################################################################### +# XDEF **************************************************************** # +# store_dreg_l(): store longword to data register specified by d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = longowrd value to store # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# (data register is updated) # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1, store the longword value # +# in d0 to the corresponding data register. D0/D1 are on the stack # +# while the rest are in their initial places. # +# # +######################################################################### + + global store_dreg_l +store_dreg_l: + mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 + jmp (tbl_sdregl.b,%pc,%d1.w*1) + +tbl_sdregl: + short sdregl0 - tbl_sdregl + short sdregl1 - tbl_sdregl + short sdregl2 - tbl_sdregl + short sdregl3 - tbl_sdregl + short sdregl4 - tbl_sdregl + short sdregl5 - tbl_sdregl + short sdregl6 - tbl_sdregl + short sdregl7 - tbl_sdregl + +sdregl0: + mov.l %d0,EXC_DREGS+0x0(%a6) + rts +sdregl1: + mov.l %d0,EXC_DREGS+0x4(%a6) + rts +sdregl2: + mov.l %d0,%d2 + rts +sdregl3: + mov.l %d0,%d3 + rts +sdregl4: + mov.l %d0,%d4 + rts +sdregl5: + mov.l %d0,%d5 + rts +sdregl6: + mov.l %d0,%d6 + rts +sdregl7: + mov.l %d0,%d7 + rts + +######################################################################### +# XDEF **************************************************************** # +# store_dreg_w(): store word to data register specified by d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = word value to store # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# (data register is updated) # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1, store the word value # +# in d0 to the corresponding data register. D0/D1 are on the stack # +# while the rest are in their initial places. # +# # +######################################################################### + + global store_dreg_w +store_dreg_w: + mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 + jmp (tbl_sdregw.b,%pc,%d1.w*1) + +tbl_sdregw: + short sdregw0 - tbl_sdregw + short sdregw1 - tbl_sdregw + short sdregw2 - tbl_sdregw + short sdregw3 - tbl_sdregw + short sdregw4 - tbl_sdregw + short sdregw5 - tbl_sdregw + short sdregw6 - tbl_sdregw + short sdregw7 - tbl_sdregw + +sdregw0: + mov.w %d0,2+EXC_DREGS+0x0(%a6) + rts +sdregw1: + mov.w %d0,2+EXC_DREGS+0x4(%a6) + rts +sdregw2: + mov.w %d0,%d2 + rts +sdregw3: + mov.w %d0,%d3 + rts +sdregw4: + mov.w %d0,%d4 + rts +sdregw5: + mov.w %d0,%d5 + rts +sdregw6: + mov.w %d0,%d6 + rts +sdregw7: + mov.w %d0,%d7 + rts + +######################################################################### +# XDEF **************************************************************** # +# store_dreg_b(): store byte to data register specified by d1 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = byte value to store # +# d1 = index of register to fetch from # +# # +# OUTPUT ************************************************************** # +# (data register is updated) # +# # +# ALGORITHM *********************************************************** # +# According to the index value in d1, store the byte value # +# in d0 to the corresponding data register. D0/D1 are on the stack # +# while the rest are in their initial places. # +# # +######################################################################### + + global store_dreg_b +store_dreg_b: + mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 + jmp (tbl_sdregb.b,%pc,%d1.w*1) + +tbl_sdregb: + short sdregb0 - tbl_sdregb + short sdregb1 - tbl_sdregb + short sdregb2 - tbl_sdregb + short sdregb3 - tbl_sdregb + short sdregb4 - tbl_sdregb + short sdregb5 - tbl_sdregb + short sdregb6 - tbl_sdregb + short sdregb7 - tbl_sdregb + +sdregb0: + mov.b %d0,3+EXC_DREGS+0x0(%a6) + rts +sdregb1: + mov.b %d0,3+EXC_DREGS+0x4(%a6) + rts +sdregb2: + mov.b %d0,%d2 + rts +sdregb3: + mov.b %d0,%d3 + rts +sdregb4: + mov.b %d0,%d4 + rts +sdregb5: + mov.b %d0,%d5 + rts +sdregb6: + mov.b %d0,%d6 + rts +sdregb7: + mov.b %d0,%d7 + rts + +######################################################################### +# XDEF **************************************************************** # +# inc_areg(): increment an address register by the value in d0 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = amount to increment by # +# d1 = index of address register to increment # +# # +# OUTPUT ************************************************************** # +# (address register is updated) # +# # +# ALGORITHM *********************************************************** # +# Typically used for an instruction w/ a post-increment <ea>, # +# this routine adds the increment value in d0 to the address register # +# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # +# in their original places. # +# For a7, if the increment amount is one, then we have to # +# increment by two. For any a7 update, set the mia7_flag so that if # +# an access error exception occurs later in emulation, this address # +# register update can be undone. # +# # +######################################################################### + + global inc_areg +inc_areg: + mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 + jmp (tbl_iareg.b,%pc,%d1.w*1) + +tbl_iareg: + short iareg0 - tbl_iareg + short iareg1 - tbl_iareg + short iareg2 - tbl_iareg + short iareg3 - tbl_iareg + short iareg4 - tbl_iareg + short iareg5 - tbl_iareg + short iareg6 - tbl_iareg + short iareg7 - tbl_iareg + +iareg0: add.l %d0,EXC_DREGS+0x8(%a6) + rts +iareg1: add.l %d0,EXC_DREGS+0xc(%a6) + rts +iareg2: add.l %d0,%a2 + rts +iareg3: add.l %d0,%a3 + rts +iareg4: add.l %d0,%a4 + rts +iareg5: add.l %d0,%a5 + rts +iareg6: add.l %d0,(%a6) + rts +iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) + cmpi.b %d0,&0x1 + beq.b iareg7b + add.l %d0,EXC_A7(%a6) + rts +iareg7b: + addq.l &0x2,EXC_A7(%a6) + rts + +######################################################################### +# XDEF **************************************************************** # +# dec_areg(): decrement an address register by the value in d0 # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = amount to decrement by # +# d1 = index of address register to decrement # +# # +# OUTPUT ************************************************************** # +# (address register is updated) # +# # +# ALGORITHM *********************************************************** # +# Typically used for an instruction w/ a pre-decrement <ea>, # +# this routine adds the decrement value in d0 to the address register # +# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # +# in their original places. # +# For a7, if the decrement amount is one, then we have to # +# decrement by two. For any a7 update, set the mda7_flag so that if # +# an access error exception occurs later in emulation, this address # +# register update can be undone. # +# # +######################################################################### + + global dec_areg +dec_areg: + mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 + jmp (tbl_dareg.b,%pc,%d1.w*1) + +tbl_dareg: + short dareg0 - tbl_dareg + short dareg1 - tbl_dareg + short dareg2 - tbl_dareg + short dareg3 - tbl_dareg + short dareg4 - tbl_dareg + short dareg5 - tbl_dareg + short dareg6 - tbl_dareg + short dareg7 - tbl_dareg + +dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) + rts +dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) + rts +dareg2: sub.l %d0,%a2 + rts +dareg3: sub.l %d0,%a3 + rts +dareg4: sub.l %d0,%a4 + rts +dareg5: sub.l %d0,%a5 + rts +dareg6: sub.l %d0,(%a6) + rts +dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) + cmpi.b %d0,&0x1 + beq.b dareg7b + sub.l %d0,EXC_A7(%a6) + rts +dareg7b: + subq.l &0x2,EXC_A7(%a6) + rts + +############################################################################## + +######################################################################### +# XDEF **************************************************************** # +# load_fpn1(): load FP register value into FP_SRC(a6). # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = index of FP register to load # +# # +# OUTPUT ************************************************************** # +# FP_SRC(a6) = value loaded from FP register file # +# # +# ALGORITHM *********************************************************** # +# Using the index in d0, load FP_SRC(a6) with a number from the # +# FP register file. # +# # +######################################################################### + + global load_fpn1 +load_fpn1: + mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 + jmp (tbl_load_fpn1.b,%pc,%d0.w*1) + +tbl_load_fpn1: + short load_fpn1_0 - tbl_load_fpn1 + short load_fpn1_1 - tbl_load_fpn1 + short load_fpn1_2 - tbl_load_fpn1 + short load_fpn1_3 - tbl_load_fpn1 + short load_fpn1_4 - tbl_load_fpn1 + short load_fpn1_5 - tbl_load_fpn1 + short load_fpn1_6 - tbl_load_fpn1 + short load_fpn1_7 - tbl_load_fpn1 + +load_fpn1_0: + mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) + mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) + mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_1: + mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) + mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) + mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_2: + fmovm.x &0x20, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_3: + fmovm.x &0x10, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_4: + fmovm.x &0x08, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_5: + fmovm.x &0x04, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_6: + fmovm.x &0x02, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts +load_fpn1_7: + fmovm.x &0x01, FP_SRC(%a6) + lea FP_SRC(%a6), %a0 + rts + +############################################################################# + +######################################################################### +# XDEF **************************************************************** # +# load_fpn2(): load FP register value into FP_DST(a6). # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# d0 = index of FP register to load # +# # +# OUTPUT ************************************************************** # +# FP_DST(a6) = value loaded from FP register file # +# # +# ALGORITHM *********************************************************** # +# Using the index in d0, load FP_DST(a6) with a number from the # +# FP register file. # +# # +######################################################################### + + global load_fpn2 +load_fpn2: + mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 + jmp (tbl_load_fpn2.b,%pc,%d0.w*1) + +tbl_load_fpn2: + short load_fpn2_0 - tbl_load_fpn2 + short load_fpn2_1 - tbl_load_fpn2 + short load_fpn2_2 - tbl_load_fpn2 + short load_fpn2_3 - tbl_load_fpn2 + short load_fpn2_4 - tbl_load_fpn2 + short load_fpn2_5 - tbl_load_fpn2 + short load_fpn2_6 - tbl_load_fpn2 + short load_fpn2_7 - tbl_load_fpn2 + +load_fpn2_0: + mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) + mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) + mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_1: + mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) + mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) + mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_2: + fmovm.x &0x20, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_3: + fmovm.x &0x10, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_4: + fmovm.x &0x08, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_5: + fmovm.x &0x04, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_6: + fmovm.x &0x02, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts +load_fpn2_7: + fmovm.x &0x01, FP_DST(%a6) + lea FP_DST(%a6), %a0 + rts + +############################################################################# + +######################################################################### +# XDEF **************************************************************** # +# store_fpreg(): store an fp value to the fpreg designated d0. # +# # +# XREF **************************************************************** # +# None # +# # +# INPUT *************************************************************** # +# fp0 = extended precision value to store # +# d0 = index of floating-point register # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# Store the value in fp0 to the FP register designated by the # +# value in d0. The FP number can be DENORM or SNAN so we have to be # +# careful that we don't take an exception here. # +# # +######################################################################### + + global store_fpreg +store_fpreg: + mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 + jmp (tbl_store_fpreg.b,%pc,%d0.w*1) + +tbl_store_fpreg: + short store_fpreg_0 - tbl_store_fpreg + short store_fpreg_1 - tbl_store_fpreg + short store_fpreg_2 - tbl_store_fpreg + short store_fpreg_3 - tbl_store_fpreg + short store_fpreg_4 - tbl_store_fpreg + short store_fpreg_5 - tbl_store_fpreg + short store_fpreg_6 - tbl_store_fpreg + short store_fpreg_7 - tbl_store_fpreg + +store_fpreg_0: + fmovm.x &0x80, EXC_FP0(%a6) + rts +store_fpreg_1: + fmovm.x &0x80, EXC_FP1(%a6) + rts +store_fpreg_2: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x20 + rts +store_fpreg_3: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x10 + rts +store_fpreg_4: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x08 + rts +store_fpreg_5: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x04 + rts +store_fpreg_6: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x02 + rts +store_fpreg_7: + fmovm.x &0x01, -(%sp) + fmovm.x (%sp)+, &0x01 + rts + +######################################################################### +# XDEF **************************************************************** # +# get_packed(): fetch a packed operand from memory and then # +# convert it to a floating-point binary number. # +# # +# XREF **************************************************************** # +# _dcalc_ea() - calculate the correct <ea> # +# _mem_read() - fetch the packed operand from memory # +# facc_in_x() - the fetch failed so jump to special exit code # +# decbin() - convert packed to binary extended precision # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# If no failure on _mem_read(): # +# FP_SRC(a6) = packed operand now as a binary FP number # +# # +# ALGORITHM *********************************************************** # +# Get the correct <ea> whihc is the value on the exception stack # +# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # +# Then, fetch the operand from memory. If the fetch fails, exit # +# through facc_in_x(). # +# If the packed operand is a ZERO,NAN, or INF, convert it to # +# its binary representation here. Else, call decbin() which will # +# convert the packed value to an extended precision binary value. # +# # +######################################################################### + +# the stacked <ea> for packed is correct except for -(An). +# the base reg must be updated for both -(An) and (An)+. + global get_packed +get_packed: + mov.l &0xc,%d0 # packed is 12 bytes + bsr.l _dcalc_ea # fetch <ea>; correct An + + lea FP_SRC(%a6),%a1 # pass: ptr to super dst + mov.l &0xc,%d0 # pass: 12 bytes + bsr.l _dmem_read # read packed operand + + tst.l %d1 # did dfetch fail? + bne.l facc_in_x # yes + +# The packed operand is an INF or a NAN if the exponent field is all ones. + bfextu FP_SRC(%a6){&1:&15},%d0 # get exp + cmpi.w %d0,&0x7fff # INF or NAN? + bne.b gp_try_zero # no + rts # operand is an INF or NAN + +# The packed operand is a zero if the mantissa is all zero, else it's +# a normal packed op. +gp_try_zero: + mov.b 3+FP_SRC(%a6),%d0 # get byte 4 + andi.b &0x0f,%d0 # clear all but last nybble + bne.b gp_not_spec # not a zero + tst.l FP_SRC_HI(%a6) # is lw 2 zero? + bne.b gp_not_spec # not a zero + tst.l FP_SRC_LO(%a6) # is lw 3 zero? + bne.b gp_not_spec # not a zero + rts # operand is a ZERO +gp_not_spec: + lea FP_SRC(%a6),%a0 # pass: ptr to packed op + bsr.l decbin # convert to extended + fmovm.x &0x80,FP_SRC(%a6) # make this the srcop + rts + +######################################################################### +# decbin(): Converts normalized packed bcd value pointed to by register # +# a0 to extended-precision value in fp0. # +# # +# INPUT *************************************************************** # +# a0 = pointer to normalized packed bcd value # +# # +# OUTPUT ************************************************************** # +# fp0 = exact fp representation of the packed bcd value. # +# # +# ALGORITHM *********************************************************** # +# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # +# and NaN operands are dispatched without entering this routine) # +# value in 68881/882 format at location (a0). # +# # +# A1. Convert the bcd exponent to binary by successive adds and # +# muls. Set the sign according to SE. Subtract 16 to compensate # +# for the mantissa which is to be interpreted as 17 integer # +# digits, rather than 1 integer and 16 fraction digits. # +# Note: this operation can never overflow. # +# # +# A2. Convert the bcd mantissa to binary by successive # +# adds and muls in FP0. Set the sign according to SM. # +# The mantissa digits will be converted with the decimal point # +# assumed following the least-significant digit. # +# Note: this operation can never overflow. # +# # +# A3. Count the number of leading/trailing zeros in the # +# bcd string. If SE is positive, count the leading zeros; # +# if negative, count the trailing zeros. Set the adjusted # +# exponent equal to the exponent from A1 and the zero count # +# added if SM = 1 and subtracted if SM = 0. Scale the # +# mantissa the equivalent of forcing in the bcd value: # +# # +# SM = 0 a non-zero digit in the integer position # +# SM = 1 a non-zero digit in Mant0, lsd of the fraction # +# # +# this will insure that any value, regardless of its # +# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # +# consistently. # +# # +# A4. Calculate the factor 10^exp in FP1 using a table of # +# 10^(2^n) values. To reduce the error in forming factors # +# greater than 10^27, a directed rounding scheme is used with # +# tables rounded to RN, RM, and RP, according to the table # +# in the comments of the pwrten section. # +# # +# A5. Form the final binary number by scaling the mantissa by # +# the exponent factor. This is done by multiplying the # +# mantissa in FP0 by the factor in FP1 if the adjusted # +# exponent sign is positive, and dividing FP0 by FP1 if # +# it is negative. # +# # +# Clean up and return. Check if the final mul or div was inexact. # +# If so, set INEX1 in USER_FPSR. # +# # +######################################################################### + +# +# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded +# to nearest, minus, and plus, respectively. The tables include +# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding +# is required until the power is greater than 27, however, all +# tables include the first 5 for ease of indexing. +# +RTABLE: + byte 0,0,0,0 + byte 2,3,2,3 + byte 2,3,3,2 + byte 3,2,2,3 + + set FNIBS,7 + set FSTRT,0 + + set ESTRT,4 + set EDIGITS,2 + + global decbin +decbin: + mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input + mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it + mov.l 0x8(%a0),FP_SCR0_LO(%a6) + + lea FP_SCR0(%a6),%a0 + + movm.l &0x3c00,-(%sp) # save d2-d5 + fmovm.x &0x1,-(%sp) # save fp1 +# +# Calculate exponent: +# 1. Copy bcd value in memory for use as a working copy. +# 2. Calculate absolute value of exponent in d1 by mul and add. +# 3. Correct for exponent sign. +# 4. Subtract 16 to compensate for interpreting the mant as all integer digits. +# (i.e., all digits assumed left of the decimal point.) +# +# Register usage: +# +# calc_e: +# (*) d0: temp digit storage +# (*) d1: accumulator for binary exponent +# (*) d2: digit count +# (*) d3: offset pointer +# ( ) d4: first word of bcd +# ( ) a0: pointer to working bcd value +# ( ) a6: pointer to original bcd value +# (*) FP_SCR1: working copy of original bcd value +# (*) L_SCR1: copy of original exponent word +# +calc_e: + mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part + mov.l &ESTRT,%d3 # counter to pick up digits + mov.l (%a0),%d4 # get first word of bcd + clr.l %d1 # zero d1 for accumulator +e_gd: + mulu.l &0xa,%d1 # mul partial product by one digit place + bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 + add.l %d0,%d1 # d1 = d1 + d0 + addq.b &4,%d3 # advance d3 to the next digit + dbf.w %d2,e_gd # if we have used all 3 digits, exit loop + btst &30,%d4 # get SE + beq.b e_pos # don't negate if pos + neg.l %d1 # negate before subtracting +e_pos: + sub.l &16,%d1 # sub to compensate for shift of mant + bge.b e_save # if still pos, do not neg + neg.l %d1 # now negative, make pos and set SE + or.l &0x40000000,%d4 # set SE in d4, + or.l &0x40000000,(%a0) # and in working bcd +e_save: + mov.l %d1,-(%sp) # save exp on stack +# +# +# Calculate mantissa: +# 1. Calculate absolute value of mantissa in fp0 by mul and add. +# 2. Correct for mantissa sign. +# (i.e., all digits assumed left of the decimal point.) +# +# Register usage: +# +# calc_m: +# (*) d0: temp digit storage +# (*) d1: lword counter +# (*) d2: digit count +# (*) d3: offset pointer +# ( ) d4: words 2 and 3 of bcd +# ( ) a0: pointer to working bcd value +# ( ) a6: pointer to original bcd value +# (*) fp0: mantissa accumulator +# ( ) FP_SCR1: working copy of original bcd value +# ( ) L_SCR1: copy of original exponent word +# +calc_m: + mov.l &1,%d1 # word counter, init to 1 + fmov.s &0x00000000,%fp0 # accumulator +# +# +# Since the packed number has a long word between the first & second parts, +# get the integer digit then skip down & get the rest of the +# mantissa. We will unroll the loop once. +# + bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word + fadd.b %d0,%fp0 # add digit to sum in fp0 +# +# +# Get the rest of the mantissa. +# +loadlw: + mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 + mov.l &FSTRT,%d3 # counter to pick up digits + mov.l &FNIBS,%d2 # reset number of digits per a0 ptr +md2b: + fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 + bfextu %d4{%d3:&4},%d0 # get the digit and zero extend + fadd.b %d0,%fp0 # fp0 = fp0 + digit +# +# +# If all the digits (8) in that long word have been converted (d2=0), +# then inc d1 (=2) to point to the next long word and reset d3 to 0 +# to initialize the digit offset, and set d2 to 7 for the digit count; +# else continue with this long word. +# + addq.b &4,%d3 # advance d3 to the next digit + dbf.w %d2,md2b # check for last digit in this lw +nextlw: + addq.l &1,%d1 # inc lw pointer in mantissa + cmp.l %d1,&2 # test for last lw + ble.b loadlw # if not, get last one +# +# Check the sign of the mant and make the value in fp0 the same sign. +# +m_sign: + btst &31,(%a0) # test sign of the mantissa + beq.b ap_st_z # if clear, go to append/strip zeros + fneg.x %fp0 # if set, negate fp0 +# +# Append/strip zeros: +# +# For adjusted exponents which have an absolute value greater than 27*, +# this routine calculates the amount needed to normalize the mantissa +# for the adjusted exponent. That number is subtracted from the exp +# if the exp was positive, and added if it was negative. The purpose +# of this is to reduce the value of the exponent and the possibility +# of error in calculation of pwrten. +# +# 1. Branch on the sign of the adjusted exponent. +# 2p.(positive exp) +# 2. Check M16 and the digits in lwords 2 and 3 in decending order. +# 3. Add one for each zero encountered until a non-zero digit. +# 4. Subtract the count from the exp. +# 5. Check if the exp has crossed zero in #3 above; make the exp abs +# and set SE. +# 6. Multiply the mantissa by 10**count. +# 2n.(negative exp) +# 2. Check the digits in lwords 3 and 2 in decending order. +# 3. Add one for each zero encountered until a non-zero digit. +# 4. Add the count to the exp. +# 5. Check if the exp has crossed zero in #3 above; clear SE. +# 6. Divide the mantissa by 10**count. +# +# *Why 27? If the adjusted exponent is within -28 < expA < 28, than +# any adjustment due to append/strip zeros will drive the resultane +# exponent towards zero. Since all pwrten constants with a power +# of 27 or less are exact, there is no need to use this routine to +# attempt to lessen the resultant exponent. +# +# Register usage: +# +# ap_st_z: +# (*) d0: temp digit storage +# (*) d1: zero count +# (*) d2: digit count +# (*) d3: offset pointer +# ( ) d4: first word of bcd +# (*) d5: lword counter +# ( ) a0: pointer to working bcd value +# ( ) FP_SCR1: working copy of original bcd value +# ( ) L_SCR1: copy of original exponent word +# +# +# First check the absolute value of the exponent to see if this +# routine is necessary. If so, then check the sign of the exponent +# and do append (+) or strip (-) zeros accordingly. +# This section handles a positive adjusted exponent. +# +ap_st_z: + mov.l (%sp),%d1 # load expA for range test + cmp.l %d1,&27 # test is with 27 + ble.w pwrten # if abs(expA) <28, skip ap/st zeros + btst &30,(%a0) # check sign of exp + bne.b ap_st_n # if neg, go to neg side + clr.l %d1 # zero count reg + mov.l (%a0),%d4 # load lword 1 to d4 + bfextu %d4{&28:&4},%d0 # get M16 in d0 + bne.b ap_p_fx # if M16 is non-zero, go fix exp + addq.l &1,%d1 # inc zero count + mov.l &1,%d5 # init lword counter + mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 + bne.b ap_p_cl # if lw 2 is zero, skip it + addq.l &8,%d1 # and inc count by 8 + addq.l &1,%d5 # inc lword counter + mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 +ap_p_cl: + clr.l %d3 # init offset reg + mov.l &7,%d2 # init digit counter +ap_p_gd: + bfextu %d4{%d3:&4},%d0 # get digit + bne.b ap_p_fx # if non-zero, go to fix exp + addq.l &4,%d3 # point to next digit + addq.l &1,%d1 # inc digit counter + dbf.w %d2,ap_p_gd # get next digit +ap_p_fx: + mov.l %d1,%d0 # copy counter to d2 + mov.l (%sp),%d1 # get adjusted exp from memory + sub.l %d0,%d1 # subtract count from exp + bge.b ap_p_fm # if still pos, go to pwrten + neg.l %d1 # now its neg; get abs + mov.l (%a0),%d4 # load lword 1 to d4 + or.l &0x40000000,%d4 # and set SE in d4 + or.l &0x40000000,(%a0) # and in memory +# +# Calculate the mantissa multiplier to compensate for the striping of +# zeros from the mantissa. +# +ap_p_fm: + lea.l PTENRN(%pc),%a1 # get address of power-of-ten table + clr.l %d3 # init table index + fmov.s &0x3f800000,%fp1 # init fp1 to 1 + mov.l &3,%d2 # init d2 to count bits in counter +ap_p_el: + asr.l &1,%d0 # shift lsb into carry + bcc.b ap_p_en # if 1, mul fp1 by pwrten factor + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +ap_p_en: + add.l &12,%d3 # inc d3 to next rtable entry + tst.l %d0 # check if d0 is zero + bne.b ap_p_el # if not, get next bit + fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) + bra.b pwrten # go calc pwrten +# +# This section handles a negative adjusted exponent. +# +ap_st_n: + clr.l %d1 # clr counter + mov.l &2,%d5 # set up d5 to point to lword 3 + mov.l (%a0,%d5.L*4),%d4 # get lword 3 + bne.b ap_n_cl # if not zero, check digits + sub.l &1,%d5 # dec d5 to point to lword 2 + addq.l &8,%d1 # inc counter by 8 + mov.l (%a0,%d5.L*4),%d4 # get lword 2 +ap_n_cl: + mov.l &28,%d3 # point to last digit + mov.l &7,%d2 # init digit counter +ap_n_gd: + bfextu %d4{%d3:&4},%d0 # get digit + bne.b ap_n_fx # if non-zero, go to exp fix + subq.l &4,%d3 # point to previous digit + addq.l &1,%d1 # inc digit counter + dbf.w %d2,ap_n_gd # get next digit +ap_n_fx: + mov.l %d1,%d0 # copy counter to d0 + mov.l (%sp),%d1 # get adjusted exp from memory + sub.l %d0,%d1 # subtract count from exp + bgt.b ap_n_fm # if still pos, go fix mantissa + neg.l %d1 # take abs of exp and clr SE + mov.l (%a0),%d4 # load lword 1 to d4 + and.l &0xbfffffff,%d4 # and clr SE in d4 + and.l &0xbfffffff,(%a0) # and in memory +# +# Calculate the mantissa multiplier to compensate for the appending of +# zeros to the mantissa. +# +ap_n_fm: + lea.l PTENRN(%pc),%a1 # get address of power-of-ten table + clr.l %d3 # init table index + fmov.s &0x3f800000,%fp1 # init fp1 to 1 + mov.l &3,%d2 # init d2 to count bits in counter +ap_n_el: + asr.l &1,%d0 # shift lsb into carry + bcc.b ap_n_en # if 1, mul fp1 by pwrten factor + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +ap_n_en: + add.l &12,%d3 # inc d3 to next rtable entry + tst.l %d0 # check if d0 is zero + bne.b ap_n_el # if not, get next bit + fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) +# +# +# Calculate power-of-ten factor from adjusted and shifted exponent. +# +# Register usage: +# +# pwrten: +# (*) d0: temp +# ( ) d1: exponent +# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp +# (*) d3: FPCR work copy +# ( ) d4: first word of bcd +# (*) a1: RTABLE pointer +# calc_p: +# (*) d0: temp +# ( ) d1: exponent +# (*) d3: PWRTxx table index +# ( ) a0: pointer to working copy of bcd +# (*) a1: PWRTxx pointer +# (*) fp1: power-of-ten accumulator +# +# Pwrten calculates the exponent factor in the selected rounding mode +# according to the following table: +# +# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode +# +# ANY ANY RN RN +# +# + + RP RP +# - + RP RM +# + - RP RM +# - - RP RP +# +# + + RM RM +# - + RM RP +# + - RM RP +# - - RM RM +# +# + + RZ RM +# - + RZ RM +# + - RZ RP +# - - RZ RP +# +# +pwrten: + mov.l USER_FPCR(%a6),%d3 # get user's FPCR + bfextu %d3{&26:&2},%d2 # isolate rounding mode bits + mov.l (%a0),%d4 # reload 1st bcd word to d4 + asl.l &2,%d2 # format d2 to be + bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} + add.l %d0,%d2 # in d2 as index into RTABLE + lea.l RTABLE(%pc),%a1 # load rtable base + mov.b (%a1,%d2),%d0 # load new rounding bits from table + clr.l %d3 # clear d3 to force no exc and extended + bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR + fmov.l %d3,%fpcr # write new FPCR + asr.l &1,%d0 # write correct PTENxx table + bcc.b not_rp # to a1 + lea.l PTENRP(%pc),%a1 # it is RP + bra.b calc_p # go to init section +not_rp: + asr.l &1,%d0 # keep checking + bcc.b not_rm + lea.l PTENRM(%pc),%a1 # it is RM + bra.b calc_p # go to init section +not_rm: + lea.l PTENRN(%pc),%a1 # it is RN +calc_p: + mov.l %d1,%d0 # copy exp to d0;use d0 + bpl.b no_neg # if exp is negative, + neg.l %d0 # invert it + or.l &0x40000000,(%a0) # and set SE bit +no_neg: + clr.l %d3 # table index + fmov.s &0x3f800000,%fp1 # init fp1 to 1 +e_loop: + asr.l &1,%d0 # shift next bit into carry + bcc.b e_next # if zero, skip the mul + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +e_next: + add.l &12,%d3 # inc d3 to next rtable entry + tst.l %d0 # check if d0 is zero + bne.b e_loop # not zero, continue shifting +# +# +# Check the sign of the adjusted exp and make the value in fp0 the +# same sign. If the exp was pos then multiply fp1*fp0; +# else divide fp0/fp1. +# +# Register Usage: +# norm: +# ( ) a0: pointer to working bcd value +# (*) fp0: mantissa accumulator +# ( ) fp1: scaling factor - 10**(abs(exp)) +# +pnorm: + btst &30,(%a0) # test the sign of the exponent + beq.b mul # if clear, go to multiply +div: + fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp + bra.b end_dec +mul: + fmul.x %fp1,%fp0 # exp is positive, so multiply by exp +# +# +# Clean up and return with result in fp0. +# +# If the final mul/div in decbin incurred an inex exception, +# it will be inex2, but will be reported as inex1 by get_op. +# +end_dec: + fmov.l %fpsr,%d0 # get status register + bclr &inex2_bit+8,%d0 # test for inex2 and clear it + beq.b no_exc # skip this if no exc + ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX +no_exc: + add.l &0x4,%sp # clear 1 lw param + fmovm.x (%sp)+,&0x40 # restore fp1 + movm.l (%sp)+,&0x3c # restore d2-d5 + fmov.l &0x0,%fpcr + fmov.l &0x0,%fpsr + rts + +######################################################################### +# bindec(): Converts an input in extended precision format to bcd format# +# # +# INPUT *************************************************************** # +# a0 = pointer to the input extended precision value in memory. # +# the input may be either normalized, unnormalized, or # +# denormalized. # +# d0 = contains the k-factor sign-extended to 32-bits. # +# # +# OUTPUT ************************************************************** # +# FP_SCR0(a6) = bcd format result on the stack. # +# # +# ALGORITHM *********************************************************** # +# # +# A1. Set RM and size ext; Set SIGMA = sign of input. # +# The k-factor is saved for use in d7. Clear the # +# BINDEC_FLG for separating normalized/denormalized # +# input. If input is unnormalized or denormalized, # +# normalize it. # +# # +# A2. Set X = abs(input). # +# # +# A3. Compute ILOG. # +# ILOG is the log base 10 of the input value. It is # +# approximated by adding e + 0.f when the original # +# value is viewed as 2^^e * 1.f in extended precision. # +# This value is stored in d6. # +# # +# A4. Clr INEX bit. # +# The operation in A3 above may have set INEX2. # +# # +# A5. Set ICTR = 0; # +# ICTR is a flag used in A13. It must be set before the # +# loop entry A6. # +# # +# A6. Calculate LEN. # +# LEN is the number of digits to be displayed. The # +# k-factor can dictate either the total number of digits, # +# if it is a positive number, or the number of digits # +# after the decimal point which are to be included as # +# significant. See the 68882 manual for examples. # +# If LEN is computed to be greater than 17, set OPERR in # +# USER_FPSR. LEN is stored in d4. # +# # +# A7. Calculate SCALE. # +# SCALE is equal to 10^ISCALE, where ISCALE is the number # +# of decimal places needed to insure LEN integer digits # +# in the output before conversion to bcd. LAMBDA is the # +# sign of ISCALE, used in A9. Fp1 contains # +# 10^^(abs(ISCALE)) using a rounding mode which is a # +# function of the original rounding mode and the signs # +# of ISCALE and X. A table is given in the code. # +# # +# A8. Clr INEX; Force RZ. # +# The operation in A3 above may have set INEX2. # +# RZ mode is forced for the scaling operation to insure # +# only one rounding error. The grs bits are collected in # +# the INEX flag for use in A10. # +# # +# A9. Scale X -> Y. # +# The mantissa is scaled to the desired number of # +# significant digits. The excess digits are collected # +# in INEX2. # +# # +# A10. Or in INEX. # +# If INEX is set, round error occurred. This is # +# compensated for by 'or-ing' in the INEX2 flag to # +# the lsb of Y. # +# # +# A11. Restore original FPCR; set size ext. # +# Perform FINT operation in the user's rounding mode. # +# Keep the size to extended. # +# # +# A12. Calculate YINT = FINT(Y) according to user's rounding # +# mode. The FPSP routine sintd0 is used. The output # +# is in fp0. # +# # +# A13. Check for LEN digits. # +# If the int operation results in more than LEN digits, # +# or less than LEN -1 digits, adjust ILOG and repeat from # +# A6. This test occurs only on the first pass. If the # +# result is exactly 10^LEN, decrement ILOG and divide # +# the mantissa by 10. # +# # +# A14. Convert the mantissa to bcd. # +# The binstr routine is used to convert the LEN digit # +# mantissa to bcd in memory. The input to binstr is # +# to be a fraction; i.e. (mantissa)/10^LEN and adjusted # +# such that the decimal point is to the left of bit 63. # +# The bcd digits are stored in the correct position in # +# the final string area in memory. # +# # +# A15. Convert the exponent to bcd. # +# As in A14 above, the exp is converted to bcd and the # +# digits are stored in the final string. # +# Test the length of the final exponent string. If the # +# length is 4, set operr. # +# # +# A16. Write sign bits to final string. # +# # +######################################################################### + +set BINDEC_FLG, EXC_TEMP # DENORM flag + +# Constants in extended precision +PLOG2: + long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 +PLOG2UP1: + long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 + +# Constants in single precision +FONE: + long 0x3F800000,0x00000000,0x00000000,0x00000000 +FTWO: + long 0x40000000,0x00000000,0x00000000,0x00000000 +FTEN: + long 0x41200000,0x00000000,0x00000000,0x00000000 +F4933: + long 0x459A2800,0x00000000,0x00000000,0x00000000 + +RBDTBL: + byte 0,0,0,0 + byte 3,3,2,2 + byte 3,2,2,3 + byte 2,3,3,2 + +# Implementation Notes: +# +# The registers are used as follows: +# +# d0: scratch; LEN input to binstr +# d1: scratch +# d2: upper 32-bits of mantissa for binstr +# d3: scratch;lower 32-bits of mantissa for binstr +# d4: LEN +# d5: LAMBDA/ICTR +# d6: ILOG +# d7: k-factor +# a0: ptr for original operand/final result +# a1: scratch pointer +# a2: pointer to FP_X; abs(original value) in ext +# fp0: scratch +# fp1: scratch +# fp2: scratch +# F_SCR1: +# F_SCR2: +# L_SCR1: +# L_SCR2: + + global bindec +bindec: + movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} + fmovm.x &0x7,-(%sp) # {%fp0-%fp2} + +# A1. Set RM and size ext. Set SIGMA = sign input; +# The k-factor is saved for use in d7. Clear BINDEC_FLG for +# separating normalized/denormalized input. If the input +# is a denormalized number, set the BINDEC_FLG memory word +# to signal denorm. If the input is unnormalized, normalize +# the input and test for denormalized result. +# + fmov.l &rm_mode*0x10,%fpcr # set RM and ext + mov.l (%a0),L_SCR2(%a6) # save exponent for sign check + mov.l %d0,%d7 # move k-factor to d7 + + clr.b BINDEC_FLG(%a6) # clr norm/denorm flag + cmpi.b STAG(%a6),&DENORM # is input a DENORM? + bne.w A2_str # no; input is a NORM + +# +# Normalize the denorm +# +un_de_norm: + mov.w (%a0),%d0 + and.w &0x7fff,%d0 # strip sign of normalized exp + mov.l 4(%a0),%d1 + mov.l 8(%a0),%d2 +norm_loop: + sub.w &1,%d0 + lsl.l &1,%d2 + roxl.l &1,%d1 + tst.l %d1 + bge.b norm_loop +# +# Test if the normalized input is denormalized +# + tst.w %d0 + bgt.b pos_exp # if greater than zero, it is a norm + st BINDEC_FLG(%a6) # set flag for denorm +pos_exp: + and.w &0x7fff,%d0 # strip sign of normalized exp + mov.w %d0,(%a0) + mov.l %d1,4(%a0) + mov.l %d2,8(%a0) + +# A2. Set X = abs(input). +# +A2_str: + mov.l (%a0),FP_SCR1(%a6) # move input to work space + mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space + mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space + and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) + +# A3. Compute ILOG. +# ILOG is the log base 10 of the input value. It is approx- +# imated by adding e + 0.f when the original value is viewed +# as 2^^e * 1.f in extended precision. This value is stored +# in d6. +# +# Register usage: +# Input/Output +# d0: k-factor/exponent +# d2: x/x +# d3: x/x +# d4: x/x +# d5: x/x +# d6: x/ILOG +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: x/x +# a2: x/x +# fp0: x/float(ILOG) +# fp1: x/x +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X)/Abs(X) with $3fff exponent +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + + tst.b BINDEC_FLG(%a6) # check for denorm + beq.b A3_cont # if clr, continue with norm + mov.l &-4933,%d6 # force ILOG = -4933 + bra.b A4_str +A3_cont: + mov.w FP_SCR1(%a6),%d0 # move exp to d0 + mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff + fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f + sub.w &0x3fff,%d0 # strip off bias + fadd.w %d0,%fp0 # add in exp + fsub.s FONE(%pc),%fp0 # subtract off 1.0 + fbge.w pos_res # if pos, branch + fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 + fmov.l %fp0,%d6 # put ILOG in d6 as a lword + bra.b A4_str # go move out ILOG +pos_res: + fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 + fmov.l %fp0,%d6 # put ILOG in d6 as a lword + + +# A4. Clr INEX bit. +# The operation in A3 above may have set INEX2. + +A4_str: + fmov.l &0,%fpsr # zero all of fpsr - nothing needed + + +# A5. Set ICTR = 0; +# ICTR is a flag used in A13. It must be set before the +# loop entry A6. The lower word of d5 is used for ICTR. + + clr.w %d5 # clear ICTR + +# A6. Calculate LEN. +# LEN is the number of digits to be displayed. The k-factor +# can dictate either the total number of digits, if it is +# a positive number, or the number of digits after the +# original decimal point which are to be included as +# significant. See the 68882 manual for examples. +# If LEN is computed to be greater than 17, set OPERR in +# USER_FPSR. LEN is stored in d4. +# +# Register usage: +# Input/Output +# d0: exponent/Unchanged +# d2: x/x/scratch +# d3: x/x +# d4: exc picture/LEN +# d5: ICTR/Unchanged +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: x/x +# a2: x/x +# fp0: float(ILOG)/Unchanged +# fp1: x/x +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X) with $3fff exponent/Unchanged +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + +A6_str: + tst.l %d7 # branch on sign of k + ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k + mov.l %d7,%d4 # if k > 0, LEN = k + bra.b len_ck # skip to LEN check +k_neg: + mov.l %d6,%d4 # first load ILOG to d4 + sub.l %d7,%d4 # subtract off k + addq.l &1,%d4 # add in the 1 +len_ck: + tst.l %d4 # LEN check: branch on sign of LEN + ble.b LEN_ng # if neg, set LEN = 1 + cmp.l %d4,&17 # test if LEN > 17 + ble.b A7_str # if not, forget it + mov.l &17,%d4 # set max LEN = 17 + tst.l %d7 # if negative, never set OPERR + ble.b A7_str # if positive, continue + or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR + bra.b A7_str # finished here +LEN_ng: + mov.l &1,%d4 # min LEN is 1 + + +# A7. Calculate SCALE. +# SCALE is equal to 10^ISCALE, where ISCALE is the number +# of decimal places needed to insure LEN integer digits +# in the output before conversion to bcd. LAMBDA is the sign +# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using +# the rounding mode as given in the following table (see +# Coonen, p. 7.23 as ref.; however, the SCALE variable is +# of opposite sign in bindec.sa from Coonen). +# +# Initial USE +# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] +# ---------------------------------------------- +# RN 00 0 0 00/0 RN +# RN 00 0 1 00/0 RN +# RN 00 1 0 00/0 RN +# RN 00 1 1 00/0 RN +# RZ 01 0 0 11/3 RP +# RZ 01 0 1 11/3 RP +# RZ 01 1 0 10/2 RM +# RZ 01 1 1 10/2 RM +# RM 10 0 0 11/3 RP +# RM 10 0 1 10/2 RM +# RM 10 1 0 10/2 RM +# RM 10 1 1 11/3 RP +# RP 11 0 0 10/2 RM +# RP 11 0 1 11/3 RP +# RP 11 1 0 11/3 RP +# RP 11 1 1 10/2 RM +# +# Register usage: +# Input/Output +# d0: exponent/scratch - final is 0 +# d2: x/0 or 24 for A9 +# d3: x/scratch - offset ptr into PTENRM array +# d4: LEN/Unchanged +# d5: 0/ICTR:LAMBDA +# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: x/ptr to PTENRM array +# a2: x/x +# fp0: float(ILOG)/Unchanged +# fp1: x/10^ISCALE +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X) with $3fff exponent/Unchanged +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + +A7_str: + tst.l %d7 # test sign of k + bgt.b k_pos # if pos and > 0, skip this + cmp.l %d7,%d6 # test k - ILOG + blt.b k_pos # if ILOG >= k, skip this + mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k +k_pos: + mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 + addq.l &1,%d0 # add the 1 + sub.l %d4,%d0 # sub off LEN + swap %d5 # use upper word of d5 for LAMBDA + clr.w %d5 # set it zero initially + clr.w %d2 # set up d2 for very small case + tst.l %d0 # test sign of ISCALE + bge.b iscale # if pos, skip next inst + addq.w &1,%d5 # if neg, set LAMBDA true + cmp.l %d0,&0xffffecd4 # test iscale <= -4908 + bgt.b no_inf # if false, skip rest + add.l &24,%d0 # add in 24 to iscale + mov.l &24,%d2 # put 24 in d2 for A9 +no_inf: + neg.l %d0 # and take abs of ISCALE +iscale: + fmov.s FONE(%pc),%fp1 # init fp1 to 1 + bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits + lsl.w &1,%d1 # put them in bits 2:1 + add.w %d5,%d1 # add in LAMBDA + lsl.w &1,%d1 # put them in bits 3:1 + tst.l L_SCR2(%a6) # test sign of original x + bge.b x_pos # if pos, don't set bit 0 + addq.l &1,%d1 # if neg, set bit 0 +x_pos: + lea.l RBDTBL(%pc),%a2 # load rbdtbl base + mov.b (%a2,%d1),%d3 # load d3 with new rmode + lsl.l &4,%d3 # put bits in proper position + fmov.l %d3,%fpcr # load bits into fpu + lsr.l &4,%d3 # put bits in proper position + tst.b %d3 # decode new rmode for pten table + bne.b not_rn # if zero, it is RN + lea.l PTENRN(%pc),%a1 # load a1 with RN table base + bra.b rmode # exit decode +not_rn: + lsr.b &1,%d3 # get lsb in carry + bcc.b not_rp2 # if carry clear, it is RM + lea.l PTENRP(%pc),%a1 # load a1 with RP table base + bra.b rmode # exit decode +not_rp2: + lea.l PTENRM(%pc),%a1 # load a1 with RM table base +rmode: + clr.l %d3 # clr table index +e_loop2: + lsr.l &1,%d0 # shift next bit into carry + bcc.b e_next2 # if zero, skip the mul + fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) +e_next2: + add.l &12,%d3 # inc d3 to next pwrten table entry + tst.l %d0 # test if ISCALE is zero + bne.b e_loop2 # if not, loop + +# A8. Clr INEX; Force RZ. +# The operation in A3 above may have set INEX2. +# RZ mode is forced for the scaling operation to insure +# only one rounding error. The grs bits are collected in +# the INEX flag for use in A10. +# +# Register usage: +# Input/Output + + fmov.l &0,%fpsr # clr INEX + fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode + +# A9. Scale X -> Y. +# The mantissa is scaled to the desired number of significant +# digits. The excess digits are collected in INEX2. If mul, +# Check d2 for excess 10 exponential value. If not zero, +# the iscale value would have caused the pwrten calculation +# to overflow. Only a negative iscale can cause this, so +# multiply by 10^(d2), which is now only allowed to be 24, +# with a multiply by 10^8 and 10^16, which is exact since +# 10^24 is exact. If the input was denormalized, we must +# create a busy stack frame with the mul command and the +# two operands, and allow the fpu to complete the multiply. +# +# Register usage: +# Input/Output +# d0: FPCR with RZ mode/Unchanged +# d2: 0 or 24/unchanged +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: ptr to PTENRM array/Unchanged +# a2: x/x +# fp0: float(ILOG)/X adjusted for SCALE (Y) +# fp1: 10^ISCALE/Unchanged +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Abs(X) with $3fff exponent/Unchanged +# L_SCR1:x/x +# L_SCR2:first word of X packed/Unchanged + +A9_str: + fmov.x (%a0),%fp0 # load X from memory + fabs.x %fp0 # use abs(X) + tst.w %d5 # LAMBDA is in lower word of d5 + bne.b sc_mul # if neg (LAMBDA = 1), scale by mul + fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 + bra.w A10_st # branch to A10 + +sc_mul: + tst.b BINDEC_FLG(%a6) # check for denorm + beq.w A9_norm # if norm, continue with mul + +# for DENORM, we must calculate: +# fp0 = input_op * 10^ISCALE * 10^24 +# since the input operand is a DENORM, we can't multiply it directly. +# so, we do the multiplication of the exponents and mantissas separately. +# in this way, we avoid underflow on intermediate stages of the +# multiplication and guarantee a result without exception. + fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack + + mov.w (%sp),%d3 # grab exponent + andi.w &0x7fff,%d3 # clear sign + ori.w &0x8000,(%a0) # make DENORM exp negative + add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp + subi.w &0x3fff,%d3 # subtract BIAS + add.w 36(%a1),%d3 + subi.w &0x3fff,%d3 # subtract BIAS + add.w 48(%a1),%d3 + subi.w &0x3fff,%d3 # subtract BIAS + + bmi.w sc_mul_err # is result is DENORM, punt!!! + + andi.w &0x8000,(%sp) # keep sign + or.w %d3,(%sp) # insert new exponent + andi.w &0x7fff,(%a0) # clear sign bit on DENORM again + mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk + mov.l 0x4(%a0),-(%sp) + mov.l &0x3fff0000,-(%sp) # force exp to zero + fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 + fmul.x (%sp)+,%fp0 + +# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 +# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 + mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa + mov.l 36+4(%a1),-(%sp) + mov.l &0x3fff0000,-(%sp) # force exp to zero + mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa + mov.l 48+4(%a1),-(%sp) + mov.l &0x3fff0000,-(%sp)# force exp to zero + fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 + fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 + bra.b A10_st + +sc_mul_err: + bra.b sc_mul_err + +A9_norm: + tst.w %d2 # test for small exp case + beq.b A9_con # if zero, continue as normal + fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 + fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 +A9_con: + fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 + +# A10. Or in INEX. +# If INEX is set, round error occurred. This is compensated +# for by 'or-ing' in the INEX2 flag to the lsb of Y. +# +# Register usage: +# Input/Output +# d0: FPCR with RZ mode/FPSR with INEX2 isolated +# d2: x/x +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/final result +# a1: ptr to PTENxx array/Unchanged +# a2: x/ptr to FP_SCR1(a6) +# fp0: Y/Y with lsb adjusted +# fp1: 10^ISCALE/Unchanged +# fp2: x/x + +A10_st: + fmov.l %fpsr,%d0 # get FPSR + fmov.x %fp0,FP_SCR1(%a6) # move Y to memory + lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 + btst &9,%d0 # check if INEX2 set + beq.b A11_st # if clear, skip rest + or.l &1,8(%a2) # or in 1 to lsb of mantissa + fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu + + +# A11. Restore original FPCR; set size ext. +# Perform FINT operation in the user's rounding mode. Keep +# the size to extended. The sintdo entry point in the sint +# routine expects the FPCR value to be in USER_FPCR for +# mode and precision. The original FPCR is saved in L_SCR1. + +A11_st: + mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later + and.l &0x00000030,USER_FPCR(%a6) # set size to ext, +# ;block exceptions + + +# A12. Calculate YINT = FINT(Y) according to user's rounding mode. +# The FPSP routine sintd0 is used. The output is in fp0. +# +# Register usage: +# Input/Output +# d0: FPSR with AINEX cleared/FPCR with size set to ext +# d2: x/x/scratch +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/Unchanged +# d6: ILOG/Unchanged +# d7: k-factor/Unchanged +# a0: ptr for original operand/src ptr for sintdo +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored +# fp0: Y/YINT +# fp1: 10^ISCALE/Unchanged +# fp2: x/x +# F_SCR1:x/x +# F_SCR2:Y adjusted for inex/Y with original exponent +# L_SCR1:x/original USER_FPCR +# L_SCR2:first word of X packed/Unchanged + +A12_st: + movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} + mov.l L_SCR1(%a6),-(%sp) + mov.l L_SCR2(%a6),-(%sp) + + lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) + fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) + tst.l L_SCR2(%a6) # test sign of original operand + bge.b do_fint12 # if pos, use Y + or.l &0x80000000,(%a0) # if neg, use -Y +do_fint12: + mov.l USER_FPSR(%a6),-(%sp) +# bsr sintdo # sint routine returns int in fp0 + + fmov.l USER_FPCR(%a6),%fpcr + fmov.l &0x0,%fpsr # clear the AEXC bits!!! +## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode +## andi.l &0x00000030,%d0 +## fmov.l %d0,%fpcr + fint.x FP_SCR1(%a6),%fp0 # do fint() + fmov.l %fpsr,%d0 + or.w %d0,FPSR_EXCEPT(%a6) +## fmov.l &0x0,%fpcr +## fmov.l %fpsr,%d0 # don't keep ccodes +## or.w %d0,FPSR_EXCEPT(%a6) + + mov.b (%sp),USER_FPSR(%a6) + add.l &4,%sp + + mov.l (%sp)+,L_SCR2(%a6) + mov.l (%sp)+,L_SCR1(%a6) + movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} + + mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent + mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR + +# A13. Check for LEN digits. +# If the int operation results in more than LEN digits, +# or less than LEN -1 digits, adjust ILOG and repeat from +# A6. This test occurs only on the first pass. If the +# result is exactly 10^LEN, decrement ILOG and divide +# the mantissa by 10. The calculation of 10^LEN cannot +# be inexact, since all powers of ten upto 10^27 are exact +# in extended precision, so the use of a previous power-of-ten +# table will introduce no error. +# +# +# Register usage: +# Input/Output +# d0: FPCR with size set to ext/scratch final = 0 +# d2: x/x +# d3: x/scratch final = x +# d4: LEN/LEN adjusted +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG/ILOG adjusted +# d7: k-factor/Unchanged +# a0: pointer into memory for packed bcd string formation +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: int portion of Y/abs(YINT) adjusted +# fp1: 10^ISCALE/Unchanged +# fp2: x/10^LEN +# F_SCR1:x/x +# F_SCR2:Y with original exponent/Unchanged +# L_SCR1:original USER_FPCR/Unchanged +# L_SCR2:first word of X packed/Unchanged + +A13_st: + swap %d5 # put ICTR in lower word of d5 + tst.w %d5 # check if ICTR = 0 + bne not_zr # if non-zero, go to second test +# +# Compute 10^(LEN-1) +# + fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 + mov.l %d4,%d0 # put LEN in d0 + subq.l &1,%d0 # d0 = LEN -1 + clr.l %d3 # clr table index +l_loop: + lsr.l &1,%d0 # shift next bit into carry + bcc.b l_next # if zero, skip the mul + fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) +l_next: + add.l &12,%d3 # inc d3 to next pwrten table entry + tst.l %d0 # test if LEN is zero + bne.b l_loop # if not, loop +# +# 10^LEN-1 is computed for this test and A14. If the input was +# denormalized, check only the case in which YINT > 10^LEN. +# + tst.b BINDEC_FLG(%a6) # check if input was norm + beq.b A13_con # if norm, continue with checking + fabs.x %fp0 # take abs of YINT + bra test_2 +# +# Compare abs(YINT) to 10^(LEN-1) and 10^LEN +# +A13_con: + fabs.x %fp0 # take abs of YINT + fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) + fbge.w test_2 # if greater, do next test + subq.l &1,%d6 # subtract 1 from ILOG + mov.w &1,%d5 # set ICTR + fmov.l &rm_mode*0x10,%fpcr # set rmode to RM + fmul.s FTEN(%pc),%fp2 # compute 10^LEN + bra.w A6_str # return to A6 and recompute YINT +test_2: + fmul.s FTEN(%pc),%fp2 # compute 10^LEN + fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN + fblt.w A14_st # if less, all is ok, go to A14 + fbgt.w fix_ex # if greater, fix and redo + fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 + addq.l &1,%d6 # and inc ILOG + bra.b A14_st # and continue elsewhere +fix_ex: + addq.l &1,%d6 # increment ILOG by 1 + mov.w &1,%d5 # set ICTR + fmov.l &rm_mode*0x10,%fpcr # set rmode to RM + bra.w A6_str # return to A6 and recompute YINT +# +# Since ICTR <> 0, we have already been through one adjustment, +# and shouldn't have another; this is to check if abs(YINT) = 10^LEN +# 10^LEN is again computed using whatever table is in a1 since the +# value calculated cannot be inexact. +# +not_zr: + fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 + mov.l %d4,%d0 # put LEN in d0 + clr.l %d3 # clr table index +z_loop: + lsr.l &1,%d0 # shift next bit into carry + bcc.b z_next # if zero, skip the mul + fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) +z_next: + add.l &12,%d3 # inc d3 to next pwrten table entry + tst.l %d0 # test if LEN is zero + bne.b z_loop # if not, loop + fabs.x %fp0 # get abs(YINT) + fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN + fbneq.w A14_st # if not, skip this + fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 + addq.l &1,%d6 # and inc ILOG by 1 + addq.l &1,%d4 # and inc LEN + fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN + +# A14. Convert the mantissa to bcd. +# The binstr routine is used to convert the LEN digit +# mantissa to bcd in memory. The input to binstr is +# to be a fraction; i.e. (mantissa)/10^LEN and adjusted +# such that the decimal point is to the left of bit 63. +# The bcd digits are stored in the correct position in +# the final string area in memory. +# +# +# Register usage: +# Input/Output +# d0: x/LEN call to binstr - final is 0 +# d1: x/0 +# d2: x/ms 32-bits of mant of abs(YINT) +# d3: x/ls 32-bits of mant of abs(YINT) +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG +# d7: k-factor/Unchanged +# a0: pointer into memory for packed bcd string formation +# /ptr to first mantissa byte in result string +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: int portion of Y/abs(YINT) adjusted +# fp1: 10^ISCALE/Unchanged +# fp2: 10^LEN/Unchanged +# F_SCR1:x/Work area for final result +# F_SCR2:Y with original exponent/Unchanged +# L_SCR1:original USER_FPCR/Unchanged +# L_SCR2:first word of X packed/Unchanged + +A14_st: + fmov.l &rz_mode*0x10,%fpcr # force rz for conversion + fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN + lea.l FP_SCR0(%a6),%a0 + fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory + mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 + mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 + clr.l 4(%a0) # zero word 2 of FP_RES + clr.l 8(%a0) # zero word 3 of FP_RES + mov.l (%a0),%d0 # move exponent to d0 + swap %d0 # put exponent in lower word + beq.b no_sft # if zero, don't shift + sub.l &0x3ffd,%d0 # sub bias less 2 to make fract + tst.l %d0 # check if > 1 + bgt.b no_sft # if so, don't shift + neg.l %d0 # make exp positive +m_loop: + lsr.l &1,%d2 # shift d2:d3 right, add 0s + roxr.l &1,%d3 # the number of places + dbf.w %d0,m_loop # given in d0 +no_sft: + tst.l %d2 # check for mantissa of zero + bne.b no_zr # if not, go on + tst.l %d3 # continue zero check + beq.b zer_m # if zero, go directly to binstr +no_zr: + clr.l %d1 # put zero in d1 for addx + add.l &0x00000080,%d3 # inc at bit 7 + addx.l %d1,%d2 # continue inc + and.l &0xffffff80,%d3 # strip off lsb not used by 882 +zer_m: + mov.l %d4,%d0 # put LEN in d0 for binstr call + addq.l &3,%a0 # a0 points to M16 byte in result + bsr binstr # call binstr to convert mant + + +# A15. Convert the exponent to bcd. +# As in A14 above, the exp is converted to bcd and the +# digits are stored in the final string. +# +# Digits are stored in L_SCR1(a6) on return from BINDEC as: +# +# 32 16 15 0 +# ----------------------------------------- +# | 0 | e3 | e2 | e1 | e4 | X | X | X | +# ----------------------------------------- +# +# And are moved into their proper places in FP_SCR0. If digit e4 +# is non-zero, OPERR is signaled. In all cases, all 4 digits are +# written as specified in the 881/882 manual for packed decimal. +# +# Register usage: +# Input/Output +# d0: x/LEN call to binstr - final is 0 +# d1: x/scratch (0);shift count for final exponent packing +# d2: x/ms 32-bits of exp fraction/scratch +# d3: x/ls 32-bits of exp fraction +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG +# d7: k-factor/Unchanged +# a0: ptr to result string/ptr to L_SCR1(a6) +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: abs(YINT) adjusted/float(ILOG) +# fp1: 10^ISCALE/Unchanged +# fp2: 10^LEN/Unchanged +# F_SCR1:Work area for final result/BCD result +# F_SCR2:Y with original exponent/ILOG/10^4 +# L_SCR1:original USER_FPCR/Exponent digits on return from binstr +# L_SCR2:first word of X packed/Unchanged + +A15_st: + tst.b BINDEC_FLG(%a6) # check for denorm + beq.b not_denorm + ftest.x %fp0 # test for zero + fbeq.w den_zero # if zero, use k-factor or 4933 + fmov.l %d6,%fp0 # float ILOG + fabs.x %fp0 # get abs of ILOG + bra.b convrt +den_zero: + tst.l %d7 # check sign of the k-factor + blt.b use_ilog # if negative, use ILOG + fmov.s F4933(%pc),%fp0 # force exponent to 4933 + bra.b convrt # do it +use_ilog: + fmov.l %d6,%fp0 # float ILOG + fabs.x %fp0 # get abs of ILOG + bra.b convrt +not_denorm: + ftest.x %fp0 # test for zero + fbneq.w not_zero # if zero, force exponent + fmov.s FONE(%pc),%fp0 # force exponent to 1 + bra.b convrt # do it +not_zero: + fmov.l %d6,%fp0 # float ILOG + fabs.x %fp0 # get abs of ILOG +convrt: + fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 + fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory + mov.l 4(%a2),%d2 # move word 2 to d2 + mov.l 8(%a2),%d3 # move word 3 to d3 + mov.w (%a2),%d0 # move exp to d0 + beq.b x_loop_fin # if zero, skip the shift + sub.w &0x3ffd,%d0 # subtract off bias + neg.w %d0 # make exp positive +x_loop: + lsr.l &1,%d2 # shift d2:d3 right + roxr.l &1,%d3 # the number of places + dbf.w %d0,x_loop # given in d0 +x_loop_fin: + clr.l %d1 # put zero in d1 for addx + add.l &0x00000080,%d3 # inc at bit 6 + addx.l %d1,%d2 # continue inc + and.l &0xffffff80,%d3 # strip off lsb not used by 882 + mov.l &4,%d0 # put 4 in d0 for binstr call + lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits + bsr binstr # call binstr to convert exp + mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 + mov.l &12,%d1 # use d1 for shift count + lsr.l %d1,%d0 # shift d0 right by 12 + bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 + lsr.l %d1,%d0 # shift d0 right by 12 + bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 + tst.b %d0 # check if e4 is zero + beq.b A16_st # if zero, skip rest + or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR + + +# A16. Write sign bits to final string. +# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). +# +# Register usage: +# Input/Output +# d0: x/scratch - final is x +# d2: x/x +# d3: x/x +# d4: LEN/Unchanged +# d5: ICTR:LAMBDA/LAMBDA:ICTR +# d6: ILOG/ILOG adjusted +# d7: k-factor/Unchanged +# a0: ptr to L_SCR1(a6)/Unchanged +# a1: ptr to PTENxx array/Unchanged +# a2: ptr to FP_SCR1(a6)/Unchanged +# fp0: float(ILOG)/Unchanged +# fp1: 10^ISCALE/Unchanged +# fp2: 10^LEN/Unchanged +# F_SCR1:BCD result with correct signs +# F_SCR2:ILOG/10^4 +# L_SCR1:Exponent digits on return from binstr +# L_SCR2:first word of X packed/Unchanged + +A16_st: + clr.l %d0 # clr d0 for collection of signs + and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 + tst.l L_SCR2(%a6) # check sign of original mantissa + bge.b mant_p # if pos, don't set SM + mov.l &2,%d0 # move 2 in to d0 for SM +mant_p: + tst.l %d6 # check sign of ILOG + bge.b wr_sgn # if pos, don't set SE + addq.l &1,%d0 # set bit 0 in d0 for SE +wr_sgn: + bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 + +# Clean up and restore all registers used. + + fmov.l &0,%fpsr # clear possible inex2/ainex bits + fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} + movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} + rts + + global PTENRN +PTENRN: + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 + + global PTENRP +PTENRP: + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 + + global PTENRM +PTENRM: + long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 + long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 + long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 + long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 + long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 + long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 + long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 + long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 + long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 + long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 + long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 + long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 + long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 + +######################################################################### +# binstr(): Converts a 64-bit binary integer to bcd. # +# # +# INPUT *************************************************************** # +# d2:d3 = 64-bit binary integer # +# d0 = desired length (LEN) # +# a0 = pointer to start in memory for bcd characters # +# (This pointer must point to byte 4 of the first # +# lword of the packed decimal memory string.) # +# # +# OUTPUT ************************************************************** # +# a0 = pointer to LEN bcd digits representing the 64-bit integer. # +# # +# ALGORITHM *********************************************************** # +# The 64-bit binary is assumed to have a decimal point before # +# bit 63. The fraction is multiplied by 10 using a mul by 2 # +# shift and a mul by 8 shift. The bits shifted out of the # +# msb form a decimal digit. This process is iterated until # +# LEN digits are formed. # +# # +# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # +# digit formed will be assumed the least significant. This is # +# to force the first byte formed to have a 0 in the upper 4 bits. # +# # +# A2. Beginning of the loop: # +# Copy the fraction in d2:d3 to d4:d5. # +# # +# A3. Multiply the fraction in d2:d3 by 8 using bit-field # +# extracts and shifts. The three msbs from d2 will go into d1. # +# # +# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # +# will be collected by the carry. # +# # +# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # +# into d2:d3. D1 will contain the bcd digit formed. # +# # +# A6. Test d7. If zero, the digit formed is the ms digit. If non- # +# zero, it is the ls digit. Put the digit in its place in the # +# upper word of d0. If it is the ls digit, write the word # +# from d0 to memory. # +# # +# A7. Decrement d6 (LEN counter) and repeat the loop until zero. # +# # +######################################################################### + +# Implementation Notes: +# +# The registers are used as follows: +# +# d0: LEN counter +# d1: temp used to form the digit +# d2: upper 32-bits of fraction for mul by 8 +# d3: lower 32-bits of fraction for mul by 8 +# d4: upper 32-bits of fraction for mul by 2 +# d5: lower 32-bits of fraction for mul by 2 +# d6: temp for bit-field extracts +# d7: byte digit formation word;digit count {0,1} +# a0: pointer into memory for packed bcd string formation +# + + global binstr +binstr: + movm.l &0xff00,-(%sp) # {%d0-%d7} + +# +# A1: Init d7 +# + mov.l &1,%d7 # init d7 for second digit + subq.l &1,%d0 # for dbf d0 would have LEN+1 passes +# +# A2. Copy d2:d3 to d4:d5. Start loop. +# +loop: + mov.l %d2,%d4 # copy the fraction before muls + mov.l %d3,%d5 # to d4:d5 +# +# A3. Multiply d2:d3 by 8; extract msbs into d1. +# + bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 + asl.l &3,%d2 # shift d2 left by 3 places + bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 + asl.l &3,%d3 # shift d3 left by 3 places + or.l %d6,%d2 # or in msbs from d3 into d2 +# +# A4. Multiply d4:d5 by 2; add carry out to d1. +# + asl.l &1,%d5 # mul d5 by 2 + roxl.l &1,%d4 # mul d4 by 2 + swap %d6 # put 0 in d6 lower word + addx.w %d6,%d1 # add in extend from mul by 2 +# +# A5. Add mul by 8 to mul by 2. D1 contains the digit formed. +# + add.l %d5,%d3 # add lower 32 bits + nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) + addx.l %d4,%d2 # add with extend upper 32 bits + nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) + addx.w %d6,%d1 # add in extend from add to d1 + swap %d6 # with d6 = 0; put 0 in upper word +# +# A6. Test d7 and branch. +# + tst.w %d7 # if zero, store digit & to loop + beq.b first_d # if non-zero, form byte & write +sec_d: + swap %d7 # bring first digit to word d7b + asl.w &4,%d7 # first digit in upper 4 bits d7b + add.w %d1,%d7 # add in ls digit to d7b + mov.b %d7,(%a0)+ # store d7b byte in memory + swap %d7 # put LEN counter in word d7a + clr.w %d7 # set d7a to signal no digits done + dbf.w %d0,loop # do loop some more! + bra.b end_bstr # finished, so exit +first_d: + swap %d7 # put digit word in d7b + mov.w %d1,%d7 # put new digit in d7b + swap %d7 # put LEN counter in word d7a + addq.w &1,%d7 # set d7a to signal first digit done + dbf.w %d0,loop # do loop some more! + swap %d7 # put last digit in string + lsl.w &4,%d7 # move it to upper 4 bits + mov.b %d7,(%a0)+ # store it in memory string +# +# Clean up and return with result in fp0. +# +end_bstr: + movm.l (%sp)+,&0xff # {%d0-%d7} + rts + +######################################################################### +# XDEF **************************************************************** # +# facc_in_b(): dmem_read_byte failed # +# facc_in_w(): dmem_read_word failed # +# facc_in_l(): dmem_read_long failed # +# facc_in_d(): dmem_read of dbl prec failed # +# facc_in_x(): dmem_read of ext prec failed # +# # +# facc_out_b(): dmem_write_byte failed # +# facc_out_w(): dmem_write_word failed # +# facc_out_l(): dmem_write_long failed # +# facc_out_d(): dmem_write of dbl prec failed # +# facc_out_x(): dmem_write of ext prec failed # +# # +# XREF **************************************************************** # +# _real_access() - exit through access error handler # +# # +# INPUT *************************************************************** # +# None # +# # +# OUTPUT ************************************************************** # +# None # +# # +# ALGORITHM *********************************************************** # +# Flow jumps here when an FP data fetch call gets an error # +# result. This means the operating system wants an access error frame # +# made out of the current exception stack frame. # +# So, we first call restore() which makes sure that any updated # +# -(an)+ register gets returned to its pre-exception value and then # +# we change the stack to an access error stack frame. # +# # +######################################################################### + +facc_in_b: + movq.l &0x1,%d0 # one byte + bsr.w restore # fix An + + mov.w &0x0121,EXC_VOFF(%a6) # set FSLW + bra.w facc_finish + +facc_in_w: + movq.l &0x2,%d0 # two bytes + bsr.w restore # fix An + + mov.w &0x0141,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_in_l: + movq.l &0x4,%d0 # four bytes + bsr.w restore # fix An + + mov.w &0x0101,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_in_d: + movq.l &0x8,%d0 # eight bytes + bsr.w restore # fix An + + mov.w &0x0161,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_in_x: + movq.l &0xc,%d0 # twelve bytes + bsr.w restore # fix An + + mov.w &0x0161,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +################################################################ + +facc_out_b: + movq.l &0x1,%d0 # one byte + bsr.w restore # restore An + + mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_w: + movq.l &0x2,%d0 # two bytes + bsr.w restore # restore An + + mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_l: + movq.l &0x4,%d0 # four bytes + bsr.w restore # restore An + + mov.w &0x0081,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_d: + movq.l &0x8,%d0 # eight bytes + bsr.w restore # restore An + + mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW + bra.b facc_finish + +facc_out_x: + mov.l &0xc,%d0 # twelve bytes + bsr.w restore # restore An + + mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW + +# here's where we actually create the access error frame from the +# current exception stack frame. +facc_finish: + mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC + + fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 + fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs + movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 + + unlk %a6 + + mov.l (%sp),-(%sp) # store SR, hi(PC) + mov.l 0x8(%sp),0x4(%sp) # store lo(PC) + mov.l 0xc(%sp),0x8(%sp) # store EA + mov.l &0x00000001,0xc(%sp) # store FSLW + mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) + mov.w &0x4008,0x6(%sp) # store voff + + btst &0x5,(%sp) # supervisor or user mode? + beq.b facc_out2 # user + bset &0x2,0xd(%sp) # set supervisor TM bit + +facc_out2: + bra.l _real_access + +################################################################## + +# if the effective addressing mode was predecrement or postincrement, +# the emulation has already changed its value to the correct post- +# instruction value. but since we're exiting to the access error +# handler, then AN must be returned to its pre-instruction value. +# we do that here. +restore: + mov.b EXC_OPWORD+0x1(%a6),%d1 + andi.b &0x38,%d1 # extract opmode + cmpi.b %d1,&0x18 # postinc? + beq.w rest_inc + cmpi.b %d1,&0x20 # predec? + beq.w rest_dec + rts + +rest_inc: + mov.b EXC_OPWORD+0x1(%a6),%d1 + andi.w &0x0007,%d1 # fetch An + + mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 + jmp (tbl_rest_inc.b,%pc,%d1.w*1) + +tbl_rest_inc: + short ri_a0 - tbl_rest_inc + short ri_a1 - tbl_rest_inc + short ri_a2 - tbl_rest_inc + short ri_a3 - tbl_rest_inc + short ri_a4 - tbl_rest_inc + short ri_a5 - tbl_rest_inc + short ri_a6 - tbl_rest_inc + short ri_a7 - tbl_rest_inc + +ri_a0: + sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 + rts +ri_a1: + sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 + rts +ri_a2: + sub.l %d0,%a2 # fix a2 + rts +ri_a3: + sub.l %d0,%a3 # fix a3 + rts +ri_a4: + sub.l %d0,%a4 # fix a4 + rts +ri_a5: + sub.l %d0,%a5 # fix a5 + rts +ri_a6: + sub.l %d0,(%a6) # fix stacked a6 + rts +# if it's a fmove out instruction, we don't have to fix a7 +# because we hadn't changed it yet. if it's an opclass two +# instruction (data moved in) and the exception was in supervisor +# mode, then also also wasn't updated. if it was user mode, then +# restore the correct a7 which is in the USP currently. +ri_a7: + cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? + bne.b ri_a7_done # out + + btst &0x5,EXC_SR(%a6) # user or supervisor? + bne.b ri_a7_done # supervisor + movc %usp,%a0 # restore USP + sub.l %d0,%a0 + movc %a0,%usp +ri_a7_done: + rts + +# need to invert adjustment value if the <ea> was predec +rest_dec: + neg.l %d0 + bra.b rest_inc |