diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc64/mm/hugetlbpage.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc64/mm/hugetlbpage.c')
-rw-r--r-- | arch/ppc64/mm/hugetlbpage.c | 904 |
1 files changed, 904 insertions, 0 deletions
diff --git a/arch/ppc64/mm/hugetlbpage.c b/arch/ppc64/mm/hugetlbpage.c new file mode 100644 index 00000000000..c62ddaff072 --- /dev/null +++ b/arch/ppc64/mm/hugetlbpage.c @@ -0,0 +1,904 @@ +/* + * PPC64 (POWER4) Huge TLB Page Support for Kernel. + * + * Copyright (C) 2003 David Gibson, IBM Corporation. + * + * Based on the IA-32 version: + * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> + */ + +#include <linux/init.h> +#include <linux/fs.h> +#include <linux/mm.h> +#include <linux/hugetlb.h> +#include <linux/pagemap.h> +#include <linux/smp_lock.h> +#include <linux/slab.h> +#include <linux/err.h> +#include <linux/sysctl.h> +#include <asm/mman.h> +#include <asm/pgalloc.h> +#include <asm/tlb.h> +#include <asm/tlbflush.h> +#include <asm/mmu_context.h> +#include <asm/machdep.h> +#include <asm/cputable.h> +#include <asm/tlb.h> + +#include <linux/sysctl.h> + +#define HUGEPGDIR_SHIFT (HPAGE_SHIFT + PAGE_SHIFT - 3) +#define HUGEPGDIR_SIZE (1UL << HUGEPGDIR_SHIFT) +#define HUGEPGDIR_MASK (~(HUGEPGDIR_SIZE-1)) + +#define HUGEPTE_INDEX_SIZE 9 +#define HUGEPGD_INDEX_SIZE 10 + +#define PTRS_PER_HUGEPTE (1 << HUGEPTE_INDEX_SIZE) +#define PTRS_PER_HUGEPGD (1 << HUGEPGD_INDEX_SIZE) + +static inline int hugepgd_index(unsigned long addr) +{ + return (addr & ~REGION_MASK) >> HUGEPGDIR_SHIFT; +} + +static pgd_t *hugepgd_offset(struct mm_struct *mm, unsigned long addr) +{ + int index; + + if (! mm->context.huge_pgdir) + return NULL; + + + index = hugepgd_index(addr); + BUG_ON(index >= PTRS_PER_HUGEPGD); + return mm->context.huge_pgdir + index; +} + +static inline pte_t *hugepte_offset(pgd_t *dir, unsigned long addr) +{ + int index; + + if (pgd_none(*dir)) + return NULL; + + index = (addr >> HPAGE_SHIFT) % PTRS_PER_HUGEPTE; + return (pte_t *)pgd_page(*dir) + index; +} + +static pgd_t *hugepgd_alloc(struct mm_struct *mm, unsigned long addr) +{ + BUG_ON(! in_hugepage_area(mm->context, addr)); + + if (! mm->context.huge_pgdir) { + pgd_t *new; + spin_unlock(&mm->page_table_lock); + /* Don't use pgd_alloc(), because we want __GFP_REPEAT */ + new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT); + BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE)); + spin_lock(&mm->page_table_lock); + + /* + * Because we dropped the lock, we should re-check the + * entry, as somebody else could have populated it.. + */ + if (mm->context.huge_pgdir) + pgd_free(new); + else + mm->context.huge_pgdir = new; + } + return hugepgd_offset(mm, addr); +} + +static pte_t *hugepte_alloc(struct mm_struct *mm, pgd_t *dir, + unsigned long addr) +{ + if (! pgd_present(*dir)) { + pte_t *new; + + spin_unlock(&mm->page_table_lock); + new = kmem_cache_alloc(zero_cache, GFP_KERNEL | __GFP_REPEAT); + BUG_ON(memcmp(new, empty_zero_page, PAGE_SIZE)); + spin_lock(&mm->page_table_lock); + /* + * Because we dropped the lock, we should re-check the + * entry, as somebody else could have populated it.. + */ + if (pgd_present(*dir)) { + if (new) + kmem_cache_free(zero_cache, new); + } else { + struct page *ptepage; + + if (! new) + return NULL; + ptepage = virt_to_page(new); + ptepage->mapping = (void *) mm; + ptepage->index = addr & HUGEPGDIR_MASK; + pgd_populate(mm, dir, new); + } + } + + return hugepte_offset(dir, addr); +} + +static pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) +{ + pgd_t *pgd; + + BUG_ON(! in_hugepage_area(mm->context, addr)); + + pgd = hugepgd_offset(mm, addr); + if (! pgd) + return NULL; + + return hugepte_offset(pgd, addr); +} + +static pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr) +{ + pgd_t *pgd; + + BUG_ON(! in_hugepage_area(mm->context, addr)); + + pgd = hugepgd_alloc(mm, addr); + if (! pgd) + return NULL; + + return hugepte_alloc(mm, pgd, addr); +} + +static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long addr, struct page *page, + pte_t *ptep, int write_access) +{ + pte_t entry; + + add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE); + if (write_access) { + entry = + pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); + } else { + entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); + } + entry = pte_mkyoung(entry); + entry = pte_mkhuge(entry); + + set_pte_at(mm, addr, ptep, entry); +} + +/* + * This function checks for proper alignment of input addr and len parameters. + */ +int is_aligned_hugepage_range(unsigned long addr, unsigned long len) +{ + if (len & ~HPAGE_MASK) + return -EINVAL; + if (addr & ~HPAGE_MASK) + return -EINVAL; + if (! (within_hugepage_low_range(addr, len) + || within_hugepage_high_range(addr, len)) ) + return -EINVAL; + return 0; +} + +static void flush_segments(void *parm) +{ + u16 segs = (unsigned long) parm; + unsigned long i; + + asm volatile("isync" : : : "memory"); + + for (i = 0; i < 16; i++) { + if (! (segs & (1U << i))) + continue; + asm volatile("slbie %0" : : "r" (i << SID_SHIFT)); + } + + asm volatile("isync" : : : "memory"); +} + +static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg) +{ + unsigned long start = seg << SID_SHIFT; + unsigned long end = (seg+1) << SID_SHIFT; + struct vm_area_struct *vma; + unsigned long addr; + struct mmu_gather *tlb; + + BUG_ON(seg >= 16); + + /* Check no VMAs are in the region */ + vma = find_vma(mm, start); + if (vma && (vma->vm_start < end)) + return -EBUSY; + + /* Clean up any leftover PTE pages in the region */ + spin_lock(&mm->page_table_lock); + tlb = tlb_gather_mmu(mm, 0); + for (addr = start; addr < end; addr += PMD_SIZE) { + pgd_t *pgd = pgd_offset(mm, addr); + pmd_t *pmd; + struct page *page; + pte_t *pte; + int i; + + if (pgd_none(*pgd)) + continue; + pmd = pmd_offset(pgd, addr); + if (!pmd || pmd_none(*pmd)) + continue; + if (pmd_bad(*pmd)) { + pmd_ERROR(*pmd); + pmd_clear(pmd); + continue; + } + pte = (pte_t *)pmd_page_kernel(*pmd); + /* No VMAs, so there should be no PTEs, check just in case. */ + for (i = 0; i < PTRS_PER_PTE; i++) { + BUG_ON(!pte_none(*pte)); + pte++; + } + page = pmd_page(*pmd); + pmd_clear(pmd); + mm->nr_ptes--; + dec_page_state(nr_page_table_pages); + pte_free_tlb(tlb, page); + } + tlb_finish_mmu(tlb, start, end); + spin_unlock(&mm->page_table_lock); + + return 0; +} + +static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs) +{ + unsigned long i; + + newsegs &= ~(mm->context.htlb_segs); + if (! newsegs) + return 0; /* The segments we want are already open */ + + for (i = 0; i < 16; i++) + if ((1 << i) & newsegs) + if (prepare_low_seg_for_htlb(mm, i) != 0) + return -EBUSY; + + mm->context.htlb_segs |= newsegs; + + /* update the paca copy of the context struct */ + get_paca()->context = mm->context; + + /* the context change must make it to memory before the flush, + * so that further SLB misses do the right thing. */ + mb(); + on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1); + + return 0; +} + +int prepare_hugepage_range(unsigned long addr, unsigned long len) +{ + if (within_hugepage_high_range(addr, len)) + return 0; + else if ((addr < 0x100000000UL) && ((addr+len) < 0x100000000UL)) { + int err; + /* Yes, we need both tests, in case addr+len overflows + * 64-bit arithmetic */ + err = open_low_hpage_segs(current->mm, + LOW_ESID_MASK(addr, len)); + if (err) + printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)" + " failed (segs: 0x%04hx)\n", addr, len, + LOW_ESID_MASK(addr, len)); + return err; + } + + return -EINVAL; +} + +int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, + struct vm_area_struct *vma) +{ + pte_t *src_pte, *dst_pte, entry; + struct page *ptepage; + unsigned long addr = vma->vm_start; + unsigned long end = vma->vm_end; + int err = -ENOMEM; + + while (addr < end) { + dst_pte = huge_pte_alloc(dst, addr); + if (!dst_pte) + goto out; + + src_pte = huge_pte_offset(src, addr); + entry = *src_pte; + + ptepage = pte_page(entry); + get_page(ptepage); + add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE); + set_pte_at(dst, addr, dst_pte, entry); + + addr += HPAGE_SIZE; + } + + err = 0; + out: + return err; +} + +int +follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, + struct page **pages, struct vm_area_struct **vmas, + unsigned long *position, int *length, int i) +{ + unsigned long vpfn, vaddr = *position; + int remainder = *length; + + WARN_ON(!is_vm_hugetlb_page(vma)); + + vpfn = vaddr/PAGE_SIZE; + while (vaddr < vma->vm_end && remainder) { + if (pages) { + pte_t *pte; + struct page *page; + + pte = huge_pte_offset(mm, vaddr); + + /* hugetlb should be locked, and hence, prefaulted */ + WARN_ON(!pte || pte_none(*pte)); + + page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; + + WARN_ON(!PageCompound(page)); + + get_page(page); + pages[i] = page; + } + + if (vmas) + vmas[i] = vma; + + vaddr += PAGE_SIZE; + ++vpfn; + --remainder; + ++i; + } + + *length = remainder; + *position = vaddr; + + return i; +} + +struct page * +follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) +{ + pte_t *ptep; + struct page *page; + + if (! in_hugepage_area(mm->context, address)) + return ERR_PTR(-EINVAL); + + ptep = huge_pte_offset(mm, address); + page = pte_page(*ptep); + if (page) + page += (address % HPAGE_SIZE) / PAGE_SIZE; + + return page; +} + +int pmd_huge(pmd_t pmd) +{ + return 0; +} + +struct page * +follow_huge_pmd(struct mm_struct *mm, unsigned long address, + pmd_t *pmd, int write) +{ + BUG(); + return NULL; +} + +void unmap_hugepage_range(struct vm_area_struct *vma, + unsigned long start, unsigned long end) +{ + struct mm_struct *mm = vma->vm_mm; + unsigned long addr; + pte_t *ptep; + struct page *page; + + WARN_ON(!is_vm_hugetlb_page(vma)); + BUG_ON((start % HPAGE_SIZE) != 0); + BUG_ON((end % HPAGE_SIZE) != 0); + + for (addr = start; addr < end; addr += HPAGE_SIZE) { + pte_t pte; + + ptep = huge_pte_offset(mm, addr); + if (!ptep || pte_none(*ptep)) + continue; + + pte = *ptep; + page = pte_page(pte); + pte_clear(mm, addr, ptep); + + put_page(page); + } + add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT)); + flush_tlb_pending(); +} + +void hugetlb_free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *prev, + unsigned long start, unsigned long end) +{ + /* Because the huge pgtables are only 2 level, they can take + * at most around 4M, much less than one hugepage which the + * process is presumably entitled to use. So we don't bother + * freeing up the pagetables on unmap, and wait until + * destroy_context() to clean up the lot. */ +} + +int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma) +{ + struct mm_struct *mm = current->mm; + unsigned long addr; + int ret = 0; + + WARN_ON(!is_vm_hugetlb_page(vma)); + BUG_ON((vma->vm_start % HPAGE_SIZE) != 0); + BUG_ON((vma->vm_end % HPAGE_SIZE) != 0); + + spin_lock(&mm->page_table_lock); + for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { + unsigned long idx; + pte_t *pte = huge_pte_alloc(mm, addr); + struct page *page; + + if (!pte) { + ret = -ENOMEM; + goto out; + } + if (! pte_none(*pte)) + continue; + + idx = ((addr - vma->vm_start) >> HPAGE_SHIFT) + + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); + page = find_get_page(mapping, idx); + if (!page) { + /* charge the fs quota first */ + if (hugetlb_get_quota(mapping)) { + ret = -ENOMEM; + goto out; + } + page = alloc_huge_page(); + if (!page) { + hugetlb_put_quota(mapping); + ret = -ENOMEM; + goto out; + } + ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC); + if (! ret) { + unlock_page(page); + } else { + hugetlb_put_quota(mapping); + free_huge_page(page); + goto out; + } + } + set_huge_pte(mm, vma, addr, page, pte, vma->vm_flags & VM_WRITE); + } +out: + spin_unlock(&mm->page_table_lock); + return ret; +} + +/* Because we have an exclusive hugepage region which lies within the + * normal user address space, we have to take special measures to make + * non-huge mmap()s evade the hugepage reserved regions. */ +unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags) +{ + struct mm_struct *mm = current->mm; + struct vm_area_struct *vma; + unsigned long start_addr; + + if (len > TASK_SIZE) + return -ENOMEM; + + if (addr) { + addr = PAGE_ALIGN(addr); + vma = find_vma(mm, addr); + if (((TASK_SIZE - len) >= addr) + && (!vma || (addr+len) <= vma->vm_start) + && !is_hugepage_only_range(mm, addr,len)) + return addr; + } + start_addr = addr = mm->free_area_cache; + +full_search: + vma = find_vma(mm, addr); + while (TASK_SIZE - len >= addr) { + BUG_ON(vma && (addr >= vma->vm_end)); + + if (touches_hugepage_low_range(mm, addr, len)) { + addr = ALIGN(addr+1, 1<<SID_SHIFT); + vma = find_vma(mm, addr); + continue; + } + if (touches_hugepage_high_range(addr, len)) { + addr = TASK_HPAGE_END; + vma = find_vma(mm, addr); + continue; + } + if (!vma || addr + len <= vma->vm_start) { + /* + * Remember the place where we stopped the search: + */ + mm->free_area_cache = addr + len; + return addr; + } + addr = vma->vm_end; + vma = vma->vm_next; + } + + /* Make sure we didn't miss any holes */ + if (start_addr != TASK_UNMAPPED_BASE) { + start_addr = addr = TASK_UNMAPPED_BASE; + goto full_search; + } + return -ENOMEM; +} + +/* + * This mmap-allocator allocates new areas top-down from below the + * stack's low limit (the base): + * + * Because we have an exclusive hugepage region which lies within the + * normal user address space, we have to take special measures to make + * non-huge mmap()s evade the hugepage reserved regions. + */ +unsigned long +arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, + const unsigned long len, const unsigned long pgoff, + const unsigned long flags) +{ + struct vm_area_struct *vma, *prev_vma; + struct mm_struct *mm = current->mm; + unsigned long base = mm->mmap_base, addr = addr0; + int first_time = 1; + + /* requested length too big for entire address space */ + if (len > TASK_SIZE) + return -ENOMEM; + + /* dont allow allocations above current base */ + if (mm->free_area_cache > base) + mm->free_area_cache = base; + + /* requesting a specific address */ + if (addr) { + addr = PAGE_ALIGN(addr); + vma = find_vma(mm, addr); + if (TASK_SIZE - len >= addr && + (!vma || addr + len <= vma->vm_start) + && !is_hugepage_only_range(mm, addr,len)) + return addr; + } + +try_again: + /* make sure it can fit in the remaining address space */ + if (mm->free_area_cache < len) + goto fail; + + /* either no address requested or cant fit in requested address hole */ + addr = (mm->free_area_cache - len) & PAGE_MASK; + do { +hugepage_recheck: + if (touches_hugepage_low_range(mm, addr, len)) { + addr = (addr & ((~0) << SID_SHIFT)) - len; + goto hugepage_recheck; + } else if (touches_hugepage_high_range(addr, len)) { + addr = TASK_HPAGE_BASE - len; + } + + /* + * Lookup failure means no vma is above this address, + * i.e. return with success: + */ + if (!(vma = find_vma_prev(mm, addr, &prev_vma))) + return addr; + + /* + * new region fits between prev_vma->vm_end and + * vma->vm_start, use it: + */ + if (addr+len <= vma->vm_start && + (!prev_vma || (addr >= prev_vma->vm_end))) + /* remember the address as a hint for next time */ + return (mm->free_area_cache = addr); + else + /* pull free_area_cache down to the first hole */ + if (mm->free_area_cache == vma->vm_end) + mm->free_area_cache = vma->vm_start; + + /* try just below the current vma->vm_start */ + addr = vma->vm_start-len; + } while (len <= vma->vm_start); + +fail: + /* + * if hint left us with no space for the requested + * mapping then try again: + */ + if (first_time) { + mm->free_area_cache = base; + first_time = 0; + goto try_again; + } + /* + * A failed mmap() very likely causes application failure, + * so fall back to the bottom-up function here. This scenario + * can happen with large stack limits and large mmap() + * allocations. + */ + mm->free_area_cache = TASK_UNMAPPED_BASE; + addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); + /* + * Restore the topdown base: + */ + mm->free_area_cache = base; + + return addr; +} + +static unsigned long htlb_get_low_area(unsigned long len, u16 segmask) +{ + unsigned long addr = 0; + struct vm_area_struct *vma; + + vma = find_vma(current->mm, addr); + while (addr + len <= 0x100000000UL) { + BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ + + if (! __within_hugepage_low_range(addr, len, segmask)) { + addr = ALIGN(addr+1, 1<<SID_SHIFT); + vma = find_vma(current->mm, addr); + continue; + } + + if (!vma || (addr + len) <= vma->vm_start) + return addr; + addr = ALIGN(vma->vm_end, HPAGE_SIZE); + /* Depending on segmask this might not be a confirmed + * hugepage region, so the ALIGN could have skipped + * some VMAs */ + vma = find_vma(current->mm, addr); + } + + return -ENOMEM; +} + +static unsigned long htlb_get_high_area(unsigned long len) +{ + unsigned long addr = TASK_HPAGE_BASE; + struct vm_area_struct *vma; + + vma = find_vma(current->mm, addr); + for (vma = find_vma(current->mm, addr); + addr + len <= TASK_HPAGE_END; + vma = vma->vm_next) { + BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ + BUG_ON(! within_hugepage_high_range(addr, len)); + + if (!vma || (addr + len) <= vma->vm_start) + return addr; + addr = ALIGN(vma->vm_end, HPAGE_SIZE); + /* Because we're in a hugepage region, this alignment + * should not skip us over any VMAs */ + } + + return -ENOMEM; +} + +unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags) +{ + if (len & ~HPAGE_MASK) + return -EINVAL; + + if (!cpu_has_feature(CPU_FTR_16M_PAGE)) + return -EINVAL; + + if (test_thread_flag(TIF_32BIT)) { + int lastshift = 0; + u16 segmask, cursegs = current->mm->context.htlb_segs; + + /* First see if we can do the mapping in the existing + * low hpage segments */ + addr = htlb_get_low_area(len, cursegs); + if (addr != -ENOMEM) + return addr; + + for (segmask = LOW_ESID_MASK(0x100000000UL-len, len); + ! lastshift; segmask >>=1) { + if (segmask & 1) + lastshift = 1; + + addr = htlb_get_low_area(len, cursegs | segmask); + if ((addr != -ENOMEM) + && open_low_hpage_segs(current->mm, segmask) == 0) + return addr; + } + printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open" + " enough segments\n"); + return -ENOMEM; + } else { + return htlb_get_high_area(len); + } +} + +void hugetlb_mm_free_pgd(struct mm_struct *mm) +{ + int i; + pgd_t *pgdir; + + spin_lock(&mm->page_table_lock); + + pgdir = mm->context.huge_pgdir; + if (! pgdir) + goto out; + + mm->context.huge_pgdir = NULL; + + /* cleanup any hugepte pages leftover */ + for (i = 0; i < PTRS_PER_HUGEPGD; i++) { + pgd_t *pgd = pgdir + i; + + if (! pgd_none(*pgd)) { + pte_t *pte = (pte_t *)pgd_page(*pgd); + struct page *ptepage = virt_to_page(pte); + + ptepage->mapping = NULL; + + BUG_ON(memcmp(pte, empty_zero_page, PAGE_SIZE)); + kmem_cache_free(zero_cache, pte); + } + pgd_clear(pgd); + } + + BUG_ON(memcmp(pgdir, empty_zero_page, PAGE_SIZE)); + kmem_cache_free(zero_cache, pgdir); + + out: + spin_unlock(&mm->page_table_lock); +} + +int hash_huge_page(struct mm_struct *mm, unsigned long access, + unsigned long ea, unsigned long vsid, int local) +{ + pte_t *ptep; + unsigned long va, vpn; + pte_t old_pte, new_pte; + unsigned long hpteflags, prpn; + long slot; + int err = 1; + + spin_lock(&mm->page_table_lock); + + ptep = huge_pte_offset(mm, ea); + + /* Search the Linux page table for a match with va */ + va = (vsid << 28) | (ea & 0x0fffffff); + vpn = va >> HPAGE_SHIFT; + + /* + * If no pte found or not present, send the problem up to + * do_page_fault + */ + if (unlikely(!ptep || pte_none(*ptep))) + goto out; + +/* BUG_ON(pte_bad(*ptep)); */ + + /* + * Check the user's access rights to the page. If access should be + * prevented then send the problem up to do_page_fault. + */ + if (unlikely(access & ~pte_val(*ptep))) + goto out; + /* + * At this point, we have a pte (old_pte) which can be used to build + * or update an HPTE. There are 2 cases: + * + * 1. There is a valid (present) pte with no associated HPTE (this is + * the most common case) + * 2. There is a valid (present) pte with an associated HPTE. The + * current values of the pp bits in the HPTE prevent access + * because we are doing software DIRTY bit management and the + * page is currently not DIRTY. + */ + + + old_pte = *ptep; + new_pte = old_pte; + + hpteflags = 0x2 | (! (pte_val(new_pte) & _PAGE_RW)); + /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ + hpteflags |= ((pte_val(new_pte) & _PAGE_EXEC) ? 0 : HW_NO_EXEC); + + /* Check if pte already has an hpte (case 2) */ + if (unlikely(pte_val(old_pte) & _PAGE_HASHPTE)) { + /* There MIGHT be an HPTE for this pte */ + unsigned long hash, slot; + + hash = hpt_hash(vpn, 1); + if (pte_val(old_pte) & _PAGE_SECONDARY) + hash = ~hash; + slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; + slot += (pte_val(old_pte) & _PAGE_GROUP_IX) >> 12; + + if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1) + pte_val(old_pte) &= ~_PAGE_HPTEFLAGS; + } + + if (likely(!(pte_val(old_pte) & _PAGE_HASHPTE))) { + unsigned long hash = hpt_hash(vpn, 1); + unsigned long hpte_group; + + prpn = pte_pfn(old_pte); + +repeat: + hpte_group = ((hash & htab_hash_mask) * + HPTES_PER_GROUP) & ~0x7UL; + + /* Update the linux pte with the HPTE slot */ + pte_val(new_pte) &= ~_PAGE_HPTEFLAGS; + pte_val(new_pte) |= _PAGE_HASHPTE; + + /* Add in WIMG bits */ + /* XXX We should store these in the pte */ + hpteflags |= _PAGE_COHERENT; + + slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0, + hpteflags, 0, 1); + + /* Primary is full, try the secondary */ + if (unlikely(slot == -1)) { + pte_val(new_pte) |= _PAGE_SECONDARY; + hpte_group = ((~hash & htab_hash_mask) * + HPTES_PER_GROUP) & ~0x7UL; + slot = ppc_md.hpte_insert(hpte_group, va, prpn, + 1, hpteflags, 0, 1); + if (slot == -1) { + if (mftb() & 0x1) + hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; + + ppc_md.hpte_remove(hpte_group); + goto repeat; + } + } + + if (unlikely(slot == -2)) + panic("hash_huge_page: pte_insert failed\n"); + + pte_val(new_pte) |= (slot<<12) & _PAGE_GROUP_IX; + + /* + * No need to use ldarx/stdcx here because all who + * might be updating the pte will hold the + * page_table_lock + */ + *ptep = new_pte; + } + + err = 0; + + out: + spin_unlock(&mm->page_table_lock); + + return err; +} |