summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms
diff options
context:
space:
mode:
authorBenjamin Herrenschmidt <benh@kernel.crashing.org>2012-07-10 18:36:40 +1000
committerBenjamin Herrenschmidt <benh@kernel.crashing.org>2012-07-10 19:16:07 +1000
commitbe2cf20a5ad31ebb13562c1c866ecc626fbd721e (patch)
tree939537de7ac05fc80b7b8c3588227c2b557b1687 /arch/powerpc/platforms
parent2437fccfbfc83bcb868ccc7fdfe2b5310bf07835 (diff)
powerpc: More fixes for lazy IRQ vs. idle
Looks like we still have issues with pSeries and Cell idle code vs. the lazy irq state. In fact, the reset fixes that went upstream are exposing the problem more by causing BUG_ON() to trigger (which this patch turns into a WARN_ON instead). We need to be careful when using a variant of low power state that has the side effect of turning interrupts back on, to properly set all the SW & lazy state to look as if everything is enabled before we enter the low power state with MSR:EE off as we will return with MSR:EE on. If not, we have a discrepancy of state which can cause things to go very wrong later on. This patch moves the logic into a helper and uses it from the pseries and cell idle code. The power4/970 idle code already got things right (in assembly even !) so I'm not touching it. The power7 "bare metal" idle code is subtly different and correct. Remains PA6T and some hypervisor based Cell platforms which have questionable code in there, but they are mostly dead platforms so I'll fix them when I manage to get final answers from the respective maintainers about how the low power state actually works on them. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: stable@vger.kernel.org [v3.4]
Diffstat (limited to 'arch/powerpc/platforms')
-rw-r--r--arch/powerpc/platforms/cell/pervasive.c11
-rw-r--r--arch/powerpc/platforms/pseries/processor_idle.c17
2 files changed, 16 insertions, 12 deletions
diff --git a/arch/powerpc/platforms/cell/pervasive.c b/arch/powerpc/platforms/cell/pervasive.c
index efdacc82957..d17e98bc0c1 100644
--- a/arch/powerpc/platforms/cell/pervasive.c
+++ b/arch/powerpc/platforms/cell/pervasive.c
@@ -42,11 +42,9 @@ static void cbe_power_save(void)
{
unsigned long ctrl, thread_switch_control;
- /*
- * We need to hard disable interrupts, the local_irq_enable() done by
- * our caller upon return will hard re-enable.
- */
- hard_irq_disable();
+ /* Ensure our interrupt state is properly tracked */
+ if (!prep_irq_for_idle())
+ return;
ctrl = mfspr(SPRN_CTRLF);
@@ -81,6 +79,9 @@ static void cbe_power_save(void)
*/
ctrl &= ~(CTRL_RUNLATCH | CTRL_TE);
mtspr(SPRN_CTRLT, ctrl);
+
+ /* Re-enable interrupts in MSR */
+ __hard_irq_enable();
}
static int cbe_system_reset_exception(struct pt_regs *regs)
diff --git a/arch/powerpc/platforms/pseries/processor_idle.c b/arch/powerpc/platforms/pseries/processor_idle.c
index e61483e8e96..c71be66bd5d 100644
--- a/arch/powerpc/platforms/pseries/processor_idle.c
+++ b/arch/powerpc/platforms/pseries/processor_idle.c
@@ -99,15 +99,18 @@ out:
static void check_and_cede_processor(void)
{
/*
- * Interrupts are soft-disabled at this point,
- * but not hard disabled. So an interrupt might have
- * occurred before entering NAP, and would be potentially
- * lost (edge events, decrementer events, etc...) unless
- * we first hard disable then check.
+ * Ensure our interrupt state is properly tracked,
+ * also checks if no interrupt has occurred while we
+ * were soft-disabled
*/
- hard_irq_disable();
- if (!lazy_irq_pending())
+ if (prep_irq_for_idle()) {
cede_processor();
+#ifdef CONFIG_TRACE_IRQFLAGS
+ /* Ensure that H_CEDE returns with IRQs on */
+ if (WARN_ON(!(mfmsr() & MSR_EE)))
+ __hard_irq_enable();
+#endif
+ }
}
static int dedicated_cede_loop(struct cpuidle_device *dev,