diff options
author | Jason Wessel <jason.wessel@windriver.com> | 2008-07-29 15:58:52 -0500 |
---|---|---|
committer | Ralf Baechle <ralf@linux-mips.org> | 2008-07-30 21:54:42 +0100 |
commit | 8d60a903d986ffa26c41f0092320a3b9da20bfaf (patch) | |
tree | f05a8ae48e275d55fcfd3acfb7b3b1b601da56ea /arch/mips/kernel/gdb-stub.c | |
parent | 8f8da9adebdf04bfb3b812a7de8706fbf179fd2c (diff) |
[MIPS] kgdb: Remove existing implementation
This patch explicitly removes the kgdb implementation, for mips which
is intended to be followed by a patch that adds a kgdb implementation
for MIPS that makes use of the kgdb core in the kernel.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Diffstat (limited to 'arch/mips/kernel/gdb-stub.c')
-rw-r--r-- | arch/mips/kernel/gdb-stub.c | 1155 |
1 files changed, 0 insertions, 1155 deletions
diff --git a/arch/mips/kernel/gdb-stub.c b/arch/mips/kernel/gdb-stub.c deleted file mode 100644 index 25f4eab8ea9..00000000000 --- a/arch/mips/kernel/gdb-stub.c +++ /dev/null @@ -1,1155 +0,0 @@ -/* - * arch/mips/kernel/gdb-stub.c - * - * Originally written by Glenn Engel, Lake Stevens Instrument Division - * - * Contributed by HP Systems - * - * Modified for SPARC by Stu Grossman, Cygnus Support. - * - * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse - * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> - * - * Copyright (C) 1995 Andreas Busse - * - * Copyright (C) 2003 MontaVista Software Inc. - * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net - */ - -/* - * To enable debugger support, two things need to happen. One, a - * call to set_debug_traps() is necessary in order to allow any breakpoints - * or error conditions to be properly intercepted and reported to gdb. - * Two, a breakpoint needs to be generated to begin communication. This - * is most easily accomplished by a call to breakpoint(). Breakpoint() - * simulates a breakpoint by executing a BREAK instruction. - * - * - * The following gdb commands are supported: - * - * command function Return value - * - * g return the value of the CPU registers hex data or ENN - * G set the value of the CPU registers OK or ENN - * - * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN - * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN - * - * c Resume at current address SNN ( signal NN) - * cAA..AA Continue at address AA..AA SNN - * - * s Step one instruction SNN - * sAA..AA Step one instruction from AA..AA SNN - * - * k kill - * - * ? What was the last sigval ? SNN (signal NN) - * - * bBB..BB Set baud rate to BB..BB OK or BNN, then sets - * baud rate - * - * All commands and responses are sent with a packet which includes a - * checksum. A packet consists of - * - * $<packet info>#<checksum>. - * - * where - * <packet info> :: <characters representing the command or response> - * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> - * - * When a packet is received, it is first acknowledged with either '+' or '-'. - * '+' indicates a successful transfer. '-' indicates a failed transfer. - * - * Example: - * - * Host: Reply: - * $m0,10#2a +$00010203040506070809101112131415#42 - * - * - * ============== - * MORE EXAMPLES: - * ============== - * - * For reference -- the following are the steps that one - * company took (RidgeRun Inc) to get remote gdb debugging - * going. In this scenario the host machine was a PC and the - * target platform was a Galileo EVB64120A MIPS evaluation - * board. - * - * Step 1: - * First download gdb-5.0.tar.gz from the internet. - * and then build/install the package. - * - * Example: - * $ tar zxf gdb-5.0.tar.gz - * $ cd gdb-5.0 - * $ ./configure --target=mips-linux-elf - * $ make - * $ install - * $ which mips-linux-elf-gdb - * /usr/local/bin/mips-linux-elf-gdb - * - * Step 2: - * Configure linux for remote debugging and build it. - * - * Example: - * $ cd ~/linux - * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging> - * $ make - * - * Step 3: - * Download the kernel to the remote target and start - * the kernel running. It will promptly halt and wait - * for the host gdb session to connect. It does this - * since the "Kernel Hacking" option has defined - * CONFIG_KGDB which in turn enables your calls - * to: - * set_debug_traps(); - * breakpoint(); - * - * Step 4: - * Start the gdb session on the host. - * - * Example: - * $ mips-linux-elf-gdb vmlinux - * (gdb) set remotebaud 115200 - * (gdb) target remote /dev/ttyS1 - * ...at this point you are connected to - * the remote target and can use gdb - * in the normal fasion. Setting - * breakpoints, single stepping, - * printing variables, etc. - */ -#include <linux/string.h> -#include <linux/kernel.h> -#include <linux/signal.h> -#include <linux/sched.h> -#include <linux/mm.h> -#include <linux/console.h> -#include <linux/init.h> -#include <linux/smp.h> -#include <linux/spinlock.h> -#include <linux/slab.h> -#include <linux/reboot.h> - -#include <asm/asm.h> -#include <asm/cacheflush.h> -#include <asm/mipsregs.h> -#include <asm/pgtable.h> -#include <asm/system.h> -#include <asm/gdb-stub.h> -#include <asm/inst.h> - -/* - * external low-level support routines - */ - -extern int putDebugChar(char c); /* write a single character */ -extern char getDebugChar(void); /* read and return a single char */ -extern void trap_low(void); - -/* - * breakpoint and test functions - */ -extern void breakpoint(void); -extern void breakinst(void); -extern void async_breakpoint(void); -extern void async_breakinst(void); -extern void adel(void); - -/* - * local prototypes - */ - -static void getpacket(char *buffer); -static void putpacket(char *buffer); -static int computeSignal(int tt); -static int hex(unsigned char ch); -static int hexToInt(char **ptr, int *intValue); -static int hexToLong(char **ptr, long *longValue); -static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault); -void handle_exception(struct gdb_regs *regs); - -int kgdb_enabled; - -/* - * spin locks for smp case - */ -static DEFINE_SPINLOCK(kgdb_lock); -static raw_spinlock_t kgdb_cpulock[NR_CPUS] = { - [0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED, -}; - -/* - * BUFMAX defines the maximum number of characters in inbound/outbound buffers - * at least NUMREGBYTES*2 are needed for register packets - */ -#define BUFMAX 2048 - -static char input_buffer[BUFMAX]; -static char output_buffer[BUFMAX]; -static int initialized; /* !0 means we've been initialized */ -static int kgdb_started; -static const char hexchars[]="0123456789abcdef"; - -/* Used to prevent crashes in memory access. Note that they'll crash anyway if - we haven't set up fault handlers yet... */ -int kgdb_read_byte(unsigned char *address, unsigned char *dest); -int kgdb_write_byte(unsigned char val, unsigned char *dest); - -/* - * Convert ch from a hex digit to an int - */ -static int hex(unsigned char ch) -{ - if (ch >= 'a' && ch <= 'f') - return ch-'a'+10; - if (ch >= '0' && ch <= '9') - return ch-'0'; - if (ch >= 'A' && ch <= 'F') - return ch-'A'+10; - return -1; -} - -/* - * scan for the sequence $<data>#<checksum> - */ -static void getpacket(char *buffer) -{ - unsigned char checksum; - unsigned char xmitcsum; - int i; - int count; - unsigned char ch; - - do { - /* - * wait around for the start character, - * ignore all other characters - */ - while ((ch = (getDebugChar() & 0x7f)) != '$') ; - - checksum = 0; - xmitcsum = -1; - count = 0; - - /* - * now, read until a # or end of buffer is found - */ - while (count < BUFMAX) { - ch = getDebugChar(); - if (ch == '#') - break; - checksum = checksum + ch; - buffer[count] = ch; - count = count + 1; - } - - if (count >= BUFMAX) - continue; - - buffer[count] = 0; - - if (ch == '#') { - xmitcsum = hex(getDebugChar() & 0x7f) << 4; - xmitcsum |= hex(getDebugChar() & 0x7f); - - if (checksum != xmitcsum) - putDebugChar('-'); /* failed checksum */ - else { - putDebugChar('+'); /* successful transfer */ - - /* - * if a sequence char is present, - * reply the sequence ID - */ - if (buffer[2] == ':') { - putDebugChar(buffer[0]); - putDebugChar(buffer[1]); - - /* - * remove sequence chars from buffer - */ - count = strlen(buffer); - for (i=3; i <= count; i++) - buffer[i-3] = buffer[i]; - } - } - } - } - while (checksum != xmitcsum); -} - -/* - * send the packet in buffer. - */ -static void putpacket(char *buffer) -{ - unsigned char checksum; - int count; - unsigned char ch; - - /* - * $<packet info>#<checksum>. - */ - - do { - putDebugChar('$'); - checksum = 0; - count = 0; - - while ((ch = buffer[count]) != 0) { - if (!(putDebugChar(ch))) - return; - checksum += ch; - count += 1; - } - - putDebugChar('#'); - putDebugChar(hexchars[checksum >> 4]); - putDebugChar(hexchars[checksum & 0xf]); - - } - while ((getDebugChar() & 0x7f) != '+'); -} - - -/* - * Convert the memory pointed to by mem into hex, placing result in buf. - * Return a pointer to the last char put in buf (null), in case of mem fault, - * return 0. - * may_fault is non-zero if we are reading from arbitrary memory, but is currently - * not used. - */ -static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault) -{ - unsigned char ch; - - while (count-- > 0) { - if (kgdb_read_byte(mem++, &ch) != 0) - return 0; - *buf++ = hexchars[ch >> 4]; - *buf++ = hexchars[ch & 0xf]; - } - - *buf = 0; - - return buf; -} - -/* - * convert the hex array pointed to by buf into binary to be placed in mem - * return a pointer to the character AFTER the last byte written - * may_fault is non-zero if we are reading from arbitrary memory, but is currently - * not used. - */ -static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault) -{ - int i; - unsigned char ch; - - for (i=0; i<count; i++) - { - if (binary) { - ch = *buf++; - if (ch == 0x7d) - ch = 0x20 ^ *buf++; - } - else { - ch = hex(*buf++) << 4; - ch |= hex(*buf++); - } - if (kgdb_write_byte(ch, mem++) != 0) - return 0; - } - - return mem; -} - -/* - * This table contains the mapping between SPARC hardware trap types, and - * signals, which are primarily what GDB understands. It also indicates - * which hardware traps we need to commandeer when initializing the stub. - */ -static struct hard_trap_info { - unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */ - unsigned char signo; /* Signal that we map this trap into */ -} hard_trap_info[] = { - { 6, SIGBUS }, /* instruction bus error */ - { 7, SIGBUS }, /* data bus error */ - { 9, SIGTRAP }, /* break */ - { 10, SIGILL }, /* reserved instruction */ -/* { 11, SIGILL }, */ /* CPU unusable */ - { 12, SIGFPE }, /* overflow */ - { 13, SIGTRAP }, /* trap */ - { 14, SIGSEGV }, /* virtual instruction cache coherency */ - { 15, SIGFPE }, /* floating point exception */ - { 23, SIGSEGV }, /* watch */ - { 31, SIGSEGV }, /* virtual data cache coherency */ - { 0, 0} /* Must be last */ -}; - -/* Save the normal trap handlers for user-mode traps. */ -void *saved_vectors[32]; - -/* - * Set up exception handlers for tracing and breakpoints - */ -void set_debug_traps(void) -{ - struct hard_trap_info *ht; - unsigned long flags; - unsigned char c; - - local_irq_save(flags); - for (ht = hard_trap_info; ht->tt && ht->signo; ht++) - saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low); - - putDebugChar('+'); /* 'hello world' */ - /* - * In case GDB is started before us, ack any packets - * (presumably "$?#xx") sitting there. - */ - while((c = getDebugChar()) != '$'); - while((c = getDebugChar()) != '#'); - c = getDebugChar(); /* eat first csum byte */ - c = getDebugChar(); /* eat second csum byte */ - putDebugChar('+'); /* ack it */ - - initialized = 1; - local_irq_restore(flags); -} - -void restore_debug_traps(void) -{ - struct hard_trap_info *ht; - unsigned long flags; - - local_irq_save(flags); - for (ht = hard_trap_info; ht->tt && ht->signo; ht++) - set_except_vector(ht->tt, saved_vectors[ht->tt]); - local_irq_restore(flags); -} - -/* - * Convert the MIPS hardware trap type code to a Unix signal number. - */ -static int computeSignal(int tt) -{ - struct hard_trap_info *ht; - - for (ht = hard_trap_info; ht->tt && ht->signo; ht++) - if (ht->tt == tt) - return ht->signo; - - return SIGHUP; /* default for things we don't know about */ -} - -/* - * While we find nice hex chars, build an int. - * Return number of chars processed. - */ -static int hexToInt(char **ptr, int *intValue) -{ - int numChars = 0; - int hexValue; - - *intValue = 0; - - while (**ptr) { - hexValue = hex(**ptr); - if (hexValue < 0) - break; - - *intValue = (*intValue << 4) | hexValue; - numChars ++; - - (*ptr)++; - } - - return (numChars); -} - -static int hexToLong(char **ptr, long *longValue) -{ - int numChars = 0; - int hexValue; - - *longValue = 0; - - while (**ptr) { - hexValue = hex(**ptr); - if (hexValue < 0) - break; - - *longValue = (*longValue << 4) | hexValue; - numChars ++; - - (*ptr)++; - } - - return numChars; -} - - -#if 0 -/* - * Print registers (on target console) - * Used only to debug the stub... - */ -void show_gdbregs(struct gdb_regs * regs) -{ - /* - * Saved main processor registers - */ - printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", - regs->reg0, regs->reg1, regs->reg2, regs->reg3, - regs->reg4, regs->reg5, regs->reg6, regs->reg7); - printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", - regs->reg8, regs->reg9, regs->reg10, regs->reg11, - regs->reg12, regs->reg13, regs->reg14, regs->reg15); - printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", - regs->reg16, regs->reg17, regs->reg18, regs->reg19, - regs->reg20, regs->reg21, regs->reg22, regs->reg23); - printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", - regs->reg24, regs->reg25, regs->reg26, regs->reg27, - regs->reg28, regs->reg29, regs->reg30, regs->reg31); - - /* - * Saved cp0 registers - */ - printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n", - regs->cp0_epc, regs->cp0_status, regs->cp0_cause); -} -#endif /* dead code */ - -/* - * We single-step by setting breakpoints. When an exception - * is handled, we need to restore the instructions hoisted - * when the breakpoints were set. - * - * This is where we save the original instructions. - */ -static struct gdb_bp_save { - unsigned long addr; - unsigned int val; -} step_bp[2]; - -#define BP 0x0000000d /* break opcode */ - -/* - * Set breakpoint instructions for single stepping. - */ -static void single_step(struct gdb_regs *regs) -{ - union mips_instruction insn; - unsigned long targ; - int is_branch, is_cond, i; - - targ = regs->cp0_epc; - insn.word = *(unsigned int *)targ; - is_branch = is_cond = 0; - - switch (insn.i_format.opcode) { - /* - * jr and jalr are in r_format format. - */ - case spec_op: - switch (insn.r_format.func) { - case jalr_op: - case jr_op: - targ = *(®s->reg0 + insn.r_format.rs); - is_branch = 1; - break; - } - break; - - /* - * This group contains: - * bltz_op, bgez_op, bltzl_op, bgezl_op, - * bltzal_op, bgezal_op, bltzall_op, bgezall_op. - */ - case bcond_op: - is_branch = is_cond = 1; - targ += 4 + (insn.i_format.simmediate << 2); - break; - - /* - * These are unconditional and in j_format. - */ - case jal_op: - case j_op: - is_branch = 1; - targ += 4; - targ >>= 28; - targ <<= 28; - targ |= (insn.j_format.target << 2); - break; - - /* - * These are conditional. - */ - case beq_op: - case beql_op: - case bne_op: - case bnel_op: - case blez_op: - case blezl_op: - case bgtz_op: - case bgtzl_op: - case cop0_op: - case cop1_op: - case cop2_op: - case cop1x_op: - is_branch = is_cond = 1; - targ += 4 + (insn.i_format.simmediate << 2); - break; - } - - if (is_branch) { - i = 0; - if (is_cond && targ != (regs->cp0_epc + 8)) { - step_bp[i].addr = regs->cp0_epc + 8; - step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8); - *(unsigned *)(regs->cp0_epc + 8) = BP; - } - step_bp[i].addr = targ; - step_bp[i].val = *(unsigned *)targ; - *(unsigned *)targ = BP; - } else { - step_bp[0].addr = regs->cp0_epc + 4; - step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4); - *(unsigned *)(regs->cp0_epc + 4) = BP; - } -} - -/* - * If asynchronously interrupted by gdb, then we need to set a breakpoint - * at the interrupted instruction so that we wind up stopped with a - * reasonable stack frame. - */ -static struct gdb_bp_save async_bp; - -/* - * Swap the interrupted EPC with our asynchronous breakpoint routine. - * This is safer than stuffing the breakpoint in-place, since no cache - * flushes (or resulting smp_call_functions) are required. The - * assumption is that only one CPU will be handling asynchronous bp's, - * and only one can be active at a time. - */ -extern spinlock_t smp_call_lock; - -void set_async_breakpoint(unsigned long *epc) -{ - /* skip breaking into userland */ - if ((*epc & 0x80000000) == 0) - return; - -#ifdef CONFIG_SMP - /* avoid deadlock if someone is make IPC */ - if (spin_is_locked(&smp_call_lock)) - return; -#endif - - async_bp.addr = *epc; - *epc = (unsigned long)async_breakpoint; -} - -#ifdef CONFIG_SMP -static void kgdb_wait(void *arg) -{ - unsigned flags; - int cpu = smp_processor_id(); - - local_irq_save(flags); - - __raw_spin_lock(&kgdb_cpulock[cpu]); - __raw_spin_unlock(&kgdb_cpulock[cpu]); - - local_irq_restore(flags); -} -#endif - -/* - * GDB stub needs to call kgdb_wait on all processor with interrupts - * disabled, so it uses it's own special variant. - */ -static int kgdb_smp_call_kgdb_wait(void) -{ -#ifdef CONFIG_SMP - cpumask_t mask = cpu_online_map; - struct call_data_struct data; - int cpu = smp_processor_id(); - int cpus; - - /* - * Can die spectacularly if this CPU isn't yet marked online - */ - BUG_ON(!cpu_online(cpu)); - - cpu_clear(cpu, mask); - cpus = cpus_weight(mask); - if (!cpus) - return 0; - - if (spin_is_locked(&smp_call_lock)) { - /* - * Some other processor is trying to make us do something - * but we're not going to respond... give up - */ - return -1; - } - - /* - * We will continue here, accepting the fact that - * the kernel may deadlock if another CPU attempts - * to call smp_call_function now... - */ - - data.func = kgdb_wait; - data.info = NULL; - atomic_set(&data.started, 0); - data.wait = 0; - - spin_lock(&smp_call_lock); - call_data = &data; - mb(); - - core_send_ipi_mask(mask, SMP_CALL_FUNCTION); - - /* Wait for response */ - /* FIXME: lock-up detection, backtrace on lock-up */ - while (atomic_read(&data.started) != cpus) - barrier(); - - call_data = NULL; - spin_unlock(&smp_call_lock); -#endif - - return 0; -} - -/* - * This function does all command processing for interfacing to gdb. It - * returns 1 if you should skip the instruction at the trap address, 0 - * otherwise. - */ -void handle_exception(struct gdb_regs *regs) -{ - int trap; /* Trap type */ - int sigval; - long addr; - int length; - char *ptr; - unsigned long *stack; - int i; - int bflag = 0; - - kgdb_started = 1; - - /* - * acquire the big kgdb spinlock - */ - if (!spin_trylock(&kgdb_lock)) { - /* - * some other CPU has the lock, we should go back to - * receive the gdb_wait IPC - */ - return; - } - - /* - * If we're in async_breakpoint(), restore the real EPC from - * the breakpoint. - */ - if (regs->cp0_epc == (unsigned long)async_breakinst) { - regs->cp0_epc = async_bp.addr; - async_bp.addr = 0; - } - - /* - * acquire the CPU spinlocks - */ - for_each_online_cpu(i) - if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0) - panic("kgdb: couldn't get cpulock %d\n", i); - - /* - * force other cpus to enter kgdb - */ - kgdb_smp_call_kgdb_wait(); - - /* - * If we're in breakpoint() increment the PC - */ - trap = (regs->cp0_cause & 0x7c) >> 2; - if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst) - regs->cp0_epc += 4; - - /* - * If we were single_stepping, restore the opcodes hoisted - * for the breakpoint[s]. - */ - if (step_bp[0].addr) { - *(unsigned *)step_bp[0].addr = step_bp[0].val; - step_bp[0].addr = 0; - - if (step_bp[1].addr) { - *(unsigned *)step_bp[1].addr = step_bp[1].val; - step_bp[1].addr = 0; - } - } - - stack = (long *)regs->reg29; /* stack ptr */ - sigval = computeSignal(trap); - - /* - * reply to host that an exception has occurred - */ - ptr = output_buffer; - - /* - * Send trap type (converted to signal) - */ - *ptr++ = 'T'; - *ptr++ = hexchars[sigval >> 4]; - *ptr++ = hexchars[sigval & 0xf]; - - /* - * Send Error PC - */ - *ptr++ = hexchars[REG_EPC >> 4]; - *ptr++ = hexchars[REG_EPC & 0xf]; - *ptr++ = ':'; - ptr = mem2hex((char *)®s->cp0_epc, ptr, sizeof(long), 0); - *ptr++ = ';'; - - /* - * Send frame pointer - */ - *ptr++ = hexchars[REG_FP >> 4]; - *ptr++ = hexchars[REG_FP & 0xf]; - *ptr++ = ':'; - ptr = mem2hex((char *)®s->reg30, ptr, sizeof(long), 0); - *ptr++ = ';'; - - /* - * Send stack pointer - */ - *ptr++ = hexchars[REG_SP >> 4]; - *ptr++ = hexchars[REG_SP & 0xf]; - *ptr++ = ':'; - ptr = mem2hex((char *)®s->reg29, ptr, sizeof(long), 0); - *ptr++ = ';'; - - *ptr++ = 0; - putpacket(output_buffer); /* send it off... */ - - /* - * Wait for input from remote GDB - */ - while (1) { - output_buffer[0] = 0; - getpacket(input_buffer); - - switch (input_buffer[0]) - { - case '?': - output_buffer[0] = 'S'; - output_buffer[1] = hexchars[sigval >> 4]; - output_buffer[2] = hexchars[sigval & 0xf]; - output_buffer[3] = 0; - break; - - /* - * Detach debugger; let CPU run - */ - case 'D': - putpacket(output_buffer); - goto finish_kgdb; - break; - - case 'd': - /* toggle debug flag */ - break; - - /* - * Return the value of the CPU registers - */ - case 'g': - ptr = output_buffer; - ptr = mem2hex((char *)®s->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */ - ptr = mem2hex((char *)®s->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */ - ptr = mem2hex((char *)®s->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */ - ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */ - ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */ - ptr = mem2hex((char *)®s->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */ - break; - - /* - * set the value of the CPU registers - return OK - */ - case 'G': - { - ptr = &input_buffer[1]; - hex2mem(ptr, (char *)®s->reg0, 32*sizeof(long), 0, 0); - ptr += 32*(2*sizeof(long)); - hex2mem(ptr, (char *)®s->cp0_status, 6*sizeof(long), 0, 0); - ptr += 6*(2*sizeof(long)); - hex2mem(ptr, (char *)®s->fpr0, 32*sizeof(long), 0, 0); - ptr += 32*(2*sizeof(long)); - hex2mem(ptr, (char *)®s->cp1_fsr, 2*sizeof(long), 0, 0); - ptr += 2*(2*sizeof(long)); - hex2mem(ptr, (char *)®s->frame_ptr, 2*sizeof(long), 0, 0); - ptr += 2*(2*sizeof(long)); - hex2mem(ptr, (char *)®s->cp0_index, 16*sizeof(long), 0, 0); - strcpy(output_buffer, "OK"); - } - break; - - /* - * mAA..AA,LLLL Read LLLL bytes at address AA..AA - */ - case 'm': - ptr = &input_buffer[1]; - - if (hexToLong(&ptr, &addr) - && *ptr++ == ',' - && hexToInt(&ptr, &length)) { - if (mem2hex((char *)addr, output_buffer, length, 1)) - break; - strcpy(output_buffer, "E03"); - } else - strcpy(output_buffer, "E01"); - break; - - /* - * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA - */ - case 'X': - bflag = 1; - /* fall through */ - - /* - * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK - */ - case 'M': - ptr = &input_buffer[1]; - - if (hexToLong(&ptr, &addr) - && *ptr++ == ',' - && hexToInt(&ptr, &length) - && *ptr++ == ':') { - if (hex2mem(ptr, (char *)addr, length, bflag, 1)) - strcpy(output_buffer, "OK"); - else - strcpy(output_buffer, "E03"); - } - else - strcpy(output_buffer, "E02"); - break; - - /* - * cAA..AA Continue at address AA..AA(optional) - */ - case 'c': - /* try to read optional parameter, pc unchanged if no parm */ - - ptr = &input_buffer[1]; - if (hexToLong(&ptr, &addr)) - regs->cp0_epc = addr; - - goto exit_kgdb_exception; - break; - - /* - * kill the program; let us try to restart the machine - * Reset the whole machine. - */ - case 'k': - case 'r': - machine_restart("kgdb restarts machine"); - break; - - /* - * Step to next instruction - */ - case 's': - /* - * There is no single step insn in the MIPS ISA, so we - * use breakpoints and continue, instead. - */ - single_step(regs); - goto exit_kgdb_exception; - /* NOTREACHED */ - break; - - /* - * Set baud rate (bBB) - * FIXME: Needs to be written - */ - case 'b': - { -#if 0 - int baudrate; - extern void set_timer_3(); - - ptr = &input_buffer[1]; - if (!hexToInt(&ptr, &baudrate)) - { - strcpy(output_buffer, "B01"); - break; - } - - /* Convert baud rate to uart clock divider */ - - switch (baudrate) - { - case 38400: - baudrate = 16; - break; - case 19200: - baudrate = 33; - break; - case 9600: - baudrate = 65; - break; - default: - baudrate = 0; - strcpy(output_buffer, "B02"); - goto x1; - } - - if (baudrate) { - putpacket("OK"); /* Ack before changing speed */ - set_timer_3(baudrate); /* Set it */ - } -#endif - } - break; - - } /* switch */ - - /* - * reply to the request - */ - - putpacket(output_buffer); - - } /* while */ - - return; - -finish_kgdb: - restore_debug_traps(); - -exit_kgdb_exception: - /* release locks so other CPUs can go */ - for_each_online_cpu(i) - __raw_spin_unlock(&kgdb_cpulock[i]); - spin_unlock(&kgdb_lock); - - __flush_cache_all(); - return; -} - -/* - * This function will generate a breakpoint exception. It is used at the - * beginning of a program to sync up with a debugger and can be used - * otherwise as a quick means to stop program execution and "break" into - * the debugger. - */ -void breakpoint(void) -{ - if (!initialized) - return; - - __asm__ __volatile__( - ".globl breakinst\n\t" - ".set\tnoreorder\n\t" - "nop\n" - "breakinst:\tbreak\n\t" - "nop\n\t" - ".set\treorder" - ); -} - -/* Nothing but the break; don't pollute any registers */ -void async_breakpoint(void) -{ - __asm__ __volatile__( - ".globl async_breakinst\n\t" - ".set\tnoreorder\n\t" - "nop\n" - "async_breakinst:\tbreak\n\t" - "nop\n\t" - ".set\treorder" - ); -} - -void adel(void) -{ - __asm__ __volatile__( - ".globl\tadel\n\t" - "lui\t$8,0x8000\n\t" - "lw\t$9,1($8)\n\t" - ); -} - -/* - * malloc is needed by gdb client in "call func()", even a private one - * will make gdb happy - */ -static void __used *malloc(size_t size) -{ - return kmalloc(size, GFP_ATOMIC); -} - -static void __used free(void *where) -{ - kfree(where); -} - -#ifdef CONFIG_GDB_CONSOLE - -void gdb_putsn(const char *str, int l) -{ - char outbuf[18]; - - if (!kgdb_started) - return; - - outbuf[0]='O'; - - while(l) { - int i = (l>8)?8:l; - mem2hex((char *)str, &outbuf[1], i, 0); - outbuf[(i*2)+1]=0; - putpacket(outbuf); - str += i; - l -= i; - } -} - -static void gdb_console_write(struct console *con, const char *s, unsigned n) -{ - gdb_putsn(s, n); -} - -static struct console gdb_console = { - .name = "gdb", - .write = gdb_console_write, - .flags = CON_PRINTBUFFER, - .index = -1 -}; - -static int __init register_gdb_console(void) -{ - register_console(&gdb_console); - - return 0; -} - -console_initcall(register_gdb_console); - -#endif |