summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/e1000
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r--drivers/net/e1000/LICENSE339
-rw-r--r--drivers/net/e1000/Makefile35
-rw-r--r--drivers/net/e1000/e1000.h261
-rw-r--r--drivers/net/e1000/e1000_ethtool.c1673
-rw-r--r--drivers/net/e1000/e1000_hw.c5405
-rw-r--r--drivers/net/e1000/e1000_hw.h2144
-rw-r--r--drivers/net/e1000/e1000_main.c3162
-rw-r--r--drivers/net/e1000/e1000_osdep.h101
-rw-r--r--drivers/net/e1000/e1000_param.c744
9 files changed, 13864 insertions, 0 deletions
diff --git a/drivers/net/e1000/LICENSE b/drivers/net/e1000/LICENSE
new file mode 100644
index 00000000000..5f297e5bb46
--- /dev/null
+++ b/drivers/net/e1000/LICENSE
@@ -0,0 +1,339 @@
+
+"This software program is licensed subject to the GNU General Public License
+(GPL). Version 2, June 1991, available at
+<http://www.fsf.org/copyleft/gpl.html>"
+
+GNU General Public License
+
+Version 2, June 1991
+
+Copyright (C) 1989, 1991 Free Software Foundation, Inc.
+59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+
+Everyone is permitted to copy and distribute verbatim copies of this license
+document, but changing it is not allowed.
+
+Preamble
+
+The licenses for most software are designed to take away your freedom to
+share and change it. By contrast, the GNU General Public License is intended
+to guarantee your freedom to share and change free software--to make sure
+the software is free for all its users. This General Public License applies
+to most of the Free Software Foundation's software and to any other program
+whose authors commit to using it. (Some other Free Software Foundation
+software is covered by the GNU Library General Public License instead.) You
+can apply it to your programs, too.
+
+When we speak of free software, we are referring to freedom, not price. Our
+General Public Licenses are designed to make sure that you have the freedom
+to distribute copies of free software (and charge for this service if you
+wish), that you receive source code or can get it if you want it, that you
+can change the software or use pieces of it in new free programs; and that
+you know you can do these things.
+
+To protect your rights, we need to make restrictions that forbid anyone to
+deny you these rights or to ask you to surrender the rights. These
+restrictions translate to certain responsibilities for you if you distribute
+copies of the software, or if you modify it.
+
+For example, if you distribute copies of such a program, whether gratis or
+for a fee, you must give the recipients all the rights that you have. You
+must make sure that they, too, receive or can get the source code. And you
+must show them these terms so they know their rights.
+
+We protect your rights with two steps: (1) copyright the software, and (2)
+offer you this license which gives you legal permission to copy, distribute
+and/or modify the software.
+
+Also, for each author's protection and ours, we want to make certain that
+everyone understands that there is no warranty for this free software. If
+the software is modified by someone else and passed on, we want its
+recipients to know that what they have is not the original, so that any
+problems introduced by others will not reflect on the original authors'
+reputations.
+
+Finally, any free program is threatened constantly by software patents. We
+wish to avoid the danger that redistributors of a free program will
+individually obtain patent licenses, in effect making the program
+proprietary. To prevent this, we have made it clear that any patent must be
+licensed for everyone's free use or not licensed at all.
+
+The precise terms and conditions for copying, distribution and modification
+follow.
+
+TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+0. This License applies to any program or other work which contains a notice
+ placed by the copyright holder saying it may be distributed under the
+ terms of this General Public License. The "Program", below, refers to any
+ such program or work, and a "work based on the Program" means either the
+ Program or any derivative work under copyright law: that is to say, a
+ work containing the Program or a portion of it, either verbatim or with
+ modifications and/or translated into another language. (Hereinafter,
+ translation is included without limitation in the term "modification".)
+ Each licensee is addressed as "you".
+
+ Activities other than copying, distribution and modification are not
+ covered by this License; they are outside its scope. The act of running
+ the Program is not restricted, and the output from the Program is covered
+ only if its contents constitute a work based on the Program (independent
+ of having been made by running the Program). Whether that is true depends
+ on what the Program does.
+
+1. You may copy and distribute verbatim copies of the Program's source code
+ as you receive it, in any medium, provided that you conspicuously and
+ appropriately publish on each copy an appropriate copyright notice and
+ disclaimer of warranty; keep intact all the notices that refer to this
+ License and to the absence of any warranty; and give any other recipients
+ of the Program a copy of this License along with the Program.
+
+ You may charge a fee for the physical act of transferring a copy, and you
+ may at your option offer warranty protection in exchange for a fee.
+
+2. You may modify your copy or copies of the Program or any portion of it,
+ thus forming a work based on the Program, and copy and distribute such
+ modifications or work under the terms of Section 1 above, provided that
+ you also meet all of these conditions:
+
+ * a) You must cause the modified files to carry prominent notices stating
+ that you changed the files and the date of any change.
+
+ * b) You must cause any work that you distribute or publish, that in
+ whole or in part contains or is derived from the Program or any part
+ thereof, to be licensed as a whole at no charge to all third parties
+ under the terms of this License.
+
+ * c) If the modified program normally reads commands interactively when
+ run, you must cause it, when started running for such interactive
+ use in the most ordinary way, to print or display an announcement
+ including an appropriate copyright notice and a notice that there is
+ no warranty (or else, saying that you provide a warranty) and that
+ users may redistribute the program under these conditions, and
+ telling the user how to view a copy of this License. (Exception: if
+ the Program itself is interactive but does not normally print such
+ an announcement, your work based on the Program is not required to
+ print an announcement.)
+
+ These requirements apply to the modified work as a whole. If identifiable
+ sections of that work are not derived from the Program, and can be
+ reasonably considered independent and separate works in themselves, then
+ this License, and its terms, do not apply to those sections when you
+ distribute them as separate works. But when you distribute the same
+ sections as part of a whole which is a work based on the Program, the
+ distribution of the whole must be on the terms of this License, whose
+ permissions for other licensees extend to the entire whole, and thus to
+ each and every part regardless of who wrote it.
+
+ Thus, it is not the intent of this section to claim rights or contest
+ your rights to work written entirely by you; rather, the intent is to
+ exercise the right to control the distribution of derivative or
+ collective works based on the Program.
+
+ In addition, mere aggregation of another work not based on the Program
+ with the Program (or with a work based on the Program) on a volume of a
+ storage or distribution medium does not bring the other work under the
+ scope of this License.
+
+3. You may copy and distribute the Program (or a work based on it, under
+ Section 2) in object code or executable form under the terms of Sections
+ 1 and 2 above provided that you also do one of the following:
+
+ * a) Accompany it with the complete corresponding machine-readable source
+ code, which must be distributed under the terms of Sections 1 and 2
+ above on a medium customarily used for software interchange; or,
+
+ * b) Accompany it with a written offer, valid for at least three years,
+ to give any third party, for a charge no more than your cost of
+ physically performing source distribution, a complete machine-
+ readable copy of the corresponding source code, to be distributed
+ under the terms of Sections 1 and 2 above on a medium customarily
+ used for software interchange; or,
+
+ * c) Accompany it with the information you received as to the offer to
+ distribute corresponding source code. (This alternative is allowed
+ only for noncommercial distribution and only if you received the
+ program in object code or executable form with such an offer, in
+ accord with Subsection b above.)
+
+ The source code for a work means the preferred form of the work for
+ making modifications to it. For an executable work, complete source code
+ means all the source code for all modules it contains, plus any
+ associated interface definition files, plus the scripts used to control
+ compilation and installation of the executable. However, as a special
+ exception, the source code distributed need not include anything that is
+ normally distributed (in either source or binary form) with the major
+ components (compiler, kernel, and so on) of the operating system on which
+ the executable runs, unless that component itself accompanies the
+ executable.
+
+ If distribution of executable or object code is made by offering access
+ to copy from a designated place, then offering equivalent access to copy
+ the source code from the same place counts as distribution of the source
+ code, even though third parties are not compelled to copy the source
+ along with the object code.
+
+4. You may not copy, modify, sublicense, or distribute the Program except as
+ expressly provided under this License. Any attempt otherwise to copy,
+ modify, sublicense or distribute the Program is void, and will
+ automatically terminate your rights under this License. However, parties
+ who have received copies, or rights, from you under this License will not
+ have their licenses terminated so long as such parties remain in full
+ compliance.
+
+5. You are not required to accept this License, since you have not signed
+ it. However, nothing else grants you permission to modify or distribute
+ the Program or its derivative works. These actions are prohibited by law
+ if you do not accept this License. Therefore, by modifying or
+ distributing the Program (or any work based on the Program), you
+ indicate your acceptance of this License to do so, and all its terms and
+ conditions for copying, distributing or modifying the Program or works
+ based on it.
+
+6. Each time you redistribute the Program (or any work based on the
+ Program), the recipient automatically receives a license from the
+ original licensor to copy, distribute or modify the Program subject to
+ these terms and conditions. You may not impose any further restrictions
+ on the recipients' exercise of the rights granted herein. You are not
+ responsible for enforcing compliance by third parties to this License.
+
+7. If, as a consequence of a court judgment or allegation of patent
+ infringement or for any other reason (not limited to patent issues),
+ conditions are imposed on you (whether by court order, agreement or
+ otherwise) that contradict the conditions of this License, they do not
+ excuse you from the conditions of this License. If you cannot distribute
+ so as to satisfy simultaneously your obligations under this License and
+ any other pertinent obligations, then as a consequence you may not
+ distribute the Program at all. For example, if a patent license would
+ not permit royalty-free redistribution of the Program by all those who
+ receive copies directly or indirectly through you, then the only way you
+ could satisfy both it and this License would be to refrain entirely from
+ distribution of the Program.
+
+ If any portion of this section is held invalid or unenforceable under any
+ particular circumstance, the balance of the section is intended to apply
+ and the section as a whole is intended to apply in other circumstances.
+
+ It is not the purpose of this section to induce you to infringe any
+ patents or other property right claims or to contest validity of any
+ such claims; this section has the sole purpose of protecting the
+ integrity of the free software distribution system, which is implemented
+ by public license practices. Many people have made generous contributions
+ to the wide range of software distributed through that system in
+ reliance on consistent application of that system; it is up to the
+ author/donor to decide if he or she is willing to distribute software
+ through any other system and a licensee cannot impose that choice.
+
+ This section is intended to make thoroughly clear what is believed to be
+ a consequence of the rest of this License.
+
+8. If the distribution and/or use of the Program is restricted in certain
+ countries either by patents or by copyrighted interfaces, the original
+ copyright holder who places the Program under this License may add an
+ explicit geographical distribution limitation excluding those countries,
+ so that distribution is permitted only in or among countries not thus
+ excluded. In such case, this License incorporates the limitation as if
+ written in the body of this License.
+
+9. The Free Software Foundation may publish revised and/or new versions of
+ the General Public License from time to time. Such new versions will be
+ similar in spirit to the present version, but may differ in detail to
+ address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the Program
+ specifies a version number of this License which applies to it and "any
+ later version", you have the option of following the terms and
+ conditions either of that version or of any later version published by
+ the Free Software Foundation. If the Program does not specify a version
+ number of this License, you may choose any version ever published by the
+ Free Software Foundation.
+
+10. If you wish to incorporate parts of the Program into other free programs
+ whose distribution conditions are different, write to the author to ask
+ for permission. For software which is copyrighted by the Free Software
+ Foundation, write to the Free Software Foundation; we sometimes make
+ exceptions for this. Our decision will be guided by the two goals of
+ preserving the free status of all derivatives of our free software and
+ of promoting the sharing and reuse of software generally.
+
+ NO WARRANTY
+
+11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
+ FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
+ OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
+ PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
+ EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
+ ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
+ YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
+ NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
+ REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
+ DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
+ DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
+ (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
+ INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
+ THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
+ OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
+
+END OF TERMS AND CONDITIONS
+
+How to Apply These Terms to Your New Programs
+
+If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it free
+software which everyone can redistribute and change under these terms.
+
+To do so, attach the following notices to the program. It is safest to
+attach them to the start of each source file to most effectively convey the
+exclusion of warranty; and each file should have at least the "copyright"
+line and a pointer to where the full notice is found.
+
+one line to give the program's name and an idea of what it does.
+Copyright (C) yyyy name of author
+
+This program is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2 of the License, or (at your option)
+any later version.
+
+This program is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+more details.
+
+You should have received a copy of the GNU General Public License along with
+this program; if not, write to the Free Software Foundation, Inc., 59
+Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+Also add information on how to contact you by electronic and paper mail.
+
+If the program is interactive, make it output a short notice like this when
+it starts in an interactive mode:
+
+Gnomovision version 69, Copyright (C) year name of author Gnomovision comes
+with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free
+software, and you are welcome to redistribute it under certain conditions;
+type 'show c' for details.
+
+The hypothetical commands 'show w' and 'show c' should show the appropriate
+parts of the General Public License. Of course, the commands you use may be
+called something other than 'show w' and 'show c'; they could even be
+mouse-clicks or menu items--whatever suits your program.
+
+You should also get your employer (if you work as a programmer) or your
+school, if any, to sign a "copyright disclaimer" for the program, if
+necessary. Here is a sample; alter the names:
+
+Yoyodyne, Inc., hereby disclaims all copyright interest in the program
+'Gnomovision' (which makes passes at compilers) written by James Hacker.
+
+signature of Ty Coon, 1 April 1989
+Ty Coon, President of Vice
+
+This General Public License does not permit incorporating your program into
+proprietary programs. If your program is a subroutine library, you may
+consider it more useful to permit linking proprietary applications with the
+library. If this is what you want to do, use the GNU Library General Public
+License instead of this License.
diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile
new file mode 100644
index 00000000000..ca9f89552da
--- /dev/null
+++ b/drivers/net/e1000/Makefile
@@ -0,0 +1,35 @@
+################################################################################
+#
+#
+# Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
+#
+# This program is free software; you can redistribute it and/or modify it
+# under the terms of the GNU General Public License as published by the Free
+# Software Foundation; either version 2 of the License, or (at your option)
+# any later version.
+#
+# This program is distributed in the hope that it will be useful, but WITHOUT
+# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+# more details.
+#
+# You should have received a copy of the GNU General Public License along with
+# this program; if not, write to the Free Software Foundation, Inc., 59
+# Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+#
+# The full GNU General Public License is included in this distribution in the
+# file called LICENSE.
+#
+# Contact Information:
+# Linux NICS <linux.nics@intel.com>
+# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+#
+################################################################################
+
+#
+# Makefile for the Intel(R) PRO/1000 ethernet driver
+#
+
+obj-$(CONFIG_E1000) += e1000.o
+
+e1000-objs := e1000_main.o e1000_hw.o e1000_ethtool.o e1000_param.o
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
new file mode 100644
index 00000000000..148930d4e9b
--- /dev/null
+++ b/drivers/net/e1000/e1000.h
@@ -0,0 +1,261 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* Linux PRO/1000 Ethernet Driver main header file */
+
+#ifndef _E1000_H_
+#define _E1000_H_
+
+#include <linux/stddef.h>
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <asm/byteorder.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <linux/timer.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/interrupt.h>
+#include <linux/string.h>
+#include <linux/pagemap.h>
+#include <linux/dma-mapping.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <linux/capability.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <net/pkt_sched.h>
+#include <linux/list.h>
+#include <linux/reboot.h>
+#ifdef NETIF_F_TSO
+#include <net/checksum.h>
+#endif
+#include <linux/workqueue.h>
+#include <linux/mii.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+
+#define BAR_0 0
+#define BAR_1 1
+#define BAR_5 5
+
+#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
+ PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+
+struct e1000_adapter;
+
+#include "e1000_hw.h"
+
+#ifdef DBG
+#define E1000_DBG(args...) printk(KERN_DEBUG "e1000: " args)
+#else
+#define E1000_DBG(args...)
+#endif
+
+#define E1000_ERR(args...) printk(KERN_ERR "e1000: " args)
+
+#define PFX "e1000: "
+#define DPRINTK(nlevel, klevel, fmt, args...) \
+ (void)((NETIF_MSG_##nlevel & adapter->msg_enable) && \
+ printk(KERN_##klevel PFX "%s: %s: " fmt, adapter->netdev->name, \
+ __FUNCTION__ , ## args))
+
+#define E1000_MAX_INTR 10
+
+/* TX/RX descriptor defines */
+#define E1000_DEFAULT_TXD 256
+#define E1000_MAX_TXD 256
+#define E1000_MIN_TXD 80
+#define E1000_MAX_82544_TXD 4096
+
+#define E1000_DEFAULT_RXD 256
+#define E1000_MAX_RXD 256
+#define E1000_MIN_RXD 80
+#define E1000_MAX_82544_RXD 4096
+
+/* Supported Rx Buffer Sizes */
+#define E1000_RXBUFFER_2048 2048
+#define E1000_RXBUFFER_4096 4096
+#define E1000_RXBUFFER_8192 8192
+#define E1000_RXBUFFER_16384 16384
+
+/* SmartSpeed delimiters */
+#define E1000_SMARTSPEED_DOWNSHIFT 3
+#define E1000_SMARTSPEED_MAX 15
+
+/* Packet Buffer allocations */
+#define E1000_PBA_BYTES_SHIFT 0xA
+#define E1000_TX_HEAD_ADDR_SHIFT 7
+#define E1000_PBA_TX_MASK 0xFFFF0000
+
+/* Flow Control Watermarks */
+#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */
+#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */
+
+#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
+
+/* How many Tx Descriptors do we need to call netif_wake_queue ? */
+#define E1000_TX_QUEUE_WAKE 16
+/* How many Rx Buffers do we bundle into one write to the hardware ? */
+#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
+
+#define AUTO_ALL_MODES 0
+#define E1000_EEPROM_82544_APM 0x0004
+#define E1000_EEPROM_APME 0x0400
+
+#ifndef E1000_MASTER_SLAVE
+/* Switch to override PHY master/slave setting */
+#define E1000_MASTER_SLAVE e1000_ms_hw_default
+#endif
+
+/* only works for sizes that are powers of 2 */
+#define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1)))
+
+/* wrapper around a pointer to a socket buffer,
+ * so a DMA handle can be stored along with the buffer */
+struct e1000_buffer {
+ struct sk_buff *skb;
+ uint64_t dma;
+ unsigned long time_stamp;
+ uint16_t length;
+ uint16_t next_to_watch;
+};
+
+struct e1000_desc_ring {
+ /* pointer to the descriptor ring memory */
+ void *desc;
+ /* physical address of the descriptor ring */
+ dma_addr_t dma;
+ /* length of descriptor ring in bytes */
+ unsigned int size;
+ /* number of descriptors in the ring */
+ unsigned int count;
+ /* next descriptor to associate a buffer with */
+ unsigned int next_to_use;
+ /* next descriptor to check for DD status bit */
+ unsigned int next_to_clean;
+ /* array of buffer information structs */
+ struct e1000_buffer *buffer_info;
+};
+
+#define E1000_DESC_UNUSED(R) \
+ ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
+ (R)->next_to_clean - (R)->next_to_use - 1)
+
+#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
+#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
+#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
+#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
+
+/* board specific private data structure */
+
+struct e1000_adapter {
+ struct timer_list tx_fifo_stall_timer;
+ struct timer_list watchdog_timer;
+ struct timer_list phy_info_timer;
+ struct vlan_group *vlgrp;
+ uint32_t bd_number;
+ uint32_t rx_buffer_len;
+ uint32_t part_num;
+ uint32_t wol;
+ uint32_t smartspeed;
+ uint32_t en_mng_pt;
+ uint16_t link_speed;
+ uint16_t link_duplex;
+ spinlock_t stats_lock;
+ atomic_t irq_sem;
+ struct work_struct tx_timeout_task;
+ struct work_struct watchdog_task;
+ uint8_t fc_autoneg;
+
+ struct timer_list blink_timer;
+ unsigned long led_status;
+
+ /* TX */
+ struct e1000_desc_ring tx_ring;
+ struct e1000_buffer previous_buffer_info;
+ spinlock_t tx_lock;
+ uint32_t txd_cmd;
+ uint32_t tx_int_delay;
+ uint32_t tx_abs_int_delay;
+ uint32_t gotcl;
+ uint64_t gotcl_old;
+ uint64_t tpt_old;
+ uint64_t colc_old;
+ uint32_t tx_fifo_head;
+ uint32_t tx_head_addr;
+ uint32_t tx_fifo_size;
+ atomic_t tx_fifo_stall;
+ boolean_t pcix_82544;
+ boolean_t detect_tx_hung;
+
+ /* RX */
+ struct e1000_desc_ring rx_ring;
+ uint64_t hw_csum_err;
+ uint64_t hw_csum_good;
+ uint32_t rx_int_delay;
+ uint32_t rx_abs_int_delay;
+ boolean_t rx_csum;
+ uint32_t gorcl;
+ uint64_t gorcl_old;
+
+ /* Interrupt Throttle Rate */
+ uint32_t itr;
+
+ /* OS defined structs */
+ struct net_device *netdev;
+ struct pci_dev *pdev;
+ struct net_device_stats net_stats;
+
+ /* structs defined in e1000_hw.h */
+ struct e1000_hw hw;
+ struct e1000_hw_stats stats;
+ struct e1000_phy_info phy_info;
+ struct e1000_phy_stats phy_stats;
+
+ uint32_t test_icr;
+ struct e1000_desc_ring test_tx_ring;
+ struct e1000_desc_ring test_rx_ring;
+
+
+ int msg_enable;
+};
+#endif /* _E1000_H_ */
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
new file mode 100644
index 00000000000..0a2ca7c73a4
--- /dev/null
+++ b/drivers/net/e1000/e1000_ethtool.c
@@ -0,0 +1,1673 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* ethtool support for e1000 */
+
+#include "e1000.h"
+
+#include <asm/uaccess.h>
+
+extern char e1000_driver_name[];
+extern char e1000_driver_version[];
+
+extern int e1000_up(struct e1000_adapter *adapter);
+extern void e1000_down(struct e1000_adapter *adapter);
+extern void e1000_reset(struct e1000_adapter *adapter);
+extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
+extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
+extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
+extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
+extern void e1000_update_stats(struct e1000_adapter *adapter);
+
+struct e1000_stats {
+ char stat_string[ETH_GSTRING_LEN];
+ int sizeof_stat;
+ int stat_offset;
+};
+
+#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
+ offsetof(struct e1000_adapter, m)
+static const struct e1000_stats e1000_gstrings_stats[] = {
+ { "rx_packets", E1000_STAT(net_stats.rx_packets) },
+ { "tx_packets", E1000_STAT(net_stats.tx_packets) },
+ { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
+ { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
+ { "rx_errors", E1000_STAT(net_stats.rx_errors) },
+ { "tx_errors", E1000_STAT(net_stats.tx_errors) },
+ { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
+ { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
+ { "multicast", E1000_STAT(net_stats.multicast) },
+ { "collisions", E1000_STAT(net_stats.collisions) },
+ { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
+ { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
+ { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
+ { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
+ { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
+ { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
+ { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
+ { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
+ { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
+ { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
+ { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
+ { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
+ { "tx_deferred_ok", E1000_STAT(stats.dc) },
+ { "tx_single_coll_ok", E1000_STAT(stats.scc) },
+ { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
+ { "rx_long_length_errors", E1000_STAT(stats.roc) },
+ { "rx_short_length_errors", E1000_STAT(stats.ruc) },
+ { "rx_align_errors", E1000_STAT(stats.algnerrc) },
+ { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
+ { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
+ { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
+ { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
+ { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
+ { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
+ { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
+ { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
+ { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
+};
+#define E1000_STATS_LEN \
+ sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
+static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
+ "Register test (offline)", "Eeprom test (offline)",
+ "Interrupt test (offline)", "Loopback test (offline)",
+ "Link test (on/offline)"
+};
+#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
+
+static int
+e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+
+ if(hw->media_type == e1000_media_type_copper) {
+
+ ecmd->supported = (SUPPORTED_10baseT_Half |
+ SUPPORTED_10baseT_Full |
+ SUPPORTED_100baseT_Half |
+ SUPPORTED_100baseT_Full |
+ SUPPORTED_1000baseT_Full|
+ SUPPORTED_Autoneg |
+ SUPPORTED_TP);
+
+ ecmd->advertising = ADVERTISED_TP;
+
+ if(hw->autoneg == 1) {
+ ecmd->advertising |= ADVERTISED_Autoneg;
+
+ /* the e1000 autoneg seems to match ethtool nicely */
+
+ ecmd->advertising |= hw->autoneg_advertised;
+ }
+
+ ecmd->port = PORT_TP;
+ ecmd->phy_address = hw->phy_addr;
+
+ if(hw->mac_type == e1000_82543)
+ ecmd->transceiver = XCVR_EXTERNAL;
+ else
+ ecmd->transceiver = XCVR_INTERNAL;
+
+ } else {
+ ecmd->supported = (SUPPORTED_1000baseT_Full |
+ SUPPORTED_FIBRE |
+ SUPPORTED_Autoneg);
+
+ ecmd->advertising = (SUPPORTED_1000baseT_Full |
+ SUPPORTED_FIBRE |
+ SUPPORTED_Autoneg);
+
+ ecmd->port = PORT_FIBRE;
+
+ if(hw->mac_type >= e1000_82545)
+ ecmd->transceiver = XCVR_INTERNAL;
+ else
+ ecmd->transceiver = XCVR_EXTERNAL;
+ }
+
+ if(netif_carrier_ok(adapter->netdev)) {
+
+ e1000_get_speed_and_duplex(hw, &adapter->link_speed,
+ &adapter->link_duplex);
+ ecmd->speed = adapter->link_speed;
+
+ /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
+ * and HALF_DUPLEX != DUPLEX_HALF */
+
+ if(adapter->link_duplex == FULL_DUPLEX)
+ ecmd->duplex = DUPLEX_FULL;
+ else
+ ecmd->duplex = DUPLEX_HALF;
+ } else {
+ ecmd->speed = -1;
+ ecmd->duplex = -1;
+ }
+
+ ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
+ hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
+ return 0;
+}
+
+static int
+e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+
+ if(ecmd->autoneg == AUTONEG_ENABLE) {
+ hw->autoneg = 1;
+ hw->autoneg_advertised = 0x002F;
+ ecmd->advertising = 0x002F;
+ } else
+ if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
+ return -EINVAL;
+
+ /* reset the link */
+
+ if(netif_running(adapter->netdev)) {
+ e1000_down(adapter);
+ e1000_reset(adapter);
+ e1000_up(adapter);
+ } else
+ e1000_reset(adapter);
+
+ return 0;
+}
+
+static void
+e1000_get_pauseparam(struct net_device *netdev,
+ struct ethtool_pauseparam *pause)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+
+ pause->autoneg =
+ (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
+
+ if(hw->fc == e1000_fc_rx_pause)
+ pause->rx_pause = 1;
+ else if(hw->fc == e1000_fc_tx_pause)
+ pause->tx_pause = 1;
+ else if(hw->fc == e1000_fc_full) {
+ pause->rx_pause = 1;
+ pause->tx_pause = 1;
+ }
+}
+
+static int
+e1000_set_pauseparam(struct net_device *netdev,
+ struct ethtool_pauseparam *pause)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+
+ adapter->fc_autoneg = pause->autoneg;
+
+ if(pause->rx_pause && pause->tx_pause)
+ hw->fc = e1000_fc_full;
+ else if(pause->rx_pause && !pause->tx_pause)
+ hw->fc = e1000_fc_rx_pause;
+ else if(!pause->rx_pause && pause->tx_pause)
+ hw->fc = e1000_fc_tx_pause;
+ else if(!pause->rx_pause && !pause->tx_pause)
+ hw->fc = e1000_fc_none;
+
+ hw->original_fc = hw->fc;
+
+ if(adapter->fc_autoneg == AUTONEG_ENABLE) {
+ if(netif_running(adapter->netdev)) {
+ e1000_down(adapter);
+ e1000_up(adapter);
+ } else
+ e1000_reset(adapter);
+ }
+ else
+ return ((hw->media_type == e1000_media_type_fiber) ?
+ e1000_setup_link(hw) : e1000_force_mac_fc(hw));
+
+ return 0;
+}
+
+static uint32_t
+e1000_get_rx_csum(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ return adapter->rx_csum;
+}
+
+static int
+e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ adapter->rx_csum = data;
+
+ if(netif_running(netdev)) {
+ e1000_down(adapter);
+ e1000_up(adapter);
+ } else
+ e1000_reset(adapter);
+ return 0;
+}
+
+static uint32_t
+e1000_get_tx_csum(struct net_device *netdev)
+{
+ return (netdev->features & NETIF_F_HW_CSUM) != 0;
+}
+
+static int
+e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ if(adapter->hw.mac_type < e1000_82543) {
+ if (!data)
+ return -EINVAL;
+ return 0;
+ }
+
+ if (data)
+ netdev->features |= NETIF_F_HW_CSUM;
+ else
+ netdev->features &= ~NETIF_F_HW_CSUM;
+
+ return 0;
+}
+
+#ifdef NETIF_F_TSO
+static int
+e1000_set_tso(struct net_device *netdev, uint32_t data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ if ((adapter->hw.mac_type < e1000_82544) ||
+ (adapter->hw.mac_type == e1000_82547))
+ return data ? -EINVAL : 0;
+
+ if (data)
+ netdev->features |= NETIF_F_TSO;
+ else
+ netdev->features &= ~NETIF_F_TSO;
+ return 0;
+}
+#endif /* NETIF_F_TSO */
+
+static uint32_t
+e1000_get_msglevel(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ return adapter->msg_enable;
+}
+
+static void
+e1000_set_msglevel(struct net_device *netdev, uint32_t data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ adapter->msg_enable = data;
+}
+
+static int
+e1000_get_regs_len(struct net_device *netdev)
+{
+#define E1000_REGS_LEN 32
+ return E1000_REGS_LEN * sizeof(uint32_t);
+}
+
+static void
+e1000_get_regs(struct net_device *netdev,
+ struct ethtool_regs *regs, void *p)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+ uint32_t *regs_buff = p;
+ uint16_t phy_data;
+
+ memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
+
+ regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
+
+ regs_buff[0] = E1000_READ_REG(hw, CTRL);
+ regs_buff[1] = E1000_READ_REG(hw, STATUS);
+
+ regs_buff[2] = E1000_READ_REG(hw, RCTL);
+ regs_buff[3] = E1000_READ_REG(hw, RDLEN);
+ regs_buff[4] = E1000_READ_REG(hw, RDH);
+ regs_buff[5] = E1000_READ_REG(hw, RDT);
+ regs_buff[6] = E1000_READ_REG(hw, RDTR);
+
+ regs_buff[7] = E1000_READ_REG(hw, TCTL);
+ regs_buff[8] = E1000_READ_REG(hw, TDLEN);
+ regs_buff[9] = E1000_READ_REG(hw, TDH);
+ regs_buff[10] = E1000_READ_REG(hw, TDT);
+ regs_buff[11] = E1000_READ_REG(hw, TIDV);
+
+ regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
+ if(hw->phy_type == e1000_phy_igp) {
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+ IGP01E1000_PHY_AGC_A);
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
+ IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+ regs_buff[13] = (uint32_t)phy_data; /* cable length */
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+ IGP01E1000_PHY_AGC_B);
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
+ IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+ regs_buff[14] = (uint32_t)phy_data; /* cable length */
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+ IGP01E1000_PHY_AGC_C);
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
+ IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+ regs_buff[15] = (uint32_t)phy_data; /* cable length */
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+ IGP01E1000_PHY_AGC_D);
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
+ IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+ regs_buff[16] = (uint32_t)phy_data; /* cable length */
+ regs_buff[17] = 0; /* extended 10bt distance (not needed) */
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
+ IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+ regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
+ IGP01E1000_PHY_PCS_INIT_REG);
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
+ IGP01E1000_PHY_PAGE_SELECT, &phy_data);
+ regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
+ regs_buff[20] = 0; /* polarity correction enabled (always) */
+ regs_buff[22] = 0; /* phy receive errors (unavailable) */
+ regs_buff[23] = regs_buff[18]; /* mdix mode */
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
+ } else {
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ regs_buff[13] = (uint32_t)phy_data; /* cable length */
+ regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
+ regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
+ regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
+ regs_buff[18] = regs_buff[13]; /* cable polarity */
+ regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
+ regs_buff[20] = regs_buff[17]; /* polarity correction */
+ /* phy receive errors */
+ regs_buff[22] = adapter->phy_stats.receive_errors;
+ regs_buff[23] = regs_buff[13]; /* mdix mode */
+ }
+ regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
+ e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
+ regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
+ if(hw->mac_type >= e1000_82540 &&
+ hw->media_type == e1000_media_type_copper) {
+ regs_buff[26] = E1000_READ_REG(hw, MANC);
+ }
+}
+
+static int
+e1000_get_eeprom_len(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ return adapter->hw.eeprom.word_size * 2;
+}
+
+static int
+e1000_get_eeprom(struct net_device *netdev,
+ struct ethtool_eeprom *eeprom, uint8_t *bytes)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+ uint16_t *eeprom_buff;
+ int first_word, last_word;
+ int ret_val = 0;
+ uint16_t i;
+
+ if(eeprom->len == 0)
+ return -EINVAL;
+
+ eeprom->magic = hw->vendor_id | (hw->device_id << 16);
+
+ first_word = eeprom->offset >> 1;
+ last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+
+ eeprom_buff = kmalloc(sizeof(uint16_t) *
+ (last_word - first_word + 1), GFP_KERNEL);
+ if(!eeprom_buff)
+ return -ENOMEM;
+
+ if(hw->eeprom.type == e1000_eeprom_spi)
+ ret_val = e1000_read_eeprom(hw, first_word,
+ last_word - first_word + 1,
+ eeprom_buff);
+ else {
+ for (i = 0; i < last_word - first_word + 1; i++)
+ if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
+ &eeprom_buff[i])))
+ break;
+ }
+
+ /* Device's eeprom is always little-endian, word addressable */
+ for (i = 0; i < last_word - first_word + 1; i++)
+ le16_to_cpus(&eeprom_buff[i]);
+
+ memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
+ eeprom->len);
+ kfree(eeprom_buff);
+
+ return ret_val;
+}
+
+static int
+e1000_set_eeprom(struct net_device *netdev,
+ struct ethtool_eeprom *eeprom, uint8_t *bytes)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+ uint16_t *eeprom_buff;
+ void *ptr;
+ int max_len, first_word, last_word, ret_val = 0;
+ uint16_t i;
+
+ if(eeprom->len == 0)
+ return -EOPNOTSUPP;
+
+ if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
+ return -EFAULT;
+
+ max_len = hw->eeprom.word_size * 2;
+
+ first_word = eeprom->offset >> 1;
+ last_word = (eeprom->offset + eeprom->len - 1) >> 1;
+ eeprom_buff = kmalloc(max_len, GFP_KERNEL);
+ if(!eeprom_buff)
+ return -ENOMEM;
+
+ ptr = (void *)eeprom_buff;
+
+ if(eeprom->offset & 1) {
+ /* need read/modify/write of first changed EEPROM word */
+ /* only the second byte of the word is being modified */
+ ret_val = e1000_read_eeprom(hw, first_word, 1,
+ &eeprom_buff[0]);
+ ptr++;
+ }
+ if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
+ /* need read/modify/write of last changed EEPROM word */
+ /* only the first byte of the word is being modified */
+ ret_val = e1000_read_eeprom(hw, last_word, 1,
+ &eeprom_buff[last_word - first_word]);
+ }
+
+ /* Device's eeprom is always little-endian, word addressable */
+ for (i = 0; i < last_word - first_word + 1; i++)
+ le16_to_cpus(&eeprom_buff[i]);
+
+ memcpy(ptr, bytes, eeprom->len);
+
+ for (i = 0; i < last_word - first_word + 1; i++)
+ eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
+
+ ret_val = e1000_write_eeprom(hw, first_word,
+ last_word - first_word + 1, eeprom_buff);
+
+ /* Update the checksum over the first part of the EEPROM if needed */
+ if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
+ e1000_update_eeprom_checksum(hw);
+
+ kfree(eeprom_buff);
+ return ret_val;
+}
+
+static void
+e1000_get_drvinfo(struct net_device *netdev,
+ struct ethtool_drvinfo *drvinfo)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ strncpy(drvinfo->driver, e1000_driver_name, 32);
+ strncpy(drvinfo->version, e1000_driver_version, 32);
+ strncpy(drvinfo->fw_version, "N/A", 32);
+ strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
+ drvinfo->n_stats = E1000_STATS_LEN;
+ drvinfo->testinfo_len = E1000_TEST_LEN;
+ drvinfo->regdump_len = e1000_get_regs_len(netdev);
+ drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
+}
+
+static void
+e1000_get_ringparam(struct net_device *netdev,
+ struct ethtool_ringparam *ring)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ e1000_mac_type mac_type = adapter->hw.mac_type;
+ struct e1000_desc_ring *txdr = &adapter->tx_ring;
+ struct e1000_desc_ring *rxdr = &adapter->rx_ring;
+
+ ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
+ E1000_MAX_82544_RXD;
+ ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
+ E1000_MAX_82544_TXD;
+ ring->rx_mini_max_pending = 0;
+ ring->rx_jumbo_max_pending = 0;
+ ring->rx_pending = rxdr->count;
+ ring->tx_pending = txdr->count;
+ ring->rx_mini_pending = 0;
+ ring->rx_jumbo_pending = 0;
+}
+
+static int
+e1000_set_ringparam(struct net_device *netdev,
+ struct ethtool_ringparam *ring)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ e1000_mac_type mac_type = adapter->hw.mac_type;
+ struct e1000_desc_ring *txdr = &adapter->tx_ring;
+ struct e1000_desc_ring *rxdr = &adapter->rx_ring;
+ struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
+ int err;
+
+ tx_old = adapter->tx_ring;
+ rx_old = adapter->rx_ring;
+
+ if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
+ return -EINVAL;
+
+ if(netif_running(adapter->netdev))
+ e1000_down(adapter);
+
+ rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
+ rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
+ E1000_MAX_RXD : E1000_MAX_82544_RXD));
+ E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
+
+ txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
+ txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
+ E1000_MAX_TXD : E1000_MAX_82544_TXD));
+ E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
+
+ if(netif_running(adapter->netdev)) {
+ /* Try to get new resources before deleting old */
+ if((err = e1000_setup_rx_resources(adapter)))
+ goto err_setup_rx;
+ if((err = e1000_setup_tx_resources(adapter)))
+ goto err_setup_tx;
+
+ /* save the new, restore the old in order to free it,
+ * then restore the new back again */
+
+ rx_new = adapter->rx_ring;
+ tx_new = adapter->tx_ring;
+ adapter->rx_ring = rx_old;
+ adapter->tx_ring = tx_old;
+ e1000_free_rx_resources(adapter);
+ e1000_free_tx_resources(adapter);
+ adapter->rx_ring = rx_new;
+ adapter->tx_ring = tx_new;
+ if((err = e1000_up(adapter)))
+ return err;
+ }
+
+ return 0;
+err_setup_tx:
+ e1000_free_rx_resources(adapter);
+err_setup_rx:
+ adapter->rx_ring = rx_old;
+ adapter->tx_ring = tx_old;
+ e1000_up(adapter);
+ return err;
+}
+
+#define REG_PATTERN_TEST(R, M, W) \
+{ \
+ uint32_t pat, value; \
+ uint32_t test[] = \
+ {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
+ for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
+ E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
+ value = E1000_READ_REG(&adapter->hw, R); \
+ if(value != (test[pat] & W & M)) { \
+ *data = (adapter->hw.mac_type < e1000_82543) ? \
+ E1000_82542_##R : E1000_##R; \
+ return 1; \
+ } \
+ } \
+}
+
+#define REG_SET_AND_CHECK(R, M, W) \
+{ \
+ uint32_t value; \
+ E1000_WRITE_REG(&adapter->hw, R, W & M); \
+ value = E1000_READ_REG(&adapter->hw, R); \
+ if ((W & M) != (value & M)) { \
+ *data = (adapter->hw.mac_type < e1000_82543) ? \
+ E1000_82542_##R : E1000_##R; \
+ return 1; \
+ } \
+}
+
+static int
+e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
+{
+ uint32_t value;
+ uint32_t i;
+
+ /* The status register is Read Only, so a write should fail.
+ * Some bits that get toggled are ignored.
+ */
+ value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
+ E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
+ if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
+ *data = 1;
+ return 1;
+ }
+
+ REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
+ REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
+ REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
+ REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
+ REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
+ REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
+ REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
+ REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
+
+ REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
+ REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
+ REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
+
+ if(adapter->hw.mac_type >= e1000_82543) {
+
+ REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
+ REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+ REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+ REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
+ REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
+
+ for(i = 0; i < E1000_RAR_ENTRIES; i++) {
+ REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
+ 0xFFFFFFFF);
+ REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
+ 0xFFFFFFFF);
+ }
+
+ } else {
+
+ REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
+ REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
+ REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
+ REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
+
+ }
+
+ for(i = 0; i < E1000_MC_TBL_SIZE; i++)
+ REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
+
+ *data = 0;
+ return 0;
+}
+
+static int
+e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
+{
+ uint16_t temp;
+ uint16_t checksum = 0;
+ uint16_t i;
+
+ *data = 0;
+ /* Read and add up the contents of the EEPROM */
+ for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
+ *data = 1;
+ break;
+ }
+ checksum += temp;
+ }
+
+ /* If Checksum is not Correct return error else test passed */
+ if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
+ *data = 2;
+
+ return *data;
+}
+
+static irqreturn_t
+e1000_test_intr(int irq,
+ void *data,
+ struct pt_regs *regs)
+{
+ struct net_device *netdev = (struct net_device *) data;
+ struct e1000_adapter *adapter = netdev->priv;
+
+ adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
+
+ return IRQ_HANDLED;
+}
+
+static int
+e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
+{
+ struct net_device *netdev = adapter->netdev;
+ uint32_t mask, i=0, shared_int = TRUE;
+ uint32_t irq = adapter->pdev->irq;
+
+ *data = 0;
+
+ /* Hook up test interrupt handler just for this test */
+ if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
+ shared_int = FALSE;
+ } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
+ netdev->name, netdev)){
+ *data = 1;
+ return -1;
+ }
+
+ /* Disable all the interrupts */
+ E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
+ msec_delay(10);
+
+ /* Test each interrupt */
+ for(; i < 10; i++) {
+
+ /* Interrupt to test */
+ mask = 1 << i;
+
+ if(!shared_int) {
+ /* Disable the interrupt to be reported in
+ * the cause register and then force the same
+ * interrupt and see if one gets posted. If
+ * an interrupt was posted to the bus, the
+ * test failed.
+ */
+ adapter->test_icr = 0;
+ E1000_WRITE_REG(&adapter->hw, IMC, mask);
+ E1000_WRITE_REG(&adapter->hw, ICS, mask);
+ msec_delay(10);
+
+ if(adapter->test_icr & mask) {
+ *data = 3;
+ break;
+ }
+ }
+
+ /* Enable the interrupt to be reported in
+ * the cause register and then force the same
+ * interrupt and see if one gets posted. If
+ * an interrupt was not posted to the bus, the
+ * test failed.
+ */
+ adapter->test_icr = 0;
+ E1000_WRITE_REG(&adapter->hw, IMS, mask);
+ E1000_WRITE_REG(&adapter->hw, ICS, mask);
+ msec_delay(10);
+
+ if(!(adapter->test_icr & mask)) {
+ *data = 4;
+ break;
+ }
+
+ if(!shared_int) {
+ /* Disable the other interrupts to be reported in
+ * the cause register and then force the other
+ * interrupts and see if any get posted. If
+ * an interrupt was posted to the bus, the
+ * test failed.
+ */
+ adapter->test_icr = 0;
+ E1000_WRITE_REG(&adapter->hw, IMC,
+ (~mask & 0x00007FFF));
+ E1000_WRITE_REG(&adapter->hw, ICS,
+ (~mask & 0x00007FFF));
+ msec_delay(10);
+
+ if(adapter->test_icr) {
+ *data = 5;
+ break;
+ }
+ }
+ }
+
+ /* Disable all the interrupts */
+ E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
+ msec_delay(10);
+
+ /* Unhook test interrupt handler */
+ free_irq(irq, netdev);
+
+ return *data;
+}
+
+static void
+e1000_free_desc_rings(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
+ struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
+ struct pci_dev *pdev = adapter->pdev;
+ int i;
+
+ if(txdr->desc && txdr->buffer_info) {
+ for(i = 0; i < txdr->count; i++) {
+ if(txdr->buffer_info[i].dma)
+ pci_unmap_single(pdev, txdr->buffer_info[i].dma,
+ txdr->buffer_info[i].length,
+ PCI_DMA_TODEVICE);
+ if(txdr->buffer_info[i].skb)
+ dev_kfree_skb(txdr->buffer_info[i].skb);
+ }
+ }
+
+ if(rxdr->desc && rxdr->buffer_info) {
+ for(i = 0; i < rxdr->count; i++) {
+ if(rxdr->buffer_info[i].dma)
+ pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
+ rxdr->buffer_info[i].length,
+ PCI_DMA_FROMDEVICE);
+ if(rxdr->buffer_info[i].skb)
+ dev_kfree_skb(rxdr->buffer_info[i].skb);
+ }
+ }
+
+ if(txdr->desc)
+ pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
+ if(rxdr->desc)
+ pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
+
+ if(txdr->buffer_info)
+ kfree(txdr->buffer_info);
+ if(rxdr->buffer_info)
+ kfree(rxdr->buffer_info);
+
+ return;
+}
+
+static int
+e1000_setup_desc_rings(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
+ struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
+ struct pci_dev *pdev = adapter->pdev;
+ uint32_t rctl;
+ int size, i, ret_val;
+
+ /* Setup Tx descriptor ring and Tx buffers */
+
+ txdr->count = 80;
+
+ size = txdr->count * sizeof(struct e1000_buffer);
+ if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
+ ret_val = 1;
+ goto err_nomem;
+ }
+ memset(txdr->buffer_info, 0, size);
+
+ txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+ E1000_ROUNDUP(txdr->size, 4096);
+ if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
+ ret_val = 2;
+ goto err_nomem;
+ }
+ memset(txdr->desc, 0, txdr->size);
+ txdr->next_to_use = txdr->next_to_clean = 0;
+
+ E1000_WRITE_REG(&adapter->hw, TDBAL,
+ ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
+ E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
+ E1000_WRITE_REG(&adapter->hw, TDLEN,
+ txdr->count * sizeof(struct e1000_tx_desc));
+ E1000_WRITE_REG(&adapter->hw, TDH, 0);
+ E1000_WRITE_REG(&adapter->hw, TDT, 0);
+ E1000_WRITE_REG(&adapter->hw, TCTL,
+ E1000_TCTL_PSP | E1000_TCTL_EN |
+ E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
+ E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
+
+ for(i = 0; i < txdr->count; i++) {
+ struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
+ struct sk_buff *skb;
+ unsigned int size = 1024;
+
+ if(!(skb = alloc_skb(size, GFP_KERNEL))) {
+ ret_val = 3;
+ goto err_nomem;
+ }
+ skb_put(skb, size);
+ txdr->buffer_info[i].skb = skb;
+ txdr->buffer_info[i].length = skb->len;
+ txdr->buffer_info[i].dma =
+ pci_map_single(pdev, skb->data, skb->len,
+ PCI_DMA_TODEVICE);
+ tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
+ tx_desc->lower.data = cpu_to_le32(skb->len);
+ tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
+ E1000_TXD_CMD_IFCS |
+ E1000_TXD_CMD_RPS);
+ tx_desc->upper.data = 0;
+ }
+
+ /* Setup Rx descriptor ring and Rx buffers */
+
+ rxdr->count = 80;
+
+ size = rxdr->count * sizeof(struct e1000_buffer);
+ if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
+ ret_val = 4;
+ goto err_nomem;
+ }
+ memset(rxdr->buffer_info, 0, size);
+
+ rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+ if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
+ ret_val = 5;
+ goto err_nomem;
+ }
+ memset(rxdr->desc, 0, rxdr->size);
+ rxdr->next_to_use = rxdr->next_to_clean = 0;
+
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
+ E1000_WRITE_REG(&adapter->hw, RDBAL,
+ ((uint64_t) rxdr->dma & 0xFFFFFFFF));
+ E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
+ E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
+ E1000_WRITE_REG(&adapter->hw, RDH, 0);
+ E1000_WRITE_REG(&adapter->hw, RDT, 0);
+ rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
+ E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+ (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+
+ for(i = 0; i < rxdr->count; i++) {
+ struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
+ struct sk_buff *skb;
+
+ if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
+ GFP_KERNEL))) {
+ ret_val = 6;
+ goto err_nomem;
+ }
+ skb_reserve(skb, NET_IP_ALIGN);
+ rxdr->buffer_info[i].skb = skb;
+ rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
+ rxdr->buffer_info[i].dma =
+ pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
+ PCI_DMA_FROMDEVICE);
+ rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
+ memset(skb->data, 0x00, skb->len);
+ }
+
+ return 0;
+
+err_nomem:
+ e1000_free_desc_rings(adapter);
+ return ret_val;
+}
+
+static void
+e1000_phy_disable_receiver(struct e1000_adapter *adapter)
+{
+ /* Write out to PHY registers 29 and 30 to disable the Receiver. */
+ e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
+ e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
+ e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
+ e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
+}
+
+static void
+e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
+{
+ uint16_t phy_reg;
+
+ /* Because we reset the PHY above, we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock. This
+ * value defaults back to a 2.5MHz clock when the PHY is reset.
+ */
+ e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+ phy_reg |= M88E1000_EPSCR_TX_CLK_25;
+ e1000_write_phy_reg(&adapter->hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
+
+ /* In addition, because of the s/w reset above, we need to enable
+ * CRS on TX. This must be set for both full and half duplex
+ * operation.
+ */
+ e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+ phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ e1000_write_phy_reg(&adapter->hw,
+ M88E1000_PHY_SPEC_CTRL, phy_reg);
+}
+
+static int
+e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
+{
+ uint32_t ctrl_reg;
+ uint16_t phy_reg;
+
+ /* Setup the Device Control Register for PHY loopback test. */
+
+ ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
+ ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
+ E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+ E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
+ E1000_CTRL_FD); /* Force Duplex to FULL */
+
+ E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
+
+ /* Read the PHY Specific Control Register (0x10) */
+ e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
+
+ /* Clear Auto-Crossover bits in PHY Specific Control Register
+ * (bits 6:5).
+ */
+ phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
+ e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
+
+ /* Perform software reset on the PHY */
+ e1000_phy_reset(&adapter->hw);
+
+ /* Have to setup TX_CLK and TX_CRS after software reset */
+ e1000_phy_reset_clk_and_crs(adapter);
+
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
+
+ /* Wait for reset to complete. */
+ udelay(500);
+
+ /* Have to setup TX_CLK and TX_CRS after software reset */
+ e1000_phy_reset_clk_and_crs(adapter);
+
+ /* Write out to PHY registers 29 and 30 to disable the Receiver. */
+ e1000_phy_disable_receiver(adapter);
+
+ /* Set the loopback bit in the PHY control register. */
+ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
+ phy_reg |= MII_CR_LOOPBACK;
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
+
+ /* Setup TX_CLK and TX_CRS one more time. */
+ e1000_phy_reset_clk_and_crs(adapter);
+
+ /* Check Phy Configuration */
+ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
+ if(phy_reg != 0x4100)
+ return 9;
+
+ e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
+ if(phy_reg != 0x0070)
+ return 10;
+
+ e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
+ if(phy_reg != 0x001A)
+ return 11;
+
+ return 0;
+}
+
+static int
+e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
+{
+ uint32_t ctrl_reg = 0;
+ uint32_t stat_reg = 0;
+
+ adapter->hw.autoneg = FALSE;
+
+ if(adapter->hw.phy_type == e1000_phy_m88) {
+ /* Auto-MDI/MDIX Off */
+ e1000_write_phy_reg(&adapter->hw,
+ M88E1000_PHY_SPEC_CTRL, 0x0808);
+ /* reset to update Auto-MDI/MDIX */
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
+ /* autoneg off */
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
+ }
+ /* force 1000, set loopback */
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
+
+ /* Now set up the MAC to the same speed/duplex as the PHY. */
+ ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
+ ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+ E1000_CTRL_FD); /* Force Duplex to FULL */
+
+ if(adapter->hw.media_type == e1000_media_type_copper &&
+ adapter->hw.phy_type == e1000_phy_m88) {
+ ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
+ } else {
+ /* Set the ILOS bit on the fiber Nic is half
+ * duplex link is detected. */
+ stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
+ if((stat_reg & E1000_STATUS_FD) == 0)
+ ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
+ }
+
+ E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
+
+ /* Disable the receiver on the PHY so when a cable is plugged in, the
+ * PHY does not begin to autoneg when a cable is reconnected to the NIC.
+ */
+ if(adapter->hw.phy_type == e1000_phy_m88)
+ e1000_phy_disable_receiver(adapter);
+
+ udelay(500);
+
+ return 0;
+}
+
+static int
+e1000_set_phy_loopback(struct e1000_adapter *adapter)
+{
+ uint16_t phy_reg = 0;
+ uint16_t count = 0;
+
+ switch (adapter->hw.mac_type) {
+ case e1000_82543:
+ if(adapter->hw.media_type == e1000_media_type_copper) {
+ /* Attempt to setup Loopback mode on Non-integrated PHY.
+ * Some PHY registers get corrupted at random, so
+ * attempt this 10 times.
+ */
+ while(e1000_nonintegrated_phy_loopback(adapter) &&
+ count++ < 10);
+ if(count < 11)
+ return 0;
+ }
+ break;
+
+ case e1000_82544:
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ return e1000_integrated_phy_loopback(adapter);
+ break;
+
+ default:
+ /* Default PHY loopback work is to read the MII
+ * control register and assert bit 14 (loopback mode).
+ */
+ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
+ phy_reg |= MII_CR_LOOPBACK;
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
+ return 0;
+ break;
+ }
+
+ return 8;
+}
+
+static int
+e1000_setup_loopback_test(struct e1000_adapter *adapter)
+{
+ uint32_t rctl;
+
+ if(adapter->hw.media_type == e1000_media_type_fiber ||
+ adapter->hw.media_type == e1000_media_type_internal_serdes) {
+ if(adapter->hw.mac_type == e1000_82545 ||
+ adapter->hw.mac_type == e1000_82546 ||
+ adapter->hw.mac_type == e1000_82545_rev_3 ||
+ adapter->hw.mac_type == e1000_82546_rev_3)
+ return e1000_set_phy_loopback(adapter);
+ else {
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl |= E1000_RCTL_LBM_TCVR;
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ return 0;
+ }
+ } else if(adapter->hw.media_type == e1000_media_type_copper)
+ return e1000_set_phy_loopback(adapter);
+
+ return 7;
+}
+
+static void
+e1000_loopback_cleanup(struct e1000_adapter *adapter)
+{
+ uint32_t rctl;
+ uint16_t phy_reg;
+
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+
+ if(adapter->hw.media_type == e1000_media_type_copper ||
+ ((adapter->hw.media_type == e1000_media_type_fiber ||
+ adapter->hw.media_type == e1000_media_type_internal_serdes) &&
+ (adapter->hw.mac_type == e1000_82545 ||
+ adapter->hw.mac_type == e1000_82546 ||
+ adapter->hw.mac_type == e1000_82545_rev_3 ||
+ adapter->hw.mac_type == e1000_82546_rev_3))) {
+ adapter->hw.autoneg = TRUE;
+ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
+ if(phy_reg & MII_CR_LOOPBACK) {
+ phy_reg &= ~MII_CR_LOOPBACK;
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
+ e1000_phy_reset(&adapter->hw);
+ }
+ }
+}
+
+static void
+e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
+{
+ memset(skb->data, 0xFF, frame_size);
+ frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
+ memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
+ memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
+ memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
+}
+
+static int
+e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
+{
+ frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
+ if(*(skb->data + 3) == 0xFF) {
+ if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
+ (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
+ return 0;
+ }
+ }
+ return 13;
+}
+
+static int
+e1000_run_loopback_test(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
+ struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
+ struct pci_dev *pdev = adapter->pdev;
+ int i, ret_val;
+
+ E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
+
+ for(i = 0; i < 64; i++) {
+ e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
+ pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma,
+ txdr->buffer_info[i].length,
+ PCI_DMA_TODEVICE);
+ }
+ E1000_WRITE_REG(&adapter->hw, TDT, i);
+
+ msec_delay(200);
+
+ i = 0;
+ do {
+ pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[i].dma,
+ rxdr->buffer_info[i].length,
+ PCI_DMA_FROMDEVICE);
+
+ ret_val = e1000_check_lbtest_frame(rxdr->buffer_info[i].skb,
+ 1024);
+ i++;
+ } while (ret_val != 0 && i < 64);
+
+ return ret_val;
+}
+
+static int
+e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
+{
+ if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
+ if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
+ *data = e1000_run_loopback_test(adapter);
+ e1000_loopback_cleanup(adapter);
+ e1000_free_desc_rings(adapter);
+err_loopback:
+ return *data;
+}
+
+static int
+e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
+{
+ *data = 0;
+
+ if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
+ int i = 0;
+ adapter->hw.serdes_link_down = TRUE;
+
+ /* on some blade server designs link establishment */
+ /* could take as long as 2-3 minutes. */
+ do {
+ e1000_check_for_link(&adapter->hw);
+ if (adapter->hw.serdes_link_down == FALSE)
+ return *data;
+ msec_delay(20);
+ } while (i++ < 3750);
+
+ *data = 1;
+ } else {
+ e1000_check_for_link(&adapter->hw);
+
+ if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
+ *data = 1;
+ }
+ }
+ return *data;
+}
+
+static int
+e1000_diag_test_count(struct net_device *netdev)
+{
+ return E1000_TEST_LEN;
+}
+
+static void
+e1000_diag_test(struct net_device *netdev,
+ struct ethtool_test *eth_test, uint64_t *data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ boolean_t if_running = netif_running(netdev);
+
+ if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
+ /* Offline tests */
+
+ /* save speed, duplex, autoneg settings */
+ uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
+ uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
+ uint8_t autoneg = adapter->hw.autoneg;
+
+ /* Link test performed before hardware reset so autoneg doesn't
+ * interfere with test result */
+ if(e1000_link_test(adapter, &data[4]))
+ eth_test->flags |= ETH_TEST_FL_FAILED;
+
+ if(if_running)
+ e1000_down(adapter);
+ else
+ e1000_reset(adapter);
+
+ if(e1000_reg_test(adapter, &data[0]))
+ eth_test->flags |= ETH_TEST_FL_FAILED;
+
+ e1000_reset(adapter);
+ if(e1000_eeprom_test(adapter, &data[1]))
+ eth_test->flags |= ETH_TEST_FL_FAILED;
+
+ e1000_reset(adapter);
+ if(e1000_intr_test(adapter, &data[2]))
+ eth_test->flags |= ETH_TEST_FL_FAILED;
+
+ e1000_reset(adapter);
+ if(e1000_loopback_test(adapter, &data[3]))
+ eth_test->flags |= ETH_TEST_FL_FAILED;
+
+ /* restore speed, duplex, autoneg settings */
+ adapter->hw.autoneg_advertised = autoneg_advertised;
+ adapter->hw.forced_speed_duplex = forced_speed_duplex;
+ adapter->hw.autoneg = autoneg;
+
+ e1000_reset(adapter);
+ if(if_running)
+ e1000_up(adapter);
+ } else {
+ /* Online tests */
+ if(e1000_link_test(adapter, &data[4]))
+ eth_test->flags |= ETH_TEST_FL_FAILED;
+
+ /* Offline tests aren't run; pass by default */
+ data[0] = 0;
+ data[1] = 0;
+ data[2] = 0;
+ data[3] = 0;
+ }
+}
+
+static void
+e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+
+ switch(adapter->hw.device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82545EM_COPPER:
+ wol->supported = 0;
+ wol->wolopts = 0;
+ return;
+
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ /* Wake events only supported on port A for dual fiber */
+ if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
+ wol->supported = 0;
+ wol->wolopts = 0;
+ return;
+ }
+ /* Fall Through */
+
+ default:
+ wol->supported = WAKE_UCAST | WAKE_MCAST |
+ WAKE_BCAST | WAKE_MAGIC;
+
+ wol->wolopts = 0;
+ if(adapter->wol & E1000_WUFC_EX)
+ wol->wolopts |= WAKE_UCAST;
+ if(adapter->wol & E1000_WUFC_MC)
+ wol->wolopts |= WAKE_MCAST;
+ if(adapter->wol & E1000_WUFC_BC)
+ wol->wolopts |= WAKE_BCAST;
+ if(adapter->wol & E1000_WUFC_MAG)
+ wol->wolopts |= WAKE_MAGIC;
+ return;
+ }
+}
+
+static int
+e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+
+ switch(adapter->hw.device_id) {
+ case E1000_DEV_ID_82542:
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ case E1000_DEV_ID_82545EM_COPPER:
+ return wol->wolopts ? -EOPNOTSUPP : 0;
+
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ /* Wake events only supported on port A for dual fiber */
+ if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ return wol->wolopts ? -EOPNOTSUPP : 0;
+ /* Fall Through */
+
+ default:
+ if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
+ return -EOPNOTSUPP;
+
+ adapter->wol = 0;
+
+ if(wol->wolopts & WAKE_UCAST)
+ adapter->wol |= E1000_WUFC_EX;
+ if(wol->wolopts & WAKE_MCAST)
+ adapter->wol |= E1000_WUFC_MC;
+ if(wol->wolopts & WAKE_BCAST)
+ adapter->wol |= E1000_WUFC_BC;
+ if(wol->wolopts & WAKE_MAGIC)
+ adapter->wol |= E1000_WUFC_MAG;
+ }
+
+ return 0;
+}
+
+/* toggle LED 4 times per second = 2 "blinks" per second */
+#define E1000_ID_INTERVAL (HZ/4)
+
+/* bit defines for adapter->led_status */
+#define E1000_LED_ON 0
+
+static void
+e1000_led_blink_callback(unsigned long data)
+{
+ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+
+ if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
+ e1000_led_off(&adapter->hw);
+ else
+ e1000_led_on(&adapter->hw);
+
+ mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
+}
+
+static int
+e1000_phys_id(struct net_device *netdev, uint32_t data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
+ data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
+
+ if(!adapter->blink_timer.function) {
+ init_timer(&adapter->blink_timer);
+ adapter->blink_timer.function = e1000_led_blink_callback;
+ adapter->blink_timer.data = (unsigned long) adapter;
+ }
+
+ e1000_setup_led(&adapter->hw);
+ mod_timer(&adapter->blink_timer, jiffies);
+
+ msleep_interruptible(data * 1000);
+ del_timer_sync(&adapter->blink_timer);
+ e1000_led_off(&adapter->hw);
+ clear_bit(E1000_LED_ON, &adapter->led_status);
+ e1000_cleanup_led(&adapter->hw);
+
+ return 0;
+}
+
+static int
+e1000_nway_reset(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ if(netif_running(netdev)) {
+ e1000_down(adapter);
+ e1000_up(adapter);
+ }
+ return 0;
+}
+
+static int
+e1000_get_stats_count(struct net_device *netdev)
+{
+ return E1000_STATS_LEN;
+}
+
+static void
+e1000_get_ethtool_stats(struct net_device *netdev,
+ struct ethtool_stats *stats, uint64_t *data)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ int i;
+
+ e1000_update_stats(adapter);
+ for(i = 0; i < E1000_STATS_LEN; i++) {
+ char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
+ data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
+ sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
+ }
+}
+
+static void
+e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
+{
+ int i;
+
+ switch(stringset) {
+ case ETH_SS_TEST:
+ memcpy(data, *e1000_gstrings_test,
+ E1000_TEST_LEN*ETH_GSTRING_LEN);
+ break;
+ case ETH_SS_STATS:
+ for (i=0; i < E1000_STATS_LEN; i++) {
+ memcpy(data + i * ETH_GSTRING_LEN,
+ e1000_gstrings_stats[i].stat_string,
+ ETH_GSTRING_LEN);
+ }
+ break;
+ }
+}
+
+struct ethtool_ops e1000_ethtool_ops = {
+ .get_settings = e1000_get_settings,
+ .set_settings = e1000_set_settings,
+ .get_drvinfo = e1000_get_drvinfo,
+ .get_regs_len = e1000_get_regs_len,
+ .get_regs = e1000_get_regs,
+ .get_wol = e1000_get_wol,
+ .set_wol = e1000_set_wol,
+ .get_msglevel = e1000_get_msglevel,
+ .set_msglevel = e1000_set_msglevel,
+ .nway_reset = e1000_nway_reset,
+ .get_link = ethtool_op_get_link,
+ .get_eeprom_len = e1000_get_eeprom_len,
+ .get_eeprom = e1000_get_eeprom,
+ .set_eeprom = e1000_set_eeprom,
+ .get_ringparam = e1000_get_ringparam,
+ .set_ringparam = e1000_set_ringparam,
+ .get_pauseparam = e1000_get_pauseparam,
+ .set_pauseparam = e1000_set_pauseparam,
+ .get_rx_csum = e1000_get_rx_csum,
+ .set_rx_csum = e1000_set_rx_csum,
+ .get_tx_csum = e1000_get_tx_csum,
+ .set_tx_csum = e1000_set_tx_csum,
+ .get_sg = ethtool_op_get_sg,
+ .set_sg = ethtool_op_set_sg,
+#ifdef NETIF_F_TSO
+ .get_tso = ethtool_op_get_tso,
+ .set_tso = e1000_set_tso,
+#endif
+ .self_test_count = e1000_diag_test_count,
+ .self_test = e1000_diag_test,
+ .get_strings = e1000_get_strings,
+ .phys_id = e1000_phys_id,
+ .get_stats_count = e1000_get_stats_count,
+ .get_ethtool_stats = e1000_get_ethtool_stats,
+};
+
+void e1000_set_ethtool_ops(struct net_device *netdev)
+{
+ SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
+}
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
new file mode 100644
index 00000000000..786a9b93565
--- /dev/null
+++ b/drivers/net/e1000/e1000_hw.c
@@ -0,0 +1,5405 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "e1000_hw.h"
+
+static int32_t e1000_set_phy_type(struct e1000_hw *hw);
+static void e1000_phy_init_script(struct e1000_hw *hw);
+static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
+static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
+static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
+static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
+ uint16_t count);
+static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
+static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
+ uint16_t words, uint16_t *data);
+static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
+ uint16_t offset, uint16_t words,
+ uint16_t *data);
+static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
+ uint16_t count);
+static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t phy_data);
+static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
+ uint16_t *phy_data);
+static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
+static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
+static void e1000_release_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static int32_t e1000_id_led_init(struct e1000_hw * hw);
+static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
+static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
+static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
+
+/* IGP cable length table */
+static const
+uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
+ { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+ 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+ 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+ 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+ 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+ 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+ 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
+
+
+/******************************************************************************
+ * Set the phy type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_set_phy_type(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_set_phy_type");
+
+ switch(hw->phy_id) {
+ case M88E1000_E_PHY_ID:
+ case M88E1000_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ hw->phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID:
+ if(hw->mac_type == e1000_82541 ||
+ hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547 ||
+ hw->mac_type == e1000_82547_rev_2) {
+ hw->phy_type = e1000_phy_igp;
+ break;
+ }
+ /* Fall Through */
+ default:
+ /* Should never have loaded on this device */
+ hw->phy_type = e1000_phy_undefined;
+ return -E1000_ERR_PHY_TYPE;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * IGP phy init script - initializes the GbE PHY
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_phy_init_script(struct e1000_hw *hw)
+{
+ uint32_t ret_val;
+ uint16_t phy_saved_data;
+
+ DEBUGFUNC("e1000_phy_init_script");
+
+
+ if(hw->phy_init_script) {
+ msec_delay(20);
+
+ /* Save off the current value of register 0x2F5B to be restored at
+ * the end of this routine. */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ /* Disabled the PHY transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ msec_delay(20);
+
+ e1000_write_phy_reg(hw,0x0000,0x0140);
+
+ msec_delay(5);
+
+ switch(hw->mac_type) {
+ case e1000_82541:
+ case e1000_82547:
+ e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+
+ e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+
+ e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+
+ e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+
+ e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+
+ e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+
+ e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+
+ e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+
+ e1000_write_phy_reg(hw, 0x2010, 0x0008);
+ break;
+
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+ break;
+ default:
+ break;
+ }
+
+ e1000_write_phy_reg(hw, 0x0000, 0x3300);
+
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if(hw->mac_type == e1000_82547) {
+ uint16_t fused, fine, coarse;
+
+ /* Move to analog registers page */
+ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
+
+ if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+ coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+ if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+ } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+ fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+ (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+ e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
+ e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+ }
+ }
+ }
+}
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_set_mac_type");
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82542:
+ switch (hw->revision_id) {
+ case E1000_82542_2_0_REV_ID:
+ hw->mac_type = e1000_82542_rev2_0;
+ break;
+ case E1000_82542_2_1_REV_ID:
+ hw->mac_type = e1000_82542_rev2_1;
+ break;
+ default:
+ /* Invalid 82542 revision ID */
+ return -E1000_ERR_MAC_TYPE;
+ }
+ break;
+ case E1000_DEV_ID_82543GC_FIBER:
+ case E1000_DEV_ID_82543GC_COPPER:
+ hw->mac_type = e1000_82543;
+ break;
+ case E1000_DEV_ID_82544EI_COPPER:
+ case E1000_DEV_ID_82544EI_FIBER:
+ case E1000_DEV_ID_82544GC_COPPER:
+ case E1000_DEV_ID_82544GC_LOM:
+ hw->mac_type = e1000_82544;
+ break;
+ case E1000_DEV_ID_82540EM:
+ case E1000_DEV_ID_82540EM_LOM:
+ case E1000_DEV_ID_82540EP:
+ case E1000_DEV_ID_82540EP_LOM:
+ case E1000_DEV_ID_82540EP_LP:
+ hw->mac_type = e1000_82540;
+ break;
+ case E1000_DEV_ID_82545EM_COPPER:
+ case E1000_DEV_ID_82545EM_FIBER:
+ hw->mac_type = e1000_82545;
+ break;
+ case E1000_DEV_ID_82545GM_COPPER:
+ case E1000_DEV_ID_82545GM_FIBER:
+ case E1000_DEV_ID_82545GM_SERDES:
+ hw->mac_type = e1000_82545_rev_3;
+ break;
+ case E1000_DEV_ID_82546EB_COPPER:
+ case E1000_DEV_ID_82546EB_FIBER:
+ case E1000_DEV_ID_82546EB_QUAD_COPPER:
+ hw->mac_type = e1000_82546;
+ break;
+ case E1000_DEV_ID_82546GB_COPPER:
+ case E1000_DEV_ID_82546GB_FIBER:
+ case E1000_DEV_ID_82546GB_SERDES:
+ case E1000_DEV_ID_82546GB_PCIE:
+ hw->mac_type = e1000_82546_rev_3;
+ break;
+ case E1000_DEV_ID_82541EI:
+ case E1000_DEV_ID_82541EI_MOBILE:
+ hw->mac_type = e1000_82541;
+ break;
+ case E1000_DEV_ID_82541ER:
+ case E1000_DEV_ID_82541GI:
+ case E1000_DEV_ID_82541GI_LF:
+ case E1000_DEV_ID_82541GI_MOBILE:
+ hw->mac_type = e1000_82541_rev_2;
+ break;
+ case E1000_DEV_ID_82547EI:
+ hw->mac_type = e1000_82547;
+ break;
+ case E1000_DEV_ID_82547GI:
+ hw->mac_type = e1000_82547_rev_2;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ return -E1000_ERR_MAC_TYPE;
+ }
+
+ switch(hw->mac_type) {
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ hw->asf_firmware_present = TRUE;
+ break;
+ default:
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * Set media type and TBI compatibility.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * **************************************************************************/
+void
+e1000_set_media_type(struct e1000_hw *hw)
+{
+ uint32_t status;
+
+ DEBUGFUNC("e1000_set_media_type");
+
+ if(hw->mac_type != e1000_82543) {
+ /* tbi_compatibility is only valid on 82543 */
+ hw->tbi_compatibility_en = FALSE;
+ }
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82545GM_SERDES:
+ case E1000_DEV_ID_82546GB_SERDES:
+ hw->media_type = e1000_media_type_internal_serdes;
+ break;
+ default:
+ if(hw->mac_type >= e1000_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_TBIMODE) {
+ hw->media_type = e1000_media_type_fiber;
+ /* tbi_compatibility not valid on fiber */
+ hw->tbi_compatibility_en = FALSE;
+ } else {
+ hw->media_type = e1000_media_type_copper;
+ }
+ } else {
+ /* This is an 82542 (fiber only) */
+ hw->media_type = e1000_media_type_fiber;
+ }
+ }
+}
+
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_reset_hw(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t ctrl_ext;
+ uint32_t icr;
+ uint32_t manc;
+ uint32_t led_ctrl;
+
+ DEBUGFUNC("e1000_reset_hw");
+
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+ if(hw->mac_type == e1000_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Disable the Transmit and Receive units. Then delay to allow
+ * any pending transactions to complete before we hit the MAC with
+ * the global reset.
+ */
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+ hw->tbi_compatibility_on = FALSE;
+
+ /* Delay to allow any outstanding PCI transactions to complete before
+ * resetting the device
+ */
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Must reset the PHY before resetting the MAC */
+ if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
+ msec_delay(5);
+ }
+
+ /* Issue a global reset to the MAC. This will reset the chip's
+ * transmit, receive, DMA, and link units. It will not effect
+ * the current PCI configuration. The global reset bit is self-
+ * clearing, and should clear within a microsecond.
+ */
+ DEBUGOUT("Issuing a global reset to MAC\n");
+
+ switch(hw->mac_type) {
+ case e1000_82544:
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82546:
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ /* These controllers can't ack the 64-bit write when issuing the
+ * reset, so use IO-mapping as a workaround to issue the reset */
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ break;
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ /* Reset is performed on a shadow of the control register */
+ E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
+ break;
+ default:
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+ break;
+ }
+
+ /* After MAC reset, force reload of EEPROM to restore power-on settings to
+ * device. Later controllers reload the EEPROM automatically, so just wait
+ * for reload to complete.
+ */
+ switch(hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ /* Wait for reset to complete */
+ udelay(10);
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ /* Wait for EEPROM reload */
+ msec_delay(2);
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ /* Wait for EEPROM reload */
+ msec_delay(20);
+ break;
+ default:
+ /* Wait for EEPROM reload (it happens automatically) */
+ msec_delay(5);
+ break;
+ }
+
+ /* Disable HW ARPs on ASF enabled adapters */
+ if(hw->mac_type >= e1000_82540) {
+ manc = E1000_READ_REG(hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(hw, MANC, manc);
+ }
+
+ if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ e1000_phy_init_script(hw);
+
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+
+ /* Clear interrupt mask to stop board from generating interrupts */
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+ /* Clear any pending interrupt events. */
+ icr = E1000_READ_REG(hw, ICR);
+
+ /* If MWI was previously enabled, reenable it. */
+ if(hw->mac_type == e1000_82542_rev2_0) {
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Assumes that the controller has previously been reset and is in a
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+int32_t
+e1000_init_hw(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t i;
+ int32_t ret_val;
+ uint16_t pcix_cmd_word;
+ uint16_t pcix_stat_hi_word;
+ uint16_t cmd_mmrbc;
+ uint16_t stat_mmrbc;
+ DEBUGFUNC("e1000_init_hw");
+
+ /* Initialize Identification LED */
+ ret_val = e1000_id_led_init(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Initializing Identification LED\n");
+ return ret_val;
+ }
+
+ /* Set the media type and TBI compatibility */
+ e1000_set_media_type(hw);
+
+ /* Disabling VLAN filtering. */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ E1000_WRITE_REG(hw, VET, 0);
+
+ e1000_clear_vfta(hw);
+
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+ if(hw->mac_type == e1000_82542_rev2_0) {
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+ e1000_pci_clear_mwi(hw);
+ E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(5);
+ }
+
+ /* Setup the receive address. This involves initializing all of the Receive
+ * Address Registers (RARs 0 - 15).
+ */
+ e1000_init_rx_addrs(hw);
+
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+ if(hw->mac_type == e1000_82542_rev2_0) {
+ E1000_WRITE_REG(hw, RCTL, 0);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+ if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ e1000_pci_set_mwi(hw);
+ }
+
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for(i = 0; i < E1000_MC_TBL_SIZE; i++)
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+ /* Set the PCI priority bit correctly in the CTRL register. This
+ * determines if the adapter gives priority to receives, or if it
+ * gives equal priority to transmits and receives.
+ */
+ if(hw->dma_fairness) {
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+ }
+
+ switch(hw->mac_type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ break;
+ default:
+ /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+ if(hw->bus_type == e1000_bus_type_pcix) {
+ e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+ e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
+ &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if(cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
+ &pcix_cmd_word);
+ }
+ }
+ break;
+ }
+
+ /* Call a subroutine to configure the link and setup flow control. */
+ ret_val = e1000_setup_link(hw);
+
+ /* Set the transmit descriptor write-back policy */
+ if(hw->mac_type > e1000_82544) {
+ ctrl = E1000_READ_REG(hw, TXDCTL);
+ ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
+ E1000_WRITE_REG(hw, TXDCTL, ctrl);
+ }
+
+ /* Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs(hw);
+
+ return ret_val;
+}
+
+/******************************************************************************
+ * Adjust SERDES output amplitude based on EEPROM setting.
+ *
+ * hw - Struct containing variables accessed by shared code.
+ *****************************************************************************/
+static int32_t
+e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
+{
+ uint16_t eeprom_data;
+ int32_t ret_val;
+
+ DEBUGFUNC("e1000_adjust_serdes_amplitude");
+
+ if(hw->media_type != e1000_media_type_internal_serdes)
+ return E1000_SUCCESS;
+
+ switch(hw->mac_type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+
+ ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
+ if (ret_val) {
+ return ret_val;
+ }
+
+ if(eeprom_data != EEPROM_RESERVED_WORD) {
+ /* Adjust SERDES output amplitude only. */
+ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+int32_t
+e1000_setup_link(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+ int32_t ret_val;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("e1000_setup_link");
+
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ if(hw->fc == e1000_fc_default) {
+ if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc = e1000_fc_none;
+ else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+ EEPROM_WORD0F_ASM_DIR)
+ hw->fc = e1000_fc_tx_pause;
+ else
+ hw->fc = e1000_fc_full;
+ }
+
+ /* We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ if(hw->mac_type == e1000_82542_rev2_0)
+ hw->fc &= (~e1000_fc_tx_pause);
+
+ if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+ hw->fc &= (~e1000_fc_rx_pause);
+
+ hw->original_fc = hw->fc;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+ * polarity value for the SW controlled pins, and setup the
+ * Extended Device Control reg with that info.
+ * This is needed because one of the SW controlled pins is used for
+ * signal detection. So this should be done before e1000_setup_pcs_link()
+ * or e1000_phy_setup() is called.
+ */
+ if(hw->mac_type == e1000_82543) {
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+ SWDPIO__EXT_SHIFT);
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ }
+
+ /* Call the necessary subroutine to configure the link. */
+ ret_val = (hw->media_type == e1000_media_type_copper) ?
+ e1000_setup_copper_link(hw) :
+ e1000_setup_fiber_serdes_link(hw);
+
+ /* Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+ /* Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames in not enabled, then these
+ * registers will be set to 0.
+ */
+ if(!(hw->fc & e1000_fc_tx_pause)) {
+ E1000_WRITE_REG(hw, FCRTL, 0);
+ E1000_WRITE_REG(hw, FCRTH, 0);
+ } else {
+ /* We need to set up the Receive Threshold high and low water marks
+ * as well as (optionally) enabling the transmission of XON frames.
+ */
+ if(hw->fc_send_xon) {
+ E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ } else {
+ E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+ E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+ }
+ }
+ return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based or serdes based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int32_t
+e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t txcw = 0;
+ uint32_t i;
+ uint32_t signal = 0;
+ int32_t ret_val;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link");
+
+ /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal. This applies to fiber media only.
+ * If we're on serdes media, adjust the output amplitude to value set in
+ * the EEPROM.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ if(hw->media_type == e1000_media_type_fiber)
+ signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+ ret_val = e1000_adjust_serdes_amplitude(hw);
+ if(ret_val)
+ return ret_val;
+
+ /* Take the link out of reset */
+ ctrl &= ~(E1000_CTRL_LRST);
+
+ /* Adjust VCO speed to improve BER performance */
+ ret_val = e1000_set_vco_speed(hw);
+ if(ret_val)
+ return ret_val;
+
+ e1000_config_collision_dist(hw);
+
+ /* Check for a software override of the flow control settings, and setup
+ * the device accordingly. If auto-negotiation is enabled, then software
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
+ * auto-negotiation is disabled, then software will have to manually
+ * configure the two flow control enable bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames, but
+ * not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we do
+ * not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ */
+ switch (hw->fc) {
+ case e1000_fc_none:
+ /* Flow control is completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /* RX Flow control is enabled and TX Flow control is disabled by a
+ * software over-ride. Since there really isn't a way to advertise
+ * that we are capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
+ * disable the adapter's ability to send PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
+ * software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
+ * will be in reset, because we previously reset the chip). This will
+ * restart auto-negotiation. If auto-neogtiation is successful then the
+ * link-up status bit will be set and the flow control enable bits (RFCE
+ * and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, TXCW, txcw);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ hw->txcw = txcw;
+ msec_delay(1);
+
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+ * indication in the Device Status Register. Time-out if a link isn't
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+ * less than 500 milliseconds even if the other end is doing it in SW).
+ * For internal serdes, we just assume a signal is present, then poll.
+ */
+ if(hw->media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+ DEBUGOUT("Looking for Link\n");
+ for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_LU) break;
+ }
+ if(i == (LINK_UP_TIMEOUT / 10)) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ hw->autoneg_failed = 1;
+ /* AutoNeg failed to achieve a link, so we'll call
+ * e1000_check_for_link. This routine will force the link up if
+ * we detect a signal. This will allow us to communicate with
+ * non-autonegotiating link partners.
+ */
+ ret_val = e1000_check_for_link(hw);
+ if(ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ return ret_val;
+ }
+ hw->autoneg_failed = 0;
+ } else {
+ hw->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+ } else {
+ DEBUGOUT("No Signal Detected\n");
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Detects which PHY is present and the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_setup_copper_link(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint32_t led_ctrl;
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_setup_copper_link");
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
+ * the PHY speed and duplex configuration is. In addition, we need to
+ * perform a hardware reset on the PHY to take it out of reset.
+ */
+ if(hw->mac_type > e1000_82543) {
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ } else {
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ e1000_phy_hw_reset(hw);
+ }
+
+ /* Make sure we have a valid PHY */
+ ret_val = e1000_detect_gig_phy(hw);
+ if(ret_val) {
+ DEBUGOUT("Error, did not detect valid phy.\n");
+ return ret_val;
+ }
+ DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+ /* Set PHY to class A mode (if necessary) */
+ ret_val = e1000_set_phy_mode(hw);
+ if(ret_val)
+ return ret_val;
+
+ if((hw->mac_type == e1000_82545_rev_3) ||
+ (hw->mac_type == e1000_82546_rev_3)) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ phy_data |= 0x00000008;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ }
+
+ if(hw->mac_type <= e1000_82543 ||
+ hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+ hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
+ hw->phy_reset_disable = FALSE;
+
+ if(!hw->phy_reset_disable) {
+ if (hw->phy_type == e1000_phy_igp) {
+
+ ret_val = e1000_phy_reset(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+
+ /* Wait 10ms for MAC to configure PHY from eeprom settings */
+ msec_delay(15);
+
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+
+ /* disable lplu d3 during driver init */
+ ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+ if(ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ return ret_val;
+ }
+
+ /* Configure mdi-mdix settings */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ hw->dsp_config_state = e1000_dsp_config_disabled;
+ /* Force MDI for earlier revs of the IGP PHY */
+ phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
+ IGP01E1000_PSCR_FORCE_MDI_MDIX);
+ hw->mdix = 1;
+
+ } else {
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ }
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* set auto-master slave resolution settings */
+ if(hw->autoneg) {
+ e1000_ms_type phy_ms_setting = hw->master_slave;
+
+ if(hw->ffe_config_state == e1000_ffe_config_active)
+ hw->ffe_config_state = e1000_ffe_config_enabled;
+
+ if(hw->dsp_config_state == e1000_dsp_config_activated)
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+
+ /* when autonegotiation advertisment is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default. */
+ if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ /* Set auto Master/Slave resolution process */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* load defaults for future use */
+ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+ ((phy_data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) :
+ e1000_ms_auto;
+
+ switch (phy_ms_setting) {
+ case e1000_ms_force_master:
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ phy_data |= CR_1000T_MS_ENABLE;
+ phy_data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ phy_data &= ~CR_1000T_MS_ENABLE;
+ default:
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+ } else {
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (hw->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if(hw->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if (hw->phy_revision < M88E1011_I_REV_4) {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ /* SW Reset the PHY so all changes take effect */
+ ret_val = e1000_phy_reset(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Resetting the PHY\n");
+ return ret_val;
+ }
+ }
+
+ /* Options:
+ * autoneg = 1 (default)
+ * PHY will advertise value(s) parsed from
+ * autoneg_advertised and fc
+ * autoneg = 0
+ * PHY will be set to 10H, 10F, 100H, or 100F
+ * depending on value parsed from forced_speed_duplex.
+ */
+
+ /* Is autoneg enabled? This is enabled by default or by software
+ * override. If so, call e1000_phy_setup_autoneg routine to parse the
+ * autoneg_advertised and fc options. If autoneg is NOT enabled, then
+ * the user should have provided a speed/duplex override. If so, then
+ * call e1000_phy_force_speed_duplex to parse and set this up.
+ */
+ if(hw->autoneg) {
+ /* Perform some bounds checking on the hw->autoneg_advertised
+ * parameter. If this variable is zero, then set it to the default.
+ */
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if(hw->autoneg_advertised == 0)
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if(hw->wait_autoneg_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if(ret_val) {
+ DEBUGOUT("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+ hw->get_link_status = TRUE;
+ } else {
+ DEBUGOUT("Forcing speed and duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+ } /* !hw->phy_reset_disable */
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ for(i = 0; i < 10; i++) {
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if(phy_data & MII_SR_LINK_STATUS) {
+ /* We have link, so we need to finish the config process:
+ * 1) Set up the MAC to the current PHY speed/duplex
+ * if we are on 82543. If we
+ * are on newer silicon, we only need to configure
+ * collision distance in the Transmit Control Register.
+ * 2) Set up flow control on the MAC to that established with
+ * the link partner.
+ */
+ if(hw->mac_type >= e1000_82544) {
+ e1000_config_collision_dist(hw);
+ } else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if(ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Configuring Flow Control\n");
+ return ret_val;
+ }
+ DEBUGOUT("Valid link established!!!\n");
+
+ if(hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
+ if(ret_val) {
+ DEBUGOUT("Error Configuring DSP after link up\n");
+ return ret_val;
+ }
+ }
+ DEBUGOUT("Valid link established!!!\n");
+ return E1000_SUCCESS;
+ }
+ udelay(10);
+ }
+
+ DEBUGOUT("Unable to establish link!!!\n");
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_autoneg_adv_reg;
+ uint16_t mii_1000t_ctrl_reg;
+
+ DEBUGFUNC("e1000_phy_setup_autoneg");
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if(ret_val)
+ return ret_val;
+
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ if(ret_val)
+ return ret_val;
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+ DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc) {
+ case e1000_fc_none: /* 0 */
+ /* Flow control (RX & TX) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause: /* 1 */
+ /* RX Flow control is enabled, and TX Flow control is
+ * disabled, by a software over-ride.
+ */
+ /* Since there really isn't a way to advertise that we are
+ * capable of RX Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric RX PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ *hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause: /* 2 */
+ /* TX Flow control is enabled, and RX Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full: /* 3 */
+ /* Flow control (both RX and TX) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if(ret_val)
+ return ret_val;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+ if(ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Force PHY speed and duplex settings to hw->forced_speed_duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t mii_ctrl_reg;
+ uint16_t mii_status_reg;
+ uint16_t phy_data;
+ uint16_t i;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+ /* Turn off Flow control if we are forcing speed and duplex. */
+ hw->fc = e1000_fc_none;
+
+ DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+ /* Read the Device Control Register. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(DEVICE_SPEED_MASK);
+
+ /* Clear the Auto Speed Detect Enable bit. */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Read the MII Control Register. */
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+ if(ret_val)
+ return ret_val;
+
+ /* We need to disable autoneg in order to force link and duplex. */
+
+ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Are we forcing Full or Half Duplex? */
+ if(hw->forced_speed_duplex == e1000_100_full ||
+ hw->forced_speed_duplex == e1000_10_full) {
+ /* We want to force full duplex so we SET the full duplex bits in the
+ * Device and MII Control Registers.
+ */
+ ctrl |= E1000_CTRL_FD;
+ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ /* We want to force half duplex so we CLEAR the full duplex bits in
+ * the Device and MII Control Registers.
+ */
+ ctrl &= ~E1000_CTRL_FD;
+ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ /* Are we forcing 100Mbps??? */
+ if(hw->forced_speed_duplex == e1000_100_full ||
+ hw->forced_speed_duplex == e1000_100_half) {
+ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+ ctrl |= E1000_CTRL_SPD_100;
+ mii_ctrl_reg |= MII_CR_SPEED_100;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb ");
+ } else {
+ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ mii_ctrl_reg |= MII_CR_SPEED_10;
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb ");
+ }
+
+ e1000_config_collision_dist(hw);
+
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ if (hw->phy_type == e1000_phy_m88) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed are duplex are forced.
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+ /* Need to reset the PHY or these changes will be ignored */
+ mii_ctrl_reg |= MII_CR_RESET;
+ } else {
+ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed or duplex are forced.
+ */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ /* Write back the modified PHY MII control register. */
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+ if(ret_val)
+ return ret_val;
+
+ udelay(1);
+
+ /* The wait_autoneg_complete flag may be a little misleading here.
+ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+ * But we do want to delay for a period while forcing only so we
+ * don't generate false No Link messages. So we will wait here
+ * only if the user has set wait_autoneg_complete to 1, which is
+ * the default.
+ */
+ if(hw->wait_autoneg_complete) {
+ /* We will wait for autoneg to complete. */
+ DEBUGOUT("Waiting for forced speed/duplex link.\n");
+ mii_status_reg = 0;
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay(100);
+ }
+ if((i == 0) &&
+ (hw->phy_type == e1000_phy_m88)) {
+ /* We didn't get link. Reset the DSP and wait again for link. */
+ ret_val = e1000_phy_reset_dsp(hw);
+ if(ret_val) {
+ DEBUGOUT("Error Resetting PHY DSP\n");
+ return ret_val;
+ }
+ }
+ /* This loop will early-out if the link condition has been met. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay(100);
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
+ * to be set.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+ }
+ }
+
+ if (hw->phy_type == e1000_phy_m88) {
+ /* Because we reset the PHY above, we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock. This value
+ * defaults back to a 2.5MHz clock when the PHY is reset.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* In addition, because of the s/w reset above, we need to enable CRS on
+ * TX. This must be set for both full and half duplex operation.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
+ (!hw->autoneg) &&
+ (hw->forced_speed_duplex == e1000_10_full ||
+ hw->forced_speed_duplex == e1000_10_half)) {
+ ret_val = e1000_polarity_reversal_workaround(hw);
+ if(ret_val)
+ return ret_val;
+ }
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ uint32_t tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist");
+
+ tctl = E1000_READ_REG(hw, TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int32_t
+e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_config_mac_to_phy");
+
+ /* Read the Device Control Register and set the bits to Force Speed
+ * and Duplex.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+ /* Set up duplex in the Device Control and Transmit Control
+ * registers depending on negotiated values.
+ */
+ if (hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
+ else ctrl &= ~E1000_CTRL_FD;
+
+ e1000_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_100MBPS)
+ ctrl |= E1000_CTRL_SPD_100;
+ } else {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
+ else ctrl &= ~E1000_CTRL_FD;
+
+ e1000_config_collision_dist(hw);
+
+ /* Set up speed in the Device Control register depending on
+ * negotiated values.
+ */
+ if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ ctrl |= E1000_CTRL_SPD_1000;
+ else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ ctrl |= E1000_CTRL_SPD_100;
+ }
+ /* Write the configured values back to the Device Control Reg. */
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+int32_t
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+
+ DEBUGFUNC("e1000_force_mac_fc");
+
+ /* Get the current configuration of the Device Control Register */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+
+ switch (hw->fc) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
+ if(hw->mac_type == e1000_82542_rev2_0)
+ ctrl &= (~E1000_CTRL_TFCE);
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+int32_t
+e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t mii_nway_adv_reg;
+ uint16_t mii_nway_lp_ability_reg;
+ uint16_t speed;
+ uint16_t duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up");
+
+ /* Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
+ ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
+ ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
+ ret_val = e1000_force_mac_fc(hw);
+ if(ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+ /* Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ /* The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement Register
+ * (Address 4) and the Auto_Negotiation Base Page Ability
+ * Register (Address 5) to determine how flow control was
+ * negotiated.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if(ret_val)
+ return ret_val;
+
+ /* Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ *-------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ */
+ /* Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | e1000_fc_full
+ *
+ */
+ if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /* Now we need to check if the user selected RX ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if(hw->original_fc == e1000_fc_full) {
+ hw->fc = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ }
+ /* For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ *
+ */
+ else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /* For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ *-------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ */
+ else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+ /* Per the IEEE spec, at this point flow control should be
+ * disabled. However, we want to consider that we could
+ * be connected to a legacy switch that doesn't advertise
+ * desired flow control, but can be forced on the link
+ * partner. So if we advertised no flow control, that is
+ * what we will resolve to. If we advertised some kind of
+ * receive capability (Rx Pause Only or Full Flow Control)
+ * and the link partner advertised none, we will configure
+ * ourselves to enable Rx Flow Control only. We can do
+ * this safely for two reasons: If the link partner really
+ * didn't want flow control enabled, and we enable Rx, no
+ * harm done since we won't be receiving any PAUSE frames
+ * anyway. If the intent on the link partner was to have
+ * flow control enabled, then by us enabling RX only, we
+ * can at least receive pause frames and process them.
+ * This is a good idea because in most cases, since we are
+ * predominantly a server NIC, more times than not we will
+ * be asked to delay transmission of packets than asking
+ * our link partner to pause transmission of frames.
+ */
+ else if((hw->original_fc == e1000_fc_none ||
+ hw->original_fc == e1000_fc_tx_pause) ||
+ hw->fc_strict_ieee) {
+ hw->fc = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ } else {
+ hw->fc = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ }
+
+ /* Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if(ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+
+ if(duplex == HALF_DUPLEX)
+ hw->fc = e1000_fc_none;
+
+ /* Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc(hw);
+ if(ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ return ret_val;
+ }
+ } else {
+ DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
+ }
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+int32_t
+e1000_check_for_link(struct e1000_hw *hw)
+{
+ uint32_t rxcw = 0;
+ uint32_t ctrl;
+ uint32_t status;
+ uint32_t rctl;
+ uint32_t icr;
+ uint32_t signal = 0;
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_check_for_link");
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+ status = E1000_READ_REG(hw, STATUS);
+
+ /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
+ * set when the optics detect a signal. On older adapters, it will be
+ * cleared when there is a signal. This applies to fiber media only.
+ */
+ if((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) {
+ rxcw = E1000_READ_REG(hw, RXCW);
+
+ if(hw->media_type == e1000_media_type_fiber) {
+ signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+ if(status & E1000_STATUS_LU)
+ hw->get_link_status = FALSE;
+ }
+ }
+
+ /* If we have a copper PHY then we only want to go out to the PHY
+ * registers to see if Auto-Neg has completed and/or if our link
+ * status has changed. The get_link_status flag will be set if we
+ * receive a Link Status Change interrupt or we have Rx Sequence
+ * Errors.
+ */
+ if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+ /* First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ * Read the register twice since the link bit is sticky.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if(phy_data & MII_SR_LINK_STATUS) {
+ hw->get_link_status = FALSE;
+ /* Check if there was DownShift, must be checked immediately after
+ * link-up */
+ e1000_check_downshift(hw);
+
+ /* If we are on 82544 or 82543 silicon and speed/duplex
+ * are forced to 10H or 10F, then we will implement the polarity
+ * reversal workaround. We disable interrupts first, and upon
+ * returning, place the devices interrupt state to its previous
+ * value except for the link status change interrupt which will
+ * happen due to the execution of this workaround.
+ */
+
+ if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
+ (!hw->autoneg) &&
+ (hw->forced_speed_duplex == e1000_10_full ||
+ hw->forced_speed_duplex == e1000_10_half)) {
+ E1000_WRITE_REG(hw, IMC, 0xffffffff);
+ ret_val = e1000_polarity_reversal_workaround(hw);
+ icr = E1000_READ_REG(hw, ICR);
+ E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
+ E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
+ }
+
+ } else {
+ /* No link detected */
+ e1000_config_dsp_after_link_change(hw, FALSE);
+ return 0;
+ }
+
+ /* If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if(!hw->autoneg) return -E1000_ERR_CONFIG;
+
+ /* optimize the dsp settings for the igp phy */
+ e1000_config_dsp_after_link_change(hw, TRUE);
+
+ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
+ * have Si on board that is 82544 or newer, Auto
+ * Speed Detection takes care of MAC speed/duplex
+ * configuration. So we only need to configure Collision
+ * Distance in the MAC. Otherwise, we need to force
+ * speed/duplex on the MAC to the current PHY speed/duplex
+ * settings.
+ */
+ if(hw->mac_type >= e1000_82544)
+ e1000_config_collision_dist(hw);
+ else {
+ ret_val = e1000_config_mac_to_phy(hw);
+ if(ret_val) {
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
+ return ret_val;
+ }
+ }
+
+ /* Configure Flow Control now that Auto-Neg has completed. First, we
+ * need to restore the desired flow control settings because we may
+ * have had to re-autoneg with a different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if(ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+
+ /* At this point we know that we are on copper and we have
+ * auto-negotiated link. These are conditions for checking the link
+ * partner capability register. We use the link speed to determine if
+ * TBI compatibility needs to be turned on or off. If the link is not
+ * at gigabit speed, then TBI compatibility is not needed. If we are
+ * at gigabit speed, we turn on TBI compatibility.
+ */
+ if(hw->tbi_compatibility_en) {
+ uint16_t speed, duplex;
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if(speed != SPEED_1000) {
+ /* If link speed is not set to gigabit speed, we do not need
+ * to enable TBI compatibility.
+ */
+ if(hw->tbi_compatibility_on) {
+ /* If we previously were in the mode, turn it off. */
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl &= ~E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ hw->tbi_compatibility_on = FALSE;
+ }
+ } else {
+ /* If TBI compatibility is was previously off, turn it on. For
+ * compatibility with a TBI link partner, we will store bad
+ * packets. Some frames have an additional byte on the end and
+ * will look like CRC errors to to the hardware.
+ */
+ if(!hw->tbi_compatibility_on) {
+ hw->tbi_compatibility_on = TRUE;
+ rctl = E1000_READ_REG(hw, RCTL);
+ rctl |= E1000_RCTL_SBP;
+ E1000_WRITE_REG(hw, RCTL, rctl);
+ }
+ }
+ }
+ }
+ /* If we don't have link (auto-negotiation failed or link partner cannot
+ * auto-negotiate), the cable is plugged in (we have signal), and our
+ * link partner is not trying to auto-negotiate with us (we are receiving
+ * idles or data), we need to force link up. We also need to give
+ * auto-negotiation time to complete, in case the cable was just plugged
+ * in. The autoneg_failed flag does this.
+ */
+ else if((((hw->media_type == e1000_media_type_fiber) &&
+ ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if(hw->autoneg_failed == 0) {
+ hw->autoneg_failed = 1;
+ return 0;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up(hw);
+ if(ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ return ret_val;
+ }
+ }
+ /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+ * auto-negotiation in the TXCW register and disable forced link in the
+ * Device Control register in an attempt to auto-negotiate with our link
+ * partner.
+ */
+ else if(((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) &&
+ (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
+ E1000_WRITE_REG(hw, TXCW, hw->txcw);
+ E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ hw->serdes_link_down = FALSE;
+ }
+ /* If we force link for non-auto-negotiation switch, check link status
+ * based on MAC synchronization for internal serdes media type.
+ */
+ else if((hw->media_type == e1000_media_type_internal_serdes) &&
+ !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ /* SYNCH bit and IV bit are sticky. */
+ udelay(10);
+ if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
+ if(!(rxcw & E1000_RXCW_IV)) {
+ hw->serdes_link_down = FALSE;
+ DEBUGOUT("SERDES: Link is up.\n");
+ }
+ } else {
+ hw->serdes_link_down = TRUE;
+ DEBUGOUT("SERDES: Link is down.\n");
+ }
+ }
+ if((hw->media_type == e1000_media_type_internal_serdes) &&
+ (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+int32_t
+e1000_get_speed_and_duplex(struct e1000_hw *hw,
+ uint16_t *speed,
+ uint16_t *duplex)
+{
+ uint32_t status;
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex");
+
+ if(hw->mac_type >= e1000_82543) {
+ status = E1000_READ_REG(hw, STATUS);
+ if(status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if(status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if(status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\r\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT(" Half Duplex\r\n");
+ }
+ } else {
+ DEBUGOUT("1000 Mbs, Full Duplex\r\n");
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+ }
+
+ /* IGP01 PHY may advertise full duplex operation after speed downgrade even
+ * if it is operating at half duplex. Here we set the duplex settings to
+ * match the duplex in the link partner's capabilities.
+ */
+ if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+ *duplex = HALF_DUPLEX;
+ else {
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+ if(ret_val)
+ return ret_val;
+ if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
+ (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+ *duplex = HALF_DUPLEX;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t i;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_wait_autoneg");
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+ for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Auto-Neg
+ * Complete bit to be set.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+ if(phy_data & MII_SR_AUTONEG_COMPLETE) {
+ return E1000_SUCCESS;
+ }
+ msec_delay(100);
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_raise_mdi_clk(struct e1000_hw *hw,
+ uint32_t *ctrl)
+{
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
+ * bit), and then delay 10 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ udelay(10);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_lower_mdi_clk(struct e1000_hw *hw,
+ uint32_t *ctrl)
+{
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
+ * bit), and then delay 10 microseconds.
+ */
+ E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+ E1000_WRITE_FLUSH(hw);
+ udelay(10);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+e1000_shift_out_mdi_bits(struct e1000_hw *hw,
+ uint32_t data,
+ uint16_t count)
+{
+ uint32_t ctrl;
+ uint32_t mask;
+
+ /* We need to shift "count" number of bits out to the PHY. So, the value
+ * in the "data" parameter will be shifted out to the PHY one bit at a
+ * time. In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01;
+ mask <<= (count - 1);
+
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+ while(mask) {
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+ * then raising and lowering the Management Data Clock. A "0" is
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
+ * raising and lowering the clock.
+ */
+ if(data & mask) ctrl |= E1000_CTRL_MDIO;
+ else ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(10);
+
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ mask = mask >> 1;
+ }
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order.
+******************************************************************************/
+static uint16_t
+e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+ uint16_t data = 0;
+ uint8_t i;
+
+ /* In order to read a register from the PHY, we need to shift in a total
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
+ * to avoid contention on the MDIO pin when a read operation is performed.
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
+ * by raising the input to the Management Data Clock (setting the MDC bit),
+ * and then reading the value of the MDIO bit.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
+ ctrl &= ~E1000_CTRL_MDIO;
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ /* Raise and Lower the clock before reading in the data. This accounts for
+ * the turnaround bits. The first clock occurred when we clocked out the
+ * last bit of the Register Address.
+ */
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ for(data = 0, i = 0; i < 16; i++) {
+ data = data << 1;
+ e1000_raise_mdi_clk(hw, &ctrl);
+ ctrl = E1000_READ_REG(hw, CTRL);
+ /* Check to see if we shifted in a "1". */
+ if(ctrl & E1000_CTRL_MDIO) data |= 1;
+ e1000_lower_mdi_clk(hw, &ctrl);
+ }
+
+ e1000_raise_mdi_clk(hw, &ctrl);
+ e1000_lower_mdi_clk(hw, &ctrl);
+
+ return data;
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register, if the value is on a specific non zero
+* page, sets the page first.
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+int32_t
+e1000_read_phy_reg(struct e1000_hw *hw,
+ uint32_t reg_addr,
+ uint16_t *phy_data)
+{
+ uint32_t ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg");
+
+
+ if(hw->phy_type == e1000_phy_igp &&
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+ ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (uint16_t)reg_addr);
+ if(ret_val) {
+ return ret_val;
+ }
+ }
+
+ ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+ phy_data);
+
+ return ret_val;
+}
+
+int32_t
+e1000_read_phy_reg_ex(struct e1000_hw *hw,
+ uint32_t reg_addr,
+ uint16_t *phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ DEBUGFUNC("e1000_read_phy_reg_ex");
+
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if(hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, and register address in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for(i = 0; i < 64; i++) {
+ udelay(50);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if(mdic & E1000_MDIC_READY) break;
+ }
+ if(!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if(mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ *phy_data = (uint16_t) mdic;
+ } else {
+ /* We must first send a preamble through the MDIO pin to signal the
+ * beginning of an MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the next few fields that are required for a read
+ * operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine five different times. The format of
+ * a MII read instruction consists of a shift out of 14 bits and is
+ * defined as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+ * followed by a shift in of 18 bits. This first two bits shifted in
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
+ * READ operation is performed. These two bits are thrown away
+ * followed by a shift in of 16 bits which contains the desired data.
+ */
+ mdic = ((reg_addr) | (phy_addr << 5) |
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+ e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+ /* Now that we've shifted out the read command to the MII, we need to
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
+ * register address.
+ */
+ *phy_data = e1000_shift_in_mdi_bits(hw);
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+int32_t
+e1000_write_phy_reg(struct e1000_hw *hw,
+ uint32_t reg_addr,
+ uint16_t phy_data)
+{
+ uint32_t ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg");
+
+
+ if(hw->phy_type == e1000_phy_igp &&
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+ ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (uint16_t)reg_addr);
+ if(ret_val) {
+ return ret_val;
+ }
+ }
+
+ ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+ phy_data);
+
+ return ret_val;
+}
+
+int32_t
+e1000_write_phy_reg_ex(struct e1000_hw *hw,
+ uint32_t reg_addr,
+ uint16_t phy_data)
+{
+ uint32_t i;
+ uint32_t mdic = 0;
+ const uint32_t phy_addr = 1;
+
+ DEBUGFUNC("e1000_write_phy_reg_ex");
+
+ if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+ return -E1000_ERR_PARAM;
+ }
+
+ if(hw->mac_type > e1000_82543) {
+ /* Set up Op-code, Phy Address, register address, and data intended
+ * for the PHY register in the MDI Control register. The MAC will take
+ * care of interfacing with the PHY to send the desired data.
+ */
+ mdic = (((uint32_t) phy_data) |
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for(i = 0; i < 640; i++) {
+ udelay(5);
+ mdic = E1000_READ_REG(hw, MDIC);
+ if(mdic & E1000_MDIC_READY) break;
+ }
+ if(!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ } else {
+ /* We'll need to use the SW defined pins to shift the write command
+ * out to the PHY. We first send a preamble to the PHY to signal the
+ * beginning of the MII instruction. This is done by sending 32
+ * consecutive "1" bits.
+ */
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+ /* Now combine the remaining required fields that will indicate a
+ * write operation. We use this method instead of calling the
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
+ * format of a MII write instruction is as follows:
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+ */
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+ mdic <<= 16;
+ mdic |= (uint32_t) phy_data;
+
+ e1000_shift_out_mdi_bits(hw, mdic, 32);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+void
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ uint32_t ctrl, ctrl_ext;
+ uint32_t led_ctrl;
+
+ DEBUGFUNC("e1000_phy_hw_reset");
+
+ DEBUGOUT("Resetting Phy...\n");
+
+ if(hw->mac_type > e1000_82543) {
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
+ * bit. Then, take it out of reset.
+ */
+ ctrl = E1000_READ_REG(hw, CTRL);
+ E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(10);
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ } else {
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+ * bit to put the PHY into reset. Then, take it out of reset.
+ */
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(10);
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+ }
+ udelay(150);
+
+ if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ /* Configure activity LED after PHY reset */
+ led_ctrl = E1000_READ_REG(hw, LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
+ }
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control regiser
+******************************************************************************/
+int32_t
+e1000_phy_reset(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_phy_reset");
+
+ if(hw->mac_type != e1000_82541_rev_2) {
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= MII_CR_RESET;
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ udelay(1);
+ } else e1000_phy_hw_reset(hw);
+
+ if(hw->phy_type == e1000_phy_igp)
+ e1000_phy_init_script(hw);
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+ int32_t phy_init_status, ret_val;
+ uint16_t phy_id_high, phy_id_low;
+ boolean_t match = FALSE;
+
+ DEBUGFUNC("e1000_detect_gig_phy");
+
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
+ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+ if(ret_val)
+ return ret_val;
+
+ hw->phy_id = (uint32_t) (phy_id_high << 16);
+ udelay(20);
+ ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+ if(ret_val)
+ return ret_val;
+
+ hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+ hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+ switch(hw->mac_type) {
+ case e1000_82543:
+ if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+ break;
+ case e1000_82544:
+ if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
+ break;
+ default:
+ DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+ return -E1000_ERR_CONFIG;
+ }
+ phy_init_status = e1000_set_phy_type(hw);
+
+ if ((match) && (phy_init_status == E1000_SUCCESS)) {
+ DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+ return E1000_SUCCESS;
+ }
+ DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+ return -E1000_ERR_PHY;
+}
+
+/******************************************************************************
+* Resets the PHY's DSP
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ DEBUGFUNC("e1000_phy_reset_dsp");
+
+ do {
+ ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+ if(ret_val) break;
+ ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+ if(ret_val) break;
+ ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+ if(ret_val) break;
+ ret_val = E1000_SUCCESS;
+ } while(0);
+
+ return ret_val;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers for igp PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+e1000_phy_igp_get_info(struct e1000_hw *hw,
+ struct e1000_phy_info *phy_info)
+{
+ int32_t ret_val;
+ uint16_t phy_data, polarity, min_length, max_length, average;
+
+ DEBUGFUNC("e1000_phy_igp_get_info");
+
+ /* The downshift status is checked only once, after link is established,
+ * and it stored in the hw->speed_downgraded parameter. */
+ phy_info->downshift = hw->speed_downgraded;
+
+ /* IGP01E1000 does not need to support it. */
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+ /* IGP01E1000 always correct polarity reversal */
+ phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+ /* Check polarity status */
+ ret_val = e1000_check_polarity(hw, &polarity);
+ if(ret_val)
+ return ret_val;
+
+ phy_info->cable_polarity = polarity;
+
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
+ IGP01E1000_PSSR_MDIX_SHIFT;
+
+ if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ /* Local/Remote Receiver Information are only valid at 1000 Mbps */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT;
+ phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT;
+
+ /* Get cable length */
+ ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+ if(ret_val)
+ return ret_val;
+
+ /* transalte to old method */
+ average = (max_length + min_length) / 2;
+
+ if(average <= e1000_igp_cable_length_50)
+ phy_info->cable_length = e1000_cable_length_50;
+ else if(average <= e1000_igp_cable_length_80)
+ phy_info->cable_length = e1000_cable_length_50_80;
+ else if(average <= e1000_igp_cable_length_110)
+ phy_info->cable_length = e1000_cable_length_80_110;
+ else if(average <= e1000_igp_cable_length_140)
+ phy_info->cable_length = e1000_cable_length_110_140;
+ else
+ phy_info->cable_length = e1000_cable_length_140;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers fot m88 PHY only.
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+e1000_phy_m88_get_info(struct e1000_hw *hw,
+ struct e1000_phy_info *phy_info)
+{
+ int32_t ret_val;
+ uint16_t phy_data, polarity;
+
+ DEBUGFUNC("e1000_phy_m88_get_info");
+
+ /* The downshift status is checked only once, after link is established,
+ * and it stored in the hw->speed_downgraded parameter. */
+ phy_info->downshift = hw->speed_downgraded;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_info->extended_10bt_distance =
+ (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
+ phy_info->polarity_correction =
+ (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
+
+ /* Check polarity status */
+ ret_val = e1000_check_polarity(hw, &polarity);
+ if(ret_val)
+ return ret_val;
+ phy_info->cable_polarity = polarity;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
+ M88E1000_PSSR_MDIX_SHIFT;
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ /* Cable Length Estimation and Local/Remote Receiver Information
+ * are only valid at 1000 Mbps.
+ */
+ phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT;
+
+ phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+e1000_phy_get_info(struct e1000_hw *hw,
+ struct e1000_phy_info *phy_info)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_phy_get_info");
+
+ phy_info->cable_length = e1000_cable_length_undefined;
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+ phy_info->cable_polarity = e1000_rev_polarity_undefined;
+ phy_info->downshift = e1000_downshift_undefined;
+ phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+ phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+ phy_info->local_rx = e1000_1000t_rx_status_undefined;
+ phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+ if(hw->media_type != e1000_media_type_copper) {
+ DEBUGOUT("PHY info is only valid for copper media\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ DEBUGOUT("PHY info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ if(hw->phy_type == e1000_phy_igp)
+ return e1000_phy_igp_get_info(hw, phy_info);
+ else
+ return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+int32_t
+e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_validate_mdi_settings");
+
+ if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->mdix = 1;
+ return -E1000_ERR_CONFIG;
+ }
+ return E1000_SUCCESS;
+}
+
+
+/******************************************************************************
+ * Sets up eeprom variables in the hw struct. Must be called after mac_type
+ * is configured.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_init_eeprom_params(struct e1000_hw *hw)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd = E1000_READ_REG(hw, EECD);
+ uint16_t eeprom_size;
+
+ DEBUGFUNC("e1000_init_eeprom_params");
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->word_size = 64;
+ eeprom->opcode_bits = 3;
+ eeprom->address_bits = 6;
+ eeprom->delay_usec = 50;
+ break;
+ case e1000_82540:
+ case e1000_82545:
+ case e1000_82545_rev_3:
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if(eecd & E1000_EECD_SIZE) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ break;
+ case e1000_82541:
+ case e1000_82541_rev_2:
+ case e1000_82547:
+ case e1000_82547_rev_2:
+ if (eecd & E1000_EECD_TYPE) {
+ eeprom->type = e1000_eeprom_spi;
+ eeprom->opcode_bits = 8;
+ eeprom->delay_usec = 1;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->page_size = 32;
+ eeprom->address_bits = 16;
+ } else {
+ eeprom->page_size = 8;
+ eeprom->address_bits = 8;
+ }
+ } else {
+ eeprom->type = e1000_eeprom_microwire;
+ eeprom->opcode_bits = 3;
+ eeprom->delay_usec = 50;
+ if (eecd & E1000_EECD_ADDR_BITS) {
+ eeprom->word_size = 256;
+ eeprom->address_bits = 8;
+ } else {
+ eeprom->word_size = 64;
+ eeprom->address_bits = 6;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (eeprom->type == e1000_eeprom_spi) {
+ eeprom->word_size = 64;
+ if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
+ eeprom_size &= EEPROM_SIZE_MASK;
+
+ switch (eeprom_size) {
+ case EEPROM_SIZE_16KB:
+ eeprom->word_size = 8192;
+ break;
+ case EEPROM_SIZE_8KB:
+ eeprom->word_size = 4096;
+ break;
+ case EEPROM_SIZE_4KB:
+ eeprom->word_size = 2048;
+ break;
+ case EEPROM_SIZE_2KB:
+ eeprom->word_size = 1024;
+ break;
+ case EEPROM_SIZE_1KB:
+ eeprom->word_size = 512;
+ break;
+ case EEPROM_SIZE_512B:
+ eeprom->word_size = 256;
+ break;
+ case EEPROM_SIZE_128B:
+ default:
+ eeprom->word_size = 64;
+ break;
+ }
+ }
+ }
+}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_raise_ee_clk(struct e1000_hw *hw,
+ uint32_t *eecd)
+{
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+ * wait <delay> microseconds.
+ */
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(hw->eeprom.delay_usec);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_lower_ee_clk(struct e1000_hw *hw,
+ uint32_t *eecd)
+{
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+ * wait 50 microseconds.
+ */
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(hw->eeprom.delay_usec);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+e1000_shift_out_ee_bits(struct e1000_hw *hw,
+ uint16_t data,
+ uint16_t count)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+ uint32_t mask;
+
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+ mask = 0x01 << (count - 1);
+ eecd = E1000_READ_REG(hw, EECD);
+ if (eeprom->type == e1000_eeprom_microwire) {
+ eecd &= ~E1000_EECD_DO;
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ eecd |= E1000_EECD_DO;
+ }
+ do {
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+ * and then raising and then lowering the clock (the SK bit controls
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
+ * by setting "DI" to "0" and then raising and then lowering the clock.
+ */
+ eecd &= ~E1000_EECD_DI;
+
+ if(data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ udelay(eeprom->delay_usec);
+
+ e1000_raise_ee_clk(hw, &eecd);
+ e1000_lower_ee_clk(hw, &eecd);
+
+ mask = mask >> 1;
+
+ } while(mask);
+
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+e1000_shift_in_ee_bits(struct e1000_hw *hw,
+ uint16_t count)
+{
+ uint32_t eecd;
+ uint32_t i;
+ uint16_t data;
+
+ /* In order to read a register from the EEPROM, we need to shift 'count'
+ * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+ * input to the EEPROM (setting the SK bit), and then reading the value of
+ * the "DO" bit. During this "shifting in" process the "DI" bit should
+ * always be clear.
+ */
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for(i = 0; i < count; i++) {
+ data = data << 1;
+ e1000_raise_ee_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ eecd &= ~(E1000_EECD_DI);
+ if(eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_ee_clk(hw, &eecd);
+ }
+
+ return data;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static int32_t
+e1000_acquire_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd, i=0;
+
+ DEBUGFUNC("e1000_acquire_eeprom");
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Request EEPROM Access */
+ if(hw->mac_type > e1000_82544) {
+ eecd |= E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ eecd = E1000_READ_REG(hw, EECD);
+ while((!(eecd & E1000_EECD_GNT)) &&
+ (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+ i++;
+ udelay(5);
+ eecd = E1000_READ_REG(hw, EECD);
+ }
+ if(!(eecd & E1000_EECD_GNT)) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ DEBUGOUT("Could not acquire EEPROM grant\n");
+ return -E1000_ERR_EEPROM;
+ }
+ }
+
+ /* Setup EEPROM for Read/Write */
+
+ if (eeprom->type == e1000_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ } else if (eeprom->type == e1000_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ udelay(1);
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_standby_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if(eeprom->type == e1000_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+
+ /* Clock high */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+
+ /* Clock low */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+ } else if(eeprom->type == e1000_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(eeprom->delay_usec);
+ }
+}
+
+/******************************************************************************
+ * Terminates a command by inverting the EEPROM's chip select pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_release_eeprom(struct e1000_hw *hw)
+{
+ uint32_t eecd;
+
+ DEBUGFUNC("e1000_release_eeprom");
+
+ eecd = E1000_READ_REG(hw, EECD);
+
+ if (hw->eeprom.type == e1000_eeprom_spi) {
+ eecd |= E1000_EECD_CS; /* Pull CS high */
+ eecd &= ~E1000_EECD_SK; /* Lower SCK */
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ udelay(hw->eeprom.delay_usec);
+ } else if(hw->eeprom.type == e1000_eeprom_microwire) {
+ /* cleanup eeprom */
+
+ /* CS on Microwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+ E1000_WRITE_REG(hw, EECD, eecd);
+
+ /* Rising edge of clock */
+ eecd |= E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(hw->eeprom.delay_usec);
+
+ /* Falling edge of clock */
+ eecd &= ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(hw->eeprom.delay_usec);
+ }
+
+ /* Stop requesting EEPROM access */
+ if(hw->mac_type > e1000_82544) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, EECD, eecd);
+ }
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+ uint16_t retry_count = 0;
+ uint8_t spi_stat_reg;
+
+ DEBUGFUNC("e1000_spi_eeprom_ready");
+
+ /* Read "Status Register" repeatedly until the LSB is cleared. The
+ * EEPROM will signal that the command has been completed by clearing
+ * bit 0 of the internal status register. If it's not cleared within
+ * 5 milliseconds, then error out.
+ */
+ retry_count = 0;
+ do {
+ e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+ hw->eeprom.opcode_bits);
+ spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
+ if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+ break;
+
+ udelay(5);
+ retry_count += 5;
+
+ e1000_standby_eeprom(hw);
+ } while(retry_count < EEPROM_MAX_RETRY_SPI);
+
+ /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+ * only 0-5mSec on 5V devices)
+ */
+ if(retry_count >= EEPROM_MAX_RETRY_SPI) {
+ DEBUGOUT("SPI EEPROM Status error\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of word in the EEPROM to read
+ * data - word read from the EEPROM
+ * words - number of words to read
+ *****************************************************************************/
+int32_t
+e1000_read_eeprom(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t i = 0;
+
+ DEBUGFUNC("e1000_read_eeprom");
+ /* A check for invalid values: offset too large, too many words, and not
+ * enough words.
+ */
+ if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("\"words\" parameter out of bounds\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Prepare the EEPROM for reading */
+ if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+
+ if(eeprom->type == e1000_eeprom_spi) {
+ uint16_t word_in;
+ uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
+
+ if(e1000_spi_eeprom_ready(hw)) {
+ e1000_release_eeprom(hw);
+ return -E1000_ERR_EEPROM;
+ }
+
+ e1000_standby_eeprom(hw);
+
+ /* Some SPI eeproms use the 8th address bit embedded in the opcode */
+ if((eeprom->address_bits == 8) && (offset >= 128))
+ read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
+
+ /* Read the data. The address of the eeprom internally increments with
+ * each byte (spi) being read, saving on the overhead of eeprom setup
+ * and tear-down. The address counter will roll over if reading beyond
+ * the size of the eeprom, thus allowing the entire memory to be read
+ * starting from any offset. */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_ee_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+ } else if(eeprom->type == e1000_eeprom_microwire) {
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
+ eeprom->address_bits);
+
+ /* Read the data. For microwire, each word requires the overhead
+ * of eeprom setup and tear-down. */
+ data[i] = e1000_shift_in_ee_bits(hw, 16);
+ e1000_standby_eeprom(hw);
+ }
+ }
+
+ /* End this read operation */
+ e1000_release_eeprom(hw);
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+int32_t
+e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+ for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+ if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+
+ if(checksum == (uint16_t) EEPROM_SUM)
+ return E1000_SUCCESS;
+ else {
+ DEBUGOUT("EEPROM Checksum Invalid\n");
+ return -E1000_ERR_EEPROM;
+ }
+}
+
+/******************************************************************************
+ * Calculates the EEPROM checksum and writes it to the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ *****************************************************************************/
+int32_t
+e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+ uint16_t checksum = 0;
+ uint16_t i, eeprom_data;
+
+ DEBUGFUNC("e1000_update_eeprom_checksum");
+
+ for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ checksum += eeprom_data;
+ }
+ checksum = (uint16_t) EEPROM_SUM - checksum;
+ if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+ DEBUGOUT("EEPROM Write Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Parent function for writing words to the different EEPROM types.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * words - number of words to write
+ * data - 16 bit word to be written to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ int32_t status = 0;
+
+ DEBUGFUNC("e1000_write_eeprom");
+
+ /* A check for invalid values: offset too large, too many words, and not
+ * enough words.
+ */
+ if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ (words == 0)) {
+ DEBUGOUT("\"words\" parameter out of bounds\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Prepare the EEPROM for writing */
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
+
+ if(eeprom->type == e1000_eeprom_microwire) {
+ status = e1000_write_eeprom_microwire(hw, offset, words, data);
+ } else {
+ status = e1000_write_eeprom_spi(hw, offset, words, data);
+ msec_delay(10);
+ }
+
+ /* Done with writing */
+ e1000_release_eeprom(hw);
+
+ return status;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in an SPI EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * words - number of words to write
+ * data - pointer to array of 8 bit words to be written to the EEPROM
+ *
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom_spi(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint16_t widx = 0;
+
+ DEBUGFUNC("e1000_write_eeprom_spi");
+
+ while (widx < words) {
+ uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
+
+ if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+
+ e1000_standby_eeprom(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode ) */
+ e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+ eeprom->opcode_bits);
+
+ e1000_standby_eeprom(hw);
+
+ /* Some SPI eeproms use the 8th address bit embedded in the opcode */
+ if((eeprom->address_bits == 8) && (offset >= 128))
+ write_opcode |= EEPROM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+
+ e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
+ eeprom->address_bits);
+
+ /* Send the data */
+
+ /* Loop to allow for up to whole page write (32 bytes) of eeprom */
+ while (widx < words) {
+ uint16_t word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_ee_bits(hw, word_out, 16);
+ widx++;
+
+ /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+ * operation, while the smaller eeproms are capable of an 8-byte
+ * PAGE WRITE operation. Break the inner loop to pass new address
+ */
+ if((((offset + widx)*2) % eeprom->page_size) == 0) {
+ e1000_standby_eeprom(hw);
+ break;
+ }
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * words - number of words to write
+ * data - pointer to array of 16 bit words to be written to the EEPROM
+ *
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom_microwire(struct e1000_hw *hw,
+ uint16_t offset,
+ uint16_t words,
+ uint16_t *data)
+{
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
+ uint32_t eecd;
+ uint16_t words_written = 0;
+ uint16_t i = 0;
+
+ DEBUGFUNC("e1000_write_eeprom_microwire");
+
+ /* Send the write enable command to the EEPROM (3-bit opcode plus
+ * 6/8-bit dummy address beginning with 11). It's less work to include
+ * the 11 of the dummy address as part of the opcode than it is to shift
+ * it over the correct number of bits for the address. This puts the
+ * EEPROM into write/erase mode.
+ */
+ e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+ (uint16_t)(eeprom->opcode_bits + 2));
+
+ e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
+
+ /* Prepare the EEPROM */
+ e1000_standby_eeprom(hw);
+
+ while (words_written < words) {
+ /* Send the Write command (3-bit opcode + addr) */
+ e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+ eeprom->opcode_bits);
+
+ e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
+ eeprom->address_bits);
+
+ /* Send the data */
+ e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+ /* Toggle the CS line. This in effect tells the EEPROM to execute
+ * the previous command.
+ */
+ e1000_standby_eeprom(hw);
+
+ /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
+ * signal that the command has been completed by raising the DO signal.
+ * If DO does not go high in 10 milliseconds, then error out.
+ */
+ for(i = 0; i < 200; i++) {
+ eecd = E1000_READ_REG(hw, EECD);
+ if(eecd & E1000_EECD_DO) break;
+ udelay(50);
+ }
+ if(i == 200) {
+ DEBUGOUT("EEPROM Write did not complete\n");
+ return -E1000_ERR_EEPROM;
+ }
+
+ /* Recover from write */
+ e1000_standby_eeprom(hw);
+
+ words_written++;
+ }
+
+ /* Send the write disable command to the EEPROM (3-bit opcode plus
+ * 6/8-bit dummy address beginning with 10). It's less work to include
+ * the 10 of the dummy address as part of the opcode than it is to shift
+ * it over the correct number of bits for the address. This takes the
+ * EEPROM out of write/erase mode.
+ */
+ e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+ (uint16_t)(eeprom->opcode_bits + 2));
+
+ e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads the adapter's part number from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ * part_num - Adapter's part number
+ *****************************************************************************/
+int32_t
+e1000_read_part_num(struct e1000_hw *hw,
+ uint32_t *part_num)
+{
+ uint16_t offset = EEPROM_PBA_BYTE_1;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("e1000_read_part_num");
+
+ /* Get word 0 from EEPROM */
+ if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 0 in upper half of part_num */
+ *part_num = (uint32_t) (eeprom_data << 16);
+
+ /* Get word 1 from EEPROM */
+ if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ /* Save word 1 in lower half of part_num */
+ *part_num |= eeprom_data;
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_read_mac_addr(struct e1000_hw * hw)
+{
+ uint16_t offset;
+ uint16_t eeprom_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ offset = i >> 1;
+ if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
+ hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
+ }
+ if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
+ (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
+ hw->perm_mac_addr[5] ^= 0x01;
+
+ for(i = 0; i < NODE_ADDRESS_SIZE; i++)
+ hw->mac_addr[i] = hw->perm_mac_addr[i];
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+void
+e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+ uint32_t i;
+
+ DEBUGFUNC("e1000_init_rx_addrs");
+
+ /* Setup the receive address. */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ e1000_rar_set(hw, hw->mac_addr, 0);
+
+ /* Zero out the other 15 receive addresses. */
+ DEBUGOUT("Clearing RAR[1-15]\n");
+ for(i = 1; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+}
+
+/******************************************************************************
+ * Updates the MAC's list of multicast addresses.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr_list - the list of new multicast addresses
+ * mc_addr_count - number of addresses
+ * pad - number of bytes between addresses in the list
+ * rar_used_count - offset where to start adding mc addresses into the RAR's
+ *
+ * The given list replaces any existing list. Clears the last 15 receive
+ * address registers and the multicast table. Uses receive address registers
+ * for the first 15 multicast addresses, and hashes the rest into the
+ * multicast table.
+ *****************************************************************************/
+void
+e1000_mc_addr_list_update(struct e1000_hw *hw,
+ uint8_t *mc_addr_list,
+ uint32_t mc_addr_count,
+ uint32_t pad,
+ uint32_t rar_used_count)
+{
+ uint32_t hash_value;
+ uint32_t i;
+
+ DEBUGFUNC("e1000_mc_addr_list_update");
+
+ /* Set the new number of MC addresses that we are being requested to use. */
+ hw->num_mc_addrs = mc_addr_count;
+
+ /* Clear RAR[1-15] */
+ DEBUGOUT(" Clearing RAR[1-15]\n");
+ for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+ }
+
+ /* Clear the MTA */
+ DEBUGOUT(" Clearing MTA\n");
+ for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+ }
+
+ /* Add the new addresses */
+ for(i = 0; i < mc_addr_count; i++) {
+ DEBUGOUT(" Adding the multicast addresses:\n");
+ DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
+ mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
+
+ hash_value = e1000_hash_mc_addr(hw,
+ mc_addr_list +
+ (i * (ETH_LENGTH_OF_ADDRESS + pad)));
+
+ DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
+
+ /* Place this multicast address in the RAR if there is room, *
+ * else put it in the MTA
+ */
+ if(rar_used_count < E1000_RAR_ENTRIES) {
+ e1000_rar_set(hw,
+ mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
+ rar_used_count);
+ rar_used_count++;
+ } else {
+ e1000_mta_set(hw, hash_value);
+ }
+ }
+ DEBUGOUT("MC Update Complete\n");
+}
+
+/******************************************************************************
+ * Hashes an address to determine its location in the multicast table
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr - the multicast address to hash
+ *****************************************************************************/
+uint32_t
+e1000_hash_mc_addr(struct e1000_hw *hw,
+ uint8_t *mc_addr)
+{
+ uint32_t hash_value = 0;
+
+ /* The portion of the address that is used for the hash table is
+ * determined by the mc_filter_type setting.
+ */
+ switch (hw->mc_filter_type) {
+ /* [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ */
+ case 0:
+ /* [47:36] i.e. 0x563 for above example address */
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+ break;
+ case 1:
+ /* [46:35] i.e. 0xAC6 for above example address */
+ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+ break;
+ case 2:
+ /* [45:34] i.e. 0x5D8 for above example address */
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+ break;
+ case 3:
+ /* [43:32] i.e. 0x634 for above example address */
+ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+ break;
+ }
+
+ hash_value &= 0xFFF;
+ return hash_value;
+}
+
+/******************************************************************************
+ * Sets the bit in the multicast table corresponding to the hash value.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * hash_value - Multicast address hash value
+ *****************************************************************************/
+void
+e1000_mta_set(struct e1000_hw *hw,
+ uint32_t hash_value)
+{
+ uint32_t hash_bit, hash_reg;
+ uint32_t mta;
+ uint32_t temp;
+
+ /* The MTA is a register array of 128 32-bit registers.
+ * It is treated like an array of 4096 bits. We want to set
+ * bit BitArray[hash_value]. So we figure out what register
+ * the bit is in, read it, OR in the new bit, then write
+ * back the new value. The register is determined by the
+ * upper 7 bits of the hash value and the bit within that
+ * register are determined by the lower 5 bits of the value.
+ */
+ hash_reg = (hash_value >> 5) & 0x7F;
+ hash_bit = hash_value & 0x1F;
+
+ mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+ mta |= (1 << hash_bit);
+
+ /* If we are on an 82544 and we are trying to write an odd offset
+ * in the MTA, save off the previous entry before writing and
+ * restore the old value after writing.
+ */
+ if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+ }
+}
+
+/******************************************************************************
+ * Puts an ethernet address into a receive address register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * addr - Address to put into receive address register
+ * index - Receive address register to write
+ *****************************************************************************/
+void
+e1000_rar_set(struct e1000_hw *hw,
+ uint8_t *addr,
+ uint32_t index)
+{
+ uint32_t rar_low, rar_high;
+
+ /* HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((uint32_t) addr[0] |
+ ((uint32_t) addr[1] << 8) |
+ ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
+
+ rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
+
+ E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+}
+
+/******************************************************************************
+ * Writes a value to the specified offset in the VLAN filter table.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - Offset in VLAN filer table to write
+ * value - Value to write into VLAN filter table
+ *****************************************************************************/
+void
+e1000_write_vfta(struct e1000_hw *hw,
+ uint32_t offset,
+ uint32_t value)
+{
+ uint32_t temp;
+
+ if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+ temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+ }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+ uint32_t offset;
+
+ for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+static int32_t
+e1000_id_led_init(struct e1000_hw * hw)
+{
+ uint32_t ledctl;
+ const uint32_t ledctl_mask = 0x000000FF;
+ const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ uint16_t eeprom_data, i, temp;
+ const uint16_t led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init");
+
+ if(hw->mac_type < e1000_82540) {
+ /* Nothing to do */
+ return E1000_SUCCESS;
+ }
+
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ hw->ledctl_default = ledctl;
+ hw->ledctl_mode1 = hw->ledctl_default;
+ hw->ledctl_mode2 = hw->ledctl_default;
+
+ if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
+ if((eeprom_data== ID_LED_RESERVED_0000) ||
+ (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
+ for(i = 0; i < 4; i++) {
+ temp = (eeprom_data >> (i << 2)) & led_mask;
+ switch(temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch(temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ hw->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_setup_led(struct e1000_hw *hw)
+{
+ uint32_t ledctl;
+ int32_t ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_led");
+
+ switch(hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ /* No setup necessary */
+ break;
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ /* Turn off PHY Smart Power Down (if enabled) */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ &hw->phy_spd_default);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ (uint16_t)(hw->phy_spd_default &
+ ~IGP01E1000_GMII_SPD));
+ if(ret_val)
+ return ret_val;
+ /* Fall Through */
+ default:
+ if(hw->media_type == e1000_media_type_fiber) {
+ ledctl = E1000_READ_REG(hw, LEDCTL);
+ /* Save current LEDCTL settings */
+ hw->ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, LEDCTL, ledctl);
+ } else if(hw->media_type == e1000_media_type_copper)
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Restores the saved state of the SW controlable LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_cleanup_led(struct e1000_hw *hw)
+{
+ int32_t ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_cleanup_led");
+
+ switch(hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ case e1000_82544:
+ /* No cleanup necessary */
+ break;
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ /* Turn on PHY Smart Power Down (if previously enabled) */
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+ hw->phy_spd_default);
+ if(ret_val)
+ return ret_val;
+ /* Fall Through */
+ default:
+ /* Restore LEDCTL settings */
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
+ break;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Turns on the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_led_on(struct e1000_hw *hw)
+{
+ uint32_t ctrl = E1000_READ_REG(hw, CTRL);
+
+ DEBUGFUNC("e1000_led_on");
+
+ switch(hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ /* Set SW Defineable Pin 0 to turn on the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ break;
+ case e1000_82544:
+ if(hw->media_type == e1000_media_type_fiber) {
+ /* Set SW Defineable Pin 0 to turn on the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Clear SW Defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ break;
+ default:
+ if(hw->media_type == e1000_media_type_fiber) {
+ /* Clear SW Defineable Pin 0 to turn on the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else if(hw->media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
+ return E1000_SUCCESS;
+ }
+ break;
+ }
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Turns off the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_led_off(struct e1000_hw *hw)
+{
+ uint32_t ctrl = E1000_READ_REG(hw, CTRL);
+
+ DEBUGFUNC("e1000_led_off");
+
+ switch(hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ /* Clear SW Defineable Pin 0 to turn off the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ break;
+ case e1000_82544:
+ if(hw->media_type == e1000_media_type_fiber) {
+ /* Clear SW Defineable Pin 0 to turn off the LED */
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else {
+ /* Set SW Defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ }
+ break;
+ default:
+ if(hw->media_type == e1000_media_type_fiber) {
+ /* Set SW Defineable Pin 0 to turn off the LED */
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ } else if(hw->media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+ return E1000_SUCCESS;
+ }
+ break;
+ }
+
+ E1000_WRITE_REG(hw, CTRL, ctrl);
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Clears all hardware statistics counters.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+ volatile uint32_t temp;
+
+ temp = E1000_READ_REG(hw, CRCERRS);
+ temp = E1000_READ_REG(hw, SYMERRS);
+ temp = E1000_READ_REG(hw, MPC);
+ temp = E1000_READ_REG(hw, SCC);
+ temp = E1000_READ_REG(hw, ECOL);
+ temp = E1000_READ_REG(hw, MCC);
+ temp = E1000_READ_REG(hw, LATECOL);
+ temp = E1000_READ_REG(hw, COLC);
+ temp = E1000_READ_REG(hw, DC);
+ temp = E1000_READ_REG(hw, SEC);
+ temp = E1000_READ_REG(hw, RLEC);
+ temp = E1000_READ_REG(hw, XONRXC);
+ temp = E1000_READ_REG(hw, XONTXC);
+ temp = E1000_READ_REG(hw, XOFFRXC);
+ temp = E1000_READ_REG(hw, XOFFTXC);
+ temp = E1000_READ_REG(hw, FCRUC);
+ temp = E1000_READ_REG(hw, PRC64);
+ temp = E1000_READ_REG(hw, PRC127);
+ temp = E1000_READ_REG(hw, PRC255);
+ temp = E1000_READ_REG(hw, PRC511);
+ temp = E1000_READ_REG(hw, PRC1023);
+ temp = E1000_READ_REG(hw, PRC1522);
+ temp = E1000_READ_REG(hw, GPRC);
+ temp = E1000_READ_REG(hw, BPRC);
+ temp = E1000_READ_REG(hw, MPRC);
+ temp = E1000_READ_REG(hw, GPTC);
+ temp = E1000_READ_REG(hw, GORCL);
+ temp = E1000_READ_REG(hw, GORCH);
+ temp = E1000_READ_REG(hw, GOTCL);
+ temp = E1000_READ_REG(hw, GOTCH);
+ temp = E1000_READ_REG(hw, RNBC);
+ temp = E1000_READ_REG(hw, RUC);
+ temp = E1000_READ_REG(hw, RFC);
+ temp = E1000_READ_REG(hw, ROC);
+ temp = E1000_READ_REG(hw, RJC);
+ temp = E1000_READ_REG(hw, TORL);
+ temp = E1000_READ_REG(hw, TORH);
+ temp = E1000_READ_REG(hw, TOTL);
+ temp = E1000_READ_REG(hw, TOTH);
+ temp = E1000_READ_REG(hw, TPR);
+ temp = E1000_READ_REG(hw, TPT);
+ temp = E1000_READ_REG(hw, PTC64);
+ temp = E1000_READ_REG(hw, PTC127);
+ temp = E1000_READ_REG(hw, PTC255);
+ temp = E1000_READ_REG(hw, PTC511);
+ temp = E1000_READ_REG(hw, PTC1023);
+ temp = E1000_READ_REG(hw, PTC1522);
+ temp = E1000_READ_REG(hw, MPTC);
+ temp = E1000_READ_REG(hw, BPTC);
+
+ if(hw->mac_type < e1000_82543) return;
+
+ temp = E1000_READ_REG(hw, ALGNERRC);
+ temp = E1000_READ_REG(hw, RXERRC);
+ temp = E1000_READ_REG(hw, TNCRS);
+ temp = E1000_READ_REG(hw, CEXTERR);
+ temp = E1000_READ_REG(hw, TSCTC);
+ temp = E1000_READ_REG(hw, TSCTFC);
+
+ if(hw->mac_type <= e1000_82544) return;
+
+ temp = E1000_READ_REG(hw, MGTPRC);
+ temp = E1000_READ_REG(hw, MGTPDC);
+ temp = E1000_READ_REG(hw, MGTPTC);
+}
+
+/******************************************************************************
+ * Resets Adaptive IFS to its default state.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to TRUE. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ *****************************************************************************/
+void
+e1000_reset_adaptive(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_reset_adaptive");
+
+ if(hw->adaptive_ifs) {
+ if(!hw->ifs_params_forced) {
+ hw->current_ifs_val = 0;
+ hw->ifs_min_val = IFS_MIN;
+ hw->ifs_max_val = IFS_MAX;
+ hw->ifs_step_size = IFS_STEP;
+ hw->ifs_ratio = IFS_RATIO;
+ }
+ hw->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, AIT, 0);
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
+}
+
+/******************************************************************************
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * tx_packets - Number of transmits since last callback
+ * total_collisions - Number of collisions since last callback
+ *****************************************************************************/
+void
+e1000_update_adaptive(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_update_adaptive");
+
+ if(hw->adaptive_ifs) {
+ if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
+ if(hw->tx_packet_delta > MIN_NUM_XMITS) {
+ hw->in_ifs_mode = TRUE;
+ if(hw->current_ifs_val < hw->ifs_max_val) {
+ if(hw->current_ifs_val == 0)
+ hw->current_ifs_val = hw->ifs_min_val;
+ else
+ hw->current_ifs_val += hw->ifs_step_size;
+ E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
+ }
+ }
+ } else {
+ if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ hw->current_ifs_val = 0;
+ hw->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, AIT, 0);
+ }
+ }
+ } else {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ }
+}
+
+/******************************************************************************
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ *
+ * hw - Struct containing variables accessed by shared code
+ * frame_len - The length of the frame in question
+ * mac_addr - The Ethernet destination address of the frame in question
+ *****************************************************************************/
+void
+e1000_tbi_adjust_stats(struct e1000_hw *hw,
+ struct e1000_hw_stats *stats,
+ uint32_t frame_len,
+ uint8_t *mac_addr)
+{
+ uint64_t carry_bit;
+
+ /* First adjust the frame length. */
+ frame_len--;
+ /* We need to adjust the statistics counters, since the hardware
+ * counters overcount this packet as a CRC error and undercount
+ * the packet as a good packet
+ */
+ /* This packet should not be counted as a CRC error. */
+ stats->crcerrs--;
+ /* This packet does count as a Good Packet Received. */
+ stats->gprc++;
+
+ /* Adjust the Good Octets received counters */
+ carry_bit = 0x80000000 & stats->gorcl;
+ stats->gorcl += frame_len;
+ /* If the high bit of Gorcl (the low 32 bits of the Good Octets
+ * Received Count) was one before the addition,
+ * AND it is zero after, then we lost the carry out,
+ * need to add one to Gorch (Good Octets Received Count High).
+ * This could be simplified if all environments supported
+ * 64-bit integers.
+ */
+ if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ stats->gorch++;
+ /* Is this a broadcast or multicast? Check broadcast first,
+ * since the test for a multicast frame will test positive on
+ * a broadcast frame.
+ */
+ if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ /* Broadcast packet */
+ stats->bprc++;
+ else if(*mac_addr & 0x01)
+ /* Multicast packet */
+ stats->mprc++;
+
+ if(frame_len == hw->max_frame_size) {
+ /* In this case, the hardware has overcounted the number of
+ * oversize frames.
+ */
+ if(stats->roc > 0)
+ stats->roc--;
+ }
+
+ /* Adjust the bin counters when the extra byte put the frame in the
+ * wrong bin. Remember that the frame_len was adjusted above.
+ */
+ if(frame_len == 64) {
+ stats->prc64++;
+ stats->prc127--;
+ } else if(frame_len == 127) {
+ stats->prc127++;
+ stats->prc255--;
+ } else if(frame_len == 255) {
+ stats->prc255++;
+ stats->prc511--;
+ } else if(frame_len == 511) {
+ stats->prc511++;
+ stats->prc1023--;
+ } else if(frame_len == 1023) {
+ stats->prc1023++;
+ stats->prc1522--;
+ } else if(frame_len == 1522) {
+ stats->prc1522++;
+ }
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type, speed, and width of the hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_get_bus_info(struct e1000_hw *hw)
+{
+ uint32_t status;
+
+ switch (hw->mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ hw->bus_type = e1000_bus_type_unknown;
+ hw->bus_speed = e1000_bus_speed_unknown;
+ hw->bus_width = e1000_bus_width_unknown;
+ break;
+ default:
+ status = E1000_READ_REG(hw, STATUS);
+ hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+ e1000_bus_type_pcix : e1000_bus_type_pci;
+
+ if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+ hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+ e1000_bus_speed_66 : e1000_bus_speed_120;
+ } else if(hw->bus_type == e1000_bus_type_pci) {
+ hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+ e1000_bus_speed_66 : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ hw->bus_speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ hw->bus_speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ hw->bus_speed = e1000_bus_speed_133;
+ break;
+ default:
+ hw->bus_speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+ hw->bus_width = (status & E1000_STATUS_BUS64) ?
+ e1000_bus_width_64 : e1000_bus_width_32;
+ break;
+ }
+}
+/******************************************************************************
+ * Reads a value from one of the devices registers using port I/O (as opposed
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to read from
+ *****************************************************************************/
+uint32_t
+e1000_read_reg_io(struct e1000_hw *hw,
+ uint32_t offset)
+{
+ unsigned long io_addr = hw->io_base;
+ unsigned long io_data = hw->io_base + 4;
+
+ e1000_io_write(hw, io_addr, offset);
+ return e1000_io_read(hw, io_data);
+}
+
+/******************************************************************************
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to write to
+ * value - value to write
+ *****************************************************************************/
+void
+e1000_write_reg_io(struct e1000_hw *hw,
+ uint32_t offset,
+ uint32_t value)
+{
+ unsigned long io_addr = hw->io_base;
+ unsigned long io_data = hw->io_base + 4;
+
+ e1000_io_write(hw, io_addr, offset);
+ e1000_io_write(hw, io_data, value);
+}
+
+
+/******************************************************************************
+ * Estimates the cable length.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * min_length - The estimated minimum length
+ * max_length - The estimated maximum length
+ *
+ * returns: - E1000_ERR_XXX
+ * E1000_SUCCESS
+ *
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ *****************************************************************************/
+int32_t
+e1000_get_cable_length(struct e1000_hw *hw,
+ uint16_t *min_length,
+ uint16_t *max_length)
+{
+ int32_t ret_val;
+ uint16_t agc_value = 0;
+ uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+ uint16_t i, phy_data;
+ uint16_t cable_length;
+
+ DEBUGFUNC("e1000_get_cable_length");
+
+ *min_length = *max_length = 0;
+
+ /* Use old method for Phy older than IGP */
+ if(hw->phy_type == e1000_phy_m88) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+ cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+ /* Convert the enum value to ranged values */
+ switch (cable_length) {
+ case e1000_cable_length_50:
+ *min_length = 0;
+ *max_length = e1000_igp_cable_length_50;
+ break;
+ case e1000_cable_length_50_80:
+ *min_length = e1000_igp_cable_length_50;
+ *max_length = e1000_igp_cable_length_80;
+ break;
+ case e1000_cable_length_80_110:
+ *min_length = e1000_igp_cable_length_80;
+ *max_length = e1000_igp_cable_length_110;
+ break;
+ case e1000_cable_length_110_140:
+ *min_length = e1000_igp_cable_length_110;
+ *max_length = e1000_igp_cable_length_140;
+ break;
+ case e1000_cable_length_140:
+ *min_length = e1000_igp_cable_length_140;
+ *max_length = e1000_igp_cable_length_170;
+ break;
+ default:
+ return -E1000_ERR_PHY;
+ break;
+ }
+ } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
+ uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_A,
+ IGP01E1000_PHY_AGC_B,
+ IGP01E1000_PHY_AGC_C,
+ IGP01E1000_PHY_AGC_D};
+ /* Read the AGC registers for all channels */
+ for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+ ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+ /* Array bound check. */
+ if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
+ (cur_agc == 0))
+ return -E1000_ERR_PHY;
+
+ agc_value += cur_agc;
+
+ /* Update minimal AGC value. */
+ if(min_agc > cur_agc)
+ min_agc = cur_agc;
+ }
+
+ /* Remove the minimal AGC result for length < 50m */
+ if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+ agc_value -= min_agc;
+
+ /* Get the average length of the remaining 3 channels */
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+ } else {
+ /* Get the average length of all the 4 channels. */
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+ }
+
+ /* Set the range of the calculated length. */
+ *min_length = ((e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE) > 0) ?
+ (e1000_igp_cable_length_table[agc_value] -
+ IGP01E1000_AGC_RANGE) : 0;
+ *max_length = e1000_igp_cable_length_table[agc_value] +
+ IGP01E1000_AGC_RANGE;
+ }
+
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Check the cable polarity
+ *
+ * hw - Struct containing variables accessed by shared code
+ * polarity - output parameter : 0 - Polarity is not reversed
+ * 1 - Polarity is reversed.
+ *
+ * returns: - E1000_ERR_XXX
+ * E1000_SUCCESS
+ *
+ * For phy's older then IGP, this function simply reads the polarity bit in the
+ * Phy Status register. For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0. If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ *****************************************************************************/
+int32_t
+e1000_check_polarity(struct e1000_hw *hw,
+ uint16_t *polarity)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_check_polarity");
+
+ if(hw->phy_type == e1000_phy_m88) {
+ /* return the Polarity bit in the Status register. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+ *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
+ M88E1000_PSSR_REV_POLARITY_SHIFT;
+ } else if(hw->phy_type == e1000_phy_igp) {
+ /* Read the Status register to check the speed */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+ * find the polarity status */
+ if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+ /* Read the GIG initialization PCS register (0x00B4) */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* Check the polarity bits */
+ *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
+ } else {
+ /* For 10 Mbps, read the polarity bit in the status register. (for
+ * 100 Mbps this bit is always 0) */
+ *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Check if Downshift occured
+ *
+ * hw - Struct containing variables accessed by shared code
+ * downshift - output parameter : 0 - No Downshift ocured.
+ * 1 - Downshift ocured.
+ *
+ * returns: - E1000_ERR_XXX
+ * E1000_SUCCESS
+ *
+ * For phy's older then IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register. In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ *****************************************************************************/
+int32_t
+e1000_check_downshift(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_check_downshift");
+
+ if(hw->phy_type == e1000_phy_igp) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+ } else if(hw->phy_type == e1000_phy_m88) {
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+ M88E1000_PSSR_DOWNSHIFT_SHIFT;
+ }
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ * E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+int32_t
+e1000_config_dsp_after_link_change(struct e1000_hw *hw,
+ boolean_t link_up)
+{
+ int32_t ret_val;
+ uint16_t phy_data, phy_saved_data, speed, duplex, i;
+ uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+ {IGP01E1000_PHY_AGC_PARAM_A,
+ IGP01E1000_PHY_AGC_PARAM_B,
+ IGP01E1000_PHY_AGC_PARAM_C,
+ IGP01E1000_PHY_AGC_PARAM_D};
+ uint16_t min_length, max_length;
+
+ DEBUGFUNC("e1000_config_dsp_after_link_change");
+
+ if(hw->phy_type != e1000_phy_igp)
+ return E1000_SUCCESS;
+
+ if(link_up) {
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if(ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ return ret_val;
+ }
+
+ if(speed == SPEED_1000) {
+
+ e1000_get_cable_length(hw, &min_length, &max_length);
+
+ if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
+ min_length >= e1000_igp_cable_length_50) {
+
+ for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+ ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+ hw->dsp_config_state = e1000_dsp_config_activated;
+ }
+
+ if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
+ (min_length < e1000_igp_cable_length_50)) {
+
+ uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+ uint32_t idle_errs = 0;
+
+ /* clear previous idle error counts */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ for(i = 0; i < ffe_idle_err_timeout; i++) {
+ udelay(1000);
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
+ if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ hw->ffe_config_state = e1000_ffe_config_active;
+
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
+ if(ret_val)
+ return ret_val;
+ break;
+ }
+
+ if(idle_errs)
+ ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+ }
+ }
+ }
+ } else {
+ if(hw->dsp_config_state == e1000_dsp_config_activated) {
+ /* Save off the current value of register 0x2F5B to be restored at
+ * the end of the routines. */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ if(ret_val)
+ return ret_val;
+
+ /* Disable the PHY transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ if(ret_val)
+ return ret_val;
+
+ msec_delay(20);
+
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIGA);
+ if(ret_val)
+ return ret_val;
+ for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+ phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+ ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if(ret_val)
+ return ret_val;
+
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if(ret_val)
+ return ret_val;
+
+ hw->dsp_config_state = e1000_dsp_config_enabled;
+ }
+
+ if(hw->ffe_config_state == e1000_ffe_config_active) {
+ /* Save off the current value of register 0x2F5B to be restored at
+ * the end of the routines. */
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+ if(ret_val)
+ return ret_val;
+
+ /* Disable the PHY transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+ if(ret_val)
+ return ret_val;
+
+ msec_delay(20);
+
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_FORCE_GIGA);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
+ IGP01E1000_IEEE_RESTART_AUTONEG);
+ if(ret_val)
+ return ret_val;
+
+ msec_delay(20);
+
+ /* Now enable the transmitter */
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+ if(ret_val)
+ return ret_val;
+
+ hw->ffe_config_state = e1000_ffe_config_enabled;
+ }
+ }
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ * Set PHY to class A mode
+ * Assumes the following operations will follow to enable the new class mode.
+ * 1. Do a PHY soft reset
+ * 2. Restart auto-negotiation or force link.
+ *
+ * hw - Struct containing variables accessed by shared code
+ ****************************************************************************/
+static int32_t
+e1000_set_phy_mode(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t eeprom_data;
+
+ DEBUGFUNC("e1000_set_phy_mode");
+
+ if((hw->mac_type == e1000_82545_rev_3) &&
+ (hw->media_type == e1000_media_type_copper)) {
+ ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
+ if(ret_val) {
+ return ret_val;
+ }
+
+ if((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
+ if(ret_val)
+ return ret_val;
+
+ hw->phy_reset_disable = FALSE;
+ }
+ }
+
+ return E1000_SUCCESS;
+}
+
+/*****************************************************************************
+ *
+ * This function sets the lplu state according to the active flag. When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisment
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * hw: Struct containing variables accessed by shared code
+ * active - true to enable lplu false to disable lplu.
+ *
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ * E1000_SUCCESS at any other case.
+ *
+ ****************************************************************************/
+
+int32_t
+e1000_set_d3_lplu_state(struct e1000_hw *hw,
+ boolean_t active)
+{
+ int32_t ret_val;
+ uint16_t phy_data;
+ DEBUGFUNC("e1000_set_d3_lplu_state");
+
+ if(!((hw->mac_type == e1000_82541_rev_2) ||
+ (hw->mac_type == e1000_82547_rev_2)))
+ return E1000_SUCCESS;
+
+ /* During driver activity LPLU should not be used or it will attain link
+ * from the lowest speeds starting from 10Mbps. The capability is used for
+ * Dx transitions and states */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ if(!active) {
+ phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
+ * Dx states where the power conservation is most important. During
+ * driver activity we should enable SmartSpeed, so performance is
+ * maintained. */
+ if (hw->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ } else if (hw->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if(ret_val)
+ return ret_val;
+ }
+
+ } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+
+ phy_data |= IGP01E1000_GMII_FLEX_SPD;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* When LPLU is enabled we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ }
+ return E1000_SUCCESS;
+}
+
+/******************************************************************************
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static int32_t
+e1000_set_vco_speed(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t default_page = 0;
+ uint16_t phy_data;
+
+ DEBUGFUNC("e1000_set_vco_speed");
+
+ switch(hw->mac_type) {
+ case e1000_82545_rev_3:
+ case e1000_82546_rev_3:
+ break;
+ default:
+ return E1000_SUCCESS;
+ }
+
+ /* Set PHY register 30, page 5, bit 8 to 0 */
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ /* Set PHY register 30, page 4, bit 11 to 1 */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+ if(ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+ if(ret_val)
+ return ret_val;
+
+ return E1000_SUCCESS;
+}
+
+static int32_t
+e1000_polarity_reversal_workaround(struct e1000_hw *hw)
+{
+ int32_t ret_val;
+ uint16_t mii_status_reg;
+ uint16_t i;
+
+ /* Polarity reversal workaround for forced 10F/10H links. */
+
+ /* Disable the transmitter on the PHY */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if(ret_val)
+ return ret_val;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if(ret_val)
+ return ret_val;
+
+ /* This loop will early-out if the NO link condition has been met. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Link Status bit
+ * to be clear.
+ */
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
+ msec_delay_irq(100);
+ }
+
+ /* Recommended delay time after link has been lost */
+ msec_delay_irq(1000);
+
+ /* Now we will re-enable th transmitter on the PHY */
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+ if(ret_val)
+ return ret_val;
+ msec_delay_irq(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+ if(ret_val)
+ return ret_val;
+ msec_delay_irq(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+ if(ret_val)
+ return ret_val;
+ msec_delay_irq(50);
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+ if(ret_val)
+ return ret_val;
+
+ /* This loop will early-out if the link condition has been met. */
+ for(i = PHY_FORCE_TIME; i > 0; i--) {
+ /* Read the MII Status Register and wait for Link Status bit
+ * to be set.
+ */
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if(ret_val)
+ return ret_val;
+
+ if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ msec_delay_irq(100);
+ }
+ return E1000_SUCCESS;
+}
+
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h
new file mode 100644
index 00000000000..f397e637a3c
--- /dev/null
+++ b/drivers/net/e1000/e1000_hw.h
@@ -0,0 +1,2144 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.h
+ * Structures, enums, and macros for the MAC
+ */
+
+#ifndef _E1000_HW_H_
+#define _E1000_HW_H_
+
+#include "e1000_osdep.h"
+
+
+/* Forward declarations of structures used by the shared code */
+struct e1000_hw;
+struct e1000_hw_stats;
+
+/* Enumerated types specific to the e1000 hardware */
+/* Media Access Controlers */
+typedef enum {
+ e1000_undefined = 0,
+ e1000_82542_rev2_0,
+ e1000_82542_rev2_1,
+ e1000_82543,
+ e1000_82544,
+ e1000_82540,
+ e1000_82545,
+ e1000_82545_rev_3,
+ e1000_82546,
+ e1000_82546_rev_3,
+ e1000_82541,
+ e1000_82541_rev_2,
+ e1000_82547,
+ e1000_82547_rev_2,
+ e1000_num_macs
+} e1000_mac_type;
+
+typedef enum {
+ e1000_eeprom_uninitialized = 0,
+ e1000_eeprom_spi,
+ e1000_eeprom_microwire,
+ e1000_num_eeprom_types
+} e1000_eeprom_type;
+
+/* Media Types */
+typedef enum {
+ e1000_media_type_copper = 0,
+ e1000_media_type_fiber = 1,
+ e1000_media_type_internal_serdes = 2,
+ e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+ e1000_10_half = 0,
+ e1000_10_full = 1,
+ e1000_100_half = 2,
+ e1000_100_full = 3
+} e1000_speed_duplex_type;
+
+/* Flow Control Settings */
+typedef enum {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause = 1,
+ e1000_fc_tx_pause = 2,
+ e1000_fc_full = 3,
+ e1000_fc_default = 0xFF
+} e1000_fc_type;
+
+/* PCI bus types */
+typedef enum {
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_reserved
+} e1000_bus_type;
+
+/* PCI bus speeds */
+typedef enum {
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+/* PCI bus widths */
+typedef enum {
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
+} e1000_bus_width;
+
+/* PHY status info structure and supporting enums */
+typedef enum {
+ e1000_cable_length_50 = 0,
+ e1000_cable_length_50_80,
+ e1000_cable_length_80_110,
+ e1000_cable_length_110_140,
+ e1000_cable_length_140,
+ e1000_cable_length_undefined = 0xFF
+} e1000_cable_length;
+
+typedef enum {
+ e1000_igp_cable_length_10 = 10,
+ e1000_igp_cable_length_20 = 20,
+ e1000_igp_cable_length_30 = 30,
+ e1000_igp_cable_length_40 = 40,
+ e1000_igp_cable_length_50 = 50,
+ e1000_igp_cable_length_60 = 60,
+ e1000_igp_cable_length_70 = 70,
+ e1000_igp_cable_length_80 = 80,
+ e1000_igp_cable_length_90 = 90,
+ e1000_igp_cable_length_100 = 100,
+ e1000_igp_cable_length_110 = 110,
+ e1000_igp_cable_length_120 = 120,
+ e1000_igp_cable_length_130 = 130,
+ e1000_igp_cable_length_140 = 140,
+ e1000_igp_cable_length_150 = 150,
+ e1000_igp_cable_length_160 = 160,
+ e1000_igp_cable_length_170 = 170,
+ e1000_igp_cable_length_180 = 180
+} e1000_igp_cable_length;
+
+typedef enum {
+ e1000_10bt_ext_dist_enable_normal = 0,
+ e1000_10bt_ext_dist_enable_lower,
+ e1000_10bt_ext_dist_enable_undefined = 0xFF
+} e1000_10bt_ext_dist_enable;
+
+typedef enum {
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+ e1000_downshift_normal = 0,
+ e1000_downshift_activated,
+ e1000_downshift_undefined = 0xFF
+} e1000_downshift;
+
+typedef enum {
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
+} e1000_smart_speed;
+
+typedef enum {
+ e1000_polarity_reversal_enabled = 0,
+ e1000_polarity_reversal_disabled,
+ e1000_polarity_reversal_undefined = 0xFF
+} e1000_polarity_reversal;
+
+typedef enum {
+ e1000_auto_x_mode_manual_mdi = 0,
+ e1000_auto_x_mode_manual_mdix,
+ e1000_auto_x_mode_auto1,
+ e1000_auto_x_mode_auto2,
+ e1000_auto_x_mode_undefined = 0xFF
+} e1000_auto_x_mode;
+
+typedef enum {
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+ e1000_phy_m88 = 0,
+ e1000_phy_igp,
+ e1000_phy_undefined = 0xFF
+} e1000_phy_type;
+
+typedef enum {
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+ e1000_ffe_config_enabled = 0,
+ e1000_ffe_config_active,
+ e1000_ffe_config_blocked
+} e1000_ffe_config;
+
+typedef enum {
+ e1000_dsp_config_disabled = 0,
+ e1000_dsp_config_enabled,
+ e1000_dsp_config_activated,
+ e1000_dsp_config_undefined = 0xFF
+} e1000_dsp_config;
+
+struct e1000_phy_info {
+ e1000_cable_length cable_length;
+ e1000_10bt_ext_dist_enable extended_10bt_distance;
+ e1000_rev_polarity cable_polarity;
+ e1000_downshift downshift;
+ e1000_polarity_reversal polarity_correction;
+ e1000_auto_x_mode mdix_mode;
+ e1000_1000t_rx_status local_rx;
+ e1000_1000t_rx_status remote_rx;
+};
+
+struct e1000_phy_stats {
+ uint32_t idle_errors;
+ uint32_t receive_errors;
+};
+
+struct e1000_eeprom_info {
+ e1000_eeprom_type type;
+ uint16_t word_size;
+ uint16_t opcode_bits;
+ uint16_t address_bits;
+ uint16_t delay_usec;
+ uint16_t page_size;
+};
+
+
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_EEPROM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_TYPE 5
+#define E1000_ERR_PHY_TYPE 6
+
+/* Function prototypes */
+/* Initialization */
+int32_t e1000_reset_hw(struct e1000_hw *hw);
+int32_t e1000_init_hw(struct e1000_hw *hw);
+int32_t e1000_set_mac_type(struct e1000_hw *hw);
+void e1000_set_media_type(struct e1000_hw *hw);
+
+/* Link Configuration */
+int32_t e1000_setup_link(struct e1000_hw *hw);
+int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
+int32_t e1000_check_for_link(struct e1000_hw *hw);
+int32_t e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, uint16_t * duplex);
+int32_t e1000_wait_autoneg(struct e1000_hw *hw);
+int32_t e1000_force_mac_fc(struct e1000_hw *hw);
+
+/* PHY */
+int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
+int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
+void e1000_phy_hw_reset(struct e1000_hw *hw);
+int32_t e1000_phy_reset(struct e1000_hw *hw);
+int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
+int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
+int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
+int32_t e1000_check_downshift(struct e1000_hw *hw);
+int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
+
+/* EEPROM Functions */
+void e1000_init_eeprom_params(struct e1000_hw *hw);
+int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
+int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw);
+int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw);
+int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data);
+int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
+int32_t e1000_read_mac_addr(struct e1000_hw * hw);
+
+/* Filters (multicast, vlan, receive) */
+void e1000_init_rx_addrs(struct e1000_hw *hw);
+void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
+uint32_t e1000_hash_mc_addr(struct e1000_hw *hw, uint8_t * mc_addr);
+void e1000_mta_set(struct e1000_hw *hw, uint32_t hash_value);
+void e1000_rar_set(struct e1000_hw *hw, uint8_t * mc_addr, uint32_t rar_index);
+void e1000_write_vfta(struct e1000_hw *hw, uint32_t offset, uint32_t value);
+void e1000_clear_vfta(struct e1000_hw *hw);
+
+/* LED functions */
+int32_t e1000_setup_led(struct e1000_hw *hw);
+int32_t e1000_cleanup_led(struct e1000_hw *hw);
+int32_t e1000_led_on(struct e1000_hw *hw);
+int32_t e1000_led_off(struct e1000_hw *hw);
+
+/* Adaptive IFS Functions */
+
+/* Everything else */
+uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+void e1000_clear_hw_cntrs(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr);
+void e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t * value);
+/* Port I/O is only supported on 82544 and newer */
+uint32_t e1000_io_read(struct e1000_hw *hw, unsigned long port);
+uint32_t e1000_read_reg_io(struct e1000_hw *hw, uint32_t offset);
+void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value);
+void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
+int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
+int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
+
+#define E1000_READ_REG_IO(a, reg) \
+ e1000_read_reg_io((a), E1000_##reg)
+#define E1000_WRITE_REG_IO(a, reg, val) \
+ e1000_write_reg_io((a), E1000_##reg, val)
+
+/* PCI Device IDs */
+#define E1000_DEV_ID_82542 0x1000
+#define E1000_DEV_ID_82543GC_FIBER 0x1001
+#define E1000_DEV_ID_82543GC_COPPER 0x1004
+#define E1000_DEV_ID_82544EI_COPPER 0x1008
+#define E1000_DEV_ID_82544EI_FIBER 0x1009
+#define E1000_DEV_ID_82544GC_COPPER 0x100C
+#define E1000_DEV_ID_82544GC_LOM 0x100D
+#define E1000_DEV_ID_82540EM 0x100E
+#define E1000_DEV_ID_82540EM_LOM 0x1015
+#define E1000_DEV_ID_82540EP_LOM 0x1016
+#define E1000_DEV_ID_82540EP 0x1017
+#define E1000_DEV_ID_82540EP_LP 0x101E
+#define E1000_DEV_ID_82545EM_COPPER 0x100F
+#define E1000_DEV_ID_82545EM_FIBER 0x1011
+#define E1000_DEV_ID_82545GM_COPPER 0x1026
+#define E1000_DEV_ID_82545GM_FIBER 0x1027
+#define E1000_DEV_ID_82545GM_SERDES 0x1028
+#define E1000_DEV_ID_82546EB_COPPER 0x1010
+#define E1000_DEV_ID_82546EB_FIBER 0x1012
+#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
+#define E1000_DEV_ID_82541EI 0x1013
+#define E1000_DEV_ID_82541EI_MOBILE 0x1018
+#define E1000_DEV_ID_82541ER 0x1078
+#define E1000_DEV_ID_82547GI 0x1075
+#define E1000_DEV_ID_82541GI 0x1076
+#define E1000_DEV_ID_82541GI_MOBILE 0x1077
+#define E1000_DEV_ID_82541GI_LF 0x107C
+#define E1000_DEV_ID_82546GB_COPPER 0x1079
+#define E1000_DEV_ID_82546GB_FIBER 0x107A
+#define E1000_DEV_ID_82546GB_SERDES 0x107B
+#define E1000_DEV_ID_82546GB_PCIE 0x108A
+#define E1000_DEV_ID_82547EI 0x1019
+
+#define NODE_ADDRESS_SIZE 6
+#define ETH_LENGTH_OF_ADDRESS 6
+
+/* MAC decode size is 128K - This is the size of BAR0 */
+#define MAC_DECODE_SIZE (128 * 1024)
+
+#define E1000_82542_2_0_REV_ID 2
+#define E1000_82542_2_1_REV_ID 3
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+/* The sizes (in bytes) of a ethernet packet */
+#define ENET_HEADER_SIZE 14
+#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */
+#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
+#define ETHERNET_FCS_SIZE 4
+#define MAXIMUM_ETHERNET_PACKET_SIZE \
+ (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define MINIMUM_ETHERNET_PACKET_SIZE \
+ (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
+#define CRC_LENGTH ETHERNET_FCS_SIZE
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+
+/* 802.1q VLAN Packet Sizes */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
+#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
+
+/* Packet Header defines */
+#define IP_PROTOCOL_TCP 6
+#define IP_PROTOCOL_UDP 0x11
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ)
+
+/* This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor. We
+ * reserve one of these spots for our directed address, allowing us room for
+ * E1000_RAR_ENTRIES - 1 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+
+#define MIN_NUMBER_OF_DESCRIPTORS 8
+#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
+ uint16_t length; /* Length of data DMAed into data buffer */
+ uint16_t csum; /* Packet checksum */
+ uint8_t status; /* Descriptor status */
+ uint8_t errors; /* Descriptor Errors */
+ uint16_t special;
+};
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ uint32_t data;
+ struct {
+ uint16_t length; /* Data buffer length */
+ uint8_t cso; /* Checksum offset */
+ uint8_t cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t css; /* Checksum start */
+ uint16_t special;
+ } fields;
+ } upper;
+};
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+ union {
+ uint32_t ip_config;
+ struct {
+ uint8_t ipcss; /* IP checksum start */
+ uint8_t ipcso; /* IP checksum offset */
+ uint16_t ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ uint32_t tcp_config;
+ struct {
+ uint8_t tucss; /* TCP checksum start */
+ uint8_t tucso; /* TCP checksum offset */
+ uint16_t tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ uint32_t cmd_and_length; /* */
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t hdr_len; /* Header length */
+ uint16_t mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+ uint64_t buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ uint32_t data;
+ struct {
+ uint16_t length; /* Data buffer length */
+ uint8_t typ_len_ext; /* */
+ uint8_t cmd; /* */
+ } flags;
+ } lower;
+ union {
+ uint32_t data;
+ struct {
+ uint8_t status; /* Descriptor status */
+ uint8_t popts; /* Packet Options */
+ uint16_t special; /* */
+ } fields;
+ } upper;
+};
+
+/* Filters */
+#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
+#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+
+/* Receive Address Register */
+struct e1000_rar {
+ volatile uint32_t low; /* receive address low */
+ volatile uint32_t high; /* receive address high */
+};
+
+/* Number of entries in the Multicast Table Array (MTA). */
+#define E1000_NUM_MTA_REGISTERS 128
+
+/* IPv4 Address Table Entry */
+struct e1000_ipv4_at_entry {
+ volatile uint32_t ipv4_addr; /* IP Address (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Four wakeup IP addresses are supported */
+#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
+#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
+#define E1000_IP6AT_SIZE 1
+
+/* IPv6 Address Table Entry */
+struct e1000_ipv6_at_entry {
+ volatile uint8_t ipv6_addr[16];
+};
+
+/* Flexible Filter Length Table Entry */
+struct e1000_fflt_entry {
+ volatile uint32_t length; /* Flexible Filter Length (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Flexible Filter Mask Table Entry */
+struct e1000_ffmt_entry {
+ volatile uint32_t mask; /* Flexible Filter Mask (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Flexible Filter Value Table Entry */
+struct e1000_ffvt_entry {
+ volatile uint32_t value; /* Flexible Filter Value (RW) */
+ volatile uint32_t reserved;
+};
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Register Set. (82543, 82544)
+ *
+ * Registers are defined to be 32 bits and should be accessed as 32 bit values.
+ * These registers are physically located on the NIC, but are mapped into the
+ * host memory address space.
+ *
+ * RW - register is both readable and writable
+ * RO - register is read only
+ * WO - register is write only
+ * R/clr - register is read only and is cleared when read
+ * A - register array
+ */
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_RCTL 0x00100 /* RX Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
+#define E1000_TCTL 0x00400 /* TX Control - RW */
+#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
+#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
+#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
+#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
+#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
+#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
+#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */
+#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
+#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
+#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
+#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
+#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
+#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
+#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
+#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
+#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
+#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
+#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
+#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
+#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+
+/* Register Set (82542)
+ *
+ * Some of the 82542 registers are located at different offsets than they are
+ * in more current versions of the 8254x. Despite the difference in location,
+ * the registers function in the same manner.
+ */
+#define E1000_82542_CTRL E1000_CTRL
+#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
+#define E1000_82542_STATUS E1000_STATUS
+#define E1000_82542_EECD E1000_EECD
+#define E1000_82542_EERD E1000_EERD
+#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
+#define E1000_82542_FLA E1000_FLA
+#define E1000_82542_MDIC E1000_MDIC
+#define E1000_82542_FCAL E1000_FCAL
+#define E1000_82542_FCAH E1000_FCAH
+#define E1000_82542_FCT E1000_FCT
+#define E1000_82542_VET E1000_VET
+#define E1000_82542_RA 0x00040
+#define E1000_82542_ICR E1000_ICR
+#define E1000_82542_ITR E1000_ITR
+#define E1000_82542_ICS E1000_ICS
+#define E1000_82542_IMS E1000_IMS
+#define E1000_82542_IMC E1000_IMC
+#define E1000_82542_RCTL E1000_RCTL
+#define E1000_82542_RDTR 0x00108
+#define E1000_82542_RDBAL 0x00110
+#define E1000_82542_RDBAH 0x00114
+#define E1000_82542_RDLEN 0x00118
+#define E1000_82542_RDH 0x00120
+#define E1000_82542_RDT 0x00128
+#define E1000_82542_FCRTH 0x00160
+#define E1000_82542_FCRTL 0x00168
+#define E1000_82542_FCTTV E1000_FCTTV
+#define E1000_82542_TXCW E1000_TXCW
+#define E1000_82542_RXCW E1000_RXCW
+#define E1000_82542_MTA 0x00200
+#define E1000_82542_TCTL E1000_TCTL
+#define E1000_82542_TIPG E1000_TIPG
+#define E1000_82542_TDBAL 0x00420
+#define E1000_82542_TDBAH 0x00424
+#define E1000_82542_TDLEN 0x00428
+#define E1000_82542_TDH 0x00430
+#define E1000_82542_TDT 0x00438
+#define E1000_82542_TIDV 0x00440
+#define E1000_82542_TBT E1000_TBT
+#define E1000_82542_AIT E1000_AIT
+#define E1000_82542_VFTA 0x00600
+#define E1000_82542_LEDCTL E1000_LEDCTL
+#define E1000_82542_PBA E1000_PBA
+#define E1000_82542_RXDCTL E1000_RXDCTL
+#define E1000_82542_RADV E1000_RADV
+#define E1000_82542_RSRPD E1000_RSRPD
+#define E1000_82542_TXDMAC E1000_TXDMAC
+#define E1000_82542_TDFHS E1000_TDFHS
+#define E1000_82542_TDFTS E1000_TDFTS
+#define E1000_82542_TDFPC E1000_TDFPC
+#define E1000_82542_TXDCTL E1000_TXDCTL
+#define E1000_82542_TADV E1000_TADV
+#define E1000_82542_TSPMT E1000_TSPMT
+#define E1000_82542_CRCERRS E1000_CRCERRS
+#define E1000_82542_ALGNERRC E1000_ALGNERRC
+#define E1000_82542_SYMERRS E1000_SYMERRS
+#define E1000_82542_RXERRC E1000_RXERRC
+#define E1000_82542_MPC E1000_MPC
+#define E1000_82542_SCC E1000_SCC
+#define E1000_82542_ECOL E1000_ECOL
+#define E1000_82542_MCC E1000_MCC
+#define E1000_82542_LATECOL E1000_LATECOL
+#define E1000_82542_COLC E1000_COLC
+#define E1000_82542_DC E1000_DC
+#define E1000_82542_TNCRS E1000_TNCRS
+#define E1000_82542_SEC E1000_SEC
+#define E1000_82542_CEXTERR E1000_CEXTERR
+#define E1000_82542_RLEC E1000_RLEC
+#define E1000_82542_XONRXC E1000_XONRXC
+#define E1000_82542_XONTXC E1000_XONTXC
+#define E1000_82542_XOFFRXC E1000_XOFFRXC
+#define E1000_82542_XOFFTXC E1000_XOFFTXC
+#define E1000_82542_FCRUC E1000_FCRUC
+#define E1000_82542_PRC64 E1000_PRC64
+#define E1000_82542_PRC127 E1000_PRC127
+#define E1000_82542_PRC255 E1000_PRC255
+#define E1000_82542_PRC511 E1000_PRC511
+#define E1000_82542_PRC1023 E1000_PRC1023
+#define E1000_82542_PRC1522 E1000_PRC1522
+#define E1000_82542_GPRC E1000_GPRC
+#define E1000_82542_BPRC E1000_BPRC
+#define E1000_82542_MPRC E1000_MPRC
+#define E1000_82542_GPTC E1000_GPTC
+#define E1000_82542_GORCL E1000_GORCL
+#define E1000_82542_GORCH E1000_GORCH
+#define E1000_82542_GOTCL E1000_GOTCL
+#define E1000_82542_GOTCH E1000_GOTCH
+#define E1000_82542_RNBC E1000_RNBC
+#define E1000_82542_RUC E1000_RUC
+#define E1000_82542_RFC E1000_RFC
+#define E1000_82542_ROC E1000_ROC
+#define E1000_82542_RJC E1000_RJC
+#define E1000_82542_MGTPRC E1000_MGTPRC
+#define E1000_82542_MGTPDC E1000_MGTPDC
+#define E1000_82542_MGTPTC E1000_MGTPTC
+#define E1000_82542_TORL E1000_TORL
+#define E1000_82542_TORH E1000_TORH
+#define E1000_82542_TOTL E1000_TOTL
+#define E1000_82542_TOTH E1000_TOTH
+#define E1000_82542_TPR E1000_TPR
+#define E1000_82542_TPT E1000_TPT
+#define E1000_82542_PTC64 E1000_PTC64
+#define E1000_82542_PTC127 E1000_PTC127
+#define E1000_82542_PTC255 E1000_PTC255
+#define E1000_82542_PTC511 E1000_PTC511
+#define E1000_82542_PTC1023 E1000_PTC1023
+#define E1000_82542_PTC1522 E1000_PTC1522
+#define E1000_82542_MPTC E1000_MPTC
+#define E1000_82542_BPTC E1000_BPTC
+#define E1000_82542_TSCTC E1000_TSCTC
+#define E1000_82542_TSCTFC E1000_TSCTFC
+#define E1000_82542_RXCSUM E1000_RXCSUM
+#define E1000_82542_WUC E1000_WUC
+#define E1000_82542_WUFC E1000_WUFC
+#define E1000_82542_WUS E1000_WUS
+#define E1000_82542_MANC E1000_MANC
+#define E1000_82542_IPAV E1000_IPAV
+#define E1000_82542_IP4AT E1000_IP4AT
+#define E1000_82542_IP6AT E1000_IP6AT
+#define E1000_82542_WUPL E1000_WUPL
+#define E1000_82542_WUPM E1000_WUPM
+#define E1000_82542_FFLT E1000_FFLT
+#define E1000_82542_TDFH 0x08010
+#define E1000_82542_TDFT 0x08018
+#define E1000_82542_FFMT E1000_FFMT
+#define E1000_82542_FFVT E1000_FFVT
+#define E1000_82542_HOST_IF E1000_HOST_IF
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+ uint64_t crcerrs;
+ uint64_t algnerrc;
+ uint64_t symerrs;
+ uint64_t rxerrc;
+ uint64_t mpc;
+ uint64_t scc;
+ uint64_t ecol;
+ uint64_t mcc;
+ uint64_t latecol;
+ uint64_t colc;
+ uint64_t dc;
+ uint64_t tncrs;
+ uint64_t sec;
+ uint64_t cexterr;
+ uint64_t rlec;
+ uint64_t xonrxc;
+ uint64_t xontxc;
+ uint64_t xoffrxc;
+ uint64_t xofftxc;
+ uint64_t fcruc;
+ uint64_t prc64;
+ uint64_t prc127;
+ uint64_t prc255;
+ uint64_t prc511;
+ uint64_t prc1023;
+ uint64_t prc1522;
+ uint64_t gprc;
+ uint64_t bprc;
+ uint64_t mprc;
+ uint64_t gptc;
+ uint64_t gorcl;
+ uint64_t gorch;
+ uint64_t gotcl;
+ uint64_t gotch;
+ uint64_t rnbc;
+ uint64_t ruc;
+ uint64_t rfc;
+ uint64_t roc;
+ uint64_t rjc;
+ uint64_t mgprc;
+ uint64_t mgpdc;
+ uint64_t mgptc;
+ uint64_t torl;
+ uint64_t torh;
+ uint64_t totl;
+ uint64_t toth;
+ uint64_t tpr;
+ uint64_t tpt;
+ uint64_t ptc64;
+ uint64_t ptc127;
+ uint64_t ptc255;
+ uint64_t ptc511;
+ uint64_t ptc1023;
+ uint64_t ptc1522;
+ uint64_t mptc;
+ uint64_t bptc;
+ uint64_t tsctc;
+ uint64_t tsctfc;
+};
+
+/* Structure containing variables used by the shared code (e1000_hw.c) */
+struct e1000_hw {
+ uint8_t __iomem *hw_addr;
+ e1000_mac_type mac_type;
+ e1000_phy_type phy_type;
+ uint32_t phy_init_script;
+ e1000_media_type media_type;
+ void *back;
+ e1000_fc_type fc;
+ e1000_bus_speed bus_speed;
+ e1000_bus_width bus_width;
+ e1000_bus_type bus_type;
+ struct e1000_eeprom_info eeprom;
+ e1000_ms_type master_slave;
+ e1000_ms_type original_master_slave;
+ e1000_ffe_config ffe_config_state;
+ uint32_t asf_firmware_present;
+ unsigned long io_base;
+ uint32_t phy_id;
+ uint32_t phy_revision;
+ uint32_t phy_addr;
+ uint32_t original_fc;
+ uint32_t txcw;
+ uint32_t autoneg_failed;
+ uint32_t max_frame_size;
+ uint32_t min_frame_size;
+ uint32_t mc_filter_type;
+ uint32_t num_mc_addrs;
+ uint32_t collision_delta;
+ uint32_t tx_packet_delta;
+ uint32_t ledctl_default;
+ uint32_t ledctl_mode1;
+ uint32_t ledctl_mode2;
+ uint16_t phy_spd_default;
+ uint16_t autoneg_advertised;
+ uint16_t pci_cmd_word;
+ uint16_t fc_high_water;
+ uint16_t fc_low_water;
+ uint16_t fc_pause_time;
+ uint16_t current_ifs_val;
+ uint16_t ifs_min_val;
+ uint16_t ifs_max_val;
+ uint16_t ifs_step_size;
+ uint16_t ifs_ratio;
+ uint16_t device_id;
+ uint16_t vendor_id;
+ uint16_t subsystem_id;
+ uint16_t subsystem_vendor_id;
+ uint8_t revision_id;
+ uint8_t autoneg;
+ uint8_t mdix;
+ uint8_t forced_speed_duplex;
+ uint8_t wait_autoneg_complete;
+ uint8_t dma_fairness;
+ uint8_t mac_addr[NODE_ADDRESS_SIZE];
+ uint8_t perm_mac_addr[NODE_ADDRESS_SIZE];
+ boolean_t disable_polarity_correction;
+ boolean_t speed_downgraded;
+ e1000_smart_speed smart_speed;
+ e1000_dsp_config dsp_config_state;
+ boolean_t get_link_status;
+ boolean_t serdes_link_down;
+ boolean_t tbi_compatibility_en;
+ boolean_t tbi_compatibility_on;
+ boolean_t phy_reset_disable;
+ boolean_t fc_send_xon;
+ boolean_t fc_strict_ieee;
+ boolean_t report_tx_early;
+ boolean_t adaptive_ifs;
+ boolean_t ifs_params_forced;
+ boolean_t in_ifs_mode;
+};
+
+
+#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
+#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
+/* Register Bit Masks */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+
+/* EEPROM/Flash Control */
+#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
+#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
+#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
+#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
+#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
+ * (0-small, 1-large) */
+#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_EEPROM_GRANT_ATTEMPTS
+#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
+#endif
+
+/* EEPROM Read */
+#define E1000_EERD_START 0x00000001 /* Start Read */
+#define E1000_EERD_DONE 0x00000010 /* Read Done */
+#define E1000_EERD_ADDR_SHIFT 8
+#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
+#define E1000_EERD_DATA_SHIFT 16
+#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
+
+/* SPI EEPROM Status Register */
+#define EEPROM_STATUS_RDY_SPI 0x01
+#define EEPROM_STATUS_WEN_SPI 0x02
+#define EEPROM_STATUS_BP0_SPI 0x04
+#define EEPROM_STATUS_BP1_SPI 0x08
+#define EEPROM_STATUS_WPEN_SPI 0x80
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Receive Address */
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+
+/* Interrupt Mask Clear */
+#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
+#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMC_SRPD E1000_ICR_SRPD
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+
+/* Receive Descriptor */
+#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
+#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
+#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
+#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
+#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Receive Descriptor Control */
+#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
+#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
+#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
+#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
+#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
+#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
+#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
+#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
+#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
+#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
+#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
+#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
+#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
+#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
+#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
+#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
+ * Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
+ * filtering */
+#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
+ * memory */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+#define E1000_MDALIGN 4096
+
+/* EEPROM Commands - Microwire */
+#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
+#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
+#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
+#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */
+
+/* EEPROM Commands - SPI */
+#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */
+#define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */
+#define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */
+#define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */
+#define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */
+#define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */
+#define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */
+
+/* EEPROM Size definitions */
+#define EEPROM_SIZE_16KB 0x1800
+#define EEPROM_SIZE_8KB 0x1400
+#define EEPROM_SIZE_4KB 0x1000
+#define EEPROM_SIZE_2KB 0x0C00
+#define EEPROM_SIZE_1KB 0x0800
+#define EEPROM_SIZE_512B 0x0400
+#define EEPROM_SIZE_128B 0x0000
+#define EEPROM_SIZE_MASK 0x1C00
+
+/* EEPROM Word Offsets */
+#define EEPROM_COMPAT 0x0003
+#define EEPROM_ID_LED_SETTINGS 0x0004
+#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
+#define EEPROM_PHY_CLASS_WORD 0x0007
+#define EEPROM_INIT_CONTROL1_REG 0x000A
+#define EEPROM_INIT_CONTROL2_REG 0x000F
+#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
+#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
+#define EEPROM_CFG 0x0012
+#define EEPROM_FLASH_VERSION 0x0032
+#define EEPROM_CHECKSUM_REG 0x003F
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+
+/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
+#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F
+
+/* Mask bit for PHY class in Word 7 of the EEPROM */
+#define EEPROM_PHY_CLASS_A 0x8000
+
+/* Mask bits for fields in Word 0x0a of the EEPROM */
+#define EEPROM_WORD0A_ILOS 0x0010
+#define EEPROM_WORD0A_SWDPIO 0x01E0
+#define EEPROM_WORD0A_LRST 0x0200
+#define EEPROM_WORD0A_FD 0x0400
+#define EEPROM_WORD0A_66MHZ 0x0800
+
+/* Mask bits for fields in Word 0x0f of the EEPROM */
+#define EEPROM_WORD0F_PAUSE_MASK 0x3000
+#define EEPROM_WORD0F_PAUSE 0x1000
+#define EEPROM_WORD0F_ASM_DIR 0x2000
+#define EEPROM_WORD0F_ANE 0x0800
+#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
+
+/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
+#define EEPROM_SUM 0xBABA
+
+/* EEPROM Map defines (WORD OFFSETS)*/
+#define EEPROM_NODE_ADDRESS_BYTE_0 0
+#define EEPROM_PBA_BYTE_1 8
+
+#define EEPROM_RESERVED_WORD 0xFFFF
+
+/* EEPROM Map Sizes (Byte Counts) */
+#define PBA_SIZE 4
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 64
+#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
+#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
+#define E1000_COLD_SHIFT 12
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82542_TIPG_IPGT 10
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82542_TIPG_IPGR1 2
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82542_TIPG_IPGR2 10
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+#define E1000_TXDMAC_DPP 0x00000001
+
+/* Adaptive IFS defines */
+#define TX_THRESHOLD_START 8
+#define TX_THRESHOLD_INCREMENT 10
+#define TX_THRESHOLD_DECREMENT 1
+#define TX_THRESHOLD_STOP 190
+#define TX_THRESHOLD_DISABLE 0
+#define TX_THRESHOLD_TIMER_MS 10000
+#define MIN_NUM_XMITS 1000
+#define IFS_MAX 80
+#define IFS_STEP 10
+#define IFS_MIN 40
+#define IFS_RATIO 4
+
+/* PBA constants */
+#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* The historical defaults for the flow control values are given below. */
+#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
+#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
+#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
+
+/* PCIX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+
+
+/* Number of bits required to shift right the "pause" bits from the
+ * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
+ */
+#define PAUSE_SHIFT 5
+
+/* Number of bits required to shift left the "SWDPIO" bits from the
+ * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
+ */
+#define SWDPIO_SHIFT 17
+
+/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
+ * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
+ */
+#define SWDPIO__EXT_SHIFT 4
+
+/* Number of bits required to shift left the "ILOS" bit from the EEPROM
+ * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
+ */
+#define ILOS_SHIFT 3
+
+
+#define RECEIVE_BUFFER_ALIGN_SIZE (256)
+
+/* Number of milliseconds we wait for auto-negotiation to complete */
+#define LINK_UP_TIMEOUT 500
+
+#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+/* TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct e1000_hw
+ * status = the 8 bit status field of the RX descriptor with EOP set
+ * error = the 8 bit error field of the RX descriptor with EOP set
+ * length = the sum of all the length fields of the RX descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = TRUE;
+ * e1000_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = FALSE;
+ * }
+ * ...
+ */
+
+#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
+ ((adapter)->tbi_compatibility_on && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= ((adapter)->max_frame_size + 1))) : \
+ (((length) > (adapter)->min_frame_size) && \
+ ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+
+/* Structures, enums, and macros for the PHY */
+
+/* Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CTRL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Regiser */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+#define IGP01E1000_IEEE_REGS_PAGE 0x0000
+#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
+#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
+
+/* IGP01E1000 AGC Registers - stores the cable length values*/
+#define IGP01E1000_PHY_AGC_A 0x1172
+#define IGP01E1000_PHY_AGC_B 0x1272
+#define IGP01E1000_PHY_AGC_C 0x1472
+#define IGP01E1000_PHY_AGC_D 0x1872
+
+/* IGP01E1000 DSP Reset Register */
+#define IGP01E1000_PHY_DSP_RESET 0x1F33
+#define IGP01E1000_PHY_DSP_SET 0x1F71
+#define IGP01E1000_PHY_DSP_FFE 0x1F35
+
+#define IGP01E1000_PHY_CHANNEL_NUM 4
+#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
+#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
+#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
+#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
+
+#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
+#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
+
+#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890
+#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000
+#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004
+#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
+
+#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
+/* IGP01E1000 PCS Initialization register - stores the polarity status when
+ * speed = 1000 Mbps. */
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5
+
+#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
+
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+
+/* Next Page TX Register */
+#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
+
+/* Link Partner Next Page Register */
+#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
+#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
+ * of different NP
+ */
+#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
+ * 0 = cannot comply with msg
+ */
+#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
+#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
+#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
+ * 0 = sending last NP
+ */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
+#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
+#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
+
+/* Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
+
+#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
+#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
+
+#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
+ /* (0=enable, 1=disable) */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
+ * 0=CLK125 toggling
+ */
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
+ * 100BASE-TX/10BASE-T:
+ * MDI Mode
+ */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
+ * all speeds.
+ */
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
+ /* 1=Enable Extended 10BASE-T distance
+ * (Lower 10BASE-T RX Threshold)
+ * 0=Normal 10BASE-T RX Threshold */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+ /* 1=5-Bit interface in 100BASE-TX
+ * 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
+#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
+#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
+ * 3=110-140M;4=>140M */
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
+#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5
+#define M88E1000_PSSR_MDIX_SHIFT 6
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/* Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+/* IGP01E1000 Specific Port Config Register - R/W */
+#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
+#define IGP01E1000_PSCFR_PRE_EN 0x0020
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
+#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
+#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
+
+/* IGP01E1000 Specific Port Status Register - R/O */
+#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C
+#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200
+#define IGP01E1000_PSSR_LINK_UP 0x0400
+#define IGP01E1000_PSSR_MDIX 0x0800
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */
+#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000
+#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */
+#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */
+
+/* IGP01E1000 Specific Port Control Register - R/W */
+#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
+#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
+#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
+#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
+
+/* IGP01E1000 Specific Port Link Health Register */
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000
+#define IGP01E1000_PLHR_MASTER_FAULT 0x2000
+#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000
+#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */
+#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */
+#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */
+#define IGP01E1000_PLHR_DATA_ERR_0 0x0100
+#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040
+#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010
+#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008
+#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004
+#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002
+#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001
+
+/* IGP01E1000 Channel Quality Register */
+#define IGP01E1000_MSE_CHANNEL_D 0x000F
+#define IGP01E1000_MSE_CHANNEL_C 0x00F0
+#define IGP01E1000_MSE_CHANNEL_B 0x0F00
+#define IGP01E1000_MSE_CHANNEL_A 0xF000
+
+/* IGP01E1000 DSP reset macros */
+#define DSP_RESET_ENABLE 0x0
+#define DSP_RESET_DISABLE 0x2
+#define E1000_MAX_DSP_RESETS 10
+
+/* IGP01E1000 AGC Registers */
+
+#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
+
+/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
+#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
+
+/* The precision of the length is +/- 10 meters */
+#define IGP01E1000_AGC_RANGE 10
+
+/* IGP01E1000 PCS Initialization register */
+/* bits 3:6 in the PCS registers stores the channels polarity */
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+
+/* IGP01E1000 GMII FIFO Register */
+#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
+ * on Link-Up */
+#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
+
+/* IGP01E1000 Analog Register */
+#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
+#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
+#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
+#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
+
+#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
+#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
+#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
+#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
+#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
+
+#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
+#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
+#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
+#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
+
+
+/* Bit definitions for valid PHY IDs. */
+/* I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
+#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
+#define M88E1011_I_REV_4 0x04
+
+/* Miscellaneous PHY bit definitions. */
+#define PHY_PREAMBLE 0xFFFFFFFF
+#define PHY_SOF 0x01
+#define PHY_OP_READ 0x02
+#define PHY_OP_WRITE 0x01
+#define PHY_TURNAROUND 0x02
+#define PHY_PREAMBLE_SIZE 32
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+#define E1000_PHY_ADDRESS 0x01
+#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
+#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
+#define REG4_SPEED_MASK 0x01E0
+#define REG9_SPEED_MASK 0x0300
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010
+#define ADVERTISE_1000_FULL 0x0020
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
+#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/
+#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/
+
+#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c
new file mode 100644
index 00000000000..82549a6fcfb
--- /dev/null
+++ b/drivers/net/e1000/e1000_main.c
@@ -0,0 +1,3162 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+
+/* Change Log
+ * 5.3.12 6/7/04
+ * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
+ * - if_mii support and associated kcompat for older kernels
+ * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
+ * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
+ *
+ * 5.7.1 12/16/04
+ * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
+ * fix was removed as it caused system instability. The suspected cause of
+ * this is the called to e1000_irq_disable in e1000_intr. Inlined the
+ * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
+ * 5.7.0 12/10/04
+ * - include fix to the condition that determines when to quit NAPI - Robert Olsson
+ * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
+ * 5.6.5 11/01/04
+ * - Enabling NETIF_F_SG without checksum offload is illegal -
+ John Mason <jdmason@us.ibm.com>
+ * 5.6.3 10/26/04
+ * - Remove redundant initialization - Jamal Hadi
+ * - Reset buffer_info->dma in tx resource cleanup logic
+ * 5.6.2 10/12/04
+ * - Avoid filling tx_ring completely - shemminger@osdl.org
+ * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
+ * nacc@us.ibm.com
+ * - Sparse cleanup - shemminger@osdl.org
+ * - Fix tx resource cleanup logic
+ * - LLTX support - ak@suse.de and hadi@cyberus.ca
+ */
+
+char e1000_driver_name[] = "e1000";
+char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
+#ifndef CONFIG_E1000_NAPI
+#define DRIVERNAPI
+#else
+#define DRIVERNAPI "-NAPI"
+#endif
+#define DRV_VERSION "5.7.6-k2"DRIVERNAPI
+char e1000_driver_version[] = DRV_VERSION;
+char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
+
+/* e1000_pci_tbl - PCI Device ID Table
+ *
+ * Last entry must be all 0s
+ *
+ * Macro expands to...
+ * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
+ */
+static struct pci_device_id e1000_pci_tbl[] = {
+ INTEL_E1000_ETHERNET_DEVICE(0x1000),
+ INTEL_E1000_ETHERNET_DEVICE(0x1001),
+ INTEL_E1000_ETHERNET_DEVICE(0x1004),
+ INTEL_E1000_ETHERNET_DEVICE(0x1008),
+ INTEL_E1000_ETHERNET_DEVICE(0x1009),
+ INTEL_E1000_ETHERNET_DEVICE(0x100C),
+ INTEL_E1000_ETHERNET_DEVICE(0x100D),
+ INTEL_E1000_ETHERNET_DEVICE(0x100E),
+ INTEL_E1000_ETHERNET_DEVICE(0x100F),
+ INTEL_E1000_ETHERNET_DEVICE(0x1010),
+ INTEL_E1000_ETHERNET_DEVICE(0x1011),
+ INTEL_E1000_ETHERNET_DEVICE(0x1012),
+ INTEL_E1000_ETHERNET_DEVICE(0x1013),
+ INTEL_E1000_ETHERNET_DEVICE(0x1014),
+ INTEL_E1000_ETHERNET_DEVICE(0x1015),
+ INTEL_E1000_ETHERNET_DEVICE(0x1016),
+ INTEL_E1000_ETHERNET_DEVICE(0x1017),
+ INTEL_E1000_ETHERNET_DEVICE(0x1018),
+ INTEL_E1000_ETHERNET_DEVICE(0x1019),
+ INTEL_E1000_ETHERNET_DEVICE(0x101D),
+ INTEL_E1000_ETHERNET_DEVICE(0x101E),
+ INTEL_E1000_ETHERNET_DEVICE(0x1026),
+ INTEL_E1000_ETHERNET_DEVICE(0x1027),
+ INTEL_E1000_ETHERNET_DEVICE(0x1028),
+ INTEL_E1000_ETHERNET_DEVICE(0x1075),
+ INTEL_E1000_ETHERNET_DEVICE(0x1076),
+ INTEL_E1000_ETHERNET_DEVICE(0x1077),
+ INTEL_E1000_ETHERNET_DEVICE(0x1078),
+ INTEL_E1000_ETHERNET_DEVICE(0x1079),
+ INTEL_E1000_ETHERNET_DEVICE(0x107A),
+ INTEL_E1000_ETHERNET_DEVICE(0x107B),
+ INTEL_E1000_ETHERNET_DEVICE(0x107C),
+ INTEL_E1000_ETHERNET_DEVICE(0x108A),
+ /* required last entry */
+ {0,}
+};
+
+MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
+
+int e1000_up(struct e1000_adapter *adapter);
+void e1000_down(struct e1000_adapter *adapter);
+void e1000_reset(struct e1000_adapter *adapter);
+int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
+int e1000_setup_tx_resources(struct e1000_adapter *adapter);
+int e1000_setup_rx_resources(struct e1000_adapter *adapter);
+void e1000_free_tx_resources(struct e1000_adapter *adapter);
+void e1000_free_rx_resources(struct e1000_adapter *adapter);
+void e1000_update_stats(struct e1000_adapter *adapter);
+
+/* Local Function Prototypes */
+
+static int e1000_init_module(void);
+static void e1000_exit_module(void);
+static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
+static void __devexit e1000_remove(struct pci_dev *pdev);
+static int e1000_sw_init(struct e1000_adapter *adapter);
+static int e1000_open(struct net_device *netdev);
+static int e1000_close(struct net_device *netdev);
+static void e1000_configure_tx(struct e1000_adapter *adapter);
+static void e1000_configure_rx(struct e1000_adapter *adapter);
+static void e1000_setup_rctl(struct e1000_adapter *adapter);
+static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
+static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
+static void e1000_set_multi(struct net_device *netdev);
+static void e1000_update_phy_info(unsigned long data);
+static void e1000_watchdog(unsigned long data);
+static void e1000_watchdog_task(struct e1000_adapter *adapter);
+static void e1000_82547_tx_fifo_stall(unsigned long data);
+static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
+static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
+static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
+static int e1000_set_mac(struct net_device *netdev, void *p);
+static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
+static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
+#ifdef CONFIG_E1000_NAPI
+static int e1000_clean(struct net_device *netdev, int *budget);
+static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
+ int *work_done, int work_to_do);
+#else
+static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
+#endif
+static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
+static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
+static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
+ int cmd);
+void e1000_set_ethtool_ops(struct net_device *netdev);
+static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
+static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
+static void e1000_tx_timeout(struct net_device *dev);
+static void e1000_tx_timeout_task(struct net_device *dev);
+static void e1000_smartspeed(struct e1000_adapter *adapter);
+static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
+ struct sk_buff *skb);
+
+static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
+static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
+static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
+static void e1000_restore_vlan(struct e1000_adapter *adapter);
+
+static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
+static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
+#ifdef CONFIG_PM
+static int e1000_resume(struct pci_dev *pdev);
+#endif
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/* for netdump / net console */
+static void e1000_netpoll (struct net_device *netdev);
+#endif
+
+struct notifier_block e1000_notifier_reboot = {
+ .notifier_call = e1000_notify_reboot,
+ .next = NULL,
+ .priority = 0
+};
+
+/* Exported from other modules */
+
+extern void e1000_check_options(struct e1000_adapter *adapter);
+
+static struct pci_driver e1000_driver = {
+ .name = e1000_driver_name,
+ .id_table = e1000_pci_tbl,
+ .probe = e1000_probe,
+ .remove = __devexit_p(e1000_remove),
+ /* Power Managment Hooks */
+#ifdef CONFIG_PM
+ .suspend = e1000_suspend,
+ .resume = e1000_resume
+#endif
+};
+
+MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
+MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+/**
+ * e1000_init_module - Driver Registration Routine
+ *
+ * e1000_init_module is the first routine called when the driver is
+ * loaded. All it does is register with the PCI subsystem.
+ **/
+
+static int __init
+e1000_init_module(void)
+{
+ int ret;
+ printk(KERN_INFO "%s - version %s\n",
+ e1000_driver_string, e1000_driver_version);
+
+ printk(KERN_INFO "%s\n", e1000_copyright);
+
+ ret = pci_module_init(&e1000_driver);
+ if(ret >= 0) {
+ register_reboot_notifier(&e1000_notifier_reboot);
+ }
+ return ret;
+}
+
+module_init(e1000_init_module);
+
+/**
+ * e1000_exit_module - Driver Exit Cleanup Routine
+ *
+ * e1000_exit_module is called just before the driver is removed
+ * from memory.
+ **/
+
+static void __exit
+e1000_exit_module(void)
+{
+ unregister_reboot_notifier(&e1000_notifier_reboot);
+ pci_unregister_driver(&e1000_driver);
+}
+
+module_exit(e1000_exit_module);
+
+/**
+ * e1000_irq_disable - Mask off interrupt generation on the NIC
+ * @adapter: board private structure
+ **/
+
+static inline void
+e1000_irq_disable(struct e1000_adapter *adapter)
+{
+ atomic_inc(&adapter->irq_sem);
+ E1000_WRITE_REG(&adapter->hw, IMC, ~0);
+ E1000_WRITE_FLUSH(&adapter->hw);
+ synchronize_irq(adapter->pdev->irq);
+}
+
+/**
+ * e1000_irq_enable - Enable default interrupt generation settings
+ * @adapter: board private structure
+ **/
+
+static inline void
+e1000_irq_enable(struct e1000_adapter *adapter)
+{
+ if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
+ E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
+ E1000_WRITE_FLUSH(&adapter->hw);
+ }
+}
+
+int
+e1000_up(struct e1000_adapter *adapter)
+{
+ struct net_device *netdev = adapter->netdev;
+ int err;
+
+ /* hardware has been reset, we need to reload some things */
+
+ /* Reset the PHY if it was previously powered down */
+ if(adapter->hw.media_type == e1000_media_type_copper) {
+ uint16_t mii_reg;
+ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
+ if(mii_reg & MII_CR_POWER_DOWN)
+ e1000_phy_reset(&adapter->hw);
+ }
+
+ e1000_set_multi(netdev);
+
+ e1000_restore_vlan(adapter);
+
+ e1000_configure_tx(adapter);
+ e1000_setup_rctl(adapter);
+ e1000_configure_rx(adapter);
+ e1000_alloc_rx_buffers(adapter);
+
+ if((err = request_irq(adapter->pdev->irq, &e1000_intr,
+ SA_SHIRQ | SA_SAMPLE_RANDOM,
+ netdev->name, netdev)))
+ return err;
+
+ mod_timer(&adapter->watchdog_timer, jiffies);
+ e1000_irq_enable(adapter);
+
+#ifdef CONFIG_E1000_NAPI
+ netif_poll_enable(netdev);
+#endif
+ return 0;
+}
+
+void
+e1000_down(struct e1000_adapter *adapter)
+{
+ struct net_device *netdev = adapter->netdev;
+
+ e1000_irq_disable(adapter);
+ free_irq(adapter->pdev->irq, netdev);
+ del_timer_sync(&adapter->tx_fifo_stall_timer);
+ del_timer_sync(&adapter->watchdog_timer);
+ del_timer_sync(&adapter->phy_info_timer);
+
+#ifdef CONFIG_E1000_NAPI
+ netif_poll_disable(netdev);
+#endif
+ adapter->link_speed = 0;
+ adapter->link_duplex = 0;
+ netif_carrier_off(netdev);
+ netif_stop_queue(netdev);
+
+ e1000_reset(adapter);
+ e1000_clean_tx_ring(adapter);
+ e1000_clean_rx_ring(adapter);
+
+ /* If WoL is not enabled
+ * Power down the PHY so no link is implied when interface is down */
+ if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
+ uint16_t mii_reg;
+ e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
+ mii_reg |= MII_CR_POWER_DOWN;
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
+ }
+}
+
+void
+e1000_reset(struct e1000_adapter *adapter)
+{
+ uint32_t pba;
+
+ /* Repartition Pba for greater than 9k mtu
+ * To take effect CTRL.RST is required.
+ */
+
+ if(adapter->hw.mac_type < e1000_82547) {
+ if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
+ pba = E1000_PBA_40K;
+ else
+ pba = E1000_PBA_48K;
+ } else {
+ if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
+ pba = E1000_PBA_22K;
+ else
+ pba = E1000_PBA_30K;
+ adapter->tx_fifo_head = 0;
+ adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
+ adapter->tx_fifo_size =
+ (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
+ atomic_set(&adapter->tx_fifo_stall, 0);
+ }
+ E1000_WRITE_REG(&adapter->hw, PBA, pba);
+
+ /* flow control settings */
+ adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
+ E1000_FC_HIGH_DIFF;
+ adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
+ E1000_FC_LOW_DIFF;
+ adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
+ adapter->hw.fc_send_xon = 1;
+ adapter->hw.fc = adapter->hw.original_fc;
+
+ e1000_reset_hw(&adapter->hw);
+ if(adapter->hw.mac_type >= e1000_82544)
+ E1000_WRITE_REG(&adapter->hw, WUC, 0);
+ if(e1000_init_hw(&adapter->hw))
+ DPRINTK(PROBE, ERR, "Hardware Error\n");
+
+ /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
+ E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
+
+ e1000_reset_adaptive(&adapter->hw);
+ e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_probe - Device Initialization Routine
+ * @pdev: PCI device information struct
+ * @ent: entry in e1000_pci_tbl
+ *
+ * Returns 0 on success, negative on failure
+ *
+ * e1000_probe initializes an adapter identified by a pci_dev structure.
+ * The OS initialization, configuring of the adapter private structure,
+ * and a hardware reset occur.
+ **/
+
+static int __devinit
+e1000_probe(struct pci_dev *pdev,
+ const struct pci_device_id *ent)
+{
+ struct net_device *netdev;
+ struct e1000_adapter *adapter;
+ static int cards_found = 0;
+ unsigned long mmio_start;
+ int mmio_len;
+ int pci_using_dac;
+ int i;
+ int err;
+ uint16_t eeprom_data;
+ uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
+
+ if((err = pci_enable_device(pdev)))
+ return err;
+
+ if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
+ pci_using_dac = 1;
+ } else {
+ if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
+ E1000_ERR("No usable DMA configuration, aborting\n");
+ return err;
+ }
+ pci_using_dac = 0;
+ }
+
+ if((err = pci_request_regions(pdev, e1000_driver_name)))
+ return err;
+
+ pci_set_master(pdev);
+
+ netdev = alloc_etherdev(sizeof(struct e1000_adapter));
+ if(!netdev) {
+ err = -ENOMEM;
+ goto err_alloc_etherdev;
+ }
+
+ SET_MODULE_OWNER(netdev);
+ SET_NETDEV_DEV(netdev, &pdev->dev);
+
+ pci_set_drvdata(pdev, netdev);
+ adapter = netdev->priv;
+ adapter->netdev = netdev;
+ adapter->pdev = pdev;
+ adapter->hw.back = adapter;
+ adapter->msg_enable = (1 << debug) - 1;
+
+ mmio_start = pci_resource_start(pdev, BAR_0);
+ mmio_len = pci_resource_len(pdev, BAR_0);
+
+ adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
+ if(!adapter->hw.hw_addr) {
+ err = -EIO;
+ goto err_ioremap;
+ }
+
+ for(i = BAR_1; i <= BAR_5; i++) {
+ if(pci_resource_len(pdev, i) == 0)
+ continue;
+ if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
+ adapter->hw.io_base = pci_resource_start(pdev, i);
+ break;
+ }
+ }
+
+ netdev->open = &e1000_open;
+ netdev->stop = &e1000_close;
+ netdev->hard_start_xmit = &e1000_xmit_frame;
+ netdev->get_stats = &e1000_get_stats;
+ netdev->set_multicast_list = &e1000_set_multi;
+ netdev->set_mac_address = &e1000_set_mac;
+ netdev->change_mtu = &e1000_change_mtu;
+ netdev->do_ioctl = &e1000_ioctl;
+ e1000_set_ethtool_ops(netdev);
+ netdev->tx_timeout = &e1000_tx_timeout;
+ netdev->watchdog_timeo = 5 * HZ;
+#ifdef CONFIG_E1000_NAPI
+ netdev->poll = &e1000_clean;
+ netdev->weight = 64;
+#endif
+ netdev->vlan_rx_register = e1000_vlan_rx_register;
+ netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
+ netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
+#ifdef CONFIG_NET_POLL_CONTROLLER
+ netdev->poll_controller = e1000_netpoll;
+#endif
+ strcpy(netdev->name, pci_name(pdev));
+
+ netdev->mem_start = mmio_start;
+ netdev->mem_end = mmio_start + mmio_len;
+ netdev->base_addr = adapter->hw.io_base;
+
+ adapter->bd_number = cards_found;
+
+ /* setup the private structure */
+
+ if((err = e1000_sw_init(adapter)))
+ goto err_sw_init;
+
+ if(adapter->hw.mac_type >= e1000_82543) {
+ netdev->features = NETIF_F_SG |
+ NETIF_F_HW_CSUM |
+ NETIF_F_HW_VLAN_TX |
+ NETIF_F_HW_VLAN_RX |
+ NETIF_F_HW_VLAN_FILTER;
+ }
+
+#ifdef NETIF_F_TSO
+ if((adapter->hw.mac_type >= e1000_82544) &&
+ (adapter->hw.mac_type != e1000_82547))
+ netdev->features |= NETIF_F_TSO;
+#endif
+ if(pci_using_dac)
+ netdev->features |= NETIF_F_HIGHDMA;
+
+ /* hard_start_xmit is safe against parallel locking */
+ netdev->features |= NETIF_F_LLTX;
+
+ /* before reading the EEPROM, reset the controller to
+ * put the device in a known good starting state */
+
+ e1000_reset_hw(&adapter->hw);
+
+ /* make sure the EEPROM is good */
+
+ if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
+ DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
+ err = -EIO;
+ goto err_eeprom;
+ }
+
+ /* copy the MAC address out of the EEPROM */
+
+ if (e1000_read_mac_addr(&adapter->hw))
+ DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
+ memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
+
+ if(!is_valid_ether_addr(netdev->dev_addr)) {
+ DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
+ err = -EIO;
+ goto err_eeprom;
+ }
+
+ e1000_read_part_num(&adapter->hw, &(adapter->part_num));
+
+ e1000_get_bus_info(&adapter->hw);
+
+ init_timer(&adapter->tx_fifo_stall_timer);
+ adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
+ adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
+
+ init_timer(&adapter->watchdog_timer);
+ adapter->watchdog_timer.function = &e1000_watchdog;
+ adapter->watchdog_timer.data = (unsigned long) adapter;
+
+ INIT_WORK(&adapter->watchdog_task,
+ (void (*)(void *))e1000_watchdog_task, adapter);
+
+ init_timer(&adapter->phy_info_timer);
+ adapter->phy_info_timer.function = &e1000_update_phy_info;
+ adapter->phy_info_timer.data = (unsigned long) adapter;
+
+ INIT_WORK(&adapter->tx_timeout_task,
+ (void (*)(void *))e1000_tx_timeout_task, netdev);
+
+ /* we're going to reset, so assume we have no link for now */
+
+ netif_carrier_off(netdev);
+ netif_stop_queue(netdev);
+
+ e1000_check_options(adapter);
+
+ /* Initial Wake on LAN setting
+ * If APM wake is enabled in the EEPROM,
+ * enable the ACPI Magic Packet filter
+ */
+
+ switch(adapter->hw.mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ case e1000_82543:
+ break;
+ case e1000_82544:
+ e1000_read_eeprom(&adapter->hw,
+ EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
+ eeprom_apme_mask = E1000_EEPROM_82544_APM;
+ break;
+ case e1000_82546:
+ case e1000_82546_rev_3:
+ if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
+ && (adapter->hw.media_type == e1000_media_type_copper)) {
+ e1000_read_eeprom(&adapter->hw,
+ EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
+ break;
+ }
+ /* Fall Through */
+ default:
+ e1000_read_eeprom(&adapter->hw,
+ EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
+ break;
+ }
+ if(eeprom_data & eeprom_apme_mask)
+ adapter->wol |= E1000_WUFC_MAG;
+
+ /* reset the hardware with the new settings */
+ e1000_reset(adapter);
+
+ strcpy(netdev->name, "eth%d");
+ if((err = register_netdev(netdev)))
+ goto err_register;
+
+ DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
+
+ cards_found++;
+ return 0;
+
+err_register:
+err_sw_init:
+err_eeprom:
+ iounmap(adapter->hw.hw_addr);
+err_ioremap:
+ free_netdev(netdev);
+err_alloc_etherdev:
+ pci_release_regions(pdev);
+ return err;
+}
+
+/**
+ * e1000_remove - Device Removal Routine
+ * @pdev: PCI device information struct
+ *
+ * e1000_remove is called by the PCI subsystem to alert the driver
+ * that it should release a PCI device. The could be caused by a
+ * Hot-Plug event, or because the driver is going to be removed from
+ * memory.
+ **/
+
+static void __devexit
+e1000_remove(struct pci_dev *pdev)
+{
+ struct net_device *netdev = pci_get_drvdata(pdev);
+ struct e1000_adapter *adapter = netdev->priv;
+ uint32_t manc;
+
+ flush_scheduled_work();
+
+ if(adapter->hw.mac_type >= e1000_82540 &&
+ adapter->hw.media_type == e1000_media_type_copper) {
+ manc = E1000_READ_REG(&adapter->hw, MANC);
+ if(manc & E1000_MANC_SMBUS_EN) {
+ manc |= E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(&adapter->hw, MANC, manc);
+ }
+ }
+
+ unregister_netdev(netdev);
+
+ e1000_phy_hw_reset(&adapter->hw);
+
+ iounmap(adapter->hw.hw_addr);
+ pci_release_regions(pdev);
+
+ free_netdev(netdev);
+
+ pci_disable_device(pdev);
+}
+
+/**
+ * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
+ * @adapter: board private structure to initialize
+ *
+ * e1000_sw_init initializes the Adapter private data structure.
+ * Fields are initialized based on PCI device information and
+ * OS network device settings (MTU size).
+ **/
+
+static int __devinit
+e1000_sw_init(struct e1000_adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ struct net_device *netdev = adapter->netdev;
+ struct pci_dev *pdev = adapter->pdev;
+
+ /* PCI config space info */
+
+ hw->vendor_id = pdev->vendor;
+ hw->device_id = pdev->device;
+ hw->subsystem_vendor_id = pdev->subsystem_vendor;
+ hw->subsystem_id = pdev->subsystem_device;
+
+ pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
+
+ pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
+
+ adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+ hw->max_frame_size = netdev->mtu +
+ ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+ hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
+
+ /* identify the MAC */
+
+ if(e1000_set_mac_type(hw)) {
+ DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
+ return -EIO;
+ }
+
+ /* initialize eeprom parameters */
+
+ e1000_init_eeprom_params(hw);
+
+ switch(hw->mac_type) {
+ default:
+ break;
+ case e1000_82541:
+ case e1000_82547:
+ case e1000_82541_rev_2:
+ case e1000_82547_rev_2:
+ hw->phy_init_script = 1;
+ break;
+ }
+
+ e1000_set_media_type(hw);
+
+ hw->wait_autoneg_complete = FALSE;
+ hw->tbi_compatibility_en = TRUE;
+ hw->adaptive_ifs = TRUE;
+
+ /* Copper options */
+
+ if(hw->media_type == e1000_media_type_copper) {
+ hw->mdix = AUTO_ALL_MODES;
+ hw->disable_polarity_correction = FALSE;
+ hw->master_slave = E1000_MASTER_SLAVE;
+ }
+
+ atomic_set(&adapter->irq_sem, 1);
+ spin_lock_init(&adapter->stats_lock);
+ spin_lock_init(&adapter->tx_lock);
+
+ return 0;
+}
+
+/**
+ * e1000_open - Called when a network interface is made active
+ * @netdev: network interface device structure
+ *
+ * Returns 0 on success, negative value on failure
+ *
+ * The open entry point is called when a network interface is made
+ * active by the system (IFF_UP). At this point all resources needed
+ * for transmit and receive operations are allocated, the interrupt
+ * handler is registered with the OS, the watchdog timer is started,
+ * and the stack is notified that the interface is ready.
+ **/
+
+static int
+e1000_open(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ int err;
+
+ /* allocate transmit descriptors */
+
+ if((err = e1000_setup_tx_resources(adapter)))
+ goto err_setup_tx;
+
+ /* allocate receive descriptors */
+
+ if((err = e1000_setup_rx_resources(adapter)))
+ goto err_setup_rx;
+
+ if((err = e1000_up(adapter)))
+ goto err_up;
+
+ return E1000_SUCCESS;
+
+err_up:
+ e1000_free_rx_resources(adapter);
+err_setup_rx:
+ e1000_free_tx_resources(adapter);
+err_setup_tx:
+ e1000_reset(adapter);
+
+ return err;
+}
+
+/**
+ * e1000_close - Disables a network interface
+ * @netdev: network interface device structure
+ *
+ * Returns 0, this is not allowed to fail
+ *
+ * The close entry point is called when an interface is de-activated
+ * by the OS. The hardware is still under the drivers control, but
+ * needs to be disabled. A global MAC reset is issued to stop the
+ * hardware, and all transmit and receive resources are freed.
+ **/
+
+static int
+e1000_close(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ e1000_down(adapter);
+
+ e1000_free_tx_resources(adapter);
+ e1000_free_rx_resources(adapter);
+
+ return 0;
+}
+
+/**
+ * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
+ * @adapter: address of board private structure
+ * @begin: address of beginning of memory
+ * @end: address of end of memory
+ **/
+static inline boolean_t
+e1000_check_64k_bound(struct e1000_adapter *adapter,
+ void *start, unsigned long len)
+{
+ unsigned long begin = (unsigned long) start;
+ unsigned long end = begin + len;
+
+ /* first rev 82545 and 82546 need to not allow any memory
+ * write location to cross a 64k boundary due to errata 23 */
+ if (adapter->hw.mac_type == e1000_82545 ||
+ adapter->hw.mac_type == e1000_82546 ) {
+
+ /* check buffer doesn't cross 64kB */
+ return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
+ }
+
+ return TRUE;
+}
+
+/**
+ * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
+ * @adapter: board private structure
+ *
+ * Return 0 on success, negative on failure
+ **/
+
+int
+e1000_setup_tx_resources(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *txdr = &adapter->tx_ring;
+ struct pci_dev *pdev = adapter->pdev;
+ int size;
+
+ size = sizeof(struct e1000_buffer) * txdr->count;
+ txdr->buffer_info = vmalloc(size);
+ if(!txdr->buffer_info) {
+ DPRINTK(PROBE, ERR,
+ "Unable to Allocate Memory for the Transmit descriptor ring\n");
+ return -ENOMEM;
+ }
+ memset(txdr->buffer_info, 0, size);
+
+ /* round up to nearest 4K */
+
+ txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
+ E1000_ROUNDUP(txdr->size, 4096);
+
+ txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+ if(!txdr->desc) {
+setup_tx_desc_die:
+ DPRINTK(PROBE, ERR,
+ "Unable to Allocate Memory for the Transmit descriptor ring\n");
+ vfree(txdr->buffer_info);
+ return -ENOMEM;
+ }
+
+ /* fix for errata 23, cant cross 64kB boundary */
+ if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+ void *olddesc = txdr->desc;
+ dma_addr_t olddma = txdr->dma;
+ DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
+ txdr->size, txdr->desc);
+ /* try again, without freeing the previous */
+ txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
+ /* failed allocation, critial failure */
+ if(!txdr->desc) {
+ pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+ goto setup_tx_desc_die;
+ }
+
+ if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
+ /* give up */
+ pci_free_consistent(pdev, txdr->size,
+ txdr->desc, txdr->dma);
+ pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+ DPRINTK(PROBE, ERR,
+ "Unable to Allocate aligned Memory for the Transmit"
+ " descriptor ring\n");
+ vfree(txdr->buffer_info);
+ return -ENOMEM;
+ } else {
+ /* free old, move on with the new one since its okay */
+ pci_free_consistent(pdev, txdr->size, olddesc, olddma);
+ }
+ }
+ memset(txdr->desc, 0, txdr->size);
+
+ txdr->next_to_use = 0;
+ txdr->next_to_clean = 0;
+
+ return 0;
+}
+
+/**
+ * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Tx unit of the MAC after a reset.
+ **/
+
+static void
+e1000_configure_tx(struct e1000_adapter *adapter)
+{
+ uint64_t tdba = adapter->tx_ring.dma;
+ uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
+ uint32_t tctl, tipg;
+
+ E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
+ E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
+
+ E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers */
+
+ E1000_WRITE_REG(&adapter->hw, TDH, 0);
+ E1000_WRITE_REG(&adapter->hw, TDT, 0);
+
+ /* Set the default values for the Tx Inter Packet Gap timer */
+
+ switch (adapter->hw.mac_type) {
+ case e1000_82542_rev2_0:
+ case e1000_82542_rev2_1:
+ tipg = DEFAULT_82542_TIPG_IPGT;
+ tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ break;
+ default:
+ if(adapter->hw.media_type == e1000_media_type_fiber ||
+ adapter->hw.media_type == e1000_media_type_internal_serdes)
+ tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
+ tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+ }
+ E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
+
+ /* Set the Tx Interrupt Delay register */
+
+ E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
+ if(adapter->hw.mac_type >= e1000_82540)
+ E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
+
+ /* Program the Transmit Control Register */
+
+ tctl = E1000_READ_REG(&adapter->hw, TCTL);
+
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
+
+ E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
+
+ e1000_config_collision_dist(&adapter->hw);
+
+ /* Setup Transmit Descriptor Settings for eop descriptor */
+ adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
+ E1000_TXD_CMD_IFCS;
+
+ if(adapter->hw.mac_type < e1000_82543)
+ adapter->txd_cmd |= E1000_TXD_CMD_RPS;
+ else
+ adapter->txd_cmd |= E1000_TXD_CMD_RS;
+
+ /* Cache if we're 82544 running in PCI-X because we'll
+ * need this to apply a workaround later in the send path. */
+ if(adapter->hw.mac_type == e1000_82544 &&
+ adapter->hw.bus_type == e1000_bus_type_pcix)
+ adapter->pcix_82544 = 1;
+}
+
+/**
+ * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
+ * @adapter: board private structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+int
+e1000_setup_rx_resources(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *rxdr = &adapter->rx_ring;
+ struct pci_dev *pdev = adapter->pdev;
+ int size;
+
+ size = sizeof(struct e1000_buffer) * rxdr->count;
+ rxdr->buffer_info = vmalloc(size);
+ if(!rxdr->buffer_info) {
+ DPRINTK(PROBE, ERR,
+ "Unable to Allocate Memory for the Recieve descriptor ring\n");
+ return -ENOMEM;
+ }
+ memset(rxdr->buffer_info, 0, size);
+
+ /* Round up to nearest 4K */
+
+ rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
+ E1000_ROUNDUP(rxdr->size, 4096);
+
+ rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+
+ if(!rxdr->desc) {
+setup_rx_desc_die:
+ DPRINTK(PROBE, ERR,
+ "Unble to Allocate Memory for the Recieve descriptor ring\n");
+ vfree(rxdr->buffer_info);
+ return -ENOMEM;
+ }
+
+ /* fix for errata 23, cant cross 64kB boundary */
+ if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+ void *olddesc = rxdr->desc;
+ dma_addr_t olddma = rxdr->dma;
+ DPRINTK(RX_ERR,ERR,
+ "rxdr align check failed: %u bytes at %p\n",
+ rxdr->size, rxdr->desc);
+ /* try again, without freeing the previous */
+ rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
+ /* failed allocation, critial failure */
+ if(!rxdr->desc) {
+ pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+ goto setup_rx_desc_die;
+ }
+
+ if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
+ /* give up */
+ pci_free_consistent(pdev, rxdr->size,
+ rxdr->desc, rxdr->dma);
+ pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+ DPRINTK(PROBE, ERR,
+ "Unable to Allocate aligned Memory for the"
+ " Receive descriptor ring\n");
+ vfree(rxdr->buffer_info);
+ return -ENOMEM;
+ } else {
+ /* free old, move on with the new one since its okay */
+ pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
+ }
+ }
+ memset(rxdr->desc, 0, rxdr->size);
+
+ rxdr->next_to_clean = 0;
+ rxdr->next_to_use = 0;
+
+ return 0;
+}
+
+/**
+ * e1000_setup_rctl - configure the receive control register
+ * @adapter: Board private structure
+ **/
+
+static void
+e1000_setup_rctl(struct e1000_adapter *adapter)
+{
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
+ E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
+ (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ if(adapter->hw.tbi_compatibility_on == 1)
+ rctl |= E1000_RCTL_SBP;
+ else
+ rctl &= ~E1000_RCTL_SBP;
+
+ /* Setup buffer sizes */
+ rctl &= ~(E1000_RCTL_SZ_4096);
+ rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
+ switch (adapter->rx_buffer_len) {
+ case E1000_RXBUFFER_2048:
+ default:
+ rctl |= E1000_RCTL_SZ_2048;
+ rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
+ break;
+ case E1000_RXBUFFER_4096:
+ rctl |= E1000_RCTL_SZ_4096;
+ break;
+ case E1000_RXBUFFER_8192:
+ rctl |= E1000_RCTL_SZ_8192;
+ break;
+ case E1000_RXBUFFER_16384:
+ rctl |= E1000_RCTL_SZ_16384;
+ break;
+ }
+
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+}
+
+/**
+ * e1000_configure_rx - Configure 8254x Receive Unit after Reset
+ * @adapter: board private structure
+ *
+ * Configure the Rx unit of the MAC after a reset.
+ **/
+
+static void
+e1000_configure_rx(struct e1000_adapter *adapter)
+{
+ uint64_t rdba = adapter->rx_ring.dma;
+ uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
+ uint32_t rctl;
+ uint32_t rxcsum;
+
+ /* disable receives while setting up the descriptors */
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
+
+ /* set the Receive Delay Timer Register */
+ E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
+
+ if(adapter->hw.mac_type >= e1000_82540) {
+ E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
+ if(adapter->itr > 1)
+ E1000_WRITE_REG(&adapter->hw, ITR,
+ 1000000000 / (adapter->itr * 256));
+ }
+
+ /* Setup the Base and Length of the Rx Descriptor Ring */
+ E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
+ E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
+
+ E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
+
+ /* Setup the HW Rx Head and Tail Descriptor Pointers */
+ E1000_WRITE_REG(&adapter->hw, RDH, 0);
+ E1000_WRITE_REG(&adapter->hw, RDT, 0);
+
+ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
+ if((adapter->hw.mac_type >= e1000_82543) &&
+ (adapter->rx_csum == TRUE)) {
+ rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
+ rxcsum |= E1000_RXCSUM_TUOFL;
+ E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
+ }
+
+ /* Enable Receives */
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+}
+
+/**
+ * e1000_free_tx_resources - Free Tx Resources
+ * @adapter: board private structure
+ *
+ * Free all transmit software resources
+ **/
+
+void
+e1000_free_tx_resources(struct e1000_adapter *adapter)
+{
+ struct pci_dev *pdev = adapter->pdev;
+
+ e1000_clean_tx_ring(adapter);
+
+ vfree(adapter->tx_ring.buffer_info);
+ adapter->tx_ring.buffer_info = NULL;
+
+ pci_free_consistent(pdev, adapter->tx_ring.size,
+ adapter->tx_ring.desc, adapter->tx_ring.dma);
+
+ adapter->tx_ring.desc = NULL;
+}
+
+static inline void
+e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
+ struct e1000_buffer *buffer_info)
+{
+ struct pci_dev *pdev = adapter->pdev;
+
+ if(buffer_info->dma) {
+ pci_unmap_page(pdev,
+ buffer_info->dma,
+ buffer_info->length,
+ PCI_DMA_TODEVICE);
+ buffer_info->dma = 0;
+ }
+ if(buffer_info->skb) {
+ dev_kfree_skb_any(buffer_info->skb);
+ buffer_info->skb = NULL;
+ }
+}
+
+/**
+ * e1000_clean_tx_ring - Free Tx Buffers
+ * @adapter: board private structure
+ **/
+
+static void
+e1000_clean_tx_ring(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
+ struct e1000_buffer *buffer_info;
+ unsigned long size;
+ unsigned int i;
+
+ /* Free all the Tx ring sk_buffs */
+
+ if (likely(adapter->previous_buffer_info.skb != NULL)) {
+ e1000_unmap_and_free_tx_resource(adapter,
+ &adapter->previous_buffer_info);
+ }
+
+ for(i = 0; i < tx_ring->count; i++) {
+ buffer_info = &tx_ring->buffer_info[i];
+ e1000_unmap_and_free_tx_resource(adapter, buffer_info);
+ }
+
+ size = sizeof(struct e1000_buffer) * tx_ring->count;
+ memset(tx_ring->buffer_info, 0, size);
+
+ /* Zero out the descriptor ring */
+
+ memset(tx_ring->desc, 0, tx_ring->size);
+
+ tx_ring->next_to_use = 0;
+ tx_ring->next_to_clean = 0;
+
+ E1000_WRITE_REG(&adapter->hw, TDH, 0);
+ E1000_WRITE_REG(&adapter->hw, TDT, 0);
+}
+
+/**
+ * e1000_free_rx_resources - Free Rx Resources
+ * @adapter: board private structure
+ *
+ * Free all receive software resources
+ **/
+
+void
+e1000_free_rx_resources(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ struct pci_dev *pdev = adapter->pdev;
+
+ e1000_clean_rx_ring(adapter);
+
+ vfree(rx_ring->buffer_info);
+ rx_ring->buffer_info = NULL;
+
+ pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
+
+ rx_ring->desc = NULL;
+}
+
+/**
+ * e1000_clean_rx_ring - Free Rx Buffers
+ * @adapter: board private structure
+ **/
+
+static void
+e1000_clean_rx_ring(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ struct e1000_buffer *buffer_info;
+ struct pci_dev *pdev = adapter->pdev;
+ unsigned long size;
+ unsigned int i;
+
+ /* Free all the Rx ring sk_buffs */
+
+ for(i = 0; i < rx_ring->count; i++) {
+ buffer_info = &rx_ring->buffer_info[i];
+ if(buffer_info->skb) {
+
+ pci_unmap_single(pdev,
+ buffer_info->dma,
+ buffer_info->length,
+ PCI_DMA_FROMDEVICE);
+
+ dev_kfree_skb(buffer_info->skb);
+ buffer_info->skb = NULL;
+ }
+ }
+
+ size = sizeof(struct e1000_buffer) * rx_ring->count;
+ memset(rx_ring->buffer_info, 0, size);
+
+ /* Zero out the descriptor ring */
+
+ memset(rx_ring->desc, 0, rx_ring->size);
+
+ rx_ring->next_to_clean = 0;
+ rx_ring->next_to_use = 0;
+
+ E1000_WRITE_REG(&adapter->hw, RDH, 0);
+ E1000_WRITE_REG(&adapter->hw, RDT, 0);
+}
+
+/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
+ * and memory write and invalidate disabled for certain operations
+ */
+static void
+e1000_enter_82542_rst(struct e1000_adapter *adapter)
+{
+ struct net_device *netdev = adapter->netdev;
+ uint32_t rctl;
+
+ e1000_pci_clear_mwi(&adapter->hw);
+
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl |= E1000_RCTL_RST;
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ E1000_WRITE_FLUSH(&adapter->hw);
+ mdelay(5);
+
+ if(netif_running(netdev))
+ e1000_clean_rx_ring(adapter);
+}
+
+static void
+e1000_leave_82542_rst(struct e1000_adapter *adapter)
+{
+ struct net_device *netdev = adapter->netdev;
+ uint32_t rctl;
+
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl &= ~E1000_RCTL_RST;
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ E1000_WRITE_FLUSH(&adapter->hw);
+ mdelay(5);
+
+ if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
+ e1000_pci_set_mwi(&adapter->hw);
+
+ if(netif_running(netdev)) {
+ e1000_configure_rx(adapter);
+ e1000_alloc_rx_buffers(adapter);
+ }
+}
+
+/**
+ * e1000_set_mac - Change the Ethernet Address of the NIC
+ * @netdev: network interface device structure
+ * @p: pointer to an address structure
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int
+e1000_set_mac(struct net_device *netdev, void *p)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct sockaddr *addr = p;
+
+ if(!is_valid_ether_addr(addr->sa_data))
+ return -EADDRNOTAVAIL;
+
+ /* 82542 2.0 needs to be in reset to write receive address registers */
+
+ if(adapter->hw.mac_type == e1000_82542_rev2_0)
+ e1000_enter_82542_rst(adapter);
+
+ memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
+ memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
+
+ e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
+
+ if(adapter->hw.mac_type == e1000_82542_rev2_0)
+ e1000_leave_82542_rst(adapter);
+
+ return 0;
+}
+
+/**
+ * e1000_set_multi - Multicast and Promiscuous mode set
+ * @netdev: network interface device structure
+ *
+ * The set_multi entry point is called whenever the multicast address
+ * list or the network interface flags are updated. This routine is
+ * responsible for configuring the hardware for proper multicast,
+ * promiscuous mode, and all-multi behavior.
+ **/
+
+static void
+e1000_set_multi(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+ struct dev_mc_list *mc_ptr;
+ uint32_t rctl;
+ uint32_t hash_value;
+ int i;
+ unsigned long flags;
+
+ /* Check for Promiscuous and All Multicast modes */
+
+ spin_lock_irqsave(&adapter->tx_lock, flags);
+
+ rctl = E1000_READ_REG(hw, RCTL);
+
+ if(netdev->flags & IFF_PROMISC) {
+ rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ } else if(netdev->flags & IFF_ALLMULTI) {
+ rctl |= E1000_RCTL_MPE;
+ rctl &= ~E1000_RCTL_UPE;
+ } else {
+ rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
+ }
+
+ E1000_WRITE_REG(hw, RCTL, rctl);
+
+ /* 82542 2.0 needs to be in reset to write receive address registers */
+
+ if(hw->mac_type == e1000_82542_rev2_0)
+ e1000_enter_82542_rst(adapter);
+
+ /* load the first 14 multicast address into the exact filters 1-14
+ * RAR 0 is used for the station MAC adddress
+ * if there are not 14 addresses, go ahead and clear the filters
+ */
+ mc_ptr = netdev->mc_list;
+
+ for(i = 1; i < E1000_RAR_ENTRIES; i++) {
+ if(mc_ptr) {
+ e1000_rar_set(hw, mc_ptr->dmi_addr, i);
+ mc_ptr = mc_ptr->next;
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
+ }
+ }
+
+ /* clear the old settings from the multicast hash table */
+
+ for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+ /* load any remaining addresses into the hash table */
+
+ for(; mc_ptr; mc_ptr = mc_ptr->next) {
+ hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
+ e1000_mta_set(hw, hash_value);
+ }
+
+ if(hw->mac_type == e1000_82542_rev2_0)
+ e1000_leave_82542_rst(adapter);
+
+ spin_unlock_irqrestore(&adapter->tx_lock, flags);
+}
+
+/* Need to wait a few seconds after link up to get diagnostic information from
+ * the phy */
+
+static void
+e1000_update_phy_info(unsigned long data)
+{
+ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+ e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
+}
+
+/**
+ * e1000_82547_tx_fifo_stall - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+
+static void
+e1000_82547_tx_fifo_stall(unsigned long data)
+{
+ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+ struct net_device *netdev = adapter->netdev;
+ uint32_t tctl;
+
+ if(atomic_read(&adapter->tx_fifo_stall)) {
+ if((E1000_READ_REG(&adapter->hw, TDT) ==
+ E1000_READ_REG(&adapter->hw, TDH)) &&
+ (E1000_READ_REG(&adapter->hw, TDFT) ==
+ E1000_READ_REG(&adapter->hw, TDFH)) &&
+ (E1000_READ_REG(&adapter->hw, TDFTS) ==
+ E1000_READ_REG(&adapter->hw, TDFHS))) {
+ tctl = E1000_READ_REG(&adapter->hw, TCTL);
+ E1000_WRITE_REG(&adapter->hw, TCTL,
+ tctl & ~E1000_TCTL_EN);
+ E1000_WRITE_REG(&adapter->hw, TDFT,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, TDFH,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, TDFTS,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, TDFHS,
+ adapter->tx_head_addr);
+ E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
+ E1000_WRITE_FLUSH(&adapter->hw);
+
+ adapter->tx_fifo_head = 0;
+ atomic_set(&adapter->tx_fifo_stall, 0);
+ netif_wake_queue(netdev);
+ } else {
+ mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
+ }
+ }
+}
+
+/**
+ * e1000_watchdog - Timer Call-back
+ * @data: pointer to adapter cast into an unsigned long
+ **/
+static void
+e1000_watchdog(unsigned long data)
+{
+ struct e1000_adapter *adapter = (struct e1000_adapter *) data;
+
+ /* Do the rest outside of interrupt context */
+ schedule_work(&adapter->watchdog_task);
+}
+
+static void
+e1000_watchdog_task(struct e1000_adapter *adapter)
+{
+ struct net_device *netdev = adapter->netdev;
+ struct e1000_desc_ring *txdr = &adapter->tx_ring;
+ uint32_t link;
+
+ e1000_check_for_link(&adapter->hw);
+
+ if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
+ !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
+ link = !adapter->hw.serdes_link_down;
+ else
+ link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
+
+ if(link) {
+ if(!netif_carrier_ok(netdev)) {
+ e1000_get_speed_and_duplex(&adapter->hw,
+ &adapter->link_speed,
+ &adapter->link_duplex);
+
+ DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
+ adapter->link_speed,
+ adapter->link_duplex == FULL_DUPLEX ?
+ "Full Duplex" : "Half Duplex");
+
+ netif_carrier_on(netdev);
+ netif_wake_queue(netdev);
+ mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
+ adapter->smartspeed = 0;
+ }
+ } else {
+ if(netif_carrier_ok(netdev)) {
+ adapter->link_speed = 0;
+ adapter->link_duplex = 0;
+ DPRINTK(LINK, INFO, "NIC Link is Down\n");
+ netif_carrier_off(netdev);
+ netif_stop_queue(netdev);
+ mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
+ }
+
+ e1000_smartspeed(adapter);
+ }
+
+ e1000_update_stats(adapter);
+
+ adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
+ adapter->tpt_old = adapter->stats.tpt;
+ adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
+ adapter->colc_old = adapter->stats.colc;
+
+ adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
+ adapter->gorcl_old = adapter->stats.gorcl;
+ adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
+ adapter->gotcl_old = adapter->stats.gotcl;
+
+ e1000_update_adaptive(&adapter->hw);
+
+ if(!netif_carrier_ok(netdev)) {
+ if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
+ /* We've lost link, so the controller stops DMA,
+ * but we've got queued Tx work that's never going
+ * to get done, so reset controller to flush Tx.
+ * (Do the reset outside of interrupt context). */
+ schedule_work(&adapter->tx_timeout_task);
+ }
+ }
+
+ /* Dynamic mode for Interrupt Throttle Rate (ITR) */
+ if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
+ /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
+ * asymmetrical Tx or Rx gets ITR=8000; everyone
+ * else is between 2000-8000. */
+ uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
+ uint32_t dif = (adapter->gotcl > adapter->gorcl ?
+ adapter->gotcl - adapter->gorcl :
+ adapter->gorcl - adapter->gotcl) / 10000;
+ uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
+ E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
+ }
+
+ /* Cause software interrupt to ensure rx ring is cleaned */
+ E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
+
+ /* Force detection of hung controller every watchdog period*/
+ adapter->detect_tx_hung = TRUE;
+
+ /* Reset the timer */
+ mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
+}
+
+#define E1000_TX_FLAGS_CSUM 0x00000001
+#define E1000_TX_FLAGS_VLAN 0x00000002
+#define E1000_TX_FLAGS_TSO 0x00000004
+#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
+#define E1000_TX_FLAGS_VLAN_SHIFT 16
+
+static inline int
+e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
+{
+#ifdef NETIF_F_TSO
+ struct e1000_context_desc *context_desc;
+ unsigned int i;
+ uint32_t cmd_length = 0;
+ uint16_t ipcse, tucse, mss;
+ uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
+ int err;
+
+ if(skb_shinfo(skb)->tso_size) {
+ if (skb_header_cloned(skb)) {
+ err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+ if (err)
+ return err;
+ }
+
+ hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
+ mss = skb_shinfo(skb)->tso_size;
+ skb->nh.iph->tot_len = 0;
+ skb->nh.iph->check = 0;
+ skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
+ skb->nh.iph->daddr,
+ 0,
+ IPPROTO_TCP,
+ 0);
+ ipcss = skb->nh.raw - skb->data;
+ ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
+ ipcse = skb->h.raw - skb->data - 1;
+ tucss = skb->h.raw - skb->data;
+ tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
+ tucse = 0;
+
+ cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
+ E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
+ (skb->len - (hdr_len)));
+
+ i = adapter->tx_ring.next_to_use;
+ context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
+
+ context_desc->lower_setup.ip_fields.ipcss = ipcss;
+ context_desc->lower_setup.ip_fields.ipcso = ipcso;
+ context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
+ context_desc->upper_setup.tcp_fields.tucss = tucss;
+ context_desc->upper_setup.tcp_fields.tucso = tucso;
+ context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
+ context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
+ context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
+ context_desc->cmd_and_length = cpu_to_le32(cmd_length);
+
+ if(++i == adapter->tx_ring.count) i = 0;
+ adapter->tx_ring.next_to_use = i;
+
+ return 1;
+ }
+#endif
+
+ return 0;
+}
+
+static inline boolean_t
+e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
+{
+ struct e1000_context_desc *context_desc;
+ unsigned int i;
+ uint8_t css;
+
+ if(likely(skb->ip_summed == CHECKSUM_HW)) {
+ css = skb->h.raw - skb->data;
+
+ i = adapter->tx_ring.next_to_use;
+ context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
+
+ context_desc->upper_setup.tcp_fields.tucss = css;
+ context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
+ context_desc->upper_setup.tcp_fields.tucse = 0;
+ context_desc->tcp_seg_setup.data = 0;
+ context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
+
+ if(unlikely(++i == adapter->tx_ring.count)) i = 0;
+ adapter->tx_ring.next_to_use = i;
+
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+#define E1000_MAX_TXD_PWR 12
+#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
+
+static inline int
+e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
+ unsigned int first, unsigned int max_per_txd,
+ unsigned int nr_frags, unsigned int mss)
+{
+ struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
+ struct e1000_buffer *buffer_info;
+ unsigned int len = skb->len;
+ unsigned int offset = 0, size, count = 0, i;
+ unsigned int f;
+ len -= skb->data_len;
+
+ i = tx_ring->next_to_use;
+
+ while(len) {
+ buffer_info = &tx_ring->buffer_info[i];
+ size = min(len, max_per_txd);
+#ifdef NETIF_F_TSO
+ /* Workaround for premature desc write-backs
+ * in TSO mode. Append 4-byte sentinel desc */
+ if(unlikely(mss && !nr_frags && size == len && size > 8))
+ size -= 4;
+#endif
+ /* Workaround for potential 82544 hang in PCI-X. Avoid
+ * terminating buffers within evenly-aligned dwords. */
+ if(unlikely(adapter->pcix_82544 &&
+ !((unsigned long)(skb->data + offset + size - 1) & 4) &&
+ size > 4))
+ size -= 4;
+
+ buffer_info->length = size;
+ buffer_info->dma =
+ pci_map_single(adapter->pdev,
+ skb->data + offset,
+ size,
+ PCI_DMA_TODEVICE);
+ buffer_info->time_stamp = jiffies;
+
+ len -= size;
+ offset += size;
+ count++;
+ if(unlikely(++i == tx_ring->count)) i = 0;
+ }
+
+ for(f = 0; f < nr_frags; f++) {
+ struct skb_frag_struct *frag;
+
+ frag = &skb_shinfo(skb)->frags[f];
+ len = frag->size;
+ offset = frag->page_offset;
+
+ while(len) {
+ buffer_info = &tx_ring->buffer_info[i];
+ size = min(len, max_per_txd);
+#ifdef NETIF_F_TSO
+ /* Workaround for premature desc write-backs
+ * in TSO mode. Append 4-byte sentinel desc */
+ if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
+ size -= 4;
+#endif
+ /* Workaround for potential 82544 hang in PCI-X.
+ * Avoid terminating buffers within evenly-aligned
+ * dwords. */
+ if(unlikely(adapter->pcix_82544 &&
+ !((unsigned long)(frag->page+offset+size-1) & 4) &&
+ size > 4))
+ size -= 4;
+
+ buffer_info->length = size;
+ buffer_info->dma =
+ pci_map_page(adapter->pdev,
+ frag->page,
+ offset,
+ size,
+ PCI_DMA_TODEVICE);
+ buffer_info->time_stamp = jiffies;
+
+ len -= size;
+ offset += size;
+ count++;
+ if(unlikely(++i == tx_ring->count)) i = 0;
+ }
+ }
+
+ i = (i == 0) ? tx_ring->count - 1 : i - 1;
+ tx_ring->buffer_info[i].skb = skb;
+ tx_ring->buffer_info[first].next_to_watch = i;
+
+ return count;
+}
+
+static inline void
+e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
+{
+ struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
+ struct e1000_tx_desc *tx_desc = NULL;
+ struct e1000_buffer *buffer_info;
+ uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
+ unsigned int i;
+
+ if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
+ txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+ E1000_TXD_CMD_TSE;
+ txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
+ }
+
+ if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
+ txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
+ txd_upper |= E1000_TXD_POPTS_TXSM << 8;
+ }
+
+ if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
+ txd_lower |= E1000_TXD_CMD_VLE;
+ txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
+ }
+
+ i = tx_ring->next_to_use;
+
+ while(count--) {
+ buffer_info = &tx_ring->buffer_info[i];
+ tx_desc = E1000_TX_DESC(*tx_ring, i);
+ tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+ tx_desc->lower.data =
+ cpu_to_le32(txd_lower | buffer_info->length);
+ tx_desc->upper.data = cpu_to_le32(txd_upper);
+ if(unlikely(++i == tx_ring->count)) i = 0;
+ }
+
+ tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
+
+ /* Force memory writes to complete before letting h/w
+ * know there are new descriptors to fetch. (Only
+ * applicable for weak-ordered memory model archs,
+ * such as IA-64). */
+ wmb();
+
+ tx_ring->next_to_use = i;
+ E1000_WRITE_REG(&adapter->hw, TDT, i);
+}
+
+/**
+ * 82547 workaround to avoid controller hang in half-duplex environment.
+ * The workaround is to avoid queuing a large packet that would span
+ * the internal Tx FIFO ring boundary by notifying the stack to resend
+ * the packet at a later time. This gives the Tx FIFO an opportunity to
+ * flush all packets. When that occurs, we reset the Tx FIFO pointers
+ * to the beginning of the Tx FIFO.
+ **/
+
+#define E1000_FIFO_HDR 0x10
+#define E1000_82547_PAD_LEN 0x3E0
+
+static inline int
+e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
+{
+ uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
+ uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
+
+ E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
+
+ if(adapter->link_duplex != HALF_DUPLEX)
+ goto no_fifo_stall_required;
+
+ if(atomic_read(&adapter->tx_fifo_stall))
+ return 1;
+
+ if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
+ atomic_set(&adapter->tx_fifo_stall, 1);
+ return 1;
+ }
+
+no_fifo_stall_required:
+ adapter->tx_fifo_head += skb_fifo_len;
+ if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
+ adapter->tx_fifo_head -= adapter->tx_fifo_size;
+ return 0;
+}
+
+#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
+static int
+e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
+ unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
+ unsigned int tx_flags = 0;
+ unsigned int len = skb->len;
+ unsigned long flags;
+ unsigned int nr_frags = 0;
+ unsigned int mss = 0;
+ int count = 0;
+ int tso;
+ unsigned int f;
+ len -= skb->data_len;
+
+ if(unlikely(skb->len <= 0)) {
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+ }
+
+#ifdef NETIF_F_TSO
+ mss = skb_shinfo(skb)->tso_size;
+ /* The controller does a simple calculation to
+ * make sure there is enough room in the FIFO before
+ * initiating the DMA for each buffer. The calc is:
+ * 4 = ceil(buffer len/mss). To make sure we don't
+ * overrun the FIFO, adjust the max buffer len if mss
+ * drops. */
+ if(mss) {
+ max_per_txd = min(mss << 2, max_per_txd);
+ max_txd_pwr = fls(max_per_txd) - 1;
+ }
+
+ if((mss) || (skb->ip_summed == CHECKSUM_HW))
+ count++;
+ count++; /* for sentinel desc */
+#else
+ if(skb->ip_summed == CHECKSUM_HW)
+ count++;
+#endif
+ count += TXD_USE_COUNT(len, max_txd_pwr);
+
+ if(adapter->pcix_82544)
+ count++;
+
+ nr_frags = skb_shinfo(skb)->nr_frags;
+ for(f = 0; f < nr_frags; f++)
+ count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
+ max_txd_pwr);
+ if(adapter->pcix_82544)
+ count += nr_frags;
+
+ local_irq_save(flags);
+ if (!spin_trylock(&adapter->tx_lock)) {
+ /* Collision - tell upper layer to requeue */
+ local_irq_restore(flags);
+ return NETDEV_TX_LOCKED;
+ }
+
+ /* need: count + 2 desc gap to keep tail from touching
+ * head, otherwise try next time */
+ if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
+ netif_stop_queue(netdev);
+ spin_unlock_irqrestore(&adapter->tx_lock, flags);
+ return NETDEV_TX_BUSY;
+ }
+
+ if(unlikely(adapter->hw.mac_type == e1000_82547)) {
+ if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
+ netif_stop_queue(netdev);
+ mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
+ spin_unlock_irqrestore(&adapter->tx_lock, flags);
+ return NETDEV_TX_BUSY;
+ }
+ }
+
+ if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
+ tx_flags |= E1000_TX_FLAGS_VLAN;
+ tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
+ }
+
+ first = adapter->tx_ring.next_to_use;
+
+ tso = e1000_tso(adapter, skb);
+ if (tso < 0) {
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+ }
+
+ if (likely(tso))
+ tx_flags |= E1000_TX_FLAGS_TSO;
+ else if(likely(e1000_tx_csum(adapter, skb)))
+ tx_flags |= E1000_TX_FLAGS_CSUM;
+
+ e1000_tx_queue(adapter,
+ e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
+ tx_flags);
+
+ netdev->trans_start = jiffies;
+
+ /* Make sure there is space in the ring for the next send. */
+ if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
+ netif_stop_queue(netdev);
+
+ spin_unlock_irqrestore(&adapter->tx_lock, flags);
+ return NETDEV_TX_OK;
+}
+
+/**
+ * e1000_tx_timeout - Respond to a Tx Hang
+ * @netdev: network interface device structure
+ **/
+
+static void
+e1000_tx_timeout(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ /* Do the reset outside of interrupt context */
+ schedule_work(&adapter->tx_timeout_task);
+}
+
+static void
+e1000_tx_timeout_task(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ e1000_down(adapter);
+ e1000_up(adapter);
+}
+
+/**
+ * e1000_get_stats - Get System Network Statistics
+ * @netdev: network interface device structure
+ *
+ * Returns the address of the device statistics structure.
+ * The statistics are actually updated from the timer callback.
+ **/
+
+static struct net_device_stats *
+e1000_get_stats(struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+
+ e1000_update_stats(adapter);
+ return &adapter->net_stats;
+}
+
+/**
+ * e1000_change_mtu - Change the Maximum Transfer Unit
+ * @netdev: network interface device structure
+ * @new_mtu: new value for maximum frame size
+ *
+ * Returns 0 on success, negative on failure
+ **/
+
+static int
+e1000_change_mtu(struct net_device *netdev, int new_mtu)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ int old_mtu = adapter->rx_buffer_len;
+ int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
+
+ if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
+ (max_frame > MAX_JUMBO_FRAME_SIZE)) {
+ DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
+ return -EINVAL;
+ }
+
+ if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_2048;
+
+ } else if(adapter->hw.mac_type < e1000_82543) {
+ DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
+ return -EINVAL;
+
+ } else if(max_frame <= E1000_RXBUFFER_4096) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_4096;
+
+ } else if(max_frame <= E1000_RXBUFFER_8192) {
+ adapter->rx_buffer_len = E1000_RXBUFFER_8192;
+
+ } else {
+ adapter->rx_buffer_len = E1000_RXBUFFER_16384;
+ }
+
+ if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
+ e1000_down(adapter);
+ e1000_up(adapter);
+ }
+
+ netdev->mtu = new_mtu;
+ adapter->hw.max_frame_size = max_frame;
+
+ return 0;
+}
+
+/**
+ * e1000_update_stats - Update the board statistics counters
+ * @adapter: board private structure
+ **/
+
+void
+e1000_update_stats(struct e1000_adapter *adapter)
+{
+ struct e1000_hw *hw = &adapter->hw;
+ unsigned long flags;
+ uint16_t phy_tmp;
+
+#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
+
+ spin_lock_irqsave(&adapter->stats_lock, flags);
+
+ /* these counters are modified from e1000_adjust_tbi_stats,
+ * called from the interrupt context, so they must only
+ * be written while holding adapter->stats_lock
+ */
+
+ adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
+ adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
+ adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
+ adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
+ adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
+ adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
+ adapter->stats.roc += E1000_READ_REG(hw, ROC);
+ adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
+ adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
+ adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
+ adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
+ adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
+ adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
+
+ adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
+ adapter->stats.mpc += E1000_READ_REG(hw, MPC);
+ adapter->stats.scc += E1000_READ_REG(hw, SCC);
+ adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
+ adapter->stats.mcc += E1000_READ_REG(hw, MCC);
+ adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
+ adapter->stats.dc += E1000_READ_REG(hw, DC);
+ adapter->stats.sec += E1000_READ_REG(hw, SEC);
+ adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
+ adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
+ adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
+ adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
+ adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
+ adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
+ adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
+ adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
+ adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
+ adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
+ adapter->stats.ruc += E1000_READ_REG(hw, RUC);
+ adapter->stats.rfc += E1000_READ_REG(hw, RFC);
+ adapter->stats.rjc += E1000_READ_REG(hw, RJC);
+ adapter->stats.torl += E1000_READ_REG(hw, TORL);
+ adapter->stats.torh += E1000_READ_REG(hw, TORH);
+ adapter->stats.totl += E1000_READ_REG(hw, TOTL);
+ adapter->stats.toth += E1000_READ_REG(hw, TOTH);
+ adapter->stats.tpr += E1000_READ_REG(hw, TPR);
+ adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
+ adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
+ adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
+ adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
+ adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
+ adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
+ adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
+ adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
+
+ /* used for adaptive IFS */
+
+ hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
+ adapter->stats.tpt += hw->tx_packet_delta;
+ hw->collision_delta = E1000_READ_REG(hw, COLC);
+ adapter->stats.colc += hw->collision_delta;
+
+ if(hw->mac_type >= e1000_82543) {
+ adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
+ adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
+ adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
+ adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
+ adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
+ adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
+ }
+
+ /* Fill out the OS statistics structure */
+
+ adapter->net_stats.rx_packets = adapter->stats.gprc;
+ adapter->net_stats.tx_packets = adapter->stats.gptc;
+ adapter->net_stats.rx_bytes = adapter->stats.gorcl;
+ adapter->net_stats.tx_bytes = adapter->stats.gotcl;
+ adapter->net_stats.multicast = adapter->stats.mprc;
+ adapter->net_stats.collisions = adapter->stats.colc;
+
+ /* Rx Errors */
+
+ adapter->net_stats.rx_errors = adapter->stats.rxerrc +
+ adapter->stats.crcerrs + adapter->stats.algnerrc +
+ adapter->stats.rlec + adapter->stats.rnbc +
+ adapter->stats.mpc + adapter->stats.cexterr;
+ adapter->net_stats.rx_dropped = adapter->stats.rnbc;
+ adapter->net_stats.rx_length_errors = adapter->stats.rlec;
+ adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
+ adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
+ adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
+ adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
+
+ /* Tx Errors */
+
+ adapter->net_stats.tx_errors = adapter->stats.ecol +
+ adapter->stats.latecol;
+ adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
+ adapter->net_stats.tx_window_errors = adapter->stats.latecol;
+ adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
+
+ /* Tx Dropped needs to be maintained elsewhere */
+
+ /* Phy Stats */
+
+ if(hw->media_type == e1000_media_type_copper) {
+ if((adapter->link_speed == SPEED_1000) &&
+ (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
+ phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
+ adapter->phy_stats.idle_errors += phy_tmp;
+ }
+
+ if((hw->mac_type <= e1000_82546) &&
+ (hw->phy_type == e1000_phy_m88) &&
+ !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
+ adapter->phy_stats.receive_errors += phy_tmp;
+ }
+
+ spin_unlock_irqrestore(&adapter->stats_lock, flags);
+}
+
+/**
+ * e1000_intr - Interrupt Handler
+ * @irq: interrupt number
+ * @data: pointer to a network interface device structure
+ * @pt_regs: CPU registers structure
+ **/
+
+static irqreturn_t
+e1000_intr(int irq, void *data, struct pt_regs *regs)
+{
+ struct net_device *netdev = data;
+ struct e1000_adapter *adapter = netdev->priv;
+ struct e1000_hw *hw = &adapter->hw;
+ uint32_t icr = E1000_READ_REG(hw, ICR);
+#ifndef CONFIG_E1000_NAPI
+ unsigned int i;
+#endif
+
+ if(unlikely(!icr))
+ return IRQ_NONE; /* Not our interrupt */
+
+ if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
+ hw->get_link_status = 1;
+ mod_timer(&adapter->watchdog_timer, jiffies);
+ }
+
+#ifdef CONFIG_E1000_NAPI
+ if(likely(netif_rx_schedule_prep(netdev))) {
+
+ /* Disable interrupts and register for poll. The flush
+ of the posted write is intentionally left out.
+ */
+
+ atomic_inc(&adapter->irq_sem);
+ E1000_WRITE_REG(hw, IMC, ~0);
+ __netif_rx_schedule(netdev);
+ }
+#else
+ /* Writing IMC and IMS is needed for 82547.
+ Due to Hub Link bus being occupied, an interrupt
+ de-assertion message is not able to be sent.
+ When an interrupt assertion message is generated later,
+ two messages are re-ordered and sent out.
+ That causes APIC to think 82547 is in de-assertion
+ state, while 82547 is in assertion state, resulting
+ in dead lock. Writing IMC forces 82547 into
+ de-assertion state.
+ */
+ if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
+ atomic_inc(&adapter->irq_sem);
+ E1000_WRITE_REG(&adapter->hw, IMC, ~0);
+ }
+
+ for(i = 0; i < E1000_MAX_INTR; i++)
+ if(unlikely(!e1000_clean_rx_irq(adapter) &
+ !e1000_clean_tx_irq(adapter)))
+ break;
+
+ if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
+ e1000_irq_enable(adapter);
+#endif
+
+ return IRQ_HANDLED;
+}
+
+#ifdef CONFIG_E1000_NAPI
+/**
+ * e1000_clean - NAPI Rx polling callback
+ * @adapter: board private structure
+ **/
+
+static int
+e1000_clean(struct net_device *netdev, int *budget)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ int work_to_do = min(*budget, netdev->quota);
+ int tx_cleaned;
+ int work_done = 0;
+
+ tx_cleaned = e1000_clean_tx_irq(adapter);
+ e1000_clean_rx_irq(adapter, &work_done, work_to_do);
+
+ *budget -= work_done;
+ netdev->quota -= work_done;
+
+ /* if no Tx and not enough Rx work done, exit the polling mode */
+ if((!tx_cleaned && (work_done < work_to_do)) ||
+ !netif_running(netdev)) {
+ netif_rx_complete(netdev);
+ e1000_irq_enable(adapter);
+ return 0;
+ }
+
+ return 1;
+}
+
+#endif
+/**
+ * e1000_clean_tx_irq - Reclaim resources after transmit completes
+ * @adapter: board private structure
+ **/
+
+static boolean_t
+e1000_clean_tx_irq(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
+ struct net_device *netdev = adapter->netdev;
+ struct e1000_tx_desc *tx_desc, *eop_desc;
+ struct e1000_buffer *buffer_info;
+ unsigned int i, eop;
+ boolean_t cleaned = FALSE;
+
+ i = tx_ring->next_to_clean;
+ eop = tx_ring->buffer_info[i].next_to_watch;
+ eop_desc = E1000_TX_DESC(*tx_ring, eop);
+
+ while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
+ /* pre-mature writeback of Tx descriptors */
+ /* clear (free buffers and unmap pci_mapping) */
+ /* previous_buffer_info */
+ if (likely(adapter->previous_buffer_info.skb != NULL)) {
+ e1000_unmap_and_free_tx_resource(adapter,
+ &adapter->previous_buffer_info);
+ }
+
+ for(cleaned = FALSE; !cleaned; ) {
+ tx_desc = E1000_TX_DESC(*tx_ring, i);
+ buffer_info = &tx_ring->buffer_info[i];
+ cleaned = (i == eop);
+
+ /* pre-mature writeback of Tx descriptors */
+ /* save the cleaning of the this for the */
+ /* next iteration */
+ if (cleaned) {
+ memcpy(&adapter->previous_buffer_info,
+ buffer_info,
+ sizeof(struct e1000_buffer));
+ memset(buffer_info,
+ 0,
+ sizeof(struct e1000_buffer));
+ } else {
+ e1000_unmap_and_free_tx_resource(adapter,
+ buffer_info);
+ }
+
+ tx_desc->buffer_addr = 0;
+ tx_desc->lower.data = 0;
+ tx_desc->upper.data = 0;
+
+ cleaned = (i == eop);
+ if(unlikely(++i == tx_ring->count)) i = 0;
+ }
+
+ eop = tx_ring->buffer_info[i].next_to_watch;
+ eop_desc = E1000_TX_DESC(*tx_ring, eop);
+ }
+
+ tx_ring->next_to_clean = i;
+
+ spin_lock(&adapter->tx_lock);
+
+ if(unlikely(cleaned && netif_queue_stopped(netdev) &&
+ netif_carrier_ok(netdev)))
+ netif_wake_queue(netdev);
+
+ spin_unlock(&adapter->tx_lock);
+
+ if(adapter->detect_tx_hung) {
+ /* detect a transmit hang in hardware, this serializes the
+ * check with the clearing of time_stamp and movement of i */
+ adapter->detect_tx_hung = FALSE;
+ if(tx_ring->buffer_info[i].dma &&
+ time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
+ !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
+ netif_stop_queue(netdev);
+ }
+
+ return cleaned;
+}
+
+/**
+ * e1000_rx_checksum - Receive Checksum Offload for 82543
+ * @adapter: board private structure
+ * @rx_desc: receive descriptor
+ * @sk_buff: socket buffer with received data
+ **/
+
+static inline void
+e1000_rx_checksum(struct e1000_adapter *adapter,
+ struct e1000_rx_desc *rx_desc,
+ struct sk_buff *skb)
+{
+ /* 82543 or newer only */
+ if(unlikely((adapter->hw.mac_type < e1000_82543) ||
+ /* Ignore Checksum bit is set */
+ (rx_desc->status & E1000_RXD_STAT_IXSM) ||
+ /* TCP Checksum has not been calculated */
+ (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
+ skb->ip_summed = CHECKSUM_NONE;
+ return;
+ }
+
+ /* At this point we know the hardware did the TCP checksum */
+ /* now look at the TCP checksum error bit */
+ if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
+ /* let the stack verify checksum errors */
+ skb->ip_summed = CHECKSUM_NONE;
+ adapter->hw_csum_err++;
+ } else {
+ /* TCP checksum is good */
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ adapter->hw_csum_good++;
+ }
+}
+
+/**
+ * e1000_clean_rx_irq - Send received data up the network stack
+ * @adapter: board private structure
+ **/
+
+static boolean_t
+#ifdef CONFIG_E1000_NAPI
+e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
+ int work_to_do)
+#else
+e1000_clean_rx_irq(struct e1000_adapter *adapter)
+#endif
+{
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ struct net_device *netdev = adapter->netdev;
+ struct pci_dev *pdev = adapter->pdev;
+ struct e1000_rx_desc *rx_desc;
+ struct e1000_buffer *buffer_info;
+ struct sk_buff *skb;
+ unsigned long flags;
+ uint32_t length;
+ uint8_t last_byte;
+ unsigned int i;
+ boolean_t cleaned = FALSE;
+
+ i = rx_ring->next_to_clean;
+ rx_desc = E1000_RX_DESC(*rx_ring, i);
+
+ while(rx_desc->status & E1000_RXD_STAT_DD) {
+ buffer_info = &rx_ring->buffer_info[i];
+#ifdef CONFIG_E1000_NAPI
+ if(*work_done >= work_to_do)
+ break;
+ (*work_done)++;
+#endif
+ cleaned = TRUE;
+
+ pci_unmap_single(pdev,
+ buffer_info->dma,
+ buffer_info->length,
+ PCI_DMA_FROMDEVICE);
+
+ skb = buffer_info->skb;
+ length = le16_to_cpu(rx_desc->length);
+
+ if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
+ /* All receives must fit into a single buffer */
+ E1000_DBG("%s: Receive packet consumed multiple"
+ " buffers\n", netdev->name);
+ dev_kfree_skb_irq(skb);
+ goto next_desc;
+ }
+
+ if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
+ last_byte = *(skb->data + length - 1);
+ if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
+ rx_desc->errors, length, last_byte)) {
+ spin_lock_irqsave(&adapter->stats_lock, flags);
+ e1000_tbi_adjust_stats(&adapter->hw,
+ &adapter->stats,
+ length, skb->data);
+ spin_unlock_irqrestore(&adapter->stats_lock,
+ flags);
+ length--;
+ } else {
+ dev_kfree_skb_irq(skb);
+ goto next_desc;
+ }
+ }
+
+ /* Good Receive */
+ skb_put(skb, length - ETHERNET_FCS_SIZE);
+
+ /* Receive Checksum Offload */
+ e1000_rx_checksum(adapter, rx_desc, skb);
+
+ skb->protocol = eth_type_trans(skb, netdev);
+#ifdef CONFIG_E1000_NAPI
+ if(unlikely(adapter->vlgrp &&
+ (rx_desc->status & E1000_RXD_STAT_VP))) {
+ vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
+ le16_to_cpu(rx_desc->special) &
+ E1000_RXD_SPC_VLAN_MASK);
+ } else {
+ netif_receive_skb(skb);
+ }
+#else /* CONFIG_E1000_NAPI */
+ if(unlikely(adapter->vlgrp &&
+ (rx_desc->status & E1000_RXD_STAT_VP))) {
+ vlan_hwaccel_rx(skb, adapter->vlgrp,
+ le16_to_cpu(rx_desc->special) &
+ E1000_RXD_SPC_VLAN_MASK);
+ } else {
+ netif_rx(skb);
+ }
+#endif /* CONFIG_E1000_NAPI */
+ netdev->last_rx = jiffies;
+
+next_desc:
+ rx_desc->status = 0;
+ buffer_info->skb = NULL;
+ if(unlikely(++i == rx_ring->count)) i = 0;
+
+ rx_desc = E1000_RX_DESC(*rx_ring, i);
+ }
+
+ rx_ring->next_to_clean = i;
+
+ e1000_alloc_rx_buffers(adapter);
+
+ return cleaned;
+}
+
+/**
+ * e1000_alloc_rx_buffers - Replace used receive buffers
+ * @adapter: address of board private structure
+ **/
+
+static void
+e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
+{
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ struct net_device *netdev = adapter->netdev;
+ struct pci_dev *pdev = adapter->pdev;
+ struct e1000_rx_desc *rx_desc;
+ struct e1000_buffer *buffer_info;
+ struct sk_buff *skb;
+ unsigned int i, bufsz;
+
+ i = rx_ring->next_to_use;
+ buffer_info = &rx_ring->buffer_info[i];
+
+ while(!buffer_info->skb) {
+ bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
+
+ skb = dev_alloc_skb(bufsz);
+ if(unlikely(!skb)) {
+ /* Better luck next round */
+ break;
+ }
+
+ /* fix for errata 23, cant cross 64kB boundary */
+ if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+ struct sk_buff *oldskb = skb;
+ DPRINTK(RX_ERR,ERR,
+ "skb align check failed: %u bytes at %p\n",
+ bufsz, skb->data);
+ /* try again, without freeing the previous */
+ skb = dev_alloc_skb(bufsz);
+ if (!skb) {
+ dev_kfree_skb(oldskb);
+ break;
+ }
+ if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
+ /* give up */
+ dev_kfree_skb(skb);
+ dev_kfree_skb(oldskb);
+ break; /* while !buffer_info->skb */
+ } else {
+ /* move on with the new one */
+ dev_kfree_skb(oldskb);
+ }
+ }
+
+ /* Make buffer alignment 2 beyond a 16 byte boundary
+ * this will result in a 16 byte aligned IP header after
+ * the 14 byte MAC header is removed
+ */
+ skb_reserve(skb, NET_IP_ALIGN);
+
+ skb->dev = netdev;
+
+ buffer_info->skb = skb;
+ buffer_info->length = adapter->rx_buffer_len;
+ buffer_info->dma = pci_map_single(pdev,
+ skb->data,
+ adapter->rx_buffer_len,
+ PCI_DMA_FROMDEVICE);
+
+ /* fix for errata 23, cant cross 64kB boundary */
+ if(!e1000_check_64k_bound(adapter,
+ (void *)(unsigned long)buffer_info->dma,
+ adapter->rx_buffer_len)) {
+ DPRINTK(RX_ERR,ERR,
+ "dma align check failed: %u bytes at %ld\n",
+ adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
+
+ dev_kfree_skb(skb);
+ buffer_info->skb = NULL;
+
+ pci_unmap_single(pdev,
+ buffer_info->dma,
+ adapter->rx_buffer_len,
+ PCI_DMA_FROMDEVICE);
+
+ break; /* while !buffer_info->skb */
+ }
+
+ rx_desc = E1000_RX_DESC(*rx_ring, i);
+ rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
+
+ if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
+ /* Force memory writes to complete before letting h/w
+ * know there are new descriptors to fetch. (Only
+ * applicable for weak-ordered memory model archs,
+ * such as IA-64). */
+ wmb();
+
+ E1000_WRITE_REG(&adapter->hw, RDT, i);
+ }
+
+ if(unlikely(++i == rx_ring->count)) i = 0;
+ buffer_info = &rx_ring->buffer_info[i];
+ }
+
+ rx_ring->next_to_use = i;
+}
+
+/**
+ * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
+ * @adapter:
+ **/
+
+static void
+e1000_smartspeed(struct e1000_adapter *adapter)
+{
+ uint16_t phy_status;
+ uint16_t phy_ctrl;
+
+ if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
+ !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
+ return;
+
+ if(adapter->smartspeed == 0) {
+ /* If Master/Slave config fault is asserted twice,
+ * we assume back-to-back */
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
+ if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
+ if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
+ if(phy_ctrl & CR_1000T_MS_ENABLE) {
+ phy_ctrl &= ~CR_1000T_MS_ENABLE;
+ e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
+ phy_ctrl);
+ adapter->smartspeed++;
+ if(!e1000_phy_setup_autoneg(&adapter->hw) &&
+ !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
+ &phy_ctrl)) {
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+ MII_CR_RESTART_AUTO_NEG);
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
+ phy_ctrl);
+ }
+ }
+ return;
+ } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
+ /* If still no link, perhaps using 2/3 pair cable */
+ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
+ phy_ctrl |= CR_1000T_MS_ENABLE;
+ e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
+ if(!e1000_phy_setup_autoneg(&adapter->hw) &&
+ !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN |
+ MII_CR_RESTART_AUTO_NEG);
+ e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
+ }
+ }
+ /* Restart process after E1000_SMARTSPEED_MAX iterations */
+ if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
+ adapter->smartspeed = 0;
+}
+
+/**
+ * e1000_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int
+e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+ switch (cmd) {
+ case SIOCGMIIPHY:
+ case SIOCGMIIREG:
+ case SIOCSMIIREG:
+ return e1000_mii_ioctl(netdev, ifr, cmd);
+ default:
+ return -EOPNOTSUPP;
+ }
+}
+
+/**
+ * e1000_mii_ioctl -
+ * @netdev:
+ * @ifreq:
+ * @cmd:
+ **/
+
+static int
+e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ struct mii_ioctl_data *data = if_mii(ifr);
+ int retval;
+ uint16_t mii_reg;
+ uint16_t spddplx;
+
+ if(adapter->hw.media_type != e1000_media_type_copper)
+ return -EOPNOTSUPP;
+
+ switch (cmd) {
+ case SIOCGMIIPHY:
+ data->phy_id = adapter->hw.phy_addr;
+ break;
+ case SIOCGMIIREG:
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+ if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
+ &data->val_out))
+ return -EIO;
+ break;
+ case SIOCSMIIREG:
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+ if (data->reg_num & ~(0x1F))
+ return -EFAULT;
+ mii_reg = data->val_in;
+ if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
+ mii_reg))
+ return -EIO;
+ if (adapter->hw.phy_type == e1000_phy_m88) {
+ switch (data->reg_num) {
+ case PHY_CTRL:
+ if(mii_reg & MII_CR_POWER_DOWN)
+ break;
+ if(mii_reg & MII_CR_AUTO_NEG_EN) {
+ adapter->hw.autoneg = 1;
+ adapter->hw.autoneg_advertised = 0x2F;
+ } else {
+ if (mii_reg & 0x40)
+ spddplx = SPEED_1000;
+ else if (mii_reg & 0x2000)
+ spddplx = SPEED_100;
+ else
+ spddplx = SPEED_10;
+ spddplx += (mii_reg & 0x100)
+ ? FULL_DUPLEX :
+ HALF_DUPLEX;
+ retval = e1000_set_spd_dplx(adapter,
+ spddplx);
+ if(retval)
+ return retval;
+ }
+ if(netif_running(adapter->netdev)) {
+ e1000_down(adapter);
+ e1000_up(adapter);
+ } else
+ e1000_reset(adapter);
+ break;
+ case M88E1000_PHY_SPEC_CTRL:
+ case M88E1000_EXT_PHY_SPEC_CTRL:
+ if (e1000_phy_reset(&adapter->hw))
+ return -EIO;
+ break;
+ }
+ } else {
+ switch (data->reg_num) {
+ case PHY_CTRL:
+ if(mii_reg & MII_CR_POWER_DOWN)
+ break;
+ if(netif_running(adapter->netdev)) {
+ e1000_down(adapter);
+ e1000_up(adapter);
+ } else
+ e1000_reset(adapter);
+ break;
+ }
+ }
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+ return E1000_SUCCESS;
+}
+
+void
+e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+ struct e1000_adapter *adapter = hw->back;
+
+ int ret;
+ ret = pci_set_mwi(adapter->pdev);
+}
+
+void
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+ struct e1000_adapter *adapter = hw->back;
+
+ pci_clear_mwi(adapter->pdev);
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ struct e1000_adapter *adapter = hw->back;
+
+ pci_read_config_word(adapter->pdev, reg, value);
+}
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ struct e1000_adapter *adapter = hw->back;
+
+ pci_write_config_word(adapter->pdev, reg, *value);
+}
+
+uint32_t
+e1000_io_read(struct e1000_hw *hw, unsigned long port)
+{
+ return inl(port);
+}
+
+void
+e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
+{
+ outl(value, port);
+}
+
+static void
+e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ uint32_t ctrl, rctl;
+
+ e1000_irq_disable(adapter);
+ adapter->vlgrp = grp;
+
+ if(grp) {
+ /* enable VLAN tag insert/strip */
+ ctrl = E1000_READ_REG(&adapter->hw, CTRL);
+ ctrl |= E1000_CTRL_VME;
+ E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+
+ /* enable VLAN receive filtering */
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl |= E1000_RCTL_VFE;
+ rctl &= ~E1000_RCTL_CFIEN;
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ } else {
+ /* disable VLAN tag insert/strip */
+ ctrl = E1000_READ_REG(&adapter->hw, CTRL);
+ ctrl &= ~E1000_CTRL_VME;
+ E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+
+ /* disable VLAN filtering */
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl &= ~E1000_RCTL_VFE;
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ }
+
+ e1000_irq_enable(adapter);
+}
+
+static void
+e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ uint32_t vfta, index;
+
+ /* add VID to filter table */
+ index = (vid >> 5) & 0x7F;
+ vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
+ vfta |= (1 << (vid & 0x1F));
+ e1000_write_vfta(&adapter->hw, index, vfta);
+}
+
+static void
+e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ uint32_t vfta, index;
+
+ e1000_irq_disable(adapter);
+
+ if(adapter->vlgrp)
+ adapter->vlgrp->vlan_devices[vid] = NULL;
+
+ e1000_irq_enable(adapter);
+
+ /* remove VID from filter table */
+ index = (vid >> 5) & 0x7F;
+ vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
+ vfta &= ~(1 << (vid & 0x1F));
+ e1000_write_vfta(&adapter->hw, index, vfta);
+}
+
+static void
+e1000_restore_vlan(struct e1000_adapter *adapter)
+{
+ e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
+
+ if(adapter->vlgrp) {
+ uint16_t vid;
+ for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
+ if(!adapter->vlgrp->vlan_devices[vid])
+ continue;
+ e1000_vlan_rx_add_vid(adapter->netdev, vid);
+ }
+ }
+}
+
+int
+e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
+{
+ adapter->hw.autoneg = 0;
+
+ switch(spddplx) {
+ case SPEED_10 + DUPLEX_HALF:
+ adapter->hw.forced_speed_duplex = e1000_10_half;
+ break;
+ case SPEED_10 + DUPLEX_FULL:
+ adapter->hw.forced_speed_duplex = e1000_10_full;
+ break;
+ case SPEED_100 + DUPLEX_HALF:
+ adapter->hw.forced_speed_duplex = e1000_100_half;
+ break;
+ case SPEED_100 + DUPLEX_FULL:
+ adapter->hw.forced_speed_duplex = e1000_100_full;
+ break;
+ case SPEED_1000 + DUPLEX_FULL:
+ adapter->hw.autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case SPEED_1000 + DUPLEX_HALF: /* not supported */
+ default:
+ DPRINTK(PROBE, ERR,
+ "Unsupported Speed/Duplexity configuration\n");
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int
+e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
+{
+ struct pci_dev *pdev = NULL;
+
+ switch(event) {
+ case SYS_DOWN:
+ case SYS_HALT:
+ case SYS_POWER_OFF:
+ while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
+ if(pci_dev_driver(pdev) == &e1000_driver)
+ e1000_suspend(pdev, 3);
+ }
+ }
+ return NOTIFY_DONE;
+}
+
+static int
+e1000_suspend(struct pci_dev *pdev, uint32_t state)
+{
+ struct net_device *netdev = pci_get_drvdata(pdev);
+ struct e1000_adapter *adapter = netdev->priv;
+ uint32_t ctrl, ctrl_ext, rctl, manc, status;
+ uint32_t wufc = adapter->wol;
+
+ netif_device_detach(netdev);
+
+ if(netif_running(netdev))
+ e1000_down(adapter);
+
+ status = E1000_READ_REG(&adapter->hw, STATUS);
+ if(status & E1000_STATUS_LU)
+ wufc &= ~E1000_WUFC_LNKC;
+
+ if(wufc) {
+ e1000_setup_rctl(adapter);
+ e1000_set_multi(netdev);
+
+ /* turn on all-multi mode if wake on multicast is enabled */
+ if(adapter->wol & E1000_WUFC_MC) {
+ rctl = E1000_READ_REG(&adapter->hw, RCTL);
+ rctl |= E1000_RCTL_MPE;
+ E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
+ }
+
+ if(adapter->hw.mac_type >= e1000_82540) {
+ ctrl = E1000_READ_REG(&adapter->hw, CTRL);
+ /* advertise wake from D3Cold */
+ #define E1000_CTRL_ADVD3WUC 0x00100000
+ /* phy power management enable */
+ #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
+ ctrl |= E1000_CTRL_ADVD3WUC |
+ E1000_CTRL_EN_PHY_PWR_MGMT;
+ E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
+ }
+
+ if(adapter->hw.media_type == e1000_media_type_fiber ||
+ adapter->hw.media_type == e1000_media_type_internal_serdes) {
+ /* keep the laser running in D3 */
+ ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
+ E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
+ }
+
+ E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
+ E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
+ pci_enable_wake(pdev, 3, 1);
+ pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
+ } else {
+ E1000_WRITE_REG(&adapter->hw, WUC, 0);
+ E1000_WRITE_REG(&adapter->hw, WUFC, 0);
+ pci_enable_wake(pdev, 3, 0);
+ pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
+ }
+
+ pci_save_state(pdev);
+
+ if(adapter->hw.mac_type >= e1000_82540 &&
+ adapter->hw.media_type == e1000_media_type_copper) {
+ manc = E1000_READ_REG(&adapter->hw, MANC);
+ if(manc & E1000_MANC_SMBUS_EN) {
+ manc |= E1000_MANC_ARP_EN;
+ E1000_WRITE_REG(&adapter->hw, MANC, manc);
+ pci_enable_wake(pdev, 3, 1);
+ pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
+ }
+ }
+
+ pci_disable_device(pdev);
+
+ state = (state > 0) ? 3 : 0;
+ pci_set_power_state(pdev, state);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int
+e1000_resume(struct pci_dev *pdev)
+{
+ struct net_device *netdev = pci_get_drvdata(pdev);
+ struct e1000_adapter *adapter = netdev->priv;
+ uint32_t manc, ret;
+
+ pci_set_power_state(pdev, 0);
+ pci_restore_state(pdev);
+ ret = pci_enable_device(pdev);
+ if (pdev->is_busmaster)
+ pci_set_master(pdev);
+
+ pci_enable_wake(pdev, 3, 0);
+ pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
+
+ e1000_reset(adapter);
+ E1000_WRITE_REG(&adapter->hw, WUS, ~0);
+
+ if(netif_running(netdev))
+ e1000_up(adapter);
+
+ netif_device_attach(netdev);
+
+ if(adapter->hw.mac_type >= e1000_82540 &&
+ adapter->hw.media_type == e1000_media_type_copper) {
+ manc = E1000_READ_REG(&adapter->hw, MANC);
+ manc &= ~(E1000_MANC_ARP_EN);
+ E1000_WRITE_REG(&adapter->hw, MANC, manc);
+ }
+
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/*
+ * Polling 'interrupt' - used by things like netconsole to send skbs
+ * without having to re-enable interrupts. It's not called while
+ * the interrupt routine is executing.
+ */
+static void
+e1000_netpoll (struct net_device *netdev)
+{
+ struct e1000_adapter *adapter = netdev->priv;
+ disable_irq(adapter->pdev->irq);
+ e1000_intr(adapter->pdev->irq, netdev, NULL);
+ enable_irq(adapter->pdev->irq);
+}
+#endif
+
+/* e1000_main.c */
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h
new file mode 100644
index 00000000000..970c656a517
--- /dev/null
+++ b/drivers/net/e1000/e1000_osdep.h
@@ -0,0 +1,101 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+
+/* glue for the OS independent part of e1000
+ * includes register access macros
+ */
+
+#ifndef _E1000_OSDEP_H_
+#define _E1000_OSDEP_H_
+
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+
+#ifndef msec_delay
+#define msec_delay(x) msleep(x)
+
+/* Some workarounds require millisecond delays and are run during interrupt
+ * context. Most notably, when establishing link, the phy may need tweaking
+ * but cannot process phy register reads/writes faster than millisecond
+ * intervals...and we establish link due to a "link status change" interrupt.
+ */
+#define msec_delay_irq(x) mdelay(x)
+#endif
+
+#define PCI_COMMAND_REGISTER PCI_COMMAND
+#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE
+
+typedef enum {
+#undef FALSE
+ FALSE = 0,
+#undef TRUE
+ TRUE = 1
+} boolean_t;
+
+#define MSGOUT(S, A, B) printk(KERN_DEBUG S "\n", A, B)
+
+#ifdef DBG
+#define DEBUGOUT(S) printk(KERN_DEBUG S "\n")
+#define DEBUGOUT1(S, A...) printk(KERN_DEBUG S "\n", A)
+#else
+#define DEBUGOUT(S)
+#define DEBUGOUT1(S, A...)
+#endif
+
+#define DEBUGFUNC(F) DEBUGOUT(F)
+#define DEBUGOUT2 DEBUGOUT1
+#define DEBUGOUT3 DEBUGOUT2
+#define DEBUGOUT7 DEBUGOUT3
+
+
+#define E1000_WRITE_REG(a, reg, value) ( \
+ writel((value), ((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg))))
+
+#define E1000_READ_REG(a, reg) ( \
+ readl((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg)))
+
+#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
+ writel((value), ((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+ ((offset) << 2))))
+
+#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
+ readl((a)->hw_addr + \
+ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
+ ((offset) << 2)))
+
+#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS)
+
+#endif /* _E1000_OSDEP_H_ */
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c
new file mode 100644
index 00000000000..e914d09fe6f
--- /dev/null
+++ b/drivers/net/e1000/e1000_param.c
@@ -0,0 +1,744 @@
+/*******************************************************************************
+
+
+ Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2 of the License, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ more details.
+
+ You should have received a copy of the GNU General Public License along with
+ this program; if not, write to the Free Software Foundation, Inc., 59
+ Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+
+ The full GNU General Public License is included in this distribution in the
+ file called LICENSE.
+
+ Contact Information:
+ Linux NICS <linux.nics@intel.com>
+ Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000.h"
+
+/* This is the only thing that needs to be changed to adjust the
+ * maximum number of ports that the driver can manage.
+ */
+
+#define E1000_MAX_NIC 32
+
+#define OPTION_UNSET -1
+#define OPTION_DISABLED 0
+#define OPTION_ENABLED 1
+
+/* All parameters are treated the same, as an integer array of values.
+ * This macro just reduces the need to repeat the same declaration code
+ * over and over (plus this helps to avoid typo bugs).
+ */
+
+#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
+#define E1000_PARAM(X, desc) \
+ static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
+ static int num_##X = 0; \
+ module_param_array_named(X, X, int, &num_##X, 0); \
+ MODULE_PARM_DESC(X, desc);
+
+/* Transmit Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+
+E1000_PARAM(TxDescriptors, "Number of transmit descriptors");
+
+/* Receive Descriptor Count
+ *
+ * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
+ * Valid Range: 80-4096 for 82544 and newer
+ *
+ * Default Value: 256
+ */
+
+E1000_PARAM(RxDescriptors, "Number of receive descriptors");
+
+/* User Specified Speed Override
+ *
+ * Valid Range: 0, 10, 100, 1000
+ * - 0 - auto-negotiate at all supported speeds
+ * - 10 - only link at 10 Mbps
+ * - 100 - only link at 100 Mbps
+ * - 1000 - only link at 1000 Mbps
+ *
+ * Default Value: 0
+ */
+
+E1000_PARAM(Speed, "Speed setting");
+
+/* User Specified Duplex Override
+ *
+ * Valid Range: 0-2
+ * - 0 - auto-negotiate for duplex
+ * - 1 - only link at half duplex
+ * - 2 - only link at full duplex
+ *
+ * Default Value: 0
+ */
+
+E1000_PARAM(Duplex, "Duplex setting");
+
+/* Auto-negotiation Advertisement Override
+ *
+ * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber)
+ *
+ * The AutoNeg value is a bit mask describing which speed and duplex
+ * combinations should be advertised during auto-negotiation.
+ * The supported speed and duplex modes are listed below
+ *
+ * Bit 7 6 5 4 3 2 1 0
+ * Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10
+ * Duplex Full Full Half Full Half
+ *
+ * Default Value: 0x2F (copper); 0x20 (fiber)
+ */
+
+E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting");
+
+/* User Specified Flow Control Override
+ *
+ * Valid Range: 0-3
+ * - 0 - No Flow Control
+ * - 1 - Rx only, respond to PAUSE frames but do not generate them
+ * - 2 - Tx only, generate PAUSE frames but ignore them on receive
+ * - 3 - Full Flow Control Support
+ *
+ * Default Value: Read flow control settings from the EEPROM
+ */
+
+E1000_PARAM(FlowControl, "Flow Control setting");
+
+/* XsumRX - Receive Checksum Offload Enable/Disable
+ *
+ * Valid Range: 0, 1
+ * - 0 - disables all checksum offload
+ * - 1 - enables receive IP/TCP/UDP checksum offload
+ * on 82543 and newer -based NICs
+ *
+ * Default Value: 1
+ */
+
+E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
+
+/* Transmit Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ *
+ * Default Value: 64
+ */
+
+E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
+
+/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ *
+ * Default Value: 0
+ */
+
+E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
+
+/* Receive Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ *
+ * Default Value: 0
+ */
+
+E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
+
+/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
+ *
+ * Valid Range: 0-65535
+ *
+ * Default Value: 128
+ */
+
+E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
+
+/* Interrupt Throttle Rate (interrupts/sec)
+ *
+ * Valid Range: 100-100000 (0=off, 1=dynamic)
+ *
+ * Default Value: 1
+ */
+
+E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
+
+#define AUTONEG_ADV_DEFAULT 0x2F
+#define AUTONEG_ADV_MASK 0x2F
+#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
+
+#define DEFAULT_RDTR 0
+#define MAX_RXDELAY 0xFFFF
+#define MIN_RXDELAY 0
+
+#define DEFAULT_RADV 128
+#define MAX_RXABSDELAY 0xFFFF
+#define MIN_RXABSDELAY 0
+
+#define DEFAULT_TIDV 64
+#define MAX_TXDELAY 0xFFFF
+#define MIN_TXDELAY 0
+
+#define DEFAULT_TADV 64
+#define MAX_TXABSDELAY 0xFFFF
+#define MIN_TXABSDELAY 0
+
+#define DEFAULT_ITR 8000
+#define MAX_ITR 100000
+#define MIN_ITR 100
+
+struct e1000_option {
+ enum { enable_option, range_option, list_option } type;
+ char *name;
+ char *err;
+ int def;
+ union {
+ struct { /* range_option info */
+ int min;
+ int max;
+ } r;
+ struct { /* list_option info */
+ int nr;
+ struct e1000_opt_list { int i; char *str; } *p;
+ } l;
+ } arg;
+};
+
+static int __devinit
+e1000_validate_option(int *value, struct e1000_option *opt,
+ struct e1000_adapter *adapter)
+{
+ if(*value == OPTION_UNSET) {
+ *value = opt->def;
+ return 0;
+ }
+
+ switch (opt->type) {
+ case enable_option:
+ switch (*value) {
+ case OPTION_ENABLED:
+ DPRINTK(PROBE, INFO, "%s Enabled\n", opt->name);
+ return 0;
+ case OPTION_DISABLED:
+ DPRINTK(PROBE, INFO, "%s Disabled\n", opt->name);
+ return 0;
+ }
+ break;
+ case range_option:
+ if(*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
+ DPRINTK(PROBE, INFO,
+ "%s set to %i\n", opt->name, *value);
+ return 0;
+ }
+ break;
+ case list_option: {
+ int i;
+ struct e1000_opt_list *ent;
+
+ for(i = 0; i < opt->arg.l.nr; i++) {
+ ent = &opt->arg.l.p[i];
+ if(*value == ent->i) {
+ if(ent->str[0] != '\0')
+ DPRINTK(PROBE, INFO, "%s\n", ent->str);
+ return 0;
+ }
+ }
+ }
+ break;
+ default:
+ BUG();
+ }
+
+ DPRINTK(PROBE, INFO, "Invalid %s specified (%i) %s\n",
+ opt->name, *value, opt->err);
+ *value = opt->def;
+ return -1;
+}
+
+static void e1000_check_fiber_options(struct e1000_adapter *adapter);
+static void e1000_check_copper_options(struct e1000_adapter *adapter);
+
+/**
+ * e1000_check_options - Range Checking for Command Line Parameters
+ * @adapter: board private structure
+ *
+ * This routine checks all command line parameters for valid user
+ * input. If an invalid value is given, or if no user specified
+ * value exists, a default value is used. The final value is stored
+ * in a variable in the adapter structure.
+ **/
+
+void __devinit
+e1000_check_options(struct e1000_adapter *adapter)
+{
+ int bd = adapter->bd_number;
+ if(bd >= E1000_MAX_NIC) {
+ DPRINTK(PROBE, NOTICE,
+ "Warning: no configuration for board #%i\n", bd);
+ DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
+ }
+
+ { /* Transmit Descriptor Count */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Transmit Descriptors",
+ .err = "using default of "
+ __MODULE_STRING(E1000_DEFAULT_TXD),
+ .def = E1000_DEFAULT_TXD,
+ .arg = { .r = { .min = E1000_MIN_TXD }}
+ };
+ struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
+ e1000_mac_type mac_type = adapter->hw.mac_type;
+ opt.arg.r.max = mac_type < e1000_82544 ?
+ E1000_MAX_TXD : E1000_MAX_82544_TXD;
+
+ if (num_TxDescriptors > bd) {
+ tx_ring->count = TxDescriptors[bd];
+ e1000_validate_option(&tx_ring->count, &opt, adapter);
+ E1000_ROUNDUP(tx_ring->count,
+ REQ_TX_DESCRIPTOR_MULTIPLE);
+ } else {
+ tx_ring->count = opt.def;
+ }
+ }
+ { /* Receive Descriptor Count */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Receive Descriptors",
+ .err = "using default of "
+ __MODULE_STRING(E1000_DEFAULT_RXD),
+ .def = E1000_DEFAULT_RXD,
+ .arg = { .r = { .min = E1000_MIN_RXD }}
+ };
+ struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
+ e1000_mac_type mac_type = adapter->hw.mac_type;
+ opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD :
+ E1000_MAX_82544_RXD;
+
+ if (num_RxDescriptors > bd) {
+ rx_ring->count = RxDescriptors[bd];
+ e1000_validate_option(&rx_ring->count, &opt, adapter);
+ E1000_ROUNDUP(rx_ring->count,
+ REQ_RX_DESCRIPTOR_MULTIPLE);
+ } else {
+ rx_ring->count = opt.def;
+ }
+ }
+ { /* Checksum Offload Enable/Disable */
+ struct e1000_option opt = {
+ .type = enable_option,
+ .name = "Checksum Offload",
+ .err = "defaulting to Enabled",
+ .def = OPTION_ENABLED
+ };
+
+ if (num_XsumRX > bd) {
+ int rx_csum = XsumRX[bd];
+ e1000_validate_option(&rx_csum, &opt, adapter);
+ adapter->rx_csum = rx_csum;
+ } else {
+ adapter->rx_csum = opt.def;
+ }
+ }
+ { /* Flow Control */
+
+ struct e1000_opt_list fc_list[] =
+ {{ e1000_fc_none, "Flow Control Disabled" },
+ { e1000_fc_rx_pause,"Flow Control Receive Only" },
+ { e1000_fc_tx_pause,"Flow Control Transmit Only" },
+ { e1000_fc_full, "Flow Control Enabled" },
+ { e1000_fc_default, "Flow Control Hardware Default" }};
+
+ struct e1000_option opt = {
+ .type = list_option,
+ .name = "Flow Control",
+ .err = "reading default settings from EEPROM",
+ .def = e1000_fc_default,
+ .arg = { .l = { .nr = ARRAY_SIZE(fc_list),
+ .p = fc_list }}
+ };
+
+ if (num_FlowControl > bd) {
+ int fc = FlowControl[bd];
+ e1000_validate_option(&fc, &opt, adapter);
+ adapter->hw.fc = adapter->hw.original_fc = fc;
+ } else {
+ adapter->hw.fc = opt.def;
+ }
+ }
+ { /* Transmit Interrupt Delay */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Transmit Interrupt Delay",
+ .err = "using default of " __MODULE_STRING(DEFAULT_TIDV),
+ .def = DEFAULT_TIDV,
+ .arg = { .r = { .min = MIN_TXDELAY,
+ .max = MAX_TXDELAY }}
+ };
+
+ if (num_TxIntDelay > bd) {
+ adapter->tx_int_delay = TxIntDelay[bd];
+ e1000_validate_option(&adapter->tx_int_delay, &opt,
+ adapter);
+ } else {
+ adapter->tx_int_delay = opt.def;
+ }
+ }
+ { /* Transmit Absolute Interrupt Delay */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Transmit Absolute Interrupt Delay",
+ .err = "using default of " __MODULE_STRING(DEFAULT_TADV),
+ .def = DEFAULT_TADV,
+ .arg = { .r = { .min = MIN_TXABSDELAY,
+ .max = MAX_TXABSDELAY }}
+ };
+
+ if (num_TxAbsIntDelay > bd) {
+ adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
+ e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
+ adapter);
+ } else {
+ adapter->tx_abs_int_delay = opt.def;
+ }
+ }
+ { /* Receive Interrupt Delay */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Receive Interrupt Delay",
+ .err = "using default of " __MODULE_STRING(DEFAULT_RDTR),
+ .def = DEFAULT_RDTR,
+ .arg = { .r = { .min = MIN_RXDELAY,
+ .max = MAX_RXDELAY }}
+ };
+
+ if (num_RxIntDelay > bd) {
+ adapter->rx_int_delay = RxIntDelay[bd];
+ e1000_validate_option(&adapter->rx_int_delay, &opt,
+ adapter);
+ } else {
+ adapter->rx_int_delay = opt.def;
+ }
+ }
+ { /* Receive Absolute Interrupt Delay */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Receive Absolute Interrupt Delay",
+ .err = "using default of " __MODULE_STRING(DEFAULT_RADV),
+ .def = DEFAULT_RADV,
+ .arg = { .r = { .min = MIN_RXABSDELAY,
+ .max = MAX_RXABSDELAY }}
+ };
+
+ if (num_RxAbsIntDelay > bd) {
+ adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
+ e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
+ adapter);
+ } else {
+ adapter->rx_abs_int_delay = opt.def;
+ }
+ }
+ { /* Interrupt Throttling Rate */
+ struct e1000_option opt = {
+ .type = range_option,
+ .name = "Interrupt Throttling Rate (ints/sec)",
+ .err = "using default of " __MODULE_STRING(DEFAULT_ITR),
+ .def = DEFAULT_ITR,
+ .arg = { .r = { .min = MIN_ITR,
+ .max = MAX_ITR }}
+ };
+
+ if (num_InterruptThrottleRate > bd) {
+ adapter->itr = InterruptThrottleRate[bd];
+ switch(adapter->itr) {
+ case 0:
+ DPRINTK(PROBE, INFO, "%s turned off\n",
+ opt.name);
+ break;
+ case 1:
+ DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
+ opt.name);
+ break;
+ case -1:
+ default:
+ e1000_validate_option(&adapter->itr, &opt,
+ adapter);
+ break;
+ }
+ } else {
+ adapter->itr = opt.def;
+ }
+ }
+
+ switch(adapter->hw.media_type) {
+ case e1000_media_type_fiber:
+ case e1000_media_type_internal_serdes:
+ e1000_check_fiber_options(adapter);
+ break;
+ case e1000_media_type_copper:
+ e1000_check_copper_options(adapter);
+ break;
+ default:
+ BUG();
+ }
+}
+
+/**
+ * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on fiber adapters
+ **/
+
+static void __devinit
+e1000_check_fiber_options(struct e1000_adapter *adapter)
+{
+ int bd = adapter->bd_number;
+ if(num_Speed > bd) {
+ DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
+ "parameter ignored\n");
+ }
+
+ if(num_Duplex > bd) {
+ DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
+ "parameter ignored\n");
+ }
+
+ if((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
+ DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
+ "not valid for fiber adapters, "
+ "parameter ignored\n");
+ }
+}
+
+/**
+ * e1000_check_copper_options - Range Checking for Link Options, Copper Version
+ * @adapter: board private structure
+ *
+ * Handles speed and duplex options on copper adapters
+ **/
+
+static void __devinit
+e1000_check_copper_options(struct e1000_adapter *adapter)
+{
+ int speed, dplx;
+ int bd = adapter->bd_number;
+
+ { /* Speed */
+ struct e1000_opt_list speed_list[] = {{ 0, "" },
+ { SPEED_10, "" },
+ { SPEED_100, "" },
+ { SPEED_1000, "" }};
+
+ struct e1000_option opt = {
+ .type = list_option,
+ .name = "Speed",
+ .err = "parameter ignored",
+ .def = 0,
+ .arg = { .l = { .nr = ARRAY_SIZE(speed_list),
+ .p = speed_list }}
+ };
+
+ if (num_Speed > bd) {
+ speed = Speed[bd];
+ e1000_validate_option(&speed, &opt, adapter);
+ } else {
+ speed = opt.def;
+ }
+ }
+ { /* Duplex */
+ struct e1000_opt_list dplx_list[] = {{ 0, "" },
+ { HALF_DUPLEX, "" },
+ { FULL_DUPLEX, "" }};
+
+ struct e1000_option opt = {
+ .type = list_option,
+ .name = "Duplex",
+ .err = "parameter ignored",
+ .def = 0,
+ .arg = { .l = { .nr = ARRAY_SIZE(dplx_list),
+ .p = dplx_list }}
+ };
+
+ if (num_Duplex > bd) {
+ dplx = Duplex[bd];
+ e1000_validate_option(&dplx, &opt, adapter);
+ } else {
+ dplx = opt.def;
+ }
+ }
+
+ if((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
+ DPRINTK(PROBE, INFO,
+ "AutoNeg specified along with Speed or Duplex, "
+ "parameter ignored\n");
+ adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
+ } else { /* Autoneg */
+ struct e1000_opt_list an_list[] =
+ #define AA "AutoNeg advertising "
+ {{ 0x01, AA "10/HD" },
+ { 0x02, AA "10/FD" },
+ { 0x03, AA "10/FD, 10/HD" },
+ { 0x04, AA "100/HD" },
+ { 0x05, AA "100/HD, 10/HD" },
+ { 0x06, AA "100/HD, 10/FD" },
+ { 0x07, AA "100/HD, 10/FD, 10/HD" },
+ { 0x08, AA "100/FD" },
+ { 0x09, AA "100/FD, 10/HD" },
+ { 0x0a, AA "100/FD, 10/FD" },
+ { 0x0b, AA "100/FD, 10/FD, 10/HD" },
+ { 0x0c, AA "100/FD, 100/HD" },
+ { 0x0d, AA "100/FD, 100/HD, 10/HD" },
+ { 0x0e, AA "100/FD, 100/HD, 10/FD" },
+ { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" },
+ { 0x20, AA "1000/FD" },
+ { 0x21, AA "1000/FD, 10/HD" },
+ { 0x22, AA "1000/FD, 10/FD" },
+ { 0x23, AA "1000/FD, 10/FD, 10/HD" },
+ { 0x24, AA "1000/FD, 100/HD" },
+ { 0x25, AA "1000/FD, 100/HD, 10/HD" },
+ { 0x26, AA "1000/FD, 100/HD, 10/FD" },
+ { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" },
+ { 0x28, AA "1000/FD, 100/FD" },
+ { 0x29, AA "1000/FD, 100/FD, 10/HD" },
+ { 0x2a, AA "1000/FD, 100/FD, 10/FD" },
+ { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" },
+ { 0x2c, AA "1000/FD, 100/FD, 100/HD" },
+ { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" },
+ { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" },
+ { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }};
+
+ struct e1000_option opt = {
+ .type = list_option,
+ .name = "AutoNeg",
+ .err = "parameter ignored",
+ .def = AUTONEG_ADV_DEFAULT,
+ .arg = { .l = { .nr = ARRAY_SIZE(an_list),
+ .p = an_list }}
+ };
+
+ int an = AutoNeg[bd];
+ e1000_validate_option(&an, &opt, adapter);
+ adapter->hw.autoneg_advertised = an;
+ }
+
+ switch (speed + dplx) {
+ case 0:
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ if((num_Speed > bd) && (speed != 0 || dplx != 0))
+ DPRINTK(PROBE, INFO,
+ "Speed and duplex autonegotiation enabled\n");
+ break;
+ case HALF_DUPLEX:
+ DPRINTK(PROBE, INFO, "Half Duplex specified without Speed\n");
+ DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+ "Half Duplex only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+ ADVERTISE_100_HALF;
+ break;
+ case FULL_DUPLEX:
+ DPRINTK(PROBE, INFO, "Full Duplex specified without Speed\n");
+ DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+ "Full Duplex only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
+ ADVERTISE_100_FULL |
+ ADVERTISE_1000_FULL;
+ break;
+ case SPEED_10:
+ DPRINTK(PROBE, INFO, "10 Mbps Speed specified "
+ "without Duplex\n");
+ DPRINTK(PROBE, INFO, "Using Autonegotiation at 10 Mbps only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
+ ADVERTISE_10_FULL;
+ break;
+ case SPEED_10 + HALF_DUPLEX:
+ DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Half Duplex\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 0;
+ adapter->hw.forced_speed_duplex = e1000_10_half;
+ adapter->hw.autoneg_advertised = 0;
+ break;
+ case SPEED_10 + FULL_DUPLEX:
+ DPRINTK(PROBE, INFO, "Forcing to 10 Mbps Full Duplex\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 0;
+ adapter->hw.forced_speed_duplex = e1000_10_full;
+ adapter->hw.autoneg_advertised = 0;
+ break;
+ case SPEED_100:
+ DPRINTK(PROBE, INFO, "100 Mbps Speed specified "
+ "without Duplex\n");
+ DPRINTK(PROBE, INFO, "Using Autonegotiation at "
+ "100 Mbps only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
+ ADVERTISE_100_FULL;
+ break;
+ case SPEED_100 + HALF_DUPLEX:
+ DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Half Duplex\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 0;
+ adapter->hw.forced_speed_duplex = e1000_100_half;
+ adapter->hw.autoneg_advertised = 0;
+ break;
+ case SPEED_100 + FULL_DUPLEX:
+ DPRINTK(PROBE, INFO, "Forcing to 100 Mbps Full Duplex\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 0;
+ adapter->hw.forced_speed_duplex = e1000_100_full;
+ adapter->hw.autoneg_advertised = 0;
+ break;
+ case SPEED_1000:
+ DPRINTK(PROBE, INFO, "1000 Mbps Speed specified without "
+ "Duplex\n");
+ DPRINTK(PROBE, INFO,
+ "Using Autonegotiation at 1000 Mbps "
+ "Full Duplex only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case SPEED_1000 + HALF_DUPLEX:
+ DPRINTK(PROBE, INFO,
+ "Half Duplex is not supported at 1000 Mbps\n");
+ DPRINTK(PROBE, INFO,
+ "Using Autonegotiation at 1000 Mbps "
+ "Full Duplex only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ case SPEED_1000 + FULL_DUPLEX:
+ DPRINTK(PROBE, INFO,
+ "Using Autonegotiation at 1000 Mbps Full Duplex only\n");
+ adapter->hw.autoneg = adapter->fc_autoneg = 1;
+ adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
+ break;
+ default:
+ BUG();
+ }
+
+ /* Speed, AutoNeg and MDI/MDI-X must all play nice */
+ if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
+ DPRINTK(PROBE, INFO,
+ "Speed, AutoNeg and MDI-X specifications are "
+ "incompatible. Setting MDI-X to a compatible value.\n");
+ }
+}
+