diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-04-07 07:42:33 -0700 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-10 20:03:27 -0700 |
commit | dee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch) | |
tree | 47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/e1000e/phy.c | |
parent | f7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff) |
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and
the necessary Kconfig and Makefile changes.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/e1000e/phy.c')
-rw-r--r-- | drivers/net/e1000e/phy.c | 3377 |
1 files changed, 0 insertions, 3377 deletions
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c deleted file mode 100644 index 8666476cb9b..00000000000 --- a/drivers/net/e1000e/phy.c +++ /dev/null @@ -1,3377 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include <linux/delay.h> - -#include "e1000.h" - -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); -static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -static s32 e1000_wait_autoneg(struct e1000_hw *hw); -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read, bool page_set); -static u32 e1000_get_phy_addr_for_hv_page(u32 page); -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read); - -/* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = { - 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - ARRAY_SIZE(e1000_m88_cable_length_table) - -static const u16 e1000_igp_2_cable_length_table[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, - 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, - 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, - 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, - 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, - 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, - 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, - 124}; -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ - ARRAY_SIZE(e1000_igp_2_cable_length_table) - -#define BM_PHY_REG_PAGE(offset) \ - ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) -#define BM_PHY_REG_NUM(offset) \ - ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ - (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ - ~MAX_PHY_REG_ADDRESS))) - -#define HV_INTC_FC_PAGE_START 768 -#define I82578_ADDR_REG 29 -#define I82577_ADDR_REG 16 -#define I82577_CFG_REG 22 -#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ -#define I82577_CTRL_REG 23 - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2 18 -#define I82577_PHY_STATUS_2 26 -#define I82577_PHY_DIAG_STATUS 31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 -#define I82577_PHY_STATUS2_MDIX 0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400 -#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH 0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -/* BM PHY Copper Specific Control 1 */ -#define BM_CS_CTRL1 16 - -#define HV_MUX_DATA_CTRL PHY_REG(776, 16) -#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 -#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 - -/** - * e1000e_check_reset_block_generic - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return 0, otherwise - * return E1000_BLK_PHY_RESET (12). - **/ -s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) -{ - u32 manc; - - manc = er32(MANC); - - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : 0; -} - -/** - * e1000e_get_phy_id - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - **/ -s32 e1000e_get_phy_id(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; - u16 phy_id; - u16 retry_count = 0; - - if (!(phy->ops.read_reg)) - goto out; - - while (retry_count < 2) { - ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); - if (ret_val) - goto out; - - phy->id = (u32)(phy_id << 16); - udelay(20); - ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); - if (ret_val) - goto out; - - phy->id |= (u32)(phy_id & PHY_REVISION_MASK); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - - if (phy->id != 0 && phy->id != PHY_REVISION_MASK) - goto out; - - retry_count++; - } -out: - return ret_val; -} - -/** - * e1000e_phy_reset_dsp - Reset PHY DSP - * @hw: pointer to the HW structure - * - * Reset the digital signal processor. - **/ -s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) -{ - s32 ret_val; - - ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); - if (ret_val) - return ret_val; - - return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); -} - -/** - * e1000e_read_phy_reg_mdic - Read MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - **/ -s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - if (offset > MAX_PHY_REG_ADDRESS) { - e_dbg("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* - * Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - ew32(MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - udelay(50); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - e_dbg("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - e_dbg("MDI Error\n"); - return -E1000_ERR_PHY; - } - *data = (u16) mdic; - - /* - * Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - udelay(100); - - return 0; -} - -/** - * e1000e_write_phy_reg_mdic - Write MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - **/ -s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - if (offset > MAX_PHY_REG_ADDRESS) { - e_dbg("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* - * Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = (((u32)data) | - (offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - ew32(MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - udelay(50); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - e_dbg("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - e_dbg("MDI Error\n"); - return -E1000_ERR_PHY; - } - - /* - * Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - udelay(100); - - return 0; -} - -/** - * e1000e_read_phy_reg_m88 - Read m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000e_write_phy_reg_m88 - Write m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_set_page_igp - Set page as on IGP-like PHY(s) - * @hw: pointer to the HW structure - * @page: page to set (shifted left when necessary) - * - * Sets PHY page required for PHY register access. Assumes semaphore is - * already acquired. Note, this function sets phy.addr to 1 so the caller - * must set it appropriately (if necessary) after this function returns. - **/ -s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) -{ - e_dbg("Setting page 0x%x\n", page); - - hw->phy.addr = 1; - - return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); -} - -/** - * __e1000e_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000e_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - if (!locked) - hw->phy.ops.release(hw); -out: - return ret_val; -} - -/** - * e1000e_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores the - * retrieved information in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000e_read_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000e_read_phy_reg_igp_locked - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000e_read_phy_reg_igp(hw, offset, data, true); -} - -/** - * e1000e_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000e_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - if (!locked) - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000e_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000e_write_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000e_write_phy_reg_igp_locked - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. - * Assumes semaphore already acquired. - **/ -s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000e_write_phy_reg_igp(hw, offset, data, true); -} - -/** - * __e1000_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then reads the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release any acquired semaphores before exiting. - **/ -static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - ew32(KMRNCTRLSTA, kmrnctrlsta); - e1e_flush(); - - udelay(2); - - kmrnctrlsta = er32(KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - if (!locked) - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000e_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset using the - * kumeran interface. The information retrieved is stored in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000e_read_kmrn_reg_locked - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the kumeran interface. The - * information retrieved is stored in data. - * Assumes semaphore already acquired. - **/ -s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, true); -} - -/** - * __e1000_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then write the data to PHY register - * at the offset using the kumeran interface. Release any acquired semaphores - * before exiting. - **/ -static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - ew32(KMRNCTRLSTA, kmrnctrlsta); - e1e_flush(); - - udelay(2); - - if (!locked) - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000e_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to the PHY register at the offset - * using the kumeran interface. Release the acquired semaphore before exiting. - **/ -s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000e_write_kmrn_reg_locked - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Write the data to PHY register at the offset using the kumeran interface. - * Assumes semaphore already acquired. - **/ -s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, true); -} - -/** - * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - * @hw: pointer to the HW structure - * - * Sets up Carrier-sense on Transmit and downshift values. - **/ -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); - if (ret_val) - goto out; - - phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - - /* Enable downshift */ - phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - - ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); - -out: - return ret_val; -} - -/** - * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock - * and downshift values are set also. - **/ -s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* For BM PHY this bit is downshift enable */ - if (phy->type != e1000_phy_bm) - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* - * Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* - * Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift on BM (disabled by default) */ - if (phy->type == e1000_phy_bm) - phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; - - ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((phy->type == e1000_phy_m88) && - (phy->revision < E1000_REVISION_4) && - (phy->id != BME1000_E_PHY_ID_R2)) { - /* - * Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((phy->revision == 2) && - (phy->id == M88E1111_I_PHY_ID)) { - /* 82573L PHY - set the downshift counter to 5x. */ - phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - } - ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { - /* Set PHY page 0, register 29 to 0x0003 */ - ret_val = e1e_wphy(hw, 29, 0x0003); - if (ret_val) - return ret_val; - - /* Set PHY page 0, register 30 to 0x0000 */ - ret_val = e1e_wphy(hw, 30, 0x0000); - if (ret_val) - return ret_val; - } - - /* Commit the changes. */ - ret_val = e1000e_commit_phy(hw); - if (ret_val) { - e_dbg("Error committing the PHY changes\n"); - return ret_val; - } - - if (phy->type == e1000_phy_82578) { - ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* 82578 PHY - set the downshift count to 1x. */ - phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; - phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; - ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - return 0; -} - -/** - * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - * igp PHY's. - **/ -s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) { - e_dbg("Error resetting the PHY.\n"); - return ret_val; - } - - /* - * Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msleep(100); - - /* disable lplu d0 during driver init */ - ret_val = e1000_set_d0_lplu_state(hw, false); - if (ret_val) { - e_dbg("Error Disabling LPLU D0\n"); - return ret_val; - } - /* Configure mdi-mdix settings */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (phy->mdix) { - case 1: - data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->mac.autoneg) { - /* - * when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. - */ - if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - - /* Set auto Master/Slave resolution process */ - ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~CR_1000T_MS_ENABLE; - ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); - if (ret_val) - return ret_val; - } - - ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? - ((data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy->ms_type) { - case e1000_ms_force_master: - data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - data |= CR_1000T_MS_ENABLE; - data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); - } - - return ret_val; -} - -/** - * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - * @hw: pointer to the HW structure - * - * Reads the MII auto-neg advertisement register and/or the 1000T control - * register and if the PHY is already setup for auto-negotiation, then - * return successful. Otherwise, setup advertisement and flow control to - * the appropriate values for the wanted auto-negotiation. - **/ -static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg = 0; - - phy->autoneg_advertised &= phy->autoneg_mask; - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - /* - * Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* - * First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | - NWAY_AR_100TX_HD_CAPS | - NWAY_AR_10T_FD_CAPS | - NWAY_AR_10T_HD_CAPS); - mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - - e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - e_dbg("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - e_dbg("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - e_dbg("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - e_dbg("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (phy->autoneg_advertised & ADVERTISE_1000_HALF) - e_dbg("Advertise 1000mb Half duplex request denied!\n"); - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - e_dbg("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* - * Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- - * negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* - * Flow control (Rx & Tx) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled, and Tx Flow control is - * disabled, by a software over-ride. - * - * Since there really isn't a way to advertise that we are - * capable of Rx Pause ONLY, we will advertise that we - * support both symmetric and asymmetric Rx PAUSE. Later - * (in e1000e_config_fc_after_link_up) we will disable the - * hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - return ret_val; - } - - ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) - ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - - return ret_val; -} - -/** - * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - **/ -static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - /* - * Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* - * If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (phy->autoneg_advertised == 0) - phy->autoneg_advertised = phy->autoneg_mask; - - e_dbg("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - e_dbg("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - e_dbg("Restarting Auto-Neg\n"); - - /* - * Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - /* - * Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - e_dbg("Error while waiting for " - "autoneg to complete\n"); - return ret_val; - } - } - - hw->mac.get_link_status = 1; - - return ret_val; -} - -/** - * e1000e_setup_copper_link - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - **/ -s32 e1000e_setup_copper_link(struct e1000_hw *hw) -{ - s32 ret_val; - bool link; - - if (hw->mac.autoneg) { - /* - * Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* - * PHY will be set to 10H, 10F, 100H or 100F - * depending on user settings. - */ - e_dbg("Forcing Speed and Duplex\n"); - ret_val = e1000_phy_force_speed_duplex(hw); - if (ret_val) { - e_dbg("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* - * Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000e_phy_has_link_generic(hw, - COPPER_LINK_UP_LIMIT, - 10, - &link); - if (ret_val) - return ret_val; - - if (link) { - e_dbg("Valid link established!!!\n"); - e1000e_config_collision_dist(hw); - ret_val = e1000e_config_fc_after_link_up(hw); - } else { - e_dbg("Unable to establish link!!!\n"); - } - - return ret_val; -} - -/** - * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - **/ -s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* - * Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - e_dbg("IGP PSCR: %X\n", phy_data); - - udelay(1); - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - return ret_val; - - if (!link) - e_dbg("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - return ret_val; - } - - return ret_val; -} - -/** - * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Resets the PHY to commit the - * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on Tx must be set. Return successful upon - * successful completion, else return corresponding error code. - **/ -s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - /* - * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - e_dbg("M88E1000 PSCR: %X\n", phy_data); - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Reset the phy to commit changes. */ - ret_val = e1000e_commit_phy(hw); - if (ret_val) - return ret_val; - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) { - if (hw->phy.type != e1000_phy_m88) { - e_dbg("Link taking longer than expected.\n"); - } else { - /* - * We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, - 0x001d); - if (ret_val) - return ret_val; - ret_val = e1000e_phy_reset_dsp(hw); - if (ret_val) - return ret_val; - } - } - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - if (hw->phy.type != e1000_phy_m88) - return 0; - - ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* - * Resetting the phy means we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock from - * the reset value of 2.5MHz. - */ - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* - * In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - * @hw: pointer to the HW structure - * - * Forces the speed and duplex settings of the PHY. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &data); - if (ret_val) - goto out; - - e1000e_phy_force_speed_duplex_setup(hw, &data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, data); - if (ret_val) - goto out; - - /* Disable MDI-X support for 10/100 */ - ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - data &= ~IFE_PMC_AUTO_MDIX; - data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); - if (ret_val) - goto out; - - e_dbg("IFE PMC: %X\n", data); - - udelay(1); - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) - e_dbg("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - * @hw: pointer to the HW structure - * @phy_ctrl: pointer to current value of PHY_CONTROL - * - * Forces speed and duplex on the PHY by doing the following: disable flow - * control, force speed/duplex on the MAC, disable auto speed detection, - * disable auto-negotiation, configure duplex, configure speed, configure - * the collision distance, write configuration to CTRL register. The - * caller must write to the PHY_CONTROL register for these settings to - * take affect. - **/ -void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl; - - /* Turn off flow control when forcing speed/duplex */ - hw->fc.current_mode = e1000_fc_none; - - /* Force speed/duplex on the mac */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~E1000_CTRL_SPD_SEL; - - /* Disable Auto Speed Detection */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Disable autoneg on the phy */ - *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - - /* Forcing Full or Half Duplex? */ - if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { - ctrl &= ~E1000_CTRL_FD; - *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - e_dbg("Half Duplex\n"); - } else { - ctrl |= E1000_CTRL_FD; - *phy_ctrl |= MII_CR_FULL_DUPLEX; - e_dbg("Full Duplex\n"); - } - - /* Forcing 10mb or 100mb? */ - if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { - ctrl |= E1000_CTRL_SPD_100; - *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - e_dbg("Forcing 100mb\n"); - } else { - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - *phy_ctrl |= MII_CR_SPEED_10; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - e_dbg("Forcing 10mb\n"); - } - - e1000e_config_collision_dist(hw); - - ew32(CTRL, ctrl); -} - -/** - * e1000e_set_d3_lplu_state - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - return ret_val; - - if (!active) { - data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); - if (ret_val) - return ret_val; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP02E1000_PM_D3_LPLU; - ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); - if (ret_val) - return ret_val; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); - } - - return ret_val; -} - -/** - * e1000e_check_downshift - Checks whether a downshift in speed occurred - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns 1 - * - * A downshift is detected by querying the PHY link health. - **/ -s32 e1000e_check_downshift(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - switch (phy->type) { - case e1000_phy_m88: - case e1000_phy_gg82563: - case e1000_phy_bm: - case e1000_phy_82578: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; - break; - case e1000_phy_igp_2: - case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; - break; - default: - /* speed downshift not supported */ - phy->speed_downgraded = false; - return 0; - } - - ret_val = e1e_rphy(hw, offset, &phy_data); - - if (!ret_val) - phy->speed_downgraded = (phy_data & mask); - - return ret_val; -} - -/** - * e1000_check_polarity_m88 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); - - if (!ret_val) - phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_check_polarity_igp - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY port status register, and the - * current speed (since there is no polarity at 100Mbps). - **/ -s32 e1000_check_polarity_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data, offset, mask; - - /* - * Polarity is determined based on the speed of - * our connection. - */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; - } else { - /* - * This really only applies to 10Mbps since - * there is no polarity for 100Mbps (always 0). - */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; - } - - ret_val = e1e_rphy(hw, offset, &data); - - if (!ret_val) - phy->cable_polarity = (data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_check_polarity_ife - Check cable polarity for IFE PHY - * @hw: pointer to the HW structure - * - * Polarity is determined on the polarity reversal feature being enabled. - **/ -s32 e1000_check_polarity_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - /* - * Polarity is determined based on the reversal feature being enabled. - */ - if (phy->polarity_correction) { - offset = IFE_PHY_EXTENDED_STATUS_CONTROL; - mask = IFE_PESC_POLARITY_REVERSED; - } else { - offset = IFE_PHY_SPECIAL_CONTROL; - mask = IFE_PSC_FORCE_POLARITY; - } - - ret_val = e1e_rphy(hw, offset, &phy_data); - - if (!ret_val) - phy->cable_polarity = (phy_data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_wait_autoneg - Wait for auto-neg completion - * @hw: pointer to the HW structure - * - * Waits for auto-negotiation to complete or for the auto-negotiation time - * limit to expire, which ever happens first. - **/ -static s32 e1000_wait_autoneg(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 i, phy_status; - - /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ - for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_AUTONEG_COMPLETE) - break; - msleep(100); - } - - /* - * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation - * has completed. - */ - return ret_val; -} - -/** - * e1000e_phy_has_link_generic - Polls PHY for link - * @hw: pointer to the HW structure - * @iterations: number of times to poll for link - * @usec_interval: delay between polling attempts - * @success: pointer to whether polling was successful or not - * - * Polls the PHY status register for link, 'iterations' number of times. - **/ -s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success) -{ - s32 ret_val = 0; - u16 i, phy_status; - - for (i = 0; i < iterations; i++) { - /* - * Some PHYs require the PHY_STATUS register to be read - * twice due to the link bit being sticky. No harm doing - * it across the board. - */ - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - /* - * If the first read fails, another entity may have - * ownership of the resources, wait and try again to - * see if they have relinquished the resources yet. - */ - udelay(usec_interval); - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_LINK_STATUS) - break; - if (usec_interval >= 1000) - mdelay(usec_interval/1000); - else - udelay(usec_interval); - } - - *success = (i < iterations); - - return ret_val; -} - -/** - * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY - * @hw: pointer to the HW structure - * - * Reads the PHY specific status register to retrieve the cable length - * information. The cable length is determined by averaging the minimum and - * maximum values to get the "average" cable length. The m88 PHY has four - * possible cable length values, which are: - * Register Value Cable Length - * 0 < 50 meters - * 1 50 - 80 meters - * 2 80 - 110 meters - * 3 110 - 140 meters - * 4 > 140 meters - **/ -s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return ret_val; -} - -/** - * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - **/ -s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, i, agc_value = 0; - u16 cur_agc_index, max_agc_index = 0; - u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; - static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { - IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D - }; - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - /* - * Getting bits 15:9, which represent the combination of - * coarse and fine gain values. The result is a number - * that can be put into the lookup table to obtain the - * approximate cable length. - */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0; - phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return ret_val; -} - -/** - * e1000e_get_phy_info_m88 - Retrieve PHY information - * @hw: pointer to the HW structure - * - * Valid for only copper links. Read the PHY status register (sticky read) - * to verify that link is up. Read the PHY special control register to - * determine the polarity and 10base-T extended distance. Read the PHY - * special status register to determine MDI/MDIx and current speed. If - * speed is 1000, then determine cable length, local and remote receiver. - **/ -s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - if (phy->media_type != e1000_media_type_copper) { - e_dbg("Phy info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy->polarity_correction = (phy_data & - M88E1000_PSCR_POLARITY_REVERSAL); - - ret_val = e1000_check_polarity_m88(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - ret_val = e1000_get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - /* Set values to "undefined" */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000e_get_phy_info_igp - Retrieve igp PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_igp(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - ret_val = e1000_get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); - if (ret_val) - return ret_val; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000_get_phy_info_ife - Retrieves various IFE PHY states - * @hw: pointer to the HW structure - * - * Populates "phy" structure with various feature states. - **/ -s32 e1000_get_phy_info_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); - if (ret_val) - goto out; - phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) - ? false : true; - - if (phy->polarity_correction) { - ret_val = e1000_check_polarity_ife(hw); - if (ret_val) - goto out; - } else { - /* Polarity is forced */ - phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - } - - ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false; - - /* The following parameters are undefined for 10/100 operation. */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - -out: - return ret_val; -} - -/** - * e1000e_phy_sw_reset - PHY software reset - * @hw: pointer to the HW structure - * - * Does a software reset of the PHY by reading the PHY control register and - * setting/write the control register reset bit to the PHY. - **/ -s32 e1000e_phy_sw_reset(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_ctrl; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= MII_CR_RESET; - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - udelay(1); - - return ret_val; -} - -/** - * e1000e_phy_hw_reset_generic - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - **/ -s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u32 ctrl; - - ret_val = e1000_check_reset_block(hw); - if (ret_val) - return 0; - - ret_val = phy->ops.acquire(hw); - if (ret_val) - return ret_val; - - ctrl = er32(CTRL); - ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); - e1e_flush(); - - udelay(phy->reset_delay_us); - - ew32(CTRL, ctrl); - e1e_flush(); - - udelay(150); - - phy->ops.release(hw); - - return e1000_get_phy_cfg_done(hw); -} - -/** - * e1000e_get_cfg_done - Generic configuration done - * @hw: pointer to the HW structure - * - * Generic function to wait 10 milli-seconds for configuration to complete - * and return success. - **/ -s32 e1000e_get_cfg_done(struct e1000_hw *hw) -{ - mdelay(10); - return 0; -} - -/** - * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY - * @hw: pointer to the HW structure - * - * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - **/ -s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) -{ - e_dbg("Running IGP 3 PHY init script\n"); - - /* PHY init IGP 3 */ - /* Enable rise/fall, 10-mode work in class-A */ - e1e_wphy(hw, 0x2F5B, 0x9018); - /* Remove all caps from Replica path filter */ - e1e_wphy(hw, 0x2F52, 0x0000); - /* Bias trimming for ADC, AFE and Driver (Default) */ - e1e_wphy(hw, 0x2FB1, 0x8B24); - /* Increase Hybrid poly bias */ - e1e_wphy(hw, 0x2FB2, 0xF8F0); - /* Add 4% to Tx amplitude in Gig mode */ - e1e_wphy(hw, 0x2010, 0x10B0); - /* Disable trimming (TTT) */ - e1e_wphy(hw, 0x2011, 0x0000); - /* Poly DC correction to 94.6% + 2% for all channels */ - e1e_wphy(hw, 0x20DD, 0x249A); - /* ABS DC correction to 95.9% */ - e1e_wphy(hw, 0x20DE, 0x00D3); - /* BG temp curve trim */ - e1e_wphy(hw, 0x28B4, 0x04CE); - /* Increasing ADC OPAMP stage 1 currents to max */ - e1e_wphy(hw, 0x2F70, 0x29E4); - /* Force 1000 ( required for enabling PHY regs configuration) */ - e1e_wphy(hw, 0x0000, 0x0140); - /* Set upd_freq to 6 */ - e1e_wphy(hw, 0x1F30, 0x1606); - /* Disable NPDFE */ - e1e_wphy(hw, 0x1F31, 0xB814); - /* Disable adaptive fixed FFE (Default) */ - e1e_wphy(hw, 0x1F35, 0x002A); - /* Enable FFE hysteresis */ - e1e_wphy(hw, 0x1F3E, 0x0067); - /* Fixed FFE for short cable lengths */ - e1e_wphy(hw, 0x1F54, 0x0065); - /* Fixed FFE for medium cable lengths */ - e1e_wphy(hw, 0x1F55, 0x002A); - /* Fixed FFE for long cable lengths */ - e1e_wphy(hw, 0x1F56, 0x002A); - /* Enable Adaptive Clip Threshold */ - e1e_wphy(hw, 0x1F72, 0x3FB0); - /* AHT reset limit to 1 */ - e1e_wphy(hw, 0x1F76, 0xC0FF); - /* Set AHT master delay to 127 msec */ - e1e_wphy(hw, 0x1F77, 0x1DEC); - /* Set scan bits for AHT */ - e1e_wphy(hw, 0x1F78, 0xF9EF); - /* Set AHT Preset bits */ - e1e_wphy(hw, 0x1F79, 0x0210); - /* Change integ_factor of channel A to 3 */ - e1e_wphy(hw, 0x1895, 0x0003); - /* Change prop_factor of channels BCD to 8 */ - e1e_wphy(hw, 0x1796, 0x0008); - /* Change cg_icount + enable integbp for channels BCD */ - e1e_wphy(hw, 0x1798, 0xD008); - /* - * Change cg_icount + enable integbp + change prop_factor_master - * to 8 for channel A - */ - e1e_wphy(hw, 0x1898, 0xD918); - /* Disable AHT in Slave mode on channel A */ - e1e_wphy(hw, 0x187A, 0x0800); - /* - * Enable LPLU and disable AN to 1000 in non-D0a states, - * Enable SPD+B2B - */ - e1e_wphy(hw, 0x0019, 0x008D); - /* Enable restart AN on an1000_dis change */ - e1e_wphy(hw, 0x001B, 0x2080); - /* Enable wh_fifo read clock in 10/100 modes */ - e1e_wphy(hw, 0x0014, 0x0045); - /* Restart AN, Speed selection is 1000 */ - e1e_wphy(hw, 0x0000, 0x1340); - - return 0; -} - -/* Internal function pointers */ - -/** - * e1000_get_phy_cfg_done - Generic PHY configuration done - * @hw: pointer to the HW structure - * - * Return success if silicon family did not implement a family specific - * get_cfg_done function. - **/ -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_cfg_done) - return hw->phy.ops.get_cfg_done(hw); - - return 0; -} - -/** - * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex - * @hw: pointer to the HW structure - * - * When the silicon family has not implemented a forced speed/duplex - * function for the PHY, simply return 0. - **/ -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) -{ - if (hw->phy.ops.force_speed_duplex) - return hw->phy.ops.force_speed_duplex(hw); - - return 0; -} - -/** - * e1000e_get_phy_type_from_id - Get PHY type from id - * @phy_id: phy_id read from the phy - * - * Returns the phy type from the id. - **/ -enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) -{ - enum e1000_phy_type phy_type = e1000_phy_unknown; - - switch (phy_id) { - case M88E1000_I_PHY_ID: - case M88E1000_E_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1011_I_PHY_ID: - phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ - phy_type = e1000_phy_igp_2; - break; - case GG82563_E_PHY_ID: - phy_type = e1000_phy_gg82563; - break; - case IGP03E1000_E_PHY_ID: - phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy_type = e1000_phy_ife; - break; - case BME1000_E_PHY_ID: - case BME1000_E_PHY_ID_R2: - phy_type = e1000_phy_bm; - break; - case I82578_E_PHY_ID: - phy_type = e1000_phy_82578; - break; - case I82577_E_PHY_ID: - phy_type = e1000_phy_82577; - break; - case I82579_E_PHY_ID: - phy_type = e1000_phy_82579; - break; - default: - phy_type = e1000_phy_unknown; - break; - } - return phy_type; -} - -/** - * e1000e_determine_phy_address - Determines PHY address. - * @hw: pointer to the HW structure - * - * This uses a trial and error method to loop through possible PHY - * addresses. It tests each by reading the PHY ID registers and - * checking for a match. - **/ -s32 e1000e_determine_phy_address(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_PHY_TYPE; - u32 phy_addr = 0; - u32 i; - enum e1000_phy_type phy_type = e1000_phy_unknown; - - hw->phy.id = phy_type; - - for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { - hw->phy.addr = phy_addr; - i = 0; - - do { - e1000e_get_phy_id(hw); - phy_type = e1000e_get_phy_type_from_id(hw->phy.id); - - /* - * If phy_type is valid, break - we found our - * PHY address - */ - if (phy_type != e1000_phy_unknown) { - ret_val = 0; - goto out; - } - usleep_range(1000, 2000); - i++; - } while (i < 10); - } - -out: - return ret_val; -} - -/** - * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address - * @page: page to access - * - * Returns the phy address for the page requested. - **/ -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) -{ - u32 phy_addr = 2; - - if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) - phy_addr = 1; - - return phy_addr; -} - -/** - * e1000e_write_phy_reg_bm - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u32 page = offset >> IGP_PAGE_SHIFT; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, false); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - u32 page_shift, page_select; - - /* - * Page select is register 31 for phy address 1 and 22 for - * phy address 2 and 3. Page select is shifted only for - * phy address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto out; - } - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000e_read_phy_reg_bm - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u32 page = offset >> IGP_PAGE_SHIFT; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, false); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - u32 page_shift, page_select; - - /* - * Page select is register 31 for phy address 1 and 22 for - * phy address 2 and 3. Page select is shifted only for - * phy address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto out; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000e_read_phy_reg_bm2 - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, false); - goto out; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto out; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000e_write_phy_reg_bm2 - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, false); - goto out; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto out; - } - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers - * @hw: pointer to the HW structure - * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG - * - * Assumes semaphore already acquired and phy_reg points to a valid memory - * address to store contents of the BM_WUC_ENABLE_REG register. - **/ -s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) -{ - s32 ret_val; - u16 temp; - - /* All page select, port ctrl and wakeup registers use phy address 1 */ - hw->phy.addr = 1; - - /* Select Port Control Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); - if (ret_val) { - e_dbg("Could not set Port Control page\n"); - goto out; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); - if (ret_val) { - e_dbg("Could not read PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - goto out; - } - - /* - * Enable both PHY wakeup mode and Wakeup register page writes. - * Prevent a power state change by disabling ME and Host PHY wakeup. - */ - temp = *phy_reg; - temp |= BM_WUC_ENABLE_BIT; - temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); - - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); - if (ret_val) { - e_dbg("Could not write PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - goto out; - } - - /* Select Host Wakeup Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); - - /* caller now able to write registers on the Wakeup registers page */ -out: - return ret_val; -} - -/** - * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs - * @hw: pointer to the HW structure - * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG - * - * Restore BM_WUC_ENABLE_REG to its original value. - * - * Assumes semaphore already acquired and *phy_reg is the contents of the - * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by - * caller. - **/ -s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) -{ - s32 ret_val = 0; - - /* Select Port Control Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); - if (ret_val) { - e_dbg("Could not set Port Control page\n"); - goto out; - } - - /* Restore 769.17 to its original value */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); - if (ret_val) - e_dbg("Could not restore PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); -out: - return ret_val; -} - -/** - * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to read or write - * @read: determines if operation is read or write - * @page_set: BM_WUC_PAGE already set and access enabled - * - * Read the PHY register at offset and store the retrieved information in - * data, or write data to PHY register at offset. Note the procedure to - * access the PHY wakeup registers is different than reading the other PHY - * registers. It works as such: - * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 - * 2) Set page to 800 for host (801 if we were manageability) - * 3) Write the address using the address opcode (0x11) - * 4) Read or write the data using the data opcode (0x12) - * 5) Restore 769.17.2 to its original value - * - * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and - * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). - * - * Assumes semaphore is already acquired. When page_set==true, assumes - * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack - * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). - **/ -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read, bool page_set) -{ - s32 ret_val; - u16 reg = BM_PHY_REG_NUM(offset); - u16 page = BM_PHY_REG_PAGE(offset); - u16 phy_reg = 0; - - /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ - if ((hw->mac.type == e1000_pchlan) && - (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) - e_dbg("Attempting to access page %d while gig enabled.\n", - page); - - if (!page_set) { - /* Enable access to PHY wakeup registers */ - ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); - if (ret_val) { - e_dbg("Could not enable PHY wakeup reg access\n"); - goto out; - } - } - - e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); - - /* Write the Wakeup register page offset value using opcode 0x11 */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); - if (ret_val) { - e_dbg("Could not write address opcode to page %d\n", page); - goto out; - } - - if (read) { - /* Read the Wakeup register page value using opcode 0x12 */ - ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - data); - } else { - /* Write the Wakeup register page value using opcode 0x12 */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - *data); - } - - if (ret_val) { - e_dbg("Could not access PHY reg %d.%d\n", page, reg); - goto out; - } - - if (!page_set) - ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); - -out: - return ret_val; -} - -/** - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_up_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - e1e_rphy(hw, PHY_CONTROL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - e1e_wphy(hw, PHY_CONTROL, mii_reg); -} - -/** - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_down_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - e1e_rphy(hw, PHY_CONTROL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - e1e_wphy(hw, PHY_CONTROL, mii_reg); - usleep_range(1000, 2000); -} - -/** - * e1000e_commit_phy - Soft PHY reset - * @hw: pointer to the HW structure - * - * Performs a soft PHY reset on those that apply. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000e_commit_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.commit) - return hw->phy.ops.commit(hw); - - return 0; -} - -/** - * e1000_set_d0_lplu_state - Sets low power link up state for D0 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D0 - * and SmartSpeed is disabled when active is true, else clear lplu for D0 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - **/ -static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d0_lplu_state) - return hw->phy.ops.set_d0_lplu_state(hw, active); - - return 0; -} - -/** - * __e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphore before exiting. - **/ -static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked, bool page_set) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, page_set); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - data, true); - goto out; - } - - if (!page_set) { - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_set_page_igp(hw, - (page << IGP_PAGE_SHIFT)); - - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - } - - e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, - page << IGP_PAGE_SHIFT, reg); - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); -out: - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores - * the retrieved information in data. Release the acquired semaphore - * before exiting. - **/ -s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, false, false); -} - -/** - * e1000_read_phy_reg_hv_locked - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, true, false); -} - -/** - * e1000_read_phy_reg_page_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired and page already set. - **/ -s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, true, true); -} - -/** - * __e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, - bool locked, bool page_set) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, page_set); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - &data, false); - goto out; - } - - if (!page_set) { - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - /* - * Workaround MDIO accesses being disabled after entering IEEE - * Power Down (when bit 11 of the PHY Control register is set) - */ - if ((hw->phy.type == e1000_phy_82578) && - (hw->phy.revision >= 1) && - (hw->phy.addr == 2) && - ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) { - u16 data2 = 0x7EFF; - ret_val = e1000_access_phy_debug_regs_hv(hw, - (1 << 6) | 0x3, - &data2, false); - if (ret_val) - goto out; - } - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_set_page_igp(hw, - (page << IGP_PAGE_SHIFT)); - - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - } - - e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, - page << IGP_PAGE_SHIFT, reg); - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); - -out: - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register at the offset. - * Release the acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, false, false); -} - -/** - * e1000_write_phy_reg_hv_locked - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired. - **/ -s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, true, false); -} - -/** - * e1000_write_phy_reg_page_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired and page already set. - **/ -s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, true, true); -} - -/** - * e1000_get_phy_addr_for_hv_page - Get PHY address based on page - * @page: page to be accessed - **/ -static u32 e1000_get_phy_addr_for_hv_page(u32 page) -{ - u32 phy_addr = 2; - - if (page >= HV_INTC_FC_PAGE_START) - phy_addr = 1; - - return phy_addr; -} - -/** - * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to be read or written - * @read: determines if operation is read or write - * - * Reads the PHY register at offset and stores the retreived information - * in data. Assumes semaphore already acquired. Note that the procedure - * to access these regs uses the address port and data port to read/write. - * These accesses done with PHY address 2 and without using pages. - **/ -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read) -{ - s32 ret_val; - u32 addr_reg = 0; - u32 data_reg = 0; - - /* This takes care of the difference with desktop vs mobile phy */ - addr_reg = (hw->phy.type == e1000_phy_82578) ? - I82578_ADDR_REG : I82577_ADDR_REG; - data_reg = addr_reg + 1; - - /* All operations in this function are phy address 2 */ - hw->phy.addr = 2; - - /* masking with 0x3F to remove the page from offset */ - ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); - if (ret_val) { - e_dbg("Could not write the Address Offset port register\n"); - goto out; - } - - /* Read or write the data value next */ - if (read) - ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); - else - ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); - - if (ret_val) { - e_dbg("Could not access the Data port register\n"); - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_link_stall_workaround_hv - Si workaround - * @hw: pointer to the HW structure - * - * This function works around a Si bug where the link partner can get - * a link up indication before the PHY does. If small packets are sent - * by the link partner they can be placed in the packet buffer without - * being properly accounted for by the PHY and will stall preventing - * further packets from being received. The workaround is to clear the - * packet buffer after the PHY detects link up. - **/ -s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 data; - - if (hw->phy.type != e1000_phy_82578) - goto out; - - /* Do not apply workaround if in PHY loopback bit 14 set */ - e1e_rphy(hw, PHY_CONTROL, &data); - if (data & PHY_CONTROL_LB) - goto out; - - /* check if link is up and at 1Gbps */ - ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); - if (ret_val) - goto out; - - data &= BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK; - - if (data != (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - goto out; - - mdelay(200); - - /* flush the packets in the fifo buffer */ - ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC | - HV_MUX_DATA_CTRL_FORCE_SPEED); - if (ret_val) - goto out; - - ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); - -out: - return ret_val; -} - -/** - * e1000_check_polarity_82577 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); - - if (!ret_val) - phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. - **/ -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - udelay(1); - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); - - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) - e_dbg("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_get_phy_info_82577 - Retrieve I82577 PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_82577(hw); - if (ret_val) - goto out; - - ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; - - if ((data & I82577_PHY_STATUS2_SPEED_MASK) == - I82577_PHY_STATUS2_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); - if (ret_val) - goto out; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return ret_val; -} - -/** - * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - * @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - **/ -s32 e1000_get_cable_length_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, length; - - ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); - if (ret_val) - goto out; - - length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> - I82577_DSTATUS_CABLE_LENGTH_SHIFT; - - if (length == E1000_CABLE_LENGTH_UNDEFINED) - ret_val = -E1000_ERR_PHY; - - phy->cable_length = length; - -out: - return ret_val; -} |