diff options
author | David Woodhouse <David.Woodhouse@intel.com> | 2009-01-05 10:50:33 +0100 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2009-01-05 10:50:33 +0100 |
commit | 353816f43d1fb340ff2d9a911dd5d0799c09f6a5 (patch) | |
tree | 517290fd884d286fe2971137ac89f89e3567785a /drivers/media/video/cx18/cx18-av-audio.c | |
parent | 160bbab3000dafccbe43688e48208cecf4deb879 (diff) | |
parent | fe0bdec68b77020281dc814805edfe594ae89e0f (diff) |
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
arch/arm/mach-pxa/corgi.c
arch/arm/mach-pxa/poodle.c
arch/arm/mach-pxa/spitz.c
Diffstat (limited to 'drivers/media/video/cx18/cx18-av-audio.c')
-rw-r--r-- | drivers/media/video/cx18/cx18-av-audio.c | 231 |
1 files changed, 169 insertions, 62 deletions
diff --git a/drivers/media/video/cx18/cx18-av-audio.c b/drivers/media/video/cx18/cx18-av-audio.c index 0b55837880a..a2f0ad57043 100644 --- a/drivers/media/video/cx18/cx18-av-audio.c +++ b/drivers/media/video/cx18/cx18-av-audio.c @@ -4,6 +4,7 @@ * Derived from cx25840-audio.c * * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> + * Copyright (C) 2008 Andy Walls <awalls@radix.net> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License @@ -30,98 +31,165 @@ static int set_audclk_freq(struct cx18 *cx, u32 freq) if (freq != 32000 && freq != 44100 && freq != 48000) return -EINVAL; - /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x10 */ - cx18_av_write(cx, 0x127, 0x50); + /* + * The PLL parameters are based on the external crystal frequency that + * would ideally be: + * + * NTSC Color subcarrier freq * 8 = + * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz + * + * The accidents of history and rationale that explain from where this + * combination of magic numbers originate can be found in: + * + * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in + * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80 + * + * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the + * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83 + * + * As Mike Bradley has rightly pointed out, it's not the exact crystal + * frequency that matters, only that all parts of the driver and + * firmware are using the same value (close to the ideal value). + * + * Since I have a strong suspicion that, if the firmware ever assumes a + * crystal value at all, it will assume 28.636360 MHz, the crystal + * freq used in calculations in this driver will be: + * + * xtal_freq = 28.636360 MHz + * + * an error of less than 0.13 ppm which is way, way better than any off + * the shelf crystal will have for accuracy anyway. + * + * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error. + * + * Many thanks to Jeff Campbell and Mike Bradley for their extensive + * investigation, experimentation, testing, and suggested solutions of + * of audio/video sync problems with SVideo and CVBS captures. + */ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { switch (freq) { case 32000: - /* VID_PLL and AUX_PLL */ - cx18_av_write4(cx, 0x108, 0x1408040f); + /* + * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 + * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 + */ + cx18_av_write4(cx, 0x108, 0x200d040f); - /* AUX_PLL_FRAC */ - /* 0x8.9504318a * 28,636,363.636 / 0x14 = 32000 * 384 */ - cx18_av_write4(cx, 0x110, 0x012a0863); + /* VID_PLL Fraction = 0x2be2fe */ + /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ + cx18_av_write4(cx, 0x10c, 0x002be2fe); + + /* AUX_PLL Fraction = 0x176740c */ + /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/ + cx18_av_write4(cx, 0x110, 0x0176740c); /* src3/4/6_ctl */ - /* 0x1.f77f = (4 * 15734.26) / 32000 */ + /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */ cx18_av_write4(cx, 0x900, 0x0801f77f); cx18_av_write4(cx, 0x904, 0x0801f77f); cx18_av_write4(cx, 0x90c, 0x0801f77f); - /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ - cx18_av_write(cx, 0x127, 0x54); + /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ + cx18_av_write(cx, 0x127, 0x60); /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11202fff); /* - * EN_AV_LOCK = 1 + * EN_AV_LOCK = 0 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ - cx18_av_write4(cx, 0x128, 0xa10d2ef8); + cx18_av_write4(cx, 0x128, 0xa00d2ef8); break; case 44100: - /* VID_PLL and AUX_PLL */ - cx18_av_write4(cx, 0x108, 0x1009040f); + /* + * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 + * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18 + */ + cx18_av_write4(cx, 0x108, 0x180e040f); + + /* VID_PLL Fraction = 0x2be2fe */ + /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ + cx18_av_write4(cx, 0x10c, 0x002be2fe); - /* AUX_PLL_FRAC */ - /* 0x9.7635e7 * 28,636,363.63 / 0x10 = 44100 * 384 */ - cx18_av_write4(cx, 0x110, 0x00ec6bce); + /* AUX_PLL Fraction = 0x062a1f2 */ + /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/ + cx18_av_write4(cx, 0x110, 0x0062a1f2); /* src3/4/6_ctl */ - /* 0x1.6d59 = (4 * 15734.26) / 44100 */ + /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */ cx18_av_write4(cx, 0x900, 0x08016d59); cx18_av_write4(cx, 0x904, 0x08016d59); cx18_av_write4(cx, 0x90c, 0x08016d59); + /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */ + cx18_av_write(cx, 0x127, 0x58); + /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x112092ff); /* - * EN_AV_LOCK = 1 + * EN_AV_LOCK = 0 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ - cx18_av_write4(cx, 0x128, 0xa11d4bf8); + cx18_av_write4(cx, 0x128, 0xa01d4bf8); break; case 48000: - /* VID_PLL and AUX_PLL */ - cx18_av_write4(cx, 0x108, 0x100a040f); + /* + * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 + * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16 + */ + cx18_av_write4(cx, 0x108, 0x160e040f); - /* AUX_PLL_FRAC */ - /* 0xa.4c6b6ea * 28,636,363.63 / 0x10 = 48000 * 384 */ - cx18_av_write4(cx, 0x110, 0x0098d6dd); + /* VID_PLL Fraction = 0x2be2fe */ + /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ + cx18_av_write4(cx, 0x10c, 0x002be2fe); + + /* AUX_PLL Fraction = 0x05227ad */ + /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/ + cx18_av_write4(cx, 0x110, 0x005227ad); /* src3/4/6_ctl */ - /* 0x1.4faa = (4 * 15734.26) / 48000 */ + /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */ cx18_av_write4(cx, 0x900, 0x08014faa); cx18_av_write4(cx, 0x904, 0x08014faa); cx18_av_write4(cx, 0x90c, 0x08014faa); + /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ + cx18_av_write(cx, 0x127, 0x56); + /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11205fff); /* - * EN_AV_LOCK = 1 + * EN_AV_LOCK = 0 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ - cx18_av_write4(cx, 0x128, 0xa11193f8); + cx18_av_write4(cx, 0x128, 0xa01193f8); break; } } else { switch (freq) { case 32000: - /* VID_PLL and AUX_PLL */ - cx18_av_write4(cx, 0x108, 0x1e08040f); + /* + * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 + * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30 + */ + cx18_av_write4(cx, 0x108, 0x300d040f); + + /* VID_PLL Fraction = 0x2be2fe */ + /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ + cx18_av_write4(cx, 0x10c, 0x002be2fe); - /* AUX_PLL_FRAC */ - /* 0x8.9504318 * 28,636,363.63 / 0x1e = 32000 * 256 */ - cx18_av_write4(cx, 0x110, 0x012a0863); + /* AUX_PLL Fraction = 0x176740c */ + /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/ + cx18_av_write4(cx, 0x110, 0x0176740c); /* src1_ctl */ /* 0x1.0000 = 32000/32000 */ @@ -133,27 +201,34 @@ static int set_audclk_freq(struct cx18 *cx, u32 freq) cx18_av_write4(cx, 0x904, 0x08020000); cx18_av_write4(cx, 0x90c, 0x08020000); - /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ - cx18_av_write(cx, 0x127, 0x54); + /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */ + cx18_av_write(cx, 0x127, 0x70); /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11201fff); /* - * EN_AV_LOCK = 1 + * EN_AV_LOCK = 0 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ - cx18_av_write4(cx, 0x128, 0xa10d2ef8); + cx18_av_write4(cx, 0x128, 0xa00d2ef8); break; case 44100: - /* VID_PLL and AUX_PLL */ - cx18_av_write4(cx, 0x108, 0x1809040f); + /* + * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 + * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24 + */ + cx18_av_write4(cx, 0x108, 0x240e040f); - /* AUX_PLL_FRAC */ - /* 0x9.7635e74 * 28,636,363.63 / 0x18 = 44100 * 256 */ - cx18_av_write4(cx, 0x110, 0x00ec6bce); + /* VID_PLL Fraction = 0x2be2fe */ + /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ + cx18_av_write4(cx, 0x10c, 0x002be2fe); + + /* AUX_PLL Fraction = 0x062a1f2 */ + /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/ + cx18_av_write4(cx, 0x110, 0x0062a1f2); /* src1_ctl */ /* 0x1.60cd = 44100/32000 */ @@ -165,24 +240,34 @@ static int set_audclk_freq(struct cx18 *cx, u32 freq) cx18_av_write4(cx, 0x904, 0x08017385); cx18_av_write4(cx, 0x90c, 0x08017385); + /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */ + cx18_av_write(cx, 0x127, 0x64); + /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x112061ff); /* - * EN_AV_LOCK = 1 + * EN_AV_LOCK = 0 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ - cx18_av_write4(cx, 0x128, 0xa11d4bf8); + cx18_av_write4(cx, 0x128, 0xa01d4bf8); break; case 48000: - /* VID_PLL and AUX_PLL */ - cx18_av_write4(cx, 0x108, 0x180a040f); + /* + * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 + * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 + */ + cx18_av_write4(cx, 0x108, 0x200d040f); + + /* VID_PLL Fraction = 0x2be2fe */ + /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ + cx18_av_write4(cx, 0x10c, 0x002be2fe); - /* AUX_PLL_FRAC */ - /* 0xa.4c6b6ea * 28,636,363.63 / 0x18 = 48000 * 256 */ - cx18_av_write4(cx, 0x110, 0x0098d6dd); + /* AUX_PLL Fraction = 0x176740c */ + /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/ + cx18_av_write4(cx, 0x110, 0x0176740c); /* src1_ctl */ /* 0x1.8000 = 48000/32000 */ @@ -194,15 +279,18 @@ static int set_audclk_freq(struct cx18 *cx, u32 freq) cx18_av_write4(cx, 0x904, 0x08015555); cx18_av_write4(cx, 0x90c, 0x08015555); + /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ + cx18_av_write(cx, 0x127, 0x60); + /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11203fff); /* - * EN_AV_LOCK = 1 + * EN_AV_LOCK = 0 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ - cx18_av_write4(cx, 0x128, 0xa11193f8); + cx18_av_write4(cx, 0x128, 0xa01193f8); break; } } @@ -215,12 +303,15 @@ static int set_audclk_freq(struct cx18 *cx, u32 freq) void cx18_av_audio_set_path(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; + u8 v; /* stop microcontroller */ - cx18_av_and_or(cx, 0x803, ~0x10, 0); + v = cx18_av_read(cx, 0x803) & ~0x10; + cx18_av_write_expect(cx, 0x803, v, v, 0x1f); /* assert soft reset */ - cx18_av_and_or(cx, 0x810, ~0x1, 0x01); + v = cx18_av_read(cx, 0x810) | 0x01; + cx18_av_write_expect(cx, 0x810, v, v, 0x0f); /* Mute everything to prevent the PFFT! */ cx18_av_write(cx, 0x8d3, 0x1f); @@ -240,12 +331,14 @@ void cx18_av_audio_set_path(struct cx18 *cx) set_audclk_freq(cx, state->audclk_freq); /* deassert soft reset */ - cx18_av_and_or(cx, 0x810, ~0x1, 0x00); + v = cx18_av_read(cx, 0x810) & ~0x01; + cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* When the microcontroller detects the * audio format, it will unmute the lines */ - cx18_av_and_or(cx, 0x803, ~0x10, 0x10); + v = cx18_av_read(cx, 0x803) | 0x10; + cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } @@ -347,19 +440,23 @@ static int get_mute(struct cx18 *cx) static void set_mute(struct cx18 *cx, int mute) { struct cx18_av_state *state = &cx->av_state; + u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* Must turn off microcontroller in order to mute sound. * Not sure if this is the best method, but it does work. * If the microcontroller is running, then it will undo any * changes to the mute register. */ + v = cx18_av_read(cx, 0x803); if (mute) { /* disable microcontroller */ - cx18_av_and_or(cx, 0x803, ~0x10, 0x00); + v &= ~0x10; + cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } else { /* enable microcontroller */ - cx18_av_and_or(cx, 0x803, ~0x10, 0x10); + v |= 0x10; + cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } else { /* SRC1_MUTE_EN */ @@ -375,16 +472,26 @@ int cx18_av_audio(struct cx18 *cx, unsigned int cmd, void *arg) switch (cmd) { case VIDIOC_INT_AUDIO_CLOCK_FREQ: + { + u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { - cx18_av_and_or(cx, 0x803, ~0x10, 0); + v = cx18_av_read(cx, 0x803) & ~0x10; + cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } - cx18_av_and_or(cx, 0x810, ~0x1, 1); + v = cx18_av_read(cx, 0x810) | 0x1; + cx18_av_write_expect(cx, 0x810, v, v, 0x0f); + retval = set_audclk_freq(cx, *(u32 *)arg); - cx18_av_and_or(cx, 0x810, ~0x1, 0); - if (state->aud_input > CX18_AV_AUDIO_SERIAL2) - cx18_av_and_or(cx, 0x803, ~0x10, 0x10); + + v = cx18_av_read(cx, 0x810) & ~0x1; + cx18_av_write_expect(cx, 0x810, v, v, 0x0f); + if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { + v = cx18_av_read(cx, 0x803) | 0x10; + cx18_av_write_expect(cx, 0x803, v, v, 0x1f); + } return retval; + } case VIDIOC_G_CTRL: switch (ctrl->id) { |