summaryrefslogtreecommitdiffstats
path: root/drivers/dma
diff options
context:
space:
mode:
authorLinus Walleij <linus.walleij@stericsson.com>2010-03-30 15:33:42 +0200
committerDan Williams <dan.j.williams@intel.com>2010-04-14 14:49:20 -0700
commit8d318a50b3d72e3daf94131f91e1ab799a8d5ad4 (patch)
treeae36452931d2e836f725b3f91eebd7f4d9e27589 /drivers/dma
parent6a3cd3ea48584d14f60dce0b3c4e9e4428beb0fe (diff)
DMAENGINE: Support for ST-Ericssons DMA40 block v3
This is a straightforward driver for the ST-Ericsson DMA40 DMA controller found in U8500, implemented akin to the existing COH 901 318 driver. Signed-off-by: Linus Walleij <linus.walleij@stericsson.com> Acked-by: Srinidh Kasagar <srinidhi.kasagar@stericsson.com> Cc: STEricsson_nomadik_linux@list.st.com Cc: Alessandro Rubini <rubini@unipv.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Diffstat (limited to 'drivers/dma')
-rw-r--r--drivers/dma/Kconfig7
-rw-r--r--drivers/dma/Makefile1
-rw-r--r--drivers/dma/ste_dma40.c2596
-rw-r--r--drivers/dma/ste_dma40_ll.c454
-rw-r--r--drivers/dma/ste_dma40_ll.h354
5 files changed, 3412 insertions, 0 deletions
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
index a2fcb2ead89..1b8877922fb 100644
--- a/drivers/dma/Kconfig
+++ b/drivers/dma/Kconfig
@@ -141,6 +141,13 @@ config COH901318
help
Enable support for ST-Ericsson COH 901 318 DMA.
+config STE_DMA40
+ bool "ST-Ericsson DMA40 support"
+ depends on ARCH_U8500
+ select DMA_ENGINE
+ help
+ Support for ST-Ericsson DMA40 controller
+
config AMCC_PPC440SPE_ADMA
tristate "AMCC PPC440SPe ADMA support"
depends on 440SPe || 440SP
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
index 40c627d8f73..20881426c1a 100644
--- a/drivers/dma/Makefile
+++ b/drivers/dma/Makefile
@@ -21,3 +21,4 @@ obj-$(CONFIG_SH_DMAE) += shdma.o
obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
obj-$(CONFIG_TIMB_DMA) += timb_dma.o
+obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
diff --git a/drivers/dma/ste_dma40.c b/drivers/dma/ste_dma40.c
new file mode 100644
index 00000000000..e4295a27672
--- /dev/null
+++ b/drivers/dma/ste_dma40.c
@@ -0,0 +1,2596 @@
+/*
+ * driver/dma/ste_dma40.c
+ *
+ * Copyright (C) ST-Ericsson 2007-2010
+ * License terms: GNU General Public License (GPL) version 2
+ * Author: Per Friden <per.friden@stericsson.com>
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/dmaengine.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+
+#include <plat/ste_dma40.h>
+
+#include "ste_dma40_ll.h"
+
+#define D40_NAME "dma40"
+
+#define D40_PHY_CHAN -1
+
+/* For masking out/in 2 bit channel positions */
+#define D40_CHAN_POS(chan) (2 * (chan / 2))
+#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
+
+/* Maximum iterations taken before giving up suspending a channel */
+#define D40_SUSPEND_MAX_IT 500
+
+#define D40_ALLOC_FREE (1 << 31)
+#define D40_ALLOC_PHY (1 << 30)
+#define D40_ALLOC_LOG_FREE 0
+
+/* The number of free d40_desc to keep in memory before starting
+ * to kfree() them */
+#define D40_DESC_CACHE_SIZE 50
+
+/* Hardware designer of the block */
+#define D40_PERIPHID2_DESIGNER 0x8
+
+/**
+ * enum 40_command - The different commands and/or statuses.
+ *
+ * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
+ * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
+ * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
+ * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
+ */
+enum d40_command {
+ D40_DMA_STOP = 0,
+ D40_DMA_RUN = 1,
+ D40_DMA_SUSPEND_REQ = 2,
+ D40_DMA_SUSPENDED = 3
+};
+
+/**
+ * struct d40_lli_pool - Structure for keeping LLIs in memory
+ *
+ * @base: Pointer to memory area when the pre_alloc_lli's are not large
+ * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
+ * pre_alloc_lli is used.
+ * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
+ * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
+ * one buffer to one buffer.
+ */
+struct d40_lli_pool {
+ void *base;
+ int size;
+ /* Space for dst and src, plus an extra for padding */
+ u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
+};
+
+/**
+ * struct d40_desc - A descriptor is one DMA job.
+ *
+ * @lli_phy: LLI settings for physical channel. Both src and dst=
+ * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
+ * lli_len equals one.
+ * @lli_log: Same as above but for logical channels.
+ * @lli_pool: The pool with two entries pre-allocated.
+ * @lli_len: Number of LLI's in lli_pool
+ * @lli_tcount: Number of LLIs processed in the transfer. When equals lli_len
+ * then this transfer job is done.
+ * @txd: DMA engine struct. Used for among other things for communication
+ * during a transfer.
+ * @node: List entry.
+ * @dir: The transfer direction of this job.
+ * @is_in_client_list: true if the client owns this descriptor.
+ *
+ * This descriptor is used for both logical and physical transfers.
+ */
+
+struct d40_desc {
+ /* LLI physical */
+ struct d40_phy_lli_bidir lli_phy;
+ /* LLI logical */
+ struct d40_log_lli_bidir lli_log;
+
+ struct d40_lli_pool lli_pool;
+ u32 lli_len;
+ u32 lli_tcount;
+
+ struct dma_async_tx_descriptor txd;
+ struct list_head node;
+
+ enum dma_data_direction dir;
+ bool is_in_client_list;
+};
+
+/**
+ * struct d40_lcla_pool - LCLA pool settings and data.
+ *
+ * @base: The virtual address of LCLA.
+ * @phy: Physical base address of LCLA.
+ * @base_size: size of lcla.
+ * @lock: Lock to protect the content in this struct.
+ * @alloc_map: Mapping between physical channel and LCLA entries.
+ * @num_blocks: The number of entries of alloc_map. Equals to the
+ * number of physical channels.
+ */
+struct d40_lcla_pool {
+ void *base;
+ dma_addr_t phy;
+ resource_size_t base_size;
+ spinlock_t lock;
+ u32 *alloc_map;
+ int num_blocks;
+};
+
+/**
+ * struct d40_phy_res - struct for handling eventlines mapped to physical
+ * channels.
+ *
+ * @lock: A lock protection this entity.
+ * @num: The physical channel number of this entity.
+ * @allocated_src: Bit mapped to show which src event line's are mapped to
+ * this physical channel. Can also be free or physically allocated.
+ * @allocated_dst: Same as for src but is dst.
+ * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
+ * event line number. Both allocated_src and allocated_dst can not be
+ * allocated to a physical channel, since the interrupt handler has then
+ * no way of figure out which one the interrupt belongs to.
+ */
+struct d40_phy_res {
+ spinlock_t lock;
+ int num;
+ u32 allocated_src;
+ u32 allocated_dst;
+};
+
+struct d40_base;
+
+/**
+ * struct d40_chan - Struct that describes a channel.
+ *
+ * @lock: A spinlock to protect this struct.
+ * @log_num: The logical number, if any of this channel.
+ * @completed: Starts with 1, after first interrupt it is set to dma engine's
+ * current cookie.
+ * @pending_tx: The number of pending transfers. Used between interrupt handler
+ * and tasklet.
+ * @busy: Set to true when transfer is ongoing on this channel.
+ * @phy_chan: Pointer to physical channel which this instance runs on.
+ * @chan: DMA engine handle.
+ * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
+ * transfer and call client callback.
+ * @client: Cliented owned descriptor list.
+ * @active: Active descriptor.
+ * @queue: Queued jobs.
+ * @free: List of free descripts, ready to be reused.
+ * @free_len: Number of descriptors in the free list.
+ * @dma_cfg: The client configuration of this dma channel.
+ * @base: Pointer to the device instance struct.
+ * @src_def_cfg: Default cfg register setting for src.
+ * @dst_def_cfg: Default cfg register setting for dst.
+ * @log_def: Default logical channel settings.
+ * @lcla: Space for one dst src pair for logical channel transfers.
+ * @lcpa: Pointer to dst and src lcpa settings.
+ *
+ * This struct can either "be" a logical or a physical channel.
+ */
+struct d40_chan {
+ spinlock_t lock;
+ int log_num;
+ /* ID of the most recent completed transfer */
+ int completed;
+ int pending_tx;
+ bool busy;
+ struct d40_phy_res *phy_chan;
+ struct dma_chan chan;
+ struct tasklet_struct tasklet;
+ struct list_head client;
+ struct list_head active;
+ struct list_head queue;
+ struct list_head free;
+ int free_len;
+ struct stedma40_chan_cfg dma_cfg;
+ struct d40_base *base;
+ /* Default register configurations */
+ u32 src_def_cfg;
+ u32 dst_def_cfg;
+ struct d40_def_lcsp log_def;
+ struct d40_lcla_elem lcla;
+ struct d40_log_lli_full *lcpa;
+};
+
+/**
+ * struct d40_base - The big global struct, one for each probe'd instance.
+ *
+ * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
+ * @execmd_lock: Lock for execute command usage since several channels share
+ * the same physical register.
+ * @dev: The device structure.
+ * @virtbase: The virtual base address of the DMA's register.
+ * @clk: Pointer to the DMA clock structure.
+ * @phy_start: Physical memory start of the DMA registers.
+ * @phy_size: Size of the DMA register map.
+ * @irq: The IRQ number.
+ * @num_phy_chans: The number of physical channels. Read from HW. This
+ * is the number of available channels for this driver, not counting "Secure
+ * mode" allocated physical channels.
+ * @num_log_chans: The number of logical channels. Calculated from
+ * num_phy_chans.
+ * @dma_both: dma_device channels that can do both memcpy and slave transfers.
+ * @dma_slave: dma_device channels that can do only do slave transfers.
+ * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
+ * @phy_chans: Room for all possible physical channels in system.
+ * @log_chans: Room for all possible logical channels in system.
+ * @lookup_log_chans: Used to map interrupt number to logical channel. Points
+ * to log_chans entries.
+ * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
+ * to phy_chans entries.
+ * @plat_data: Pointer to provided platform_data which is the driver
+ * configuration.
+ * @phy_res: Vector containing all physical channels.
+ * @lcla_pool: lcla pool settings and data.
+ * @lcpa_base: The virtual mapped address of LCPA.
+ * @phy_lcpa: The physical address of the LCPA.
+ * @lcpa_size: The size of the LCPA area.
+ */
+struct d40_base {
+ spinlock_t interrupt_lock;
+ spinlock_t execmd_lock;
+ struct device *dev;
+ void __iomem *virtbase;
+ struct clk *clk;
+ phys_addr_t phy_start;
+ resource_size_t phy_size;
+ int irq;
+ int num_phy_chans;
+ int num_log_chans;
+ struct dma_device dma_both;
+ struct dma_device dma_slave;
+ struct dma_device dma_memcpy;
+ struct d40_chan *phy_chans;
+ struct d40_chan *log_chans;
+ struct d40_chan **lookup_log_chans;
+ struct d40_chan **lookup_phy_chans;
+ struct stedma40_platform_data *plat_data;
+ /* Physical half channels */
+ struct d40_phy_res *phy_res;
+ struct d40_lcla_pool lcla_pool;
+ void *lcpa_base;
+ dma_addr_t phy_lcpa;
+ resource_size_t lcpa_size;
+};
+
+/**
+ * struct d40_interrupt_lookup - lookup table for interrupt handler
+ *
+ * @src: Interrupt mask register.
+ * @clr: Interrupt clear register.
+ * @is_error: true if this is an error interrupt.
+ * @offset: start delta in the lookup_log_chans in d40_base. If equals to
+ * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
+ */
+struct d40_interrupt_lookup {
+ u32 src;
+ u32 clr;
+ bool is_error;
+ int offset;
+};
+
+/**
+ * struct d40_reg_val - simple lookup struct
+ *
+ * @reg: The register.
+ * @val: The value that belongs to the register in reg.
+ */
+struct d40_reg_val {
+ unsigned int reg;
+ unsigned int val;
+};
+
+static int d40_pool_lli_alloc(struct d40_desc *d40d,
+ int lli_len, bool is_log)
+{
+ u32 align;
+ void *base;
+
+ if (is_log)
+ align = sizeof(struct d40_log_lli);
+ else
+ align = sizeof(struct d40_phy_lli);
+
+ if (lli_len == 1) {
+ base = d40d->lli_pool.pre_alloc_lli;
+ d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
+ d40d->lli_pool.base = NULL;
+ } else {
+ d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
+
+ base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
+ d40d->lli_pool.base = base;
+
+ if (d40d->lli_pool.base == NULL)
+ return -ENOMEM;
+ }
+
+ if (is_log) {
+ d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
+ align);
+ d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
+ align);
+ } else {
+ d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
+ align);
+ d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
+ align);
+
+ d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
+ d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
+ }
+
+ return 0;
+}
+
+static void d40_pool_lli_free(struct d40_desc *d40d)
+{
+ kfree(d40d->lli_pool.base);
+ d40d->lli_pool.base = NULL;
+ d40d->lli_pool.size = 0;
+ d40d->lli_log.src = NULL;
+ d40d->lli_log.dst = NULL;
+ d40d->lli_phy.src = NULL;
+ d40d->lli_phy.dst = NULL;
+ d40d->lli_phy.src_addr = 0;
+ d40d->lli_phy.dst_addr = 0;
+}
+
+static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
+ struct d40_desc *desc)
+{
+ dma_cookie_t cookie = d40c->chan.cookie;
+
+ if (++cookie < 0)
+ cookie = 1;
+
+ d40c->chan.cookie = cookie;
+ desc->txd.cookie = cookie;
+
+ return cookie;
+}
+
+static void d40_desc_reset(struct d40_desc *d40d)
+{
+ d40d->lli_tcount = 0;
+}
+
+static void d40_desc_remove(struct d40_desc *d40d)
+{
+ list_del(&d40d->node);
+}
+
+static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
+{
+ struct d40_desc *desc;
+ struct d40_desc *d;
+ struct d40_desc *_d;
+
+ if (!list_empty(&d40c->client)) {
+ list_for_each_entry_safe(d, _d, &d40c->client, node)
+ if (async_tx_test_ack(&d->txd)) {
+ d40_pool_lli_free(d);
+ d40_desc_remove(d);
+ desc = d;
+ goto out;
+ }
+ }
+
+ if (list_empty(&d40c->free)) {
+ /* Alloc new desc because we're out of used ones */
+ desc = kzalloc(sizeof(struct d40_desc), GFP_NOWAIT);
+ if (desc == NULL)
+ goto out;
+ INIT_LIST_HEAD(&desc->node);
+ } else {
+ /* Reuse an old desc. */
+ desc = list_first_entry(&d40c->free,
+ struct d40_desc,
+ node);
+ list_del(&desc->node);
+ d40c->free_len--;
+ }
+out:
+ return desc;
+}
+
+static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+ if (d40c->free_len < D40_DESC_CACHE_SIZE) {
+ list_add_tail(&d40d->node, &d40c->free);
+ d40c->free_len++;
+ } else
+ kfree(d40d);
+}
+
+static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
+{
+ list_add_tail(&desc->node, &d40c->active);
+}
+
+static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
+{
+ struct d40_desc *d;
+
+ if (list_empty(&d40c->active))
+ return NULL;
+
+ d = list_first_entry(&d40c->active,
+ struct d40_desc,
+ node);
+ return d;
+}
+
+static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
+{
+ list_add_tail(&desc->node, &d40c->queue);
+}
+
+static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
+{
+ struct d40_desc *d;
+
+ if (list_empty(&d40c->queue))
+ return NULL;
+
+ d = list_first_entry(&d40c->queue,
+ struct d40_desc,
+ node);
+ return d;
+}
+
+/* Support functions for logical channels */
+
+static int d40_lcla_id_get(struct d40_chan *d40c,
+ struct d40_lcla_pool *pool)
+{
+ int src_id = 0;
+ int dst_id = 0;
+ struct d40_log_lli *lcla_lidx_base =
+ pool->base + d40c->phy_chan->num * 1024;
+ int i;
+ int lli_per_log = d40c->base->plat_data->llis_per_log;
+
+ if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
+ return 0;
+
+ if (pool->num_blocks > 32)
+ return -EINVAL;
+
+ spin_lock(&pool->lock);
+
+ for (i = 0; i < pool->num_blocks; i++) {
+ if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
+ pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
+ break;
+ }
+ }
+ src_id = i;
+ if (src_id >= pool->num_blocks)
+ goto err;
+
+ for (; i < pool->num_blocks; i++) {
+ if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
+ pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
+ break;
+ }
+ }
+
+ dst_id = i;
+ if (dst_id == src_id)
+ goto err;
+
+ d40c->lcla.src_id = src_id;
+ d40c->lcla.dst_id = dst_id;
+ d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
+ d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
+
+
+ spin_unlock(&pool->lock);
+ return 0;
+err:
+ spin_unlock(&pool->lock);
+ return -EINVAL;
+}
+
+static void d40_lcla_id_put(struct d40_chan *d40c,
+ struct d40_lcla_pool *pool,
+ int id)
+{
+ if (id < 0)
+ return;
+
+ d40c->lcla.src_id = -1;
+ d40c->lcla.dst_id = -1;
+
+ spin_lock(&pool->lock);
+ pool->alloc_map[d40c->phy_chan->num] &= (~(0x1 << id));
+ spin_unlock(&pool->lock);
+}
+
+static int d40_channel_execute_command(struct d40_chan *d40c,
+ enum d40_command command)
+{
+ int status, i;
+ void __iomem *active_reg;
+ int ret = 0;
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->base->execmd_lock, flags);
+
+ if (d40c->phy_chan->num % 2 == 0)
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+ else
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+ if (command == D40_DMA_SUSPEND_REQ) {
+ status = (readl(active_reg) &
+ D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+ D40_CHAN_POS(d40c->phy_chan->num);
+
+ if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
+ goto done;
+ }
+
+ writel(command << D40_CHAN_POS(d40c->phy_chan->num), active_reg);
+
+ if (command == D40_DMA_SUSPEND_REQ) {
+
+ for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
+ status = (readl(active_reg) &
+ D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+ D40_CHAN_POS(d40c->phy_chan->num);
+
+ cpu_relax();
+ /*
+ * Reduce the number of bus accesses while
+ * waiting for the DMA to suspend.
+ */
+ udelay(3);
+
+ if (status == D40_DMA_STOP ||
+ status == D40_DMA_SUSPENDED)
+ break;
+ }
+
+ if (i == D40_SUSPEND_MAX_IT) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
+ __func__, d40c->phy_chan->num, d40c->log_num,
+ status);
+ dump_stack();
+ ret = -EBUSY;
+ }
+
+ }
+done:
+ spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
+ return ret;
+}
+
+static void d40_term_all(struct d40_chan *d40c)
+{
+ struct d40_desc *d40d;
+ struct d40_desc *d;
+ struct d40_desc *_d;
+
+ /* Release active descriptors */
+ while ((d40d = d40_first_active_get(d40c))) {
+ d40_desc_remove(d40d);
+
+ /* Return desc to free-list */
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release queued descriptors waiting for transfer */
+ while ((d40d = d40_first_queued(d40c))) {
+ d40_desc_remove(d40d);
+
+ /* Return desc to free-list */
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release client owned descriptors */
+ if (!list_empty(&d40c->client))
+ list_for_each_entry_safe(d, _d, &d40c->client, node) {
+ d40_pool_lli_free(d);
+ d40_desc_remove(d);
+ /* Return desc to free-list */
+ d40_desc_free(d40c, d40d);
+ }
+
+ d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
+ d40c->lcla.src_id);
+ d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
+ d40c->lcla.dst_id);
+
+ d40c->pending_tx = 0;
+ d40c->busy = false;
+}
+
+static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
+{
+ u32 val;
+ unsigned long flags;
+
+ if (do_enable)
+ val = D40_ACTIVATE_EVENTLINE;
+ else
+ val = D40_DEACTIVATE_EVENTLINE;
+
+ spin_lock_irqsave(&d40c->phy_chan->lock, flags);
+
+ /* Enable event line connected to device (or memcpy) */
+ if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
+ (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
+ u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
+
+ writel((val << D40_EVENTLINE_POS(event)) |
+ ~D40_EVENTLINE_MASK(event),
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SSLNK);
+ }
+ if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
+ u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
+
+ writel((val << D40_EVENTLINE_POS(event)) |
+ ~D40_EVENTLINE_MASK(event),
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SDLNK);
+ }
+
+ spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
+}
+
+static bool d40_chan_has_events(struct d40_chan *d40c)
+{
+ u32 val = 0;
+
+ /* If SSLNK or SDLNK is zero all events are disabled */
+ if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
+ (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
+ val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SSLNK);
+
+ if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
+ val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SDLNK);
+ return (bool) val;
+}
+
+static void d40_config_enable_lidx(struct d40_chan *d40c)
+{
+ /* Set LIDX for lcla */
+ writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
+ D40_SREG_ELEM_LOG_LIDX_MASK,
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
+
+ writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
+ D40_SREG_ELEM_LOG_LIDX_MASK,
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
+}
+
+static int d40_config_write(struct d40_chan *d40c)
+{
+ u32 addr_base;
+ u32 var;
+ int res;
+
+ res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+ if (res)
+ return res;
+
+ /* Odd addresses are even addresses + 4 */
+ addr_base = (d40c->phy_chan->num % 2) * 4;
+ /* Setup channel mode to logical or physical */
+ var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
+ D40_CHAN_POS(d40c->phy_chan->num);
+ writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
+
+ /* Setup operational mode option register */
+ var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
+ 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
+
+ writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ /* Set default config for CFG reg */
+ writel(d40c->src_def_cfg,
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SSCFG);
+ writel(d40c->dst_def_cfg,
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SDCFG);
+
+ d40_config_enable_lidx(d40c);
+ }
+ return res;
+}
+
+static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+
+ if (d40d->lli_phy.dst && d40d->lli_phy.src) {
+ d40_phy_lli_write(d40c->base->virtbase,
+ d40c->phy_chan->num,
+ d40d->lli_phy.dst,
+ d40d->lli_phy.src);
+ d40d->lli_tcount = d40d->lli_len;
+ } else if (d40d->lli_log.dst && d40d->lli_log.src) {
+ u32 lli_len;
+ struct d40_log_lli *src = d40d->lli_log.src;
+ struct d40_log_lli *dst = d40d->lli_log.dst;
+
+ src += d40d->lli_tcount;
+ dst += d40d->lli_tcount;
+
+ if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
+ lli_len = d40d->lli_len;
+ else
+ lli_len = d40c->base->plat_data->llis_per_log;
+ d40d->lli_tcount += lli_len;
+ d40_log_lli_write(d40c->lcpa, d40c->lcla.src,
+ d40c->lcla.dst,
+ dst, src,
+ d40c->base->plat_data->llis_per_log);
+ }
+}
+
+static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+ struct d40_chan *d40c = container_of(tx->chan,
+ struct d40_chan,
+ chan);
+ struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ tx->cookie = d40_assign_cookie(d40c, d40d);
+
+ d40_desc_queue(d40c, d40d);
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+
+ return tx->cookie;
+}
+
+static int d40_start(struct d40_chan *d40c)
+{
+ int err;
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+ if (err)
+ return err;
+ d40_config_set_event(d40c, true);
+ }
+
+ err = d40_channel_execute_command(d40c, D40_DMA_RUN);
+
+ return err;
+}
+
+static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
+{
+ struct d40_desc *d40d;
+ int err;
+
+ /* Start queued jobs, if any */
+ d40d = d40_first_queued(d40c);
+
+ if (d40d != NULL) {
+ d40c->busy = true;
+
+ /* Remove from queue */
+ d40_desc_remove(d40d);
+
+ /* Add to active queue */
+ d40_desc_submit(d40c, d40d);
+
+ /* Initiate DMA job */
+ d40_desc_load(d40c, d40d);
+
+ /* Start dma job */
+ err = d40_start(d40c);
+
+ if (err)
+ return NULL;
+ }
+
+ return d40d;
+}
+
+/* called from interrupt context */
+static void dma_tc_handle(struct d40_chan *d40c)
+{
+ struct d40_desc *d40d;
+
+ if (!d40c->phy_chan)
+ return;
+
+ /* Get first active entry from list */
+ d40d = d40_first_active_get(d40c);
+
+ if (d40d == NULL)
+ return;
+
+ if (d40d->lli_tcount < d40d->lli_len) {
+
+ d40_desc_load(d40c, d40d);
+ /* Start dma job */
+ (void) d40_start(d40c);
+ return;
+ }
+
+ if (d40_queue_start(d40c) == NULL)
+ d40c->busy = false;
+
+ d40c->pending_tx++;
+ tasklet_schedule(&d40c->tasklet);
+
+}
+
+static void dma_tasklet(unsigned long data)
+{
+ struct d40_chan *d40c = (struct d40_chan *) data;
+ struct d40_desc *d40d_fin;
+ unsigned long flags;
+ dma_async_tx_callback callback;
+ void *callback_param;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ /* Get first active entry from list */
+ d40d_fin = d40_first_active_get(d40c);
+
+ if (d40d_fin == NULL)
+ goto err;
+
+ d40c->completed = d40d_fin->txd.cookie;
+
+ /*
+ * If terminating a channel pending_tx is set to zero.
+ * This prevents any finished active jobs to return to the client.
+ */
+ if (d40c->pending_tx == 0) {
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return;
+ }
+
+ /* Callback to client */
+ callback = d40d_fin->txd.callback;
+ callback_param = d40d_fin->txd.callback_param;
+
+ if (async_tx_test_ack(&d40d_fin->txd)) {
+ d40_pool_lli_free(d40d_fin);
+ d40_desc_remove(d40d_fin);
+ /* Return desc to free-list */
+ d40_desc_free(d40c, d40d_fin);
+ } else {
+ d40_desc_reset(d40d_fin);
+ if (!d40d_fin->is_in_client_list) {
+ d40_desc_remove(d40d_fin);
+ list_add_tail(&d40d_fin->node, &d40c->client);
+ d40d_fin->is_in_client_list = true;
+ }
+ }
+
+ d40c->pending_tx--;
+
+ if (d40c->pending_tx)
+ tasklet_schedule(&d40c->tasklet);
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+
+ if (callback)
+ callback(callback_param);
+
+ return;
+
+ err:
+ /* Rescue manouver if receiving double interrupts */
+ if (d40c->pending_tx > 0)
+ d40c->pending_tx--;
+ spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static irqreturn_t d40_handle_interrupt(int irq, void *data)
+{
+ static const struct d40_interrupt_lookup il[] = {
+ {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
+ {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
+ {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
+ {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
+ {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
+ {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
+ {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
+ {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
+ {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
+ {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
+ };
+
+ int i;
+ u32 regs[ARRAY_SIZE(il)];
+ u32 tmp;
+ u32 idx;
+ u32 row;
+ long chan = -1;
+ struct d40_chan *d40c;
+ unsigned long flags;
+ struct d40_base *base = data;
+
+ spin_lock_irqsave(&base->interrupt_lock, flags);
+
+ /* Read interrupt status of both logical and physical channels */
+ for (i = 0; i < ARRAY_SIZE(il); i++)
+ regs[i] = readl(base->virtbase + il[i].src);
+
+ for (;;) {
+
+ chan = find_next_bit((unsigned long *)regs,
+ BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
+
+ /* No more set bits found? */
+ if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
+ break;
+
+ row = chan / BITS_PER_LONG;
+ idx = chan & (BITS_PER_LONG - 1);
+
+ /* ACK interrupt */
+ tmp = readl(base->virtbase + il[row].clr);
+ tmp |= 1 << idx;
+ writel(tmp, base->virtbase + il[row].clr);
+
+ if (il[row].offset == D40_PHY_CHAN)
+ d40c = base->lookup_phy_chans[idx];
+ else
+ d40c = base->lookup_log_chans[il[row].offset + idx];
+ spin_lock(&d40c->lock);
+
+ if (!il[row].is_error)
+ dma_tc_handle(d40c);
+ else
+ dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n",
+ __func__, chan, il[row].offset, idx);
+
+ spin_unlock(&d40c->lock);
+ }
+
+ spin_unlock_irqrestore(&base->interrupt_lock, flags);
+
+ return IRQ_HANDLED;
+}
+
+
+static int d40_validate_conf(struct d40_chan *d40c,
+ struct stedma40_chan_cfg *conf)
+{
+ int res = 0;
+ u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
+ u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
+ bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
+ == STEDMA40_CHANNEL_IN_LOG_MODE;
+
+ if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
+ dst_event_group == STEDMA40_DEV_DST_MEMORY) {
+ dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
+ __func__);
+ res = -EINVAL;
+ }
+
+ if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
+ src_event_group == STEDMA40_DEV_SRC_MEMORY) {
+ dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
+ __func__);
+ res = -EINVAL;
+ }
+
+ if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
+ dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] No event line\n", __func__);
+ res = -EINVAL;
+ }
+
+ if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
+ (src_event_group != dst_event_group)) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Invalid event group\n", __func__);
+ res = -EINVAL;
+ }
+
+ if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
+ /*
+ * DMAC HW supports it. Will be added to this driver,
+ * in case any dma client requires it.
+ */
+ dev_err(&d40c->chan.dev->device,
+ "[%s] periph to periph not supported\n",
+ __func__);
+ res = -EINVAL;
+ }
+
+ return res;
+}
+
+static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
+ int log_event_line)
+{
+ unsigned long flags;
+ spin_lock_irqsave(&phy->lock, flags);
+ if (!log_event_line) {
+ /* Physical interrupts are masked per physical full channel */
+ if (phy->allocated_src == D40_ALLOC_FREE &&
+ phy->allocated_dst == D40_ALLOC_FREE) {
+ phy->allocated_dst = D40_ALLOC_PHY;
+ phy->allocated_src = D40_ALLOC_PHY;
+ goto found;
+ } else
+ goto not_found;
+ }
+
+ /* Logical channel */
+ if (is_src) {
+ if (phy->allocated_src == D40_ALLOC_PHY)
+ goto not_found;
+
+ if (phy->allocated_src == D40_ALLOC_FREE)
+ phy->allocated_src = D40_ALLOC_LOG_FREE;
+
+ if (!(phy->allocated_src & (1 << log_event_line))) {
+ phy->allocated_src |= 1 << log_event_line;
+ goto found;
+ } else
+ goto not_found;
+ } else {
+ if (phy->allocated_dst == D40_ALLOC_PHY)
+ goto not_found;
+
+ if (phy->allocated_dst == D40_ALLOC_FREE)
+ phy->allocated_dst = D40_ALLOC_LOG_FREE;
+
+ if (!(phy->allocated_dst & (1 << log_event_line))) {
+ phy->allocated_dst |= 1 << log_event_line;
+ goto found;
+ } else
+ goto not_found;
+ }
+
+not_found:
+ spin_unlock_irqrestore(&phy->lock, flags);
+ return false;
+found:
+ spin_unlock_irqrestore(&phy->lock, flags);
+ return true;
+}
+
+static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
+ int log_event_line)
+{
+ unsigned long flags;
+ bool is_free = false;
+
+ spin_lock_irqsave(&phy->lock, flags);
+ if (!log_event_line) {
+ /* Physical interrupts are masked per physical full channel */
+ phy->allocated_dst = D40_ALLOC_FREE;
+ phy->allocated_src = D40_ALLOC_FREE;
+ is_free = true;
+ goto out;
+ }
+
+ /* Logical channel */
+ if (is_src) {
+ phy->allocated_src &= ~(1 << log_event_line);
+ if (phy->allocated_src == D40_ALLOC_LOG_FREE)
+ phy->allocated_src = D40_ALLOC_FREE;
+ } else {
+ phy->allocated_dst &= ~(1 << log_event_line);
+ if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
+ phy->allocated_dst = D40_ALLOC_FREE;
+ }
+
+ is_free = ((phy->allocated_src | phy->allocated_dst) ==
+ D40_ALLOC_FREE);
+
+out:
+ spin_unlock_irqrestore(&phy->lock, flags);
+
+ return is_free;
+}
+
+static int d40_allocate_channel(struct d40_chan *d40c)
+{
+ int dev_type;
+ int event_group;
+ int event_line;
+ struct d40_phy_res *phys;
+ int i;
+ int j;
+ int log_num;
+ bool is_src;
+ bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
+ == STEDMA40_CHANNEL_IN_LOG_MODE;
+
+
+ phys = d40c->base->phy_res;
+
+ if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
+ dev_type = d40c->dma_cfg.src_dev_type;
+ log_num = 2 * dev_type;
+ is_src = true;
+ } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
+ d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
+ /* dst event lines are used for logical memcpy */
+ dev_type = d40c->dma_cfg.dst_dev_type;
+ log_num = 2 * dev_type + 1;
+ is_src = false;
+ } else
+ return -EINVAL;
+
+ event_group = D40_TYPE_TO_GROUP(dev_type);
+ event_line = D40_TYPE_TO_EVENT(dev_type);
+
+ if (!is_log) {
+ if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
+ /* Find physical half channel */
+ for (i = 0; i < d40c->base->num_phy_chans; i++) {
+
+ if (d40_alloc_mask_set(&phys[i], is_src, 0))
+ goto found_phy;
+ }
+ } else
+ for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+ int phy_num = j + event_group * 2;
+ for (i = phy_num; i < phy_num + 2; i++) {
+ if (d40_alloc_mask_set(&phys[i],
+ is_src, 0))
+ goto found_phy;
+ }
+ }
+ return -EINVAL;
+found_phy:
+ d40c->phy_chan = &phys[i];
+ d40c->log_num = D40_PHY_CHAN;
+ goto out;
+ }
+ if (dev_type == -1)
+ return -EINVAL;
+
+ /* Find logical channel */
+ for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+ int phy_num = j + event_group * 2;
+ /*
+ * Spread logical channels across all available physical rather
+ * than pack every logical channel at the first available phy
+ * channels.
+ */
+ if (is_src) {
+ for (i = phy_num; i < phy_num + 2; i++) {
+ if (d40_alloc_mask_set(&phys[i], is_src,
+ event_line))
+ goto found_log;
+ }
+ } else {
+ for (i = phy_num + 1; i >= phy_num; i--) {
+ if (d40_alloc_mask_set(&phys[i], is_src,
+ event_line))
+ goto found_log;
+ }
+ }
+ }
+ return -EINVAL;
+
+found_log:
+ d40c->phy_chan = &phys[i];
+ d40c->log_num = log_num;
+out:
+
+ if (is_log)
+ d40c->base->lookup_log_chans[d40c->log_num] = d40c;
+ else
+ d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
+
+ return 0;
+
+}
+
+static int d40_config_chan(struct d40_chan *d40c,
+ struct stedma40_chan_cfg *info)
+{
+
+ /* Fill in basic CFG register values */
+ d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
+ &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ d40_log_cfg(&d40c->dma_cfg,
+ &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
+
+ if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
+ d40c->lcpa = d40c->base->lcpa_base +
+ d40c->dma_cfg.src_dev_type * 32;
+ else
+ d40c->lcpa = d40c->base->lcpa_base +
+ d40c->dma_cfg.dst_dev_type * 32 + 16;
+ }
+
+ /* Write channel configuration to the DMA */
+ return d40_config_write(d40c);
+}
+
+static int d40_config_memcpy(struct d40_chan *d40c)
+{
+ dma_cap_mask_t cap = d40c->chan.device->cap_mask;
+
+ if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
+ d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
+ d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
+ d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
+ memcpy[d40c->chan.chan_id];
+
+ } else if (dma_has_cap(DMA_MEMCPY, cap) &&
+ dma_has_cap(DMA_SLAVE, cap)) {
+ d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
+ } else {
+ dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+
+static int d40_free_dma(struct d40_chan *d40c)
+{
+
+ int res = 0;
+ u32 event, dir;
+ struct d40_phy_res *phy = d40c->phy_chan;
+ bool is_src;
+
+ /* Terminate all queued and active transfers */
+ d40_term_all(d40c);
+
+ if (phy == NULL) {
+ dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ if (phy->allocated_src == D40_ALLOC_FREE &&
+ phy->allocated_dst == D40_ALLOC_FREE) {
+ dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
+ __func__);
+ return -EINVAL;
+ }
+
+
+ res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+ if (res) {
+ dev_err(&d40c->chan.dev->device, "[%s] suspend\n",
+ __func__);
+ return res;
+ }
+
+ if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
+ d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
+ event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
+ dir = D40_CHAN_REG_SDLNK;
+ is_src = false;
+ } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
+ event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
+ dir = D40_CHAN_REG_SSLNK;
+ is_src = true;
+ } else {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Unknown direction\n", __func__);
+ return -EINVAL;
+ }
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ /*
+ * Release logical channel, deactivate the event line during
+ * the time physical res is suspended.
+ */
+ writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) &
+ D40_EVENTLINE_MASK(event),
+ d40c->base->virtbase + D40_DREG_PCBASE +
+ phy->num * D40_DREG_PCDELTA + dir);
+
+ d40c->base->lookup_log_chans[d40c->log_num] = NULL;
+
+ /*
+ * Check if there are more logical allocation
+ * on this phy channel.
+ */
+ if (!d40_alloc_mask_free(phy, is_src, event)) {
+ /* Resume the other logical channels if any */
+ if (d40_chan_has_events(d40c)) {
+ res = d40_channel_execute_command(d40c,
+ D40_DMA_RUN);
+ if (res) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Executing RUN command\n",
+ __func__);
+ return res;
+ }
+ }
+ return 0;
+ }
+ } else
+ d40_alloc_mask_free(phy, is_src, 0);
+
+ /* Release physical channel */
+ res = d40_channel_execute_command(d40c, D40_DMA_STOP);
+ if (res) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Failed to stop channel\n", __func__);
+ return res;
+ }
+ d40c->phy_chan = NULL;
+ /* Invalidate channel type */
+ d40c->dma_cfg.channel_type = 0;
+ d40c->base->lookup_phy_chans[phy->num] = NULL;
+
+ return 0;
+
+
+}
+
+static int d40_pause(struct dma_chan *chan)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ int res;
+
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+ if (res == 0) {
+ if (d40c->log_num != D40_PHY_CHAN) {
+ d40_config_set_event(d40c, false);
+ /* Resume the other logical channels if any */
+ if (d40_chan_has_events(d40c))
+ res = d40_channel_execute_command(d40c,
+ D40_DMA_RUN);
+ }
+ }
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return res;
+}
+
+static bool d40_tx_is_linked(struct d40_chan *d40c)
+{
+ bool is_link;
+
+ if (d40c->log_num != D40_PHY_CHAN)
+ is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
+ else
+ is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SDLNK) &
+ D40_SREG_LNK_PHYS_LNK_MASK;
+ return is_link;
+}
+
+static u32 d40_residue(struct d40_chan *d40c)
+{
+ u32 num_elt;
+
+ if (d40c->log_num != D40_PHY_CHAN)
+ num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
+ >> D40_MEM_LCSP2_ECNT_POS;
+ else
+ num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
+ d40c->phy_chan->num * D40_DREG_PCDELTA +
+ D40_CHAN_REG_SDELT) &
+ D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS;
+ return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
+}
+
+static int d40_resume(struct dma_chan *chan)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ int res = 0;
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+ if (res)
+ goto out;
+
+ /* If bytes left to transfer or linked tx resume job */
+ if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
+ d40_config_set_event(d40c, true);
+ res = d40_channel_execute_command(d40c, D40_DMA_RUN);
+ }
+ } else if (d40_residue(d40c) || d40_tx_is_linked(d40c))
+ res = d40_channel_execute_command(d40c, D40_DMA_RUN);
+
+out:
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return res;
+}
+
+static u32 stedma40_residue(struct dma_chan *chan)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ u32 bytes_left;
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+ bytes_left = d40_residue(d40c);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+
+ return bytes_left;
+}
+
+/* Public DMA functions in addition to the DMA engine framework */
+
+int stedma40_set_psize(struct dma_chan *chan,
+ int src_psize,
+ int dst_psize)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
+ d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
+ d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
+ d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
+ goto out;
+ }
+
+ if (src_psize == STEDMA40_PSIZE_PHY_1)
+ d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
+ else {
+ d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+ d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
+ D40_SREG_CFG_PSIZE_POS);
+ d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
+ }
+
+ if (dst_psize == STEDMA40_PSIZE_PHY_1)
+ d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
+ else {
+ d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+ d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
+ D40_SREG_CFG_PSIZE_POS);
+ d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
+ }
+out:
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return 0;
+}
+EXPORT_SYMBOL(stedma40_set_psize);
+
+struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
+ struct scatterlist *sgl_dst,
+ struct scatterlist *sgl_src,
+ unsigned int sgl_len,
+ unsigned long flags)
+{
+ int res;
+ struct d40_desc *d40d;
+ struct d40_chan *d40c = container_of(chan, struct d40_chan,
+ chan);
+ unsigned long flg;
+ int lli_max = d40c->base->plat_data->llis_per_log;
+
+
+ spin_lock_irqsave(&d40c->lock, flg);
+ d40d = d40_desc_get(d40c);
+
+ if (d40d == NULL)
+ goto err;
+
+ memset(d40d, 0, sizeof(struct d40_desc));
+ d40d->lli_len = sgl_len;
+
+ d40d->txd.flags = flags;
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+ if (sgl_len > 1)
+ /*
+ * Check if there is space available in lcla. If not,
+ * split list into 1-length and run only in lcpa
+ * space.
+ */
+ if (d40_lcla_id_get(d40c,
+ &d40c->base->lcla_pool) != 0)
+ lli_max = 1;
+
+ if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Out of memory\n", __func__);
+ goto err;
+ }
+
+ (void) d40_log_sg_to_lli(d40c->lcla.src_id,
+ sgl_src,
+ sgl_len,
+ d40d->lli_log.src,
+ d40c->log_def.lcsp1,
+ d40c->dma_cfg.src_info.data_width,
+ flags & DMA_PREP_INTERRUPT, lli_max,
+ d40c->base->plat_data->llis_per_log);
+
+ (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
+ sgl_dst,
+ sgl_len,
+ d40d->lli_log.dst,
+ d40c->log_def.lcsp3,
+ d40c->dma_cfg.dst_info.data_width,
+ flags & DMA_PREP_INTERRUPT, lli_max,
+ d40c->base->plat_data->llis_per_log);
+
+
+ } else {
+ if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Out of memory\n", __func__);
+ goto err;
+ }
+
+ res = d40_phy_sg_to_lli(sgl_src,
+ sgl_len,
+ 0,
+ d40d->lli_phy.src,
+ d40d->lli_phy.src_addr,
+ d40c->src_def_cfg,
+ d40c->dma_cfg.src_info.data_width,
+ d40c->dma_cfg.src_info.psize,
+ true);
+
+ if (res < 0)
+ goto err;
+
+ res = d40_phy_sg_to_lli(sgl_dst,
+ sgl_len,
+ 0,
+ d40d->lli_phy.dst,
+ d40d->lli_phy.dst_addr,
+ d40c->dst_def_cfg,
+ d40c->dma_cfg.dst_info.data_width,
+ d40c->dma_cfg.dst_info.psize,
+ true);
+
+ if (res < 0)
+ goto err;
+
+ (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
+ d40d->lli_pool.size, DMA_TO_DEVICE);
+ }
+
+ dma_async_tx_descriptor_init(&d40d->txd, chan);
+
+ d40d->txd.tx_submit = d40_tx_submit;
+
+ spin_unlock_irqrestore(&d40c->lock, flg);
+
+ return &d40d->txd;
+err:
+ spin_unlock_irqrestore(&d40c->lock, flg);
+ return NULL;
+}
+EXPORT_SYMBOL(stedma40_memcpy_sg);
+
+bool stedma40_filter(struct dma_chan *chan, void *data)
+{
+ struct stedma40_chan_cfg *info = data;
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ int err;
+
+ if (data) {
+ err = d40_validate_conf(d40c, info);
+ if (!err)
+ d40c->dma_cfg = *info;
+ } else
+ err = d40_config_memcpy(d40c);
+
+ return err == 0;
+}
+EXPORT_SYMBOL(stedma40_filter);
+
+/* DMA ENGINE functions */
+static int d40_alloc_chan_resources(struct dma_chan *chan)
+{
+ int err;
+ unsigned long flags;
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ d40c->completed = chan->cookie = 1;
+
+ /*
+ * If no dma configuration is set (channel_type == 0)
+ * use default configuration
+ */
+ if (d40c->dma_cfg.channel_type == 0) {
+ err = d40_config_memcpy(d40c);
+ if (err)
+ goto err_alloc;
+ }
+
+ err = d40_allocate_channel(d40c);
+ if (err) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Failed to allocate channel\n", __func__);
+ goto err_alloc;
+ }
+
+ err = d40_config_chan(d40c, &d40c->dma_cfg);
+ if (err) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Failed to configure channel\n",
+ __func__);
+ goto err_config;
+ }
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return 0;
+
+ err_config:
+ (void) d40_free_dma(d40c);
+ err_alloc:
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Channel allocation failed\n", __func__);
+ return -EINVAL;
+}
+
+static void d40_free_chan_resources(struct dma_chan *chan)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ int err;
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ err = d40_free_dma(d40c);
+
+ if (err)
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Failed to free channel\n", __func__);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
+ dma_addr_t dst,
+ dma_addr_t src,
+ size_t size,
+ unsigned long flags)
+{
+ struct d40_desc *d40d;
+ struct d40_chan *d40c = container_of(chan, struct d40_chan,
+ chan);
+ unsigned long flg;
+ int err = 0;
+
+ spin_lock_irqsave(&d40c->lock, flg);
+ d40d = d40_desc_get(d40c);
+
+ if (d40d == NULL) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Descriptor is NULL\n", __func__);
+ goto err;
+ }
+
+ memset(d40d, 0, sizeof(struct d40_desc));
+
+ d40d->txd.flags = flags;
+
+ dma_async_tx_descriptor_init(&d40d->txd, chan);
+
+ d40d->txd.tx_submit = d40_tx_submit;
+
+ if (d40c->log_num != D40_PHY_CHAN) {
+
+ if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Out of memory\n", __func__);
+ goto err;
+ }
+ d40d->lli_len = 1;
+
+ d40_log_fill_lli(d40d->lli_log.src,
+ src,
+ size,
+ 0,
+ d40c->log_def.lcsp1,
+ d40c->dma_cfg.src_info.data_width,
+ true, true);
+
+ d40_log_fill_lli(d40d->lli_log.dst,
+ dst,
+ size,
+ 0,
+ d40c->log_def.lcsp3,
+ d40c->dma_cfg.dst_info.data_width,
+ true, true);
+
+ } else {
+
+ if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Out of memory\n", __func__);
+ goto err;
+ }
+
+ err = d40_phy_fill_lli(d40d->lli_phy.src,
+ src,
+ size,
+ d40c->dma_cfg.src_info.psize,
+ 0,
+ d40c->src_def_cfg,
+ true,
+ d40c->dma_cfg.src_info.data_width,
+ false);
+ if (err)
+ goto err_fill_lli;
+
+ err = d40_phy_fill_lli(d40d->lli_phy.dst,
+ dst,
+ size,
+ d40c->dma_cfg.dst_info.psize,
+ 0,
+ d40c->dst_def_cfg,
+ true,
+ d40c->dma_cfg.dst_info.data_width,
+ false);
+
+ if (err)
+ goto err_fill_lli;
+
+ (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
+ d40d->lli_pool.size, DMA_TO_DEVICE);
+ }
+
+ spin_unlock_irqrestore(&d40c->lock, flg);
+ return &d40d->txd;
+
+err_fill_lli:
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Failed filling in PHY LLI\n", __func__);
+ d40_pool_lli_free(d40d);
+err:
+ spin_unlock_irqrestore(&d40c->lock, flg);
+ return NULL;
+}
+
+static int d40_prep_slave_sg_log(struct d40_desc *d40d,
+ struct d40_chan *d40c,
+ struct scatterlist *sgl,
+ unsigned int sg_len,
+ enum dma_data_direction direction,
+ unsigned long flags)
+{
+ dma_addr_t dev_addr = 0;
+ int total_size;
+ int lli_max = d40c->base->plat_data->llis_per_log;
+
+ if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Out of memory\n", __func__);
+ return -ENOMEM;
+ }
+
+ d40d->lli_len = sg_len;
+ d40d->lli_tcount = 0;
+
+ if (sg_len > 1)
+ /*
+ * Check if there is space available in lcla.
+ * If not, split list into 1-length and run only
+ * in lcpa space.
+ */
+ if (d40_lcla_id_get(d40c, &d40c->base->lcla_pool) != 0)
+ lli_max = 1;
+
+ if (direction == DMA_FROM_DEVICE) {
+ dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
+ total_size = d40_log_sg_to_dev(&d40c->lcla,
+ sgl, sg_len,
+ &d40d->lli_log,
+ &d40c->log_def,
+ d40c->dma_cfg.src_info.data_width,
+ d40c->dma_cfg.dst_info.data_width,
+ direction,
+ flags & DMA_PREP_INTERRUPT,
+ dev_addr, lli_max,
+ d40c->base->plat_data->llis_per_log);
+ } else if (direction == DMA_TO_DEVICE) {
+ dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
+ total_size = d40_log_sg_to_dev(&d40c->lcla,
+ sgl, sg_len,
+ &d40d->lli_log,
+ &d40c->log_def,
+ d40c->dma_cfg.src_info.data_width,
+ d40c->dma_cfg.dst_info.data_width,
+ direction,
+ flags & DMA_PREP_INTERRUPT,
+ dev_addr, lli_max,
+ d40c->base->plat_data->llis_per_log);
+ } else
+ return -EINVAL;
+ if (total_size < 0)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
+ struct d40_chan *d40c,
+ struct scatterlist *sgl,
+ unsigned int sgl_len,
+ enum dma_data_direction direction,
+ unsigned long flags)
+{
+ dma_addr_t src_dev_addr;
+ dma_addr_t dst_dev_addr;
+ int res;
+
+ if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Out of memory\n", __func__);
+ return -ENOMEM;
+ }
+
+ d40d->lli_len = sgl_len;
+ d40d->lli_tcount = 0;
+
+ if (direction == DMA_FROM_DEVICE) {
+ dst_dev_addr = 0;
+ src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
+ } else if (direction == DMA_TO_DEVICE) {
+ dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
+ src_dev_addr = 0;
+ } else
+ return -EINVAL;
+
+ res = d40_phy_sg_to_lli(sgl,
+ sgl_len,
+ src_dev_addr,
+ d40d->lli_phy.src,
+ d40d->lli_phy.src_addr,
+ d40c->src_def_cfg,
+ d40c->dma_cfg.src_info.data_width,
+ d40c->dma_cfg.src_info.psize,
+ true);
+ if (res < 0)
+ return res;
+
+ res = d40_phy_sg_to_lli(sgl,
+ sgl_len,
+ dst_dev_addr,
+ d40d->lli_phy.dst,
+ d40d->lli_phy.dst_addr,
+ d40c->dst_def_cfg,
+ d40c->dma_cfg.dst_info.data_width,
+ d40c->dma_cfg.dst_info.psize,
+ true);
+ if (res < 0)
+ return res;
+
+ (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
+ d40d->lli_pool.size, DMA_TO_DEVICE);
+ return 0;
+}
+
+static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
+ struct scatterlist *sgl,
+ unsigned int sg_len,
+ enum dma_data_direction direction,
+ unsigned long flags)
+{
+ struct d40_desc *d40d;
+ struct d40_chan *d40c = container_of(chan, struct d40_chan,
+ chan);
+ unsigned long flg;
+ int err;
+
+ if (d40c->dma_cfg.pre_transfer)
+ d40c->dma_cfg.pre_transfer(chan,
+ d40c->dma_cfg.pre_transfer_data,
+ sg_dma_len(sgl));
+
+ spin_lock_irqsave(&d40c->lock, flg);
+ d40d = d40_desc_get(d40c);
+ spin_unlock_irqrestore(&d40c->lock, flg);
+
+ if (d40d == NULL)
+ return NULL;
+
+ memset(d40d, 0, sizeof(struct d40_desc));
+
+ if (d40c->log_num != D40_PHY_CHAN)
+ err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
+ direction, flags);
+ else
+ err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
+ direction, flags);
+ if (err) {
+ dev_err(&d40c->chan.dev->device,
+ "[%s] Failed to prepare %s slave sg job: %d\n",
+ __func__,
+ d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
+ return NULL;
+ }
+
+ d40d->txd.flags = flags;
+
+ dma_async_tx_descriptor_init(&d40d->txd, chan);
+
+ d40d->txd.tx_submit = d40_tx_submit;
+
+ return &d40d->txd;
+}
+
+static enum dma_status d40_tx_status(struct dma_chan *chan,
+ dma_cookie_t cookie,
+ struct dma_tx_state *txstate)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ dma_cookie_t last_used;
+ dma_cookie_t last_complete;
+ int ret;
+
+ last_complete = d40c->completed;
+ last_used = chan->cookie;
+
+ ret = dma_async_is_complete(cookie, last_complete, last_used);
+
+ if (txstate) {
+ txstate->last = last_complete;
+ txstate->used = last_used;
+ txstate->residue = stedma40_residue(chan);
+ }
+
+ return ret;
+}
+
+static void d40_issue_pending(struct dma_chan *chan)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ /* Busy means that pending jobs are already being processed */
+ if (!d40c->busy)
+ (void) d40_queue_start(d40c);
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd)
+{
+ unsigned long flags;
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+
+ switch (cmd) {
+ case DMA_TERMINATE_ALL:
+ spin_lock_irqsave(&d40c->lock, flags);
+ d40_term_all(d40c);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return 0;
+ case DMA_PAUSE:
+ return d40_pause(chan);
+ case DMA_RESUME:
+ return d40_resume(chan);
+ }
+
+ /* Other commands are unimplemented */
+ return -ENXIO;
+}
+
+/* Initialization functions */
+
+static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
+ struct d40_chan *chans, int offset,
+ int num_chans)
+{
+ int i = 0;
+ struct d40_chan *d40c;
+
+ INIT_LIST_HEAD(&dma->channels);
+
+ for (i = offset; i < offset + num_chans; i++) {
+ d40c = &chans[i];
+ d40c->base = base;
+ d40c->chan.device = dma;
+
+ /* Invalidate lcla element */
+ d40c->lcla.src_id = -1;
+ d40c->lcla.dst_id = -1;
+
+ spin_lock_init(&d40c->lock);
+
+ d40c->log_num = D40_PHY_CHAN;
+
+ INIT_LIST_HEAD(&d40c->free);
+ INIT_LIST_HEAD(&d40c->active);
+ INIT_LIST_HEAD(&d40c->queue);
+ INIT_LIST_HEAD(&d40c->client);
+
+ d40c->free_len = 0;
+
+ tasklet_init(&d40c->tasklet, dma_tasklet,
+ (unsigned long) d40c);
+
+ list_add_tail(&d40c->chan.device_node,
+ &dma->channels);
+ }
+}
+
+static int __init d40_dmaengine_init(struct d40_base *base,
+ int num_reserved_chans)
+{
+ int err ;
+
+ d40_chan_init(base, &base->dma_slave, base->log_chans,
+ 0, base->num_log_chans);
+
+ dma_cap_zero(base->dma_slave.cap_mask);
+ dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
+
+ base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
+ base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
+ base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
+ base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
+ base->dma_slave.device_tx_status = d40_tx_status;
+ base->dma_slave.device_issue_pending = d40_issue_pending;
+ base->dma_slave.device_control = d40_control;
+ base->dma_slave.dev = base->dev;
+
+ err = dma_async_device_register(&base->dma_slave);
+
+ if (err) {
+ dev_err(base->dev,
+ "[%s] Failed to register slave channels\n",
+ __func__);
+ goto failure1;
+ }
+
+ d40_chan_init(base, &base->dma_memcpy, base->log_chans,
+ base->num_log_chans, base->plat_data->memcpy_len);
+
+ dma_cap_zero(base->dma_memcpy.cap_mask);
+ dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
+
+ base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
+ base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
+ base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
+ base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
+ base->dma_memcpy.device_tx_status = d40_tx_status;
+ base->dma_memcpy.device_issue_pending = d40_issue_pending;
+ base->dma_memcpy.device_control = d40_control;
+ base->dma_memcpy.dev = base->dev;
+ /*
+ * This controller can only access address at even
+ * 32bit boundaries, i.e. 2^2
+ */
+ base->dma_memcpy.copy_align = 2;
+
+ err = dma_async_device_register(&base->dma_memcpy);
+
+ if (err) {
+ dev_err(base->dev,
+ "[%s] Failed to regsiter memcpy only channels\n",
+ __func__);
+ goto failure2;
+ }
+
+ d40_chan_init(base, &base->dma_both, base->phy_chans,
+ 0, num_reserved_chans);
+
+ dma_cap_zero(base->dma_both.cap_mask);
+ dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
+ dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
+
+ base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
+ base->dma_both.device_free_chan_resources = d40_free_chan_resources;
+ base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
+ base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
+ base->dma_both.device_tx_status = d40_tx_status;
+ base->dma_both.device_issue_pending = d40_issue_pending;
+ base->dma_both.device_control = d40_control;
+ base->dma_both.dev = base->dev;
+ base->dma_both.copy_align = 2;
+ err = dma_async_device_register(&base->dma_both);
+
+ if (err) {
+ dev_err(base->dev,
+ "[%s] Failed to register logical and physical capable channels\n",
+ __func__);
+ goto failure3;
+ }
+ return 0;
+failure3:
+ dma_async_device_unregister(&base->dma_memcpy);
+failure2:
+ dma_async_device_unregister(&base->dma_slave);
+failure1:
+ return err;
+}
+
+/* Initialization functions. */
+
+static int __init d40_phy_res_init(struct d40_base *base)
+{
+ int i;
+ int num_phy_chans_avail = 0;
+ u32 val[2];
+ int odd_even_bit = -2;
+
+ val[0] = readl(base->virtbase + D40_DREG_PRSME);
+ val[1] = readl(base->virtbase + D40_DREG_PRSMO);
+
+ for (i = 0; i < base->num_phy_chans; i++) {
+ base->phy_res[i].num = i;
+ odd_even_bit += 2 * ((i % 2) == 0);
+ if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
+ /* Mark security only channels as occupied */
+ base->phy_res[i].allocated_src = D40_ALLOC_PHY;
+ base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
+ } else {
+ base->phy_res[i].allocated_src = D40_ALLOC_FREE;
+ base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
+ num_phy_chans_avail++;
+ }
+ spin_lock_init(&base->phy_res[i].lock);
+ }
+ dev_info(base->dev, "%d of %d physical DMA channels available\n",
+ num_phy_chans_avail, base->num_phy_chans);
+
+ /* Verify settings extended vs standard */
+ val[0] = readl(base->virtbase + D40_DREG_PRTYP);
+
+ for (i = 0; i < base->num_phy_chans; i++) {
+
+ if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
+ (val[0] & 0x3) != 1)
+ dev_info(base->dev,
+ "[%s] INFO: channel %d is misconfigured (%d)\n",
+ __func__, i, val[0] & 0x3);
+
+ val[0] = val[0] >> 2;
+ }
+
+ return num_phy_chans_avail;
+}
+
+static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
+{
+ static const struct d40_reg_val dma_id_regs[] = {
+ /* Peripheral Id */
+ { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
+ { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
+ /*
+ * D40_DREG_PERIPHID2 Depends on HW revision:
+ * MOP500/HREF ED has 0x0008,
+ * ? has 0x0018,
+ * HREF V1 has 0x0028
+ */
+ { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
+
+ /* PCell Id */
+ { .reg = D40_DREG_CELLID0, .val = 0x000d},
+ { .reg = D40_DREG_CELLID1, .val = 0x00f0},
+ { .reg = D40_DREG_CELLID2, .val = 0x0005},
+ { .reg = D40_DREG_CELLID3, .val = 0x00b1}
+ };
+ struct stedma40_platform_data *plat_data;
+ struct clk *clk = NULL;
+ void __iomem *virtbase = NULL;
+ struct resource *res = NULL;
+ struct d40_base *base = NULL;
+ int num_log_chans = 0;
+ int num_phy_chans;
+ int i;
+
+ clk = clk_get(&pdev->dev, NULL);
+
+ if (IS_ERR(clk)) {
+ dev_err(&pdev->dev, "[%s] No matching clock found\n",
+ __func__);
+ goto failure;
+ }
+
+ clk_enable(clk);
+
+ /* Get IO for DMAC base address */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
+ if (!res)
+ goto failure;
+
+ if (request_mem_region(res->start, resource_size(res),
+ D40_NAME " I/O base") == NULL)
+ goto failure;
+
+ virtbase = ioremap(res->start, resource_size(res));
+ if (!virtbase)
+ goto failure;
+
+ /* HW version check */
+ for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
+ if (dma_id_regs[i].val !=
+ readl(virtbase + dma_id_regs[i].reg)) {
+ dev_err(&pdev->dev,
+ "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
+ __func__,
+ dma_id_regs[i].val,
+ dma_id_regs[i].reg,
+ readl(virtbase + dma_id_regs[i].reg));
+ goto failure;
+ }
+ }
+
+ i = readl(virtbase + D40_DREG_PERIPHID2);
+
+ if ((i & 0xf) != D40_PERIPHID2_DESIGNER) {
+ dev_err(&pdev->dev,
+ "[%s] Unknown designer! Got %x wanted %x\n",
+ __func__, i & 0xf, D40_PERIPHID2_DESIGNER);
+ goto failure;
+ }
+
+ /* The number of physical channels on this HW */
+ num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
+
+ dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
+ (i >> 4) & 0xf, res->start);
+
+ plat_data = pdev->dev.platform_data;
+
+ /* Count the number of logical channels in use */
+ for (i = 0; i < plat_data->dev_len; i++)
+ if (plat_data->dev_rx[i] != 0)
+ num_log_chans++;
+
+ for (i = 0; i < plat_data->dev_len; i++)
+ if (plat_data->dev_tx[i] != 0)
+ num_log_chans++;
+
+ base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
+ (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
+ sizeof(struct d40_chan), GFP_KERNEL);
+
+ if (base == NULL) {
+ dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
+ goto failure;
+ }
+
+ base->clk = clk;
+ base->num_phy_chans = num_phy_chans;
+ base->num_log_chans = num_log_chans;
+ base->phy_start = res->start;
+ base->phy_size = resource_size(res);
+ base->virtbase = virtbase;
+ base->plat_data = plat_data;
+ base->dev = &pdev->dev;
+ base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
+ base->log_chans = &base->phy_chans[num_phy_chans];
+
+ base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
+ GFP_KERNEL);
+ if (!base->phy_res)
+ goto failure;
+
+ base->lookup_phy_chans = kzalloc(num_phy_chans *
+ sizeof(struct d40_chan *),
+ GFP_KERNEL);
+ if (!base->lookup_phy_chans)
+ goto failure;
+
+ if (num_log_chans + plat_data->memcpy_len) {
+ /*
+ * The max number of logical channels are event lines for all
+ * src devices and dst devices
+ */
+ base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
+ sizeof(struct d40_chan *),
+ GFP_KERNEL);
+ if (!base->lookup_log_chans)
+ goto failure;
+ }
+ base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
+ GFP_KERNEL);
+ if (!base->lcla_pool.alloc_map)
+ goto failure;
+
+ return base;
+
+failure:
+ if (clk) {
+ clk_disable(clk);
+ clk_put(clk);
+ }
+ if (virtbase)
+ iounmap(virtbase);
+ if (res)
+ release_mem_region(res->start,
+ resource_size(res));
+ if (virtbase)
+ iounmap(virtbase);
+
+ if (base) {
+ kfree(base->lcla_pool.alloc_map);
+ kfree(base->lookup_log_chans);
+ kfree(base->lookup_phy_chans);
+ kfree(base->phy_res);
+ kfree(base);
+ }
+
+ return NULL;
+}
+
+static void __init d40_hw_init(struct d40_base *base)
+{
+
+ static const struct d40_reg_val dma_init_reg[] = {
+ /* Clock every part of the DMA block from start */
+ { .reg = D40_DREG_GCC, .val = 0x0000ff01},
+
+ /* Interrupts on all logical channels */
+ { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
+ };
+ int i;
+ u32 prmseo[2] = {0, 0};
+ u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
+ u32 pcmis = 0;
+ u32 pcicr = 0;
+
+ for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
+ writel(dma_init_reg[i].val,
+ base->virtbase + dma_init_reg[i].reg);
+
+ /* Configure all our dma channels to default settings */
+ for (i = 0; i < base->num_phy_chans; i++) {
+
+ activeo[i % 2] = activeo[i % 2] << 2;
+
+ if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
+ == D40_ALLOC_PHY) {
+ activeo[i % 2] |= 3;
+ continue;
+ }
+
+ /* Enable interrupt # */
+ pcmis = (pcmis << 1) | 1;
+
+ /* Clear interrupt # */
+ pcicr = (pcicr << 1) | 1;
+
+ /* Set channel to physical mode */
+ prmseo[i % 2] = prmseo[i % 2] << 2;
+ prmseo[i % 2] |= 1;
+
+ }
+
+ writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
+ writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
+ writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
+ writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
+
+ /* Write which interrupt to enable */
+ writel(pcmis, base->virtbase + D40_DREG_PCMIS);
+
+ /* Write which interrupt to clear */
+ writel(pcicr, base->virtbase + D40_DREG_PCICR);
+
+}
+
+static int __init d40_probe(struct platform_device *pdev)
+{
+ int err;
+ int ret = -ENOENT;
+ struct d40_base *base;
+ struct resource *res = NULL;
+ int num_reserved_chans;
+ u32 val;
+
+ base = d40_hw_detect_init(pdev);
+
+ if (!base)
+ goto failure;
+
+ num_reserved_chans = d40_phy_res_init(base);
+
+ platform_set_drvdata(pdev, base);
+
+ spin_lock_init(&base->interrupt_lock);
+ spin_lock_init(&base->execmd_lock);
+
+ /* Get IO for logical channel parameter address */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
+ if (!res) {
+ ret = -ENOENT;
+ dev_err(&pdev->dev,
+ "[%s] No \"lcpa\" memory resource\n",
+ __func__);
+ goto failure;
+ }
+ base->lcpa_size = resource_size(res);
+ base->phy_lcpa = res->start;
+
+ if (request_mem_region(res->start, resource_size(res),
+ D40_NAME " I/O lcpa") == NULL) {
+ ret = -EBUSY;
+ dev_err(&pdev->dev,
+ "[%s] Failed to request LCPA region 0x%x-0x%x\n",
+ __func__, res->start, res->end);
+ goto failure;
+ }
+
+ /* We make use of ESRAM memory for this. */
+ val = readl(base->virtbase + D40_DREG_LCPA);
+ if (res->start != val && val != 0) {
+ dev_warn(&pdev->dev,
+ "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
+ __func__, val, res->start);
+ } else
+ writel(res->start, base->virtbase + D40_DREG_LCPA);
+
+ base->lcpa_base = ioremap(res->start, resource_size(res));
+ if (!base->lcpa_base) {
+ ret = -ENOMEM;
+ dev_err(&pdev->dev,
+ "[%s] Failed to ioremap LCPA region\n",
+ __func__);
+ goto failure;
+ }
+ /* Get IO for logical channel link address */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla");
+ if (!res) {
+ ret = -ENOENT;
+ dev_err(&pdev->dev,
+ "[%s] No \"lcla\" resource defined\n",
+ __func__);
+ goto failure;
+ }
+
+ base->lcla_pool.base_size = resource_size(res);
+ base->lcla_pool.phy = res->start;
+
+ if (request_mem_region(res->start, resource_size(res),
+ D40_NAME " I/O lcla") == NULL) {
+ ret = -EBUSY;
+ dev_err(&pdev->dev,
+ "[%s] Failed to request LCLA region 0x%x-0x%x\n",
+ __func__, res->start, res->end);
+ goto failure;
+ }
+ val = readl(base->virtbase + D40_DREG_LCLA);
+ if (res->start != val && val != 0) {
+ dev_warn(&pdev->dev,
+ "[%s] Mismatch LCLA dma 0x%x, def 0x%x\n",
+ __func__, val, res->start);
+ } else
+ writel(res->start, base->virtbase + D40_DREG_LCLA);
+
+ base->lcla_pool.base = ioremap(res->start, resource_size(res));
+ if (!base->lcla_pool.base) {
+ ret = -ENOMEM;
+ dev_err(&pdev->dev,
+ "[%s] Failed to ioremap LCLA 0x%x-0x%x\n",
+ __func__, res->start, res->end);
+ goto failure;
+ }
+
+ spin_lock_init(&base->lcla_pool.lock);
+
+ base->lcla_pool.num_blocks = base->num_phy_chans;
+
+ base->irq = platform_get_irq(pdev, 0);
+
+ ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
+
+ if (ret) {
+ dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
+ goto failure;
+ }
+
+ err = d40_dmaengine_init(base, num_reserved_chans);
+ if (err)
+ goto failure;
+
+ d40_hw_init(base);
+
+ dev_info(base->dev, "initialized\n");
+ return 0;
+
+failure:
+ if (base) {
+ if (base->virtbase)
+ iounmap(base->virtbase);
+ if (base->lcla_pool.phy)
+ release_mem_region(base->lcla_pool.phy,
+ base->lcla_pool.base_size);
+ if (base->phy_lcpa)
+ release_mem_region(base->phy_lcpa,
+ base->lcpa_size);
+ if (base->phy_start)
+ release_mem_region(base->phy_start,
+ base->phy_size);
+ if (base->clk) {
+ clk_disable(base->clk);
+ clk_put(base->clk);
+ }
+
+ kfree(base->lcla_pool.alloc_map);
+ kfree(base->lookup_log_chans);
+ kfree(base->lookup_phy_chans);
+ kfree(base->phy_res);
+ kfree(base);
+ }
+
+ dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
+ return ret;
+}
+
+static struct platform_driver d40_driver = {
+ .driver = {
+ .owner = THIS_MODULE,
+ .name = D40_NAME,
+ },
+};
+
+int __init stedma40_init(void)
+{
+ return platform_driver_probe(&d40_driver, d40_probe);
+}
+arch_initcall(stedma40_init);
diff --git a/drivers/dma/ste_dma40_ll.c b/drivers/dma/ste_dma40_ll.c
new file mode 100644
index 00000000000..561fdd8a80c
--- /dev/null
+++ b/drivers/dma/ste_dma40_ll.c
@@ -0,0 +1,454 @@
+/*
+ * driver/dma/ste_dma40_ll.c
+ *
+ * Copyright (C) ST-Ericsson 2007-2010
+ * License terms: GNU General Public License (GPL) version 2
+ * Author: Per Friden <per.friden@stericsson.com>
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
+ */
+
+#include <linux/kernel.h>
+#include <plat/ste_dma40.h>
+
+#include "ste_dma40_ll.h"
+
+/* Sets up proper LCSP1 and LCSP3 register for a logical channel */
+void d40_log_cfg(struct stedma40_chan_cfg *cfg,
+ u32 *lcsp1, u32 *lcsp3)
+{
+ u32 l3 = 0; /* dst */
+ u32 l1 = 0; /* src */
+
+ /* src is mem? -> increase address pos */
+ if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
+ cfg->dir == STEDMA40_MEM_TO_MEM)
+ l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
+
+ /* dst is mem? -> increase address pos */
+ if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
+ cfg->dir == STEDMA40_MEM_TO_MEM)
+ l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
+
+ /* src is hw? -> master port 1 */
+ if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
+ cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
+ l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
+
+ /* dst is hw? -> master port 1 */
+ if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
+ cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
+ l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
+
+ l3 |= 1 << D40_MEM_LCSP3_DCFG_TIM_POS;
+ l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
+ l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
+ l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
+ l3 |= 1 << D40_MEM_LCSP3_DTCP_POS;
+
+ l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
+ l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
+ l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
+ l1 |= 1 << D40_MEM_LCSP1_STCP_POS;
+
+ *lcsp1 = l1;
+ *lcsp3 = l3;
+
+}
+
+/* Sets up SRC and DST CFG register for both logical and physical channels */
+void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
+ u32 *src_cfg, u32 *dst_cfg, bool is_log)
+{
+ u32 src = 0;
+ u32 dst = 0;
+
+ if (!is_log) {
+ /* Physical channel */
+ if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
+ (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
+ /* Set master port to 1 */
+ src |= 1 << D40_SREG_CFG_MST_POS;
+ src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
+
+ if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
+ src |= 1 << D40_SREG_CFG_PHY_TM_POS;
+ else
+ src |= 3 << D40_SREG_CFG_PHY_TM_POS;
+ }
+ if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
+ (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
+ /* Set master port to 1 */
+ dst |= 1 << D40_SREG_CFG_MST_POS;
+ dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
+
+ if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
+ dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
+ else
+ dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
+ }
+ /* Interrupt on end of transfer for destination */
+ dst |= 1 << D40_SREG_CFG_TIM_POS;
+
+ /* Generate interrupt on error */
+ src |= 1 << D40_SREG_CFG_EIM_POS;
+ dst |= 1 << D40_SREG_CFG_EIM_POS;
+
+ /* PSIZE */
+ if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
+ src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+ src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
+ }
+ if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
+ dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+ dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
+ }
+
+ /* Element size */
+ src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
+ dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
+
+ } else {
+ /* Logical channel */
+ dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
+ src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
+ }
+
+ if (cfg->channel_type & STEDMA40_HIGH_PRIORITY_CHANNEL) {
+ src |= 1 << D40_SREG_CFG_PRI_POS;
+ dst |= 1 << D40_SREG_CFG_PRI_POS;
+ }
+
+ src |= cfg->src_info.endianess << D40_SREG_CFG_LBE_POS;
+ dst |= cfg->dst_info.endianess << D40_SREG_CFG_LBE_POS;
+
+ *src_cfg = src;
+ *dst_cfg = dst;
+}
+
+int d40_phy_fill_lli(struct d40_phy_lli *lli,
+ dma_addr_t data,
+ u32 data_size,
+ int psize,
+ dma_addr_t next_lli,
+ u32 reg_cfg,
+ bool term_int,
+ u32 data_width,
+ bool is_device)
+{
+ int num_elems;
+
+ if (psize == STEDMA40_PSIZE_PHY_1)
+ num_elems = 1;
+ else
+ num_elems = 2 << psize;
+
+ /*
+ * Size is 16bit. data_width is 8, 16, 32 or 64 bit
+ * Block large than 64 KiB must be split.
+ */
+ if (data_size > (0xffff << data_width))
+ return -EINVAL;
+
+ /* Must be aligned */
+ if (!IS_ALIGNED(data, 0x1 << data_width))
+ return -EINVAL;
+
+ /* Transfer size can't be smaller than (num_elms * elem_size) */
+ if (data_size < num_elems * (0x1 << data_width))
+ return -EINVAL;
+
+ /* The number of elements. IE now many chunks */
+ lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
+
+ /*
+ * Distance to next element sized entry.
+ * Usually the size of the element unless you want gaps.
+ */
+ if (!is_device)
+ lli->reg_elt |= (0x1 << data_width) <<
+ D40_SREG_ELEM_PHY_EIDX_POS;
+
+ /* Where the data is */
+ lli->reg_ptr = data;
+ lli->reg_cfg = reg_cfg;
+
+ /* If this scatter list entry is the last one, no next link */
+ if (next_lli == 0)
+ lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
+ else
+ lli->reg_lnk = next_lli;
+
+ /* Set/clear interrupt generation on this link item.*/
+ if (term_int)
+ lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
+ else
+ lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
+
+ /* Post link */
+ lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
+
+ return 0;
+}
+
+int d40_phy_sg_to_lli(struct scatterlist *sg,
+ int sg_len,
+ dma_addr_t target,
+ struct d40_phy_lli *lli,
+ dma_addr_t lli_phys,
+ u32 reg_cfg,
+ u32 data_width,
+ int psize,
+ bool term_int)
+{
+ int total_size = 0;
+ int i;
+ struct scatterlist *current_sg = sg;
+ dma_addr_t next_lli_phys;
+ dma_addr_t dst;
+ int err = 0;
+
+ for_each_sg(sg, current_sg, sg_len, i) {
+
+ total_size += sg_dma_len(current_sg);
+
+ /* If this scatter list entry is the last one, no next link */
+ if (sg_len - 1 == i)
+ next_lli_phys = 0;
+ else
+ next_lli_phys = ALIGN(lli_phys + (i + 1) *
+ sizeof(struct d40_phy_lli),
+ D40_LLI_ALIGN);
+
+ if (target)
+ dst = target;
+ else
+ dst = sg_phys(current_sg);
+
+ err = d40_phy_fill_lli(&lli[i],
+ dst,
+ sg_dma_len(current_sg),
+ psize,
+ next_lli_phys,
+ reg_cfg,
+ !next_lli_phys,
+ data_width,
+ target == dst);
+ if (err)
+ goto err;
+ }
+
+ return total_size;
+ err:
+ return err;
+}
+
+
+void d40_phy_lli_write(void __iomem *virtbase,
+ u32 phy_chan_num,
+ struct d40_phy_lli *lli_dst,
+ struct d40_phy_lli *lli_src)
+{
+
+ writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
+ writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
+ writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
+ writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
+
+ writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
+ writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
+ writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
+ writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
+ phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
+
+}
+
+/* DMA logical lli operations */
+
+void d40_log_fill_lli(struct d40_log_lli *lli,
+ dma_addr_t data, u32 data_size,
+ u32 lli_next_off, u32 reg_cfg,
+ u32 data_width,
+ bool term_int, bool addr_inc)
+{
+ lli->lcsp13 = reg_cfg;
+
+ /* The number of elements to transfer */
+ lli->lcsp02 = ((data_size >> data_width) <<
+ D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
+ /* 16 LSBs address of the current element */
+ lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
+ /* 16 MSBs address of the current element */
+ lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
+
+ if (addr_inc)
+ lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
+
+ lli->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
+ /* If this scatter list entry is the last one, no next link */
+ lli->lcsp13 |= (lli_next_off << D40_MEM_LCSP1_SLOS_POS) &
+ D40_MEM_LCSP1_SLOS_MASK;
+
+ if (term_int)
+ lli->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
+ else
+ lli->lcsp13 &= ~D40_MEM_LCSP1_SCFG_TIM_MASK;
+}
+
+int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
+ struct scatterlist *sg,
+ int sg_len,
+ struct d40_log_lli_bidir *lli,
+ struct d40_def_lcsp *lcsp,
+ u32 src_data_width,
+ u32 dst_data_width,
+ enum dma_data_direction direction,
+ bool term_int, dma_addr_t dev_addr, int max_len,
+ int llis_per_log)
+{
+ int total_size = 0;
+ struct scatterlist *current_sg = sg;
+ int i;
+ u32 next_lli_off_dst;
+ u32 next_lli_off_src;
+
+ next_lli_off_src = 0;
+ next_lli_off_dst = 0;
+
+ for_each_sg(sg, current_sg, sg_len, i) {
+ total_size += sg_dma_len(current_sg);
+
+ /*
+ * If this scatter list entry is the last one or
+ * max length, terminate link.
+ */
+ if (sg_len - 1 == i || ((i+1) % max_len == 0)) {
+ next_lli_off_src = 0;
+ next_lli_off_dst = 0;
+ } else {
+ if (next_lli_off_dst == 0 &&
+ next_lli_off_src == 0) {
+ /* The first lli will be at next_lli_off */
+ next_lli_off_dst = (lcla->dst_id *
+ llis_per_log + 1);
+ next_lli_off_src = (lcla->src_id *
+ llis_per_log + 1);
+ } else {
+ next_lli_off_dst++;
+ next_lli_off_src++;
+ }
+ }
+
+ if (direction == DMA_TO_DEVICE) {
+ d40_log_fill_lli(&lli->src[i],
+ sg_phys(current_sg),
+ sg_dma_len(current_sg),
+ next_lli_off_src,
+ lcsp->lcsp1, src_data_width,
+ term_int && !next_lli_off_src,
+ true);
+ d40_log_fill_lli(&lli->dst[i],
+ dev_addr,
+ sg_dma_len(current_sg),
+ next_lli_off_dst,
+ lcsp->lcsp3, dst_data_width,
+ /* No next == terminal interrupt */
+ term_int && !next_lli_off_dst,
+ false);
+ } else {
+ d40_log_fill_lli(&lli->dst[i],
+ sg_phys(current_sg),
+ sg_dma_len(current_sg),
+ next_lli_off_dst,
+ lcsp->lcsp3, dst_data_width,
+ /* No next == terminal interrupt */
+ term_int && !next_lli_off_dst,
+ true);
+ d40_log_fill_lli(&lli->src[i],
+ dev_addr,
+ sg_dma_len(current_sg),
+ next_lli_off_src,
+ lcsp->lcsp1, src_data_width,
+ term_int && !next_lli_off_src,
+ false);
+ }
+ }
+ return total_size;
+}
+
+int d40_log_sg_to_lli(int lcla_id,
+ struct scatterlist *sg,
+ int sg_len,
+ struct d40_log_lli *lli_sg,
+ u32 lcsp13, /* src or dst*/
+ u32 data_width,
+ bool term_int, int max_len, int llis_per_log)
+{
+ int total_size = 0;
+ struct scatterlist *current_sg = sg;
+ int i;
+ u32 next_lli_off = 0;
+
+ for_each_sg(sg, current_sg, sg_len, i) {
+ total_size += sg_dma_len(current_sg);
+
+ /*
+ * If this scatter list entry is the last one or
+ * max length, terminate link.
+ */
+ if (sg_len - 1 == i || ((i+1) % max_len == 0))
+ next_lli_off = 0;
+ else {
+ if (next_lli_off == 0)
+ /* The first lli will be at next_lli_off */
+ next_lli_off = lcla_id * llis_per_log + 1;
+ else
+ next_lli_off++;
+ }
+
+ d40_log_fill_lli(&lli_sg[i],
+ sg_phys(current_sg),
+ sg_dma_len(current_sg),
+ next_lli_off,
+ lcsp13, data_width,
+ term_int && !next_lli_off,
+ true);
+ }
+ return total_size;
+}
+
+void d40_log_lli_write(struct d40_log_lli_full *lcpa,
+ struct d40_log_lli *lcla_src,
+ struct d40_log_lli *lcla_dst,
+ struct d40_log_lli *lli_dst,
+ struct d40_log_lli *lli_src,
+ int llis_per_log)
+{
+ u32 slos = 0;
+ u32 dlos = 0;
+ int i;
+
+ lcpa->lcsp0 = lli_src->lcsp02;
+ lcpa->lcsp1 = lli_src->lcsp13;
+ lcpa->lcsp2 = lli_dst->lcsp02;
+ lcpa->lcsp3 = lli_dst->lcsp13;
+
+ slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
+ dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
+
+ for (i = 0; (i < llis_per_log) && slos && dlos; i++) {
+ writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02);
+ writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13);
+ writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02);
+ writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13);
+
+ slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
+ dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
+ }
+}
diff --git a/drivers/dma/ste_dma40_ll.h b/drivers/dma/ste_dma40_ll.h
new file mode 100644
index 00000000000..2029280cb33
--- /dev/null
+++ b/drivers/dma/ste_dma40_ll.h
@@ -0,0 +1,354 @@
+/*
+ * driver/dma/ste_dma40_ll.h
+ *
+ * Copyright (C) ST-Ericsson 2007-2010
+ * License terms: GNU General Public License (GPL) version 2
+ * Author: Per Friden <per.friden@stericsson.com>
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
+ */
+#ifndef STE_DMA40_LL_H
+#define STE_DMA40_LL_H
+
+#define D40_DREG_PCBASE 0x400
+#define D40_DREG_PCDELTA (8 * 4)
+#define D40_LLI_ALIGN 16 /* LLI alignment must be 16 bytes. */
+
+#define D40_TYPE_TO_GROUP(type) (type / 16)
+#define D40_TYPE_TO_EVENT(type) (type % 16)
+
+/* Most bits of the CFG register are the same in log as in phy mode */
+#define D40_SREG_CFG_MST_POS 15
+#define D40_SREG_CFG_TIM_POS 14
+#define D40_SREG_CFG_EIM_POS 13
+#define D40_SREG_CFG_LOG_INCR_POS 12
+#define D40_SREG_CFG_PHY_PEN_POS 12
+#define D40_SREG_CFG_PSIZE_POS 10
+#define D40_SREG_CFG_ESIZE_POS 8
+#define D40_SREG_CFG_PRI_POS 7
+#define D40_SREG_CFG_LBE_POS 6
+#define D40_SREG_CFG_LOG_GIM_POS 5
+#define D40_SREG_CFG_LOG_MFU_POS 4
+#define D40_SREG_CFG_PHY_TM_POS 4
+#define D40_SREG_CFG_PHY_EVTL_POS 0
+
+
+/* Standard channel parameters - basic mode (element register) */
+#define D40_SREG_ELEM_PHY_ECNT_POS 16
+#define D40_SREG_ELEM_PHY_EIDX_POS 0
+
+#define D40_SREG_ELEM_PHY_ECNT_MASK (0xFFFF << D40_SREG_ELEM_PHY_ECNT_POS)
+
+/* Standard channel parameters - basic mode (Link register) */
+#define D40_SREG_LNK_PHY_TCP_POS 0
+#define D40_SREG_LNK_PHY_LMP_POS 1
+#define D40_SREG_LNK_PHY_PRE_POS 2
+/*
+ * Source destination link address. Contains the
+ * 29-bit byte word aligned address of the reload area.
+ */
+#define D40_SREG_LNK_PHYS_LNK_MASK 0xFFFFFFF8UL
+
+/* Standard basic channel logical mode */
+
+/* Element register */
+#define D40_SREG_ELEM_LOG_ECNT_POS 16
+#define D40_SREG_ELEM_LOG_LIDX_POS 8
+#define D40_SREG_ELEM_LOG_LOS_POS 1
+#define D40_SREG_ELEM_LOG_TCP_POS 0
+
+#define D40_SREG_ELEM_LOG_LIDX_MASK (0xFF << D40_SREG_ELEM_LOG_LIDX_POS)
+
+/* Link register */
+#define D40_DEACTIVATE_EVENTLINE 0x0
+#define D40_ACTIVATE_EVENTLINE 0x1
+#define D40_EVENTLINE_POS(i) (2 * i)
+#define D40_EVENTLINE_MASK(i) (0x3 << D40_EVENTLINE_POS(i))
+
+/* Standard basic channel logical params in memory */
+
+/* LCSP0 */
+#define D40_MEM_LCSP0_ECNT_POS 16
+#define D40_MEM_LCSP0_SPTR_POS 0
+
+#define D40_MEM_LCSP0_ECNT_MASK (0xFFFF << D40_MEM_LCSP0_ECNT_POS)
+#define D40_MEM_LCSP0_SPTR_MASK (0xFFFF << D40_MEM_LCSP0_SPTR_POS)
+
+/* LCSP1 */
+#define D40_MEM_LCSP1_SPTR_POS 16
+#define D40_MEM_LCSP1_SCFG_MST_POS 15
+#define D40_MEM_LCSP1_SCFG_TIM_POS 14
+#define D40_MEM_LCSP1_SCFG_EIM_POS 13
+#define D40_MEM_LCSP1_SCFG_INCR_POS 12
+#define D40_MEM_LCSP1_SCFG_PSIZE_POS 10
+#define D40_MEM_LCSP1_SCFG_ESIZE_POS 8
+#define D40_MEM_LCSP1_SLOS_POS 1
+#define D40_MEM_LCSP1_STCP_POS 0
+
+#define D40_MEM_LCSP1_SPTR_MASK (0xFFFF << D40_MEM_LCSP1_SPTR_POS)
+#define D40_MEM_LCSP1_SCFG_TIM_MASK (0x1 << D40_MEM_LCSP1_SCFG_TIM_POS)
+#define D40_MEM_LCSP1_SCFG_INCR_MASK (0x1 << D40_MEM_LCSP1_SCFG_INCR_POS)
+#define D40_MEM_LCSP1_SCFG_PSIZE_MASK (0x3 << D40_MEM_LCSP1_SCFG_PSIZE_POS)
+#define D40_MEM_LCSP1_SLOS_MASK (0x7F << D40_MEM_LCSP1_SLOS_POS)
+#define D40_MEM_LCSP1_STCP_MASK (0x1 << D40_MEM_LCSP1_STCP_POS)
+
+/* LCSP2 */
+#define D40_MEM_LCSP2_ECNT_POS 16
+
+#define D40_MEM_LCSP2_ECNT_MASK (0xFFFF << D40_MEM_LCSP2_ECNT_POS)
+
+/* LCSP3 */
+#define D40_MEM_LCSP3_DCFG_MST_POS 15
+#define D40_MEM_LCSP3_DCFG_TIM_POS 14
+#define D40_MEM_LCSP3_DCFG_EIM_POS 13
+#define D40_MEM_LCSP3_DCFG_INCR_POS 12
+#define D40_MEM_LCSP3_DCFG_PSIZE_POS 10
+#define D40_MEM_LCSP3_DCFG_ESIZE_POS 8
+#define D40_MEM_LCSP3_DLOS_POS 1
+#define D40_MEM_LCSP3_DTCP_POS 0
+
+#define D40_MEM_LCSP3_DLOS_MASK (0x7F << D40_MEM_LCSP3_DLOS_POS)
+#define D40_MEM_LCSP3_DTCP_MASK (0x1 << D40_MEM_LCSP3_DTCP_POS)
+
+
+/* Standard channel parameter register offsets */
+#define D40_CHAN_REG_SSCFG 0x00
+#define D40_CHAN_REG_SSELT 0x04
+#define D40_CHAN_REG_SSPTR 0x08
+#define D40_CHAN_REG_SSLNK 0x0C
+#define D40_CHAN_REG_SDCFG 0x10
+#define D40_CHAN_REG_SDELT 0x14
+#define D40_CHAN_REG_SDPTR 0x18
+#define D40_CHAN_REG_SDLNK 0x1C
+
+/* DMA Register Offsets */
+#define D40_DREG_GCC 0x000
+#define D40_DREG_PRTYP 0x004
+#define D40_DREG_PRSME 0x008
+#define D40_DREG_PRSMO 0x00C
+#define D40_DREG_PRMSE 0x010
+#define D40_DREG_PRMSO 0x014
+#define D40_DREG_PRMOE 0x018
+#define D40_DREG_PRMOO 0x01C
+#define D40_DREG_LCPA 0x020
+#define D40_DREG_LCLA 0x024
+#define D40_DREG_ACTIVE 0x050
+#define D40_DREG_ACTIVO 0x054
+#define D40_DREG_FSEB1 0x058
+#define D40_DREG_FSEB2 0x05C
+#define D40_DREG_PCMIS 0x060
+#define D40_DREG_PCICR 0x064
+#define D40_DREG_PCTIS 0x068
+#define D40_DREG_PCEIS 0x06C
+#define D40_DREG_LCMIS0 0x080
+#define D40_DREG_LCMIS1 0x084
+#define D40_DREG_LCMIS2 0x088
+#define D40_DREG_LCMIS3 0x08C
+#define D40_DREG_LCICR0 0x090
+#define D40_DREG_LCICR1 0x094
+#define D40_DREG_LCICR2 0x098
+#define D40_DREG_LCICR3 0x09C
+#define D40_DREG_LCTIS0 0x0A0
+#define D40_DREG_LCTIS1 0x0A4
+#define D40_DREG_LCTIS2 0x0A8
+#define D40_DREG_LCTIS3 0x0AC
+#define D40_DREG_LCEIS0 0x0B0
+#define D40_DREG_LCEIS1 0x0B4
+#define D40_DREG_LCEIS2 0x0B8
+#define D40_DREG_LCEIS3 0x0BC
+#define D40_DREG_STFU 0xFC8
+#define D40_DREG_ICFG 0xFCC
+#define D40_DREG_PERIPHID0 0xFE0
+#define D40_DREG_PERIPHID1 0xFE4
+#define D40_DREG_PERIPHID2 0xFE8
+#define D40_DREG_PERIPHID3 0xFEC
+#define D40_DREG_CELLID0 0xFF0
+#define D40_DREG_CELLID1 0xFF4
+#define D40_DREG_CELLID2 0xFF8
+#define D40_DREG_CELLID3 0xFFC
+
+/* LLI related structures */
+
+/**
+ * struct d40_phy_lli - The basic configration register for each physical
+ * channel.
+ *
+ * @reg_cfg: The configuration register.
+ * @reg_elt: The element register.
+ * @reg_ptr: The pointer register.
+ * @reg_lnk: The link register.
+ *
+ * These registers are set up for both physical and logical transfers
+ * Note that the bit in each register means differently in logical and
+ * physical(standard) mode.
+ *
+ * This struct must be 16 bytes aligned, and only contain physical registers
+ * since it will be directly accessed by the DMA.
+ */
+struct d40_phy_lli {
+ u32 reg_cfg;
+ u32 reg_elt;
+ u32 reg_ptr;
+ u32 reg_lnk;
+};
+
+/**
+ * struct d40_phy_lli_bidir - struct for a transfer.
+ *
+ * @src: Register settings for src channel.
+ * @dst: Register settings for dst channel.
+ * @dst_addr: Physical destination address.
+ * @src_addr: Physical source address.
+ *
+ * All DMA transfers have a source and a destination.
+ */
+
+struct d40_phy_lli_bidir {
+ struct d40_phy_lli *src;
+ struct d40_phy_lli *dst;
+ dma_addr_t dst_addr;
+ dma_addr_t src_addr;
+};
+
+
+/**
+ * struct d40_log_lli - logical lli configuration
+ *
+ * @lcsp02: Either maps to register lcsp0 if src or lcsp2 if dst.
+ * @lcsp13: Either maps to register lcsp1 if src or lcsp3 if dst.
+ *
+ * This struct must be 8 bytes aligned since it will be accessed directy by
+ * the DMA. Never add any none hw mapped registers to this struct.
+ */
+
+struct d40_log_lli {
+ u32 lcsp02;
+ u32 lcsp13;
+};
+
+/**
+ * struct d40_log_lli_bidir - For both src and dst
+ *
+ * @src: pointer to src lli configuration.
+ * @dst: pointer to dst lli configuration.
+ *
+ * You always have a src and a dst when doing DMA transfers.
+ */
+
+struct d40_log_lli_bidir {
+ struct d40_log_lli *src;
+ struct d40_log_lli *dst;
+};
+
+/**
+ * struct d40_log_lli_full - LCPA layout
+ *
+ * @lcsp0: Logical Channel Standard Param 0 - Src.
+ * @lcsp1: Logical Channel Standard Param 1 - Src.
+ * @lcsp2: Logical Channel Standard Param 2 - Dst.
+ * @lcsp3: Logical Channel Standard Param 3 - Dst.
+ *
+ * This struct maps to LCPA physical memory layout. Must map to
+ * the hw.
+ */
+struct d40_log_lli_full {
+ u32 lcsp0;
+ u32 lcsp1;
+ u32 lcsp2;
+ u32 lcsp3;
+};
+
+/**
+ * struct d40_def_lcsp - Default LCSP1 and LCSP3 settings
+ *
+ * @lcsp3: The default configuration for dst.
+ * @lcsp1: The default configuration for src.
+ */
+struct d40_def_lcsp {
+ u32 lcsp3;
+ u32 lcsp1;
+};
+
+/**
+ * struct d40_lcla_elem - Info for one LCA element.
+ *
+ * @src_id: logical channel src id
+ * @dst_id: logical channel dst id
+ * @src: LCPA formated src parameters
+ * @dst: LCPA formated dst parameters
+ *
+ */
+struct d40_lcla_elem {
+ int src_id;
+ int dst_id;
+ struct d40_log_lli *src;
+ struct d40_log_lli *dst;
+};
+
+/* Physical channels */
+
+void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
+ u32 *src_cfg, u32 *dst_cfg, bool is_log);
+
+void d40_log_cfg(struct stedma40_chan_cfg *cfg,
+ u32 *lcsp1, u32 *lcsp2);
+
+int d40_phy_sg_to_lli(struct scatterlist *sg,
+ int sg_len,
+ dma_addr_t target,
+ struct d40_phy_lli *lli,
+ dma_addr_t lli_phys,
+ u32 reg_cfg,
+ u32 data_width,
+ int psize,
+ bool term_int);
+
+int d40_phy_fill_lli(struct d40_phy_lli *lli,
+ dma_addr_t data,
+ u32 data_size,
+ int psize,
+ dma_addr_t next_lli,
+ u32 reg_cfg,
+ bool term_int,
+ u32 data_width,
+ bool is_device);
+
+void d40_phy_lli_write(void __iomem *virtbase,
+ u32 phy_chan_num,
+ struct d40_phy_lli *lli_dst,
+ struct d40_phy_lli *lli_src);
+
+/* Logical channels */
+
+void d40_log_fill_lli(struct d40_log_lli *lli,
+ dma_addr_t data, u32 data_size,
+ u32 lli_next_off, u32 reg_cfg,
+ u32 data_width,
+ bool term_int, bool addr_inc);
+
+int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
+ struct scatterlist *sg,
+ int sg_len,
+ struct d40_log_lli_bidir *lli,
+ struct d40_def_lcsp *lcsp,
+ u32 src_data_width,
+ u32 dst_data_width,
+ enum dma_data_direction direction,
+ bool term_int, dma_addr_t dev_addr, int max_len,
+ int llis_per_log);
+
+void d40_log_lli_write(struct d40_log_lli_full *lcpa,
+ struct d40_log_lli *lcla_src,
+ struct d40_log_lli *lcla_dst,
+ struct d40_log_lli *lli_dst,
+ struct d40_log_lli *lli_src,
+ int llis_per_log);
+
+int d40_log_sg_to_lli(int lcla_id,
+ struct scatterlist *sg,
+ int sg_len,
+ struct d40_log_lli *lli_sg,
+ u32 lcsp13, /* src or dst*/
+ u32 data_width,
+ bool term_int, int max_len, int llis_per_log);
+
+#endif /* STE_DMA40_LLI_H */