summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/cpufreq_conservative.c
diff options
context:
space:
mode:
authorAnton Vorontsov <anton.vorontsov@linaro.org>2012-12-11 22:15:57 -0800
committerAnton Vorontsov <anton.vorontsov@linaro.org>2012-12-11 22:15:57 -0800
commit76d8a23b127020472207b281427d3e9f4f1227e4 (patch)
treee14d7063d96d850fb259115d6fb08cbeb98ccf88 /drivers/cpufreq/cpufreq_conservative.c
parenteba3b670a9166a91be5a11fe33290dca6b9457a2 (diff)
parent1ebaf4f4e6912199f8a4e30ba3ab55da2b71bcdf (diff)
Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
The merge is merely to fix conflicts before sending a pull request. Conflicts: drivers/power/ab8500_btemp.c drivers/power/ab8500_charger.c drivers/power/ab8500_fg.c drivers/power/abx500_chargalg.c drivers/power/max8925_power.c Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Diffstat (limited to 'drivers/cpufreq/cpufreq_conservative.c')
-rw-r--r--drivers/cpufreq/cpufreq_conservative.c558
1 files changed, 147 insertions, 411 deletions
diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c
index a152af7e199..64ef737e7e7 100644
--- a/drivers/cpufreq/cpufreq_conservative.c
+++ b/drivers/cpufreq/cpufreq_conservative.c
@@ -11,83 +11,30 @@
* published by the Free Software Foundation.
*/
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/init.h>
#include <linux/cpufreq.h>
-#include <linux/cpu.h>
-#include <linux/jiffies.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
#include <linux/kernel_stat.h>
+#include <linux/kobject.h>
+#include <linux/module.h>
#include <linux/mutex.h>
-#include <linux/hrtimer.h>
-#include <linux/tick.h>
-#include <linux/ktime.h>
-#include <linux/sched.h>
+#include <linux/notifier.h>
+#include <linux/percpu-defs.h>
+#include <linux/sysfs.h>
+#include <linux/types.h>
-/*
- * dbs is used in this file as a shortform for demandbased switching
- * It helps to keep variable names smaller, simpler
- */
+#include "cpufreq_governor.h"
+/* Conservative governor macors */
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
-
-/*
- * The polling frequency of this governor depends on the capability of
- * the processor. Default polling frequency is 1000 times the transition
- * latency of the processor. The governor will work on any processor with
- * transition latency <= 10mS, using appropriate sampling
- * rate.
- * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
- * this governor will not work.
- * All times here are in uS.
- */
-#define MIN_SAMPLING_RATE_RATIO (2)
-
-static unsigned int min_sampling_rate;
-
-#define LATENCY_MULTIPLIER (1000)
-#define MIN_LATENCY_MULTIPLIER (100)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (10)
-#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
-
-static void do_dbs_timer(struct work_struct *work);
-
-struct cpu_dbs_info_s {
- cputime64_t prev_cpu_idle;
- cputime64_t prev_cpu_wall;
- cputime64_t prev_cpu_nice;
- struct cpufreq_policy *cur_policy;
- struct delayed_work work;
- unsigned int down_skip;
- unsigned int requested_freq;
- int cpu;
- unsigned int enable:1;
- /*
- * percpu mutex that serializes governor limit change with
- * do_dbs_timer invocation. We do not want do_dbs_timer to run
- * when user is changing the governor or limits.
- */
- struct mutex timer_mutex;
-};
-static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
-static unsigned int dbs_enable; /* number of CPUs using this policy */
+static struct dbs_data cs_dbs_data;
+static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
-/*
- * dbs_mutex protects dbs_enable in governor start/stop.
- */
-static DEFINE_MUTEX(dbs_mutex);
-
-static struct dbs_tuners {
- unsigned int sampling_rate;
- unsigned int sampling_down_factor;
- unsigned int up_threshold;
- unsigned int down_threshold;
- unsigned int ignore_nice;
- unsigned int freq_step;
-} dbs_tuners_ins = {
+static struct cs_dbs_tuners cs_tuners = {
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
@@ -95,95 +42,121 @@ static struct dbs_tuners {
.freq_step = 5,
};
-static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
+/*
+ * Every sampling_rate, we check, if current idle time is less than 20%
+ * (default), then we try to increase frequency Every sampling_rate *
+ * sampling_down_factor, we check, if current idle time is more than 80%, then
+ * we try to decrease frequency
+ *
+ * Any frequency increase takes it to the maximum frequency. Frequency reduction
+ * happens at minimum steps of 5% (default) of maximum frequency
+ */
+static void cs_check_cpu(int cpu, unsigned int load)
{
- u64 idle_time;
- u64 cur_wall_time;
- u64 busy_time;
+ struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
+ struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
+ unsigned int freq_target;
+
+ /*
+ * break out if we 'cannot' reduce the speed as the user might
+ * want freq_step to be zero
+ */
+ if (cs_tuners.freq_step == 0)
+ return;
- cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
+ /* Check for frequency increase */
+ if (load > cs_tuners.up_threshold) {
+ dbs_info->down_skip = 0;
- busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
- busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
+ /* if we are already at full speed then break out early */
+ if (dbs_info->requested_freq == policy->max)
+ return;
- idle_time = cur_wall_time - busy_time;
- if (wall)
- *wall = jiffies_to_usecs(cur_wall_time);
+ freq_target = (cs_tuners.freq_step * policy->max) / 100;
- return jiffies_to_usecs(idle_time);
+ /* max freq cannot be less than 100. But who knows.... */
+ if (unlikely(freq_target == 0))
+ freq_target = 5;
+
+ dbs_info->requested_freq += freq_target;
+ if (dbs_info->requested_freq > policy->max)
+ dbs_info->requested_freq = policy->max;
+
+ __cpufreq_driver_target(policy, dbs_info->requested_freq,
+ CPUFREQ_RELATION_H);
+ return;
+ }
+
+ /*
+ * The optimal frequency is the frequency that is the lowest that can
+ * support the current CPU usage without triggering the up policy. To be
+ * safe, we focus 10 points under the threshold.
+ */
+ if (load < (cs_tuners.down_threshold - 10)) {
+ freq_target = (cs_tuners.freq_step * policy->max) / 100;
+
+ dbs_info->requested_freq -= freq_target;
+ if (dbs_info->requested_freq < policy->min)
+ dbs_info->requested_freq = policy->min;
+
+ /*
+ * if we cannot reduce the frequency anymore, break out early
+ */
+ if (policy->cur == policy->min)
+ return;
+
+ __cpufreq_driver_target(policy, dbs_info->requested_freq,
+ CPUFREQ_RELATION_H);
+ return;
+ }
}
-static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
+static void cs_dbs_timer(struct work_struct *work)
{
- u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
+ struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
+ struct cs_cpu_dbs_info_s, cdbs.work.work);
+ unsigned int cpu = dbs_info->cdbs.cpu;
+ int delay = delay_for_sampling_rate(cs_tuners.sampling_rate);
- if (idle_time == -1ULL)
- return get_cpu_idle_time_jiffy(cpu, wall);
- else
- idle_time += get_cpu_iowait_time_us(cpu, wall);
+ mutex_lock(&dbs_info->cdbs.timer_mutex);
- return idle_time;
+ dbs_check_cpu(&cs_dbs_data, cpu);
+
+ schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
+ mutex_unlock(&dbs_info->cdbs.timer_mutex);
}
-/* keep track of frequency transitions */
-static int
-dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
- void *data)
+static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
+ void *data)
{
struct cpufreq_freqs *freq = data;
- struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
- freq->cpu);
-
+ struct cs_cpu_dbs_info_s *dbs_info =
+ &per_cpu(cs_cpu_dbs_info, freq->cpu);
struct cpufreq_policy *policy;
- if (!this_dbs_info->enable)
+ if (!dbs_info->enable)
return 0;
- policy = this_dbs_info->cur_policy;
+ policy = dbs_info->cdbs.cur_policy;
/*
- * we only care if our internally tracked freq moves outside
- * the 'valid' ranges of freqency available to us otherwise
- * we do not change it
+ * we only care if our internally tracked freq moves outside the 'valid'
+ * ranges of freqency available to us otherwise we do not change it
*/
- if (this_dbs_info->requested_freq > policy->max
- || this_dbs_info->requested_freq < policy->min)
- this_dbs_info->requested_freq = freq->new;
+ if (dbs_info->requested_freq > policy->max
+ || dbs_info->requested_freq < policy->min)
+ dbs_info->requested_freq = freq->new;
return 0;
}
-static struct notifier_block dbs_cpufreq_notifier_block = {
- .notifier_call = dbs_cpufreq_notifier
-};
-
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_min(struct kobject *kobj,
struct attribute *attr, char *buf)
{
- return sprintf(buf, "%u\n", min_sampling_rate);
+ return sprintf(buf, "%u\n", cs_dbs_data.min_sampling_rate);
}
-define_one_global_ro(sampling_rate_min);
-
-/* cpufreq_conservative Governor Tunables */
-#define show_one(file_name, object) \
-static ssize_t show_##file_name \
-(struct kobject *kobj, struct attribute *attr, char *buf) \
-{ \
- return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
-}
-show_one(sampling_rate, sampling_rate);
-show_one(sampling_down_factor, sampling_down_factor);
-show_one(up_threshold, up_threshold);
-show_one(down_threshold, down_threshold);
-show_one(ignore_nice_load, ignore_nice);
-show_one(freq_step, freq_step);
-
static ssize_t store_sampling_down_factor(struct kobject *a,
struct attribute *b,
const char *buf, size_t count)
@@ -195,7 +168,7 @@ static ssize_t store_sampling_down_factor(struct kobject *a,
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
- dbs_tuners_ins.sampling_down_factor = input;
+ cs_tuners.sampling_down_factor = input;
return count;
}
@@ -209,7 +182,7 @@ static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
if (ret != 1)
return -EINVAL;
- dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
+ cs_tuners.sampling_rate = max(input, cs_dbs_data.min_sampling_rate);
return count;
}
@@ -220,11 +193,10 @@ static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
int ret;
ret = sscanf(buf, "%u", &input);
- if (ret != 1 || input > 100 ||
- input <= dbs_tuners_ins.down_threshold)
+ if (ret != 1 || input > 100 || input <= cs_tuners.down_threshold)
return -EINVAL;
- dbs_tuners_ins.up_threshold = input;
+ cs_tuners.up_threshold = input;
return count;
}
@@ -237,21 +209,19 @@ static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
/* cannot be lower than 11 otherwise freq will not fall */
if (ret != 1 || input < 11 || input > 100 ||
- input >= dbs_tuners_ins.up_threshold)
+ input >= cs_tuners.up_threshold)
return -EINVAL;
- dbs_tuners_ins.down_threshold = input;
+ cs_tuners.down_threshold = input;
return count;
}
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
- unsigned int input;
+ unsigned int input, j;
int ret;
- unsigned int j;
-
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
@@ -259,19 +229,20 @@ static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
if (input > 1)
input = 1;
- if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
+ if (input == cs_tuners.ignore_nice) /* nothing to do */
return count;
- dbs_tuners_ins.ignore_nice = input;
+ cs_tuners.ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
- struct cpu_dbs_info_s *dbs_info;
+ struct cs_cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
- dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
- &dbs_info->prev_cpu_wall);
- if (dbs_tuners_ins.ignore_nice)
- dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
+ dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
+ &dbs_info->cdbs.prev_cpu_wall);
+ if (cs_tuners.ignore_nice)
+ dbs_info->cdbs.prev_cpu_nice =
+ kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
@@ -289,18 +260,28 @@ static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
if (input > 100)
input = 100;
- /* no need to test here if freq_step is zero as the user might actually
- * want this, they would be crazy though :) */
- dbs_tuners_ins.freq_step = input;
+ /*
+ * no need to test here if freq_step is zero as the user might actually
+ * want this, they would be crazy though :)
+ */
+ cs_tuners.freq_step = input;
return count;
}
+show_one(cs, sampling_rate, sampling_rate);
+show_one(cs, sampling_down_factor, sampling_down_factor);
+show_one(cs, up_threshold, up_threshold);
+show_one(cs, down_threshold, down_threshold);
+show_one(cs, ignore_nice_load, ignore_nice);
+show_one(cs, freq_step, freq_step);
+
define_one_global_rw(sampling_rate);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(up_threshold);
define_one_global_rw(down_threshold);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(freq_step);
+define_one_global_ro(sampling_rate_min);
static struct attribute *dbs_attributes[] = {
&sampling_rate_min.attr,
@@ -313,283 +294,38 @@ static struct attribute *dbs_attributes[] = {
NULL
};
-static struct attribute_group dbs_attr_group = {
+static struct attribute_group cs_attr_group = {
.attrs = dbs_attributes,
.name = "conservative",
};
/************************** sysfs end ************************/
-static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
-{
- unsigned int load = 0;
- unsigned int max_load = 0;
- unsigned int freq_target;
-
- struct cpufreq_policy *policy;
- unsigned int j;
-
- policy = this_dbs_info->cur_policy;
-
- /*
- * Every sampling_rate, we check, if current idle time is less
- * than 20% (default), then we try to increase frequency
- * Every sampling_rate*sampling_down_factor, we check, if current
- * idle time is more than 80%, then we try to decrease frequency
- *
- * Any frequency increase takes it to the maximum frequency.
- * Frequency reduction happens at minimum steps of
- * 5% (default) of maximum frequency
- */
-
- /* Get Absolute Load */
- for_each_cpu(j, policy->cpus) {
- struct cpu_dbs_info_s *j_dbs_info;
- cputime64_t cur_wall_time, cur_idle_time;
- unsigned int idle_time, wall_time;
-
- j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
-
- cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
-
- wall_time = (unsigned int)
- (cur_wall_time - j_dbs_info->prev_cpu_wall);
- j_dbs_info->prev_cpu_wall = cur_wall_time;
-
- idle_time = (unsigned int)
- (cur_idle_time - j_dbs_info->prev_cpu_idle);
- j_dbs_info->prev_cpu_idle = cur_idle_time;
-
- if (dbs_tuners_ins.ignore_nice) {
- u64 cur_nice;
- unsigned long cur_nice_jiffies;
-
- cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
- j_dbs_info->prev_cpu_nice;
- /*
- * Assumption: nice time between sampling periods will
- * be less than 2^32 jiffies for 32 bit sys
- */
- cur_nice_jiffies = (unsigned long)
- cputime64_to_jiffies64(cur_nice);
-
- j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- idle_time += jiffies_to_usecs(cur_nice_jiffies);
- }
+define_get_cpu_dbs_routines(cs_cpu_dbs_info);
- if (unlikely(!wall_time || wall_time < idle_time))
- continue;
-
- load = 100 * (wall_time - idle_time) / wall_time;
-
- if (load > max_load)
- max_load = load;
- }
-
- /*
- * break out if we 'cannot' reduce the speed as the user might
- * want freq_step to be zero
- */
- if (dbs_tuners_ins.freq_step == 0)
- return;
-
- /* Check for frequency increase */
- if (max_load > dbs_tuners_ins.up_threshold) {
- this_dbs_info->down_skip = 0;
-
- /* if we are already at full speed then break out early */
- if (this_dbs_info->requested_freq == policy->max)
- return;
-
- freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
-
- /* max freq cannot be less than 100. But who knows.... */
- if (unlikely(freq_target == 0))
- freq_target = 5;
-
- this_dbs_info->requested_freq += freq_target;
- if (this_dbs_info->requested_freq > policy->max)
- this_dbs_info->requested_freq = policy->max;
-
- __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
- CPUFREQ_RELATION_H);
- return;
- }
-
- /*
- * The optimal frequency is the frequency that is the lowest that
- * can support the current CPU usage without triggering the up
- * policy. To be safe, we focus 10 points under the threshold.
- */
- if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
- freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
-
- this_dbs_info->requested_freq -= freq_target;
- if (this_dbs_info->requested_freq < policy->min)
- this_dbs_info->requested_freq = policy->min;
-
- /*
- * if we cannot reduce the frequency anymore, break out early
- */
- if (policy->cur == policy->min)
- return;
-
- __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
- CPUFREQ_RELATION_H);
- return;
- }
-}
-
-static void do_dbs_timer(struct work_struct *work)
-{
- struct cpu_dbs_info_s *dbs_info =
- container_of(work, struct cpu_dbs_info_s, work.work);
- unsigned int cpu = dbs_info->cpu;
-
- /* We want all CPUs to do sampling nearly on same jiffy */
- int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
-
- delay -= jiffies % delay;
-
- mutex_lock(&dbs_info->timer_mutex);
-
- dbs_check_cpu(dbs_info);
-
- schedule_delayed_work_on(cpu, &dbs_info->work, delay);
- mutex_unlock(&dbs_info->timer_mutex);
-}
-
-static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
-{
- /* We want all CPUs to do sampling nearly on same jiffy */
- int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
- delay -= jiffies % delay;
+static struct notifier_block cs_cpufreq_notifier_block = {
+ .notifier_call = dbs_cpufreq_notifier,
+};
- dbs_info->enable = 1;
- INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
- schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
-}
+static struct cs_ops cs_ops = {
+ .notifier_block = &cs_cpufreq_notifier_block,
+};
-static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
-{
- dbs_info->enable = 0;
- cancel_delayed_work_sync(&dbs_info->work);
-}
+static struct dbs_data cs_dbs_data = {
+ .governor = GOV_CONSERVATIVE,
+ .attr_group = &cs_attr_group,
+ .tuners = &cs_tuners,
+ .get_cpu_cdbs = get_cpu_cdbs,
+ .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
+ .gov_dbs_timer = cs_dbs_timer,
+ .gov_check_cpu = cs_check_cpu,
+ .gov_ops = &cs_ops,
+};
-static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
+static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
- unsigned int cpu = policy->cpu;
- struct cpu_dbs_info_s *this_dbs_info;
- unsigned int j;
- int rc;
-
- this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
-
- switch (event) {
- case CPUFREQ_GOV_START:
- if ((!cpu_online(cpu)) || (!policy->cur))
- return -EINVAL;
-
- mutex_lock(&dbs_mutex);
-
- for_each_cpu(j, policy->cpus) {
- struct cpu_dbs_info_s *j_dbs_info;
- j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
- j_dbs_info->cur_policy = policy;
-
- j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
- &j_dbs_info->prev_cpu_wall);
- if (dbs_tuners_ins.ignore_nice)
- j_dbs_info->prev_cpu_nice =
- kcpustat_cpu(j).cpustat[CPUTIME_NICE];
- }
- this_dbs_info->cpu = cpu;
- this_dbs_info->down_skip = 0;
- this_dbs_info->requested_freq = policy->cur;
-
- mutex_init(&this_dbs_info->timer_mutex);
- dbs_enable++;
- /*
- * Start the timerschedule work, when this governor
- * is used for first time
- */
- if (dbs_enable == 1) {
- unsigned int latency;
- /* policy latency is in nS. Convert it to uS first */
- latency = policy->cpuinfo.transition_latency / 1000;
- if (latency == 0)
- latency = 1;
-
- rc = sysfs_create_group(cpufreq_global_kobject,
- &dbs_attr_group);
- if (rc) {
- mutex_unlock(&dbs_mutex);
- return rc;
- }
-
- /*
- * conservative does not implement micro like ondemand
- * governor, thus we are bound to jiffes/HZ
- */
- min_sampling_rate =
- MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
- /* Bring kernel and HW constraints together */
- min_sampling_rate = max(min_sampling_rate,
- MIN_LATENCY_MULTIPLIER * latency);
- dbs_tuners_ins.sampling_rate =
- max(min_sampling_rate,
- latency * LATENCY_MULTIPLIER);
-
- cpufreq_register_notifier(
- &dbs_cpufreq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
- }
- mutex_unlock(&dbs_mutex);
-
- dbs_timer_init(this_dbs_info);
-
- break;
-
- case CPUFREQ_GOV_STOP:
- dbs_timer_exit(this_dbs_info);
-
- mutex_lock(&dbs_mutex);
- dbs_enable--;
- mutex_destroy(&this_dbs_info->timer_mutex);
-
- /*
- * Stop the timerschedule work, when this governor
- * is used for first time
- */
- if (dbs_enable == 0)
- cpufreq_unregister_notifier(
- &dbs_cpufreq_notifier_block,
- CPUFREQ_TRANSITION_NOTIFIER);
-
- mutex_unlock(&dbs_mutex);
- if (!dbs_enable)
- sysfs_remove_group(cpufreq_global_kobject,
- &dbs_attr_group);
-
- break;
-
- case CPUFREQ_GOV_LIMITS:
- mutex_lock(&this_dbs_info->timer_mutex);
- if (policy->max < this_dbs_info->cur_policy->cur)
- __cpufreq_driver_target(
- this_dbs_info->cur_policy,
- policy->max, CPUFREQ_RELATION_H);
- else if (policy->min > this_dbs_info->cur_policy->cur)
- __cpufreq_driver_target(
- this_dbs_info->cur_policy,
- policy->min, CPUFREQ_RELATION_L);
- dbs_check_cpu(this_dbs_info);
- mutex_unlock(&this_dbs_info->timer_mutex);
-
- break;
- }
- return 0;
+ return cpufreq_governor_dbs(&cs_dbs_data, policy, event);
}
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
@@ -597,13 +333,14 @@ static
#endif
struct cpufreq_governor cpufreq_gov_conservative = {
.name = "conservative",
- .governor = cpufreq_governor_dbs,
+ .governor = cs_cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int __init cpufreq_gov_dbs_init(void)
{
+ mutex_init(&cs_dbs_data.mutex);
return cpufreq_register_governor(&cpufreq_gov_conservative);
}
@@ -612,7 +349,6 @@ static void __exit cpufreq_gov_dbs_exit(void)
cpufreq_unregister_governor(&cpufreq_gov_conservative);
}
-
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors "