summaryrefslogtreecommitdiffstats
path: root/arch/x86/math-emu/wm_sqrt.S
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 11:16:31 +0200
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 11:16:31 +0200
commitda957e111bb0c189a4a3bf8a00caaecb59ed94ca (patch)
tree6916075fdd3e28869dcd3dfa2cf160a74d1cb02e /arch/x86/math-emu/wm_sqrt.S
parent2ec1df4130c60d1eb49dc0fa0ed15858fede6b05 (diff)
i386: move math-emu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/math-emu/wm_sqrt.S')
-rw-r--r--arch/x86/math-emu/wm_sqrt.S470
1 files changed, 470 insertions, 0 deletions
diff --git a/arch/x86/math-emu/wm_sqrt.S b/arch/x86/math-emu/wm_sqrt.S
new file mode 100644
index 00000000000..d258f59564e
--- /dev/null
+++ b/arch/x86/math-emu/wm_sqrt.S
@@ -0,0 +1,470 @@
+ .file "wm_sqrt.S"
+/*---------------------------------------------------------------------------+
+ | wm_sqrt.S |
+ | |
+ | Fixed point arithmetic square root evaluation. |
+ | |
+ | Copyright (C) 1992,1993,1995,1997 |
+ | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
+ | Australia. E-mail billm@suburbia.net |
+ | |
+ | Call from C as: |
+ | int wm_sqrt(FPU_REG *n, unsigned int control_word) |
+ | |
+ +---------------------------------------------------------------------------*/
+
+/*---------------------------------------------------------------------------+
+ | wm_sqrt(FPU_REG *n, unsigned int control_word) |
+ | returns the square root of n in n. |
+ | |
+ | Use Newton's method to compute the square root of a number, which must |
+ | be in the range [1.0 .. 4.0), to 64 bits accuracy. |
+ | Does not check the sign or tag of the argument. |
+ | Sets the exponent, but not the sign or tag of the result. |
+ | |
+ | The guess is kept in %esi:%edi |
+ +---------------------------------------------------------------------------*/
+
+#include "exception.h"
+#include "fpu_emu.h"
+
+
+#ifndef NON_REENTRANT_FPU
+/* Local storage on the stack: */
+#define FPU_accum_3 -4(%ebp) /* ms word */
+#define FPU_accum_2 -8(%ebp)
+#define FPU_accum_1 -12(%ebp)
+#define FPU_accum_0 -16(%ebp)
+
+/*
+ * The de-normalised argument:
+ * sq_2 sq_1 sq_0
+ * b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0
+ * ^ binary point here
+ */
+#define FPU_fsqrt_arg_2 -20(%ebp) /* ms word */
+#define FPU_fsqrt_arg_1 -24(%ebp)
+#define FPU_fsqrt_arg_0 -28(%ebp) /* ls word, at most the ms bit is set */
+
+#else
+/* Local storage in a static area: */
+.data
+ .align 4,0
+FPU_accum_3:
+ .long 0 /* ms word */
+FPU_accum_2:
+ .long 0
+FPU_accum_1:
+ .long 0
+FPU_accum_0:
+ .long 0
+
+/* The de-normalised argument:
+ sq_2 sq_1 sq_0
+ b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0
+ ^ binary point here
+ */
+FPU_fsqrt_arg_2:
+ .long 0 /* ms word */
+FPU_fsqrt_arg_1:
+ .long 0
+FPU_fsqrt_arg_0:
+ .long 0 /* ls word, at most the ms bit is set */
+#endif /* NON_REENTRANT_FPU */
+
+
+.text
+ENTRY(wm_sqrt)
+ pushl %ebp
+ movl %esp,%ebp
+#ifndef NON_REENTRANT_FPU
+ subl $28,%esp
+#endif /* NON_REENTRANT_FPU */
+ pushl %esi
+ pushl %edi
+ pushl %ebx
+
+ movl PARAM1,%esi
+
+ movl SIGH(%esi),%eax
+ movl SIGL(%esi),%ecx
+ xorl %edx,%edx
+
+/* We use a rough linear estimate for the first guess.. */
+
+ cmpw EXP_BIAS,EXP(%esi)
+ jnz sqrt_arg_ge_2
+
+ shrl $1,%eax /* arg is in the range [1.0 .. 2.0) */
+ rcrl $1,%ecx
+ rcrl $1,%edx
+
+sqrt_arg_ge_2:
+/* From here on, n is never accessed directly again until it is
+ replaced by the answer. */
+
+ movl %eax,FPU_fsqrt_arg_2 /* ms word of n */
+ movl %ecx,FPU_fsqrt_arg_1
+ movl %edx,FPU_fsqrt_arg_0
+
+/* Make a linear first estimate */
+ shrl $1,%eax
+ addl $0x40000000,%eax
+ movl $0xaaaaaaaa,%ecx
+ mull %ecx
+ shll %edx /* max result was 7fff... */
+ testl $0x80000000,%edx /* but min was 3fff... */
+ jnz sqrt_prelim_no_adjust
+
+ movl $0x80000000,%edx /* round up */
+
+sqrt_prelim_no_adjust:
+ movl %edx,%esi /* Our first guess */
+
+/* We have now computed (approx) (2 + x) / 3, which forms the basis
+ for a few iterations of Newton's method */
+
+ movl FPU_fsqrt_arg_2,%ecx /* ms word */
+
+/*
+ * From our initial estimate, three iterations are enough to get us
+ * to 30 bits or so. This will then allow two iterations at better
+ * precision to complete the process.
+ */
+
+/* Compute (g + n/g)/2 at each iteration (g is the guess). */
+ shrl %ecx /* Doing this first will prevent a divide */
+ /* overflow later. */
+
+ movl %ecx,%edx /* msw of the arg / 2 */
+ divl %esi /* current estimate */
+ shrl %esi /* divide by 2 */
+ addl %eax,%esi /* the new estimate */
+
+ movl %ecx,%edx
+ divl %esi
+ shrl %esi
+ addl %eax,%esi
+
+ movl %ecx,%edx
+ divl %esi
+ shrl %esi
+ addl %eax,%esi
+
+/*
+ * Now that an estimate accurate to about 30 bits has been obtained (in %esi),
+ * we improve it to 60 bits or so.
+ *
+ * The strategy from now on is to compute new estimates from
+ * guess := guess + (n - guess^2) / (2 * guess)
+ */
+
+/* First, find the square of the guess */
+ movl %esi,%eax
+ mull %esi
+/* guess^2 now in %edx:%eax */
+
+ movl FPU_fsqrt_arg_1,%ecx
+ subl %ecx,%eax
+ movl FPU_fsqrt_arg_2,%ecx /* ms word of normalized n */
+ sbbl %ecx,%edx
+ jnc sqrt_stage_2_positive
+
+/* Subtraction gives a negative result,
+ negate the result before division. */
+ notl %edx
+ notl %eax
+ addl $1,%eax
+ adcl $0,%edx
+
+ divl %esi
+ movl %eax,%ecx
+
+ movl %edx,%eax
+ divl %esi
+ jmp sqrt_stage_2_finish
+
+sqrt_stage_2_positive:
+ divl %esi
+ movl %eax,%ecx
+
+ movl %edx,%eax
+ divl %esi
+
+ notl %ecx
+ notl %eax
+ addl $1,%eax
+ adcl $0,%ecx
+
+sqrt_stage_2_finish:
+ sarl $1,%ecx /* divide by 2 */
+ rcrl $1,%eax
+
+ /* Form the new estimate in %esi:%edi */
+ movl %eax,%edi
+ addl %ecx,%esi
+
+ jnz sqrt_stage_2_done /* result should be [1..2) */
+
+#ifdef PARANOID
+/* It should be possible to get here only if the arg is ffff....ffff */
+ cmp $0xffffffff,FPU_fsqrt_arg_1
+ jnz sqrt_stage_2_error
+#endif /* PARANOID */
+
+/* The best rounded result. */
+ xorl %eax,%eax
+ decl %eax
+ movl %eax,%edi
+ movl %eax,%esi
+ movl $0x7fffffff,%eax
+ jmp sqrt_round_result
+
+#ifdef PARANOID
+sqrt_stage_2_error:
+ pushl EX_INTERNAL|0x213
+ call EXCEPTION
+#endif /* PARANOID */
+
+sqrt_stage_2_done:
+
+/* Now the square root has been computed to better than 60 bits. */
+
+/* Find the square of the guess. */
+ movl %edi,%eax /* ls word of guess */
+ mull %edi
+ movl %edx,FPU_accum_1
+
+ movl %esi,%eax
+ mull %esi
+ movl %edx,FPU_accum_3
+ movl %eax,FPU_accum_2
+
+ movl %edi,%eax
+ mull %esi
+ addl %eax,FPU_accum_1
+ adcl %edx,FPU_accum_2
+ adcl $0,FPU_accum_3
+
+/* movl %esi,%eax */
+/* mull %edi */
+ addl %eax,FPU_accum_1
+ adcl %edx,FPU_accum_2
+ adcl $0,FPU_accum_3
+
+/* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */
+
+ movl FPU_fsqrt_arg_0,%eax /* get normalized n */
+ subl %eax,FPU_accum_1
+ movl FPU_fsqrt_arg_1,%eax
+ sbbl %eax,FPU_accum_2
+ movl FPU_fsqrt_arg_2,%eax /* ms word of normalized n */
+ sbbl %eax,FPU_accum_3
+ jnc sqrt_stage_3_positive
+
+/* Subtraction gives a negative result,
+ negate the result before division */
+ notl FPU_accum_1
+ notl FPU_accum_2
+ notl FPU_accum_3
+ addl $1,FPU_accum_1
+ adcl $0,FPU_accum_2
+
+#ifdef PARANOID
+ adcl $0,FPU_accum_3 /* This must be zero */
+ jz sqrt_stage_3_no_error
+
+sqrt_stage_3_error:
+ pushl EX_INTERNAL|0x207
+ call EXCEPTION
+
+sqrt_stage_3_no_error:
+#endif /* PARANOID */
+
+ movl FPU_accum_2,%edx
+ movl FPU_accum_1,%eax
+ divl %esi
+ movl %eax,%ecx
+
+ movl %edx,%eax
+ divl %esi
+
+ sarl $1,%ecx /* divide by 2 */
+ rcrl $1,%eax
+
+ /* prepare to round the result */
+
+ addl %ecx,%edi
+ adcl $0,%esi
+
+ jmp sqrt_stage_3_finished
+
+sqrt_stage_3_positive:
+ movl FPU_accum_2,%edx
+ movl FPU_accum_1,%eax
+ divl %esi
+ movl %eax,%ecx
+
+ movl %edx,%eax
+ divl %esi
+
+ sarl $1,%ecx /* divide by 2 */
+ rcrl $1,%eax
+
+ /* prepare to round the result */
+
+ notl %eax /* Negate the correction term */
+ notl %ecx
+ addl $1,%eax
+ adcl $0,%ecx /* carry here ==> correction == 0 */
+ adcl $0xffffffff,%esi
+
+ addl %ecx,%edi
+ adcl $0,%esi
+
+sqrt_stage_3_finished:
+
+/*
+ * The result in %esi:%edi:%esi should be good to about 90 bits here,
+ * and the rounding information here does not have sufficient accuracy
+ * in a few rare cases.
+ */
+ cmpl $0xffffffe0,%eax
+ ja sqrt_near_exact_x
+
+ cmpl $0x00000020,%eax
+ jb sqrt_near_exact
+
+ cmpl $0x7fffffe0,%eax
+ jb sqrt_round_result
+
+ cmpl $0x80000020,%eax
+ jb sqrt_get_more_precision
+
+sqrt_round_result:
+/* Set up for rounding operations */
+ movl %eax,%edx
+ movl %esi,%eax
+ movl %edi,%ebx
+ movl PARAM1,%edi
+ movw EXP_BIAS,EXP(%edi) /* Result is in [1.0 .. 2.0) */
+ jmp fpu_reg_round
+
+
+sqrt_near_exact_x:
+/* First, the estimate must be rounded up. */
+ addl $1,%edi
+ adcl $0,%esi
+
+sqrt_near_exact:
+/*
+ * This is an easy case because x^1/2 is monotonic.
+ * We need just find the square of our estimate, compare it
+ * with the argument, and deduce whether our estimate is
+ * above, below, or exact. We use the fact that the estimate
+ * is known to be accurate to about 90 bits.
+ */
+ movl %edi,%eax /* ls word of guess */
+ mull %edi
+ movl %edx,%ebx /* 2nd ls word of square */
+ movl %eax,%ecx /* ls word of square */
+
+ movl %edi,%eax
+ mull %esi
+ addl %eax,%ebx
+ addl %eax,%ebx
+
+#ifdef PARANOID
+ cmp $0xffffffb0,%ebx
+ jb sqrt_near_exact_ok
+
+ cmp $0x00000050,%ebx
+ ja sqrt_near_exact_ok
+
+ pushl EX_INTERNAL|0x214
+ call EXCEPTION
+
+sqrt_near_exact_ok:
+#endif /* PARANOID */
+
+ or %ebx,%ebx
+ js sqrt_near_exact_small
+
+ jnz sqrt_near_exact_large
+
+ or %ebx,%edx
+ jnz sqrt_near_exact_large
+
+/* Our estimate is exactly the right answer */
+ xorl %eax,%eax
+ jmp sqrt_round_result
+
+sqrt_near_exact_small:
+/* Our estimate is too small */
+ movl $0x000000ff,%eax
+ jmp sqrt_round_result
+
+sqrt_near_exact_large:
+/* Our estimate is too large, we need to decrement it */
+ subl $1,%edi
+ sbbl $0,%esi
+ movl $0xffffff00,%eax
+ jmp sqrt_round_result
+
+
+sqrt_get_more_precision:
+/* This case is almost the same as the above, except we start
+ with an extra bit of precision in the estimate. */
+ stc /* The extra bit. */
+ rcll $1,%edi /* Shift the estimate left one bit */
+ rcll $1,%esi
+
+ movl %edi,%eax /* ls word of guess */
+ mull %edi
+ movl %edx,%ebx /* 2nd ls word of square */
+ movl %eax,%ecx /* ls word of square */
+
+ movl %edi,%eax
+ mull %esi
+ addl %eax,%ebx
+ addl %eax,%ebx
+
+/* Put our estimate back to its original value */
+ stc /* The ms bit. */
+ rcrl $1,%esi /* Shift the estimate left one bit */
+ rcrl $1,%edi
+
+#ifdef PARANOID
+ cmp $0xffffff60,%ebx
+ jb sqrt_more_prec_ok
+
+ cmp $0x000000a0,%ebx
+ ja sqrt_more_prec_ok
+
+ pushl EX_INTERNAL|0x215
+ call EXCEPTION
+
+sqrt_more_prec_ok:
+#endif /* PARANOID */
+
+ or %ebx,%ebx
+ js sqrt_more_prec_small
+
+ jnz sqrt_more_prec_large
+
+ or %ebx,%ecx
+ jnz sqrt_more_prec_large
+
+/* Our estimate is exactly the right answer */
+ movl $0x80000000,%eax
+ jmp sqrt_round_result
+
+sqrt_more_prec_small:
+/* Our estimate is too small */
+ movl $0x800000ff,%eax
+ jmp sqrt_round_result
+
+sqrt_more_prec_large:
+/* Our estimate is too large */
+ movl $0x7fffff00,%eax
+ jmp sqrt_round_result