summaryrefslogtreecommitdiffstats
path: root/drivers/media/dvb/frontends/tda18271c2dd.c
diff options
context:
space:
mode:
authorRalph Metzler <rjkm@metzlerbros.de>2011-07-03 13:36:17 -0300
committerMauro Carvalho Chehab <mchehab@redhat.com>2011-07-27 17:55:40 -0300
commite8783950f8a3a240c81c0d8d3becbda4b56c1794 (patch)
treecb080618b84d30284637b47a8e12b60c8ef672ce /drivers/media/dvb/frontends/tda18271c2dd.c
parentebee4b589ffeb8dd700c2a3649e31f4e41c1bb6b (diff)
[media] tda18271c2dd: Initial check-in
Driver for the NXP TDA18271c2 silicon tuner. Signed-off-by: Ralph Metzler <rjkm@metzlerbros.de> Signed-off-by: Oliver Endriss <o.endriss@gmx.de> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Diffstat (limited to 'drivers/media/dvb/frontends/tda18271c2dd.c')
-rw-r--r--drivers/media/dvb/frontends/tda18271c2dd.c1063
1 files changed, 1063 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/tda18271c2dd.c b/drivers/media/dvb/frontends/tda18271c2dd.c
new file mode 100644
index 00000000000..b4a23bf0010
--- /dev/null
+++ b/drivers/media/dvb/frontends/tda18271c2dd.c
@@ -0,0 +1,1063 @@
+/*
+ * tda18271c2dd: Driver for the TDA18271C2 tuner
+ *
+ * Copyright (C) 2010 Digital Devices GmbH
+ *
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 only, as published by the Free Software Foundation.
+ *
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA
+ * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/firmware.h>
+#include <linux/i2c.h>
+#include <linux/version.h>
+#include <asm/div64.h>
+
+#include "dvb_frontend.h"
+
+struct SStandardParam {
+ s32 m_IFFrequency;
+ u32 m_BandWidth;
+ u8 m_EP3_4_0;
+ u8 m_EB22;
+};
+
+struct SMap {
+ u32 m_Frequency;
+ u8 m_Param;
+};
+
+struct SMapI {
+ u32 m_Frequency;
+ s32 m_Param;
+};
+
+struct SMap2 {
+ u32 m_Frequency;
+ u8 m_Param1;
+ u8 m_Param2;
+};
+
+struct SRFBandMap {
+ u32 m_RF_max;
+ u32 m_RF1_Default;
+ u32 m_RF2_Default;
+ u32 m_RF3_Default;
+};
+
+enum ERegister
+{
+ ID = 0,
+ TM,
+ PL,
+ EP1, EP2, EP3, EP4, EP5,
+ CPD, CD1, CD2, CD3,
+ MPD, MD1, MD2, MD3,
+ EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10,
+ EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20,
+ EB21, EB22, EB23,
+ NUM_REGS
+};
+
+struct tda_state {
+ struct i2c_adapter *i2c;
+ u8 adr;
+
+ u32 m_Frequency;
+ u32 IF;
+
+ u8 m_IFLevelAnalog;
+ u8 m_IFLevelDigital;
+ u8 m_IFLevelDVBC;
+ u8 m_IFLevelDVBT;
+
+ u8 m_EP4;
+ u8 m_EP3_Standby;
+
+ bool m_bMaster;
+
+ s32 m_SettlingTime;
+
+ u8 m_Regs[NUM_REGS];
+
+ /* Tracking filter settings for band 0..6 */
+ u32 m_RF1[7];
+ s32 m_RF_A1[7];
+ s32 m_RF_B1[7];
+ u32 m_RF2[7];
+ s32 m_RF_A2[7];
+ s32 m_RF_B2[7];
+ u32 m_RF3[7];
+
+ u8 m_TMValue_RFCal; /* Calibration temperatur */
+
+ bool m_bFMInput; /* true to use Pin 8 for FM Radio */
+
+};
+
+static int PowerScan(struct tda_state *state,
+ u8 RFBand,u32 RF_in,
+ u32 * pRF_Out, bool *pbcal);
+
+static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
+{
+ struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD,
+ .buf = data, .len = len}};
+ return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
+}
+
+static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
+{
+ struct i2c_msg msg = {.addr = adr, .flags = 0,
+ .buf = data, .len = len};
+
+ if (i2c_transfer(adap, &msg, 1) != 1) {
+ printk("i2c_write error\n");
+ return -1;
+ }
+ return 0;
+}
+
+static int WriteRegs(struct tda_state *state,
+ u8 SubAddr, u8 *Regs, u16 nRegs)
+{
+ u8 data[nRegs+1];
+
+ data[0] = SubAddr;
+ memcpy(data + 1, Regs, nRegs);
+ return i2c_write(state->i2c, state->adr, data, nRegs+1);
+}
+
+static int WriteReg(struct tda_state *state, u8 SubAddr,u8 Reg)
+{
+ u8 msg[2] = {SubAddr, Reg};
+
+ return i2c_write(state->i2c, state->adr, msg, 2);
+}
+
+static int Read(struct tda_state *state, u8 * Regs)
+{
+ return i2c_readn(state->i2c, state->adr, Regs, 16);
+}
+
+static int ReadExtented(struct tda_state *state, u8 * Regs)
+{
+ return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS);
+}
+
+static int UpdateRegs(struct tda_state *state, u8 RegFrom,u8 RegTo)
+{
+ return WriteRegs(state, RegFrom,
+ &state->m_Regs[RegFrom], RegTo-RegFrom+1);
+}
+static int UpdateReg(struct tda_state *state, u8 Reg)
+{
+ return WriteReg(state, Reg,state->m_Regs[Reg]);
+}
+
+#include "tda18271c2dd_maps.h"
+
+#undef CHK_ERROR
+#define CHK_ERROR(s) if ((status = s) < 0) break
+
+static void reset(struct tda_state *state)
+{
+ u32 ulIFLevelAnalog = 0;
+ u32 ulIFLevelDigital = 2;
+ u32 ulIFLevelDVBC = 7;
+ u32 ulIFLevelDVBT = 6;
+ u32 ulXTOut = 0;
+ u32 ulStandbyMode = 0x06; // Send in stdb, but leave osc on
+ u32 ulSlave = 0;
+ u32 ulFMInput = 0;
+ u32 ulSettlingTime = 100;
+
+ state->m_Frequency = 0;
+ state->m_SettlingTime = 100;
+ state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2;
+ state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2;
+ state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2;
+ state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2;
+
+ state->m_EP4 = 0x20;
+ if( ulXTOut != 0 ) state->m_EP4 |= 0x40;
+
+ state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F;
+ state->m_bMaster = (ulSlave == 0);
+
+ state->m_SettlingTime = ulSettlingTime;
+
+ state->m_bFMInput = (ulFMInput == 2);
+}
+
+static bool SearchMap1(struct SMap Map[],
+ u32 Frequency, u8 *pParam)
+{
+ int i = 0;
+
+ while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency) )
+ i += 1;
+ if (Map[i].m_Frequency == 0)
+ return false;
+ *pParam = Map[i].m_Param;
+ return true;
+}
+
+static bool SearchMap2(struct SMapI Map[],
+ u32 Frequency, s32 *pParam)
+{
+ int i = 0;
+
+ while ((Map[i].m_Frequency != 0) &&
+ (Frequency > Map[i].m_Frequency) )
+ i += 1;
+ if (Map[i].m_Frequency == 0)
+ return false;
+ *pParam = Map[i].m_Param;
+ return true;
+}
+
+static bool SearchMap3(struct SMap2 Map[],u32 Frequency,
+ u8 *pParam1, u8 *pParam2)
+{
+ int i = 0;
+
+ while ((Map[i].m_Frequency != 0) &&
+ (Frequency > Map[i].m_Frequency) )
+ i += 1;
+ if (Map[i].m_Frequency == 0)
+ return false;
+ *pParam1 = Map[i].m_Param1;
+ *pParam2 = Map[i].m_Param2;
+ return true;
+}
+
+static bool SearchMap4(struct SRFBandMap Map[],
+ u32 Frequency, u8 *pRFBand)
+{
+ int i = 0;
+
+ while (i < 7 && (Frequency > Map[i].m_RF_max))
+ i += 1;
+ if (i == 7)
+ return false;
+ *pRFBand = i;
+ return true;
+}
+
+static int ThermometerRead(struct tda_state *state, u8 *pTM_Value)
+{
+ int status = 0;
+
+ do {
+ u8 Regs[16];
+ state->m_Regs[TM] |= 0x10;
+ CHK_ERROR(UpdateReg(state,TM));
+ CHK_ERROR(Read(state,Regs));
+ if( ( (Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20 ) ||
+ ( (Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00 ) ) {
+ state->m_Regs[TM] ^= 0x20;
+ CHK_ERROR(UpdateReg(state,TM));
+ msleep(10);
+ CHK_ERROR(Read(state,Regs));
+ }
+ *pTM_Value = (Regs[TM] & 0x20 ) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] :
+ m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
+ state->m_Regs[TM] &= ~0x10; // Thermometer off
+ CHK_ERROR(UpdateReg(state,TM));
+ state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0 ?????????
+ CHK_ERROR(UpdateReg(state,EP4));
+ } while(0);
+
+ return status;
+}
+
+static int StandBy(struct tda_state *state)
+{
+ int status = 0;
+ do {
+ state->m_Regs[EB12] &= ~0x20; // PD_AGC1_Det = 0
+ CHK_ERROR(UpdateReg(state,EB12));
+ state->m_Regs[EB18] &= ~0x83; // AGC1_loop_off = 0, AGC1_Gain = 6 dB
+ CHK_ERROR(UpdateReg(state,EB18));
+ state->m_Regs[EB21] |= 0x03; // AGC2_Gain = -6 dB
+ state->m_Regs[EP3] = state->m_EP3_Standby;
+ CHK_ERROR(UpdateReg(state,EP3));
+ state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LP_Fc[2] = 0
+ CHK_ERROR(UpdateRegs(state,EB21,EB23));
+ } while(0);
+ return status;
+}
+
+static int CalcMainPLL(struct tda_state *state, u32 freq)
+{
+
+ u8 PostDiv;
+ u8 Div;
+ u64 OscFreq;
+ u32 MainDiv;
+
+ if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) {
+ return -EINVAL;
+ }
+
+ OscFreq = (u64) freq * (u64) Div;
+ OscFreq *= (u64) 16384;
+ do_div(OscFreq, (u64)16000000);
+ MainDiv = OscFreq;
+
+ state->m_Regs[MPD] = PostDiv & 0x77;
+ state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F);
+ state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF);
+ state->m_Regs[MD3] = ((MainDiv ) & 0xFF);
+
+ return UpdateRegs(state, MPD, MD3);
+}
+
+static int CalcCalPLL(struct tda_state *state, u32 freq)
+{
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",freq));
+
+ u8 PostDiv;
+ u8 Div;
+ u64 OscFreq;
+ u32 CalDiv;
+
+ if( !SearchMap3(m_Cal_PLL_Map,freq,&PostDiv,&Div) )
+ {
+ return -EINVAL;
+ }
+
+ OscFreq = (u64)freq * (u64)Div;
+ //CalDiv = u32( OscFreq * 16384 / 16000000 );
+ OscFreq*=(u64)16384;
+ do_div(OscFreq, (u64)16000000);
+ CalDiv=OscFreq;
+
+ state->m_Regs[CPD] = PostDiv;
+ state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF);
+ state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF);
+ state->m_Regs[CD3] = ((CalDiv ) & 0xFF);
+
+ return UpdateRegs(state,CPD,CD3);
+}
+
+static int CalibrateRF(struct tda_state *state,
+ u8 RFBand,u32 freq, s32 * pCprog)
+{
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " ID = %02x\n",state->m_Regs[ID]));
+ int status = 0;
+ u8 Regs[NUM_REGS];
+ do {
+ u8 BP_Filter=0;
+ u8 GainTaper=0;
+ u8 RFC_K=0;
+ u8 RFC_M=0;
+
+ state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0
+ CHK_ERROR(UpdateReg(state,EP4));
+ state->m_Regs[EB18] |= 0x03; // AGC1_Gain = 3
+ CHK_ERROR(UpdateReg(state,EB18));
+
+ // Switching off LT (as datasheet says) causes calibration on C1 to fail
+ // (Readout of Cprog is allways 255)
+ if( state->m_Regs[ID] != 0x83 ) // C1: ID == 83, C2: ID == 84
+ {
+ state->m_Regs[EP3] |= 0x40; // SM_LT = 1
+ }
+
+ if( ! ( SearchMap1(m_BP_Filter_Map,freq,&BP_Filter) &&
+ SearchMap1(m_GainTaper_Map,freq,&GainTaper) &&
+ SearchMap3(m_KM_Map,freq,&RFC_K,&RFC_M)) )
+ {
+ return -EINVAL;
+ }
+
+ state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter;
+ state->m_Regs[EP2] = (RFBand << 5) | GainTaper;
+
+ state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2);
+
+ CHK_ERROR(UpdateRegs(state,EP1,EP3));
+ CHK_ERROR(UpdateReg(state,EB13));
+
+ state->m_Regs[EB4] |= 0x20; // LO_ForceSrce = 1
+ CHK_ERROR(UpdateReg(state,EB4));
+
+ state->m_Regs[EB7] |= 0x20; // CAL_ForceSrce = 1
+ CHK_ERROR(UpdateReg(state,EB7));
+
+ state->m_Regs[EB14] = 0; // RFC_Cprog = 0
+ CHK_ERROR(UpdateReg(state,EB14));
+
+ state->m_Regs[EB20] &= ~0x20; // ForceLock = 0;
+ CHK_ERROR(UpdateReg(state,EB20));
+
+ state->m_Regs[EP4] |= 0x03; // CAL_Mode = 3
+ CHK_ERROR(UpdateRegs(state,EP4,EP5));
+
+ CHK_ERROR(CalcCalPLL(state,freq));
+ CHK_ERROR(CalcMainPLL(state,freq + 1000000));
+
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP2));
+ CHK_ERROR(UpdateReg(state,EP1));
+ CHK_ERROR(UpdateReg(state,EP2));
+ CHK_ERROR(UpdateReg(state,EP1));
+
+ state->m_Regs[EB4] &= ~0x20; // LO_ForceSrce = 0
+ CHK_ERROR(UpdateReg(state,EB4));
+
+ state->m_Regs[EB7] &= ~0x20; // CAL_ForceSrce = 0
+ CHK_ERROR(UpdateReg(state,EB7));
+ msleep(10);
+
+ state->m_Regs[EB20] |= 0x20; // ForceLock = 1;
+ CHK_ERROR(UpdateReg(state,EB20));
+ msleep(60);
+
+ state->m_Regs[EP4] &= ~0x03; // CAL_Mode = 0
+ state->m_Regs[EP3] &= ~0x40; // SM_LT = 0
+ state->m_Regs[EB18] &= ~0x03; // AGC1_Gain = 0
+ CHK_ERROR(UpdateReg(state,EB18));
+ CHK_ERROR(UpdateRegs(state,EP3,EP4));
+ CHK_ERROR(UpdateReg(state,EP1));
+
+ CHK_ERROR(ReadExtented(state,Regs));
+
+ *pCprog = Regs[EB14];
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Cprog = %d\n",Regs[EB14]));
+
+ } while(0);
+ return status;
+}
+
+static int RFTrackingFiltersInit(struct tda_state *state,
+ u8 RFBand)
+{
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+ int status = 0;
+
+ u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default;
+ u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default;
+ u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default;
+ bool bcal = false;
+
+ s32 Cprog_cal1 = 0;
+ s32 Cprog_table1 = 0;
+ s32 Cprog_cal2 = 0;
+ s32 Cprog_table2 = 0;
+ s32 Cprog_cal3 = 0;
+ s32 Cprog_table3 = 0;
+
+ state->m_RF_A1[RFBand] = 0;
+ state->m_RF_B1[RFBand] = 0;
+ state->m_RF_A2[RFBand] = 0;
+ state->m_RF_B2[RFBand] = 0;
+
+ do {
+ CHK_ERROR(PowerScan(state,RFBand,RF1,&RF1,&bcal));
+ if( bcal ) {
+ CHK_ERROR(CalibrateRF(state,RFBand,RF1,&Cprog_cal1));
+ }
+ SearchMap2(m_RF_Cal_Map,RF1,&Cprog_table1);
+ if( !bcal ) {
+ Cprog_cal1 = Cprog_table1;
+ }
+ state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1;
+ //state->m_RF_A1[RF_Band] = ????
+
+ if( RF2 == 0 ) break;
+
+ CHK_ERROR(PowerScan(state,RFBand,RF2,&RF2,&bcal));
+ if( bcal ) {
+ CHK_ERROR(CalibrateRF(state,RFBand,RF2,&Cprog_cal2));
+ }
+ SearchMap2(m_RF_Cal_Map,RF2,&Cprog_table2);
+ if( !bcal )
+ {
+ Cprog_cal2 = Cprog_table2;
+ }
+
+ state->m_RF_A1[RFBand] =
+ (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) /
+ ((s32)(RF2)-(s32)(RF1));
+
+ if( RF3 == 0 ) break;
+
+ CHK_ERROR(PowerScan(state,RFBand,RF3,&RF3,&bcal));
+ if( bcal )
+ {
+ CHK_ERROR(CalibrateRF(state,RFBand,RF3,&Cprog_cal3));
+ }
+ SearchMap2(m_RF_Cal_Map,RF3,&Cprog_table3);
+ if( !bcal )
+ {
+ Cprog_cal3 = Cprog_table3;
+ }
+ state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3)-(s32)(RF2));
+ state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2;
+
+ } while(0);
+
+ state->m_RF1[RFBand] = RF1;
+ state->m_RF2[RFBand] = RF2;
+ state->m_RF3[RFBand] = RF3;
+
+#if 0
+ printk("%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __FUNCTION__,
+ RFBand,RF1,state->m_RF_A1[RFBand],state->m_RF_B1[RFBand],RF2,
+ state->m_RF_A2[RFBand],state->m_RF_B2[RFBand],RF3);
+#endif
+
+ return status;
+}
+
+static int PowerScan(struct tda_state *state,
+ u8 RFBand,u32 RF_in, u32 * pRF_Out, bool *pbcal)
+{
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d,%d)\n",RFBand,RF_in));
+ int status = 0;
+ do {
+ u8 Gain_Taper=0;
+ s32 RFC_Cprog=0;
+ u8 CID_Target=0;
+ u8 CountLimit=0;
+ u32 freq_MainPLL;
+ u8 Regs[NUM_REGS];
+ u8 CID_Gain;
+ s32 Count = 0;
+ int sign = 1;
+ bool wait = false;
+
+ if( ! (SearchMap2(m_RF_Cal_Map,RF_in,&RFC_Cprog) &&
+ SearchMap1(m_GainTaper_Map,RF_in,&Gain_Taper) &&
+ SearchMap3(m_CID_Target_Map,RF_in,&CID_Target,&CountLimit) )) {
+ printk("%s Search map failed\n", __FUNCTION__);
+ return -EINVAL;
+ }
+
+ state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
+ state->m_Regs[EB14] = (RFC_Cprog);
+ CHK_ERROR(UpdateReg(state,EP2));
+ CHK_ERROR(UpdateReg(state,EB14));
+
+ freq_MainPLL = RF_in + 1000000;
+ CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
+ msleep(5);
+ state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; // CAL_mode = 1
+ CHK_ERROR(UpdateReg(state,EP4));
+ CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement
+ CHK_ERROR(ReadExtented(state,Regs));
+ CID_Gain = Regs[EB10] & 0x3F;
+ state->m_Regs[ID] = Regs[ID]; // Chip version, (needed for C1 workarround in CalibrateRF )
+
+ *pRF_Out = RF_in;
+
+ while( CID_Gain < CID_Target ) {
+ freq_MainPLL = RF_in + sign * Count + 1000000;
+ CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
+ msleep( wait ? 5 : 1 );
+ wait = false;
+ CHK_ERROR(UpdateReg(state,EP2)); // Launch power measurement
+ CHK_ERROR(ReadExtented(state,Regs));
+ CID_Gain = Regs[EB10] & 0x3F;
+ Count += 200000;
+
+ if( Count < CountLimit * 100000 ) continue;
+ if( sign < 0 ) break;
+
+ sign = -sign;
+ Count = 200000;
+ wait = true;
+ }
+ CHK_ERROR(status);
+ if( CID_Gain >= CID_Target )
+ {
+ *pbcal = true;
+ *pRF_Out = freq_MainPLL - 1000000;
+ }
+ else
+ {
+ *pbcal = false;
+ }
+ } while(0);
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Found = %d RF = %d\n",*pbcal,*pRF_Out));
+ return status;
+}
+
+static int PowerScanInit(struct tda_state *state)
+{
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+ int status = 0;
+ do
+ {
+ state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12;
+ state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); // If level = 0, Cal mode = 0
+ CHK_ERROR(UpdateRegs(state,EP3,EP4));
+ state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03 ); // AGC 1 Gain = 0
+ CHK_ERROR(UpdateReg(state,EB18));
+ state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03 ); // AGC 2 Gain = 0 (Datasheet = 3)
+ state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06 ); // ForceLP_Fc2_En = 1, LPFc[2] = 1
+ CHK_ERROR(UpdateRegs(state,EB21,EB23));
+ } while(0);
+ return status;
+}
+
+static int CalcRFFilterCurve(struct tda_state *state)
+{
+ //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
+ int status = 0;
+ do
+ {
+ msleep(200); // Temperature stabilisation
+ CHK_ERROR(PowerScanInit(state));
+ CHK_ERROR(RFTrackingFiltersInit(state,0));
+ CHK_ERROR(RFTrackingFiltersInit(state,1));
+ CHK_ERROR(RFTrackingFiltersInit(state,2));
+ CHK_ERROR(RFTrackingFiltersInit(state,3));
+ CHK_ERROR(RFTrackingFiltersInit(state,4));
+ CHK_ERROR(RFTrackingFiltersInit(state,5));
+ CHK_ERROR(RFTrackingFiltersInit(state,6));
+ CHK_ERROR(ThermometerRead(state,&state->m_TMValue_RFCal)); // also switches off Cal mode !!!
+ } while(0);
+
+ return status;
+}
+
+static int FixedContentsI2CUpdate(struct tda_state *state)
+{
+ static u8 InitRegs[] = {
+ 0x08,0x80,0xC6,
+ 0xDF,0x16,0x60,0x80,
+ 0x80,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,
+ 0xFC,0x01,0x84,0x41,
+ 0x01,0x84,0x40,0x07,
+ 0x00,0x00,0x96,0x3F,
+ 0xC1,0x00,0x8F,0x00,
+ 0x00,0x8C,0x00,0x20,
+ 0xB3,0x48,0xB0,
+ };
+ int status = 0;
+ memcpy(&state->m_Regs[TM],InitRegs,EB23-TM+1);
+ do {
+ CHK_ERROR(UpdateRegs(state,TM,EB23));
+
+ // AGC1 gain setup
+ state->m_Regs[EB17] = 0x00;
+ CHK_ERROR(UpdateReg(state,EB17));
+ state->m_Regs[EB17] = 0x03;
+ CHK_ERROR(UpdateReg(state,EB17));
+ state->m_Regs[EB17] = 0x43;
+ CHK_ERROR(UpdateReg(state,EB17));
+ state->m_Regs[EB17] = 0x4C;
+ CHK_ERROR(UpdateReg(state,EB17));
+
+ // IRC Cal Low band
+ state->m_Regs[EP3] = 0x1F;
+ state->m_Regs[EP4] = 0x66;
+ state->m_Regs[EP5] = 0x81;
+ state->m_Regs[CPD] = 0xCC;
+ state->m_Regs[CD1] = 0x6C;
+ state->m_Regs[CD2] = 0x00;
+ state->m_Regs[CD3] = 0x00;
+ state->m_Regs[MPD] = 0xC5;
+ state->m_Regs[MD1] = 0x77;
+ state->m_Regs[MD2] = 0x08;
+ state->m_Regs[MD3] = 0x00;
+ CHK_ERROR(UpdateRegs(state,EP2,MD3)); // diff between sw and datasheet (ep3-md3)
+
+ //state->m_Regs[EB4] = 0x61; // missing in sw
+ //CHK_ERROR(UpdateReg(state,EB4));
+ //msleep(1);
+ //state->m_Regs[EB4] = 0x41;
+ //CHK_ERROR(UpdateReg(state,EB4));
+
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP1));
+ msleep(5);
+
+ state->m_Regs[EP5] = 0x85;
+ state->m_Regs[CPD] = 0xCB;
+ state->m_Regs[CD1] = 0x66;
+ state->m_Regs[CD2] = 0x70;
+ CHK_ERROR(UpdateRegs(state,EP3,CD3));
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP2));
+ msleep(30);
+
+ // IRC Cal mid band
+ state->m_Regs[EP5] = 0x82;
+ state->m_Regs[CPD] = 0xA8;
+ state->m_Regs[CD2] = 0x00;
+ state->m_Regs[MPD] = 0xA1; // Datasheet = 0xA9
+ state->m_Regs[MD1] = 0x73;
+ state->m_Regs[MD2] = 0x1A;
+ CHK_ERROR(UpdateRegs(state,EP3,MD3));
+
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP1));
+ msleep(5);
+
+ state->m_Regs[EP5] = 0x86;
+ state->m_Regs[CPD] = 0xA8;
+ state->m_Regs[CD1] = 0x66;
+ state->m_Regs[CD2] = 0xA0;
+ CHK_ERROR(UpdateRegs(state,EP3,CD3));
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP2));
+ msleep(30);
+
+ // IRC Cal high band
+ state->m_Regs[EP5] = 0x83;
+ state->m_Regs[CPD] = 0x98;
+ state->m_Regs[CD1] = 0x65;
+ state->m_Regs[CD2] = 0x00;
+ state->m_Regs[MPD] = 0x91; // Datasheet = 0x91
+ state->m_Regs[MD1] = 0x71;
+ state->m_Regs[MD2] = 0xCD;
+ CHK_ERROR(UpdateRegs(state,EP3,MD3));
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP1));
+ msleep(5);
+ state->m_Regs[EP5] = 0x87;
+ state->m_Regs[CD1] = 0x65;
+ state->m_Regs[CD2] = 0x50;
+ CHK_ERROR(UpdateRegs(state,EP3,CD3));
+ msleep(5);
+ CHK_ERROR(UpdateReg(state,EP2));
+ msleep(30);
+
+ // Back to normal
+ state->m_Regs[EP4] = 0x64;
+ CHK_ERROR(UpdateReg(state,EP4));
+ CHK_ERROR(UpdateReg(state,EP1));
+
+ } while(0);
+ return status;
+}
+
+static int InitCal(struct tda_state *state)
+{
+ int status = 0;
+
+ do
+ {
+ CHK_ERROR(FixedContentsI2CUpdate(state));
+ CHK_ERROR(CalcRFFilterCurve(state));
+ CHK_ERROR(StandBy(state));
+ //m_bInitDone = true;
+ } while(0);
+ return status;
+};
+
+static int RFTrackingFiltersCorrection(struct tda_state *state,
+ u32 Frequency)
+{
+ int status = 0;
+ s32 Cprog_table;
+ u8 RFBand;
+ u8 dCoverdT;
+
+ if( !SearchMap2(m_RF_Cal_Map,Frequency,&Cprog_table) ||
+ !SearchMap4(m_RF_Band_Map,Frequency,&RFBand) ||
+ !SearchMap1(m_RF_Cal_DC_Over_DT_Map,Frequency,&dCoverdT) )
+ {
+ return -EINVAL;
+ }
+
+ do
+ {
+ u8 TMValue_Current;
+ u32 RF1 = state->m_RF1[RFBand];
+ u32 RF2 = state->m_RF1[RFBand];
+ u32 RF3 = state->m_RF1[RFBand];
+ s32 RF_A1 = state->m_RF_A1[RFBand];
+ s32 RF_B1 = state->m_RF_B1[RFBand];
+ s32 RF_A2 = state->m_RF_A2[RFBand];
+ s32 RF_B2 = state->m_RF_B2[RFBand];
+ s32 Capprox = 0;
+ int TComp;
+
+ state->m_Regs[EP3] &= ~0xE0; // Power up
+ CHK_ERROR(UpdateReg(state,EP3));
+
+ CHK_ERROR(ThermometerRead(state,&TMValue_Current));
+
+ if( RF3 == 0 || Frequency < RF2 )
+ {
+ Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table;
+ }
+ else
+ {
+ Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table;
+ }
+
+ TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000;
+
+ Capprox += TComp;
+
+ if( Capprox < 0 ) Capprox = 0;
+ else if( Capprox > 255 ) Capprox = 255;
+
+
+ // TODO Temperature compensation. There is defenitely a scale factor
+ // missing in the datasheet, so leave it out for now.
+ state->m_Regs[EB14] = (Capprox );
+
+ CHK_ERROR(UpdateReg(state,EB14));
+
+ } while(0);
+ return status;
+}
+
+static int ChannelConfiguration(struct tda_state *state,
+ u32 Frequency, int Standard)
+{
+
+ s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency;
+ int status = 0;
+
+ u8 BP_Filter = 0;
+ u8 RF_Band = 0;
+ u8 GainTaper = 0;
+ u8 IR_Meas;
+
+ state->IF=IntermediateFrequency;
+ //printk("%s Freq = %d Standard = %d IF = %d\n",__FUNCTION__,Frequency,Standard,IntermediateFrequency);
+ // get values from tables
+
+ if(! ( SearchMap1(m_BP_Filter_Map,Frequency,&BP_Filter) &&
+ SearchMap1(m_GainTaper_Map,Frequency,&GainTaper) &&
+ SearchMap1(m_IR_Meas_Map,Frequency,&IR_Meas) &&
+ SearchMap4(m_RF_Band_Map,Frequency,&RF_Band) ) )
+ {
+ printk("%s SearchMap failed\n", __FUNCTION__);
+ return -EINVAL;
+ }
+
+ do
+ {
+ state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0;
+ state->m_Regs[EP3] &= ~0x04; // switch RFAGC to high speed mode
+
+ // m_EP4 default for XToutOn, CAL_Mode (0)
+ state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax )? state->m_IFLevelDigital : state->m_IFLevelAnalog );
+ //state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
+ if( Standard <= HF_AnalogMax ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
+ else if( Standard <= HF_ATSC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
+ else if( Standard <= HF_DVBC ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
+ else state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
+
+ if( (Standard == HF_FM_Radio) && state->m_bFMInput ) state->m_Regs[EP4] |= 80;
+
+ state->m_Regs[MPD] &= ~0x80;
+ if( Standard > HF_AnalogMax ) state->m_Regs[MPD] |= 0x80; // Add IF_notch for digital
+
+ state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22;
+
+ // Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM )
+ if( Standard == HF_FM_Radio ) state->m_Regs[EB23] |= 0x06; // ForceLP_Fc2_En = 1, LPFc[2] = 1
+ else state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LPFc[2] = 0
+
+ CHK_ERROR(UpdateRegs(state,EB22,EB23));
+
+ state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; // Dis_Power_level = 1, Filter
+ state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas;
+ state->m_Regs[EP2] = (RF_Band << 5) | GainTaper;
+
+ state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) |
+ (state->m_bMaster ? 0x04 : 0x00); // CALVCO_FortLOn = MS
+ // AGC1_always_master = 0
+ // AGC_firstn = 0
+ CHK_ERROR(UpdateReg(state,EB1));
+
+ if( state->m_bMaster )
+ {
+ CHK_ERROR(CalcMainPLL(state,Frequency + IntermediateFrequency));
+ CHK_ERROR(UpdateRegs(state,TM,EP5));
+ state->m_Regs[EB4] |= 0x20; // LO_forceSrce = 1
+ CHK_ERROR(UpdateReg(state,EB4));
+ msleep(1);
+ state->m_Regs[EB4] &= ~0x20; // LO_forceSrce = 0
+ CHK_ERROR(UpdateReg(state,EB4));
+ }
+ else
+ {
+ u8 PostDiv;
+ u8 Div;
+ CHK_ERROR(CalcCalPLL(state,Frequency + IntermediateFrequency));
+
+ SearchMap3(m_Cal_PLL_Map,Frequency + IntermediateFrequency,&PostDiv,&Div);
+ state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77);
+ CHK_ERROR(UpdateReg(state,MPD));
+ CHK_ERROR(UpdateRegs(state,TM,EP5));
+
+ state->m_Regs[EB7] |= 0x20; // CAL_forceSrce = 1
+ CHK_ERROR(UpdateReg(state,EB7));
+ msleep(1);
+ state->m_Regs[EB7] &= ~0x20; // CAL_forceSrce = 0
+ CHK_ERROR(UpdateReg(state,EB7));
+ }
+ msleep(20);
+ if( Standard != HF_FM_Radio )
+ {
+ state->m_Regs[EP3] |= 0x04; // RFAGC to normal mode
+ }
+ CHK_ERROR(UpdateReg(state,EP3));
+
+ } while(0);
+ return status;
+}
+
+static int sleep(struct dvb_frontend* fe)
+{
+ struct tda_state *state = fe->tuner_priv;
+
+ StandBy(state);
+ return 0;
+}
+
+static int init(struct dvb_frontend* fe)
+{
+ //struct tda_state *state = fe->tuner_priv;
+ return 0;
+}
+
+static int release(struct dvb_frontend* fe)
+{
+ kfree(fe->tuner_priv);
+ fe->tuner_priv = NULL;
+ return 0;
+}
+
+static int set_params(struct dvb_frontend *fe,
+ struct dvb_frontend_parameters *params)
+{
+ struct tda_state *state = fe->tuner_priv;
+ int status = 0;
+ int Standard;
+
+ state->m_Frequency = params->frequency;
+
+ if (fe->ops.info.type == FE_OFDM)
+ switch (params->u.ofdm.bandwidth) {
+ case BANDWIDTH_6_MHZ:
+ Standard = HF_DVBT_6MHZ;
+ break;
+ case BANDWIDTH_7_MHZ:
+ Standard = HF_DVBT_7MHZ;
+ break;
+ default:
+ case BANDWIDTH_8_MHZ:
+ Standard = HF_DVBT_8MHZ;
+ break;
+ }
+ else if (fe->ops.info.type == FE_QAM) {
+ Standard = HF_DVBC_8MHZ;
+ } else
+ return -EINVAL;
+ do {
+ CHK_ERROR(RFTrackingFiltersCorrection(state,params->frequency));
+ CHK_ERROR(ChannelConfiguration(state,params->frequency,Standard));
+
+ msleep(state->m_SettlingTime); // Allow AGC's to settle down
+ } while(0);
+ return status;
+}
+
+#if 0
+static int GetSignalStrength(s32 * pSignalStrength,u32 RFAgc,u32 IFAgc)
+{
+ if( IFAgc < 500 ) {
+ // Scale this from 0 to 50000
+ *pSignalStrength = IFAgc * 100;
+ } else {
+ // Scale range 500-1500 to 50000-80000
+ *pSignalStrength = 50000 + (IFAgc - 500) * 30;
+ }
+
+ return 0;
+}
+#endif
+
+static int get_frequency(struct dvb_frontend *fe, u32 *frequency)
+{
+ struct tda_state *state = fe->tuner_priv;
+
+ *frequency = state->IF;
+ return 0;
+}
+
+static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
+{
+ //struct tda_state *state = fe->tuner_priv;
+ //*bandwidth = priv->bandwidth;
+ return 0;
+}
+
+
+static struct dvb_tuner_ops tuner_ops = {
+ .info = {
+ .name = "NXP TDA18271C2D",
+ .frequency_min = 47125000,
+ .frequency_max = 865000000,
+ .frequency_step = 62500
+ },
+ .init = init,
+ .sleep = sleep,
+ .set_params = set_params,
+ .release = release,
+ .get_frequency = get_frequency,
+ .get_bandwidth = get_bandwidth,
+};
+
+struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe,
+ struct i2c_adapter *i2c, u8 adr)
+{
+ struct tda_state *state;
+
+ state = kzalloc(sizeof(struct tda_state), GFP_KERNEL);
+ if (!state)
+ return NULL;
+
+ fe->tuner_priv = state;
+ state->adr = adr;
+ state->i2c = i2c;
+ memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
+ reset(state);
+ InitCal(state);
+
+ return fe;
+}
+
+EXPORT_SYMBOL_GPL(tda18271c2dd_attach);
+MODULE_DESCRIPTION("TDA18271C2 driver");
+MODULE_AUTHOR("DD");
+MODULE_LICENSE("GPL");
+
+/*
+ * Local variables:
+ * c-basic-offset: 8
+ * End:
+ */