summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/time.c
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2010-06-20 19:04:14 +0000
committerThomas Gleixner <tglx@linutronix.de>2010-07-28 21:07:12 +0200
commitd75d68cfef4936ddf38d2694ae2f7d1f7c45db05 (patch)
treed4cfa4a4d6513be8527945e6c55cd282a6152803 /arch/powerpc/kernel/time.c
parent0e469db8f70c2645acdc90981c0480a3e19d5e68 (diff)
powerpc: Clean up obsolete code relating to decrementer and timebase
Since the decrementer and timekeeping code was moved over to using the generic clockevents and timekeeping infrastructure, several variables and functions have been obsolete and effectively unused. This deletes them. In particular, wakeup_decrementer() is no longer needed since the generic code reprograms the decrementer as part of the process of resuming the timekeeping code, which happens during sysdev resume. Thus the wakeup_decrementer calls in the suspend_enter methods for 52xx platforms have been removed. The call in the powermac cpu frequency change code has been replaced by set_dec(1), which will cause a timer interrupt as soon as interrupts are enabled, and the generic code will then reprogram the decrementer with the correct value. This also simplifies the generic_suspend_en/disable_irqs functions and makes them static since they are not referenced outside time.c. The preempt_enable/disable calls are removed because the generic code has disabled all but the boot cpu at the point where these functions are called, so we can't be moved to another cpu. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Diffstat (limited to 'arch/powerpc/kernel/time.c')
-rw-r--r--arch/powerpc/kernel/time.c136
1 files changed, 3 insertions, 133 deletions
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
index 5adebaf47f1..ccb8759c853 100644
--- a/arch/powerpc/kernel/time.c
+++ b/arch/powerpc/kernel/time.c
@@ -149,16 +149,6 @@ unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
-u64 tb_to_xs;
-unsigned tb_to_us;
-
-#define TICKLEN_SCALE NTP_SCALE_SHIFT
-static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
-static u64 ticklen_to_xs; /* 0.64 fraction */
-
-/* If last_tick_len corresponds to about 1/HZ seconds, then
- last_tick_len << TICKLEN_SHIFT will be about 2^63. */
-#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
@@ -174,7 +164,6 @@ unsigned long ppc_proc_freq;
EXPORT_SYMBOL(ppc_proc_freq);
unsigned long ppc_tb_freq;
-static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
@@ -446,7 +435,6 @@ EXPORT_SYMBOL(profile_pc);
static int __init iSeries_tb_recal(void)
{
- struct div_result divres;
unsigned long titan, tb;
/* Make sure we only run on iSeries */
@@ -477,10 +465,7 @@ static int __init iSeries_tb_recal(void)
tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
tb_ticks_per_sec = new_tb_ticks_per_sec;
calc_cputime_factors();
- div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
- tb_to_xs = divres.result_low;
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
- vdso_data->tb_to_xs = tb_to_xs;
setup_cputime_one_jiffy();
}
else {
@@ -643,27 +628,9 @@ void timer_interrupt(struct pt_regs * regs)
trace_timer_interrupt_exit(regs);
}
-void wakeup_decrementer(void)
-{
- unsigned long ticks;
-
- /*
- * The timebase gets saved on sleep and restored on wakeup,
- * so all we need to do is to reset the decrementer.
- */
- ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
- if (ticks < tb_ticks_per_jiffy)
- ticks = tb_ticks_per_jiffy - ticks;
- else
- ticks = 1;
- set_dec(ticks);
-}
-
#ifdef CONFIG_SUSPEND
-void generic_suspend_disable_irqs(void)
+static void generic_suspend_disable_irqs(void)
{
- preempt_disable();
-
/* Disable the decrementer, so that it doesn't interfere
* with suspending.
*/
@@ -673,12 +640,9 @@ void generic_suspend_disable_irqs(void)
set_dec(0x7fffffff);
}
-void generic_suspend_enable_irqs(void)
+static void generic_suspend_enable_irqs(void)
{
- wakeup_decrementer();
-
local_irq_enable();
- preempt_enable();
}
/* Overrides the weak version in kernel/power/main.c */
@@ -698,23 +662,6 @@ void arch_suspend_enable_irqs(void)
}
#endif
-#ifdef CONFIG_SMP
-void __init smp_space_timers(unsigned int max_cpus)
-{
- int i;
- u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
-
- /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
- previous_tb -= tb_ticks_per_jiffy;
-
- for_each_possible_cpu(i) {
- if (i == boot_cpuid)
- continue;
- per_cpu(last_jiffy, i) = previous_tb;
- }
-}
-#endif
-
/*
* Scheduler clock - returns current time in nanosec units.
*
@@ -1014,15 +961,13 @@ void secondary_cpu_time_init(void)
/* This function is only called on the boot processor */
void __init time_init(void)
{
- unsigned long flags;
struct div_result res;
- u64 scale, x;
+ u64 scale;
unsigned shift;
if (__USE_RTC()) {
/* 601 processor: dec counts down by 128 every 128ns */
ppc_tb_freq = 1000000000;
- tb_last_jiffy = get_rtcl();
} else {
/* Normal PowerPC with timebase register */
ppc_md.calibrate_decr();
@@ -1030,50 +975,15 @@ void __init time_init(void)
ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
- tb_last_jiffy = get_tb();
}
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
tb_ticks_per_sec = ppc_tb_freq;
tb_ticks_per_usec = ppc_tb_freq / 1000000;
- tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
calc_cputime_factors();
setup_cputime_one_jiffy();
/*
- * Calculate the length of each tick in ns. It will not be
- * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
- * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
- * rounded up.
- */
- x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
- do_div(x, ppc_tb_freq);
- tick_nsec = x;
- last_tick_len = x << TICKLEN_SCALE;
-
- /*
- * Compute ticklen_to_xs, which is a factor which gets multiplied
- * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
- * It is computed as:
- * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
- * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
- * which turns out to be N = 51 - SHIFT_HZ.
- * This gives the result as a 0.64 fixed-point fraction.
- * That value is reduced by an offset amounting to 1 xsec per
- * 2^31 timebase ticks to avoid problems with time going backwards
- * by 1 xsec when we do timer_recalc_offset due to losing the
- * fractional xsec. That offset is equal to ppc_tb_freq/2^51
- * since there are 2^20 xsec in a second.
- */
- div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
- tb_ticks_per_jiffy << SHIFT_HZ, &res);
- div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
- ticklen_to_xs = res.result_low;
-
- /* Compute tb_to_xs from tick_nsec */
- tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
-
- /*
* Compute scale factor for sched_clock.
* The calibrate_decr() function has set tb_ticks_per_sec,
* which is the timebase frequency.
@@ -1094,21 +1004,14 @@ void __init time_init(void)
/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
boot_tb = get_tb_or_rtc();
- write_seqlock_irqsave(&xtime_lock, flags);
-
/* If platform provided a timezone (pmac), we correct the time */
if (timezone_offset) {
sys_tz.tz_minuteswest = -timezone_offset / 60;
sys_tz.tz_dsttime = 0;
}
- vdso_data->tb_orig_stamp = tb_last_jiffy;
vdso_data->tb_update_count = 0;
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
- vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
- vdso_data->tb_to_xs = tb_to_xs;
-
- write_sequnlock_irqrestore(&xtime_lock, flags);
/* Start the decrementer on CPUs that have manual control
* such as BookE
@@ -1202,39 +1105,6 @@ void to_tm(int tim, struct rtc_time * tm)
GregorianDay(tm);
}
-/* Auxiliary function to compute scaling factors */
-/* Actually the choice of a timebase running at 1/4 the of the bus
- * frequency giving resolution of a few tens of nanoseconds is quite nice.
- * It makes this computation very precise (27-28 bits typically) which
- * is optimistic considering the stability of most processor clock
- * oscillators and the precision with which the timebase frequency
- * is measured but does not harm.
- */
-unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
-{
- unsigned mlt=0, tmp, err;
- /* No concern for performance, it's done once: use a stupid
- * but safe and compact method to find the multiplier.
- */
-
- for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
- if (mulhwu(inscale, mlt|tmp) < outscale)
- mlt |= tmp;
- }
-
- /* We might still be off by 1 for the best approximation.
- * A side effect of this is that if outscale is too large
- * the returned value will be zero.
- * Many corner cases have been checked and seem to work,
- * some might have been forgotten in the test however.
- */
-
- err = inscale * (mlt+1);
- if (err <= inscale/2)
- mlt++;
- return mlt;
-}
-
/*
* Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
* result.