summaryrefslogtreecommitdiffstats
path: root/drivers/media/video/aptina-pll.c
diff options
context:
space:
mode:
authorLaurent Pinchart <laurent.pinchart@ideasonboard.com>2012-02-25 13:24:50 -0300
committerMauro Carvalho Chehab <mchehab@redhat.com>2012-03-19 18:53:39 -0300
commit0b27c81ba32de6f5eb9df769d839bab399c4c6de (patch)
treee5c567d22d5e395bdbee359ef327eb676cd5e9e2 /drivers/media/video/aptina-pll.c
parentc0f9976662fa569e3760187d51bc4cd7b8f00e1d (diff)
[media] v4l: Aptina-style sensor PLL support
Add a generic helper function to compute PLL parameters for PLL found in several Aptina sensors. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Sakari Ailus <sakari.ailus@iki.fi> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Diffstat (limited to 'drivers/media/video/aptina-pll.c')
-rw-r--r--drivers/media/video/aptina-pll.c174
1 files changed, 174 insertions, 0 deletions
diff --git a/drivers/media/video/aptina-pll.c b/drivers/media/video/aptina-pll.c
new file mode 100644
index 00000000000..0bd3813bb59
--- /dev/null
+++ b/drivers/media/video/aptina-pll.c
@@ -0,0 +1,174 @@
+/*
+ * Aptina Sensor PLL Configuration
+ *
+ * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
+ * 02110-1301 USA
+ */
+
+#include <linux/device.h>
+#include <linux/gcd.h>
+#include <linux/kernel.h>
+#include <linux/lcm.h>
+#include <linux/module.h>
+
+#include "aptina-pll.h"
+
+int aptina_pll_calculate(struct device *dev,
+ const struct aptina_pll_limits *limits,
+ struct aptina_pll *pll)
+{
+ unsigned int mf_min;
+ unsigned int mf_max;
+ unsigned int p1_min;
+ unsigned int p1_max;
+ unsigned int p1;
+ unsigned int div;
+
+ dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
+ pll->ext_clock, pll->pix_clock);
+
+ if (pll->ext_clock < limits->ext_clock_min ||
+ pll->ext_clock > limits->ext_clock_max) {
+ dev_err(dev, "pll: invalid external clock frequency.\n");
+ return -EINVAL;
+ }
+
+ if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
+ dev_err(dev, "pll: invalid pixel clock frequency.\n");
+ return -EINVAL;
+ }
+
+ /* Compute the multiplier M and combined N*P1 divisor. */
+ div = gcd(pll->pix_clock, pll->ext_clock);
+ pll->m = pll->pix_clock / div;
+ div = pll->ext_clock / div;
+
+ /* We now have the smallest M and N*P1 values that will result in the
+ * desired pixel clock frequency, but they might be out of the valid
+ * range. Compute the factor by which we should multiply them given the
+ * following constraints:
+ *
+ * - minimum/maximum multiplier
+ * - minimum/maximum multiplier output clock frequency assuming the
+ * minimum/maximum N value
+ * - minimum/maximum combined N*P1 divisor
+ */
+ mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
+ mf_min = max(mf_min, limits->out_clock_min /
+ (pll->ext_clock / limits->n_min * pll->m));
+ mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
+ mf_max = limits->m_max / pll->m;
+ mf_max = min(mf_max, limits->out_clock_max /
+ (pll->ext_clock / limits->n_max * pll->m));
+ mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
+
+ dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
+ if (mf_min > mf_max) {
+ dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
+ return -EINVAL;
+ }
+
+ /*
+ * We're looking for the highest acceptable P1 value for which a
+ * multiplier factor MF exists that fulfills the following conditions:
+ *
+ * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
+ * even
+ * 2. mf is in the [mf_min, mf_max] range computed above
+ * 3. div * mf is a multiple of p1, in order to compute
+ * n = div * mf / p1
+ * m = pll->m * mf
+ * 4. the internal clock frequency, given by ext_clock / n, is in the
+ * [int_clock_min, int_clock_max] range given by the limits
+ * 5. the output clock frequency, given by ext_clock / n * m, is in the
+ * [out_clock_min, out_clock_max] range given by the limits
+ *
+ * The first naive approach is to iterate over all p1 values acceptable
+ * according to (1) and all mf values acceptable according to (2), and
+ * stop at the first combination that fulfills (3), (4) and (5). This
+ * has a O(n^2) complexity.
+ *
+ * Instead of iterating over all mf values in the [mf_min, mf_max] range
+ * we can compute the mf increment between two acceptable values
+ * according to (3) with
+ *
+ * mf_inc = p1 / gcd(div, p1) (6)
+ *
+ * and round the minimum up to the nearest multiple of mf_inc. This will
+ * restrict the number of mf values to be checked.
+ *
+ * Furthermore, conditions (4) and (5) only restrict the range of
+ * acceptable p1 and mf values by modifying the minimum and maximum
+ * limits. (5) can be expressed as
+ *
+ * ext_clock / (div * mf / p1) * m * mf >= out_clock_min
+ * ext_clock / (div * mf / p1) * m * mf <= out_clock_max
+ *
+ * or
+ *
+ * p1 >= out_clock_min * div / (ext_clock * m) (7)
+ * p1 <= out_clock_max * div / (ext_clock * m)
+ *
+ * Similarly, (4) can be expressed as
+ *
+ * mf >= ext_clock * p1 / (int_clock_max * div) (8)
+ * mf <= ext_clock * p1 / (int_clock_min * div)
+ *
+ * We can thus iterate over the restricted p1 range defined by the
+ * combination of (1) and (7), and then compute the restricted mf range
+ * defined by the combination of (2), (6) and (8). If the resulting mf
+ * range is not empty, any value in the mf range is acceptable. We thus
+ * select the mf lwoer bound and the corresponding p1 value.
+ */
+ if (limits->p1_min == 0) {
+ dev_err(dev, "pll: P1 minimum value must be >0.\n");
+ return -EINVAL;
+ }
+
+ p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
+ pll->ext_clock * pll->m));
+ p1_max = min(limits->p1_max, limits->out_clock_max * div /
+ (pll->ext_clock * pll->m));
+
+ for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
+ unsigned int mf_inc = p1 / gcd(div, p1);
+ unsigned int mf_high;
+ unsigned int mf_low;
+
+ mf_low = max(roundup(mf_min, mf_inc),
+ DIV_ROUND_UP(pll->ext_clock * p1,
+ limits->int_clock_max * div));
+ mf_high = min(mf_max, pll->ext_clock * p1 /
+ (limits->int_clock_min * div));
+
+ if (mf_low > mf_high)
+ continue;
+
+ pll->n = div * mf_low / p1;
+ pll->m *= mf_low;
+ pll->p1 = p1;
+ dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
+ return 0;
+ }
+
+ dev_err(dev, "pll: no valid N and P1 divisors found.\n");
+ return -EINVAL;
+}
+EXPORT_SYMBOL_GPL(aptina_pll_calculate);
+
+MODULE_DESCRIPTION("Aptina PLL Helpers");
+MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
+MODULE_LICENSE("GPL v2");