diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-04-07 07:42:33 -0700 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-10 20:03:27 -0700 |
commit | dee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch) | |
tree | 47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/e1000e | |
parent | f7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff) |
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and
the necessary Kconfig and Makefile changes.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/e1000e')
-rw-r--r-- | drivers/net/e1000e/82571.c | 2115 | ||||
-rw-r--r-- | drivers/net/e1000e/Makefile | 37 | ||||
-rw-r--r-- | drivers/net/e1000e/defines.h | 844 | ||||
-rw-r--r-- | drivers/net/e1000e/e1000.h | 736 | ||||
-rw-r--r-- | drivers/net/e1000e/es2lan.c | 1516 | ||||
-rw-r--r-- | drivers/net/e1000e/ethtool.c | 2081 | ||||
-rw-r--r-- | drivers/net/e1000e/hw.h | 984 | ||||
-rw-r--r-- | drivers/net/e1000e/ich8lan.c | 4111 | ||||
-rw-r--r-- | drivers/net/e1000e/lib.c | 2692 | ||||
-rw-r--r-- | drivers/net/e1000e/netdev.c | 6312 | ||||
-rw-r--r-- | drivers/net/e1000e/param.c | 478 | ||||
-rw-r--r-- | drivers/net/e1000e/phy.c | 3377 |
12 files changed, 0 insertions, 25283 deletions
diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c deleted file mode 100644 index 480f2592f8a..00000000000 --- a/drivers/net/e1000e/82571.c +++ /dev/null @@ -1,2115 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* - * 82571EB Gigabit Ethernet Controller - * 82571EB Gigabit Ethernet Controller (Copper) - * 82571EB Gigabit Ethernet Controller (Fiber) - * 82571EB Dual Port Gigabit Mezzanine Adapter - * 82571EB Quad Port Gigabit Mezzanine Adapter - * 82571PT Gigabit PT Quad Port Server ExpressModule - * 82572EI Gigabit Ethernet Controller (Copper) - * 82572EI Gigabit Ethernet Controller (Fiber) - * 82572EI Gigabit Ethernet Controller - * 82573V Gigabit Ethernet Controller (Copper) - * 82573E Gigabit Ethernet Controller (Copper) - * 82573L Gigabit Ethernet Controller - * 82574L Gigabit Network Connection - * 82583V Gigabit Network Connection - */ - -#include "e1000.h" - -#define ID_LED_RESERVED_F746 0xF746 -#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_OFF1_ON2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) - -#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 -#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ -#define E1000_BASE1000T_STATUS 10 -#define E1000_IDLE_ERROR_COUNT_MASK 0xFF -#define E1000_RECEIVE_ERROR_COUNTER 21 -#define E1000_RECEIVE_ERROR_MAX 0xFFFF - -#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ - -static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); -static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); -static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); -static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); -static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); -static s32 e1000_setup_link_82571(struct e1000_hw *hw); -static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); -static void e1000_clear_vfta_82571(struct e1000_hw *hw); -static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); -static s32 e1000_led_on_82574(struct e1000_hw *hw); -static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); -static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); -static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); -static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); -static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); -static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); -static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); - -/** - * e1000_init_phy_params_82571 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - return 0; - } - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82571; - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - phy->type = e1000_phy_igp_2; - break; - case e1000_82573: - phy->type = e1000_phy_m88; - break; - case e1000_82574: - case e1000_82583: - phy->type = e1000_phy_bm; - phy->ops.acquire = e1000_get_hw_semaphore_82574; - phy->ops.release = e1000_put_hw_semaphore_82574; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; - break; - default: - return -E1000_ERR_PHY; - break; - } - - /* This can only be done after all function pointers are setup. */ - ret_val = e1000_get_phy_id_82571(hw); - if (ret_val) { - e_dbg("Error getting PHY ID\n"); - return ret_val; - } - - /* Verify phy id */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - if (phy->id != IGP01E1000_I_PHY_ID) - ret_val = -E1000_ERR_PHY; - break; - case e1000_82573: - if (phy->id != M88E1111_I_PHY_ID) - ret_val = -E1000_ERR_PHY; - break; - case e1000_82574: - case e1000_82583: - if (phy->id != BME1000_E_PHY_ID_R2) - ret_val = -E1000_ERR_PHY; - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - if (ret_val) - e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); - - return ret_val; -} - -/** - * e1000_init_nvm_params_82571 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = er32(EECD); - u16 size; - - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; - break; - } - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (((eecd >> 15) & 0x3) == 0x3) { - nvm->type = e1000_nvm_flash_hw; - nvm->word_size = 2048; - /* - * Autonomous Flash update bit must be cleared due - * to Flash update issue. - */ - eecd &= ~E1000_EECD_AUPDEN; - ew32(EECD, eecd); - break; - } - /* Fall Through */ - default: - nvm->type = e1000_nvm_eeprom_spi; - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - nvm->word_size = 1 << size; - break; - } - - /* Function Pointers */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - nvm->ops.acquire = e1000_get_hw_semaphore_82574; - nvm->ops.release = e1000_put_hw_semaphore_82574; - break; - default: - break; - } - - return 0; -} - -/** - * e1000_init_mac_params_82571 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_mac_info *mac = &hw->mac; - struct e1000_mac_operations *func = &mac->ops; - u32 swsm = 0; - u32 swsm2 = 0; - bool force_clear_smbi = false; - - /* Set media type */ - switch (adapter->pdev->device) { - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - hw->phy.media_type = e1000_media_type_fiber; - break; - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82572EI_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - /* Adaptive IFS supported */ - mac->adaptive_ifs = true; - - /* check for link */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - func->setup_physical_interface = e1000_setup_copper_link_82571; - func->check_for_link = e1000e_check_for_copper_link; - func->get_link_up_info = e1000e_get_speed_and_duplex_copper; - break; - case e1000_media_type_fiber: - func->setup_physical_interface = - e1000_setup_fiber_serdes_link_82571; - func->check_for_link = e1000e_check_for_fiber_link; - func->get_link_up_info = - e1000e_get_speed_and_duplex_fiber_serdes; - break; - case e1000_media_type_internal_serdes: - func->setup_physical_interface = - e1000_setup_fiber_serdes_link_82571; - func->check_for_link = e1000_check_for_serdes_link_82571; - func->get_link_up_info = - e1000e_get_speed_and_duplex_fiber_serdes; - break; - default: - return -E1000_ERR_CONFIG; - break; - } - - switch (hw->mac.type) { - case e1000_82573: - func->set_lan_id = e1000_set_lan_id_single_port; - func->check_mng_mode = e1000e_check_mng_mode_generic; - func->led_on = e1000e_led_on_generic; - func->blink_led = e1000e_blink_led_generic; - - /* FWSM register */ - mac->has_fwsm = true; - /* - * ARC supported; valid only if manageability features are - * enabled. - */ - mac->arc_subsystem_valid = - (er32(FWSM) & E1000_FWSM_MODE_MASK) - ? true : false; - break; - case e1000_82574: - case e1000_82583: - func->set_lan_id = e1000_set_lan_id_single_port; - func->check_mng_mode = e1000_check_mng_mode_82574; - func->led_on = e1000_led_on_82574; - break; - default: - func->check_mng_mode = e1000e_check_mng_mode_generic; - func->led_on = e1000e_led_on_generic; - func->blink_led = e1000e_blink_led_generic; - - /* FWSM register */ - mac->has_fwsm = true; - break; - } - - /* - * Ensure that the inter-port SWSM.SMBI lock bit is clear before - * first NVM or PHY access. This should be done for single-port - * devices, and for one port only on dual-port devices so that - * for those devices we can still use the SMBI lock to synchronize - * inter-port accesses to the PHY & NVM. - */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - swsm2 = er32(SWSM2); - - if (!(swsm2 & E1000_SWSM2_LOCK)) { - /* Only do this for the first interface on this card */ - ew32(SWSM2, - swsm2 | E1000_SWSM2_LOCK); - force_clear_smbi = true; - } else - force_clear_smbi = false; - break; - default: - force_clear_smbi = true; - break; - } - - if (force_clear_smbi) { - /* Make sure SWSM.SMBI is clear */ - swsm = er32(SWSM); - if (swsm & E1000_SWSM_SMBI) { - /* This bit should not be set on a first interface, and - * indicates that the bootagent or EFI code has - * improperly left this bit enabled - */ - e_dbg("Please update your 82571 Bootagent\n"); - } - ew32(SWSM, swsm & ~E1000_SWSM_SMBI); - } - - /* - * Initialize device specific counter of SMBI acquisition - * timeouts. - */ - hw->dev_spec.e82571.smb_counter = 0; - - return 0; -} - -static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - static int global_quad_port_a; /* global port a indication */ - struct pci_dev *pdev = adapter->pdev; - int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; - s32 rc; - - rc = e1000_init_mac_params_82571(adapter); - if (rc) - return rc; - - rc = e1000_init_nvm_params_82571(hw); - if (rc) - return rc; - - rc = e1000_init_phy_params_82571(hw); - if (rc) - return rc; - - /* tag quad port adapters first, it's used below */ - switch (pdev->device) { - case E1000_DEV_ID_82571EB_QUAD_COPPER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: - case E1000_DEV_ID_82571PT_QUAD_COPPER: - adapter->flags |= FLAG_IS_QUAD_PORT; - /* mark the first port */ - if (global_quad_port_a == 0) - adapter->flags |= FLAG_IS_QUAD_PORT_A; - /* Reset for multiple quad port adapters */ - global_quad_port_a++; - if (global_quad_port_a == 4) - global_quad_port_a = 0; - break; - default: - break; - } - - switch (adapter->hw.mac.type) { - case e1000_82571: - /* these dual ports don't have WoL on port B at all */ - if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || - (pdev->device == E1000_DEV_ID_82571EB_SERDES) || - (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && - (is_port_b)) - adapter->flags &= ~FLAG_HAS_WOL; - /* quad ports only support WoL on port A */ - if (adapter->flags & FLAG_IS_QUAD_PORT && - (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) - adapter->flags &= ~FLAG_HAS_WOL; - /* Does not support WoL on any port */ - if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) - adapter->flags &= ~FLAG_HAS_WOL; - break; - case e1000_82573: - if (pdev->device == E1000_DEV_ID_82573L) { - adapter->flags |= FLAG_HAS_JUMBO_FRAMES; - adapter->max_hw_frame_size = DEFAULT_JUMBO; - } - break; - default: - break; - } - - return 0; -} - -/** - * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - **/ -static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_id = 0; - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* - * The 82571 firmware may still be configuring the PHY. - * In this case, we cannot access the PHY until the - * configuration is done. So we explicitly set the - * PHY ID. - */ - phy->id = IGP01E1000_I_PHY_ID; - break; - case e1000_82573: - return e1000e_get_phy_id(hw); - break; - case e1000_82574: - case e1000_82583: - ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); - if (ret_val) - return ret_val; - - phy->id = (u32)(phy_id << 16); - udelay(20); - ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); - if (ret_val) - return ret_val; - - phy->id |= (u32)(phy_id); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - break; - default: - return -E1000_ERR_PHY; - break; - } - - return 0; -} - -/** - * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) -{ - u32 swsm; - s32 sw_timeout = hw->nvm.word_size + 1; - s32 fw_timeout = hw->nvm.word_size + 1; - s32 i = 0; - - /* - * If we have timedout 3 times on trying to acquire - * the inter-port SMBI semaphore, there is old code - * operating on the other port, and it is not - * releasing SMBI. Modify the number of times that - * we try for the semaphore to interwork with this - * older code. - */ - if (hw->dev_spec.e82571.smb_counter > 2) - sw_timeout = 1; - - /* Get the SW semaphore */ - while (i < sw_timeout) { - swsm = er32(SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - udelay(50); - i++; - } - - if (i == sw_timeout) { - e_dbg("Driver can't access device - SMBI bit is set.\n"); - hw->dev_spec.e82571.smb_counter++; - } - /* Get the FW semaphore. */ - for (i = 0; i < fw_timeout; i++) { - swsm = er32(SWSM); - ew32(SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (er32(SWSM) & E1000_SWSM_SWESMBI) - break; - - udelay(50); - } - - if (i == fw_timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_82571(hw); - e_dbg("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return 0; -} - -/** - * e1000_put_hw_semaphore_82571 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) -{ - u32 swsm; - - swsm = er32(SWSM); - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - ew32(SWSM, swsm); -} -/** - * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore during reset. - * - **/ -static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - s32 ret_val = 0; - s32 i = 0; - - extcnf_ctrl = er32(EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - do { - ew32(EXTCNF_CTRL, extcnf_ctrl); - extcnf_ctrl = er32(EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) - break; - - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - usleep_range(2000, 4000); - i++; - } while (i < MDIO_OWNERSHIP_TIMEOUT); - - if (i == MDIO_OWNERSHIP_TIMEOUT) { - /* Release semaphores */ - e1000_put_hw_semaphore_82573(hw); - e_dbg("Driver can't access the PHY\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_put_hw_semaphore_82573 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used during reset. - * - **/ -static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - - extcnf_ctrl = er32(EXTCNF_CTRL); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - ew32(EXTCNF_CTRL, extcnf_ctrl); -} - -static DEFINE_MUTEX(swflag_mutex); - -/** - * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM. - * - **/ -static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) -{ - s32 ret_val; - - mutex_lock(&swflag_mutex); - ret_val = e1000_get_hw_semaphore_82573(hw); - if (ret_val) - mutex_unlock(&swflag_mutex); - return ret_val; -} - -/** - * e1000_put_hw_semaphore_82574 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - * - **/ -static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) -{ - e1000_put_hw_semaphore_82573(hw); - mutex_unlock(&swflag_mutex); -} - -/** - * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. - * LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) -{ - u16 data = er32(POEMB); - - if (active) - data |= E1000_PHY_CTRL_D0A_LPLU; - else - data &= ~E1000_PHY_CTRL_D0A_LPLU; - - ew32(POEMB, data); - return 0; -} - -/** - * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * The low power link up (lplu) state is set to the power management level D3 - * when active is true, else clear lplu for D3. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) -{ - u16 data = er32(POEMB); - - if (!active) { - data &= ~E1000_PHY_CTRL_NOND0A_LPLU; - } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || - (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= E1000_PHY_CTRL_NOND0A_LPLU; - } - - ew32(POEMB, data); - return 0; -} - -/** - * e1000_acquire_nvm_82571 - Request for access to the EEPROM - * @hw: pointer to the HW structure - * - * To gain access to the EEPROM, first we must obtain a hardware semaphore. - * Then for non-82573 hardware, set the EEPROM access request bit and wait - * for EEPROM access grant bit. If the access grant bit is not set, release - * hardware semaphore. - **/ -static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) -{ - s32 ret_val; - - ret_val = e1000_get_hw_semaphore_82571(hw); - if (ret_val) - return ret_val; - - switch (hw->mac.type) { - case e1000_82573: - break; - default: - ret_val = e1000e_acquire_nvm(hw); - break; - } - - if (ret_val) - e1000_put_hw_semaphore_82571(hw); - - return ret_val; -} - -/** - * e1000_release_nvm_82571 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - **/ -static void e1000_release_nvm_82571(struct e1000_hw *hw) -{ - e1000e_release_nvm(hw); - e1000_put_hw_semaphore_82571(hw); -} - -/** - * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * For non-82573 silicon, write data to EEPROM at offset using SPI interface. - * - * If e1000e_update_nvm_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - **/ -static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 ret_val; - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); - break; - case e1000_82571: - case e1000_82572: - ret_val = e1000e_write_nvm_spi(hw, offset, words, data); - break; - default: - ret_val = -E1000_ERR_NVM; - break; - } - - return ret_val; -} - -/** - * e1000_update_nvm_checksum_82571 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) -{ - u32 eecd; - s32 ret_val; - u16 i; - - ret_val = e1000e_update_nvm_checksum_generic(hw); - if (ret_val) - return ret_val; - - /* - * If our nvm is an EEPROM, then we're done - * otherwise, commit the checksum to the flash NVM. - */ - if (hw->nvm.type != e1000_nvm_flash_hw) - return ret_val; - - /* Check for pending operations. */ - for (i = 0; i < E1000_FLASH_UPDATES; i++) { - usleep_range(1000, 2000); - if ((er32(EECD) & E1000_EECD_FLUPD) == 0) - break; - } - - if (i == E1000_FLASH_UPDATES) - return -E1000_ERR_NVM; - - /* Reset the firmware if using STM opcode. */ - if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { - /* - * The enabling of and the actual reset must be done - * in two write cycles. - */ - ew32(HICR, E1000_HICR_FW_RESET_ENABLE); - e1e_flush(); - ew32(HICR, E1000_HICR_FW_RESET); - } - - /* Commit the write to flash */ - eecd = er32(EECD) | E1000_EECD_FLUPD; - ew32(EECD, eecd); - - for (i = 0; i < E1000_FLASH_UPDATES; i++) { - usleep_range(1000, 2000); - if ((er32(EECD) & E1000_EECD_FLUPD) == 0) - break; - } - - if (i == E1000_FLASH_UPDATES) - return -E1000_ERR_NVM; - - return 0; -} - -/** - * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) -{ - if (hw->nvm.type == e1000_nvm_flash_hw) - e1000_fix_nvm_checksum_82571(hw); - - return e1000e_validate_nvm_checksum_generic(hw); -} - -/** - * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * After checking for invalid values, poll the EEPROM to ensure the previous - * command has completed before trying to write the next word. After write - * poll for completion. - * - * If e1000e_update_nvm_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - **/ -static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eewr = 0; - s32 ret_val = 0; - - /* - * A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - e_dbg("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - for (i = 0; i < words; i++) { - eewr = (data[i] << E1000_NVM_RW_REG_DATA) | - ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | - E1000_NVM_RW_REG_START; - - ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); - if (ret_val) - break; - - ew32(EEWR, eewr); - - ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); - if (ret_val) - break; - } - - return ret_val; -} - -/** - * e1000_get_cfg_done_82571 - Poll for configuration done - * @hw: pointer to the HW structure - * - * Reads the management control register for the config done bit to be set. - **/ -static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - - while (timeout) { - if (er32(EEMNGCTL) & - E1000_NVM_CFG_DONE_PORT_0) - break; - usleep_range(1000, 2000); - timeout--; - } - if (!timeout) { - e_dbg("MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - - return 0; -} - -/** - * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When activating LPLU - * this function also disables smart speed and vice versa. LPLU will not be - * activated unless the device autonegotiation advertisement meets standards - * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function - * pointer entry point only called by PHY setup routines. - **/ -static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - return ret_val; - - if (active) { - data |= IGP02E1000_PM_D0_LPLU; - ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); - if (ret_val) - return ret_val; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); - if (ret_val) - return ret_val; - } else { - data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } - - return 0; -} - -/** - * e1000_reset_hw_82571 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -static s32 e1000_reset_hw_82571(struct e1000_hw *hw) -{ - u32 ctrl, ctrl_ext; - s32 ret_val; - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000e_disable_pcie_master(hw); - if (ret_val) - e_dbg("PCI-E Master disable polling has failed.\n"); - - e_dbg("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - ew32(RCTL, 0); - ew32(TCTL, E1000_TCTL_PSP); - e1e_flush(); - - usleep_range(10000, 20000); - - /* - * Must acquire the MDIO ownership before MAC reset. - * Ownership defaults to firmware after a reset. - */ - switch (hw->mac.type) { - case e1000_82573: - ret_val = e1000_get_hw_semaphore_82573(hw); - break; - case e1000_82574: - case e1000_82583: - ret_val = e1000_get_hw_semaphore_82574(hw); - break; - default: - break; - } - if (ret_val) - e_dbg("Cannot acquire MDIO ownership\n"); - - ctrl = er32(CTRL); - - e_dbg("Issuing a global reset to MAC\n"); - ew32(CTRL, ctrl | E1000_CTRL_RST); - - /* Must release MDIO ownership and mutex after MAC reset. */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - e1000_put_hw_semaphore_82574(hw); - break; - default: - break; - } - - if (hw->nvm.type == e1000_nvm_flash_hw) { - udelay(10); - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - ew32(CTRL_EXT, ctrl_ext); - e1e_flush(); - } - - ret_val = e1000e_get_auto_rd_done(hw); - if (ret_val) - /* We don't want to continue accessing MAC registers. */ - return ret_val; - - /* - * Phy configuration from NVM just starts after EECD_AUTO_RD is set. - * Need to wait for Phy configuration completion before accessing - * NVM and Phy. - */ - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - msleep(25); - break; - default: - break; - } - - /* Clear any pending interrupt events. */ - ew32(IMC, 0xffffffff); - er32(ICR); - - if (hw->mac.type == e1000_82571) { - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - return ret_val; - - e1000e_set_laa_state_82571(hw, true); - } - - /* Reinitialize the 82571 serdes link state machine */ - if (hw->phy.media_type == e1000_media_type_internal_serdes) - hw->mac.serdes_link_state = e1000_serdes_link_down; - - return 0; -} - -/** - * e1000_init_hw_82571 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -static s32 e1000_init_hw_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 reg_data; - s32 ret_val; - u16 i, rar_count = mac->rar_entry_count; - - e1000_initialize_hw_bits_82571(hw); - - /* Initialize identification LED */ - ret_val = e1000e_id_led_init(hw); - if (ret_val) - e_dbg("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - - /* Disabling VLAN filtering */ - e_dbg("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - /* - * If, however, a locally administered address was assigned to the - * 82571, we must reserve a RAR for it to work around an issue where - * resetting one port will reload the MAC on the other port. - */ - if (e1000e_get_laa_state_82571(hw)) - rar_count--; - e1000e_init_rx_addrs(hw, rar_count); - - /* Zero out the Multicast HASH table */ - e_dbg("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Setup link and flow control */ - ret_val = e1000_setup_link_82571(hw); - - /* Set the transmit descriptor write-back policy */ - reg_data = er32(TXDCTL(0)); - reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | - E1000_TXDCTL_COUNT_DESC; - ew32(TXDCTL(0), reg_data); - - /* ...for both queues. */ - switch (mac->type) { - case e1000_82573: - e1000e_enable_tx_pkt_filtering(hw); - /* fall through */ - case e1000_82574: - case e1000_82583: - reg_data = er32(GCR); - reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; - ew32(GCR, reg_data); - break; - default: - reg_data = er32(TXDCTL(1)); - reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | - E1000_TXDCTL_COUNT_DESC; - ew32(TXDCTL(1), reg_data); - break; - } - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82571(hw); - - return ret_val; -} - -/** - * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits - * @hw: pointer to the HW structure - * - * Initializes required hardware-dependent bits needed for normal operation. - **/ -static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) -{ - u32 reg; - - /* Transmit Descriptor Control 0 */ - reg = er32(TXDCTL(0)); - reg |= (1 << 22); - ew32(TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = er32(TXDCTL(1)); - reg |= (1 << 22); - ew32(TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = er32(TARC(0)); - reg &= ~(0xF << 27); /* 30:27 */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); - break; - default: - break; - } - ew32(TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = er32(TARC(1)); - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - reg &= ~((1 << 29) | (1 << 30)); - reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); - if (er32(TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - ew32(TARC(1), reg); - break; - default: - break; - } - - /* Device Control */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - reg = er32(CTRL); - reg &= ~(1 << 29); - ew32(CTRL, reg); - break; - default: - break; - } - - /* Extended Device Control */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - reg = er32(CTRL_EXT); - reg &= ~(1 << 23); - reg |= (1 << 22); - ew32(CTRL_EXT, reg); - break; - default: - break; - } - - if (hw->mac.type == e1000_82571) { - reg = er32(PBA_ECC); - reg |= E1000_PBA_ECC_CORR_EN; - ew32(PBA_ECC, reg); - } - /* - * Workaround for hardware errata. - * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 - */ - - if ((hw->mac.type == e1000_82571) || - (hw->mac.type == e1000_82572)) { - reg = er32(CTRL_EXT); - reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; - ew32(CTRL_EXT, reg); - } - - - /* PCI-Ex Control Registers */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - reg = er32(GCR); - reg |= (1 << 22); - ew32(GCR, reg); - - /* - * Workaround for hardware errata. - * apply workaround for hardware errata documented in errata - * docs Fixes issue where some error prone or unreliable PCIe - * completions are occurring, particularly with ASPM enabled. - * Without fix, issue can cause Tx timeouts. - */ - reg = er32(GCR2); - reg |= 1; - ew32(GCR2, reg); - break; - default: - break; - } -} - -/** - * e1000_clear_vfta_82571 - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -static void e1000_clear_vfta_82571(struct e1000_hw *hw) -{ - u32 offset; - u32 vfta_value = 0; - u32 vfta_offset = 0; - u32 vfta_bit_in_reg = 0; - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (hw->mng_cookie.vlan_id != 0) { - /* - * The VFTA is a 4096b bit-field, each identifying - * a single VLAN ID. The following operations - * determine which 32b entry (i.e. offset) into the - * array we want to set the VLAN ID (i.e. bit) of - * the manageability unit. - */ - vfta_offset = (hw->mng_cookie.vlan_id >> - E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK; - vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & - E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - } - break; - default: - break; - } - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - /* - * If the offset we want to clear is the same offset of the - * manageability VLAN ID, then clear all bits except that of - * the manageability unit. - */ - vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); - e1e_flush(); - } -} - -/** - * e1000_check_mng_mode_82574 - Check manageability is enabled - * @hw: pointer to the HW structure - * - * Reads the NVM Initialization Control Word 2 and returns true - * (>0) if any manageability is enabled, else false (0). - **/ -static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) -{ - u16 data; - - e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); - return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; -} - -/** - * e1000_led_on_82574 - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - **/ -static s32 e1000_led_on_82574(struct e1000_hw *hw) -{ - u32 ctrl; - u32 i; - - ctrl = hw->mac.ledctl_mode2; - if (!(E1000_STATUS_LU & er32(STATUS))) { - /* - * If no link, then turn LED on by setting the invert bit - * for each LED that's "on" (0x0E) in ledctl_mode2. - */ - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); - } - ew32(LEDCTL, ctrl); - - return 0; -} - -/** - * e1000_check_phy_82574 - check 82574 phy hung state - * @hw: pointer to the HW structure - * - * Returns whether phy is hung or not - **/ -bool e1000_check_phy_82574(struct e1000_hw *hw) -{ - u16 status_1kbt = 0; - u16 receive_errors = 0; - bool phy_hung = false; - s32 ret_val = 0; - - /* - * Read PHY Receive Error counter first, if its is max - all F's then - * read the Base1000T status register If both are max then PHY is hung. - */ - ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); - - if (ret_val) - goto out; - if (receive_errors == E1000_RECEIVE_ERROR_MAX) { - ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); - if (ret_val) - goto out; - if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == - E1000_IDLE_ERROR_COUNT_MASK) - phy_hung = true; - } -out: - return phy_hung; -} - -/** - * e1000_setup_link_82571 - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -static s32 e1000_setup_link_82571(struct e1000_hw *hw) -{ - /* - * 82573 does not have a word in the NVM to determine - * the default flow control setting, so we explicitly - * set it to full. - */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (hw->fc.requested_mode == e1000_fc_default) - hw->fc.requested_mode = e1000_fc_full; - break; - default: - break; - } - - return e1000e_setup_link(hw); -} - -/** - * e1000_setup_copper_link_82571 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - **/ -static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ew32(CTRL, ctrl); - - switch (hw->phy.type) { - case e1000_phy_m88: - case e1000_phy_bm: - ret_val = e1000e_copper_link_setup_m88(hw); - break; - case e1000_phy_igp_2: - ret_val = e1000e_copper_link_setup_igp(hw); - break; - default: - return -E1000_ERR_PHY; - break; - } - - if (ret_val) - return ret_val; - - ret_val = e1000e_setup_copper_link(hw); - - return ret_val; -} - -/** - * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes links. - * Upon successful setup, poll for link. - **/ -static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) -{ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* - * If SerDes loopback mode is entered, there is no form - * of reset to take the adapter out of that mode. So we - * have to explicitly take the adapter out of loopback - * mode. This prevents drivers from twiddling their thumbs - * if another tool failed to take it out of loopback mode. - */ - ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); - break; - default: - break; - } - - return e1000e_setup_fiber_serdes_link(hw); -} - -/** - * e1000_check_for_serdes_link_82571 - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Reports the link state as up or down. - * - * If autonegotiation is supported by the link partner, the link state is - * determined by the result of autonegotiation. This is the most likely case. - * If autonegotiation is not supported by the link partner, and the link - * has a valid signal, force the link up. - * - * The link state is represented internally here by 4 states: - * - * 1) down - * 2) autoneg_progress - * 3) autoneg_complete (the link successfully autonegotiated) - * 4) forced_up (the link has been forced up, it did not autonegotiate) - * - **/ -static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - u32 txcw; - u32 i; - s32 ret_val = 0; - - ctrl = er32(CTRL); - status = er32(STATUS); - rxcw = er32(RXCW); - - if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { - - /* Receiver is synchronized with no invalid bits. */ - switch (mac->serdes_link_state) { - case e1000_serdes_link_autoneg_complete: - if (!(status & E1000_STATUS_LU)) { - /* - * We have lost link, retry autoneg before - * reporting link failure - */ - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - e_dbg("AN_UP -> AN_PROG\n"); - } else { - mac->serdes_has_link = true; - } - break; - - case e1000_serdes_link_forced_up: - /* - * If we are receiving /C/ ordered sets, re-enable - * auto-negotiation in the TXCW register and disable - * forced link in the Device Control register in an - * attempt to auto-negotiate with our link partner. - * If the partner code word is null, stop forcing - * and restart auto negotiation. - */ - if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) { - /* Enable autoneg, and unforce link up */ - ew32(TXCW, mac->txcw); - ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - e_dbg("FORCED_UP -> AN_PROG\n"); - } else { - mac->serdes_has_link = true; - } - break; - - case e1000_serdes_link_autoneg_progress: - if (rxcw & E1000_RXCW_C) { - /* - * We received /C/ ordered sets, meaning the - * link partner has autonegotiated, and we can - * trust the Link Up (LU) status bit. - */ - if (status & E1000_STATUS_LU) { - mac->serdes_link_state = - e1000_serdes_link_autoneg_complete; - e_dbg("AN_PROG -> AN_UP\n"); - mac->serdes_has_link = true; - } else { - /* Autoneg completed, but failed. */ - mac->serdes_link_state = - e1000_serdes_link_down; - e_dbg("AN_PROG -> DOWN\n"); - } - } else { - /* - * The link partner did not autoneg. - * Force link up and full duplex, and change - * state to forced. - */ - ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - ew32(CTRL, ctrl); - - /* Configure Flow Control after link up. */ - ret_val = e1000e_config_fc_after_link_up(hw); - if (ret_val) { - e_dbg("Error config flow control\n"); - break; - } - mac->serdes_link_state = - e1000_serdes_link_forced_up; - mac->serdes_has_link = true; - e_dbg("AN_PROG -> FORCED_UP\n"); - } - break; - - case e1000_serdes_link_down: - default: - /* - * The link was down but the receiver has now gained - * valid sync, so lets see if we can bring the link - * up. - */ - ew32(TXCW, mac->txcw); - ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - e_dbg("DOWN -> AN_PROG\n"); - break; - } - } else { - if (!(rxcw & E1000_RXCW_SYNCH)) { - mac->serdes_has_link = false; - mac->serdes_link_state = e1000_serdes_link_down; - e_dbg("ANYSTATE -> DOWN\n"); - } else { - /* - * Check several times, if Sync and Config - * both are consistently 1 then simply ignore - * the Invalid bit and restart Autoneg - */ - for (i = 0; i < AN_RETRY_COUNT; i++) { - udelay(10); - rxcw = er32(RXCW); - if ((rxcw & E1000_RXCW_IV) && - !((rxcw & E1000_RXCW_SYNCH) && - (rxcw & E1000_RXCW_C))) { - mac->serdes_has_link = false; - mac->serdes_link_state = - e1000_serdes_link_down; - e_dbg("ANYSTATE -> DOWN\n"); - break; - } - } - - if (i == AN_RETRY_COUNT) { - txcw = er32(TXCW); - txcw |= E1000_TXCW_ANE; - ew32(TXCW, txcw); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - e_dbg("ANYSTATE -> AN_PROG\n"); - } - } - } - - return ret_val; -} - -/** - * e1000_valid_led_default_82571 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - return ret_val; - } - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (*data == ID_LED_RESERVED_F746) - *data = ID_LED_DEFAULT_82573; - break; - default: - if (*data == ID_LED_RESERVED_0000 || - *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - break; - } - - return 0; -} - -/** - * e1000e_get_laa_state_82571 - Get locally administered address state - * @hw: pointer to the HW structure - * - * Retrieve and return the current locally administered address state. - **/ -bool e1000e_get_laa_state_82571(struct e1000_hw *hw) -{ - if (hw->mac.type != e1000_82571) - return false; - - return hw->dev_spec.e82571.laa_is_present; -} - -/** - * e1000e_set_laa_state_82571 - Set locally administered address state - * @hw: pointer to the HW structure - * @state: enable/disable locally administered address - * - * Enable/Disable the current locally administered address state. - **/ -void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) -{ - if (hw->mac.type != e1000_82571) - return; - - hw->dev_spec.e82571.laa_is_present = state; - - /* If workaround is activated... */ - if (state) - /* - * Hold a copy of the LAA in RAR[14] This is done so that - * between the time RAR[0] gets clobbered and the time it - * gets fixed, the actual LAA is in one of the RARs and no - * incoming packets directed to this port are dropped. - * Eventually the LAA will be in RAR[0] and RAR[14]. - */ - e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); -} - -/** - * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum - * @hw: pointer to the HW structure - * - * Verifies that the EEPROM has completed the update. After updating the - * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If - * the checksum fix is not implemented, we need to set the bit and update - * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, - * we need to return bad checksum. - **/ -static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u16 data; - - if (nvm->type != e1000_nvm_flash_hw) - return 0; - - /* - * Check bit 4 of word 10h. If it is 0, firmware is done updating - * 10h-12h. Checksum may need to be fixed. - */ - ret_val = e1000_read_nvm(hw, 0x10, 1, &data); - if (ret_val) - return ret_val; - - if (!(data & 0x10)) { - /* - * Read 0x23 and check bit 15. This bit is a 1 - * when the checksum has already been fixed. If - * the checksum is still wrong and this bit is a - * 1, we need to return bad checksum. Otherwise, - * we need to set this bit to a 1 and update the - * checksum. - */ - ret_val = e1000_read_nvm(hw, 0x23, 1, &data); - if (ret_val) - return ret_val; - - if (!(data & 0x8000)) { - data |= 0x8000; - ret_val = e1000_write_nvm(hw, 0x23, 1, &data); - if (ret_val) - return ret_val; - ret_val = e1000e_update_nvm_checksum(hw); - } - } - - return 0; -} - -/** - * e1000_read_mac_addr_82571 - Read device MAC address - * @hw: pointer to the HW structure - **/ -static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) -{ - s32 ret_val = 0; - - if (hw->mac.type == e1000_82571) { - /* - * If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - } - - ret_val = e1000_read_mac_addr_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_power_down_phy_copper_82571 - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - struct e1000_mac_info *mac = &hw->mac; - - if (!(phy->ops.check_reset_block)) - return; - - /* If the management interface is not enabled, then power down */ - if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); -} - -/** - * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) -{ - e1000e_clear_hw_cntrs_base(hw); - - er32(PRC64); - er32(PRC127); - er32(PRC255); - er32(PRC511); - er32(PRC1023); - er32(PRC1522); - er32(PTC64); - er32(PTC127); - er32(PTC255); - er32(PTC511); - er32(PTC1023); - er32(PTC1522); - - er32(ALGNERRC); - er32(RXERRC); - er32(TNCRS); - er32(CEXTERR); - er32(TSCTC); - er32(TSCTFC); - - er32(MGTPRC); - er32(MGTPDC); - er32(MGTPTC); - - er32(IAC); - er32(ICRXOC); - - er32(ICRXPTC); - er32(ICRXATC); - er32(ICTXPTC); - er32(ICTXATC); - er32(ICTXQEC); - er32(ICTXQMTC); - er32(ICRXDMTC); -} - -static struct e1000_mac_operations e82571_mac_ops = { - /* .check_mng_mode: mac type dependent */ - /* .check_for_link: media type dependent */ - .id_led_init = e1000e_id_led_init, - .cleanup_led = e1000e_cleanup_led_generic, - .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, - .get_bus_info = e1000e_get_bus_info_pcie, - .set_lan_id = e1000_set_lan_id_multi_port_pcie, - /* .get_link_up_info: media type dependent */ - /* .led_on: mac type dependent */ - .led_off = e1000e_led_off_generic, - .update_mc_addr_list = e1000e_update_mc_addr_list_generic, - .write_vfta = e1000_write_vfta_generic, - .clear_vfta = e1000_clear_vfta_82571, - .reset_hw = e1000_reset_hw_82571, - .init_hw = e1000_init_hw_82571, - .setup_link = e1000_setup_link_82571, - /* .setup_physical_interface: media type dependent */ - .setup_led = e1000e_setup_led_generic, - .read_mac_addr = e1000_read_mac_addr_82571, -}; - -static struct e1000_phy_operations e82_phy_ops_igp = { - .acquire = e1000_get_hw_semaphore_82571, - .check_polarity = e1000_check_polarity_igp, - .check_reset_block = e1000e_check_reset_block_generic, - .commit = NULL, - .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, - .get_cfg_done = e1000_get_cfg_done_82571, - .get_cable_length = e1000e_get_cable_length_igp_2, - .get_info = e1000e_get_phy_info_igp, - .read_reg = e1000e_read_phy_reg_igp, - .release = e1000_put_hw_semaphore_82571, - .reset = e1000e_phy_hw_reset_generic, - .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, - .set_d3_lplu_state = e1000e_set_d3_lplu_state, - .write_reg = e1000e_write_phy_reg_igp, - .cfg_on_link_up = NULL, -}; - -static struct e1000_phy_operations e82_phy_ops_m88 = { - .acquire = e1000_get_hw_semaphore_82571, - .check_polarity = e1000_check_polarity_m88, - .check_reset_block = e1000e_check_reset_block_generic, - .commit = e1000e_phy_sw_reset, - .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, - .get_cfg_done = e1000e_get_cfg_done, - .get_cable_length = e1000e_get_cable_length_m88, - .get_info = e1000e_get_phy_info_m88, - .read_reg = e1000e_read_phy_reg_m88, - .release = e1000_put_hw_semaphore_82571, - .reset = e1000e_phy_hw_reset_generic, - .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, - .set_d3_lplu_state = e1000e_set_d3_lplu_state, - .write_reg = e1000e_write_phy_reg_m88, - .cfg_on_link_up = NULL, -}; - -static struct e1000_phy_operations e82_phy_ops_bm = { - .acquire = e1000_get_hw_semaphore_82571, - .check_polarity = e1000_check_polarity_m88, - .check_reset_block = e1000e_check_reset_block_generic, - .commit = e1000e_phy_sw_reset, - .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, - .get_cfg_done = e1000e_get_cfg_done, - .get_cable_length = e1000e_get_cable_length_m88, - .get_info = e1000e_get_phy_info_m88, - .read_reg = e1000e_read_phy_reg_bm2, - .release = e1000_put_hw_semaphore_82571, - .reset = e1000e_phy_hw_reset_generic, - .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, - .set_d3_lplu_state = e1000e_set_d3_lplu_state, - .write_reg = e1000e_write_phy_reg_bm2, - .cfg_on_link_up = NULL, -}; - -static struct e1000_nvm_operations e82571_nvm_ops = { - .acquire = e1000_acquire_nvm_82571, - .read = e1000e_read_nvm_eerd, - .release = e1000_release_nvm_82571, - .update = e1000_update_nvm_checksum_82571, - .valid_led_default = e1000_valid_led_default_82571, - .validate = e1000_validate_nvm_checksum_82571, - .write = e1000_write_nvm_82571, -}; - -struct e1000_info e1000_82571_info = { - .mac = e1000_82571, - .flags = FLAG_HAS_HW_VLAN_FILTER - | FLAG_HAS_JUMBO_FRAMES - | FLAG_HAS_WOL - | FLAG_APME_IN_CTRL3 - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_HAS_SMART_POWER_DOWN - | FLAG_RESET_OVERWRITES_LAA /* errata */ - | FLAG_TARC_SPEED_MODE_BIT /* errata */ - | FLAG_APME_CHECK_PORT_B, - .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ - | FLAG2_DMA_BURST, - .pba = 38, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_82571, - .mac_ops = &e82571_mac_ops, - .phy_ops = &e82_phy_ops_igp, - .nvm_ops = &e82571_nvm_ops, -}; - -struct e1000_info e1000_82572_info = { - .mac = e1000_82572, - .flags = FLAG_HAS_HW_VLAN_FILTER - | FLAG_HAS_JUMBO_FRAMES - | FLAG_HAS_WOL - | FLAG_APME_IN_CTRL3 - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_TARC_SPEED_MODE_BIT, /* errata */ - .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ - | FLAG2_DMA_BURST, - .pba = 38, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_82571, - .mac_ops = &e82571_mac_ops, - .phy_ops = &e82_phy_ops_igp, - .nvm_ops = &e82571_nvm_ops, -}; - -struct e1000_info e1000_82573_info = { - .mac = e1000_82573, - .flags = FLAG_HAS_HW_VLAN_FILTER - | FLAG_HAS_WOL - | FLAG_APME_IN_CTRL3 - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_SMART_POWER_DOWN - | FLAG_HAS_AMT - | FLAG_HAS_SWSM_ON_LOAD, - .flags2 = FLAG2_DISABLE_ASPM_L1 - | FLAG2_DISABLE_ASPM_L0S, - .pba = 20, - .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, - .get_variants = e1000_get_variants_82571, - .mac_ops = &e82571_mac_ops, - .phy_ops = &e82_phy_ops_m88, - .nvm_ops = &e82571_nvm_ops, -}; - -struct e1000_info e1000_82574_info = { - .mac = e1000_82574, - .flags = FLAG_HAS_HW_VLAN_FILTER - | FLAG_HAS_MSIX - | FLAG_HAS_JUMBO_FRAMES - | FLAG_HAS_WOL - | FLAG_APME_IN_CTRL3 - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_SMART_POWER_DOWN - | FLAG_HAS_AMT - | FLAG_HAS_CTRLEXT_ON_LOAD, - .flags2 = FLAG2_CHECK_PHY_HANG - | FLAG2_DISABLE_ASPM_L0S, - .pba = 32, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_82571, - .mac_ops = &e82571_mac_ops, - .phy_ops = &e82_phy_ops_bm, - .nvm_ops = &e82571_nvm_ops, -}; - -struct e1000_info e1000_82583_info = { - .mac = e1000_82583, - .flags = FLAG_HAS_HW_VLAN_FILTER - | FLAG_HAS_WOL - | FLAG_APME_IN_CTRL3 - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_SMART_POWER_DOWN - | FLAG_HAS_AMT - | FLAG_HAS_JUMBO_FRAMES - | FLAG_HAS_CTRLEXT_ON_LOAD, - .flags2 = FLAG2_DISABLE_ASPM_L0S, - .pba = 32, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_82571, - .mac_ops = &e82571_mac_ops, - .phy_ops = &e82_phy_ops_bm, - .nvm_ops = &e82571_nvm_ops, -}; - diff --git a/drivers/net/e1000e/Makefile b/drivers/net/e1000e/Makefile deleted file mode 100644 index 28519acacd2..00000000000 --- a/drivers/net/e1000e/Makefile +++ /dev/null @@ -1,37 +0,0 @@ -################################################################################ -# -# Intel PRO/1000 Linux driver -# Copyright(c) 1999 - 2011 Intel Corporation. -# -# This program is free software; you can redistribute it and/or modify it -# under the terms and conditions of the GNU General Public License, -# version 2, as published by the Free Software Foundation. -# -# This program is distributed in the hope it will be useful, but WITHOUT -# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -# more details. -# -# You should have received a copy of the GNU General Public License along with -# this program; if not, write to the Free Software Foundation, Inc., -# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. -# -# The full GNU General Public License is included in this distribution in -# the file called "COPYING". -# -# Contact Information: -# Linux NICS <linux.nics@intel.com> -# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> -# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 -# -################################################################################ - -# -# Makefile for the Intel(R) PRO/1000 ethernet driver -# - -obj-$(CONFIG_E1000E) += e1000e.o - -e1000e-objs := 82571.o ich8lan.o es2lan.o \ - lib.o phy.o param.o ethtool.o netdev.o - diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h deleted file mode 100644 index c516a7440be..00000000000 --- a/drivers/net/e1000e/defines.h +++ /dev/null @@ -1,844 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_DEFINES_H_ -#define _E1000_DEFINES_H_ - -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC E1000_WUFC_LNKC -#define E1000_WUS_MAG E1000_WUFC_MAG -#define E1000_WUS_EX E1000_WUFC_EX -#define E1000_WUS_MC E1000_WUFC_MC -#define E1000_WUS_BC E1000_WUFC_BC - -/* Extended Device Control */ -#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_EIAME 0x01000000 -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ -#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ -#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ -#define E1000_CTRL_EXT_LSECCK 0x00001000 -#define E1000_CTRL_EXT_PHYPDEN 0x00100000 - -/* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ - -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -/* Enable MAC address filtering */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 -/* Enable MNG packets to host memory */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 - -#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ -#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ -#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ -#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ - -/* Receive Control */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ - -/* - * Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SWFW_SYNC Definitions */ -#define E1000_SWFW_EEP_SM 0x1 -#define E1000_SWFW_PHY0_SM 0x2 -#define E1000_SWFW_PHY1_SM 0x4 -#define E1000_SWFW_CSR_SM 0x8 - -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ -#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ - -/* - * Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ -#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ - -/* Constants used to interpret the masked PCI-X bus speed. */ - -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - - -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ -#define ADVERTISE_1000_FULL 0x0020 - -/* 1000/H is not supported, nor spec-compliant. */ -#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) -#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) - -#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX - -/* LED Control */ -#define E1000_PHY_LED0_MODE_MASK 0x00000007 -#define E1000_PHY_LED0_IVRT 0x00000008 -#define E1000_PHY_LED0_MASK 0x0000001F - -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 - -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ - -/* Transmit Control */ -#define E1000_TCTL_EN 0x00000002 /* enable Tx */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ - -/* Transmit Arbitration Count */ - -/* SerDes Control */ -#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 - -/* Receive Checksum Control */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ - -/* Header split receive */ -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLD_SHIFT 12 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF - -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 -#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 - -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -/* PBA constants */ -#define E1000_PBA_8K 0x0008 /* 8KB */ -#define E1000_PBA_16K 0x0010 /* 16KB */ - -#define E1000_PBS_16K E1000_PBA_16K - -#define IFS_MAX 80 -#define IFS_MIN 40 -#define IFS_RATIO 4 -#define IFS_STEP 10 -#define MIN_NUM_XMITS 1000 - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ -#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ -#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ -#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ -#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ -#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ -#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ - -/* PBA ECC Register */ -#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ -#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ -#define E1000_PBA_ECC_CORR_EN 0x00000001 /* ECC correction enable */ -#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ -#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 for ECC */ - -/* - * This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ -#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ -#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ -#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ -#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ -#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ - -/* Interrupt Cause Set */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ -/* Enable the counting of desc. still to be processed. */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* 802.1q VLAN Packet Size */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Receive Address */ -/* - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * Technically, we have 16 spots. However, we reserve one of these spots - * (RAR[15]) for our directed address used by controllers with - * manageability enabled, allowing us room for 15 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ -#define E1000_RAL_MAC_ADDR_LEN 4 -#define E1000_RAH_MAC_ADDR_LEN 2 - -/* Error Codes */ -#define E1000_ERR_NVM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_INIT 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 -#define E1000_NOT_IMPLEMENTED 14 -#define E1000_ERR_INVALID_ARGUMENT 16 -#define E1000_ERR_NO_SPACE 17 -#define E1000_ERR_NVM_PBA_SECTION 18 - -/* Loop limit on how long we wait for auto-negotiation to complete */ -#define FIBER_LINK_UP_LIMIT 50 -#define COPPER_LINK_UP_LIMIT 10 -#define PHY_AUTO_NEG_LIMIT 45 -#define PHY_FORCE_LIMIT 20 -/* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 -/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ -#define MDIO_OWNERSHIP_TIMEOUT 10 -/* Number of milliseconds for NVM auto read done after MAC reset. */ -#define AUTO_READ_DONE_TIMEOUT 10 - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ - -/* PCI Express Control */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 - -#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -/* PHY Control Register */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 - -/* PHY Status Register */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ - - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CONTROL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ - -/* NVM Control */ -#define E1000_EECD_SK 0x00000001 /* NVM Clock */ -#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* NVM Data In */ -#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ -#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* NVM Present */ -#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ -/* NVM Addressing bits based on type (0-small, 1-large) */ -#define E1000_EECD_ADDR_BITS 0x00000400 -#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ -#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) - -#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */ -#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_NVM_RW_REG_START 1 /* Start operation */ -#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ -#define E1000_FLASH_UPDATES 2000 - -/* NVM Word Offsets */ -#define NVM_COMPAT 0x0003 -#define NVM_ID_LED_SETTINGS 0x0004 -#define NVM_INIT_CONTROL2_REG 0x000F -#define NVM_INIT_CONTROL3_PORT_B 0x0014 -#define NVM_INIT_3GIO_3 0x001A -#define NVM_INIT_CONTROL3_PORT_A 0x0024 -#define NVM_CFG 0x0012 -#define NVM_ALT_MAC_ADDR_PTR 0x0037 -#define NVM_CHECKSUM_REG 0x003F - -#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ - -#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */ -#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */ - -/* Mask bits for fields in Word 0x0f of the NVM */ -#define NVM_WORD0F_PAUSE_MASK 0x3000 -#define NVM_WORD0F_PAUSE 0x1000 -#define NVM_WORD0F_ASM_DIR 0x2000 - -/* Mask bits for fields in Word 0x1a of the NVM */ -#define NVM_WORD1A_ASPM_MASK 0x000C - -/* Mask bits for fields in Word 0x03 of the EEPROM */ -#define NVM_COMPAT_LOM 0x0800 - -/* length of string needed to store PBA number */ -#define E1000_PBANUM_LENGTH 11 - -/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ -#define NVM_SUM 0xBABA - -/* PBA (printed board assembly) number words */ -#define NVM_PBA_OFFSET_0 8 -#define NVM_PBA_OFFSET_1 9 -#define NVM_PBA_PTR_GUARD 0xFAFA -#define NVM_WORD_SIZE_BASE_SHIFT 6 - -/* NVM Commands - SPI */ -#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ -#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ -#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ - -/* SPI NVM Status Register */ -#define NVM_STATUS_RDY_SPI 0x01 - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* PCI/PCI-X/PCI-EX Config space */ -#define PCI_HEADER_TYPE_REGISTER 0x0E -#define PCIE_LINK_STATUS 0x12 - -#define PCI_HEADER_TYPE_MULTIFUNC 0x80 -#define PCIE_LINK_WIDTH_MASK 0x3F0 -#define PCIE_LINK_WIDTH_SHIFT 4 - -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF - -/* Bit definitions for valid PHY IDs. */ -/* - * I = Integrated - * E = External - */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define GG82563_E_PHY_ID 0x01410CA0 -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 -#define BME1000_E_PHY_ID 0x01410CB0 -#define BME1000_E_PHY_ID_R2 0x01410CB1 -#define I82577_E_PHY_ID 0x01540050 -#define I82578_E_PHY_ID 0x004DD040 -#define I82579_E_PHY_ID 0x01540090 - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ - -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 -/* Auto crossover enabled all speeds */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 -/* - * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold) - * 0=Normal 10BASE-T Rx Threshold - */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the slave - */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 - -#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 -#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C - -/* BME1000 PHY Specific Control Register */ -#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ - - -#define PHY_PAGE_SHIFT 5 -#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ - ((reg) & MAX_PHY_REG_ADDRESS)) - -/* - * Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL \ - GG82563_REG(0, 16) /* PHY Specific Control */ -#define GG82563_PHY_PAGE_SELECT \ - GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 \ - GG82563_REG(0, 26) /* PHY Specific Control 2 */ -#define GG82563_PHY_PAGE_SELECT_ALT \ - GG82563_REG(0, 29) /* Alternate Page Select */ - -#define GG82563_PHY_MAC_SPEC_CTRL \ - GG82563_REG(2, 21) /* MAC Specific Control Register */ - -#define GG82563_PHY_DSP_DISTANCE \ - GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -#define GG82563_PHY_KMRN_MODE_CTRL \ - GG82563_REG(193, 16) /* Kumeran Mode Control */ -#define GG82563_PHY_PWR_MGMT_CTRL \ - GG82563_REG(193, 20) /* Power Management Control */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_INBAND_CTRL \ - GG82563_REG(194, 18) /* Inband Control */ - -/* MDI Control */ -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_ERROR 0x40000000 - -/* SerDes Control */ -#define E1000_GEN_POLL_TIMEOUT 640 - -#endif /* _E1000_DEFINES_H_ */ diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h deleted file mode 100644 index 638d175792c..00000000000 --- a/drivers/net/e1000e/e1000.h +++ /dev/null @@ -1,736 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* Linux PRO/1000 Ethernet Driver main header file */ - -#ifndef _E1000_H_ -#define _E1000_H_ - -#include <linux/bitops.h> -#include <linux/types.h> -#include <linux/timer.h> -#include <linux/workqueue.h> -#include <linux/io.h> -#include <linux/netdevice.h> -#include <linux/pci.h> -#include <linux/pci-aspm.h> -#include <linux/crc32.h> -#include <linux/if_vlan.h> - -#include "hw.h" - -struct e1000_info; - -#define e_dbg(format, arg...) \ - netdev_dbg(hw->adapter->netdev, format, ## arg) -#define e_err(format, arg...) \ - netdev_err(adapter->netdev, format, ## arg) -#define e_info(format, arg...) \ - netdev_info(adapter->netdev, format, ## arg) -#define e_warn(format, arg...) \ - netdev_warn(adapter->netdev, format, ## arg) -#define e_notice(format, arg...) \ - netdev_notice(adapter->netdev, format, ## arg) - - -/* Interrupt modes, as used by the IntMode parameter */ -#define E1000E_INT_MODE_LEGACY 0 -#define E1000E_INT_MODE_MSI 1 -#define E1000E_INT_MODE_MSIX 2 - -/* Tx/Rx descriptor defines */ -#define E1000_DEFAULT_TXD 256 -#define E1000_MAX_TXD 4096 -#define E1000_MIN_TXD 64 - -#define E1000_DEFAULT_RXD 256 -#define E1000_MAX_RXD 4096 -#define E1000_MIN_RXD 64 - -#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ -#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ - -/* Early Receive defines */ -#define E1000_ERT_2048 0x100 - -#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ - -/* How many Tx Descriptors do we need to call netif_wake_queue ? */ -/* How many Rx Buffers do we bundle into one write to the hardware ? */ -#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ - -#define AUTO_ALL_MODES 0 -#define E1000_EEPROM_APME 0x0400 - -#define E1000_MNG_VLAN_NONE (-1) - -/* Number of packet split data buffers (not including the header buffer) */ -#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) - -#define DEFAULT_JUMBO 9234 - -/* BM/HV Specific Registers */ -#define BM_PORT_CTRL_PAGE 769 - -#define PHY_UPPER_SHIFT 21 -#define BM_PHY_REG(page, reg) \ - (((reg) & MAX_PHY_REG_ADDRESS) |\ - (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\ - (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT))) - -/* PHY Wakeup Registers and defines */ -#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17) -#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0) -#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) -#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) -#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) -#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2))) -#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2))) -#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2))) -#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2))) -#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1))) - -#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */ -#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */ -#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */ -#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */ -#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */ -#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */ -#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */ - -#define HV_STATS_PAGE 778 -#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */ -#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17) -#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */ -#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19) -#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */ -#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21) -#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */ -#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24) -#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */ -#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26) -#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */ -#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28) -#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */ -#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30) - -#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */ - -/* BM PHY Copper Specific Status */ -#define BM_CS_STATUS 17 -#define BM_CS_STATUS_LINK_UP 0x0400 -#define BM_CS_STATUS_RESOLVED 0x0800 -#define BM_CS_STATUS_SPEED_MASK 0xC000 -#define BM_CS_STATUS_SPEED_1000 0x8000 - -/* 82577 Mobile Phy Status Register */ -#define HV_M_STATUS 26 -#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000 -#define HV_M_STATUS_SPEED_MASK 0x0300 -#define HV_M_STATUS_SPEED_1000 0x0200 -#define HV_M_STATUS_LINK_UP 0x0040 - -/* Time to wait before putting the device into D3 if there's no link (in ms). */ -#define LINK_TIMEOUT 100 - -#define DEFAULT_RDTR 0 -#define DEFAULT_RADV 8 -#define BURST_RDTR 0x20 -#define BURST_RADV 0x20 - -/* - * in the case of WTHRESH, it appears at least the 82571/2 hardware - * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when - * WTHRESH=4, and since we want 64 bytes at a time written back, set - * it to 5 - */ -#define E1000_TXDCTL_DMA_BURST_ENABLE \ - (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \ - E1000_TXDCTL_COUNT_DESC | \ - (5 << 16) | /* wthresh must be +1 more than desired */\ - (1 << 8) | /* hthresh */ \ - 0x1f) /* pthresh */ - -#define E1000_RXDCTL_DMA_BURST_ENABLE \ - (0x01000000 | /* set descriptor granularity */ \ - (4 << 16) | /* set writeback threshold */ \ - (4 << 8) | /* set prefetch threshold */ \ - 0x20) /* set hthresh */ - -#define E1000_TIDV_FPD (1 << 31) -#define E1000_RDTR_FPD (1 << 31) - -enum e1000_boards { - board_82571, - board_82572, - board_82573, - board_82574, - board_82583, - board_80003es2lan, - board_ich8lan, - board_ich9lan, - board_ich10lan, - board_pchlan, - board_pch2lan, -}; - -struct e1000_ps_page { - struct page *page; - u64 dma; /* must be u64 - written to hw */ -}; - -/* - * wrappers around a pointer to a socket buffer, - * so a DMA handle can be stored along with the buffer - */ -struct e1000_buffer { - dma_addr_t dma; - struct sk_buff *skb; - union { - /* Tx */ - struct { - unsigned long time_stamp; - u16 length; - u16 next_to_watch; - unsigned int segs; - unsigned int bytecount; - u16 mapped_as_page; - }; - /* Rx */ - struct { - /* arrays of page information for packet split */ - struct e1000_ps_page *ps_pages; - struct page *page; - }; - }; -}; - -struct e1000_ring { - void *desc; /* pointer to ring memory */ - dma_addr_t dma; /* phys address of ring */ - unsigned int size; /* length of ring in bytes */ - unsigned int count; /* number of desc. in ring */ - - u16 next_to_use; - u16 next_to_clean; - - u16 head; - u16 tail; - - /* array of buffer information structs */ - struct e1000_buffer *buffer_info; - - char name[IFNAMSIZ + 5]; - u32 ims_val; - u32 itr_val; - u16 itr_register; - int set_itr; - - struct sk_buff *rx_skb_top; -}; - -/* PHY register snapshot values */ -struct e1000_phy_regs { - u16 bmcr; /* basic mode control register */ - u16 bmsr; /* basic mode status register */ - u16 advertise; /* auto-negotiation advertisement */ - u16 lpa; /* link partner ability register */ - u16 expansion; /* auto-negotiation expansion reg */ - u16 ctrl1000; /* 1000BASE-T control register */ - u16 stat1000; /* 1000BASE-T status register */ - u16 estatus; /* extended status register */ -}; - -/* board specific private data structure */ -struct e1000_adapter { - struct timer_list watchdog_timer; - struct timer_list phy_info_timer; - struct timer_list blink_timer; - - struct work_struct reset_task; - struct work_struct watchdog_task; - - const struct e1000_info *ei; - - unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; - u32 bd_number; - u32 rx_buffer_len; - u16 mng_vlan_id; - u16 link_speed; - u16 link_duplex; - u16 eeprom_vers; - - /* track device up/down/testing state */ - unsigned long state; - - /* Interrupt Throttle Rate */ - u32 itr; - u32 itr_setting; - u16 tx_itr; - u16 rx_itr; - - /* - * Tx - */ - struct e1000_ring *tx_ring /* One per active queue */ - ____cacheline_aligned_in_smp; - - struct napi_struct napi; - - unsigned int restart_queue; - u32 txd_cmd; - - bool detect_tx_hung; - u8 tx_timeout_factor; - - u32 tx_int_delay; - u32 tx_abs_int_delay; - - unsigned int total_tx_bytes; - unsigned int total_tx_packets; - unsigned int total_rx_bytes; - unsigned int total_rx_packets; - - /* Tx stats */ - u64 tpt_old; - u64 colc_old; - u32 gotc; - u64 gotc_old; - u32 tx_timeout_count; - u32 tx_fifo_head; - u32 tx_head_addr; - u32 tx_fifo_size; - u32 tx_dma_failed; - - /* - * Rx - */ - bool (*clean_rx) (struct e1000_adapter *adapter, - int *work_done, int work_to_do) - ____cacheline_aligned_in_smp; - void (*alloc_rx_buf) (struct e1000_adapter *adapter, - int cleaned_count, gfp_t gfp); - struct e1000_ring *rx_ring; - - u32 rx_int_delay; - u32 rx_abs_int_delay; - - /* Rx stats */ - u64 hw_csum_err; - u64 hw_csum_good; - u64 rx_hdr_split; - u32 gorc; - u64 gorc_old; - u32 alloc_rx_buff_failed; - u32 rx_dma_failed; - - unsigned int rx_ps_pages; - u16 rx_ps_bsize0; - u32 max_frame_size; - u32 min_frame_size; - - /* OS defined structs */ - struct net_device *netdev; - struct pci_dev *pdev; - - /* structs defined in e1000_hw.h */ - struct e1000_hw hw; - - spinlock_t stats64_lock; - struct e1000_hw_stats stats; - struct e1000_phy_info phy_info; - struct e1000_phy_stats phy_stats; - - /* Snapshot of PHY registers */ - struct e1000_phy_regs phy_regs; - - struct e1000_ring test_tx_ring; - struct e1000_ring test_rx_ring; - u32 test_icr; - - u32 msg_enable; - unsigned int num_vectors; - struct msix_entry *msix_entries; - int int_mode; - u32 eiac_mask; - - u32 eeprom_wol; - u32 wol; - u32 pba; - u32 max_hw_frame_size; - - bool fc_autoneg; - - unsigned int flags; - unsigned int flags2; - struct work_struct downshift_task; - struct work_struct update_phy_task; - struct work_struct print_hang_task; - - bool idle_check; - int phy_hang_count; -}; - -struct e1000_info { - enum e1000_mac_type mac; - unsigned int flags; - unsigned int flags2; - u32 pba; - u32 max_hw_frame_size; - s32 (*get_variants)(struct e1000_adapter *); - struct e1000_mac_operations *mac_ops; - struct e1000_phy_operations *phy_ops; - struct e1000_nvm_operations *nvm_ops; -}; - -/* hardware capability, feature, and workaround flags */ -#define FLAG_HAS_AMT (1 << 0) -#define FLAG_HAS_FLASH (1 << 1) -#define FLAG_HAS_HW_VLAN_FILTER (1 << 2) -#define FLAG_HAS_WOL (1 << 3) -#define FLAG_HAS_ERT (1 << 4) -#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5) -#define FLAG_HAS_SWSM_ON_LOAD (1 << 6) -#define FLAG_HAS_JUMBO_FRAMES (1 << 7) -#define FLAG_READ_ONLY_NVM (1 << 8) -#define FLAG_IS_ICH (1 << 9) -#define FLAG_HAS_MSIX (1 << 10) -#define FLAG_HAS_SMART_POWER_DOWN (1 << 11) -#define FLAG_IS_QUAD_PORT_A (1 << 12) -#define FLAG_IS_QUAD_PORT (1 << 13) -#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14) -#define FLAG_APME_IN_WUC (1 << 15) -#define FLAG_APME_IN_CTRL3 (1 << 16) -#define FLAG_APME_CHECK_PORT_B (1 << 17) -#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18) -#define FLAG_NO_WAKE_UCAST (1 << 19) -#define FLAG_MNG_PT_ENABLED (1 << 20) -#define FLAG_RESET_OVERWRITES_LAA (1 << 21) -#define FLAG_TARC_SPEED_MODE_BIT (1 << 22) -#define FLAG_TARC_SET_BIT_ZERO (1 << 23) -#define FLAG_RX_NEEDS_RESTART (1 << 24) -#define FLAG_LSC_GIG_SPEED_DROP (1 << 25) -#define FLAG_SMART_POWER_DOWN (1 << 26) -#define FLAG_MSI_ENABLED (1 << 27) -#define FLAG_RX_CSUM_ENABLED (1 << 28) -#define FLAG_TSO_FORCE (1 << 29) -#define FLAG_RX_RESTART_NOW (1 << 30) -#define FLAG_MSI_TEST_FAILED (1 << 31) - -/* CRC Stripping defines */ -#define FLAG2_CRC_STRIPPING (1 << 0) -#define FLAG2_HAS_PHY_WAKEUP (1 << 1) -#define FLAG2_IS_DISCARDING (1 << 2) -#define FLAG2_DISABLE_ASPM_L1 (1 << 3) -#define FLAG2_HAS_PHY_STATS (1 << 4) -#define FLAG2_HAS_EEE (1 << 5) -#define FLAG2_DMA_BURST (1 << 6) -#define FLAG2_DISABLE_ASPM_L0S (1 << 7) -#define FLAG2_DISABLE_AIM (1 << 8) -#define FLAG2_CHECK_PHY_HANG (1 << 9) - -#define E1000_RX_DESC_PS(R, i) \ - (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) -#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) -#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) -#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) -#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) - -enum e1000_state_t { - __E1000_TESTING, - __E1000_RESETTING, - __E1000_DOWN -}; - -enum latency_range { - lowest_latency = 0, - low_latency = 1, - bulk_latency = 2, - latency_invalid = 255 -}; - -extern char e1000e_driver_name[]; -extern const char e1000e_driver_version[]; - -extern void e1000e_check_options(struct e1000_adapter *adapter); -extern void e1000e_set_ethtool_ops(struct net_device *netdev); - -extern int e1000e_up(struct e1000_adapter *adapter); -extern void e1000e_down(struct e1000_adapter *adapter); -extern void e1000e_reinit_locked(struct e1000_adapter *adapter); -extern void e1000e_reset(struct e1000_adapter *adapter); -extern void e1000e_power_up_phy(struct e1000_adapter *adapter); -extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter); -extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter); -extern void e1000e_free_rx_resources(struct e1000_adapter *adapter); -extern void e1000e_free_tx_resources(struct e1000_adapter *adapter); -extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, - struct rtnl_link_stats64 - *stats); -extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter); -extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter); -extern void e1000e_get_hw_control(struct e1000_adapter *adapter); -extern void e1000e_release_hw_control(struct e1000_adapter *adapter); - -extern unsigned int copybreak; - -extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw); - -extern struct e1000_info e1000_82571_info; -extern struct e1000_info e1000_82572_info; -extern struct e1000_info e1000_82573_info; -extern struct e1000_info e1000_82574_info; -extern struct e1000_info e1000_82583_info; -extern struct e1000_info e1000_ich8_info; -extern struct e1000_info e1000_ich9_info; -extern struct e1000_info e1000_ich10_info; -extern struct e1000_info e1000_pch_info; -extern struct e1000_info e1000_pch2_info; -extern struct e1000_info e1000_es2_info; - -extern s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size); - -extern s32 e1000e_commit_phy(struct e1000_hw *hw); - -extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw); - -extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw); -extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state); - -extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw); -extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, - bool state); -extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); -extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); -extern void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw); -extern void e1000_resume_workarounds_pchlan(struct e1000_hw *hw); -extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable); -extern s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable); -extern void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw); - -extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw); -extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw); -extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw); -extern s32 e1000e_setup_led_generic(struct e1000_hw *hw); -extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw); -extern s32 e1000e_led_on_generic(struct e1000_hw *hw); -extern s32 e1000e_led_off_generic(struct e1000_hw *hw); -extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw); -extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); -extern void e1000_set_lan_id_single_port(struct e1000_hw *hw); -extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex); -extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex); -extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw); -extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw); -extern s32 e1000e_id_led_init(struct e1000_hw *hw); -extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw); -extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw); -extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw); -extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw); -extern s32 e1000e_setup_link(struct e1000_hw *hw); -extern void e1000_clear_vfta_generic(struct e1000_hw *hw); -extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); -extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, - u32 mc_addr_count); -extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); -extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw); -extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop); -extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw); -extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data); -extern void e1000e_config_collision_dist(struct e1000_hw *hw); -extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw); -extern s32 e1000e_force_mac_fc(struct e1000_hw *hw); -extern s32 e1000e_blink_led_generic(struct e1000_hw *hw); -extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); -extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); -extern void e1000e_reset_adaptive(struct e1000_hw *hw); -extern void e1000e_update_adaptive(struct e1000_hw *hw); - -extern s32 e1000e_setup_copper_link(struct e1000_hw *hw); -extern s32 e1000e_get_phy_id(struct e1000_hw *hw); -extern void e1000e_put_hw_semaphore(struct e1000_hw *hw); -extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw); -extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw); -extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw); -extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw); -extern s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page); -extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, - u16 *data); -extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw); -extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active); -extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); -extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, - u16 data); -extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw); -extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw); -extern s32 e1000e_get_cfg_done(struct e1000_hw *hw); -extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw); -extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw); -extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); -extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw); -extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id); -extern s32 e1000e_determine_phy_address(struct e1000_hw *hw); -extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); -extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, - u16 *phy_reg); -extern s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, - u16 *phy_reg); -extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); -extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); -extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); -extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, - u16 data); -extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, - u16 *data); -extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success); -extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw); -extern void e1000_power_up_phy_copper(struct e1000_hw *hw); -extern void e1000_power_down_phy_copper(struct e1000_hw *hw); -extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); -extern s32 e1000e_check_downshift(struct e1000_hw *hw); -extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data); -extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, - u16 *data); -extern s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, - u16 *data); -extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data); -extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, - u16 data); -extern s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, - u16 data); -extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw); -extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); -extern s32 e1000_check_polarity_82577(struct e1000_hw *hw); -extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw); -extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); -extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw); - -extern s32 e1000_check_polarity_m88(struct e1000_hw *hw); -extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw); -extern s32 e1000_check_polarity_ife(struct e1000_hw *hw); -extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); -extern s32 e1000_check_polarity_igp(struct e1000_hw *hw); -extern bool e1000_check_phy_82574(struct e1000_hw *hw); - -static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) -{ - return hw->phy.ops.reset(hw); -} - -static inline s32 e1000_check_reset_block(struct e1000_hw *hw) -{ - return hw->phy.ops.check_reset_block(hw); -} - -static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return hw->phy.ops.read_reg(hw, offset, data); -} - -static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) -{ - return hw->phy.ops.write_reg(hw, offset, data); -} - -static inline s32 e1000_get_cable_length(struct e1000_hw *hw) -{ - return hw->phy.ops.get_cable_length(hw); -} - -extern s32 e1000e_acquire_nvm(struct e1000_hw *hw); -extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw); -extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); -extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw); -extern void e1000e_release_nvm(struct e1000_hw *hw); -extern void e1000e_reload_nvm(struct e1000_hw *hw); -extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); - -static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw) -{ - if (hw->mac.ops.read_mac_addr) - return hw->mac.ops.read_mac_addr(hw); - - return e1000_read_mac_addr_generic(hw); -} - -static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) -{ - return hw->nvm.ops.validate(hw); -} - -static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) -{ - return hw->nvm.ops.update(hw); -} - -static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - return hw->nvm.ops.read(hw, offset, words, data); -} - -static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - return hw->nvm.ops.write(hw, offset, words, data); -} - -static inline s32 e1000_get_phy_info(struct e1000_hw *hw) -{ - return hw->phy.ops.get_info(hw); -} - -static inline s32 e1000e_check_mng_mode(struct e1000_hw *hw) -{ - return hw->mac.ops.check_mng_mode(hw); -} - -extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw); -extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw); -extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); - -static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) -{ - return readl(hw->hw_addr + reg); -} - -static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) -{ - writel(val, hw->hw_addr + reg); -} - -#endif /* _E1000_H_ */ diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c deleted file mode 100644 index e4f42257c24..00000000000 --- a/drivers/net/e1000e/es2lan.c +++ /dev/null @@ -1,1516 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* - * 80003ES2LAN Gigabit Ethernet Controller (Copper) - * 80003ES2LAN Gigabit Ethernet Controller (Serdes) - */ - -#include "e1000.h" - -#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 -#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 -#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 -#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F - -#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 -#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 -#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 - -#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 -#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 -#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 - -#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C -#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 - -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ -#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 - -#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 -#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 - -/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ -#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ -#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 -#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ -#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ -#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ - -/* PHY Specific Control Register 2 (Page 0, Register 26) */ -#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 - /* 1=Reverse Auto-Negotiation */ - -/* MAC Specific Control Register (Page 2, Register 21) */ -/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ -#define GG82563_MSCR_TX_CLK_MASK 0x0007 -#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 -#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 -#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 - -#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ - -/* DSP Distance Register (Page 5, Register 26) */ -#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M - 1 = 50-80M - 2 = 80-110M - 3 = 110-140M - 4 = >140M */ - -/* Kumeran Mode Control Register (Page 193, Register 16) */ -#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 - -/* Max number of times Kumeran read/write should be validated */ -#define GG82563_MAX_KMRN_RETRY 0x5 - -/* Power Management Control Register (Page 193, Register 20) */ -#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 - /* 1=Enable SERDES Electrical Idle */ - -/* In-Band Control Register (Page 194, Register 18) */ -#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ - -/* - * A table for the GG82563 cable length where the range is defined - * with a lower bound at "index" and the upper bound at - * "index + 5". - */ -static const u16 e1000_gg82563_cable_length_table[] = { - 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; -#define GG82563_CABLE_LENGTH_TABLE_SIZE \ - ARRAY_SIZE(e1000_gg82563_cable_length_table) - -static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); -static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); -static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); -static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); -static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); -static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); -static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); -static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); -static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 *data); -static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 data); -static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); - -/** - * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - return 0; - } else { - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; - } - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - phy->type = e1000_phy_gg82563; - - /* This can only be done after all function pointers are setup. */ - ret_val = e1000e_get_phy_id(hw); - - /* Verify phy id */ - if (phy->id != GG82563_E_PHY_ID) - return -E1000_ERR_PHY; - - return ret_val; -} - -/** - * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = er32(EECD); - u16 size; - - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; - break; - } - - nvm->type = e1000_nvm_eeprom_spi; - - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - nvm->word_size = 1 << size; - - return 0; -} - -/** - * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_mac_info *mac = &hw->mac; - struct e1000_mac_operations *func = &mac->ops; - - /* Set media type */ - switch (adapter->pdev->device) { - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC supported; valid only if manageability features are enabled. */ - mac->arc_subsystem_valid = - (er32(FWSM) & E1000_FWSM_MODE_MASK) - ? true : false; - /* Adaptive IFS not supported */ - mac->adaptive_ifs = false; - - /* check for link */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; - func->check_for_link = e1000e_check_for_copper_link; - break; - case e1000_media_type_fiber: - func->setup_physical_interface = e1000e_setup_fiber_serdes_link; - func->check_for_link = e1000e_check_for_fiber_link; - break; - case e1000_media_type_internal_serdes: - func->setup_physical_interface = e1000e_setup_fiber_serdes_link; - func->check_for_link = e1000e_check_for_serdes_link; - break; - default: - return -E1000_ERR_CONFIG; - break; - } - - /* set lan id for port to determine which phy lock to use */ - hw->mac.ops.set_lan_id(hw); - - return 0; -} - -static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - s32 rc; - - rc = e1000_init_mac_params_80003es2lan(adapter); - if (rc) - return rc; - - rc = e1000_init_nvm_params_80003es2lan(hw); - if (rc) - return rc; - - rc = e1000_init_phy_params_80003es2lan(hw); - if (rc) - return rc; - - return 0; -} - -/** - * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to acquire access rights to the correct PHY. - **/ -static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; - return e1000_acquire_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_release_phy_80003es2lan - Release rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to release access rights to the correct PHY. - **/ -static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; - e1000_release_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register - * @hw: pointer to the HW structure - * - * Acquire the semaphore to access the Kumeran interface. - * - **/ -static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - mask = E1000_SWFW_CSR_SM; - - return e1000_acquire_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register - * @hw: pointer to the HW structure - * - * Release the semaphore used to access the Kumeran interface - **/ -static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - mask = E1000_SWFW_CSR_SM; - - e1000_release_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM - * @hw: pointer to the HW structure - * - * Acquire the semaphore to access the EEPROM. - **/ -static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - - ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); - if (ret_val) - return ret_val; - - ret_val = e1000e_acquire_nvm(hw); - - if (ret_val) - e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); - - return ret_val; -} - -/** - * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM - * @hw: pointer to the HW structure - * - * Release the semaphore used to access the EEPROM. - **/ -static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) -{ - e1000e_release_nvm(hw); - e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); -} - -/** - * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - **/ -static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 i = 0; - s32 timeout = 50; - - while (i < timeout) { - if (e1000e_get_hw_semaphore(hw)) - return -E1000_ERR_SWFW_SYNC; - - swfw_sync = er32(SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* - * Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000e_put_hw_semaphore(hw); - mdelay(5); - i++; - } - - if (i == timeout) { - e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); - return -E1000_ERR_SWFW_SYNC; - } - - swfw_sync |= swmask; - ew32(SW_FW_SYNC, swfw_sync); - - e1000e_put_hw_semaphore(hw); - - return 0; -} - -/** - * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - **/ -static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - while (e1000e_get_hw_semaphore(hw) != 0) - ; /* Empty */ - - swfw_sync = er32(SW_FW_SYNC); - swfw_sync &= ~mask; - ew32(SW_FW_SYNC, swfw_sync); - - e1000e_put_hw_semaphore(hw); -} - -/** - * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @data: pointer to the data returned from the operation - * - * Read the GG82563 PHY register. - **/ -static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 *data) -{ - s32 ret_val; - u32 page_select; - u16 temp; - - ret_val = e1000_acquire_phy_80003es2lan(hw); - if (ret_val) - return ret_val; - - /* Select Configuration Page */ - if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - page_select = GG82563_PHY_PAGE_SELECT; - } else { - /* - * Use Alternative Page Select register to access - * registers 30 and 31 - */ - page_select = GG82563_PHY_PAGE_SELECT_ALT; - } - - temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); - ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); - if (ret_val) { - e1000_release_phy_80003es2lan(hw); - return ret_val; - } - - if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) { - /* - * The "ready" bit in the MDIC register may be incorrectly set - * before the device has completed the "Page Select" MDI - * transaction. So we wait 200us after each MDI command... - */ - udelay(200); - - /* ...and verify the command was successful. */ - ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); - - if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { - ret_val = -E1000_ERR_PHY; - e1000_release_phy_80003es2lan(hw); - return ret_val; - } - - udelay(200); - - ret_val = e1000e_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - - udelay(200); - } else { - ret_val = e1000e_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - } - - e1000_release_phy_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @data: value to write to the register - * - * Write to the GG82563 PHY register. - **/ -static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 data) -{ - s32 ret_val; - u32 page_select; - u16 temp; - - ret_val = e1000_acquire_phy_80003es2lan(hw); - if (ret_val) - return ret_val; - - /* Select Configuration Page */ - if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - page_select = GG82563_PHY_PAGE_SELECT; - } else { - /* - * Use Alternative Page Select register to access - * registers 30 and 31 - */ - page_select = GG82563_PHY_PAGE_SELECT_ALT; - } - - temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); - ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); - if (ret_val) { - e1000_release_phy_80003es2lan(hw); - return ret_val; - } - - if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) { - /* - * The "ready" bit in the MDIC register may be incorrectly set - * before the device has completed the "Page Select" MDI - * transaction. So we wait 200us after each MDI command... - */ - udelay(200); - - /* ...and verify the command was successful. */ - ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); - - if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { - e1000_release_phy_80003es2lan(hw); - return -E1000_ERR_PHY; - } - - udelay(200); - - ret_val = e1000e_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - - udelay(200); - } else { - ret_val = e1000e_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - } - - e1000_release_phy_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_write_nvm_80003es2lan - Write to ESB2 NVM - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @words: number of words to write - * @data: buffer of data to write to the NVM - * - * Write "words" of data to the ESB2 NVM. - **/ -static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) -{ - return e1000e_write_nvm_spi(hw, offset, words, data); -} - -/** - * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete - * @hw: pointer to the HW structure - * - * Wait a specific amount of time for manageability processes to complete. - * This is a function pointer entry point called by the phy module. - **/ -static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - u32 mask = E1000_NVM_CFG_DONE_PORT_0; - - if (hw->bus.func == 1) - mask = E1000_NVM_CFG_DONE_PORT_1; - - while (timeout) { - if (er32(EEMNGCTL) & mask) - break; - usleep_range(1000, 2000); - timeout--; - } - if (!timeout) { - e_dbg("MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - - return 0; -} - -/** - * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex - * @hw: pointer to the HW structure - * - * Force the speed and duplex settings onto the PHY. This is a - * function pointer entry point called by the phy module. - **/ -static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - bool link; - - /* - * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; - ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - e_dbg("GG82563 PSCR: %X\n", phy_data); - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - /* Reset the phy to commit changes. */ - phy_data |= MII_CR_RESET; - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - udelay(1); - - if (hw->phy.autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link " - "on GG82563 phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) { - /* - * We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = e1000e_phy_reset_dsp(hw); - if (ret_val) - return ret_val; - } - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* - * Resetting the phy means we need to verify the TX_CLK corresponds - * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. - */ - phy_data &= ~GG82563_MSCR_TX_CLK_MASK; - if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) - phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; - else - phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; - - /* - * In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); - - return ret_val; -} - -/** - * e1000_get_cable_length_80003es2lan - Set approximate cable length - * @hw: pointer to the HW structure - * - * Find the approximate cable length as measured by the GG82563 PHY. - * This is a function pointer entry point called by the phy module. - **/ -static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; - u16 phy_data, index; - - ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); - if (ret_val) - goto out; - - index = phy_data & GG82563_DSPD_CABLE_LENGTH; - - if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - phy->min_cable_length = e1000_gg82563_cable_length_table[index]; - phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return ret_val; -} - -/** - * e1000_get_link_up_info_80003es2lan - Report speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to speed buffer - * @duplex: pointer to duplex buffer - * - * Retrieve the current speed and duplex configuration. - **/ -static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 ret_val; - - if (hw->phy.media_type == e1000_media_type_copper) { - ret_val = e1000e_get_speed_and_duplex_copper(hw, - speed, - duplex); - hw->phy.ops.cfg_on_link_up(hw); - } else { - ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, - speed, - duplex); - } - - return ret_val; -} - -/** - * e1000_reset_hw_80003es2lan - Reset the ESB2 controller - * @hw: pointer to the HW structure - * - * Perform a global reset to the ESB2 controller. - **/ -static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000e_disable_pcie_master(hw); - if (ret_val) - e_dbg("PCI-E Master disable polling has failed.\n"); - - e_dbg("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - ew32(RCTL, 0); - ew32(TCTL, E1000_TCTL_PSP); - e1e_flush(); - - usleep_range(10000, 20000); - - ctrl = er32(CTRL); - - ret_val = e1000_acquire_phy_80003es2lan(hw); - e_dbg("Issuing a global reset to MAC\n"); - ew32(CTRL, ctrl | E1000_CTRL_RST); - e1000_release_phy_80003es2lan(hw); - - ret_val = e1000e_get_auto_rd_done(hw); - if (ret_val) - /* We don't want to continue accessing MAC registers. */ - return ret_val; - - /* Clear any pending interrupt events. */ - ew32(IMC, 0xffffffff); - er32(ICR); - - ret_val = e1000_check_alt_mac_addr_generic(hw); - - return ret_val; -} - -/** - * e1000_init_hw_80003es2lan - Initialize the ESB2 controller - * @hw: pointer to the HW structure - * - * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. - **/ -static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 reg_data; - s32 ret_val; - u16 kum_reg_data; - u16 i; - - e1000_initialize_hw_bits_80003es2lan(hw); - - /* Initialize identification LED */ - ret_val = e1000e_id_led_init(hw); - if (ret_val) - e_dbg("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - - /* Disabling VLAN filtering */ - e_dbg("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - e1000e_init_rx_addrs(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - e_dbg("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Setup link and flow control */ - ret_val = e1000e_setup_link(hw); - - /* Disable IBIST slave mode (far-end loopback) */ - e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - &kum_reg_data); - kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; - e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - kum_reg_data); - - /* Set the transmit descriptor write-back policy */ - reg_data = er32(TXDCTL(0)); - reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; - ew32(TXDCTL(0), reg_data); - - /* ...for both queues. */ - reg_data = er32(TXDCTL(1)); - reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; - ew32(TXDCTL(1), reg_data); - - /* Enable retransmit on late collisions */ - reg_data = er32(TCTL); - reg_data |= E1000_TCTL_RTLC; - ew32(TCTL, reg_data); - - /* Configure Gigabit Carry Extend Padding */ - reg_data = er32(TCTL_EXT); - reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; - reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; - ew32(TCTL_EXT, reg_data); - - /* Configure Transmit Inter-Packet Gap */ - reg_data = er32(TIPG); - reg_data &= ~E1000_TIPG_IPGT_MASK; - reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; - ew32(TIPG, reg_data); - - reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); - reg_data &= ~0x00100000; - E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); - - /* default to true to enable the MDIC W/A */ - hw->dev_spec.e80003es2lan.mdic_wa_enable = true; - - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET >> - E1000_KMRNCTRLSTA_OFFSET_SHIFT, - &i); - if (!ret_val) { - if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == - E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) - hw->dev_spec.e80003es2lan.mdic_wa_enable = false; - } - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 - * @hw: pointer to the HW structure - * - * Initializes required hardware-dependent bits needed for normal operation. - **/ -static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) -{ - u32 reg; - - /* Transmit Descriptor Control 0 */ - reg = er32(TXDCTL(0)); - reg |= (1 << 22); - ew32(TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = er32(TXDCTL(1)); - reg |= (1 << 22); - ew32(TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = er32(TARC(0)); - reg &= ~(0xF << 27); /* 30:27 */ - if (hw->phy.media_type != e1000_media_type_copper) - reg &= ~(1 << 20); - ew32(TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = er32(TARC(1)); - if (er32(TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - ew32(TARC(1), reg); -} - -/** - * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link - * @hw: pointer to the HW structure - * - * Setup some GG82563 PHY registers for obtaining link - **/ -static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u32 ctrl_ext; - u16 data; - - ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); - if (ret_val) - return ret_val; - - data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ - data |= GG82563_MSCR_TX_CLK_1000MBPS_25; - - ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); - if (ret_val) - return ret_val; - - /* - * Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; - - switch (phy->mdix) { - case 1: - data |= GG82563_PSCR_CROSSOVER_MODE_MDI; - break; - case 2: - data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; - break; - case 0: - default: - data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; - break; - } - - /* - * Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if (phy->disable_polarity_correction) - data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - - ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); - if (ret_val) - return ret_val; - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000e_commit_phy(hw); - if (ret_val) { - e_dbg("Error Resetting the PHY\n"); - return ret_val; - } - - /* Bypass Rx and Tx FIFO's */ - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, - E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | - E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); - if (ret_val) - return ret_val; - - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, - &data); - if (ret_val) - return ret_val; - data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, - data); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); - if (ret_val) - return ret_val; - - data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; - ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); - if (ret_val) - return ret_val; - - ctrl_ext = er32(CTRL_EXT); - ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); - ew32(CTRL_EXT, ctrl_ext); - - ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); - if (ret_val) - return ret_val; - - /* - * Do not init these registers when the HW is in IAMT mode, since the - * firmware will have already initialized them. We only initialize - * them if the HW is not in IAMT mode. - */ - if (!e1000e_check_mng_mode(hw)) { - /* Enable Electrical Idle on the PHY */ - data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; - ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); - if (ret_val) - return ret_val; - } - - /* - * Workaround: Disable padding in Kumeran interface in the MAC - * and in the PHY to avoid CRC errors. - */ - ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); - if (ret_val) - return ret_val; - - data |= GG82563_ICR_DIS_PADDING; - ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); - if (ret_val) - return ret_val; - - return 0; -} - -/** - * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 - * @hw: pointer to the HW structure - * - * Essentially a wrapper for setting up all things "copper" related. - * This is a function pointer entry point called by the mac module. - **/ -static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 reg_data; - - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ew32(CTRL, ctrl); - - /* - * Set the mac to wait the maximum time between each - * iteration and increase the max iterations when - * polling the phy; this fixes erroneous timeouts at 10Mbps. - */ - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), - 0xFFFF); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), - ®_data); - if (ret_val) - return ret_val; - reg_data |= 0x3F; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), - reg_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, - ®_data); - if (ret_val) - return ret_val; - reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, - reg_data); - if (ret_val) - return ret_val; - - ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); - if (ret_val) - return ret_val; - - ret_val = e1000e_setup_copper_link(hw); - - return 0; -} - -/** - * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up - * @hw: pointer to the HW structure - * @duplex: current duplex setting - * - * Configure the KMRN interface by applying last minute quirks for - * 10/100 operation. - **/ -static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 speed; - u16 duplex; - - if (hw->phy.media_type == e1000_media_type_copper) { - ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed, - &duplex); - if (ret_val) - return ret_val; - - if (speed == SPEED_1000) - ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); - else - ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); - } - - return ret_val; -} - -/** - * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation - * @hw: pointer to the HW structure - * @duplex: current duplex setting - * - * Configure the KMRN interface by applying last minute quirks for - * 10/100 operation. - **/ -static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) -{ - s32 ret_val; - u32 tipg; - u32 i = 0; - u16 reg_data, reg_data2; - - reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = er32(TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; - ew32(TIPG, tipg); - - do { - ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); - if (ret_val) - return ret_val; - i++; - } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); - - if (duplex == HALF_DUPLEX) - reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; - else - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - - ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - - return 0; -} - -/** - * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation - * @hw: pointer to the HW structure - * - * Configure the KMRN interface by applying last minute quirks for - * gigabit operation. - **/ -static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 reg_data, reg_data2; - u32 tipg; - u32 i = 0; - - reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = er32(TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; - ew32(TIPG, tipg); - - do { - ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); - if (ret_val) - return ret_val; - i++; - } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); - - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); - - return ret_val; -} - -/** - * e1000_read_kmrn_reg_80003es2lan - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquire semaphore, then read the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release the semaphore before exiting. - **/ -static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 *data) -{ - u32 kmrnctrlsta; - s32 ret_val = 0; - - ret_val = e1000_acquire_mac_csr_80003es2lan(hw); - if (ret_val) - return ret_val; - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - ew32(KMRNCTRLSTA, kmrnctrlsta); - e1e_flush(); - - udelay(2); - - kmrnctrlsta = er32(KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - e1000_release_mac_csr_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_write_kmrn_reg_80003es2lan - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquire semaphore, then write the data to PHY register - * at the offset using the kumeran interface. Release semaphore - * before exiting. - **/ -static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 data) -{ - u32 kmrnctrlsta; - s32 ret_val = 0; - - ret_val = e1000_acquire_mac_csr_80003es2lan(hw); - if (ret_val) - return ret_val; - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - ew32(KMRNCTRLSTA, kmrnctrlsta); - e1e_flush(); - - udelay(2); - - e1000_release_mac_csr_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_read_mac_addr_80003es2lan - Read device MAC address - * @hw: pointer to the HW structure - **/ -static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - - /* - * If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_mac_addr_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(hw->mac.ops.check_mng_mode(hw) || - hw->phy.ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); -} - -/** - * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) -{ - e1000e_clear_hw_cntrs_base(hw); - - er32(PRC64); - er32(PRC127); - er32(PRC255); - er32(PRC511); - er32(PRC1023); - er32(PRC1522); - er32(PTC64); - er32(PTC127); - er32(PTC255); - er32(PTC511); - er32(PTC1023); - er32(PTC1522); - - er32(ALGNERRC); - er32(RXERRC); - er32(TNCRS); - er32(CEXTERR); - er32(TSCTC); - er32(TSCTFC); - - er32(MGTPRC); - er32(MGTPDC); - er32(MGTPTC); - - er32(IAC); - er32(ICRXOC); - - er32(ICRXPTC); - er32(ICRXATC); - er32(ICTXPTC); - er32(ICTXATC); - er32(ICTXQEC); - er32(ICTXQMTC); - er32(ICRXDMTC); -} - -static struct e1000_mac_operations es2_mac_ops = { - .read_mac_addr = e1000_read_mac_addr_80003es2lan, - .id_led_init = e1000e_id_led_init, - .blink_led = e1000e_blink_led_generic, - .check_mng_mode = e1000e_check_mng_mode_generic, - /* check_for_link dependent on media type */ - .cleanup_led = e1000e_cleanup_led_generic, - .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, - .get_bus_info = e1000e_get_bus_info_pcie, - .set_lan_id = e1000_set_lan_id_multi_port_pcie, - .get_link_up_info = e1000_get_link_up_info_80003es2lan, - .led_on = e1000e_led_on_generic, - .led_off = e1000e_led_off_generic, - .update_mc_addr_list = e1000e_update_mc_addr_list_generic, - .write_vfta = e1000_write_vfta_generic, - .clear_vfta = e1000_clear_vfta_generic, - .reset_hw = e1000_reset_hw_80003es2lan, - .init_hw = e1000_init_hw_80003es2lan, - .setup_link = e1000e_setup_link, - /* setup_physical_interface dependent on media type */ - .setup_led = e1000e_setup_led_generic, -}; - -static struct e1000_phy_operations es2_phy_ops = { - .acquire = e1000_acquire_phy_80003es2lan, - .check_polarity = e1000_check_polarity_m88, - .check_reset_block = e1000e_check_reset_block_generic, - .commit = e1000e_phy_sw_reset, - .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, - .get_cfg_done = e1000_get_cfg_done_80003es2lan, - .get_cable_length = e1000_get_cable_length_80003es2lan, - .get_info = e1000e_get_phy_info_m88, - .read_reg = e1000_read_phy_reg_gg82563_80003es2lan, - .release = e1000_release_phy_80003es2lan, - .reset = e1000e_phy_hw_reset_generic, - .set_d0_lplu_state = NULL, - .set_d3_lplu_state = e1000e_set_d3_lplu_state, - .write_reg = e1000_write_phy_reg_gg82563_80003es2lan, - .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan, -}; - -static struct e1000_nvm_operations es2_nvm_ops = { - .acquire = e1000_acquire_nvm_80003es2lan, - .read = e1000e_read_nvm_eerd, - .release = e1000_release_nvm_80003es2lan, - .update = e1000e_update_nvm_checksum_generic, - .valid_led_default = e1000e_valid_led_default, - .validate = e1000e_validate_nvm_checksum_generic, - .write = e1000_write_nvm_80003es2lan, -}; - -struct e1000_info e1000_es2_info = { - .mac = e1000_80003es2lan, - .flags = FLAG_HAS_HW_VLAN_FILTER - | FLAG_HAS_JUMBO_FRAMES - | FLAG_HAS_WOL - | FLAG_APME_IN_CTRL3 - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_RX_NEEDS_RESTART /* errata */ - | FLAG_TARC_SET_BIT_ZERO /* errata */ - | FLAG_APME_CHECK_PORT_B - | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ - | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, - .flags2 = FLAG2_DMA_BURST, - .pba = 38, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_80003es2lan, - .mac_ops = &es2_mac_ops, - .phy_ops = &es2_phy_ops, - .nvm_ops = &es2_nvm_ops, -}; - diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c deleted file mode 100644 index 06d88f316dc..00000000000 --- a/drivers/net/e1000e/ethtool.c +++ /dev/null @@ -1,2081 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* ethtool support for e1000 */ - -#include <linux/netdevice.h> -#include <linux/interrupt.h> -#include <linux/ethtool.h> -#include <linux/pci.h> -#include <linux/slab.h> -#include <linux/delay.h> - -#include "e1000.h" - -enum {NETDEV_STATS, E1000_STATS}; - -struct e1000_stats { - char stat_string[ETH_GSTRING_LEN]; - int type; - int sizeof_stat; - int stat_offset; -}; - -#define E1000_STAT(str, m) { \ - .stat_string = str, \ - .type = E1000_STATS, \ - .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ - .stat_offset = offsetof(struct e1000_adapter, m) } -#define E1000_NETDEV_STAT(str, m) { \ - .stat_string = str, \ - .type = NETDEV_STATS, \ - .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ - .stat_offset = offsetof(struct rtnl_link_stats64, m) } - -static const struct e1000_stats e1000_gstrings_stats[] = { - E1000_STAT("rx_packets", stats.gprc), - E1000_STAT("tx_packets", stats.gptc), - E1000_STAT("rx_bytes", stats.gorc), - E1000_STAT("tx_bytes", stats.gotc), - E1000_STAT("rx_broadcast", stats.bprc), - E1000_STAT("tx_broadcast", stats.bptc), - E1000_STAT("rx_multicast", stats.mprc), - E1000_STAT("tx_multicast", stats.mptc), - E1000_NETDEV_STAT("rx_errors", rx_errors), - E1000_NETDEV_STAT("tx_errors", tx_errors), - E1000_NETDEV_STAT("tx_dropped", tx_dropped), - E1000_STAT("multicast", stats.mprc), - E1000_STAT("collisions", stats.colc), - E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), - E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), - E1000_STAT("rx_crc_errors", stats.crcerrs), - E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), - E1000_STAT("rx_no_buffer_count", stats.rnbc), - E1000_STAT("rx_missed_errors", stats.mpc), - E1000_STAT("tx_aborted_errors", stats.ecol), - E1000_STAT("tx_carrier_errors", stats.tncrs), - E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), - E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), - E1000_STAT("tx_window_errors", stats.latecol), - E1000_STAT("tx_abort_late_coll", stats.latecol), - E1000_STAT("tx_deferred_ok", stats.dc), - E1000_STAT("tx_single_coll_ok", stats.scc), - E1000_STAT("tx_multi_coll_ok", stats.mcc), - E1000_STAT("tx_timeout_count", tx_timeout_count), - E1000_STAT("tx_restart_queue", restart_queue), - E1000_STAT("rx_long_length_errors", stats.roc), - E1000_STAT("rx_short_length_errors", stats.ruc), - E1000_STAT("rx_align_errors", stats.algnerrc), - E1000_STAT("tx_tcp_seg_good", stats.tsctc), - E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), - E1000_STAT("rx_flow_control_xon", stats.xonrxc), - E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), - E1000_STAT("tx_flow_control_xon", stats.xontxc), - E1000_STAT("tx_flow_control_xoff", stats.xofftxc), - E1000_STAT("rx_long_byte_count", stats.gorc), - E1000_STAT("rx_csum_offload_good", hw_csum_good), - E1000_STAT("rx_csum_offload_errors", hw_csum_err), - E1000_STAT("rx_header_split", rx_hdr_split), - E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), - E1000_STAT("tx_smbus", stats.mgptc), - E1000_STAT("rx_smbus", stats.mgprc), - E1000_STAT("dropped_smbus", stats.mgpdc), - E1000_STAT("rx_dma_failed", rx_dma_failed), - E1000_STAT("tx_dma_failed", tx_dma_failed), -}; - -#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) -#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) -static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { - "Register test (offline)", "Eeprom test (offline)", - "Interrupt test (offline)", "Loopback test (offline)", - "Link test (on/offline)" -}; -#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) - -static int e1000_get_settings(struct net_device *netdev, - struct ethtool_cmd *ecmd) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 speed; - - if (hw->phy.media_type == e1000_media_type_copper) { - - ecmd->supported = (SUPPORTED_10baseT_Half | - SUPPORTED_10baseT_Full | - SUPPORTED_100baseT_Half | - SUPPORTED_100baseT_Full | - SUPPORTED_1000baseT_Full | - SUPPORTED_Autoneg | - SUPPORTED_TP); - if (hw->phy.type == e1000_phy_ife) - ecmd->supported &= ~SUPPORTED_1000baseT_Full; - ecmd->advertising = ADVERTISED_TP; - - if (hw->mac.autoneg == 1) { - ecmd->advertising |= ADVERTISED_Autoneg; - /* the e1000 autoneg seems to match ethtool nicely */ - ecmd->advertising |= hw->phy.autoneg_advertised; - } - - ecmd->port = PORT_TP; - ecmd->phy_address = hw->phy.addr; - ecmd->transceiver = XCVR_INTERNAL; - - } else { - ecmd->supported = (SUPPORTED_1000baseT_Full | - SUPPORTED_FIBRE | - SUPPORTED_Autoneg); - - ecmd->advertising = (ADVERTISED_1000baseT_Full | - ADVERTISED_FIBRE | - ADVERTISED_Autoneg); - - ecmd->port = PORT_FIBRE; - ecmd->transceiver = XCVR_EXTERNAL; - } - - speed = -1; - ecmd->duplex = -1; - - if (netif_running(netdev)) { - if (netif_carrier_ok(netdev)) { - speed = adapter->link_speed; - ecmd->duplex = adapter->link_duplex - 1; - } - } else { - u32 status = er32(STATUS); - if (status & E1000_STATUS_LU) { - if (status & E1000_STATUS_SPEED_1000) - speed = SPEED_1000; - else if (status & E1000_STATUS_SPEED_100) - speed = SPEED_100; - else - speed = SPEED_10; - - if (status & E1000_STATUS_FD) - ecmd->duplex = DUPLEX_FULL; - else - ecmd->duplex = DUPLEX_HALF; - } - } - - ethtool_cmd_speed_set(ecmd, speed); - ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || - hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; - - /* MDI-X => 2; MDI =>1; Invalid =>0 */ - if ((hw->phy.media_type == e1000_media_type_copper) && - netif_carrier_ok(netdev)) - ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : - ETH_TP_MDI; - else - ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; - - return 0; -} - -static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) -{ - struct e1000_mac_info *mac = &adapter->hw.mac; - - mac->autoneg = 0; - - /* Make sure dplx is at most 1 bit and lsb of speed is not set - * for the switch() below to work */ - if ((spd & 1) || (dplx & ~1)) - goto err_inval; - - /* Fiber NICs only allow 1000 gbps Full duplex */ - if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && - spd != SPEED_1000 && - dplx != DUPLEX_FULL) { - goto err_inval; - } - - switch (spd + dplx) { - case SPEED_10 + DUPLEX_HALF: - mac->forced_speed_duplex = ADVERTISE_10_HALF; - break; - case SPEED_10 + DUPLEX_FULL: - mac->forced_speed_duplex = ADVERTISE_10_FULL; - break; - case SPEED_100 + DUPLEX_HALF: - mac->forced_speed_duplex = ADVERTISE_100_HALF; - break; - case SPEED_100 + DUPLEX_FULL: - mac->forced_speed_duplex = ADVERTISE_100_FULL; - break; - case SPEED_1000 + DUPLEX_FULL: - mac->autoneg = 1; - adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; - break; - case SPEED_1000 + DUPLEX_HALF: /* not supported */ - default: - goto err_inval; - } - return 0; - -err_inval: - e_err("Unsupported Speed/Duplex configuration\n"); - return -EINVAL; -} - -static int e1000_set_settings(struct net_device *netdev, - struct ethtool_cmd *ecmd) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - /* - * When SoL/IDER sessions are active, autoneg/speed/duplex - * cannot be changed - */ - if (e1000_check_reset_block(hw)) { - e_err("Cannot change link characteristics when SoL/IDER is " - "active.\n"); - return -EINVAL; - } - - while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - if (ecmd->autoneg == AUTONEG_ENABLE) { - hw->mac.autoneg = 1; - if (hw->phy.media_type == e1000_media_type_fiber) - hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | - ADVERTISED_FIBRE | - ADVERTISED_Autoneg; - else - hw->phy.autoneg_advertised = ecmd->advertising | - ADVERTISED_TP | - ADVERTISED_Autoneg; - ecmd->advertising = hw->phy.autoneg_advertised; - if (adapter->fc_autoneg) - hw->fc.requested_mode = e1000_fc_default; - } else { - u32 speed = ethtool_cmd_speed(ecmd); - if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { - clear_bit(__E1000_RESETTING, &adapter->state); - return -EINVAL; - } - } - - /* reset the link */ - - if (netif_running(adapter->netdev)) { - e1000e_down(adapter); - e1000e_up(adapter); - } else { - e1000e_reset(adapter); - } - - clear_bit(__E1000_RESETTING, &adapter->state); - return 0; -} - -static void e1000_get_pauseparam(struct net_device *netdev, - struct ethtool_pauseparam *pause) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - pause->autoneg = - (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); - - if (hw->fc.current_mode == e1000_fc_rx_pause) { - pause->rx_pause = 1; - } else if (hw->fc.current_mode == e1000_fc_tx_pause) { - pause->tx_pause = 1; - } else if (hw->fc.current_mode == e1000_fc_full) { - pause->rx_pause = 1; - pause->tx_pause = 1; - } -} - -static int e1000_set_pauseparam(struct net_device *netdev, - struct ethtool_pauseparam *pause) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int retval = 0; - - adapter->fc_autoneg = pause->autoneg; - - while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - if (adapter->fc_autoneg == AUTONEG_ENABLE) { - hw->fc.requested_mode = e1000_fc_default; - if (netif_running(adapter->netdev)) { - e1000e_down(adapter); - e1000e_up(adapter); - } else { - e1000e_reset(adapter); - } - } else { - if (pause->rx_pause && pause->tx_pause) - hw->fc.requested_mode = e1000_fc_full; - else if (pause->rx_pause && !pause->tx_pause) - hw->fc.requested_mode = e1000_fc_rx_pause; - else if (!pause->rx_pause && pause->tx_pause) - hw->fc.requested_mode = e1000_fc_tx_pause; - else if (!pause->rx_pause && !pause->tx_pause) - hw->fc.requested_mode = e1000_fc_none; - - hw->fc.current_mode = hw->fc.requested_mode; - - if (hw->phy.media_type == e1000_media_type_fiber) { - retval = hw->mac.ops.setup_link(hw); - /* implicit goto out */ - } else { - retval = e1000e_force_mac_fc(hw); - if (retval) - goto out; - e1000e_set_fc_watermarks(hw); - } - } - -out: - clear_bit(__E1000_RESETTING, &adapter->state); - return retval; -} - -static u32 e1000_get_rx_csum(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - return adapter->flags & FLAG_RX_CSUM_ENABLED; -} - -static int e1000_set_rx_csum(struct net_device *netdev, u32 data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (data) - adapter->flags |= FLAG_RX_CSUM_ENABLED; - else - adapter->flags &= ~FLAG_RX_CSUM_ENABLED; - - if (netif_running(netdev)) - e1000e_reinit_locked(adapter); - else - e1000e_reset(adapter); - return 0; -} - -static u32 e1000_get_tx_csum(struct net_device *netdev) -{ - return (netdev->features & NETIF_F_HW_CSUM) != 0; -} - -static int e1000_set_tx_csum(struct net_device *netdev, u32 data) -{ - if (data) - netdev->features |= NETIF_F_HW_CSUM; - else - netdev->features &= ~NETIF_F_HW_CSUM; - - return 0; -} - -static int e1000_set_tso(struct net_device *netdev, u32 data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (data) { - netdev->features |= NETIF_F_TSO; - netdev->features |= NETIF_F_TSO6; - } else { - netdev->features &= ~NETIF_F_TSO; - netdev->features &= ~NETIF_F_TSO6; - } - - adapter->flags |= FLAG_TSO_FORCE; - return 0; -} - -static u32 e1000_get_msglevel(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - return adapter->msg_enable; -} - -static void e1000_set_msglevel(struct net_device *netdev, u32 data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - adapter->msg_enable = data; -} - -static int e1000_get_regs_len(struct net_device *netdev) -{ -#define E1000_REGS_LEN 32 /* overestimate */ - return E1000_REGS_LEN * sizeof(u32); -} - -static void e1000_get_regs(struct net_device *netdev, - struct ethtool_regs *regs, void *p) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 *regs_buff = p; - u16 phy_data; - - memset(p, 0, E1000_REGS_LEN * sizeof(u32)); - - regs->version = (1 << 24) | (adapter->pdev->revision << 16) | - adapter->pdev->device; - - regs_buff[0] = er32(CTRL); - regs_buff[1] = er32(STATUS); - - regs_buff[2] = er32(RCTL); - regs_buff[3] = er32(RDLEN); - regs_buff[4] = er32(RDH); - regs_buff[5] = er32(RDT); - regs_buff[6] = er32(RDTR); - - regs_buff[7] = er32(TCTL); - regs_buff[8] = er32(TDLEN); - regs_buff[9] = er32(TDH); - regs_buff[10] = er32(TDT); - regs_buff[11] = er32(TIDV); - - regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ - - /* ethtool doesn't use anything past this point, so all this - * code is likely legacy junk for apps that may or may not - * exist */ - if (hw->phy.type == e1000_phy_m88) { - e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - regs_buff[13] = (u32)phy_data; /* cable length */ - regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ - regs_buff[18] = regs_buff[13]; /* cable polarity */ - regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - regs_buff[20] = regs_buff[17]; /* polarity correction */ - /* phy receive errors */ - regs_buff[22] = adapter->phy_stats.receive_errors; - regs_buff[23] = regs_buff[13]; /* mdix mode */ - } - regs_buff[21] = 0; /* was idle_errors */ - e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); - regs_buff[24] = (u32)phy_data; /* phy local receiver status */ - regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ -} - -static int e1000_get_eeprom_len(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - return adapter->hw.nvm.word_size * 2; -} - -static int e1000_get_eeprom(struct net_device *netdev, - struct ethtool_eeprom *eeprom, u8 *bytes) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 *eeprom_buff; - int first_word; - int last_word; - int ret_val = 0; - u16 i; - - if (eeprom->len == 0) - return -EINVAL; - - eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); - - first_word = eeprom->offset >> 1; - last_word = (eeprom->offset + eeprom->len - 1) >> 1; - - eeprom_buff = kmalloc(sizeof(u16) * - (last_word - first_word + 1), GFP_KERNEL); - if (!eeprom_buff) - return -ENOMEM; - - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - ret_val = e1000_read_nvm(hw, first_word, - last_word - first_word + 1, - eeprom_buff); - } else { - for (i = 0; i < last_word - first_word + 1; i++) { - ret_val = e1000_read_nvm(hw, first_word + i, 1, - &eeprom_buff[i]); - if (ret_val) - break; - } - } - - if (ret_val) { - /* a read error occurred, throw away the result */ - memset(eeprom_buff, 0xff, sizeof(u16) * - (last_word - first_word + 1)); - } else { - /* Device's eeprom is always little-endian, word addressable */ - for (i = 0; i < last_word - first_word + 1; i++) - le16_to_cpus(&eeprom_buff[i]); - } - - memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); - kfree(eeprom_buff); - - return ret_val; -} - -static int e1000_set_eeprom(struct net_device *netdev, - struct ethtool_eeprom *eeprom, u8 *bytes) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 *eeprom_buff; - void *ptr; - int max_len; - int first_word; - int last_word; - int ret_val = 0; - u16 i; - - if (eeprom->len == 0) - return -EOPNOTSUPP; - - if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) - return -EFAULT; - - if (adapter->flags & FLAG_READ_ONLY_NVM) - return -EINVAL; - - max_len = hw->nvm.word_size * 2; - - first_word = eeprom->offset >> 1; - last_word = (eeprom->offset + eeprom->len - 1) >> 1; - eeprom_buff = kmalloc(max_len, GFP_KERNEL); - if (!eeprom_buff) - return -ENOMEM; - - ptr = (void *)eeprom_buff; - - if (eeprom->offset & 1) { - /* need read/modify/write of first changed EEPROM word */ - /* only the second byte of the word is being modified */ - ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); - ptr++; - } - if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) - /* need read/modify/write of last changed EEPROM word */ - /* only the first byte of the word is being modified */ - ret_val = e1000_read_nvm(hw, last_word, 1, - &eeprom_buff[last_word - first_word]); - - if (ret_val) - goto out; - - /* Device's eeprom is always little-endian, word addressable */ - for (i = 0; i < last_word - first_word + 1; i++) - le16_to_cpus(&eeprom_buff[i]); - - memcpy(ptr, bytes, eeprom->len); - - for (i = 0; i < last_word - first_word + 1; i++) - eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); - - ret_val = e1000_write_nvm(hw, first_word, - last_word - first_word + 1, eeprom_buff); - - if (ret_val) - goto out; - - /* - * Update the checksum over the first part of the EEPROM if needed - * and flush shadow RAM for applicable controllers - */ - if ((first_word <= NVM_CHECKSUM_REG) || - (hw->mac.type == e1000_82583) || - (hw->mac.type == e1000_82574) || - (hw->mac.type == e1000_82573)) - ret_val = e1000e_update_nvm_checksum(hw); - -out: - kfree(eeprom_buff); - return ret_val; -} - -static void e1000_get_drvinfo(struct net_device *netdev, - struct ethtool_drvinfo *drvinfo) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - char firmware_version[32]; - - strncpy(drvinfo->driver, e1000e_driver_name, - sizeof(drvinfo->driver) - 1); - strncpy(drvinfo->version, e1000e_driver_version, - sizeof(drvinfo->version) - 1); - - /* - * EEPROM image version # is reported as firmware version # for - * PCI-E controllers - */ - snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d", - (adapter->eeprom_vers & 0xF000) >> 12, - (adapter->eeprom_vers & 0x0FF0) >> 4, - (adapter->eeprom_vers & 0x000F)); - - strncpy(drvinfo->fw_version, firmware_version, - sizeof(drvinfo->fw_version) - 1); - strncpy(drvinfo->bus_info, pci_name(adapter->pdev), - sizeof(drvinfo->bus_info) - 1); - drvinfo->regdump_len = e1000_get_regs_len(netdev); - drvinfo->eedump_len = e1000_get_eeprom_len(netdev); -} - -static void e1000_get_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_ring *rx_ring = adapter->rx_ring; - - ring->rx_max_pending = E1000_MAX_RXD; - ring->tx_max_pending = E1000_MAX_TXD; - ring->rx_mini_max_pending = 0; - ring->rx_jumbo_max_pending = 0; - ring->rx_pending = rx_ring->count; - ring->tx_pending = tx_ring->count; - ring->rx_mini_pending = 0; - ring->rx_jumbo_pending = 0; -} - -static int e1000_set_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_ring *tx_ring, *tx_old; - struct e1000_ring *rx_ring, *rx_old; - int err; - - if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) - return -EINVAL; - - while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - if (netif_running(adapter->netdev)) - e1000e_down(adapter); - - tx_old = adapter->tx_ring; - rx_old = adapter->rx_ring; - - err = -ENOMEM; - tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL); - if (!tx_ring) - goto err_alloc_tx; - - rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL); - if (!rx_ring) - goto err_alloc_rx; - - adapter->tx_ring = tx_ring; - adapter->rx_ring = rx_ring; - - rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); - rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD)); - rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); - - tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); - tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD)); - tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); - - if (netif_running(adapter->netdev)) { - /* Try to get new resources before deleting old */ - err = e1000e_setup_rx_resources(adapter); - if (err) - goto err_setup_rx; - err = e1000e_setup_tx_resources(adapter); - if (err) - goto err_setup_tx; - - /* - * restore the old in order to free it, - * then add in the new - */ - adapter->rx_ring = rx_old; - adapter->tx_ring = tx_old; - e1000e_free_rx_resources(adapter); - e1000e_free_tx_resources(adapter); - kfree(tx_old); - kfree(rx_old); - adapter->rx_ring = rx_ring; - adapter->tx_ring = tx_ring; - err = e1000e_up(adapter); - if (err) - goto err_setup; - } - - clear_bit(__E1000_RESETTING, &adapter->state); - return 0; -err_setup_tx: - e1000e_free_rx_resources(adapter); -err_setup_rx: - adapter->rx_ring = rx_old; - adapter->tx_ring = tx_old; - kfree(rx_ring); -err_alloc_rx: - kfree(tx_ring); -err_alloc_tx: - e1000e_up(adapter); -err_setup: - clear_bit(__E1000_RESETTING, &adapter->state); - return err; -} - -static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, - int reg, int offset, u32 mask, u32 write) -{ - u32 pat, val; - static const u32 test[] = { - 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; - for (pat = 0; pat < ARRAY_SIZE(test); pat++) { - E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, - (test[pat] & write)); - val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); - if (val != (test[pat] & write & mask)) { - e_err("pattern test reg %04X failed: got 0x%08X " - "expected 0x%08X\n", reg + offset, val, - (test[pat] & write & mask)); - *data = reg; - return 1; - } - } - return 0; -} - -static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, - int reg, u32 mask, u32 write) -{ - u32 val; - __ew32(&adapter->hw, reg, write & mask); - val = __er32(&adapter->hw, reg); - if ((write & mask) != (val & mask)) { - e_err("set/check reg %04X test failed: got 0x%08X " - "expected 0x%08X\n", reg, (val & mask), (write & mask)); - *data = reg; - return 1; - } - return 0; -} -#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ - do { \ - if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ - return 1; \ - } while (0) -#define REG_PATTERN_TEST(reg, mask, write) \ - REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) - -#define REG_SET_AND_CHECK(reg, mask, write) \ - do { \ - if (reg_set_and_check(adapter, data, reg, mask, write)) \ - return 1; \ - } while (0) - -static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_mac_info *mac = &adapter->hw.mac; - u32 value; - u32 before; - u32 after; - u32 i; - u32 toggle; - u32 mask; - - /* - * The status register is Read Only, so a write should fail. - * Some bits that get toggled are ignored. - */ - switch (mac->type) { - /* there are several bits on newer hardware that are r/w */ - case e1000_82571: - case e1000_82572: - case e1000_80003es2lan: - toggle = 0x7FFFF3FF; - break; - default: - toggle = 0x7FFFF033; - break; - } - - before = er32(STATUS); - value = (er32(STATUS) & toggle); - ew32(STATUS, toggle); - after = er32(STATUS) & toggle; - if (value != after) { - e_err("failed STATUS register test got: 0x%08X expected: " - "0x%08X\n", after, value); - *data = 1; - return 1; - } - /* restore previous status */ - ew32(STATUS, before); - - if (!(adapter->flags & FLAG_IS_ICH)) { - REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); - } - - REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); - REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); - REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); - REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); - - REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); - - before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); - REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); - REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); - - REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); - if (!(adapter->flags & FLAG_IS_ICH)) - REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); - REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); - mask = 0x8003FFFF; - switch (mac->type) { - case e1000_ich10lan: - case e1000_pchlan: - case e1000_pch2lan: - mask |= (1 << 18); - break; - default: - break; - } - for (i = 0; i < mac->rar_entry_count; i++) - REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), - mask, 0xFFFFFFFF); - - for (i = 0; i < mac->mta_reg_count; i++) - REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); - - *data = 0; - return 0; -} - -static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) -{ - u16 temp; - u16 checksum = 0; - u16 i; - - *data = 0; - /* Read and add up the contents of the EEPROM */ - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { - *data = 1; - return *data; - } - checksum += temp; - } - - /* If Checksum is not Correct return error else test passed */ - if ((checksum != (u16) NVM_SUM) && !(*data)) - *data = 2; - - return *data; -} - -static irqreturn_t e1000_test_intr(int irq, void *data) -{ - struct net_device *netdev = (struct net_device *) data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - adapter->test_icr |= er32(ICR); - - return IRQ_HANDLED; -} - -static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - u32 mask; - u32 shared_int = 1; - u32 irq = adapter->pdev->irq; - int i; - int ret_val = 0; - int int_mode = E1000E_INT_MODE_LEGACY; - - *data = 0; - - /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ - if (adapter->int_mode == E1000E_INT_MODE_MSIX) { - int_mode = adapter->int_mode; - e1000e_reset_interrupt_capability(adapter); - adapter->int_mode = E1000E_INT_MODE_LEGACY; - e1000e_set_interrupt_capability(adapter); - } - /* Hook up test interrupt handler just for this test */ - if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, - netdev)) { - shared_int = 0; - } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, - netdev->name, netdev)) { - *data = 1; - ret_val = -1; - goto out; - } - e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); - - /* Disable all the interrupts */ - ew32(IMC, 0xFFFFFFFF); - e1e_flush(); - usleep_range(10000, 20000); - - /* Test each interrupt */ - for (i = 0; i < 10; i++) { - /* Interrupt to test */ - mask = 1 << i; - - if (adapter->flags & FLAG_IS_ICH) { - switch (mask) { - case E1000_ICR_RXSEQ: - continue; - case 0x00000100: - if (adapter->hw.mac.type == e1000_ich8lan || - adapter->hw.mac.type == e1000_ich9lan) - continue; - break; - default: - break; - } - } - - if (!shared_int) { - /* - * Disable the interrupt to be reported in - * the cause register and then force the same - * interrupt and see if one gets posted. If - * an interrupt was posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - ew32(IMC, mask); - ew32(ICS, mask); - e1e_flush(); - usleep_range(10000, 20000); - - if (adapter->test_icr & mask) { - *data = 3; - break; - } - } - - /* - * Enable the interrupt to be reported in - * the cause register and then force the same - * interrupt and see if one gets posted. If - * an interrupt was not posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - ew32(IMS, mask); - ew32(ICS, mask); - e1e_flush(); - usleep_range(10000, 20000); - - if (!(adapter->test_icr & mask)) { - *data = 4; - break; - } - - if (!shared_int) { - /* - * Disable the other interrupts to be reported in - * the cause register and then force the other - * interrupts and see if any get posted. If - * an interrupt was posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - ew32(IMC, ~mask & 0x00007FFF); - ew32(ICS, ~mask & 0x00007FFF); - e1e_flush(); - usleep_range(10000, 20000); - - if (adapter->test_icr) { - *data = 5; - break; - } - } - } - - /* Disable all the interrupts */ - ew32(IMC, 0xFFFFFFFF); - e1e_flush(); - usleep_range(10000, 20000); - - /* Unhook test interrupt handler */ - free_irq(irq, netdev); - -out: - if (int_mode == E1000E_INT_MODE_MSIX) { - e1000e_reset_interrupt_capability(adapter); - adapter->int_mode = int_mode; - e1000e_set_interrupt_capability(adapter); - } - - return ret_val; -} - -static void e1000_free_desc_rings(struct e1000_adapter *adapter) -{ - struct e1000_ring *tx_ring = &adapter->test_tx_ring; - struct e1000_ring *rx_ring = &adapter->test_rx_ring; - struct pci_dev *pdev = adapter->pdev; - int i; - - if (tx_ring->desc && tx_ring->buffer_info) { - for (i = 0; i < tx_ring->count; i++) { - if (tx_ring->buffer_info[i].dma) - dma_unmap_single(&pdev->dev, - tx_ring->buffer_info[i].dma, - tx_ring->buffer_info[i].length, - DMA_TO_DEVICE); - if (tx_ring->buffer_info[i].skb) - dev_kfree_skb(tx_ring->buffer_info[i].skb); - } - } - - if (rx_ring->desc && rx_ring->buffer_info) { - for (i = 0; i < rx_ring->count; i++) { - if (rx_ring->buffer_info[i].dma) - dma_unmap_single(&pdev->dev, - rx_ring->buffer_info[i].dma, - 2048, DMA_FROM_DEVICE); - if (rx_ring->buffer_info[i].skb) - dev_kfree_skb(rx_ring->buffer_info[i].skb); - } - } - - if (tx_ring->desc) { - dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, - tx_ring->dma); - tx_ring->desc = NULL; - } - if (rx_ring->desc) { - dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, - rx_ring->dma); - rx_ring->desc = NULL; - } - - kfree(tx_ring->buffer_info); - tx_ring->buffer_info = NULL; - kfree(rx_ring->buffer_info); - rx_ring->buffer_info = NULL; -} - -static int e1000_setup_desc_rings(struct e1000_adapter *adapter) -{ - struct e1000_ring *tx_ring = &adapter->test_tx_ring; - struct e1000_ring *rx_ring = &adapter->test_rx_ring; - struct pci_dev *pdev = adapter->pdev; - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - int i; - int ret_val; - - /* Setup Tx descriptor ring and Tx buffers */ - - if (!tx_ring->count) - tx_ring->count = E1000_DEFAULT_TXD; - - tx_ring->buffer_info = kcalloc(tx_ring->count, - sizeof(struct e1000_buffer), - GFP_KERNEL); - if (!(tx_ring->buffer_info)) { - ret_val = 1; - goto err_nomem; - } - - tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); - tx_ring->size = ALIGN(tx_ring->size, 4096); - tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, - &tx_ring->dma, GFP_KERNEL); - if (!tx_ring->desc) { - ret_val = 2; - goto err_nomem; - } - tx_ring->next_to_use = 0; - tx_ring->next_to_clean = 0; - - ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); - ew32(TDBAH, ((u64) tx_ring->dma >> 32)); - ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc)); - ew32(TDH, 0); - ew32(TDT, 0); - ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | - E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | - E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); - - for (i = 0; i < tx_ring->count; i++) { - struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); - struct sk_buff *skb; - unsigned int skb_size = 1024; - - skb = alloc_skb(skb_size, GFP_KERNEL); - if (!skb) { - ret_val = 3; - goto err_nomem; - } - skb_put(skb, skb_size); - tx_ring->buffer_info[i].skb = skb; - tx_ring->buffer_info[i].length = skb->len; - tx_ring->buffer_info[i].dma = - dma_map_single(&pdev->dev, skb->data, skb->len, - DMA_TO_DEVICE); - if (dma_mapping_error(&pdev->dev, - tx_ring->buffer_info[i].dma)) { - ret_val = 4; - goto err_nomem; - } - tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); - tx_desc->lower.data = cpu_to_le32(skb->len); - tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | - E1000_TXD_CMD_IFCS | - E1000_TXD_CMD_RS); - tx_desc->upper.data = 0; - } - - /* Setup Rx descriptor ring and Rx buffers */ - - if (!rx_ring->count) - rx_ring->count = E1000_DEFAULT_RXD; - - rx_ring->buffer_info = kcalloc(rx_ring->count, - sizeof(struct e1000_buffer), - GFP_KERNEL); - if (!(rx_ring->buffer_info)) { - ret_val = 5; - goto err_nomem; - } - - rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc); - rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, - &rx_ring->dma, GFP_KERNEL); - if (!rx_ring->desc) { - ret_val = 6; - goto err_nomem; - } - rx_ring->next_to_use = 0; - rx_ring->next_to_clean = 0; - - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); - ew32(RDBAH, ((u64) rx_ring->dma >> 32)); - ew32(RDLEN, rx_ring->size); - ew32(RDH, 0); - ew32(RDT, 0); - rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | - E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | - E1000_RCTL_SBP | E1000_RCTL_SECRC | - E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | - (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); - ew32(RCTL, rctl); - - for (i = 0; i < rx_ring->count; i++) { - struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); - struct sk_buff *skb; - - skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); - if (!skb) { - ret_val = 7; - goto err_nomem; - } - skb_reserve(skb, NET_IP_ALIGN); - rx_ring->buffer_info[i].skb = skb; - rx_ring->buffer_info[i].dma = - dma_map_single(&pdev->dev, skb->data, 2048, - DMA_FROM_DEVICE); - if (dma_mapping_error(&pdev->dev, - rx_ring->buffer_info[i].dma)) { - ret_val = 8; - goto err_nomem; - } - rx_desc->buffer_addr = - cpu_to_le64(rx_ring->buffer_info[i].dma); - memset(skb->data, 0x00, skb->len); - } - - return 0; - -err_nomem: - e1000_free_desc_rings(adapter); - return ret_val; -} - -static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) -{ - /* Write out to PHY registers 29 and 30 to disable the Receiver. */ - e1e_wphy(&adapter->hw, 29, 0x001F); - e1e_wphy(&adapter->hw, 30, 0x8FFC); - e1e_wphy(&adapter->hw, 29, 0x001A); - e1e_wphy(&adapter->hw, 30, 0x8FF0); -} - -static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_reg = 0; - u16 phy_reg = 0; - s32 ret_val = 0; - - hw->mac.autoneg = 0; - - if (hw->phy.type == e1000_phy_ife) { - /* force 100, set loopback */ - e1e_wphy(hw, PHY_CONTROL, 0x6100); - - /* Now set up the MAC to the same speed/duplex as the PHY. */ - ctrl_reg = er32(CTRL); - ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ - ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ - E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ - E1000_CTRL_SPD_100 |/* Force Speed to 100 */ - E1000_CTRL_FD); /* Force Duplex to FULL */ - - ew32(CTRL, ctrl_reg); - e1e_flush(); - udelay(500); - - return 0; - } - - /* Specific PHY configuration for loopback */ - switch (hw->phy.type) { - case e1000_phy_m88: - /* Auto-MDI/MDIX Off */ - e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); - /* reset to update Auto-MDI/MDIX */ - e1e_wphy(hw, PHY_CONTROL, 0x9140); - /* autoneg off */ - e1e_wphy(hw, PHY_CONTROL, 0x8140); - break; - case e1000_phy_gg82563: - e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); - break; - case e1000_phy_bm: - /* Set Default MAC Interface speed to 1GB */ - e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); - phy_reg &= ~0x0007; - phy_reg |= 0x006; - e1e_wphy(hw, PHY_REG(2, 21), phy_reg); - /* Assert SW reset for above settings to take effect */ - e1000e_commit_phy(hw); - mdelay(1); - /* Force Full Duplex */ - e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); - e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); - /* Set Link Up (in force link) */ - e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); - e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); - /* Force Link */ - e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); - e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); - /* Set Early Link Enable */ - e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); - e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); - break; - case e1000_phy_82577: - case e1000_phy_82578: - /* Workaround: K1 must be disabled for stable 1Gbps operation */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) { - e_err("Cannot setup 1Gbps loopback.\n"); - return ret_val; - } - e1000_configure_k1_ich8lan(hw, false); - hw->phy.ops.release(hw); - break; - case e1000_phy_82579: - /* Disable PHY energy detect power down */ - e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); - e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); - /* Disable full chip energy detect */ - e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); - e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); - /* Enable loopback on the PHY */ -#define I82577_PHY_LBK_CTRL 19 - e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); - break; - default: - break; - } - - /* force 1000, set loopback */ - e1e_wphy(hw, PHY_CONTROL, 0x4140); - mdelay(250); - - /* Now set up the MAC to the same speed/duplex as the PHY. */ - ctrl_reg = er32(CTRL); - ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ - ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ - E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ - E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ - E1000_CTRL_FD); /* Force Duplex to FULL */ - - if (adapter->flags & FLAG_IS_ICH) - ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ - - if (hw->phy.media_type == e1000_media_type_copper && - hw->phy.type == e1000_phy_m88) { - ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ - } else { - /* - * Set the ILOS bit on the fiber Nic if half duplex link is - * detected. - */ - if ((er32(STATUS) & E1000_STATUS_FD) == 0) - ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); - } - - ew32(CTRL, ctrl_reg); - - /* - * Disable the receiver on the PHY so when a cable is plugged in, the - * PHY does not begin to autoneg when a cable is reconnected to the NIC. - */ - if (hw->phy.type == e1000_phy_m88) - e1000_phy_disable_receiver(adapter); - - udelay(500); - - return 0; -} - -static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl = er32(CTRL); - int link = 0; - - /* special requirements for 82571/82572 fiber adapters */ - - /* - * jump through hoops to make sure link is up because serdes - * link is hardwired up - */ - ctrl |= E1000_CTRL_SLU; - ew32(CTRL, ctrl); - - /* disable autoneg */ - ctrl = er32(TXCW); - ctrl &= ~(1 << 31); - ew32(TXCW, ctrl); - - link = (er32(STATUS) & E1000_STATUS_LU); - - if (!link) { - /* set invert loss of signal */ - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_ILOS; - ew32(CTRL, ctrl); - } - - /* - * special write to serdes control register to enable SerDes analog - * loopback - */ -#define E1000_SERDES_LB_ON 0x410 - ew32(SCTL, E1000_SERDES_LB_ON); - e1e_flush(); - usleep_range(10000, 20000); - - return 0; -} - -/* only call this for fiber/serdes connections to es2lan */ -static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrlext = er32(CTRL_EXT); - u32 ctrl = er32(CTRL); - - /* - * save CTRL_EXT to restore later, reuse an empty variable (unused - * on mac_type 80003es2lan) - */ - adapter->tx_fifo_head = ctrlext; - - /* clear the serdes mode bits, putting the device into mac loopback */ - ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; - ew32(CTRL_EXT, ctrlext); - - /* force speed to 1000/FD, link up */ - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | - E1000_CTRL_SPD_1000 | E1000_CTRL_FD); - ew32(CTRL, ctrl); - - /* set mac loopback */ - ctrl = er32(RCTL); - ctrl |= E1000_RCTL_LBM_MAC; - ew32(RCTL, ctrl); - - /* set testing mode parameters (no need to reset later) */ -#define KMRNCTRLSTA_OPMODE (0x1F << 16) -#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 - ew32(KMRNCTRLSTA, - (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); - - return 0; -} - -static int e1000_setup_loopback_test(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) { - switch (hw->mac.type) { - case e1000_80003es2lan: - return e1000_set_es2lan_mac_loopback(adapter); - break; - case e1000_82571: - case e1000_82572: - return e1000_set_82571_fiber_loopback(adapter); - break; - default: - rctl = er32(RCTL); - rctl |= E1000_RCTL_LBM_TCVR; - ew32(RCTL, rctl); - return 0; - } - } else if (hw->phy.media_type == e1000_media_type_copper) { - return e1000_integrated_phy_loopback(adapter); - } - - return 7; -} - -static void e1000_loopback_cleanup(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - u16 phy_reg; - - rctl = er32(RCTL); - rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); - ew32(RCTL, rctl); - - switch (hw->mac.type) { - case e1000_80003es2lan: - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) { - /* restore CTRL_EXT, stealing space from tx_fifo_head */ - ew32(CTRL_EXT, adapter->tx_fifo_head); - adapter->tx_fifo_head = 0; - } - /* fall through */ - case e1000_82571: - case e1000_82572: - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) { -#define E1000_SERDES_LB_OFF 0x400 - ew32(SCTL, E1000_SERDES_LB_OFF); - e1e_flush(); - usleep_range(10000, 20000); - break; - } - /* Fall Through */ - default: - hw->mac.autoneg = 1; - if (hw->phy.type == e1000_phy_gg82563) - e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); - e1e_rphy(hw, PHY_CONTROL, &phy_reg); - if (phy_reg & MII_CR_LOOPBACK) { - phy_reg &= ~MII_CR_LOOPBACK; - e1e_wphy(hw, PHY_CONTROL, phy_reg); - e1000e_commit_phy(hw); - } - break; - } -} - -static void e1000_create_lbtest_frame(struct sk_buff *skb, - unsigned int frame_size) -{ - memset(skb->data, 0xFF, frame_size); - frame_size &= ~1; - memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); - memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); - memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); -} - -static int e1000_check_lbtest_frame(struct sk_buff *skb, - unsigned int frame_size) -{ - frame_size &= ~1; - if (*(skb->data + 3) == 0xFF) - if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && - (*(skb->data + frame_size / 2 + 12) == 0xAF)) - return 0; - return 13; -} - -static int e1000_run_loopback_test(struct e1000_adapter *adapter) -{ - struct e1000_ring *tx_ring = &adapter->test_tx_ring; - struct e1000_ring *rx_ring = &adapter->test_rx_ring; - struct pci_dev *pdev = adapter->pdev; - struct e1000_hw *hw = &adapter->hw; - int i, j, k, l; - int lc; - int good_cnt; - int ret_val = 0; - unsigned long time; - - ew32(RDT, rx_ring->count - 1); - - /* - * Calculate the loop count based on the largest descriptor ring - * The idea is to wrap the largest ring a number of times using 64 - * send/receive pairs during each loop - */ - - if (rx_ring->count <= tx_ring->count) - lc = ((tx_ring->count / 64) * 2) + 1; - else - lc = ((rx_ring->count / 64) * 2) + 1; - - k = 0; - l = 0; - for (j = 0; j <= lc; j++) { /* loop count loop */ - for (i = 0; i < 64; i++) { /* send the packets */ - e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, - 1024); - dma_sync_single_for_device(&pdev->dev, - tx_ring->buffer_info[k].dma, - tx_ring->buffer_info[k].length, - DMA_TO_DEVICE); - k++; - if (k == tx_ring->count) - k = 0; - } - ew32(TDT, k); - e1e_flush(); - msleep(200); - time = jiffies; /* set the start time for the receive */ - good_cnt = 0; - do { /* receive the sent packets */ - dma_sync_single_for_cpu(&pdev->dev, - rx_ring->buffer_info[l].dma, 2048, - DMA_FROM_DEVICE); - - ret_val = e1000_check_lbtest_frame( - rx_ring->buffer_info[l].skb, 1024); - if (!ret_val) - good_cnt++; - l++; - if (l == rx_ring->count) - l = 0; - /* - * time + 20 msecs (200 msecs on 2.4) is more than - * enough time to complete the receives, if it's - * exceeded, break and error off - */ - } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); - if (good_cnt != 64) { - ret_val = 13; /* ret_val is the same as mis-compare */ - break; - } - if (jiffies >= (time + 20)) { - ret_val = 14; /* error code for time out error */ - break; - } - } /* end loop count loop */ - return ret_val; -} - -static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) -{ - /* - * PHY loopback cannot be performed if SoL/IDER - * sessions are active - */ - if (e1000_check_reset_block(&adapter->hw)) { - e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); - *data = 0; - goto out; - } - - *data = e1000_setup_desc_rings(adapter); - if (*data) - goto out; - - *data = e1000_setup_loopback_test(adapter); - if (*data) - goto err_loopback; - - *data = e1000_run_loopback_test(adapter); - e1000_loopback_cleanup(adapter); - -err_loopback: - e1000_free_desc_rings(adapter); -out: - return *data; -} - -static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) -{ - struct e1000_hw *hw = &adapter->hw; - - *data = 0; - if (hw->phy.media_type == e1000_media_type_internal_serdes) { - int i = 0; - hw->mac.serdes_has_link = false; - - /* - * On some blade server designs, link establishment - * could take as long as 2-3 minutes - */ - do { - hw->mac.ops.check_for_link(hw); - if (hw->mac.serdes_has_link) - return *data; - msleep(20); - } while (i++ < 3750); - - *data = 1; - } else { - hw->mac.ops.check_for_link(hw); - if (hw->mac.autoneg) - /* - * On some Phy/switch combinations, link establishment - * can take a few seconds more than expected. - */ - msleep(5000); - - if (!(er32(STATUS) & E1000_STATUS_LU)) - *data = 1; - } - return *data; -} - -static int e1000e_get_sset_count(struct net_device *netdev, int sset) -{ - switch (sset) { - case ETH_SS_TEST: - return E1000_TEST_LEN; - case ETH_SS_STATS: - return E1000_STATS_LEN; - default: - return -EOPNOTSUPP; - } -} - -static void e1000_diag_test(struct net_device *netdev, - struct ethtool_test *eth_test, u64 *data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - u16 autoneg_advertised; - u8 forced_speed_duplex; - u8 autoneg; - bool if_running = netif_running(netdev); - - set_bit(__E1000_TESTING, &adapter->state); - - if (!if_running) { - /* Get control of and reset hardware */ - if (adapter->flags & FLAG_HAS_AMT) - e1000e_get_hw_control(adapter); - - e1000e_power_up_phy(adapter); - - adapter->hw.phy.autoneg_wait_to_complete = 1; - e1000e_reset(adapter); - adapter->hw.phy.autoneg_wait_to_complete = 0; - } - - if (eth_test->flags == ETH_TEST_FL_OFFLINE) { - /* Offline tests */ - - /* save speed, duplex, autoneg settings */ - autoneg_advertised = adapter->hw.phy.autoneg_advertised; - forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; - autoneg = adapter->hw.mac.autoneg; - - e_info("offline testing starting\n"); - - if (if_running) - /* indicate we're in test mode */ - dev_close(netdev); - - if (e1000_reg_test(adapter, &data[0])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - e1000e_reset(adapter); - if (e1000_eeprom_test(adapter, &data[1])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - e1000e_reset(adapter); - if (e1000_intr_test(adapter, &data[2])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - e1000e_reset(adapter); - if (e1000_loopback_test(adapter, &data[3])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - /* force this routine to wait until autoneg complete/timeout */ - adapter->hw.phy.autoneg_wait_to_complete = 1; - e1000e_reset(adapter); - adapter->hw.phy.autoneg_wait_to_complete = 0; - - if (e1000_link_test(adapter, &data[4])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - /* restore speed, duplex, autoneg settings */ - adapter->hw.phy.autoneg_advertised = autoneg_advertised; - adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; - adapter->hw.mac.autoneg = autoneg; - e1000e_reset(adapter); - - clear_bit(__E1000_TESTING, &adapter->state); - if (if_running) - dev_open(netdev); - } else { - /* Online tests */ - - e_info("online testing starting\n"); - - /* register, eeprom, intr and loopback tests not run online */ - data[0] = 0; - data[1] = 0; - data[2] = 0; - data[3] = 0; - - if (e1000_link_test(adapter, &data[4])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - clear_bit(__E1000_TESTING, &adapter->state); - } - - if (!if_running) { - e1000e_reset(adapter); - - if (adapter->flags & FLAG_HAS_AMT) - e1000e_release_hw_control(adapter); - } - - msleep_interruptible(4 * 1000); -} - -static void e1000_get_wol(struct net_device *netdev, - struct ethtool_wolinfo *wol) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - wol->supported = 0; - wol->wolopts = 0; - - if (!(adapter->flags & FLAG_HAS_WOL) || - !device_can_wakeup(&adapter->pdev->dev)) - return; - - wol->supported = WAKE_UCAST | WAKE_MCAST | - WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; - - /* apply any specific unsupported masks here */ - if (adapter->flags & FLAG_NO_WAKE_UCAST) { - wol->supported &= ~WAKE_UCAST; - - if (adapter->wol & E1000_WUFC_EX) - e_err("Interface does not support directed (unicast) " - "frame wake-up packets\n"); - } - - if (adapter->wol & E1000_WUFC_EX) - wol->wolopts |= WAKE_UCAST; - if (adapter->wol & E1000_WUFC_MC) - wol->wolopts |= WAKE_MCAST; - if (adapter->wol & E1000_WUFC_BC) - wol->wolopts |= WAKE_BCAST; - if (adapter->wol & E1000_WUFC_MAG) - wol->wolopts |= WAKE_MAGIC; - if (adapter->wol & E1000_WUFC_LNKC) - wol->wolopts |= WAKE_PHY; -} - -static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (!(adapter->flags & FLAG_HAS_WOL) || - !device_can_wakeup(&adapter->pdev->dev) || - (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | - WAKE_MAGIC | WAKE_PHY))) - return -EOPNOTSUPP; - - /* these settings will always override what we currently have */ - adapter->wol = 0; - - if (wol->wolopts & WAKE_UCAST) - adapter->wol |= E1000_WUFC_EX; - if (wol->wolopts & WAKE_MCAST) - adapter->wol |= E1000_WUFC_MC; - if (wol->wolopts & WAKE_BCAST) - adapter->wol |= E1000_WUFC_BC; - if (wol->wolopts & WAKE_MAGIC) - adapter->wol |= E1000_WUFC_MAG; - if (wol->wolopts & WAKE_PHY) - adapter->wol |= E1000_WUFC_LNKC; - - device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); - - return 0; -} - -static int e1000_set_phys_id(struct net_device *netdev, - enum ethtool_phys_id_state state) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - switch (state) { - case ETHTOOL_ID_ACTIVE: - if (!hw->mac.ops.blink_led) - return 2; /* cycle on/off twice per second */ - - hw->mac.ops.blink_led(hw); - break; - - case ETHTOOL_ID_INACTIVE: - if (hw->phy.type == e1000_phy_ife) - e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); - hw->mac.ops.led_off(hw); - hw->mac.ops.cleanup_led(hw); - break; - - case ETHTOOL_ID_ON: - adapter->hw.mac.ops.led_on(&adapter->hw); - break; - - case ETHTOOL_ID_OFF: - adapter->hw.mac.ops.led_off(&adapter->hw); - break; - } - return 0; -} - -static int e1000_get_coalesce(struct net_device *netdev, - struct ethtool_coalesce *ec) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (adapter->itr_setting <= 4) - ec->rx_coalesce_usecs = adapter->itr_setting; - else - ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; - - return 0; -} - -static int e1000_set_coalesce(struct net_device *netdev, - struct ethtool_coalesce *ec) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || - ((ec->rx_coalesce_usecs > 4) && - (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || - (ec->rx_coalesce_usecs == 2)) - return -EINVAL; - - if (ec->rx_coalesce_usecs == 4) { - adapter->itr = adapter->itr_setting = 4; - } else if (ec->rx_coalesce_usecs <= 3) { - adapter->itr = 20000; - adapter->itr_setting = ec->rx_coalesce_usecs; - } else { - adapter->itr = (1000000 / ec->rx_coalesce_usecs); - adapter->itr_setting = adapter->itr & ~3; - } - - if (adapter->itr_setting != 0) - ew32(ITR, 1000000000 / (adapter->itr * 256)); - else - ew32(ITR, 0); - - return 0; -} - -static int e1000_nway_reset(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (!netif_running(netdev)) - return -EAGAIN; - - if (!adapter->hw.mac.autoneg) - return -EINVAL; - - e1000e_reinit_locked(adapter); - - return 0; -} - -static void e1000_get_ethtool_stats(struct net_device *netdev, - struct ethtool_stats *stats, - u64 *data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct rtnl_link_stats64 net_stats; - int i; - char *p = NULL; - - e1000e_get_stats64(netdev, &net_stats); - for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { - switch (e1000_gstrings_stats[i].type) { - case NETDEV_STATS: - p = (char *) &net_stats + - e1000_gstrings_stats[i].stat_offset; - break; - case E1000_STATS: - p = (char *) adapter + - e1000_gstrings_stats[i].stat_offset; - break; - default: - data[i] = 0; - continue; - } - - data[i] = (e1000_gstrings_stats[i].sizeof_stat == - sizeof(u64)) ? *(u64 *)p : *(u32 *)p; - } -} - -static void e1000_get_strings(struct net_device *netdev, u32 stringset, - u8 *data) -{ - u8 *p = data; - int i; - - switch (stringset) { - case ETH_SS_TEST: - memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); - break; - case ETH_SS_STATS: - for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { - memcpy(p, e1000_gstrings_stats[i].stat_string, - ETH_GSTRING_LEN); - p += ETH_GSTRING_LEN; - } - break; - } -} - -static int e1000e_set_flags(struct net_device *netdev, u32 data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - bool need_reset = false; - int rc; - - need_reset = (data & ETH_FLAG_RXVLAN) != - (netdev->features & NETIF_F_HW_VLAN_RX); - - rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN | - ETH_FLAG_TXVLAN); - - if (rc) - return rc; - - if (need_reset) { - if (netif_running(netdev)) - e1000e_reinit_locked(adapter); - else - e1000e_reset(adapter); - } - - return 0; -} - -static const struct ethtool_ops e1000_ethtool_ops = { - .get_settings = e1000_get_settings, - .set_settings = e1000_set_settings, - .get_drvinfo = e1000_get_drvinfo, - .get_regs_len = e1000_get_regs_len, - .get_regs = e1000_get_regs, - .get_wol = e1000_get_wol, - .set_wol = e1000_set_wol, - .get_msglevel = e1000_get_msglevel, - .set_msglevel = e1000_set_msglevel, - .nway_reset = e1000_nway_reset, - .get_link = ethtool_op_get_link, - .get_eeprom_len = e1000_get_eeprom_len, - .get_eeprom = e1000_get_eeprom, - .set_eeprom = e1000_set_eeprom, - .get_ringparam = e1000_get_ringparam, - .set_ringparam = e1000_set_ringparam, - .get_pauseparam = e1000_get_pauseparam, - .set_pauseparam = e1000_set_pauseparam, - .get_rx_csum = e1000_get_rx_csum, - .set_rx_csum = e1000_set_rx_csum, - .get_tx_csum = e1000_get_tx_csum, - .set_tx_csum = e1000_set_tx_csum, - .get_sg = ethtool_op_get_sg, - .set_sg = ethtool_op_set_sg, - .get_tso = ethtool_op_get_tso, - .set_tso = e1000_set_tso, - .self_test = e1000_diag_test, - .get_strings = e1000_get_strings, - .set_phys_id = e1000_set_phys_id, - .get_ethtool_stats = e1000_get_ethtool_stats, - .get_sset_count = e1000e_get_sset_count, - .get_coalesce = e1000_get_coalesce, - .set_coalesce = e1000_set_coalesce, - .get_flags = ethtool_op_get_flags, - .set_flags = e1000e_set_flags, -}; - -void e1000e_set_ethtool_ops(struct net_device *netdev) -{ - SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); -} diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h deleted file mode 100644 index 29670397079..00000000000 --- a/drivers/net/e1000e/hw.h +++ /dev/null @@ -1,984 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -#include <linux/types.h> - -struct e1000_hw; -struct e1000_adapter; - -#include "defines.h" - -#define er32(reg) __er32(hw, E1000_##reg) -#define ew32(reg,val) __ew32(hw, E1000_##reg, (val)) -#define e1e_flush() er32(STATUS) - -#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ - (writel((value), ((a)->hw_addr + reg + ((offset) << 2)))) - -#define E1000_READ_REG_ARRAY(a, reg, offset) \ - (readl((a)->hw_addr + reg + ((offset) << 2))) - -enum e1e_registers { - E1000_CTRL = 0x00000, /* Device Control - RW */ - E1000_STATUS = 0x00008, /* Device Status - RO */ - E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */ - E1000_EERD = 0x00014, /* EEPROM Read - RW */ - E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */ - E1000_FLA = 0x0001C, /* Flash Access - RW */ - E1000_MDIC = 0x00020, /* MDI Control - RW */ - E1000_SCTL = 0x00024, /* SerDes Control - RW */ - E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */ - E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */ - E1000_FEXTNVM4 = 0x00024, /* Future Extended NVM 4 - RW */ - E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */ - E1000_FCT = 0x00030, /* Flow Control Type - RW */ - E1000_VET = 0x00038, /* VLAN Ether Type - RW */ - E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */ - E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */ - E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */ - E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */ - E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */ - E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */ - E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */ - E1000_IVAR = 0x000E4, /* Interrupt Vector Allocation - RW */ - E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */ -#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2)) - E1000_RCTL = 0x00100, /* Rx Control - RW */ - E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */ - E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */ - E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */ - E1000_TCTL = 0x00400, /* Tx Control - RW */ - E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */ - E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */ - E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */ - E1000_LEDCTL = 0x00E00, /* LED Control - RW */ - E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */ - E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */ - E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */ -#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ - E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */ - E1000_PBS = 0x01008, /* Packet Buffer Size */ - E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */ - E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */ - E1000_FLOP = 0x0103C, /* FLASH Opcode Register */ - E1000_PBA_ECC = 0x01100, /* PBA ECC Register */ - E1000_ERT = 0x02008, /* Early Rx Threshold - RW */ - E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */ - E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */ - E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */ - E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */ - E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */ - E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */ - E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */ - E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */ - E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */ - E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */ -#define E1000_RXDCTL(_n) (E1000_RXDCTL_BASE + (_n << 8)) - E1000_RADV = 0x0282C, /* Rx Interrupt Absolute Delay Timer - RW */ - -/* Convenience macros - * - * Note: "_n" is the queue number of the register to be written to. - * - * Example usage: - * E1000_RDBAL_REG(current_rx_queue) - * - */ -#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8)) - E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */ - E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */ - E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */ - E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */ - E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */ - E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */ - E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */ - E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */ -#define E1000_TXDCTL(_n) (E1000_TXDCTL_BASE + (_n << 8)) - E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */ - E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */ -#define E1000_TARC(_n) (E1000_TARC_BASE + (_n << 8)) - E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */ - E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */ - E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */ - E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */ - E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */ - E1000_SCC = 0x04014, /* Single Collision Count - R/clr */ - E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */ - E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */ - E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */ - E1000_COLC = 0x04028, /* Collision Count - R/clr */ - E1000_DC = 0x04030, /* Defer Count - R/clr */ - E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */ - E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */ - E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */ - E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */ - E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */ - E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */ - E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */ - E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */ - E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */ - E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */ - E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */ - E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */ - E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */ - E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */ - E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */ - E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */ - E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */ - E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */ - E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */ - E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */ - E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */ - E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */ - E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */ - E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */ - E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */ - E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */ - E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */ - E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */ - E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */ - E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */ - E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */ - E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */ - E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */ - E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */ - E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */ - E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */ - E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */ - E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */ - E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */ - E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */ - E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */ - E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */ - E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */ - E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */ - E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */ - E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */ - E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */ - E1000_IAC = 0x04100, /* Interrupt Assertion Count */ - E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */ - E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */ - E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */ - E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */ - E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */ - E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */ - E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */ - E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */ - E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */ - E1000_RFCTL = 0x05008, /* Receive Filter Control */ - E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */ - E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */ -#define E1000_RAL(_n) (E1000_RAL_BASE + ((_n) * 8)) -#define E1000_RA (E1000_RAL(0)) - E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */ -#define E1000_RAH(_n) (E1000_RAH_BASE + ((_n) * 8)) - E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */ - E1000_WUC = 0x05800, /* Wakeup Control - RW */ - E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */ - E1000_WUS = 0x05810, /* Wakeup Status - RO */ - E1000_MANC = 0x05820, /* Management Control - RW */ - E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */ - E1000_HOST_IF = 0x08800, /* Host Interface */ - - E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */ - E1000_MANC2H = 0x05860, /* Management Control To Host - RW */ - E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */ -#define E1000_MDEF(_n) (E1000_MDEF_BASE + ((_n) * 4)) - E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */ - E1000_GCR = 0x05B00, /* PCI-Ex Control */ - E1000_GCR2 = 0x05B64, /* PCI-Ex Control #2 */ - E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */ - E1000_SWSM = 0x05B50, /* SW Semaphore */ - E1000_FWSM = 0x05B54, /* FW Semaphore */ - E1000_SWSM2 = 0x05B58, /* Driver-only SW semaphore */ - E1000_FFLT_DBG = 0x05F04, /* Debug Register */ - E1000_PCH_RAICC_BASE = 0x05F50, /* Receive Address Initial CRC */ -#define E1000_PCH_RAICC(_n) (E1000_PCH_RAICC_BASE + ((_n) * 4)) -#define E1000_CRC_OFFSET E1000_PCH_RAICC_BASE - E1000_HICR = 0x08F00, /* Host Interface Control */ -}; - -#define E1000_MAX_PHY_ADDR 4 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ -#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ -#define IGP_PAGE_SHIFT 5 -#define PHY_REG_MASK 0x1F - -#define BM_WUC_PAGE 800 -#define BM_WUC_ADDRESS_OPCODE 0x11 -#define BM_WUC_DATA_OPCODE 0x12 -#define BM_WUC_ENABLE_PAGE 769 -#define BM_WUC_ENABLE_REG 17 -#define BM_WUC_ENABLE_BIT (1 << 2) -#define BM_WUC_HOST_WU_BIT (1 << 4) -#define BM_WUC_ME_WU_BIT (1 << 5) - -#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) -#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) -#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) - -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ - -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ - -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 - -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 - -#define IGP02E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F -#define IGP02E1000_AGC_RANGE 15 - -/* manage.c */ -#define E1000_VFTA_ENTRY_SHIFT 5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F - -#define E1000_HICR_EN 0x01 /* Enable bit - RO */ -/* Driver sets this bit when done to put command in RAM */ -#define E1000_HICR_C 0x02 -#define E1000_HICR_FW_RESET_ENABLE 0x40 -#define E1000_HICR_FW_RESET 0x80 - -#define E1000_FWSM_MODE_MASK 0xE -#define E1000_FWSM_MODE_SHIFT 1 - -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 - -/* nvm.c */ -#define E1000_STM_OPCODE 0xDB00 - -#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 -#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KMRNCTRLSTA_REN 0x00200000 -#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */ -#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ -#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ -#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ -#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ -#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ -#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7 -#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 -#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */ - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ - -/* IFE PHY Extended Status Control */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 - -/* IFE PHY Special Control */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 -#define IFE_PSC_FORCE_POLARITY 0x0020 - -/* IFE PHY Special Control and LED Control */ -#define IFE_PSCL_PROBE_MODE 0x0020 -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -/* IFE PHY MDIX Control */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ - -#define E1000_CABLE_LENGTH_UNDEFINED 0xFF - -#define E1000_DEV_ID_82571EB_COPPER 0x105E -#define E1000_DEV_ID_82571EB_FIBER 0x105F -#define E1000_DEV_ID_82571EB_SERDES 0x1060 -#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 -#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 -#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 -#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC -#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 -#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA -#define E1000_DEV_ID_82572EI_COPPER 0x107D -#define E1000_DEV_ID_82572EI_FIBER 0x107E -#define E1000_DEV_ID_82572EI_SERDES 0x107F -#define E1000_DEV_ID_82572EI 0x10B9 -#define E1000_DEV_ID_82573E 0x108B -#define E1000_DEV_ID_82573E_IAMT 0x108C -#define E1000_DEV_ID_82573L 0x109A -#define E1000_DEV_ID_82574L 0x10D3 -#define E1000_DEV_ID_82574LA 0x10F6 -#define E1000_DEV_ID_82583V 0x150C - -#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 -#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 -#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA -#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB - -#define E1000_DEV_ID_ICH8_82567V_3 0x1501 -#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 -#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A -#define E1000_DEV_ID_ICH8_IGP_C 0x104B -#define E1000_DEV_ID_ICH8_IFE 0x104C -#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 -#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 -#define E1000_DEV_ID_ICH8_IGP_M 0x104D -#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD -#define E1000_DEV_ID_ICH9_BM 0x10E5 -#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 -#define E1000_DEV_ID_ICH9_IGP_M 0x10BF -#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB -#define E1000_DEV_ID_ICH9_IGP_C 0x294C -#define E1000_DEV_ID_ICH9_IFE 0x10C0 -#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 -#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 -#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC -#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD -#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE -#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE -#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF -#define E1000_DEV_ID_ICH10_D_BM_V 0x1525 -#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA -#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB -#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF -#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 -#define E1000_DEV_ID_PCH2_LV_LM 0x1502 -#define E1000_DEV_ID_PCH2_LV_V 0x1503 - -#define E1000_REVISION_4 4 - -#define E1000_FUNC_1 1 - -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 - -enum e1000_mac_type { - e1000_82571, - e1000_82572, - e1000_82573, - e1000_82574, - e1000_82583, - e1000_80003es2lan, - e1000_ich8lan, - e1000_ich9lan, - e1000_ich10lan, - e1000_pchlan, - e1000_pch2lan, -}; - -enum e1000_media_type { - e1000_media_type_unknown = 0, - e1000_media_type_copper = 1, - e1000_media_type_fiber = 2, - e1000_media_type_internal_serdes = 3, - e1000_num_media_types -}; - -enum e1000_nvm_type { - e1000_nvm_unknown = 0, - e1000_nvm_none, - e1000_nvm_eeprom_spi, - e1000_nvm_flash_hw, - e1000_nvm_flash_sw -}; - -enum e1000_nvm_override { - e1000_nvm_override_none = 0, - e1000_nvm_override_spi_small, - e1000_nvm_override_spi_large -}; - -enum e1000_phy_type { - e1000_phy_unknown = 0, - e1000_phy_none, - e1000_phy_m88, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_bm, - e1000_phy_82578, - e1000_phy_82577, - e1000_phy_82579, -}; - -enum e1000_bus_width { - e1000_bus_width_unknown = 0, - e1000_bus_width_pcie_x1, - e1000_bus_width_pcie_x2, - e1000_bus_width_pcie_x4 = 4, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -}; - -enum e1000_1000t_rx_status { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -}; - -enum e1000_rev_polarity{ - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -}; - -enum e1000_fc_mode { - e1000_fc_none = 0, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full, - e1000_fc_default = 0xFF -}; - -enum e1000_ms_type { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -}; - -enum e1000_smart_speed { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -}; - -enum e1000_serdes_link_state { - e1000_serdes_link_down = 0, - e1000_serdes_link_autoneg_progress, - e1000_serdes_link_autoneg_complete, - e1000_serdes_link_forced_up -}; - -/* Receive Descriptor */ -struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; -}; - -/* Receive Descriptor - Extended */ -union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define MAX_PS_BUFFERS 4 -/* Receive Descriptor - Packet Split */ -union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - __le16 length[3]; /* length of buffers 1-3 */ - } upper; - __le64 reserved; - } wb; /* writeback */ -}; - -/* Transmit Descriptor */ -struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; -}; - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; - u8 cmd; - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; /* */ - } fields; - } upper; -}; - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 tor; - u64 tot; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; -}; - -struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; -}; - -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; -}; - -/* Host Interface "Rev 1" */ -struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; - u8 checksum; -}; - -#define E1000_HI_MAX_DATA_LENGTH 252 -struct e1000_host_command_info { - struct e1000_host_command_header command_header; - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; -}; - -/* Host Interface "Rev 2" */ -struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; -}; - -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; -}; - -/* Function pointers and static data for the MAC. */ -struct e1000_mac_operations { - s32 (*id_led_init)(struct e1000_hw *); - s32 (*blink_led)(struct e1000_hw *); - bool (*check_mng_mode)(struct e1000_hw *); - s32 (*check_for_link)(struct e1000_hw *); - s32 (*cleanup_led)(struct e1000_hw *); - void (*clear_hw_cntrs)(struct e1000_hw *); - void (*clear_vfta)(struct e1000_hw *); - s32 (*get_bus_info)(struct e1000_hw *); - void (*set_lan_id)(struct e1000_hw *); - s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); - s32 (*led_on)(struct e1000_hw *); - s32 (*led_off)(struct e1000_hw *); - void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); - s32 (*reset_hw)(struct e1000_hw *); - s32 (*init_hw)(struct e1000_hw *); - s32 (*setup_link)(struct e1000_hw *); - s32 (*setup_physical_interface)(struct e1000_hw *); - s32 (*setup_led)(struct e1000_hw *); - void (*write_vfta)(struct e1000_hw *, u32, u32); - s32 (*read_mac_addr)(struct e1000_hw *); -}; - -/* - * When to use various PHY register access functions: - * - * Func Caller - * Function Does Does When to use - * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * X_reg L,P,A n/a for simple PHY reg accesses - * X_reg_locked P,A L for multiple accesses of different regs - * on different pages - * X_reg_page A L,P for multiple accesses of different regs - * on the same page - * - * Where X=[read|write], L=locking, P=sets page, A=register access - * - */ -struct e1000_phy_operations { - s32 (*acquire)(struct e1000_hw *); - s32 (*cfg_on_link_up)(struct e1000_hw *); - s32 (*check_polarity)(struct e1000_hw *); - s32 (*check_reset_block)(struct e1000_hw *); - s32 (*commit)(struct e1000_hw *); - s32 (*force_speed_duplex)(struct e1000_hw *); - s32 (*get_cfg_done)(struct e1000_hw *hw); - s32 (*get_cable_length)(struct e1000_hw *); - s32 (*get_info)(struct e1000_hw *); - s32 (*set_page)(struct e1000_hw *, u16); - s32 (*read_reg)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); - void (*release)(struct e1000_hw *); - s32 (*reset)(struct e1000_hw *); - s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); - s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); - s32 (*write_reg)(struct e1000_hw *, u32, u16); - s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); - s32 (*write_reg_page)(struct e1000_hw *, u32, u16); - void (*power_up)(struct e1000_hw *); - void (*power_down)(struct e1000_hw *); -}; - -/* Function pointers for the NVM. */ -struct e1000_nvm_operations { - s32 (*acquire)(struct e1000_hw *); - s32 (*read)(struct e1000_hw *, u16, u16, u16 *); - void (*release)(struct e1000_hw *); - s32 (*update)(struct e1000_hw *); - s32 (*valid_led_default)(struct e1000_hw *, u16 *); - s32 (*validate)(struct e1000_hw *); - s32 (*write)(struct e1000_hw *, u16, u16, u16 *); -}; - -struct e1000_mac_info { - struct e1000_mac_operations ops; - u8 addr[ETH_ALEN]; - u8 perm_addr[ETH_ALEN]; - - enum e1000_mac_type type; - - u32 collision_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - u32 mc_filter_type; - u32 tx_packet_delta; - u32 txcw; - - u16 current_ifs_val; - u16 ifs_max_val; - u16 ifs_min_val; - u16 ifs_ratio; - u16 ifs_step_size; - u16 mta_reg_count; - - /* Maximum size of the MTA register table in all supported adapters */ - #define MAX_MTA_REG 128 - u32 mta_shadow[MAX_MTA_REG]; - u16 rar_entry_count; - - u8 forced_speed_duplex; - - bool adaptive_ifs; - bool has_fwsm; - bool arc_subsystem_valid; - bool autoneg; - bool autoneg_failed; - bool get_link_status; - bool in_ifs_mode; - bool serdes_has_link; - bool tx_pkt_filtering; - enum e1000_serdes_link_state serdes_link_state; -}; - -struct e1000_phy_info { - struct e1000_phy_operations ops; - - enum e1000_phy_type type; - - enum e1000_1000t_rx_status local_rx; - enum e1000_1000t_rx_status remote_rx; - enum e1000_ms_type ms_type; - enum e1000_ms_type original_ms_type; - enum e1000_rev_polarity cable_polarity; - enum e1000_smart_speed smart_speed; - - u32 addr; - u32 id; - u32 reset_delay_us; /* in usec */ - u32 revision; - - enum e1000_media_type media_type; - - u16 autoneg_advertised; - u16 autoneg_mask; - u16 cable_length; - u16 max_cable_length; - u16 min_cable_length; - - u8 mdix; - - bool disable_polarity_correction; - bool is_mdix; - bool polarity_correction; - bool speed_downgraded; - bool autoneg_wait_to_complete; -}; - -struct e1000_nvm_info { - struct e1000_nvm_operations ops; - - enum e1000_nvm_type type; - enum e1000_nvm_override override; - - u32 flash_bank_size; - u32 flash_base_addr; - - u16 word_size; - u16 delay_usec; - u16 address_bits; - u16 opcode_bits; - u16 page_size; -}; - -struct e1000_bus_info { - enum e1000_bus_width width; - - u16 func; -}; - -struct e1000_fc_info { - u32 high_water; /* Flow control high-water mark */ - u32 low_water; /* Flow control low-water mark */ - u16 pause_time; /* Flow control pause timer */ - u16 refresh_time; /* Flow control refresh timer */ - bool send_xon; /* Flow control send XON */ - bool strict_ieee; /* Strict IEEE mode */ - enum e1000_fc_mode current_mode; /* FC mode in effect */ - enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ -}; - -struct e1000_dev_spec_82571 { - bool laa_is_present; - u32 smb_counter; -}; - -struct e1000_dev_spec_80003es2lan { - bool mdic_wa_enable; -}; - -struct e1000_shadow_ram { - u16 value; - bool modified; -}; - -#define E1000_ICH8_SHADOW_RAM_WORDS 2048 - -struct e1000_dev_spec_ich8lan { - bool kmrn_lock_loss_workaround_enabled; - struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS]; - bool nvm_k1_enabled; - bool eee_disable; -}; - -struct e1000_hw { - struct e1000_adapter *adapter; - - u8 __iomem *hw_addr; - u8 __iomem *flash_address; - - struct e1000_mac_info mac; - struct e1000_fc_info fc; - struct e1000_phy_info phy; - struct e1000_nvm_info nvm; - struct e1000_bus_info bus; - struct e1000_host_mng_dhcp_cookie mng_cookie; - - union { - struct e1000_dev_spec_82571 e82571; - struct e1000_dev_spec_80003es2lan e80003es2lan; - struct e1000_dev_spec_ich8lan ich8lan; - } dev_spec; -}; - -#endif diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c deleted file mode 100644 index 4e36978b8fd..00000000000 --- a/drivers/net/e1000e/ich8lan.c +++ /dev/null @@ -1,4111 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* - * 82562G 10/100 Network Connection - * 82562G-2 10/100 Network Connection - * 82562GT 10/100 Network Connection - * 82562GT-2 10/100 Network Connection - * 82562V 10/100 Network Connection - * 82562V-2 10/100 Network Connection - * 82566DC-2 Gigabit Network Connection - * 82566DC Gigabit Network Connection - * 82566DM-2 Gigabit Network Connection - * 82566DM Gigabit Network Connection - * 82566MC Gigabit Network Connection - * 82566MM Gigabit Network Connection - * 82567LM Gigabit Network Connection - * 82567LF Gigabit Network Connection - * 82567V Gigabit Network Connection - * 82567LM-2 Gigabit Network Connection - * 82567LF-2 Gigabit Network Connection - * 82567V-2 Gigabit Network Connection - * 82567LF-3 Gigabit Network Connection - * 82567LM-3 Gigabit Network Connection - * 82567LM-4 Gigabit Network Connection - * 82577LM Gigabit Network Connection - * 82577LC Gigabit Network Connection - * 82578DM Gigabit Network Connection - * 82578DC Gigabit Network Connection - * 82579LM Gigabit Network Connection - * 82579V Gigabit Network Connection - */ - -#include "e1000.h" - -#define ICH_FLASH_GFPREG 0x0000 -#define ICH_FLASH_HSFSTS 0x0004 -#define ICH_FLASH_HSFCTL 0x0006 -#define ICH_FLASH_FADDR 0x0008 -#define ICH_FLASH_FDATA0 0x0010 -#define ICH_FLASH_PR0 0x0074 - -#define ICH_FLASH_READ_COMMAND_TIMEOUT 500 -#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 -#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 -#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF -#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 - -#define ICH_CYCLE_READ 0 -#define ICH_CYCLE_WRITE 2 -#define ICH_CYCLE_ERASE 3 - -#define FLASH_GFPREG_BASE_MASK 0x1FFF -#define FLASH_SECTOR_ADDR_SHIFT 12 - -#define ICH_FLASH_SEG_SIZE_256 256 -#define ICH_FLASH_SEG_SIZE_4K 4096 -#define ICH_FLASH_SEG_SIZE_8K 8192 -#define ICH_FLASH_SEG_SIZE_64K 65536 - - -#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ -/* FW established a valid mode */ -#define E1000_ICH_FWSM_FW_VALID 0x00008000 - -#define E1000_ICH_MNG_IAMT_MODE 0x2 - -#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_DEF1_OFF2 << 8) | \ - (ID_LED_DEF1_ON2 << 4) | \ - (ID_LED_DEF1_DEF2)) - -#define E1000_ICH_NVM_SIG_WORD 0x13 -#define E1000_ICH_NVM_SIG_MASK 0xC000 -#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 -#define E1000_ICH_NVM_SIG_VALUE 0x80 - -#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 - -#define E1000_FEXTNVM_SW_CONFIG 1 -#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ - -#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 -#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 -#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 - -#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL - -#define E1000_ICH_RAR_ENTRIES 7 - -#define PHY_PAGE_SHIFT 5 -#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ - ((reg) & MAX_PHY_REG_ADDRESS)) -#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ -#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ - -#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 -#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 -#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 - -#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ - -#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ - -/* SMBus Address Phy Register */ -#define HV_SMB_ADDR PHY_REG(768, 26) -#define HV_SMB_ADDR_MASK 0x007F -#define HV_SMB_ADDR_PEC_EN 0x0200 -#define HV_SMB_ADDR_VALID 0x0080 - -/* PHY Power Management Control */ -#define HV_PM_CTRL PHY_REG(770, 17) - -/* PHY Low Power Idle Control */ -#define I82579_LPI_CTRL PHY_REG(772, 20) -#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 - -/* EMI Registers */ -#define I82579_EMI_ADDR 0x10 -#define I82579_EMI_DATA 0x11 -#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ - -/* Strapping Option Register - RO */ -#define E1000_STRAP 0x0000C -#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 -#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 - -/* OEM Bits Phy Register */ -#define HV_OEM_BITS PHY_REG(768, 25) -#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ -#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ -#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ - -#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ -#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ - -/* KMRN Mode Control */ -#define HV_KMRN_MODE_CTRL PHY_REG(769, 16) -#define HV_KMRN_MDIO_SLOW 0x0400 - -/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ -/* Offset 04h HSFSTS */ -union ich8_hws_flash_status { - struct ich8_hsfsts { - u16 flcdone :1; /* bit 0 Flash Cycle Done */ - u16 flcerr :1; /* bit 1 Flash Cycle Error */ - u16 dael :1; /* bit 2 Direct Access error Log */ - u16 berasesz :2; /* bit 4:3 Sector Erase Size */ - u16 flcinprog :1; /* bit 5 flash cycle in Progress */ - u16 reserved1 :2; /* bit 13:6 Reserved */ - u16 reserved2 :6; /* bit 13:6 Reserved */ - u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ - u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ - } hsf_status; - u16 regval; -}; - -/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ -/* Offset 06h FLCTL */ -union ich8_hws_flash_ctrl { - struct ich8_hsflctl { - u16 flcgo :1; /* 0 Flash Cycle Go */ - u16 flcycle :2; /* 2:1 Flash Cycle */ - u16 reserved :5; /* 7:3 Reserved */ - u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ - u16 flockdn :6; /* 15:10 Reserved */ - } hsf_ctrl; - u16 regval; -}; - -/* ICH Flash Region Access Permissions */ -union ich8_hws_flash_regacc { - struct ich8_flracc { - u32 grra :8; /* 0:7 GbE region Read Access */ - u32 grwa :8; /* 8:15 GbE region Write Access */ - u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ - u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ - } hsf_flregacc; - u16 regval; -}; - -/* ICH Flash Protected Region */ -union ich8_flash_protected_range { - struct ich8_pr { - u32 base:13; /* 0:12 Protected Range Base */ - u32 reserved1:2; /* 13:14 Reserved */ - u32 rpe:1; /* 15 Read Protection Enable */ - u32 limit:13; /* 16:28 Protected Range Limit */ - u32 reserved2:2; /* 29:30 Reserved */ - u32 wpe:1; /* 31 Write Protection Enable */ - } range; - u32 regval; -}; - -static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); -static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); -static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); -static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); -static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 byte); -static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, - u8 *data); -static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, - u16 *data); -static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 *data); -static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); -static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); -static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); -static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); -static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); -static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); -static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); -static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); -static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); -static s32 e1000_led_on_pchlan(struct e1000_hw *hw); -static s32 e1000_led_off_pchlan(struct e1000_hw *hw); -static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); -static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); -static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); -static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); -static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); -static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); -static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); -static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); -static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); - -static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) -{ - return readw(hw->flash_address + reg); -} - -static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) -{ - return readl(hw->flash_address + reg); -} - -static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) -{ - writew(val, hw->flash_address + reg); -} - -static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) -{ - writel(val, hw->flash_address + reg); -} - -#define er16flash(reg) __er16flash(hw, (reg)) -#define er32flash(reg) __er32flash(hw, (reg)) -#define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) -#define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) - -static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw) -{ - u32 ctrl; - - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; - ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; - ew32(CTRL, ctrl); - e1e_flush(); - udelay(10); - ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; - ew32(CTRL, ctrl); -} - -/** - * e1000_init_phy_params_pchlan - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific PHY parameters and function pointers. - **/ -static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 fwsm; - s32 ret_val = 0; - - phy->addr = 1; - phy->reset_delay_us = 100; - - phy->ops.set_page = e1000_set_page_igp; - phy->ops.read_reg = e1000_read_phy_reg_hv; - phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; - phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; - phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; - phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; - phy->ops.write_reg = e1000_write_phy_reg_hv; - phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; - phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* - * The MAC-PHY interconnect may still be in SMBus mode - * after Sx->S0. If the manageability engine (ME) is - * disabled, then toggle the LANPHYPC Value bit to force - * the interconnect to PCIe mode. - */ - fwsm = er32(FWSM); - if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) { - e1000_toggle_lanphypc_value_ich8lan(hw); - msleep(50); - - /* - * Gate automatic PHY configuration by hardware on - * non-managed 82579 - */ - if (hw->mac.type == e1000_pch2lan) - e1000_gate_hw_phy_config_ich8lan(hw, true); - } - - /* - * Reset the PHY before any access to it. Doing so, ensures that - * the PHY is in a known good state before we read/write PHY registers. - * The generic reset is sufficient here, because we haven't determined - * the PHY type yet. - */ - ret_val = e1000e_phy_hw_reset_generic(hw); - if (ret_val) - goto out; - - /* Ungate automatic PHY configuration on non-managed 82579 */ - if ((hw->mac.type == e1000_pch2lan) && - !(fwsm & E1000_ICH_FWSM_FW_VALID)) { - usleep_range(10000, 20000); - e1000_gate_hw_phy_config_ich8lan(hw, false); - } - - phy->id = e1000_phy_unknown; - switch (hw->mac.type) { - default: - ret_val = e1000e_get_phy_id(hw); - if (ret_val) - goto out; - if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) - break; - /* fall-through */ - case e1000_pch2lan: - /* - * In case the PHY needs to be in mdio slow mode, - * set slow mode and try to get the PHY id again. - */ - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (ret_val) - goto out; - ret_val = e1000e_get_phy_id(hw); - if (ret_val) - goto out; - break; - } - phy->type = e1000e_get_phy_type_from_id(phy->id); - - switch (phy->type) { - case e1000_phy_82577: - case e1000_phy_82579: - phy->ops.check_polarity = e1000_check_polarity_82577; - phy->ops.force_speed_duplex = - e1000_phy_force_speed_duplex_82577; - phy->ops.get_cable_length = e1000_get_cable_length_82577; - phy->ops.get_info = e1000_get_phy_info_82577; - phy->ops.commit = e1000e_phy_sw_reset; - break; - case e1000_phy_82578: - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000e_get_cable_length_m88; - phy->ops.get_info = e1000e_get_phy_info_m88; - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - -out: - return ret_val; -} - -/** - * e1000_init_phy_params_ich8lan - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific PHY parameters and function pointers. - **/ -static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 i = 0; - - phy->addr = 1; - phy->reset_delay_us = 100; - - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; - - /* - * We may need to do this twice - once for IGP and if that fails, - * we'll set BM func pointers and try again - */ - ret_val = e1000e_determine_phy_address(hw); - if (ret_val) { - phy->ops.write_reg = e1000e_write_phy_reg_bm; - phy->ops.read_reg = e1000e_read_phy_reg_bm; - ret_val = e1000e_determine_phy_address(hw); - if (ret_val) { - e_dbg("Cannot determine PHY addr. Erroring out\n"); - return ret_val; - } - } - - phy->id = 0; - while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && - (i++ < 100)) { - usleep_range(1000, 2000); - ret_val = e1000e_get_phy_id(hw); - if (ret_val) - return ret_val; - } - - /* Verify phy id */ - switch (phy->id) { - case IGP03E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; - phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; - phy->ops.get_info = e1000e_get_phy_info_igp; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy->type = e1000_phy_ife; - phy->autoneg_mask = E1000_ALL_NOT_GIG; - phy->ops.get_info = e1000_get_phy_info_ife; - phy->ops.check_polarity = e1000_check_polarity_ife; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; - break; - case BME1000_E_PHY_ID: - phy->type = e1000_phy_bm; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->ops.read_reg = e1000e_read_phy_reg_bm; - phy->ops.write_reg = e1000e_write_phy_reg_bm; - phy->ops.commit = e1000e_phy_sw_reset; - phy->ops.get_info = e1000e_get_phy_info_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; - break; - default: - return -E1000_ERR_PHY; - break; - } - - return 0; -} - -/** - * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific NVM parameters and function - * pointers. - **/ -static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 gfpreg, sector_base_addr, sector_end_addr; - u16 i; - - /* Can't read flash registers if the register set isn't mapped. */ - if (!hw->flash_address) { - e_dbg("ERROR: Flash registers not mapped\n"); - return -E1000_ERR_CONFIG; - } - - nvm->type = e1000_nvm_flash_sw; - - gfpreg = er32flash(ICH_FLASH_GFPREG); - - /* - * sector_X_addr is a "sector"-aligned address (4096 bytes) - * Add 1 to sector_end_addr since this sector is included in - * the overall size. - */ - sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; - sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; - - /* flash_base_addr is byte-aligned */ - nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; - - /* - * find total size of the NVM, then cut in half since the total - * size represents two separate NVM banks. - */ - nvm->flash_bank_size = (sector_end_addr - sector_base_addr) - << FLASH_SECTOR_ADDR_SHIFT; - nvm->flash_bank_size /= 2; - /* Adjust to word count */ - nvm->flash_bank_size /= sizeof(u16); - - nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; - - /* Clear shadow ram */ - for (i = 0; i < nvm->word_size; i++) { - dev_spec->shadow_ram[i].modified = false; - dev_spec->shadow_ram[i].value = 0xFFFF; - } - - return 0; -} - -/** - * e1000_init_mac_params_ich8lan - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific MAC parameters and function - * pointers. - **/ -static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_mac_info *mac = &hw->mac; - - /* Set media type function pointer */ - hw->phy.media_type = e1000_media_type_copper; - - /* Set mta register count */ - mac->mta_reg_count = 32; - /* Set rar entry count */ - mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; - if (mac->type == e1000_ich8lan) - mac->rar_entry_count--; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC subsystem not supported */ - mac->arc_subsystem_valid = false; - /* Adaptive IFS supported */ - mac->adaptive_ifs = true; - - /* LED operations */ - switch (mac->type) { - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; - /* ID LED init */ - mac->ops.id_led_init = e1000e_id_led_init; - /* blink LED */ - mac->ops.blink_led = e1000e_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000e_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_ich8lan; - mac->ops.led_off = e1000_led_off_ich8lan; - break; - case e1000_pchlan: - case e1000_pch2lan: - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_pchlan; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_pchlan; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_pchlan; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_pchlan; - mac->ops.led_off = e1000_led_off_pchlan; - break; - default: - break; - } - - /* Enable PCS Lock-loss workaround for ICH8 */ - if (mac->type == e1000_ich8lan) - e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); - - /* Gate automatic PHY configuration by hardware on managed 82579 */ - if ((mac->type == e1000_pch2lan) && - (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - - return 0; -} - -/** - * e1000_set_eee_pchlan - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE based on setting in dev_spec structure. The bits in - * the LPI Control register will remain set only if/when link is up. - **/ -static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 phy_reg; - - if (hw->phy.type != e1000_phy_82579) - goto out; - - ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); - if (ret_val) - goto out; - - if (hw->dev_spec.ich8lan.eee_disable) - phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; - else - phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; - - ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); -out: - return ret_val; -} - -/** - * e1000_check_for_copper_link_ich8lan - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - /* - * We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) { - ret_val = 0; - goto out; - } - - /* - * First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (hw->mac.type == e1000_pchlan) { - ret_val = e1000_k1_gig_workaround_hv(hw, link); - if (ret_val) - goto out; - } - - if (!link) - goto out; /* No link detected */ - - mac->get_link_status = false; - - if (hw->phy.type == e1000_phy_82578) { - ret_val = e1000_link_stall_workaround_hv(hw); - if (ret_val) - goto out; - } - - if (hw->mac.type == e1000_pch2lan) { - ret_val = e1000_k1_workaround_lv(hw); - if (ret_val) - goto out; - } - - /* - * Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000e_check_downshift(hw); - - /* Enable/Disable EEE after link up */ - ret_val = e1000_set_eee_pchlan(hw); - if (ret_val) - goto out; - - /* - * If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - e1000e_config_collision_dist(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000e_config_fc_after_link_up(hw); - if (ret_val) - e_dbg("Error configuring flow control\n"); - -out: - return ret_val; -} - -static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - s32 rc; - - rc = e1000_init_mac_params_ich8lan(adapter); - if (rc) - return rc; - - rc = e1000_init_nvm_params_ich8lan(hw); - if (rc) - return rc; - - switch (hw->mac.type) { - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - rc = e1000_init_phy_params_ich8lan(hw); - break; - case e1000_pchlan: - case e1000_pch2lan: - rc = e1000_init_phy_params_pchlan(hw); - break; - default: - break; - } - if (rc) - return rc; - - /* - * Disable Jumbo Frame support on parts with Intel 10/100 PHY or - * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). - */ - if ((adapter->hw.phy.type == e1000_phy_ife) || - ((adapter->hw.mac.type >= e1000_pch2lan) && - (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { - adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; - adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; - - hw->mac.ops.blink_led = NULL; - } - - if ((adapter->hw.mac.type == e1000_ich8lan) && - (adapter->hw.phy.type == e1000_phy_igp_3)) - adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; - - /* Disable EEE by default until IEEE802.3az spec is finalized */ - if (adapter->flags2 & FLAG2_HAS_EEE) - adapter->hw.dev_spec.ich8lan.eee_disable = true; - - return 0; -} - -static DEFINE_MUTEX(nvm_mutex); - -/** - * e1000_acquire_nvm_ich8lan - Acquire NVM mutex - * @hw: pointer to the HW structure - * - * Acquires the mutex for performing NVM operations. - **/ -static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) -{ - mutex_lock(&nvm_mutex); - - return 0; -} - -/** - * e1000_release_nvm_ich8lan - Release NVM mutex - * @hw: pointer to the HW structure - * - * Releases the mutex used while performing NVM operations. - **/ -static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) -{ - mutex_unlock(&nvm_mutex); -} - -static DEFINE_MUTEX(swflag_mutex); - -/** - * e1000_acquire_swflag_ich8lan - Acquire software control flag - * @hw: pointer to the HW structure - * - * Acquires the software control flag for performing PHY and select - * MAC CSR accesses. - **/ -static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) -{ - u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; - s32 ret_val = 0; - - mutex_lock(&swflag_mutex); - - while (timeout) { - extcnf_ctrl = er32(EXTCNF_CTRL); - if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) - break; - - mdelay(1); - timeout--; - } - - if (!timeout) { - e_dbg("SW/FW/HW has locked the resource for too long.\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - timeout = SW_FLAG_TIMEOUT; - - extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; - ew32(EXTCNF_CTRL, extcnf_ctrl); - - while (timeout) { - extcnf_ctrl = er32(EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) - break; - - mdelay(1); - timeout--; - } - - if (!timeout) { - e_dbg("Failed to acquire the semaphore.\n"); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - ew32(EXTCNF_CTRL, extcnf_ctrl); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - -out: - if (ret_val) - mutex_unlock(&swflag_mutex); - - return ret_val; -} - -/** - * e1000_release_swflag_ich8lan - Release software control flag - * @hw: pointer to the HW structure - * - * Releases the software control flag for performing PHY and select - * MAC CSR accesses. - **/ -static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - - extcnf_ctrl = er32(EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - ew32(EXTCNF_CTRL, extcnf_ctrl); - } else { - e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); - } - - mutex_unlock(&swflag_mutex); -} - -/** - * e1000_check_mng_mode_ich8lan - Checks management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has any manageability enabled. - * This is a function pointer entry point only called by read/write - * routines for the PHY and NVM parts. - **/ -static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) -{ - u32 fwsm; - - fwsm = er32(FWSM); - return (fwsm & E1000_ICH_FWSM_FW_VALID) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/** - * e1000_check_mng_mode_pchlan - Checks management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has iAMT enabled. - * This is a function pointer entry point only called by read/write - * routines for the PHY and NVM parts. - **/ -static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) -{ - u32 fwsm; - - fwsm = er32(FWSM); - return (fwsm & E1000_ICH_FWSM_FW_VALID) && - (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/** - * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Checks if firmware is blocking the reset of the PHY. - * This is a function pointer entry point only called by - * reset routines. - **/ -static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) -{ - u32 fwsm; - - fwsm = er32(FWSM); - - return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; -} - -/** - * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states - * @hw: pointer to the HW structure - * - * Assumes semaphore already acquired. - * - **/ -static s32 e1000_write_smbus_addr(struct e1000_hw *hw) -{ - u16 phy_data; - u32 strap = er32(STRAP); - s32 ret_val = 0; - - strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; - - ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~HV_SMB_ADDR_MASK; - phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); - phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; - ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); - -out: - return ret_val; -} - -/** - * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration - * @hw: pointer to the HW structure - * - * SW should configure the LCD from the NVM extended configuration region - * as a workaround for certain parts. - **/ -static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; - s32 ret_val = 0; - u16 word_addr, reg_data, reg_addr, phy_page = 0; - - /* - * Initialize the PHY from the NVM on ICH platforms. This - * is needed due to an issue where the NVM configuration is - * not properly autoloaded after power transitions. - * Therefore, after each PHY reset, we will load the - * configuration data out of the NVM manually. - */ - switch (hw->mac.type) { - case e1000_ich8lan: - if (phy->type != e1000_phy_igp_3) - return ret_val; - - if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || - (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { - sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; - break; - } - /* Fall-thru */ - case e1000_pchlan: - case e1000_pch2lan: - sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; - break; - default: - return ret_val; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - data = er32(FEXTNVM); - if (!(data & sw_cfg_mask)) - goto out; - - /* - * Make sure HW does not configure LCD from PHY - * extended configuration before SW configuration - */ - data = er32(EXTCNF_CTRL); - if (!(hw->mac.type == e1000_pch2lan)) { - if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) - goto out; - } - - cnf_size = er32(EXTCNF_SIZE); - cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; - cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; - if (!cnf_size) - goto out; - - cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; - cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; - - if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && - (hw->mac.type == e1000_pchlan)) || - (hw->mac.type == e1000_pch2lan)) { - /* - * HW configures the SMBus address and LEDs when the - * OEM and LCD Write Enable bits are set in the NVM. - * When both NVM bits are cleared, SW will configure - * them instead. - */ - ret_val = e1000_write_smbus_addr(hw); - if (ret_val) - goto out; - - data = er32(LEDCTL); - ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, - (u16)data); - if (ret_val) - goto out; - } - - /* Configure LCD from extended configuration region. */ - - /* cnf_base_addr is in DWORD */ - word_addr = (u16)(cnf_base_addr << 1); - - for (i = 0; i < cnf_size; i++) { - ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, - ®_data); - if (ret_val) - goto out; - - ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), - 1, ®_addr); - if (ret_val) - goto out; - - /* Save off the PHY page for future writes. */ - if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { - phy_page = reg_data; - continue; - } - - reg_addr &= PHY_REG_MASK; - reg_addr |= phy_page; - - ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, - reg_data); - if (ret_val) - goto out; - } - -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_k1_gig_workaround_hv - K1 Si workaround - * @hw: pointer to the HW structure - * @link: link up bool flag - * - * If K1 is enabled for 1Gbps, the MAC might stall when transitioning - * from a lower speed. This workaround disables K1 whenever link is at 1Gig - * If link is down, the function will restore the default K1 setting located - * in the NVM. - **/ -static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) -{ - s32 ret_val = 0; - u16 status_reg = 0; - bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; - - if (hw->mac.type != e1000_pchlan) - goto out; - - /* Wrap the whole flow with the sw flag */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ - if (link) { - if (hw->phy.type == e1000_phy_82578) { - ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, - &status_reg); - if (ret_val) - goto release; - - status_reg &= BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK; - - if (status_reg == (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - k1_enable = false; - } - - if (hw->phy.type == e1000_phy_82577) { - ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, - &status_reg); - if (ret_val) - goto release; - - status_reg &= HV_M_STATUS_LINK_UP | - HV_M_STATUS_AUTONEG_COMPLETE | - HV_M_STATUS_SPEED_MASK; - - if (status_reg == (HV_M_STATUS_LINK_UP | - HV_M_STATUS_AUTONEG_COMPLETE | - HV_M_STATUS_SPEED_1000)) - k1_enable = false; - } - - /* Link stall fix for link up */ - ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), - 0x0100); - if (ret_val) - goto release; - - } else { - /* Link stall fix for link down */ - ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), - 0x4100); - if (ret_val) - goto release; - } - - ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); - -release: - hw->phy.ops.release(hw); -out: - return ret_val; -} - -/** - * e1000_configure_k1_ich8lan - Configure K1 power state - * @hw: pointer to the HW structure - * @enable: K1 state to configure - * - * Configure the K1 power state based on the provided parameter. - * Assumes semaphore already acquired. - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - **/ -s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) -{ - s32 ret_val = 0; - u32 ctrl_reg = 0; - u32 ctrl_ext = 0; - u32 reg = 0; - u16 kmrn_reg = 0; - - ret_val = e1000e_read_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_K1_CONFIG, - &kmrn_reg); - if (ret_val) - goto out; - - if (k1_enable) - kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; - else - kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; - - ret_val = e1000e_write_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_K1_CONFIG, - kmrn_reg); - if (ret_val) - goto out; - - udelay(20); - ctrl_ext = er32(CTRL_EXT); - ctrl_reg = er32(CTRL); - - reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - reg |= E1000_CTRL_FRCSPD; - ew32(CTRL, reg); - - ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); - e1e_flush(); - udelay(20); - ew32(CTRL, ctrl_reg); - ew32(CTRL_EXT, ctrl_ext); - e1e_flush(); - udelay(20); - -out: - return ret_val; -} - -/** - * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration - * @hw: pointer to the HW structure - * @d0_state: boolean if entering d0 or d3 device state - * - * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are - * collectively called OEM bits. The OEM Write Enable bit and SW Config bit - * in NVM determines whether HW should configure LPLU and Gbe Disable. - **/ -static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) -{ - s32 ret_val = 0; - u32 mac_reg; - u16 oem_reg; - - if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) - return ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - if (!(hw->mac.type == e1000_pch2lan)) { - mac_reg = er32(EXTCNF_CTRL); - if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) - goto out; - } - - mac_reg = er32(FEXTNVM); - if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) - goto out; - - mac_reg = er32(PHY_CTRL); - - ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); - if (ret_val) - goto out; - - oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); - - if (d0_state) { - if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) - oem_reg |= HV_OEM_BITS_GBE_DIS; - - if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) - oem_reg |= HV_OEM_BITS_LPLU; - } else { - if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) - oem_reg |= HV_OEM_BITS_GBE_DIS; - - if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) - oem_reg |= HV_OEM_BITS_LPLU; - } - /* Restart auto-neg to activate the bits */ - if (!e1000_check_reset_block(hw)) - oem_reg |= HV_OEM_BITS_RESTART_AN; - ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); - -out: - hw->phy.ops.release(hw); - - return ret_val; -} - - -/** - * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode - * @hw: pointer to the HW structure - **/ -static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) -{ - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); - if (ret_val) - return ret_val; - - data |= HV_KMRN_MDIO_SLOW; - - ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); - - return ret_val; -} - -/** - * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be - * done after every PHY reset. - **/ -static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 phy_data; - - if (hw->mac.type != e1000_pchlan) - return ret_val; - - /* Set MDIO slow mode before any other MDIO access */ - if (hw->phy.type == e1000_phy_82577) { - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (ret_val) - goto out; - } - - if (((hw->phy.type == e1000_phy_82577) && - ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || - ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { - /* Disable generation of early preamble */ - ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); - if (ret_val) - return ret_val; - - /* Preamble tuning for SSC */ - ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204); - if (ret_val) - return ret_val; - } - - if (hw->phy.type == e1000_phy_82578) { - /* - * Return registers to default by doing a soft reset then - * writing 0x3140 to the control register. - */ - if (hw->phy.revision < 2) { - e1000e_phy_sw_reset(hw); - ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); - } - } - - /* Select page 0 */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - hw->phy.addr = 1; - ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); - hw->phy.ops.release(hw); - if (ret_val) - goto out; - - /* - * Configure the K1 Si workaround during phy reset assuming there is - * link so that it disables K1 if link is in 1Gbps. - */ - ret_val = e1000_k1_gig_workaround_hv(hw, true); - if (ret_val) - goto out; - - /* Workaround for link disconnects on a busy hub in half duplex */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); - if (ret_val) - goto release; - ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, - phy_data & 0x00FF); -release: - hw->phy.ops.release(hw); -out: - return ret_val; -} - -/** - * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY - * @hw: pointer to the HW structure - **/ -void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) -{ - u32 mac_reg; - u16 i, phy_reg = 0; - s32 ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); - if (ret_val) - goto release; - - /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ - for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { - mac_reg = er32(RAL(i)); - hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), - (u16)((mac_reg >> 16) & 0xFFFF)); - - mac_reg = er32(RAH(i)); - hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), - (u16)((mac_reg & E1000_RAH_AV) - >> 16)); - } - - e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); - -release: - hw->phy.ops.release(hw); -} - -/** - * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation - * with 82579 PHY - * @hw: pointer to the HW structure - * @enable: flag to enable/disable workaround when enabling/disabling jumbos - **/ -s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) -{ - s32 ret_val = 0; - u16 phy_reg, data; - u32 mac_reg; - u16 i; - - if (hw->mac.type != e1000_pch2lan) - goto out; - - /* disable Rx path while enabling/disabling workaround */ - e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); - ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); - if (ret_val) - goto out; - - if (enable) { - /* - * Write Rx addresses (rar_entry_count for RAL/H, +4 for - * SHRAL/H) and initial CRC values to the MAC - */ - for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { - u8 mac_addr[ETH_ALEN] = {0}; - u32 addr_high, addr_low; - - addr_high = er32(RAH(i)); - if (!(addr_high & E1000_RAH_AV)) - continue; - addr_low = er32(RAL(i)); - mac_addr[0] = (addr_low & 0xFF); - mac_addr[1] = ((addr_low >> 8) & 0xFF); - mac_addr[2] = ((addr_low >> 16) & 0xFF); - mac_addr[3] = ((addr_low >> 24) & 0xFF); - mac_addr[4] = (addr_high & 0xFF); - mac_addr[5] = ((addr_high >> 8) & 0xFF); - - ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); - } - - /* Write Rx addresses to the PHY */ - e1000_copy_rx_addrs_to_phy_ich8lan(hw); - - /* Enable jumbo frame workaround in the MAC */ - mac_reg = er32(FFLT_DBG); - mac_reg &= ~(1 << 14); - mac_reg |= (7 << 15); - ew32(FFLT_DBG, mac_reg); - - mac_reg = er32(RCTL); - mac_reg |= E1000_RCTL_SECRC; - ew32(RCTL, mac_reg); - - ret_val = e1000e_read_kmrn_reg(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - &data); - if (ret_val) - goto out; - ret_val = e1000e_write_kmrn_reg(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - data | (1 << 0)); - if (ret_val) - goto out; - ret_val = e1000e_read_kmrn_reg(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - &data); - if (ret_val) - goto out; - data &= ~(0xF << 8); - data |= (0xB << 8); - ret_val = e1000e_write_kmrn_reg(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - data); - if (ret_val) - goto out; - - /* Enable jumbo frame workaround in the PHY */ - e1e_rphy(hw, PHY_REG(769, 23), &data); - data &= ~(0x7F << 5); - data |= (0x37 << 5); - ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); - if (ret_val) - goto out; - e1e_rphy(hw, PHY_REG(769, 16), &data); - data &= ~(1 << 13); - ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); - if (ret_val) - goto out; - e1e_rphy(hw, PHY_REG(776, 20), &data); - data &= ~(0x3FF << 2); - data |= (0x1A << 2); - ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); - if (ret_val) - goto out; - ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00); - if (ret_val) - goto out; - e1e_rphy(hw, HV_PM_CTRL, &data); - ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); - if (ret_val) - goto out; - } else { - /* Write MAC register values back to h/w defaults */ - mac_reg = er32(FFLT_DBG); - mac_reg &= ~(0xF << 14); - ew32(FFLT_DBG, mac_reg); - - mac_reg = er32(RCTL); - mac_reg &= ~E1000_RCTL_SECRC; - ew32(RCTL, mac_reg); - - ret_val = e1000e_read_kmrn_reg(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - &data); - if (ret_val) - goto out; - ret_val = e1000e_write_kmrn_reg(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - data & ~(1 << 0)); - if (ret_val) - goto out; - ret_val = e1000e_read_kmrn_reg(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - &data); - if (ret_val) - goto out; - data &= ~(0xF << 8); - data |= (0xB << 8); - ret_val = e1000e_write_kmrn_reg(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - data); - if (ret_val) - goto out; - - /* Write PHY register values back to h/w defaults */ - e1e_rphy(hw, PHY_REG(769, 23), &data); - data &= ~(0x7F << 5); - ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); - if (ret_val) - goto out; - e1e_rphy(hw, PHY_REG(769, 16), &data); - data |= (1 << 13); - ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); - if (ret_val) - goto out; - e1e_rphy(hw, PHY_REG(776, 20), &data); - data &= ~(0x3FF << 2); - data |= (0x8 << 2); - ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); - if (ret_val) - goto out; - ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); - if (ret_val) - goto out; - e1e_rphy(hw, HV_PM_CTRL, &data); - ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); - if (ret_val) - goto out; - } - - /* re-enable Rx path after enabling/disabling workaround */ - ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); - -out: - return ret_val; -} - -/** - * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be - * done after every PHY reset. - **/ -static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - - if (hw->mac.type != e1000_pch2lan) - goto out; - - /* Set MDIO slow mode before any other MDIO access */ - ret_val = e1000_set_mdio_slow_mode_hv(hw); - -out: - return ret_val; -} - -/** - * e1000_k1_gig_workaround_lv - K1 Si workaround - * @hw: pointer to the HW structure - * - * Workaround to set the K1 beacon duration for 82579 parts - **/ -static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 status_reg = 0; - u32 mac_reg; - - if (hw->mac.type != e1000_pch2lan) - goto out; - - /* Set K1 beacon duration based on 1Gbps speed or otherwise */ - ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); - if (ret_val) - goto out; - - if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) - == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { - mac_reg = er32(FEXTNVM4); - mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; - - if (status_reg & HV_M_STATUS_SPEED_1000) - mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; - else - mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; - - ew32(FEXTNVM4, mac_reg); - } - -out: - return ret_val; -} - -/** - * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware - * @hw: pointer to the HW structure - * @gate: boolean set to true to gate, false to ungate - * - * Gate/ungate the automatic PHY configuration via hardware; perform - * the configuration via software instead. - **/ -static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) -{ - u32 extcnf_ctrl; - - if (hw->mac.type != e1000_pch2lan) - return; - - extcnf_ctrl = er32(EXTCNF_CTRL); - - if (gate) - extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; - else - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; - - ew32(EXTCNF_CTRL, extcnf_ctrl); - return; -} - -/** - * e1000_lan_init_done_ich8lan - Check for PHY config completion - * @hw: pointer to the HW structure - * - * Check the appropriate indication the MAC has finished configuring the - * PHY after a software reset. - **/ -static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) -{ - u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; - - /* Wait for basic configuration completes before proceeding */ - do { - data = er32(STATUS); - data &= E1000_STATUS_LAN_INIT_DONE; - udelay(100); - } while ((!data) && --loop); - - /* - * If basic configuration is incomplete before the above loop - * count reaches 0, loading the configuration from NVM will - * leave the PHY in a bad state possibly resulting in no link. - */ - if (loop == 0) - e_dbg("LAN_INIT_DONE not set, increase timeout\n"); - - /* Clear the Init Done bit for the next init event */ - data = er32(STATUS); - data &= ~E1000_STATUS_LAN_INIT_DONE; - ew32(STATUS, data); -} - -/** - * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset - * @hw: pointer to the HW structure - **/ -static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 reg; - - if (e1000_check_reset_block(hw)) - goto out; - - /* Allow time for h/w to get to quiescent state after reset */ - usleep_range(10000, 20000); - - /* Perform any necessary post-reset workarounds */ - switch (hw->mac.type) { - case e1000_pchlan: - ret_val = e1000_hv_phy_workarounds_ich8lan(hw); - if (ret_val) - goto out; - break; - case e1000_pch2lan: - ret_val = e1000_lv_phy_workarounds_ich8lan(hw); - if (ret_val) - goto out; - break; - default: - break; - } - - /* Clear the host wakeup bit after lcd reset */ - if (hw->mac.type >= e1000_pchlan) { - e1e_rphy(hw, BM_PORT_GEN_CFG, ®); - reg &= ~BM_WUC_HOST_WU_BIT; - e1e_wphy(hw, BM_PORT_GEN_CFG, reg); - } - - /* Configure the LCD with the extended configuration region in NVM */ - ret_val = e1000_sw_lcd_config_ich8lan(hw); - if (ret_val) - goto out; - - /* Configure the LCD with the OEM bits in NVM */ - ret_val = e1000_oem_bits_config_ich8lan(hw, true); - - if (hw->mac.type == e1000_pch2lan) { - /* Ungate automatic PHY configuration on non-managed 82579 */ - if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { - usleep_range(10000, 20000); - e1000_gate_hw_phy_config_ich8lan(hw, false); - } - - /* Set EEE LPI Update Timer to 200usec */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, - I82579_LPI_UPDATE_TIMER); - if (ret_val) - goto release; - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, - 0x1387); -release: - hw->phy.ops.release(hw); - } - -out: - return ret_val; -} - -/** - * e1000_phy_hw_reset_ich8lan - Performs a PHY reset - * @hw: pointer to the HW structure - * - * Resets the PHY - * This is a function pointer entry point called by drivers - * or other shared routines. - **/ -static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - - /* Gate automatic PHY configuration by hardware on non-managed 82579 */ - if ((hw->mac.type == e1000_pch2lan) && - !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - - ret_val = e1000e_phy_hw_reset_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_post_phy_reset_ich8lan(hw); - -out: - return ret_val; -} - -/** - * e1000_set_lplu_state_pchlan - Set Low Power Link Up state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU state according to the active flag. For PCH, if OEM write - * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set - * the phy speed. This function will manually set the LPLU bit and restart - * auto-neg as hw would do. D3 and D0 LPLU will call the same function - * since it configures the same bit. - **/ -static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) -{ - s32 ret_val = 0; - u16 oem_reg; - - ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); - if (ret_val) - goto out; - - if (active) - oem_reg |= HV_OEM_BITS_LPLU; - else - oem_reg &= ~HV_OEM_BITS_LPLU; - - oem_reg |= HV_OEM_BITS_RESTART_AN; - ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); - -out: - return ret_val; -} - -/** - * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 phy_ctrl; - s32 ret_val = 0; - u16 data; - - if (phy->type == e1000_phy_ife) - return ret_val; - - phy_ctrl = er32(PHY_CTRL); - - if (active) { - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; - ew32(PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return 0; - - /* - * Call gig speed drop workaround on LPLU before accessing - * any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000e_gig_downshift_workaround_ich8lan(hw); - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); - if (ret_val) - return ret_val; - } else { - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - ew32(PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return 0; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } - - return 0; -} - -/** - * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D3 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 phy_ctrl; - s32 ret_val; - u16 data; - - phy_ctrl = er32(PHY_CTRL); - - if (!active) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - ew32(PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return 0; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; - ew32(PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return 0; - - /* - * Call gig speed drop workaround on LPLU before accessing - * any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000e_gig_downshift_workaround_ich8lan(hw); - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); - } - - return 0; -} - -/** - * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 - * @hw: pointer to the HW structure - * @bank: pointer to the variable that returns the active bank - * - * Reads signature byte from the NVM using the flash access registers. - * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. - **/ -static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) -{ - u32 eecd; - struct e1000_nvm_info *nvm = &hw->nvm; - u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); - u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; - u8 sig_byte = 0; - s32 ret_val = 0; - - switch (hw->mac.type) { - case e1000_ich8lan: - case e1000_ich9lan: - eecd = er32(EECD); - if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == - E1000_EECD_SEC1VAL_VALID_MASK) { - if (eecd & E1000_EECD_SEC1VAL) - *bank = 1; - else - *bank = 0; - - return 0; - } - e_dbg("Unable to determine valid NVM bank via EEC - " - "reading flash signature\n"); - /* fall-thru */ - default: - /* set bank to 0 in case flash read fails */ - *bank = 0; - - /* Check bank 0 */ - ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, - &sig_byte); - if (ret_val) - return ret_val; - if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == - E1000_ICH_NVM_SIG_VALUE) { - *bank = 0; - return 0; - } - - /* Check bank 1 */ - ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + - bank1_offset, - &sig_byte); - if (ret_val) - return ret_val; - if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == - E1000_ICH_NVM_SIG_VALUE) { - *bank = 1; - return 0; - } - - e_dbg("ERROR: No valid NVM bank present\n"); - return -E1000_ERR_NVM; - } - - return 0; -} - -/** - * e1000_read_nvm_ich8lan - Read word(s) from the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the word(s) to read. - * @words: Size of data to read in words - * @data: Pointer to the word(s) to read at offset. - * - * Reads a word(s) from the NVM using the flash access registers. - **/ -static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 act_offset; - s32 ret_val = 0; - u32 bank = 0; - u16 i, word; - - if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || - (words == 0)) { - e_dbg("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - nvm->ops.acquire(hw); - - ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); - if (ret_val) { - e_dbg("Could not detect valid bank, assuming bank 0\n"); - bank = 0; - } - - act_offset = (bank) ? nvm->flash_bank_size : 0; - act_offset += offset; - - ret_val = 0; - for (i = 0; i < words; i++) { - if (dev_spec->shadow_ram[offset+i].modified) { - data[i] = dev_spec->shadow_ram[offset+i].value; - } else { - ret_val = e1000_read_flash_word_ich8lan(hw, - act_offset + i, - &word); - if (ret_val) - break; - data[i] = word; - } - } - - nvm->ops.release(hw); - -out: - if (ret_val) - e_dbg("NVM read error: %d\n", ret_val); - - return ret_val; -} - -/** - * e1000_flash_cycle_init_ich8lan - Initialize flash - * @hw: pointer to the HW structure - * - * This function does initial flash setup so that a new read/write/erase cycle - * can be started. - **/ -static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) -{ - union ich8_hws_flash_status hsfsts; - s32 ret_val = -E1000_ERR_NVM; - - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - - /* Check if the flash descriptor is valid */ - if (hsfsts.hsf_status.fldesvalid == 0) { - e_dbg("Flash descriptor invalid. " - "SW Sequencing must be used.\n"); - return -E1000_ERR_NVM; - } - - /* Clear FCERR and DAEL in hw status by writing 1 */ - hsfsts.hsf_status.flcerr = 1; - hsfsts.hsf_status.dael = 1; - - ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); - - /* - * Either we should have a hardware SPI cycle in progress - * bit to check against, in order to start a new cycle or - * FDONE bit should be changed in the hardware so that it - * is 1 after hardware reset, which can then be used as an - * indication whether a cycle is in progress or has been - * completed. - */ - - if (hsfsts.hsf_status.flcinprog == 0) { - /* - * There is no cycle running at present, - * so we can start a cycle. - * Begin by setting Flash Cycle Done. - */ - hsfsts.hsf_status.flcdone = 1; - ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); - ret_val = 0; - } else { - s32 i = 0; - - /* - * Otherwise poll for sometime so the current - * cycle has a chance to end before giving up. - */ - for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { - hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcinprog == 0) { - ret_val = 0; - break; - } - udelay(1); - } - if (ret_val == 0) { - /* - * Successful in waiting for previous cycle to timeout, - * now set the Flash Cycle Done. - */ - hsfsts.hsf_status.flcdone = 1; - ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); - } else { - e_dbg("Flash controller busy, cannot get access\n"); - } - } - - return ret_val; -} - -/** - * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) - * @hw: pointer to the HW structure - * @timeout: maximum time to wait for completion - * - * This function starts a flash cycle and waits for its completion. - **/ -static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) -{ - union ich8_hws_flash_ctrl hsflctl; - union ich8_hws_flash_status hsfsts; - s32 ret_val = -E1000_ERR_NVM; - u32 i = 0; - - /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ - hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcgo = 1; - ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); - - /* wait till FDONE bit is set to 1 */ - do { - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcdone == 1) - break; - udelay(1); - } while (i++ < timeout); - - if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) - return 0; - - return ret_val; -} - -/** - * e1000_read_flash_word_ich8lan - Read word from flash - * @hw: pointer to the HW structure - * @offset: offset to data location - * @data: pointer to the location for storing the data - * - * Reads the flash word at offset into data. Offset is converted - * to bytes before read. - **/ -static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, - u16 *data) -{ - /* Must convert offset into bytes. */ - offset <<= 1; - - return e1000_read_flash_data_ich8lan(hw, offset, 2, data); -} - -/** - * e1000_read_flash_byte_ich8lan - Read byte from flash - * @hw: pointer to the HW structure - * @offset: The offset of the byte to read. - * @data: Pointer to a byte to store the value read. - * - * Reads a single byte from the NVM using the flash access registers. - **/ -static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, - u8 *data) -{ - s32 ret_val; - u16 word = 0; - - ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); - if (ret_val) - return ret_val; - - *data = (u8)word; - - return 0; -} - -/** - * e1000_read_flash_data_ich8lan - Read byte or word from NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the byte or word to read. - * @size: Size of data to read, 1=byte 2=word - * @data: Pointer to the word to store the value read. - * - * Reads a byte or word from the NVM using the flash access registers. - **/ -static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 *data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - u32 flash_data = 0; - s32 ret_val = -E1000_ERR_NVM; - u8 count = 0; - - if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) - return -E1000_ERR_NVM; - - flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + - hw->nvm.flash_base_addr; - - do { - udelay(1); - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val != 0) - break; - - hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; - ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); - - ew32flash(ICH_FLASH_FADDR, flash_linear_addr); - - ret_val = e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_READ_COMMAND_TIMEOUT); - - /* - * Check if FCERR is set to 1, if set to 1, clear it - * and try the whole sequence a few more times, else - * read in (shift in) the Flash Data0, the order is - * least significant byte first msb to lsb - */ - if (ret_val == 0) { - flash_data = er32flash(ICH_FLASH_FDATA0); - if (size == 1) - *data = (u8)(flash_data & 0x000000FF); - else if (size == 2) - *data = (u16)(flash_data & 0x0000FFFF); - break; - } else { - /* - * If we've gotten here, then things are probably - * completely hosed, but if the error condition is - * detected, it won't hurt to give it another try... - * ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - e_dbg("Timeout error - flash cycle " - "did not complete.\n"); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return ret_val; -} - -/** - * e1000_write_nvm_ich8lan - Write word(s) to the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the word(s) to write. - * @words: Size of data to write in words - * @data: Pointer to the word(s) to write at offset. - * - * Writes a byte or word to the NVM using the flash access registers. - **/ -static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u16 i; - - if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || - (words == 0)) { - e_dbg("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - nvm->ops.acquire(hw); - - for (i = 0; i < words; i++) { - dev_spec->shadow_ram[offset+i].modified = true; - dev_spec->shadow_ram[offset+i].value = data[i]; - } - - nvm->ops.release(hw); - - return 0; -} - -/** - * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM - * @hw: pointer to the HW structure - * - * The NVM checksum is updated by calling the generic update_nvm_checksum, - * which writes the checksum to the shadow ram. The changes in the shadow - * ram are then committed to the EEPROM by processing each bank at a time - * checking for the modified bit and writing only the pending changes. - * After a successful commit, the shadow ram is cleared and is ready for - * future writes. - **/ -static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 i, act_offset, new_bank_offset, old_bank_offset, bank; - s32 ret_val; - u16 data; - - ret_val = e1000e_update_nvm_checksum_generic(hw); - if (ret_val) - goto out; - - if (nvm->type != e1000_nvm_flash_sw) - goto out; - - nvm->ops.acquire(hw); - - /* - * We're writing to the opposite bank so if we're on bank 1, - * write to bank 0 etc. We also need to erase the segment that - * is going to be written - */ - ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); - if (ret_val) { - e_dbg("Could not detect valid bank, assuming bank 0\n"); - bank = 0; - } - - if (bank == 0) { - new_bank_offset = nvm->flash_bank_size; - old_bank_offset = 0; - ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); - if (ret_val) - goto release; - } else { - old_bank_offset = nvm->flash_bank_size; - new_bank_offset = 0; - ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); - if (ret_val) - goto release; - } - - for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { - /* - * Determine whether to write the value stored - * in the other NVM bank or a modified value stored - * in the shadow RAM - */ - if (dev_spec->shadow_ram[i].modified) { - data = dev_spec->shadow_ram[i].value; - } else { - ret_val = e1000_read_flash_word_ich8lan(hw, i + - old_bank_offset, - &data); - if (ret_val) - break; - } - - /* - * If the word is 0x13, then make sure the signature bits - * (15:14) are 11b until the commit has completed. - * This will allow us to write 10b which indicates the - * signature is valid. We want to do this after the write - * has completed so that we don't mark the segment valid - * while the write is still in progress - */ - if (i == E1000_ICH_NVM_SIG_WORD) - data |= E1000_ICH_NVM_SIG_MASK; - - /* Convert offset to bytes. */ - act_offset = (i + new_bank_offset) << 1; - - udelay(100); - /* Write the bytes to the new bank. */ - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset, - (u8)data); - if (ret_val) - break; - - udelay(100); - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset + 1, - (u8)(data >> 8)); - if (ret_val) - break; - } - - /* - * Don't bother writing the segment valid bits if sector - * programming failed. - */ - if (ret_val) { - /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ - e_dbg("Flash commit failed.\n"); - goto release; - } - - /* - * Finally validate the new segment by setting bit 15:14 - * to 10b in word 0x13 , this can be done without an - * erase as well since these bits are 11 to start with - * and we need to change bit 14 to 0b - */ - act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; - ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); - if (ret_val) - goto release; - - data &= 0xBFFF; - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset * 2 + 1, - (u8)(data >> 8)); - if (ret_val) - goto release; - - /* - * And invalidate the previously valid segment by setting - * its signature word (0x13) high_byte to 0b. This can be - * done without an erase because flash erase sets all bits - * to 1's. We can write 1's to 0's without an erase - */ - act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); - if (ret_val) - goto release; - - /* Great! Everything worked, we can now clear the cached entries. */ - for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { - dev_spec->shadow_ram[i].modified = false; - dev_spec->shadow_ram[i].value = 0xFFFF; - } - -release: - nvm->ops.release(hw); - - /* - * Reload the EEPROM, or else modifications will not appear - * until after the next adapter reset. - */ - if (!ret_val) { - e1000e_reload_nvm(hw); - usleep_range(10000, 20000); - } - -out: - if (ret_val) - e_dbg("NVM update error: %d\n", ret_val); - - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. - * If the bit is 0, that the EEPROM had been modified, but the checksum was not - * calculated, in which case we need to calculate the checksum and set bit 6. - **/ -static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 data; - - /* - * Read 0x19 and check bit 6. If this bit is 0, the checksum - * needs to be fixed. This bit is an indication that the NVM - * was prepared by OEM software and did not calculate the - * checksum...a likely scenario. - */ - ret_val = e1000_read_nvm(hw, 0x19, 1, &data); - if (ret_val) - return ret_val; - - if ((data & 0x40) == 0) { - data |= 0x40; - ret_val = e1000_write_nvm(hw, 0x19, 1, &data); - if (ret_val) - return ret_val; - ret_val = e1000e_update_nvm_checksum(hw); - if (ret_val) - return ret_val; - } - - return e1000e_validate_nvm_checksum_generic(hw); -} - -/** - * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only - * @hw: pointer to the HW structure - * - * To prevent malicious write/erase of the NVM, set it to be read-only - * so that the hardware ignores all write/erase cycles of the NVM via - * the flash control registers. The shadow-ram copy of the NVM will - * still be updated, however any updates to this copy will not stick - * across driver reloads. - **/ -void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - union ich8_flash_protected_range pr0; - union ich8_hws_flash_status hsfsts; - u32 gfpreg; - - nvm->ops.acquire(hw); - - gfpreg = er32flash(ICH_FLASH_GFPREG); - - /* Write-protect GbE Sector of NVM */ - pr0.regval = er32flash(ICH_FLASH_PR0); - pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; - pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); - pr0.range.wpe = true; - ew32flash(ICH_FLASH_PR0, pr0.regval); - - /* - * Lock down a subset of GbE Flash Control Registers, e.g. - * PR0 to prevent the write-protection from being lifted. - * Once FLOCKDN is set, the registers protected by it cannot - * be written until FLOCKDN is cleared by a hardware reset. - */ - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - hsfsts.hsf_status.flockdn = true; - ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); - - nvm->ops.release(hw); -} - -/** - * e1000_write_flash_data_ich8lan - Writes bytes to the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the byte/word to read. - * @size: Size of data to read, 1=byte 2=word - * @data: The byte(s) to write to the NVM. - * - * Writes one/two bytes to the NVM using the flash access registers. - **/ -static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - u32 flash_data = 0; - s32 ret_val; - u8 count = 0; - - if (size < 1 || size > 2 || data > size * 0xff || - offset > ICH_FLASH_LINEAR_ADDR_MASK) - return -E1000_ERR_NVM; - - flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + - hw->nvm.flash_base_addr; - - do { - udelay(1); - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val) - break; - - hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size -1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; - ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); - - ew32flash(ICH_FLASH_FADDR, flash_linear_addr); - - if (size == 1) - flash_data = (u32)data & 0x00FF; - else - flash_data = (u32)data; - - ew32flash(ICH_FLASH_FDATA0, flash_data); - - /* - * check if FCERR is set to 1 , if set to 1, clear it - * and try the whole sequence a few more times else done - */ - ret_val = e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_WRITE_COMMAND_TIMEOUT); - if (!ret_val) - break; - - /* - * If we're here, then things are most likely - * completely hosed, but if the error condition - * is detected, it won't hurt to give it another - * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) - /* Repeat for some time before giving up. */ - continue; - if (hsfsts.hsf_status.flcdone == 0) { - e_dbg("Timeout error - flash cycle " - "did not complete."); - break; - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return ret_val; -} - -/** - * e1000_write_flash_byte_ich8lan - Write a single byte to NVM - * @hw: pointer to the HW structure - * @offset: The index of the byte to read. - * @data: The byte to write to the NVM. - * - * Writes a single byte to the NVM using the flash access registers. - **/ -static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, - u8 data) -{ - u16 word = (u16)data; - - return e1000_write_flash_data_ich8lan(hw, offset, 1, word); -} - -/** - * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM - * @hw: pointer to the HW structure - * @offset: The offset of the byte to write. - * @byte: The byte to write to the NVM. - * - * Writes a single byte to the NVM using the flash access registers. - * Goes through a retry algorithm before giving up. - **/ -static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 byte) -{ - s32 ret_val; - u16 program_retries; - - ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); - if (!ret_val) - return ret_val; - - for (program_retries = 0; program_retries < 100; program_retries++) { - e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); - udelay(100); - ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); - if (!ret_val) - break; - } - if (program_retries == 100) - return -E1000_ERR_NVM; - - return 0; -} - -/** - * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM - * @hw: pointer to the HW structure - * @bank: 0 for first bank, 1 for second bank, etc. - * - * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. - * bank N is 4096 * N + flash_reg_addr. - **/ -static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - /* bank size is in 16bit words - adjust to bytes */ - u32 flash_bank_size = nvm->flash_bank_size * 2; - s32 ret_val; - s32 count = 0; - s32 j, iteration, sector_size; - - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - - /* - * Determine HW Sector size: Read BERASE bits of hw flash status - * register - * 00: The Hw sector is 256 bytes, hence we need to erase 16 - * consecutive sectors. The start index for the nth Hw sector - * can be calculated as = bank * 4096 + n * 256 - * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. - * The start index for the nth Hw sector can be calculated - * as = bank * 4096 - * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 - * (ich9 only, otherwise error condition) - * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 - */ - switch (hsfsts.hsf_status.berasesz) { - case 0: - /* Hw sector size 256 */ - sector_size = ICH_FLASH_SEG_SIZE_256; - iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; - break; - case 1: - sector_size = ICH_FLASH_SEG_SIZE_4K; - iteration = 1; - break; - case 2: - sector_size = ICH_FLASH_SEG_SIZE_8K; - iteration = 1; - break; - case 3: - sector_size = ICH_FLASH_SEG_SIZE_64K; - iteration = 1; - break; - default: - return -E1000_ERR_NVM; - } - - /* Start with the base address, then add the sector offset. */ - flash_linear_addr = hw->nvm.flash_base_addr; - flash_linear_addr += (bank) ? flash_bank_size : 0; - - for (j = 0; j < iteration ; j++) { - do { - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val) - return ret_val; - - /* - * Write a value 11 (block Erase) in Flash - * Cycle field in hw flash control - */ - hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; - ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); - - /* - * Write the last 24 bits of an index within the - * block into Flash Linear address field in Flash - * Address. - */ - flash_linear_addr += (j * sector_size); - ew32flash(ICH_FLASH_FADDR, flash_linear_addr); - - ret_val = e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_ERASE_COMMAND_TIMEOUT); - if (ret_val == 0) - break; - - /* - * Check if FCERR is set to 1. If 1, - * clear it and try the whole sequence - * a few more times else Done - */ - hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) - /* repeat for some time before giving up */ - continue; - else if (hsfsts.hsf_status.flcdone == 0) - return ret_val; - } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); - } - - return 0; -} - -/** - * e1000_valid_led_default_ich8lan - Set the default LED settings - * @hw: pointer to the HW structure - * @data: Pointer to the LED settings - * - * Reads the LED default settings from the NVM to data. If the NVM LED - * settings is all 0's or F's, set the LED default to a valid LED default - * setting. - **/ -static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - return ret_val; - } - - if (*data == ID_LED_RESERVED_0000 || - *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT_ICH8LAN; - - return 0; -} - -/** - * e1000_id_led_init_pchlan - store LED configurations - * @hw: pointer to the HW structure - * - * PCH does not control LEDs via the LEDCTL register, rather it uses - * the PHY LED configuration register. - * - * PCH also does not have an "always on" or "always off" mode which - * complicates the ID feature. Instead of using the "on" mode to indicate - * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), - * use "link_up" mode. The LEDs will still ID on request if there is no - * link based on logic in e1000_led_[on|off]_pchlan(). - **/ -static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; - const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; - u16 data, i, temp, shift; - - /* Get default ID LED modes */ - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - goto out; - - mac->ledctl_default = er32(LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; - shift = (i * 5); - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode1 |= (ledctl_on << shift); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode1 |= (ledctl_off << shift); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode2 |= (ledctl_on << shift); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode2 |= (ledctl_off << shift); - break; - default: - /* Do nothing */ - break; - } - } - -out: - return ret_val; -} - -/** - * e1000_get_bus_info_ich8lan - Get/Set the bus type and width - * @hw: pointer to the HW structure - * - * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability - * register, so the the bus width is hard coded. - **/ -static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - - ret_val = e1000e_get_bus_info_pcie(hw); - - /* - * ICH devices are "PCI Express"-ish. They have - * a configuration space, but do not contain - * PCI Express Capability registers, so bus width - * must be hardcoded. - */ - if (bus->width == e1000_bus_width_unknown) - bus->width = e1000_bus_width_pcie_x1; - - return ret_val; -} - -/** - * e1000_reset_hw_ich8lan - Reset the hardware - * @hw: pointer to the HW structure - * - * Does a full reset of the hardware which includes a reset of the PHY and - * MAC. - **/ -static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u16 reg; - u32 ctrl, kab; - s32 ret_val; - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000e_disable_pcie_master(hw); - if (ret_val) - e_dbg("PCI-E Master disable polling has failed.\n"); - - e_dbg("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - /* - * Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC - * with the global reset. - */ - ew32(RCTL, 0); - ew32(TCTL, E1000_TCTL_PSP); - e1e_flush(); - - usleep_range(10000, 20000); - - /* Workaround for ICH8 bit corruption issue in FIFO memory */ - if (hw->mac.type == e1000_ich8lan) { - /* Set Tx and Rx buffer allocation to 8k apiece. */ - ew32(PBA, E1000_PBA_8K); - /* Set Packet Buffer Size to 16k. */ - ew32(PBS, E1000_PBS_16K); - } - - if (hw->mac.type == e1000_pchlan) { - /* Save the NVM K1 bit setting*/ - ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); - if (ret_val) - return ret_val; - - if (reg & E1000_NVM_K1_ENABLE) - dev_spec->nvm_k1_enabled = true; - else - dev_spec->nvm_k1_enabled = false; - } - - ctrl = er32(CTRL); - - if (!e1000_check_reset_block(hw)) { - /* - * Full-chip reset requires MAC and PHY reset at the same - * time to make sure the interface between MAC and the - * external PHY is reset. - */ - ctrl |= E1000_CTRL_PHY_RST; - - /* - * Gate automatic PHY configuration by hardware on - * non-managed 82579 - */ - if ((hw->mac.type == e1000_pch2lan) && - !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - } - ret_val = e1000_acquire_swflag_ich8lan(hw); - e_dbg("Issuing a global reset to ich8lan\n"); - ew32(CTRL, (ctrl | E1000_CTRL_RST)); - /* cannot issue a flush here because it hangs the hardware */ - msleep(20); - - if (!ret_val) - mutex_unlock(&swflag_mutex); - - if (ctrl & E1000_CTRL_PHY_RST) { - ret_val = hw->phy.ops.get_cfg_done(hw); - if (ret_val) - goto out; - - ret_val = e1000_post_phy_reset_ich8lan(hw); - if (ret_val) - goto out; - } - - /* - * For PCH, this write will make sure that any noise - * will be detected as a CRC error and be dropped rather than show up - * as a bad packet to the DMA engine. - */ - if (hw->mac.type == e1000_pchlan) - ew32(CRC_OFFSET, 0x65656565); - - ew32(IMC, 0xffffffff); - er32(ICR); - - kab = er32(KABGTXD); - kab |= E1000_KABGTXD_BGSQLBIAS; - ew32(KABGTXD, kab); - -out: - return ret_val; -} - -/** - * e1000_init_hw_ich8lan - Initialize the hardware - * @hw: pointer to the HW structure - * - * Prepares the hardware for transmit and receive by doing the following: - * - initialize hardware bits - * - initialize LED identification - * - setup receive address registers - * - setup flow control - * - setup transmit descriptors - * - clear statistics - **/ -static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl_ext, txdctl, snoop; - s32 ret_val; - u16 i; - - e1000_initialize_hw_bits_ich8lan(hw); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) - e_dbg("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - - /* Setup the receive address. */ - e1000e_init_rx_addrs(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - e_dbg("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* - * The 82578 Rx buffer will stall if wakeup is enabled in host and - * the ME. Disable wakeup by clearing the host wakeup bit. - * Reset the phy after disabling host wakeup to reset the Rx buffer. - */ - if (hw->phy.type == e1000_phy_82578) { - e1e_rphy(hw, BM_PORT_GEN_CFG, &i); - i &= ~BM_WUC_HOST_WU_BIT; - e1e_wphy(hw, BM_PORT_GEN_CFG, i); - ret_val = e1000_phy_hw_reset_ich8lan(hw); - if (ret_val) - return ret_val; - } - - /* Setup link and flow control */ - ret_val = e1000_setup_link_ich8lan(hw); - - /* Set the transmit descriptor write-back policy for both queues */ - txdctl = er32(TXDCTL(0)); - txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | - E1000_TXDCTL_MAX_TX_DESC_PREFETCH; - ew32(TXDCTL(0), txdctl); - txdctl = er32(TXDCTL(1)); - txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | - E1000_TXDCTL_MAX_TX_DESC_PREFETCH; - ew32(TXDCTL(1), txdctl); - - /* - * ICH8 has opposite polarity of no_snoop bits. - * By default, we should use snoop behavior. - */ - if (mac->type == e1000_ich8lan) - snoop = PCIE_ICH8_SNOOP_ALL; - else - snoop = (u32) ~(PCIE_NO_SNOOP_ALL); - e1000e_set_pcie_no_snoop(hw, snoop); - - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - ew32(CTRL_EXT, ctrl_ext); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_ich8lan(hw); - - return 0; -} -/** - * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits - * @hw: pointer to the HW structure - * - * Sets/Clears required hardware bits necessary for correctly setting up the - * hardware for transmit and receive. - **/ -static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) -{ - u32 reg; - - /* Extended Device Control */ - reg = er32(CTRL_EXT); - reg |= (1 << 22); - /* Enable PHY low-power state when MAC is at D3 w/o WoL */ - if (hw->mac.type >= e1000_pchlan) - reg |= E1000_CTRL_EXT_PHYPDEN; - ew32(CTRL_EXT, reg); - - /* Transmit Descriptor Control 0 */ - reg = er32(TXDCTL(0)); - reg |= (1 << 22); - ew32(TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = er32(TXDCTL(1)); - reg |= (1 << 22); - ew32(TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = er32(TARC(0)); - if (hw->mac.type == e1000_ich8lan) - reg |= (1 << 28) | (1 << 29); - reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); - ew32(TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = er32(TARC(1)); - if (er32(TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - reg |= (1 << 24) | (1 << 26) | (1 << 30); - ew32(TARC(1), reg); - - /* Device Status */ - if (hw->mac.type == e1000_ich8lan) { - reg = er32(STATUS); - reg &= ~(1 << 31); - ew32(STATUS, reg); - } - - /* - * work-around descriptor data corruption issue during nfs v2 udp - * traffic, just disable the nfs filtering capability - */ - reg = er32(RFCTL); - reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); - ew32(RFCTL, reg); -} - -/** - * e1000_setup_link_ich8lan - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val; - - if (e1000_check_reset_block(hw)) - return 0; - - /* - * ICH parts do not have a word in the NVM to determine - * the default flow control setting, so we explicitly - * set it to full. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - /* Workaround h/w hang when Tx flow control enabled */ - if (hw->mac.type == e1000_pchlan) - hw->fc.requested_mode = e1000_fc_rx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - } - - /* - * Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - e_dbg("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Continue to configure the copper link. */ - ret_val = e1000_setup_copper_link_ich8lan(hw); - if (ret_val) - return ret_val; - - ew32(FCTTV, hw->fc.pause_time); - if ((hw->phy.type == e1000_phy_82578) || - (hw->phy.type == e1000_phy_82579) || - (hw->phy.type == e1000_phy_82577)) { - ew32(FCRTV_PCH, hw->fc.refresh_time); - - ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), - hw->fc.pause_time); - if (ret_val) - return ret_val; - } - - return e1000e_set_fc_watermarks(hw); -} - -/** - * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface - * @hw: pointer to the HW structure - * - * Configures the kumeran interface to the PHY to wait the appropriate time - * when polling the PHY, then call the generic setup_copper_link to finish - * configuring the copper link. - **/ -static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 reg_data; - - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ew32(CTRL, ctrl); - - /* - * Set the mac to wait the maximum time between each iteration - * and increase the max iterations when polling the phy; - * this fixes erroneous timeouts at 10Mbps. - */ - ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); - if (ret_val) - return ret_val; - ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - ®_data); - if (ret_val) - return ret_val; - reg_data |= 0x3F; - ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - reg_data); - if (ret_val) - return ret_val; - - switch (hw->phy.type) { - case e1000_phy_igp_3: - ret_val = e1000e_copper_link_setup_igp(hw); - if (ret_val) - return ret_val; - break; - case e1000_phy_bm: - case e1000_phy_82578: - ret_val = e1000e_copper_link_setup_m88(hw); - if (ret_val) - return ret_val; - break; - case e1000_phy_82577: - case e1000_phy_82579: - ret_val = e1000_copper_link_setup_82577(hw); - if (ret_val) - return ret_val; - break; - case e1000_phy_ife: - ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); - if (ret_val) - return ret_val; - - reg_data &= ~IFE_PMC_AUTO_MDIX; - - switch (hw->phy.mdix) { - case 1: - reg_data &= ~IFE_PMC_FORCE_MDIX; - break; - case 2: - reg_data |= IFE_PMC_FORCE_MDIX; - break; - case 0: - default: - reg_data |= IFE_PMC_AUTO_MDIX; - break; - } - ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); - if (ret_val) - return ret_val; - break; - default: - break; - } - return e1000e_setup_copper_link(hw); -} - -/** - * e1000_get_link_up_info_ich8lan - Get current link speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to store current link speed - * @duplex: pointer to store the current link duplex - * - * Calls the generic get_speed_and_duplex to retrieve the current link - * information and then calls the Kumeran lock loss workaround for links at - * gigabit speeds. - **/ -static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 ret_val; - - ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); - if (ret_val) - return ret_val; - - if ((hw->mac.type == e1000_ich8lan) && - (hw->phy.type == e1000_phy_igp_3) && - (*speed == SPEED_1000)) { - ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); - } - - return ret_val; -} - -/** - * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround - * @hw: pointer to the HW structure - * - * Work-around for 82566 Kumeran PCS lock loss: - * On link status change (i.e. PCI reset, speed change) and link is up and - * speed is gigabit- - * 0) if workaround is optionally disabled do nothing - * 1) wait 1ms for Kumeran link to come up - * 2) check Kumeran Diagnostic register PCS lock loss bit - * 3) if not set the link is locked (all is good), otherwise... - * 4) reset the PHY - * 5) repeat up to 10 times - * Note: this is only called for IGP3 copper when speed is 1gb. - **/ -static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 phy_ctrl; - s32 ret_val; - u16 i, data; - bool link; - - if (!dev_spec->kmrn_lock_loss_workaround_enabled) - return 0; - - /* - * Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouled up link - * stability - */ - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (!link) - return 0; - - for (i = 0; i < 10; i++) { - /* read once to clear */ - ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); - if (ret_val) - return ret_val; - /* and again to get new status */ - ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); - if (ret_val) - return ret_val; - - /* check for PCS lock */ - if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) - return 0; - - /* Issue PHY reset */ - e1000_phy_hw_reset(hw); - mdelay(5); - } - /* Disable GigE link negotiation */ - phy_ctrl = er32(PHY_CTRL); - phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - ew32(PHY_CTRL, phy_ctrl); - - /* - * Call gig speed drop workaround on Gig disable before accessing - * any PHY registers - */ - e1000e_gig_downshift_workaround_ich8lan(hw); - - /* unable to acquire PCS lock */ - return -E1000_ERR_PHY; -} - -/** - * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state - * @hw: pointer to the HW structure - * @state: boolean value used to set the current Kumeran workaround state - * - * If ICH8, set the current Kumeran workaround state (enabled - true - * /disabled - false). - **/ -void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, - bool state) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - - if (hw->mac.type != e1000_ich8lan) { - e_dbg("Workaround applies to ICH8 only.\n"); - return; - } - - dev_spec->kmrn_lock_loss_workaround_enabled = state; -} - -/** - * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 - * @hw: pointer to the HW structure - * - * Workaround for 82566 power-down on D3 entry: - * 1) disable gigabit link - * 2) write VR power-down enable - * 3) read it back - * Continue if successful, else issue LCD reset and repeat - **/ -void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) -{ - u32 reg; - u16 data; - u8 retry = 0; - - if (hw->phy.type != e1000_phy_igp_3) - return; - - /* Try the workaround twice (if needed) */ - do { - /* Disable link */ - reg = er32(PHY_CTRL); - reg |= (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - ew32(PHY_CTRL, reg); - - /* - * Call gig speed drop workaround on Gig disable before - * accessing any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000e_gig_downshift_workaround_ich8lan(hw); - - /* Write VR power-down enable */ - e1e_rphy(hw, IGP3_VR_CTRL, &data); - data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; - e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); - - /* Read it back and test */ - e1e_rphy(hw, IGP3_VR_CTRL, &data); - data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; - if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) - break; - - /* Issue PHY reset and repeat at most one more time */ - reg = er32(CTRL); - ew32(CTRL, reg | E1000_CTRL_PHY_RST); - retry++; - } while (retry); -} - -/** - * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working - * @hw: pointer to the HW structure - * - * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), - * LPLU, Gig disable, MDIC PHY reset): - * 1) Set Kumeran Near-end loopback - * 2) Clear Kumeran Near-end loopback - * Should only be called for ICH8[m] devices with IGP_3 Phy. - **/ -void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 reg_data; - - if ((hw->mac.type != e1000_ich8lan) || - (hw->phy.type != e1000_phy_igp_3)) - return; - - ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, - ®_data); - if (ret_val) - return; - reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; - ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, - reg_data); - if (ret_val) - return; - reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; - ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, - reg_data); -} - -/** - * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx - * @hw: pointer to the HW structure - * - * During S0 to Sx transition, it is possible the link remains at gig - * instead of negotiating to a lower speed. Before going to Sx, set - * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation - * to a lower speed. For PCH and newer parts, the OEM bits PHY register - * (LED, GbE disable and LPLU configurations) also needs to be written. - **/ -void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) -{ - u32 phy_ctrl; - s32 ret_val; - - phy_ctrl = er32(PHY_CTRL); - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE; - ew32(PHY_CTRL, phy_ctrl); - - if (hw->mac.type >= e1000_pchlan) { - e1000_oem_bits_config_ich8lan(hw, false); - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - e1000_write_smbus_addr(hw); - hw->phy.ops.release(hw); - } -} - -/** - * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 - * @hw: pointer to the HW structure - * - * During Sx to S0 transitions on non-managed devices or managed devices - * on which PHY resets are not blocked, if the PHY registers cannot be - * accessed properly by the s/w toggle the LANPHYPC value to power cycle - * the PHY. - **/ -void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) -{ - u32 fwsm; - - if (hw->mac.type != e1000_pch2lan) - return; - - fwsm = er32(FWSM); - if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) { - u16 phy_id1, phy_id2; - s32 ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) { - e_dbg("Failed to acquire PHY semaphore in resume\n"); - return; - } - - /* Test access to the PHY registers by reading the ID regs */ - ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1); - if (ret_val) - goto release; - ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2); - if (ret_val) - goto release; - - if (hw->phy.id == ((u32)(phy_id1 << 16) | - (u32)(phy_id2 & PHY_REVISION_MASK))) - goto release; - - e1000_toggle_lanphypc_value_ich8lan(hw); - - hw->phy.ops.release(hw); - msleep(50); - e1000_phy_hw_reset(hw); - msleep(50); - return; - } - -release: - hw->phy.ops.release(hw); - - return; -} - -/** - * e1000_cleanup_led_ich8lan - Restore the default LED operation - * @hw: pointer to the HW structure - * - * Return the LED back to the default configuration. - **/ -static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) -{ - if (hw->phy.type == e1000_phy_ife) - return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); - - ew32(LEDCTL, hw->mac.ledctl_default); - return 0; -} - -/** - * e1000_led_on_ich8lan - Turn LEDs on - * @hw: pointer to the HW structure - * - * Turn on the LEDs. - **/ -static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) -{ - if (hw->phy.type == e1000_phy_ife) - return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); - - ew32(LEDCTL, hw->mac.ledctl_mode2); - return 0; -} - -/** - * e1000_led_off_ich8lan - Turn LEDs off - * @hw: pointer to the HW structure - * - * Turn off the LEDs. - **/ -static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) -{ - if (hw->phy.type == e1000_phy_ife) - return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | - IFE_PSCL_PROBE_LEDS_OFF)); - - ew32(LEDCTL, hw->mac.ledctl_mode1); - return 0; -} - -/** - * e1000_setup_led_pchlan - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use. - **/ -static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) -{ - return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); -} - -/** - * e1000_cleanup_led_pchlan - Restore the default LED operation - * @hw: pointer to the HW structure - * - * Return the LED back to the default configuration. - **/ -static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) -{ - return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); -} - -/** - * e1000_led_on_pchlan - Turn LEDs on - * @hw: pointer to the HW structure - * - * Turn on the LEDs. - **/ -static s32 e1000_led_on_pchlan(struct e1000_hw *hw) -{ - u16 data = (u16)hw->mac.ledctl_mode2; - u32 i, led; - - /* - * If no link, then turn LED on by setting the invert bit - * for each LED that's mode is "link_up" in ledctl_mode2. - */ - if (!(er32(STATUS) & E1000_STATUS_LU)) { - for (i = 0; i < 3; i++) { - led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; - if ((led & E1000_PHY_LED0_MODE_MASK) != - E1000_LEDCTL_MODE_LINK_UP) - continue; - if (led & E1000_PHY_LED0_IVRT) - data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); - else - data |= (E1000_PHY_LED0_IVRT << (i * 5)); - } - } - - return e1e_wphy(hw, HV_LED_CONFIG, data); -} - -/** - * e1000_led_off_pchlan - Turn LEDs off - * @hw: pointer to the HW structure - * - * Turn off the LEDs. - **/ -static s32 e1000_led_off_pchlan(struct e1000_hw *hw) -{ - u16 data = (u16)hw->mac.ledctl_mode1; - u32 i, led; - - /* - * If no link, then turn LED off by clearing the invert bit - * for each LED that's mode is "link_up" in ledctl_mode1. - */ - if (!(er32(STATUS) & E1000_STATUS_LU)) { - for (i = 0; i < 3; i++) { - led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; - if ((led & E1000_PHY_LED0_MODE_MASK) != - E1000_LEDCTL_MODE_LINK_UP) - continue; - if (led & E1000_PHY_LED0_IVRT) - data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); - else - data |= (E1000_PHY_LED0_IVRT << (i * 5)); - } - } - - return e1e_wphy(hw, HV_LED_CONFIG, data); -} - -/** - * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset - * @hw: pointer to the HW structure - * - * Read appropriate register for the config done bit for completion status - * and configure the PHY through s/w for EEPROM-less parts. - * - * NOTE: some silicon which is EEPROM-less will fail trying to read the - * config done bit, so only an error is logged and continues. If we were - * to return with error, EEPROM-less silicon would not be able to be reset - * or change link. - **/ -static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u32 bank = 0; - u32 status; - - e1000e_get_cfg_done(hw); - - /* Wait for indication from h/w that it has completed basic config */ - if (hw->mac.type >= e1000_ich10lan) { - e1000_lan_init_done_ich8lan(hw); - } else { - ret_val = e1000e_get_auto_rd_done(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - e_dbg("Auto Read Done did not complete\n"); - ret_val = 0; - } - } - - /* Clear PHY Reset Asserted bit */ - status = er32(STATUS); - if (status & E1000_STATUS_PHYRA) - ew32(STATUS, status & ~E1000_STATUS_PHYRA); - else - e_dbg("PHY Reset Asserted not set - needs delay\n"); - - /* If EEPROM is not marked present, init the IGP 3 PHY manually */ - if (hw->mac.type <= e1000_ich9lan) { - if (((er32(EECD) & E1000_EECD_PRES) == 0) && - (hw->phy.type == e1000_phy_igp_3)) { - e1000e_phy_init_script_igp3(hw); - } - } else { - if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { - /* Maybe we should do a basic PHY config */ - e_dbg("EEPROM not present\n"); - ret_val = -E1000_ERR_CONFIG; - } - } - - return ret_val; -} - -/** - * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(hw->mac.ops.check_mng_mode(hw) || - hw->phy.ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); -} - -/** - * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters - * @hw: pointer to the HW structure - * - * Clears hardware counters specific to the silicon family and calls - * clear_hw_cntrs_generic to clear all general purpose counters. - **/ -static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) -{ - u16 phy_data; - s32 ret_val; - - e1000e_clear_hw_cntrs_base(hw); - - er32(ALGNERRC); - er32(RXERRC); - er32(TNCRS); - er32(CEXTERR); - er32(TSCTC); - er32(TSCTFC); - - er32(MGTPRC); - er32(MGTPDC); - er32(MGTPTC); - - er32(IAC); - er32(ICRXOC); - - /* Clear PHY statistics registers */ - if ((hw->phy.type == e1000_phy_82578) || - (hw->phy.type == e1000_phy_82579) || - (hw->phy.type == e1000_phy_82577)) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - ret_val = hw->phy.ops.set_page(hw, - HV_STATS_PAGE << IGP_PAGE_SHIFT); - if (ret_val) - goto release; - hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); -release: - hw->phy.ops.release(hw); - } -} - -static struct e1000_mac_operations ich8_mac_ops = { - .id_led_init = e1000e_id_led_init, - /* check_mng_mode dependent on mac type */ - .check_for_link = e1000_check_for_copper_link_ich8lan, - /* cleanup_led dependent on mac type */ - .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, - .get_bus_info = e1000_get_bus_info_ich8lan, - .set_lan_id = e1000_set_lan_id_single_port, - .get_link_up_info = e1000_get_link_up_info_ich8lan, - /* led_on dependent on mac type */ - /* led_off dependent on mac type */ - .update_mc_addr_list = e1000e_update_mc_addr_list_generic, - .reset_hw = e1000_reset_hw_ich8lan, - .init_hw = e1000_init_hw_ich8lan, - .setup_link = e1000_setup_link_ich8lan, - .setup_physical_interface= e1000_setup_copper_link_ich8lan, - /* id_led_init dependent on mac type */ -}; - -static struct e1000_phy_operations ich8_phy_ops = { - .acquire = e1000_acquire_swflag_ich8lan, - .check_reset_block = e1000_check_reset_block_ich8lan, - .commit = NULL, - .get_cfg_done = e1000_get_cfg_done_ich8lan, - .get_cable_length = e1000e_get_cable_length_igp_2, - .read_reg = e1000e_read_phy_reg_igp, - .release = e1000_release_swflag_ich8lan, - .reset = e1000_phy_hw_reset_ich8lan, - .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, - .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, - .write_reg = e1000e_write_phy_reg_igp, -}; - -static struct e1000_nvm_operations ich8_nvm_ops = { - .acquire = e1000_acquire_nvm_ich8lan, - .read = e1000_read_nvm_ich8lan, - .release = e1000_release_nvm_ich8lan, - .update = e1000_update_nvm_checksum_ich8lan, - .valid_led_default = e1000_valid_led_default_ich8lan, - .validate = e1000_validate_nvm_checksum_ich8lan, - .write = e1000_write_nvm_ich8lan, -}; - -struct e1000_info e1000_ich8_info = { - .mac = e1000_ich8lan, - .flags = FLAG_HAS_WOL - | FLAG_IS_ICH - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_HAS_AMT - | FLAG_HAS_FLASH - | FLAG_APME_IN_WUC, - .pba = 8, - .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, - .get_variants = e1000_get_variants_ich8lan, - .mac_ops = &ich8_mac_ops, - .phy_ops = &ich8_phy_ops, - .nvm_ops = &ich8_nvm_ops, -}; - -struct e1000_info e1000_ich9_info = { - .mac = e1000_ich9lan, - .flags = FLAG_HAS_JUMBO_FRAMES - | FLAG_IS_ICH - | FLAG_HAS_WOL - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_HAS_AMT - | FLAG_HAS_ERT - | FLAG_HAS_FLASH - | FLAG_APME_IN_WUC, - .pba = 10, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_ich8lan, - .mac_ops = &ich8_mac_ops, - .phy_ops = &ich8_phy_ops, - .nvm_ops = &ich8_nvm_ops, -}; - -struct e1000_info e1000_ich10_info = { - .mac = e1000_ich10lan, - .flags = FLAG_HAS_JUMBO_FRAMES - | FLAG_IS_ICH - | FLAG_HAS_WOL - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_HAS_AMT - | FLAG_HAS_ERT - | FLAG_HAS_FLASH - | FLAG_APME_IN_WUC, - .pba = 10, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_ich8lan, - .mac_ops = &ich8_mac_ops, - .phy_ops = &ich8_phy_ops, - .nvm_ops = &ich8_nvm_ops, -}; - -struct e1000_info e1000_pch_info = { - .mac = e1000_pchlan, - .flags = FLAG_IS_ICH - | FLAG_HAS_WOL - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_HAS_AMT - | FLAG_HAS_FLASH - | FLAG_HAS_JUMBO_FRAMES - | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ - | FLAG_APME_IN_WUC, - .flags2 = FLAG2_HAS_PHY_STATS, - .pba = 26, - .max_hw_frame_size = 4096, - .get_variants = e1000_get_variants_ich8lan, - .mac_ops = &ich8_mac_ops, - .phy_ops = &ich8_phy_ops, - .nvm_ops = &ich8_nvm_ops, -}; - -struct e1000_info e1000_pch2_info = { - .mac = e1000_pch2lan, - .flags = FLAG_IS_ICH - | FLAG_HAS_WOL - | FLAG_RX_CSUM_ENABLED - | FLAG_HAS_CTRLEXT_ON_LOAD - | FLAG_HAS_AMT - | FLAG_HAS_FLASH - | FLAG_HAS_JUMBO_FRAMES - | FLAG_APME_IN_WUC, - .flags2 = FLAG2_HAS_PHY_STATS - | FLAG2_HAS_EEE, - .pba = 26, - .max_hw_frame_size = DEFAULT_JUMBO, - .get_variants = e1000_get_variants_ich8lan, - .mac_ops = &ich8_mac_ops, - .phy_ops = &ich8_phy_ops, - .nvm_ops = &ich8_nvm_ops, -}; diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c deleted file mode 100644 index 7898a67d650..00000000000 --- a/drivers/net/e1000e/lib.c +++ /dev/null @@ -1,2692 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000.h" - -enum e1000_mng_mode { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_if_only -}; - -#define E1000_FACTPS_MNGCG 0x20000000 - -/* Intel(R) Active Management Technology signature */ -#define E1000_IAMT_SIGNATURE 0x544D4149 - -/** - * e1000e_get_bus_info_pcie - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - **/ -s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - struct e1000_adapter *adapter = hw->adapter; - u16 pcie_link_status, cap_offset; - - cap_offset = adapter->pdev->pcie_cap; - if (!cap_offset) { - bus->width = e1000_bus_width_unknown; - } else { - pci_read_config_word(adapter->pdev, - cap_offset + PCIE_LINK_STATUS, - &pcie_link_status); - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCIE_LINK_WIDTH_MASK) >> - PCIE_LINK_WIDTH_SHIFT); - } - - mac->ops.set_lan_id(hw); - - return 0; -} - -/** - * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices - * - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading memory-mapped registers - * and swaps the port value if requested. - **/ -void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u32 reg; - - /* - * The status register reports the correct function number - * for the device regardless of function swap state. - */ - reg = er32(STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; -} - -/** - * e1000_set_lan_id_single_port - Set LAN id for a single port device - * @hw: pointer to the HW structure - * - * Sets the LAN function id to zero for a single port device. - **/ -void e1000_set_lan_id_single_port(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - bus->func = 0; -} - -/** - * e1000_clear_vfta_generic - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void e1000_clear_vfta_generic(struct e1000_hw *hw) -{ - u32 offset; - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - e1e_flush(); - } -} - -/** - * e1000_write_vfta_generic - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) -{ - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - e1e_flush(); -} - -/** - * e1000e_init_rx_addrs - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setup the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - **/ -void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ALEN] = {0}; - - /* Setup the receive address */ - e_dbg("Programming MAC Address into RAR[0]\n"); - - e1000e_rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - e_dbg("Clearing RAR[1-%u]\n", rar_count-1); - for (i = 1; i < rar_count; i++) - e1000e_rar_set(hw, mac_addr, i); -} - -/** - * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is found it is programmed into RAR0, replacing - * the permanent address that was installed into RAR0 by the Si on reset. - * This function will return SUCCESS unless it encounters an error while - * reading the EEPROM. - **/ -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val = 0; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ALEN]; - - ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); - if (ret_val) - goto out; - - /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */ - if (!((nvm_data & NVM_COMPAT_LOM) || - (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) || - (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD))) - goto out; - - ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - e_dbg("NVM Read Error\n"); - goto out; - } - - if (nvm_alt_mac_addr_offset == 0xFFFF) { - /* There is no Alternate MAC Address */ - goto out; - } - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - for (i = 0; i < ETH_ALEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - goto out; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (is_multicast_ether_addr(alt_mac_addr)) { - e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); - goto out; - } - - /* - * We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - e1000e_rar_set(hw, alt_mac_addr, 0); - -out: - return ret_val; -} - -/** - * e1000e_rar_set - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - **/ -void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - /* - * HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* - * Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - ew32(RAL(index), rar_low); - e1e_flush(); - ew32(RAH(index), rar_high); - e1e_flush(); -} - -/** - * e1000_hash_mc_addr - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. See - * e1000_mta_set_generic() - **/ -static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* - * For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* - * The portion of the address that is used for the hash table - * is determined by the mc_filter_type setting. - * The algorithm is such that there is a total of 8 bits of shifting. - * The bit_shift for a mc_filter_type of 0 represents the number of - * left-shifts where the MSB of mc_addr[5] would still fall within - * the hash_mask. Case 0 does this exactly. Since there are a total - * of 8 bits of shifting, then mc_addr[4] will shift right the - * remaining number of bits. Thus 8 - bit_shift. The rest of the - * cases are a variation of this algorithm...essentially raising the - * number of bits to shift mc_addr[5] left, while still keeping the - * 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an - * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), - * we can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return hash_value; -} - -/** - * e1000e_update_mc_addr_list_generic - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - /* clear mta_shadow */ - memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ALEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); - e1e_flush(); -} - -/** - * e1000e_clear_hw_cntrs_base - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - **/ -void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) -{ - er32(CRCERRS); - er32(SYMERRS); - er32(MPC); - er32(SCC); - er32(ECOL); - er32(MCC); - er32(LATECOL); - er32(COLC); - er32(DC); - er32(SEC); - er32(RLEC); - er32(XONRXC); - er32(XONTXC); - er32(XOFFRXC); - er32(XOFFTXC); - er32(FCRUC); - er32(GPRC); - er32(BPRC); - er32(MPRC); - er32(GPTC); - er32(GORCL); - er32(GORCH); - er32(GOTCL); - er32(GOTCH); - er32(RNBC); - er32(RUC); - er32(RFC); - er32(ROC); - er32(RJC); - er32(TORL); - er32(TORH); - er32(TOTL); - er32(TOTH); - er32(TPR); - er32(TPT); - er32(MPTC); - er32(BPTC); -} - -/** - * e1000e_check_for_copper_link - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -s32 e1000e_check_for_copper_link(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - /* - * We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) - return 0; - - /* - * First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) - return ret_val; /* No link detected */ - - mac->get_link_status = false; - - /* - * Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000e_check_downshift(hw); - - /* - * If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - return ret_val; - } - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - e1000e_config_collision_dist(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000e_config_fc_after_link_up(hw); - if (ret_val) - e_dbg("Error configuring flow control\n"); - - return ret_val; -} - -/** - * e1000e_check_for_fiber_link - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - ctrl = er32(CTRL); - status = er32(STATUS); - rxcw = er32(RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (mac->autoneg_failed == 0) { - mac->autoneg_failed = 1; - return 0; - } - e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - ew32(CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000e_config_fc_after_link_up(hw); - if (ret_val) { - e_dbg("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - ew32(TXCW, mac->txcw); - ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - - return 0; -} - -/** - * e1000e_check_for_serdes_link - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - ctrl = er32(CTRL); - status = er32(STATUS); - rxcw = er32(RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), - * we need to force link up. We also need to give auto-negotiation - * time to complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { - if (mac->autoneg_failed == 0) { - mac->autoneg_failed = 1; - return 0; - } - e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - ew32(CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000e_config_fc_after_link_up(hw); - if (ret_val) { - e_dbg("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - ew32(TXCW, mac->txcw); - ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & er32(TXCW))) { - /* - * If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - udelay(10); - rxcw = er32(RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - e_dbg("SERDES: Link up - forced.\n"); - } - } else { - mac->serdes_has_link = false; - e_dbg("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & er32(TXCW)) { - status = er32(STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - udelay(10); - rxcw = er32(RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - e_dbg("SERDES: Link up - autoneg " - "completed successfully.\n"); - } else { - mac->serdes_has_link = false; - e_dbg("SERDES: Link down - invalid" - "codewords detected in autoneg.\n"); - } - } else { - mac->serdes_has_link = false; - e_dbg("SERDES: Link down - no sync.\n"); - } - } else { - mac->serdes_has_link = false; - e_dbg("SERDES: Link down - autoneg failed\n"); - } - } - - return 0; -} - -/** - * e1000_set_default_fc_generic - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - **/ -static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 nvm_data; - - /* - * Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); - - if (ret_val) { - e_dbg("NVM Read Error\n"); - return ret_val; - } - - if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - - return 0; -} - -/** - * e1000e_setup_link - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -s32 e1000e_setup_link(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - - /* - * In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (e1000_check_reset_block(hw)) - return 0; - - /* - * If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - return ret_val; - } - - /* - * Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - e_dbg("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = mac->ops.setup_physical_interface(hw); - if (ret_val) - return ret_val; - - /* - * Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - e_dbg("Initializing the Flow Control address, type and timer regs\n"); - ew32(FCT, FLOW_CONTROL_TYPE); - ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); - ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); - - ew32(FCTTV, hw->fc.pause_time); - - return e1000e_set_fc_watermarks(hw); -} - -/** - * e1000_commit_fc_settings_generic - Configure flow control - * @hw: pointer to the HW structure - * - * Write the flow control settings to the Transmit Config Word Register (TXCW) - * base on the flow control settings in e1000_mac_info. - **/ -static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txcw; - - /* - * Check for a software override of the flow control settings, and - * setup the device accordingly. If auto-negotiation is enabled, then - * software will have to set the "PAUSE" bits to the correct value in - * the Transmit Config Word Register (TXCW) and re-start auto- - * negotiation. However, if auto-negotiation is disabled, then - * software will have to manually configure the two flow control enable - * bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we - * do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled and Tx Flow control is disabled - * by a software over-ride. Since there really isn't a way to - * advertise that we are capable of Rx Pause ONLY, we will - * advertise that we support both symmetric and asymmetric Rx - * PAUSE. Later, we will disable the adapter's ability to send - * PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is disabled, - * by a software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - ew32(TXCW, txcw); - mac->txcw = txcw; - - return 0; -} - -/** - * e1000_poll_fiber_serdes_link_generic - Poll for link up - * @hw: pointer to the HW structure - * - * Polls for link up by reading the status register, if link fails to come - * up with auto-negotiation, then the link is forced if a signal is detected. - **/ -static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 i, status; - s32 ret_val; - - /* - * If we have a signal (the cable is plugged in, or assumed true for - * serdes media) then poll for a "Link-Up" indication in the Device - * Status Register. Time-out if a link isn't seen in 500 milliseconds - * seconds (Auto-negotiation should complete in less than 500 - * milliseconds even if the other end is doing it in SW). - */ - for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { - usleep_range(10000, 20000); - status = er32(STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == FIBER_LINK_UP_LIMIT) { - e_dbg("Never got a valid link from auto-neg!!!\n"); - mac->autoneg_failed = 1; - /* - * AutoNeg failed to achieve a link, so we'll call - * mac->check_for_link. This routine will force the - * link up if we detect a signal. This will allow us to - * communicate with non-autonegotiating link partners. - */ - ret_val = mac->ops.check_for_link(hw); - if (ret_val) { - e_dbg("Error while checking for link\n"); - return ret_val; - } - mac->autoneg_failed = 0; - } else { - mac->autoneg_failed = 0; - e_dbg("Valid Link Found\n"); - } - - return 0; -} - -/** - * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes - * links. Upon successful setup, poll for link. - **/ -s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - ctrl = er32(CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - e1000e_config_collision_dist(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - return ret_val; - - /* - * Since auto-negotiation is enabled, take the link out of reset (the - * link will be in reset, because we previously reset the chip). This - * will restart auto-negotiation. If auto-negotiation is successful - * then the link-up status bit will be set and the flow control enable - * bits (RFCE and TFCE) will be set according to their negotiated value. - */ - e_dbg("Auto-negotiation enabled\n"); - - ew32(CTRL, ctrl); - e1e_flush(); - usleep_range(1000, 2000); - - /* - * For these adapters, the SW definable pin 1 is set when the optics - * detect a signal. If we have a signal, then poll for a "Link-Up" - * indication. - */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - (er32(CTRL) & E1000_CTRL_SWDPIN1)) { - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - } else { - e_dbg("No signal detected\n"); - } - - return 0; -} - -/** - * e1000e_config_collision_dist - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -void e1000e_config_collision_dist(struct e1000_hw *hw) -{ - u32 tctl; - - tctl = er32(TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - ew32(TCTL, tctl); - e1e_flush(); -} - -/** - * e1000e_set_fc_watermarks - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * transmission as well. - **/ -s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) -{ - u32 fcrtl = 0, fcrth = 0; - - /* - * Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames is not enabled, then these - * registers will be set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* - * We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - fcrtl |= E1000_FCRTL_XONE; - fcrth = hw->fc.high_water; - } - ew32(FCRTL, fcrtl); - ew32(FCRTH, fcrth); - - return 0; -} - -/** - * e1000e_force_mac_fc - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - **/ -s32 e1000e_force_mac_fc(struct e1000_hw *hw) -{ - u32 ctrl; - - ctrl = er32(CTRL); - - /* - * Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and Tx flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ew32(CTRL, ctrl); - - return 0; -} - -/** - * e1000e_config_fc_after_link_up - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - **/ -s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = 0; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - /* - * Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = e1000e_force_mac_fc(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = e1000e_force_mac_fc(hw); - } - - if (ret_val) { - e_dbg("Error forcing flow control settings\n"); - return ret_val; - } - - /* - * Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* - * Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - e_dbg("Copper PHY and Auto Neg " - "has not completed.\n"); - return ret_val; - } - - /* - * The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (Address 4) and the Auto_Negotiation Base - * Page Ability Register (Address 5) to determine how - * flow control was negotiated. - */ - ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = - e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* - * Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* - * Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - e_dbg("Flow Control = FULL.\r\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - e_dbg("Flow Control = " - "Rx PAUSE frames only.\r\n"); - } - } - /* - * For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - e_dbg("Flow Control = Tx PAUSE frames only.\r\n"); - } - /* - * For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - e_dbg("Flow Control = Rx PAUSE frames only.\r\n"); - } else { - /* - * Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - e_dbg("Flow Control = NONE.\r\n"); - } - - /* - * Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - e_dbg("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* - * Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000e_force_mac_fc(hw); - if (ret_val) { - e_dbg("Error forcing flow control settings\n"); - return ret_val; - } - } - - return 0; -} - -/** - * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - **/ -s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - u32 status; - - status = er32(STATUS); - if (status & E1000_STATUS_SPEED_1000) - *speed = SPEED_1000; - else if (status & E1000_STATUS_SPEED_100) - *speed = SPEED_100; - else - *speed = SPEED_10; - - if (status & E1000_STATUS_FD) - *duplex = FULL_DUPLEX; - else - *duplex = HALF_DUPLEX; - - e_dbg("%u Mbps, %s Duplex\n", - *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, - *duplex == FULL_DUPLEX ? "Full" : "Half"); - - return 0; -} - -/** - * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Sets the speed and duplex to gigabit full duplex (the only possible option) - * for fiber/serdes links. - **/ -s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - - return 0; -} - -/** - * e1000e_get_hw_semaphore - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) -{ - u32 swsm; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = er32(SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - udelay(50); - i++; - } - - if (i == timeout) { - e_dbg("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_NVM; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = er32(SWSM); - ew32(SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (er32(SWSM) & E1000_SWSM_SWESMBI) - break; - - udelay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000e_put_hw_semaphore(hw); - e_dbg("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return 0; -} - -/** - * e1000e_put_hw_semaphore - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -void e1000e_put_hw_semaphore(struct e1000_hw *hw) -{ - u32 swsm; - - swsm = er32(SWSM); - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - ew32(SWSM, swsm); -} - -/** - * e1000e_get_auto_rd_done - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - **/ -s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) -{ - s32 i = 0; - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (er32(EECD) & E1000_EECD_AUTO_RD) - break; - usleep_range(1000, 2000); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - e_dbg("Auto read by HW from NVM has not completed.\n"); - return -E1000_ERR_RESET; - } - - return 0; -} - -/** - * e1000e_valid_led_default - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - return ret_val; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - - return 0; -} - -/** - * e1000e_id_led_init - - * @hw: pointer to the HW structure - * - **/ -s32 e1000e_id_led_init(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - return ret_val; - - mac->ledctl_default = er32(LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - - return 0; -} - -/** - * e1000e_setup_led_generic - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - **/ -s32 e1000e_setup_led_generic(struct e1000_hw *hw) -{ - u32 ledctl; - - if (hw->mac.ops.setup_led != e1000e_setup_led_generic) - return -E1000_ERR_CONFIG; - - if (hw->phy.media_type == e1000_media_type_fiber) { - ledctl = er32(LEDCTL); - hw->mac.ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | - E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - ew32(LEDCTL, ledctl); - } else if (hw->phy.media_type == e1000_media_type_copper) { - ew32(LEDCTL, hw->mac.ledctl_mode1); - } - - return 0; -} - -/** - * e1000e_cleanup_led_generic - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - **/ -s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) -{ - ew32(LEDCTL, hw->mac.ledctl_default); - return 0; -} - -/** - * e1000e_blink_led_generic - Blink LED - * @hw: pointer to the HW structure - * - * Blink the LEDs which are set to be on. - **/ -s32 e1000e_blink_led_generic(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - if (hw->phy.media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* - * set the blink bit for each LED that's "on" (0x0E) - * in ledctl_mode2 - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << - (i * 8)); - } - - ew32(LEDCTL, ledctl_blink); - - return 0; -} - -/** - * e1000e_led_on_generic - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - **/ -s32 e1000e_led_on_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = er32(CTRL); - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - ew32(CTRL, ctrl); - break; - case e1000_media_type_copper: - ew32(LEDCTL, hw->mac.ledctl_mode2); - break; - default: - break; - } - - return 0; -} - -/** - * e1000e_led_off_generic - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - **/ -s32 e1000e_led_off_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - ew32(CTRL, ctrl); - break; - case e1000_media_type_copper: - ew32(LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return 0; -} - -/** - * e1000e_set_pcie_no_snoop - Set PCI-express capabilities - * @hw: pointer to the HW structure - * @no_snoop: bitmap of snoop events - * - * Set the PCI-express register to snoop for events enabled in 'no_snoop'. - **/ -void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) -{ - u32 gcr; - - if (no_snoop) { - gcr = er32(GCR); - gcr &= ~(PCIE_NO_SNOOP_ALL); - gcr |= no_snoop; - ew32(GCR, gcr); - } -} - -/** - * e1000e_disable_pcie_master - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns 0 if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - **/ -s32 e1000e_disable_pcie_master(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - ew32(CTRL, ctrl); - - while (timeout) { - if (!(er32(STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE)) - break; - udelay(100); - timeout--; - } - - if (!timeout) { - e_dbg("Master requests are pending.\n"); - return -E1000_ERR_MASTER_REQUESTS_PENDING; - } - - return 0; -} - -/** - * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Reset the Adaptive Interframe Spacing throttle to default values. - **/ -void e1000e_reset_adaptive(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - if (!mac->adaptive_ifs) { - e_dbg("Not in Adaptive IFS mode!\n"); - goto out; - } - - mac->current_ifs_val = 0; - mac->ifs_min_val = IFS_MIN; - mac->ifs_max_val = IFS_MAX; - mac->ifs_step_size = IFS_STEP; - mac->ifs_ratio = IFS_RATIO; - - mac->in_ifs_mode = false; - ew32(AIT, 0); -out: - return; -} - -/** - * e1000e_update_adaptive - Update Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Update the Adaptive Interframe Spacing Throttle value based on the - * time between transmitted packets and time between collisions. - **/ -void e1000e_update_adaptive(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - if (!mac->adaptive_ifs) { - e_dbg("Not in Adaptive IFS mode!\n"); - goto out; - } - - if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { - if (mac->tx_packet_delta > MIN_NUM_XMITS) { - mac->in_ifs_mode = true; - if (mac->current_ifs_val < mac->ifs_max_val) { - if (!mac->current_ifs_val) - mac->current_ifs_val = mac->ifs_min_val; - else - mac->current_ifs_val += - mac->ifs_step_size; - ew32(AIT, mac->current_ifs_val); - } - } - } else { - if (mac->in_ifs_mode && - (mac->tx_packet_delta <= MIN_NUM_XMITS)) { - mac->current_ifs_val = 0; - mac->in_ifs_mode = false; - ew32(AIT, 0); - } - } -out: - return; -} - -/** - * e1000_raise_eec_clk - Raise EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Enable/Raise the EEPROM clock bit. - **/ -static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd | E1000_EECD_SK; - ew32(EECD, *eecd); - e1e_flush(); - udelay(hw->nvm.delay_usec); -} - -/** - * e1000_lower_eec_clk - Lower EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Clear/Lower the EEPROM clock bit. - **/ -static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd & ~E1000_EECD_SK; - ew32(EECD, *eecd); - e1e_flush(); - udelay(hw->nvm.delay_usec); -} - -/** - * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM - * @hw: pointer to the HW structure - * @data: data to send to the EEPROM - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the EEPROM. So, the value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - **/ -static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = er32(EECD); - u32 mask; - - mask = 0x01 << (count - 1); - if (nvm->type == e1000_nvm_eeprom_spi) - eecd |= E1000_EECD_DO; - - do { - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - ew32(EECD, eecd); - e1e_flush(); - - udelay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - - mask >>= 1; - } while (mask); - - eecd &= ~E1000_EECD_DI; - ew32(EECD, eecd); -} - -/** - * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM - * @hw: pointer to the HW structure - * @count: number of bits to shift in - * - * In order to read a register from the EEPROM, we need to shift 'count' bits - * in from the EEPROM. Bits are "shifted in" by raising the clock input to - * the EEPROM (setting the SK bit), and then reading the value of the data out - * "DO" bit. During this "shifting in" process the data in "DI" bit should - * always be clear. - **/ -static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - eecd = er32(EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data <<= 1; - e1000_raise_eec_clk(hw, &eecd); - - eecd = er32(EECD); - - eecd &= ~E1000_EECD_DI; - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_eec_clk(hw, &eecd); - } - - return data; -} - -/** - * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion - * @hw: pointer to the HW structure - * @ee_reg: EEPROM flag for polling - * - * Polls the EEPROM status bit for either read or write completion based - * upon the value of 'ee_reg'. - **/ -s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) -{ - u32 attempts = 100000; - u32 i, reg = 0; - - for (i = 0; i < attempts; i++) { - if (ee_reg == E1000_NVM_POLL_READ) - reg = er32(EERD); - else - reg = er32(EEWR); - - if (reg & E1000_NVM_RW_REG_DONE) - return 0; - - udelay(5); - } - - return -E1000_ERR_NVM; -} - -/** - * e1000e_acquire_nvm - Generic request for access to EEPROM - * @hw: pointer to the HW structure - * - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -s32 e1000e_acquire_nvm(struct e1000_hw *hw) -{ - u32 eecd = er32(EECD); - s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - - ew32(EECD, eecd | E1000_EECD_REQ); - eecd = er32(EECD); - - while (timeout) { - if (eecd & E1000_EECD_GNT) - break; - udelay(5); - eecd = er32(EECD); - timeout--; - } - - if (!timeout) { - eecd &= ~E1000_EECD_REQ; - ew32(EECD, eecd); - e_dbg("Could not acquire NVM grant\n"); - return -E1000_ERR_NVM; - } - - return 0; -} - -/** - * e1000_standby_nvm - Return EEPROM to standby state - * @hw: pointer to the HW structure - * - * Return the EEPROM to a standby state. - **/ -static void e1000_standby_nvm(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = er32(EECD); - - if (nvm->type == e1000_nvm_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - e1e_flush(); - udelay(nvm->delay_usec); - eecd &= ~E1000_EECD_CS; - ew32(EECD, eecd); - e1e_flush(); - udelay(nvm->delay_usec); - } -} - -/** - * e1000_stop_nvm - Terminate EEPROM command - * @hw: pointer to the HW structure - * - * Terminates the current command by inverting the EEPROM's chip select pin. - **/ -static void e1000_stop_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - eecd = er32(EECD); - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - /* Pull CS high */ - eecd |= E1000_EECD_CS; - e1000_lower_eec_clk(hw, &eecd); - } -} - -/** - * e1000e_release_nvm - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - **/ -void e1000e_release_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - e1000_stop_nvm(hw); - - eecd = er32(EECD); - eecd &= ~E1000_EECD_REQ; - ew32(EECD, eecd); -} - -/** - * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write - * @hw: pointer to the HW structure - * - * Setups the EEPROM for reading and writing. - **/ -static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = er32(EECD); - u8 spi_stat_reg; - - if (nvm->type == e1000_nvm_eeprom_spi) { - u16 timeout = NVM_MAX_RETRY_SPI; - - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - ew32(EECD, eecd); - e1e_flush(); - udelay(1); - - /* - * Read "Status Register" repeatedly until the LSB is cleared. - * The EEPROM will signal that the command has been completed - * by clearing bit 0 of the internal status register. If it's - * not cleared within 'timeout', then error out. - */ - while (timeout) { - e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, - hw->nvm.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); - if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) - break; - - udelay(5); - e1000_standby_nvm(hw); - timeout--; - } - - if (!timeout) { - e_dbg("SPI NVM Status error\n"); - return -E1000_ERR_NVM; - } - } - - return 0; -} - -/** - * e1000e_read_nvm_eerd - Reads EEPROM using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM using the EERD register. - **/ -s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eerd = 0; - s32 ret_val = 0; - - /* - * A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - e_dbg("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + - E1000_NVM_RW_REG_START; - - ew32(EERD, eerd); - ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); - if (ret_val) - break; - - data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); - } - - return ret_val; -} - -/** - * e1000e_write_nvm_spi - Write to EEPROM using SPI - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using SPI interface. - * - * If e1000e_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - **/ -s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u16 widx = 0; - - /* - * A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - e_dbg("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - while (widx < words) { - u8 write_opcode = NVM_WRITE_OPCODE_SPI; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) { - nvm->ops.release(hw); - return ret_val; - } - - e1000_standby_nvm(hw); - - /* Send the WRITE ENABLE command (8 bit opcode) */ - e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, - nvm->opcode_bits); - - e1000_standby_nvm(hw); - - /* - * Some SPI eeproms use the 8th address bit embedded in the - * opcode - */ - if ((nvm->address_bits == 8) && (offset >= 128)) - write_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), - nvm->address_bits); - - /* Loop to allow for up to whole page write of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_eec_bits(hw, word_out, 16); - widx++; - - if ((((offset + widx) * 2) % nvm->page_size) == 0) { - e1000_standby_nvm(hw); - break; - } - } - } - - usleep_range(10000, 20000); - nvm->ops.release(hw); - return 0; -} - -/** - * e1000_read_pba_string_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - **/ -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 offset; - u16 length; - - if (pba_num == NULL) { - e_dbg("PBA string buffer was null\n"); - ret_val = E1000_ERR_INVALID_ARGUMENT; - goto out; - } - - ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - goto out; - } - - ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - e_dbg("NVM Read Error\n"); - goto out; - } - - /* - * if nvm_data is not ptr guard the PBA must be in legacy format which - * means pba_ptr is actually our second data word for the PBA number - * and we can decode it into an ascii string - */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - e_dbg("NVM PBA number is not stored as string\n"); - - /* we will need 11 characters to store the PBA */ - if (pba_num_size < 11) { - e_dbg("PBA string buffer too small\n"); - return E1000_ERR_NO_SPACE; - } - - /* extract hex string from data and pba_ptr */ - pba_num[0] = (nvm_data >> 12) & 0xF; - pba_num[1] = (nvm_data >> 8) & 0xF; - pba_num[2] = (nvm_data >> 4) & 0xF; - pba_num[3] = nvm_data & 0xF; - pba_num[4] = (pba_ptr >> 12) & 0xF; - pba_num[5] = (pba_ptr >> 8) & 0xF; - pba_num[6] = '-'; - pba_num[7] = 0; - pba_num[8] = (pba_ptr >> 4) & 0xF; - pba_num[9] = pba_ptr & 0xF; - - /* put a null character on the end of our string */ - pba_num[10] = '\0'; - - /* switch all the data but the '-' to hex char */ - for (offset = 0; offset < 10; offset++) { - if (pba_num[offset] < 0xA) - pba_num[offset] += '0'; - else if (pba_num[offset] < 0x10) - pba_num[offset] += 'A' - 0xA; - } - - goto out; - } - - ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); - if (ret_val) { - e_dbg("NVM Read Error\n"); - goto out; - } - - if (length == 0xFFFF || length == 0) { - e_dbg("NVM PBA number section invalid length\n"); - ret_val = E1000_ERR_NVM_PBA_SECTION; - goto out; - } - /* check if pba_num buffer is big enough */ - if (pba_num_size < (((u32)length * 2) - 1)) { - e_dbg("PBA string buffer too small\n"); - ret_val = E1000_ERR_NO_SPACE; - goto out; - } - - /* trim pba length from start of string */ - pba_ptr++; - length--; - - for (offset = 0; offset < length; offset++) { - ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - goto out; - } - pba_num[offset * 2] = (u8)(nvm_data >> 8); - pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); - } - pba_num[offset * 2] = '\0'; - -out: - return ret_val; -} - -/** - * e1000_read_mac_addr_generic - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - **/ -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) -{ - u32 rar_high; - u32 rar_low; - u16 i; - - rar_high = er32(RAH(0)); - rar_low = er32(RAL(0)); - - for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); - - for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - - for (i = 0; i < ETH_ALEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return 0; -} - -/** - * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); - if (ret_val) { - e_dbg("NVM Read Error\n"); - return ret_val; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - e_dbg("NVM Checksum Invalid\n"); - return -E1000_ERR_NVM; - } - - return 0; -} - -/** - * e1000e_update_nvm_checksum_generic - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); - if (ret_val) { - e_dbg("NVM Read Error while updating checksum.\n"); - return ret_val; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); - if (ret_val) - e_dbg("NVM Write Error while updating checksum.\n"); - - return ret_val; -} - -/** - * e1000e_reload_nvm - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - **/ -void e1000e_reload_nvm(struct e1000_hw *hw) -{ - u32 ctrl_ext; - - udelay(10); - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - ew32(CTRL_EXT, ctrl_ext); - e1e_flush(); -} - -/** - * e1000_calculate_checksum - Calculate checksum for buffer - * @buffer: pointer to EEPROM - * @length: size of EEPROM to calculate a checksum for - * - * Calculates the checksum for some buffer on a specified length. The - * checksum calculated is returned. - **/ -static u8 e1000_calculate_checksum(u8 *buffer, u32 length) -{ - u32 i; - u8 sum = 0; - - if (!buffer) - return 0; - - for (i = 0; i < length; i++) - sum += buffer[i]; - - return (u8) (0 - sum); -} - -/** - * e1000_mng_enable_host_if - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - **/ -static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) -{ - u32 hicr; - u8 i; - - if (!(hw->mac.arc_subsystem_valid)) { - e_dbg("ARC subsystem not valid.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Check that the host interface is enabled. */ - hicr = er32(HICR); - if ((hicr & E1000_HICR_EN) == 0) { - e_dbg("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = er32(HICR); - if (!(hicr & E1000_HICR_C)) - break; - mdelay(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - e_dbg("Previous command timeout failed .\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - return 0; -} - -/** - * e1000e_check_mng_mode_generic - check management mode - * @hw: pointer to the HW structure - * - * Reads the firmware semaphore register and returns true (>0) if - * manageability is enabled, else false (0). - **/ -bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) -{ - u32 fwsm = er32(FWSM); - - return (fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); -} - -/** - * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - **/ -bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) -{ - struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; - u32 *buffer = (u32 *)&hw->mng_cookie; - u32 offset; - s32 ret_val, hdr_csum, csum; - u8 i, len; - - hw->mac.tx_pkt_filtering = true; - - /* No manageability, no filtering */ - if (!e1000e_check_mng_mode(hw)) { - hw->mac.tx_pkt_filtering = false; - goto out; - } - - /* - * If we can't read from the host interface for whatever - * reason, disable filtering. - */ - ret_val = e1000_mng_enable_host_if(hw); - if (ret_val) { - hw->mac.tx_pkt_filtering = false; - goto out; - } - - /* Read in the header. Length and offset are in dwords. */ - len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; - offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; - for (i = 0; i < len; i++) - *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); - hdr_csum = hdr->checksum; - hdr->checksum = 0; - csum = e1000_calculate_checksum((u8 *)hdr, - E1000_MNG_DHCP_COOKIE_LENGTH); - /* - * If either the checksums or signature don't match, then - * the cookie area isn't considered valid, in which case we - * take the safe route of assuming Tx filtering is enabled. - */ - if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { - hw->mac.tx_pkt_filtering = true; - goto out; - } - - /* Cookie area is valid, make the final check for filtering. */ - if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { - hw->mac.tx_pkt_filtering = false; - goto out; - } - -out: - return hw->mac.tx_pkt_filtering; -} - -/** - * e1000_mng_write_cmd_header - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - **/ -static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - u16 i, length = sizeof(struct e1000_host_mng_command_header); - - /* Write the whole command header structure with new checksum. */ - - hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); - - length >>= 2; - /* Write the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { - E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, - *((u32 *) hdr + i)); - e1e_flush(); - } - - return 0; -} - -/** - * e1000_mng_host_if_write - Write to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - **/ -static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum) -{ - u8 *tmp; - u8 *bufptr = buffer; - u32 data = 0; - u16 remaining, i, j, prev_bytes; - - /* sum = only sum of the data and it is not checksum */ - - if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) - return -E1000_ERR_PARAM; - - tmp = (u8 *)&data; - prev_bytes = offset & 0x3; - offset >>= 2; - - if (prev_bytes) { - data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); - for (j = prev_bytes; j < sizeof(u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); - length -= j - prev_bytes; - offset++; - } - - remaining = length & 0x3; - length -= remaining; - - /* Calculate length in DWORDs */ - length >>= 2; - - /* - * The device driver writes the relevant command block into the - * ram area. - */ - for (i = 0; i < length; i++) { - for (j = 0; j < sizeof(u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - - E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); - } - if (remaining) { - for (j = 0; j < sizeof(u32); j++) { - if (j < remaining) - *(tmp + j) = *bufptr++; - else - *(tmp + j) = 0; - - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); - } - - return 0; -} - -/** - * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - **/ -s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) -{ - struct e1000_host_mng_command_header hdr; - s32 ret_val; - u32 hicr; - - hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; - hdr.command_length = length; - hdr.reserved1 = 0; - hdr.reserved2 = 0; - hdr.checksum = 0; - - /* Enable the host interface */ - ret_val = e1000_mng_enable_host_if(hw); - if (ret_val) - return ret_val; - - /* Populate the host interface with the contents of "buffer". */ - ret_val = e1000_mng_host_if_write(hw, buffer, length, - sizeof(hdr), &(hdr.checksum)); - if (ret_val) - return ret_val; - - /* Write the manageability command header */ - ret_val = e1000_mng_write_cmd_header(hw, &hdr); - if (ret_val) - return ret_val; - - /* Tell the ARC a new command is pending. */ - hicr = er32(HICR); - ew32(HICR, hicr | E1000_HICR_C); - - return 0; -} - -/** - * e1000e_enable_mng_pass_thru - Check if management passthrough is needed - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to leave interface enabled so that frames can - * be directed to and from the management interface. - **/ -bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - bool ret_val = false; - - manc = er32(MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN)) - goto out; - - if (hw->mac.has_fwsm) { - fwsm = er32(FWSM); - factps = er32(FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { - ret_val = true; - goto out; - } - } else if ((hw->mac.type == e1000_82574) || - (hw->mac.type == e1000_82583)) { - u16 data; - - factps = er32(FACTPS); - e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((data & E1000_NVM_INIT_CTRL2_MNGM) == - (e1000_mng_mode_pt << 13))) { - ret_val = true; - goto out; - } - } else if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - ret_val = true; - goto out; - } - -out: - return ret_val; -} diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c deleted file mode 100644 index ab4be80f7ab..00000000000 --- a/drivers/net/e1000e/netdev.c +++ /dev/null @@ -1,6312 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/init.h> -#include <linux/pci.h> -#include <linux/vmalloc.h> -#include <linux/pagemap.h> -#include <linux/delay.h> -#include <linux/netdevice.h> -#include <linux/interrupt.h> -#include <linux/tcp.h> -#include <linux/ipv6.h> -#include <linux/slab.h> -#include <net/checksum.h> -#include <net/ip6_checksum.h> -#include <linux/mii.h> -#include <linux/ethtool.h> -#include <linux/if_vlan.h> -#include <linux/cpu.h> -#include <linux/smp.h> -#include <linux/pm_qos_params.h> -#include <linux/pm_runtime.h> -#include <linux/aer.h> -#include <linux/prefetch.h> - -#include "e1000.h" - -#define DRV_EXTRAVERSION "-k" - -#define DRV_VERSION "1.3.16" DRV_EXTRAVERSION -char e1000e_driver_name[] = "e1000e"; -const char e1000e_driver_version[] = DRV_VERSION; - -static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state); - -static const struct e1000_info *e1000_info_tbl[] = { - [board_82571] = &e1000_82571_info, - [board_82572] = &e1000_82572_info, - [board_82573] = &e1000_82573_info, - [board_82574] = &e1000_82574_info, - [board_82583] = &e1000_82583_info, - [board_80003es2lan] = &e1000_es2_info, - [board_ich8lan] = &e1000_ich8_info, - [board_ich9lan] = &e1000_ich9_info, - [board_ich10lan] = &e1000_ich10_info, - [board_pchlan] = &e1000_pch_info, - [board_pch2lan] = &e1000_pch2_info, -}; - -struct e1000_reg_info { - u32 ofs; - char *name; -}; - -#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ -#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ -#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ -#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ -#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ - -#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ - -static const struct e1000_reg_info e1000_reg_info_tbl[] = { - - /* General Registers */ - {E1000_CTRL, "CTRL"}, - {E1000_STATUS, "STATUS"}, - {E1000_CTRL_EXT, "CTRL_EXT"}, - - /* Interrupt Registers */ - {E1000_ICR, "ICR"}, - - /* Rx Registers */ - {E1000_RCTL, "RCTL"}, - {E1000_RDLEN, "RDLEN"}, - {E1000_RDH, "RDH"}, - {E1000_RDT, "RDT"}, - {E1000_RDTR, "RDTR"}, - {E1000_RXDCTL(0), "RXDCTL"}, - {E1000_ERT, "ERT"}, - {E1000_RDBAL, "RDBAL"}, - {E1000_RDBAH, "RDBAH"}, - {E1000_RDFH, "RDFH"}, - {E1000_RDFT, "RDFT"}, - {E1000_RDFHS, "RDFHS"}, - {E1000_RDFTS, "RDFTS"}, - {E1000_RDFPC, "RDFPC"}, - - /* Tx Registers */ - {E1000_TCTL, "TCTL"}, - {E1000_TDBAL, "TDBAL"}, - {E1000_TDBAH, "TDBAH"}, - {E1000_TDLEN, "TDLEN"}, - {E1000_TDH, "TDH"}, - {E1000_TDT, "TDT"}, - {E1000_TIDV, "TIDV"}, - {E1000_TXDCTL(0), "TXDCTL"}, - {E1000_TADV, "TADV"}, - {E1000_TARC(0), "TARC"}, - {E1000_TDFH, "TDFH"}, - {E1000_TDFT, "TDFT"}, - {E1000_TDFHS, "TDFHS"}, - {E1000_TDFTS, "TDFTS"}, - {E1000_TDFPC, "TDFPC"}, - - /* List Terminator */ - {} -}; - -/* - * e1000_regdump - register printout routine - */ -static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) -{ - int n = 0; - char rname[16]; - u32 regs[8]; - - switch (reginfo->ofs) { - case E1000_RXDCTL(0): - for (n = 0; n < 2; n++) - regs[n] = __er32(hw, E1000_RXDCTL(n)); - break; - case E1000_TXDCTL(0): - for (n = 0; n < 2; n++) - regs[n] = __er32(hw, E1000_TXDCTL(n)); - break; - case E1000_TARC(0): - for (n = 0; n < 2; n++) - regs[n] = __er32(hw, E1000_TARC(n)); - break; - default: - printk(KERN_INFO "%-15s %08x\n", - reginfo->name, __er32(hw, reginfo->ofs)); - return; - } - - snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); - printk(KERN_INFO "%-15s ", rname); - for (n = 0; n < 2; n++) - printk(KERN_CONT "%08x ", regs[n]); - printk(KERN_CONT "\n"); -} - -/* - * e1000e_dump - Print registers, Tx-ring and Rx-ring - */ -static void e1000e_dump(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - struct e1000_reg_info *reginfo; - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_tx_desc *tx_desc; - struct my_u0 { - u64 a; - u64 b; - } *u0; - struct e1000_buffer *buffer_info; - struct e1000_ring *rx_ring = adapter->rx_ring; - union e1000_rx_desc_packet_split *rx_desc_ps; - struct e1000_rx_desc *rx_desc; - struct my_u1 { - u64 a; - u64 b; - u64 c; - u64 d; - } *u1; - u32 staterr; - int i = 0; - - if (!netif_msg_hw(adapter)) - return; - - /* Print netdevice Info */ - if (netdev) { - dev_info(&adapter->pdev->dev, "Net device Info\n"); - printk(KERN_INFO "Device Name state " - "trans_start last_rx\n"); - printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", - netdev->name, netdev->state, netdev->trans_start, - netdev->last_rx); - } - - /* Print Registers */ - dev_info(&adapter->pdev->dev, "Register Dump\n"); - printk(KERN_INFO " Register Name Value\n"); - for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; - reginfo->name; reginfo++) { - e1000_regdump(hw, reginfo); - } - - /* Print Tx Ring Summary */ - if (!netdev || !netif_running(netdev)) - goto exit; - - dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); - printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" - " leng ntw timestamp\n"); - buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; - printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", - 0, tx_ring->next_to_use, tx_ring->next_to_clean, - (unsigned long long)buffer_info->dma, - buffer_info->length, - buffer_info->next_to_watch, - (unsigned long long)buffer_info->time_stamp); - - /* Print Tx Ring */ - if (!netif_msg_tx_done(adapter)) - goto rx_ring_summary; - - dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); - - /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) - * - * Legacy Transmit Descriptor - * +--------------------------------------------------------------+ - * 0 | Buffer Address [63:0] (Reserved on Write Back) | - * +--------------------------------------------------------------+ - * 8 | Special | CSS | Status | CMD | CSO | Length | - * +--------------------------------------------------------------+ - * 63 48 47 36 35 32 31 24 23 16 15 0 - * - * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload - * 63 48 47 40 39 32 31 16 15 8 7 0 - * +----------------------------------------------------------------+ - * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | - * +----------------------------------------------------------------+ - * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | - * +----------------------------------------------------------------+ - * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 - * - * Extended Data Descriptor (DTYP=0x1) - * +----------------------------------------------------------------+ - * 0 | Buffer Address [63:0] | - * +----------------------------------------------------------------+ - * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | - * +----------------------------------------------------------------+ - * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 - */ - printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]" - " [bi->dma ] leng ntw timestamp bi->skb " - "<-- Legacy format\n"); - printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]" - " [bi->dma ] leng ntw timestamp bi->skb " - "<-- Ext Context format\n"); - printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]" - " [bi->dma ] leng ntw timestamp bi->skb " - "<-- Ext Data format\n"); - for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { - tx_desc = E1000_TX_DESC(*tx_ring, i); - buffer_info = &tx_ring->buffer_info[i]; - u0 = (struct my_u0 *)tx_desc; - printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX " - "%04X %3X %016llX %p", - (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : - ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i, - (unsigned long long)le64_to_cpu(u0->a), - (unsigned long long)le64_to_cpu(u0->b), - (unsigned long long)buffer_info->dma, - buffer_info->length, buffer_info->next_to_watch, - (unsigned long long)buffer_info->time_stamp, - buffer_info->skb); - if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) - printk(KERN_CONT " NTC/U\n"); - else if (i == tx_ring->next_to_use) - printk(KERN_CONT " NTU\n"); - else if (i == tx_ring->next_to_clean) - printk(KERN_CONT " NTC\n"); - else - printk(KERN_CONT "\n"); - - if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) - print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, - 16, 1, phys_to_virt(buffer_info->dma), - buffer_info->length, true); - } - - /* Print Rx Ring Summary */ -rx_ring_summary: - dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); - printk(KERN_INFO "Queue [NTU] [NTC]\n"); - printk(KERN_INFO " %5d %5X %5X\n", 0, - rx_ring->next_to_use, rx_ring->next_to_clean); - - /* Print Rx Ring */ - if (!netif_msg_rx_status(adapter)) - goto exit; - - dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); - switch (adapter->rx_ps_pages) { - case 1: - case 2: - case 3: - /* [Extended] Packet Split Receive Descriptor Format - * - * +-----------------------------------------------------+ - * 0 | Buffer Address 0 [63:0] | - * +-----------------------------------------------------+ - * 8 | Buffer Address 1 [63:0] | - * +-----------------------------------------------------+ - * 16 | Buffer Address 2 [63:0] | - * +-----------------------------------------------------+ - * 24 | Buffer Address 3 [63:0] | - * +-----------------------------------------------------+ - */ - printk(KERN_INFO "R [desc] [buffer 0 63:0 ] " - "[buffer 1 63:0 ] " - "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] " - "[bi->skb] <-- Ext Pkt Split format\n"); - /* [Extended] Receive Descriptor (Write-Back) Format - * - * 63 48 47 32 31 13 12 8 7 4 3 0 - * +------------------------------------------------------+ - * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | - * | Checksum | Ident | | Queue | | Type | - * +------------------------------------------------------+ - * 8 | VLAN Tag | Length | Extended Error | Extended Status | - * +------------------------------------------------------+ - * 63 48 47 32 31 20 19 0 - */ - printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] " - "[vl l0 ee es] " - "[ l3 l2 l1 hs] [reserved ] ---------------- " - "[bi->skb] <-- Ext Rx Write-Back format\n"); - for (i = 0; i < rx_ring->count; i++) { - buffer_info = &rx_ring->buffer_info[i]; - rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); - u1 = (struct my_u1 *)rx_desc_ps; - staterr = - le32_to_cpu(rx_desc_ps->wb.middle.status_error); - if (staterr & E1000_RXD_STAT_DD) { - /* Descriptor Done */ - printk(KERN_INFO "RWB[0x%03X] %016llX " - "%016llX %016llX %016llX " - "---------------- %p", i, - (unsigned long long)le64_to_cpu(u1->a), - (unsigned long long)le64_to_cpu(u1->b), - (unsigned long long)le64_to_cpu(u1->c), - (unsigned long long)le64_to_cpu(u1->d), - buffer_info->skb); - } else { - printk(KERN_INFO "R [0x%03X] %016llX " - "%016llX %016llX %016llX %016llX %p", i, - (unsigned long long)le64_to_cpu(u1->a), - (unsigned long long)le64_to_cpu(u1->b), - (unsigned long long)le64_to_cpu(u1->c), - (unsigned long long)le64_to_cpu(u1->d), - (unsigned long long)buffer_info->dma, - buffer_info->skb); - - if (netif_msg_pktdata(adapter)) - print_hex_dump(KERN_INFO, "", - DUMP_PREFIX_ADDRESS, 16, 1, - phys_to_virt(buffer_info->dma), - adapter->rx_ps_bsize0, true); - } - - if (i == rx_ring->next_to_use) - printk(KERN_CONT " NTU\n"); - else if (i == rx_ring->next_to_clean) - printk(KERN_CONT " NTC\n"); - else - printk(KERN_CONT "\n"); - } - break; - default: - case 0: - /* Legacy Receive Descriptor Format - * - * +-----------------------------------------------------+ - * | Buffer Address [63:0] | - * +-----------------------------------------------------+ - * | VLAN Tag | Errors | Status 0 | Packet csum | Length | - * +-----------------------------------------------------+ - * 63 48 47 40 39 32 31 16 15 0 - */ - printk(KERN_INFO "Rl[desc] [address 63:0 ] " - "[vl er S cks ln] [bi->dma ] [bi->skb] " - "<-- Legacy format\n"); - for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { - rx_desc = E1000_RX_DESC(*rx_ring, i); - buffer_info = &rx_ring->buffer_info[i]; - u0 = (struct my_u0 *)rx_desc; - printk(KERN_INFO "Rl[0x%03X] %016llX %016llX " - "%016llX %p", i, - (unsigned long long)le64_to_cpu(u0->a), - (unsigned long long)le64_to_cpu(u0->b), - (unsigned long long)buffer_info->dma, - buffer_info->skb); - if (i == rx_ring->next_to_use) - printk(KERN_CONT " NTU\n"); - else if (i == rx_ring->next_to_clean) - printk(KERN_CONT " NTC\n"); - else - printk(KERN_CONT "\n"); - - if (netif_msg_pktdata(adapter)) - print_hex_dump(KERN_INFO, "", - DUMP_PREFIX_ADDRESS, - 16, 1, - phys_to_virt(buffer_info->dma), - adapter->rx_buffer_len, true); - } - } - -exit: - return; -} - -/** - * e1000_desc_unused - calculate if we have unused descriptors - **/ -static int e1000_desc_unused(struct e1000_ring *ring) -{ - if (ring->next_to_clean > ring->next_to_use) - return ring->next_to_clean - ring->next_to_use - 1; - - return ring->count + ring->next_to_clean - ring->next_to_use - 1; -} - -/** - * e1000_receive_skb - helper function to handle Rx indications - * @adapter: board private structure - * @status: descriptor status field as written by hardware - * @vlan: descriptor vlan field as written by hardware (no le/be conversion) - * @skb: pointer to sk_buff to be indicated to stack - **/ -static void e1000_receive_skb(struct e1000_adapter *adapter, - struct net_device *netdev, struct sk_buff *skb, - u8 status, __le16 vlan) -{ - u16 tag = le16_to_cpu(vlan); - skb->protocol = eth_type_trans(skb, netdev); - - if (status & E1000_RXD_STAT_VP) - __vlan_hwaccel_put_tag(skb, tag); - - napi_gro_receive(&adapter->napi, skb); -} - -/** - * e1000_rx_checksum - Receive Checksum Offload - * @adapter: board private structure - * @status_err: receive descriptor status and error fields - * @csum: receive descriptor csum field - * @sk_buff: socket buffer with received data - **/ -static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, - u32 csum, struct sk_buff *skb) -{ - u16 status = (u16)status_err; - u8 errors = (u8)(status_err >> 24); - - skb_checksum_none_assert(skb); - - /* Ignore Checksum bit is set */ - if (status & E1000_RXD_STAT_IXSM) - return; - /* TCP/UDP checksum error bit is set */ - if (errors & E1000_RXD_ERR_TCPE) { - /* let the stack verify checksum errors */ - adapter->hw_csum_err++; - return; - } - - /* TCP/UDP Checksum has not been calculated */ - if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) - return; - - /* It must be a TCP or UDP packet with a valid checksum */ - if (status & E1000_RXD_STAT_TCPCS) { - /* TCP checksum is good */ - skb->ip_summed = CHECKSUM_UNNECESSARY; - } else { - /* - * IP fragment with UDP payload - * Hardware complements the payload checksum, so we undo it - * and then put the value in host order for further stack use. - */ - __sum16 sum = (__force __sum16)htons(csum); - skb->csum = csum_unfold(~sum); - skb->ip_summed = CHECKSUM_COMPLETE; - } - adapter->hw_csum_good++; -} - -/** - * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended - * @adapter: address of board private structure - **/ -static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, - int cleaned_count, gfp_t gfp) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_rx_desc *rx_desc; - struct e1000_buffer *buffer_info; - struct sk_buff *skb; - unsigned int i; - unsigned int bufsz = adapter->rx_buffer_len; - - i = rx_ring->next_to_use; - buffer_info = &rx_ring->buffer_info[i]; - - while (cleaned_count--) { - skb = buffer_info->skb; - if (skb) { - skb_trim(skb, 0); - goto map_skb; - } - - skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); - if (!skb) { - /* Better luck next round */ - adapter->alloc_rx_buff_failed++; - break; - } - - buffer_info->skb = skb; -map_skb: - buffer_info->dma = dma_map_single(&pdev->dev, skb->data, - adapter->rx_buffer_len, - DMA_FROM_DEVICE); - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { - dev_err(&pdev->dev, "Rx DMA map failed\n"); - adapter->rx_dma_failed++; - break; - } - - rx_desc = E1000_RX_DESC(*rx_ring, i); - rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); - - if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { - /* - * Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). - */ - wmb(); - writel(i, adapter->hw.hw_addr + rx_ring->tail); - } - i++; - if (i == rx_ring->count) - i = 0; - buffer_info = &rx_ring->buffer_info[i]; - } - - rx_ring->next_to_use = i; -} - -/** - * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split - * @adapter: address of board private structure - **/ -static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, - int cleaned_count, gfp_t gfp) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - union e1000_rx_desc_packet_split *rx_desc; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_buffer *buffer_info; - struct e1000_ps_page *ps_page; - struct sk_buff *skb; - unsigned int i, j; - - i = rx_ring->next_to_use; - buffer_info = &rx_ring->buffer_info[i]; - - while (cleaned_count--) { - rx_desc = E1000_RX_DESC_PS(*rx_ring, i); - - for (j = 0; j < PS_PAGE_BUFFERS; j++) { - ps_page = &buffer_info->ps_pages[j]; - if (j >= adapter->rx_ps_pages) { - /* all unused desc entries get hw null ptr */ - rx_desc->read.buffer_addr[j + 1] = - ~cpu_to_le64(0); - continue; - } - if (!ps_page->page) { - ps_page->page = alloc_page(gfp); - if (!ps_page->page) { - adapter->alloc_rx_buff_failed++; - goto no_buffers; - } - ps_page->dma = dma_map_page(&pdev->dev, - ps_page->page, - 0, PAGE_SIZE, - DMA_FROM_DEVICE); - if (dma_mapping_error(&pdev->dev, - ps_page->dma)) { - dev_err(&adapter->pdev->dev, - "Rx DMA page map failed\n"); - adapter->rx_dma_failed++; - goto no_buffers; - } - } - /* - * Refresh the desc even if buffer_addrs - * didn't change because each write-back - * erases this info. - */ - rx_desc->read.buffer_addr[j + 1] = - cpu_to_le64(ps_page->dma); - } - - skb = __netdev_alloc_skb_ip_align(netdev, - adapter->rx_ps_bsize0, - gfp); - - if (!skb) { - adapter->alloc_rx_buff_failed++; - break; - } - - buffer_info->skb = skb; - buffer_info->dma = dma_map_single(&pdev->dev, skb->data, - adapter->rx_ps_bsize0, - DMA_FROM_DEVICE); - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { - dev_err(&pdev->dev, "Rx DMA map failed\n"); - adapter->rx_dma_failed++; - /* cleanup skb */ - dev_kfree_skb_any(skb); - buffer_info->skb = NULL; - break; - } - - rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); - - if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { - /* - * Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). - */ - wmb(); - writel(i << 1, adapter->hw.hw_addr + rx_ring->tail); - } - - i++; - if (i == rx_ring->count) - i = 0; - buffer_info = &rx_ring->buffer_info[i]; - } - -no_buffers: - rx_ring->next_to_use = i; -} - -/** - * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers - * @adapter: address of board private structure - * @cleaned_count: number of buffers to allocate this pass - **/ - -static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, - int cleaned_count, gfp_t gfp) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_rx_desc *rx_desc; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_buffer *buffer_info; - struct sk_buff *skb; - unsigned int i; - unsigned int bufsz = 256 - 16 /* for skb_reserve */; - - i = rx_ring->next_to_use; - buffer_info = &rx_ring->buffer_info[i]; - - while (cleaned_count--) { - skb = buffer_info->skb; - if (skb) { - skb_trim(skb, 0); - goto check_page; - } - - skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); - if (unlikely(!skb)) { - /* Better luck next round */ - adapter->alloc_rx_buff_failed++; - break; - } - - buffer_info->skb = skb; -check_page: - /* allocate a new page if necessary */ - if (!buffer_info->page) { - buffer_info->page = alloc_page(gfp); - if (unlikely(!buffer_info->page)) { - adapter->alloc_rx_buff_failed++; - break; - } - } - - if (!buffer_info->dma) - buffer_info->dma = dma_map_page(&pdev->dev, - buffer_info->page, 0, - PAGE_SIZE, - DMA_FROM_DEVICE); - - rx_desc = E1000_RX_DESC(*rx_ring, i); - rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); - - if (unlikely(++i == rx_ring->count)) - i = 0; - buffer_info = &rx_ring->buffer_info[i]; - } - - if (likely(rx_ring->next_to_use != i)) { - rx_ring->next_to_use = i; - if (unlikely(i-- == 0)) - i = (rx_ring->count - 1); - - /* Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). */ - wmb(); - writel(i, adapter->hw.hw_addr + rx_ring->tail); - } -} - -/** - * e1000_clean_rx_irq - Send received data up the network stack; legacy - * @adapter: board private structure - * - * the return value indicates whether actual cleaning was done, there - * is no guarantee that everything was cleaned - **/ -static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, - int *work_done, int work_to_do) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_hw *hw = &adapter->hw; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_rx_desc *rx_desc, *next_rxd; - struct e1000_buffer *buffer_info, *next_buffer; - u32 length; - unsigned int i; - int cleaned_count = 0; - bool cleaned = 0; - unsigned int total_rx_bytes = 0, total_rx_packets = 0; - - i = rx_ring->next_to_clean; - rx_desc = E1000_RX_DESC(*rx_ring, i); - buffer_info = &rx_ring->buffer_info[i]; - - while (rx_desc->status & E1000_RXD_STAT_DD) { - struct sk_buff *skb; - u8 status; - - if (*work_done >= work_to_do) - break; - (*work_done)++; - rmb(); /* read descriptor and rx_buffer_info after status DD */ - - status = rx_desc->status; - skb = buffer_info->skb; - buffer_info->skb = NULL; - - prefetch(skb->data - NET_IP_ALIGN); - - i++; - if (i == rx_ring->count) - i = 0; - next_rxd = E1000_RX_DESC(*rx_ring, i); - prefetch(next_rxd); - - next_buffer = &rx_ring->buffer_info[i]; - - cleaned = 1; - cleaned_count++; - dma_unmap_single(&pdev->dev, - buffer_info->dma, - adapter->rx_buffer_len, - DMA_FROM_DEVICE); - buffer_info->dma = 0; - - length = le16_to_cpu(rx_desc->length); - - /* - * !EOP means multiple descriptors were used to store a single - * packet, if that's the case we need to toss it. In fact, we - * need to toss every packet with the EOP bit clear and the - * next frame that _does_ have the EOP bit set, as it is by - * definition only a frame fragment - */ - if (unlikely(!(status & E1000_RXD_STAT_EOP))) - adapter->flags2 |= FLAG2_IS_DISCARDING; - - if (adapter->flags2 & FLAG2_IS_DISCARDING) { - /* All receives must fit into a single buffer */ - e_dbg("Receive packet consumed multiple buffers\n"); - /* recycle */ - buffer_info->skb = skb; - if (status & E1000_RXD_STAT_EOP) - adapter->flags2 &= ~FLAG2_IS_DISCARDING; - goto next_desc; - } - - if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { - /* recycle */ - buffer_info->skb = skb; - goto next_desc; - } - - /* adjust length to remove Ethernet CRC */ - if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) - length -= 4; - - total_rx_bytes += length; - total_rx_packets++; - - /* - * code added for copybreak, this should improve - * performance for small packets with large amounts - * of reassembly being done in the stack - */ - if (length < copybreak) { - struct sk_buff *new_skb = - netdev_alloc_skb_ip_align(netdev, length); - if (new_skb) { - skb_copy_to_linear_data_offset(new_skb, - -NET_IP_ALIGN, - (skb->data - - NET_IP_ALIGN), - (length + - NET_IP_ALIGN)); - /* save the skb in buffer_info as good */ - buffer_info->skb = skb; - skb = new_skb; - } - /* else just continue with the old one */ - } - /* end copybreak code */ - skb_put(skb, length); - - /* Receive Checksum Offload */ - e1000_rx_checksum(adapter, - (u32)(status) | - ((u32)(rx_desc->errors) << 24), - le16_to_cpu(rx_desc->csum), skb); - - e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); - -next_desc: - rx_desc->status = 0; - - /* return some buffers to hardware, one at a time is too slow */ - if (cleaned_count >= E1000_RX_BUFFER_WRITE) { - adapter->alloc_rx_buf(adapter, cleaned_count, - GFP_ATOMIC); - cleaned_count = 0; - } - - /* use prefetched values */ - rx_desc = next_rxd; - buffer_info = next_buffer; - } - rx_ring->next_to_clean = i; - - cleaned_count = e1000_desc_unused(rx_ring); - if (cleaned_count) - adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); - - adapter->total_rx_bytes += total_rx_bytes; - adapter->total_rx_packets += total_rx_packets; - return cleaned; -} - -static void e1000_put_txbuf(struct e1000_adapter *adapter, - struct e1000_buffer *buffer_info) -{ - if (buffer_info->dma) { - if (buffer_info->mapped_as_page) - dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, - buffer_info->length, DMA_TO_DEVICE); - else - dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, - buffer_info->length, DMA_TO_DEVICE); - buffer_info->dma = 0; - } - if (buffer_info->skb) { - dev_kfree_skb_any(buffer_info->skb); - buffer_info->skb = NULL; - } - buffer_info->time_stamp = 0; -} - -static void e1000_print_hw_hang(struct work_struct *work) -{ - struct e1000_adapter *adapter = container_of(work, - struct e1000_adapter, - print_hang_task); - struct e1000_ring *tx_ring = adapter->tx_ring; - unsigned int i = tx_ring->next_to_clean; - unsigned int eop = tx_ring->buffer_info[i].next_to_watch; - struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); - struct e1000_hw *hw = &adapter->hw; - u16 phy_status, phy_1000t_status, phy_ext_status; - u16 pci_status; - - if (test_bit(__E1000_DOWN, &adapter->state)) - return; - - e1e_rphy(hw, PHY_STATUS, &phy_status); - e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); - e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); - - pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); - - /* detected Hardware unit hang */ - e_err("Detected Hardware Unit Hang:\n" - " TDH <%x>\n" - " TDT <%x>\n" - " next_to_use <%x>\n" - " next_to_clean <%x>\n" - "buffer_info[next_to_clean]:\n" - " time_stamp <%lx>\n" - " next_to_watch <%x>\n" - " jiffies <%lx>\n" - " next_to_watch.status <%x>\n" - "MAC Status <%x>\n" - "PHY Status <%x>\n" - "PHY 1000BASE-T Status <%x>\n" - "PHY Extended Status <%x>\n" - "PCI Status <%x>\n", - readl(adapter->hw.hw_addr + tx_ring->head), - readl(adapter->hw.hw_addr + tx_ring->tail), - tx_ring->next_to_use, - tx_ring->next_to_clean, - tx_ring->buffer_info[eop].time_stamp, - eop, - jiffies, - eop_desc->upper.fields.status, - er32(STATUS), - phy_status, - phy_1000t_status, - phy_ext_status, - pci_status); -} - -/** - * e1000_clean_tx_irq - Reclaim resources after transmit completes - * @adapter: board private structure - * - * the return value indicates whether actual cleaning was done, there - * is no guarantee that everything was cleaned - **/ -static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_tx_desc *tx_desc, *eop_desc; - struct e1000_buffer *buffer_info; - unsigned int i, eop; - unsigned int count = 0; - unsigned int total_tx_bytes = 0, total_tx_packets = 0; - - i = tx_ring->next_to_clean; - eop = tx_ring->buffer_info[i].next_to_watch; - eop_desc = E1000_TX_DESC(*tx_ring, eop); - - while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && - (count < tx_ring->count)) { - bool cleaned = false; - rmb(); /* read buffer_info after eop_desc */ - for (; !cleaned; count++) { - tx_desc = E1000_TX_DESC(*tx_ring, i); - buffer_info = &tx_ring->buffer_info[i]; - cleaned = (i == eop); - - if (cleaned) { - total_tx_packets += buffer_info->segs; - total_tx_bytes += buffer_info->bytecount; - } - - e1000_put_txbuf(adapter, buffer_info); - tx_desc->upper.data = 0; - - i++; - if (i == tx_ring->count) - i = 0; - } - - if (i == tx_ring->next_to_use) - break; - eop = tx_ring->buffer_info[i].next_to_watch; - eop_desc = E1000_TX_DESC(*tx_ring, eop); - } - - tx_ring->next_to_clean = i; - -#define TX_WAKE_THRESHOLD 32 - if (count && netif_carrier_ok(netdev) && - e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { - /* Make sure that anybody stopping the queue after this - * sees the new next_to_clean. - */ - smp_mb(); - - if (netif_queue_stopped(netdev) && - !(test_bit(__E1000_DOWN, &adapter->state))) { - netif_wake_queue(netdev); - ++adapter->restart_queue; - } - } - - if (adapter->detect_tx_hung) { - /* - * Detect a transmit hang in hardware, this serializes the - * check with the clearing of time_stamp and movement of i - */ - adapter->detect_tx_hung = 0; - if (tx_ring->buffer_info[i].time_stamp && - time_after(jiffies, tx_ring->buffer_info[i].time_stamp - + (adapter->tx_timeout_factor * HZ)) && - !(er32(STATUS) & E1000_STATUS_TXOFF)) { - schedule_work(&adapter->print_hang_task); - netif_stop_queue(netdev); - } - } - adapter->total_tx_bytes += total_tx_bytes; - adapter->total_tx_packets += total_tx_packets; - return count < tx_ring->count; -} - -/** - * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split - * @adapter: board private structure - * - * the return value indicates whether actual cleaning was done, there - * is no guarantee that everything was cleaned - **/ -static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, - int *work_done, int work_to_do) -{ - struct e1000_hw *hw = &adapter->hw; - union e1000_rx_desc_packet_split *rx_desc, *next_rxd; - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_buffer *buffer_info, *next_buffer; - struct e1000_ps_page *ps_page; - struct sk_buff *skb; - unsigned int i, j; - u32 length, staterr; - int cleaned_count = 0; - bool cleaned = 0; - unsigned int total_rx_bytes = 0, total_rx_packets = 0; - - i = rx_ring->next_to_clean; - rx_desc = E1000_RX_DESC_PS(*rx_ring, i); - staterr = le32_to_cpu(rx_desc->wb.middle.status_error); - buffer_info = &rx_ring->buffer_info[i]; - - while (staterr & E1000_RXD_STAT_DD) { - if (*work_done >= work_to_do) - break; - (*work_done)++; - skb = buffer_info->skb; - rmb(); /* read descriptor and rx_buffer_info after status DD */ - - /* in the packet split case this is header only */ - prefetch(skb->data - NET_IP_ALIGN); - - i++; - if (i == rx_ring->count) - i = 0; - next_rxd = E1000_RX_DESC_PS(*rx_ring, i); - prefetch(next_rxd); - - next_buffer = &rx_ring->buffer_info[i]; - - cleaned = 1; - cleaned_count++; - dma_unmap_single(&pdev->dev, buffer_info->dma, - adapter->rx_ps_bsize0, DMA_FROM_DEVICE); - buffer_info->dma = 0; - - /* see !EOP comment in other Rx routine */ - if (!(staterr & E1000_RXD_STAT_EOP)) - adapter->flags2 |= FLAG2_IS_DISCARDING; - - if (adapter->flags2 & FLAG2_IS_DISCARDING) { - e_dbg("Packet Split buffers didn't pick up the full " - "packet\n"); - dev_kfree_skb_irq(skb); - if (staterr & E1000_RXD_STAT_EOP) - adapter->flags2 &= ~FLAG2_IS_DISCARDING; - goto next_desc; - } - - if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { - dev_kfree_skb_irq(skb); - goto next_desc; - } - - length = le16_to_cpu(rx_desc->wb.middle.length0); - - if (!length) { - e_dbg("Last part of the packet spanning multiple " - "descriptors\n"); - dev_kfree_skb_irq(skb); - goto next_desc; - } - - /* Good Receive */ - skb_put(skb, length); - - { - /* - * this looks ugly, but it seems compiler issues make it - * more efficient than reusing j - */ - int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); - - /* - * page alloc/put takes too long and effects small packet - * throughput, so unsplit small packets and save the alloc/put - * only valid in softirq (napi) context to call kmap_* - */ - if (l1 && (l1 <= copybreak) && - ((length + l1) <= adapter->rx_ps_bsize0)) { - u8 *vaddr; - - ps_page = &buffer_info->ps_pages[0]; - - /* - * there is no documentation about how to call - * kmap_atomic, so we can't hold the mapping - * very long - */ - dma_sync_single_for_cpu(&pdev->dev, ps_page->dma, - PAGE_SIZE, DMA_FROM_DEVICE); - vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); - memcpy(skb_tail_pointer(skb), vaddr, l1); - kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); - dma_sync_single_for_device(&pdev->dev, ps_page->dma, - PAGE_SIZE, DMA_FROM_DEVICE); - - /* remove the CRC */ - if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) - l1 -= 4; - - skb_put(skb, l1); - goto copydone; - } /* if */ - } - - for (j = 0; j < PS_PAGE_BUFFERS; j++) { - length = le16_to_cpu(rx_desc->wb.upper.length[j]); - if (!length) - break; - - ps_page = &buffer_info->ps_pages[j]; - dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, - DMA_FROM_DEVICE); - ps_page->dma = 0; - skb_fill_page_desc(skb, j, ps_page->page, 0, length); - ps_page->page = NULL; - skb->len += length; - skb->data_len += length; - skb->truesize += length; - } - - /* strip the ethernet crc, problem is we're using pages now so - * this whole operation can get a little cpu intensive - */ - if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) - pskb_trim(skb, skb->len - 4); - -copydone: - total_rx_bytes += skb->len; - total_rx_packets++; - - e1000_rx_checksum(adapter, staterr, le16_to_cpu( - rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); - - if (rx_desc->wb.upper.header_status & - cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) - adapter->rx_hdr_split++; - - e1000_receive_skb(adapter, netdev, skb, - staterr, rx_desc->wb.middle.vlan); - -next_desc: - rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); - buffer_info->skb = NULL; - - /* return some buffers to hardware, one at a time is too slow */ - if (cleaned_count >= E1000_RX_BUFFER_WRITE) { - adapter->alloc_rx_buf(adapter, cleaned_count, - GFP_ATOMIC); - cleaned_count = 0; - } - - /* use prefetched values */ - rx_desc = next_rxd; - buffer_info = next_buffer; - - staterr = le32_to_cpu(rx_desc->wb.middle.status_error); - } - rx_ring->next_to_clean = i; - - cleaned_count = e1000_desc_unused(rx_ring); - if (cleaned_count) - adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); - - adapter->total_rx_bytes += total_rx_bytes; - adapter->total_rx_packets += total_rx_packets; - return cleaned; -} - -/** - * e1000_consume_page - helper function - **/ -static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, - u16 length) -{ - bi->page = NULL; - skb->len += length; - skb->data_len += length; - skb->truesize += length; -} - -/** - * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy - * @adapter: board private structure - * - * the return value indicates whether actual cleaning was done, there - * is no guarantee that everything was cleaned - **/ - -static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, - int *work_done, int work_to_do) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_rx_desc *rx_desc, *next_rxd; - struct e1000_buffer *buffer_info, *next_buffer; - u32 length; - unsigned int i; - int cleaned_count = 0; - bool cleaned = false; - unsigned int total_rx_bytes=0, total_rx_packets=0; - - i = rx_ring->next_to_clean; - rx_desc = E1000_RX_DESC(*rx_ring, i); - buffer_info = &rx_ring->buffer_info[i]; - - while (rx_desc->status & E1000_RXD_STAT_DD) { - struct sk_buff *skb; - u8 status; - - if (*work_done >= work_to_do) - break; - (*work_done)++; - rmb(); /* read descriptor and rx_buffer_info after status DD */ - - status = rx_desc->status; - skb = buffer_info->skb; - buffer_info->skb = NULL; - - ++i; - if (i == rx_ring->count) - i = 0; - next_rxd = E1000_RX_DESC(*rx_ring, i); - prefetch(next_rxd); - - next_buffer = &rx_ring->buffer_info[i]; - - cleaned = true; - cleaned_count++; - dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, - DMA_FROM_DEVICE); - buffer_info->dma = 0; - - length = le16_to_cpu(rx_desc->length); - - /* errors is only valid for DD + EOP descriptors */ - if (unlikely((status & E1000_RXD_STAT_EOP) && - (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { - /* recycle both page and skb */ - buffer_info->skb = skb; - /* an error means any chain goes out the window - * too */ - if (rx_ring->rx_skb_top) - dev_kfree_skb_irq(rx_ring->rx_skb_top); - rx_ring->rx_skb_top = NULL; - goto next_desc; - } - -#define rxtop (rx_ring->rx_skb_top) - if (!(status & E1000_RXD_STAT_EOP)) { - /* this descriptor is only the beginning (or middle) */ - if (!rxtop) { - /* this is the beginning of a chain */ - rxtop = skb; - skb_fill_page_desc(rxtop, 0, buffer_info->page, - 0, length); - } else { - /* this is the middle of a chain */ - skb_fill_page_desc(rxtop, - skb_shinfo(rxtop)->nr_frags, - buffer_info->page, 0, length); - /* re-use the skb, only consumed the page */ - buffer_info->skb = skb; - } - e1000_consume_page(buffer_info, rxtop, length); - goto next_desc; - } else { - if (rxtop) { - /* end of the chain */ - skb_fill_page_desc(rxtop, - skb_shinfo(rxtop)->nr_frags, - buffer_info->page, 0, length); - /* re-use the current skb, we only consumed the - * page */ - buffer_info->skb = skb; - skb = rxtop; - rxtop = NULL; - e1000_consume_page(buffer_info, skb, length); - } else { - /* no chain, got EOP, this buf is the packet - * copybreak to save the put_page/alloc_page */ - if (length <= copybreak && - skb_tailroom(skb) >= length) { - u8 *vaddr; - vaddr = kmap_atomic(buffer_info->page, - KM_SKB_DATA_SOFTIRQ); - memcpy(skb_tail_pointer(skb), vaddr, - length); - kunmap_atomic(vaddr, - KM_SKB_DATA_SOFTIRQ); - /* re-use the page, so don't erase - * buffer_info->page */ - skb_put(skb, length); - } else { - skb_fill_page_desc(skb, 0, - buffer_info->page, 0, - length); - e1000_consume_page(buffer_info, skb, - length); - } - } - } - - /* Receive Checksum Offload XXX recompute due to CRC strip? */ - e1000_rx_checksum(adapter, - (u32)(status) | - ((u32)(rx_desc->errors) << 24), - le16_to_cpu(rx_desc->csum), skb); - - /* probably a little skewed due to removing CRC */ - total_rx_bytes += skb->len; - total_rx_packets++; - - /* eth type trans needs skb->data to point to something */ - if (!pskb_may_pull(skb, ETH_HLEN)) { - e_err("pskb_may_pull failed.\n"); - dev_kfree_skb_irq(skb); - goto next_desc; - } - - e1000_receive_skb(adapter, netdev, skb, status, - rx_desc->special); - -next_desc: - rx_desc->status = 0; - - /* return some buffers to hardware, one at a time is too slow */ - if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { - adapter->alloc_rx_buf(adapter, cleaned_count, - GFP_ATOMIC); - cleaned_count = 0; - } - - /* use prefetched values */ - rx_desc = next_rxd; - buffer_info = next_buffer; - } - rx_ring->next_to_clean = i; - - cleaned_count = e1000_desc_unused(rx_ring); - if (cleaned_count) - adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC); - - adapter->total_rx_bytes += total_rx_bytes; - adapter->total_rx_packets += total_rx_packets; - return cleaned; -} - -/** - * e1000_clean_rx_ring - Free Rx Buffers per Queue - * @adapter: board private structure - **/ -static void e1000_clean_rx_ring(struct e1000_adapter *adapter) -{ - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_buffer *buffer_info; - struct e1000_ps_page *ps_page; - struct pci_dev *pdev = adapter->pdev; - unsigned int i, j; - - /* Free all the Rx ring sk_buffs */ - for (i = 0; i < rx_ring->count; i++) { - buffer_info = &rx_ring->buffer_info[i]; - if (buffer_info->dma) { - if (adapter->clean_rx == e1000_clean_rx_irq) - dma_unmap_single(&pdev->dev, buffer_info->dma, - adapter->rx_buffer_len, - DMA_FROM_DEVICE); - else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) - dma_unmap_page(&pdev->dev, buffer_info->dma, - PAGE_SIZE, - DMA_FROM_DEVICE); - else if (adapter->clean_rx == e1000_clean_rx_irq_ps) - dma_unmap_single(&pdev->dev, buffer_info->dma, - adapter->rx_ps_bsize0, - DMA_FROM_DEVICE); - buffer_info->dma = 0; - } - - if (buffer_info->page) { - put_page(buffer_info->page); - buffer_info->page = NULL; - } - - if (buffer_info->skb) { - dev_kfree_skb(buffer_info->skb); - buffer_info->skb = NULL; - } - - for (j = 0; j < PS_PAGE_BUFFERS; j++) { - ps_page = &buffer_info->ps_pages[j]; - if (!ps_page->page) - break; - dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, - DMA_FROM_DEVICE); - ps_page->dma = 0; - put_page(ps_page->page); - ps_page->page = NULL; - } - } - - /* there also may be some cached data from a chained receive */ - if (rx_ring->rx_skb_top) { - dev_kfree_skb(rx_ring->rx_skb_top); - rx_ring->rx_skb_top = NULL; - } - - /* Zero out the descriptor ring */ - memset(rx_ring->desc, 0, rx_ring->size); - - rx_ring->next_to_clean = 0; - rx_ring->next_to_use = 0; - adapter->flags2 &= ~FLAG2_IS_DISCARDING; - - writel(0, adapter->hw.hw_addr + rx_ring->head); - writel(0, adapter->hw.hw_addr + rx_ring->tail); -} - -static void e1000e_downshift_workaround(struct work_struct *work) -{ - struct e1000_adapter *adapter = container_of(work, - struct e1000_adapter, downshift_task); - - if (test_bit(__E1000_DOWN, &adapter->state)) - return; - - e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); -} - -/** - * e1000_intr_msi - Interrupt Handler - * @irq: interrupt number - * @data: pointer to a network interface device structure - **/ -static irqreturn_t e1000_intr_msi(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 icr = er32(ICR); - - /* - * read ICR disables interrupts using IAM - */ - - if (icr & E1000_ICR_LSC) { - hw->mac.get_link_status = 1; - /* - * ICH8 workaround-- Call gig speed drop workaround on cable - * disconnect (LSC) before accessing any PHY registers - */ - if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && - (!(er32(STATUS) & E1000_STATUS_LU))) - schedule_work(&adapter->downshift_task); - - /* - * 80003ES2LAN workaround-- For packet buffer work-around on - * link down event; disable receives here in the ISR and reset - * adapter in watchdog - */ - if (netif_carrier_ok(netdev) && - adapter->flags & FLAG_RX_NEEDS_RESTART) { - /* disable receives */ - u32 rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - adapter->flags |= FLAG_RX_RESTART_NOW; - } - /* guard against interrupt when we're going down */ - if (!test_bit(__E1000_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - - if (napi_schedule_prep(&adapter->napi)) { - adapter->total_tx_bytes = 0; - adapter->total_tx_packets = 0; - adapter->total_rx_bytes = 0; - adapter->total_rx_packets = 0; - __napi_schedule(&adapter->napi); - } - - return IRQ_HANDLED; -} - -/** - * e1000_intr - Interrupt Handler - * @irq: interrupt number - * @data: pointer to a network interface device structure - **/ -static irqreturn_t e1000_intr(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 rctl, icr = er32(ICR); - - if (!icr || test_bit(__E1000_DOWN, &adapter->state)) - return IRQ_NONE; /* Not our interrupt */ - - /* - * IMS will not auto-mask if INT_ASSERTED is not set, and if it is - * not set, then the adapter didn't send an interrupt - */ - if (!(icr & E1000_ICR_INT_ASSERTED)) - return IRQ_NONE; - - /* - * Interrupt Auto-Mask...upon reading ICR, - * interrupts are masked. No need for the - * IMC write - */ - - if (icr & E1000_ICR_LSC) { - hw->mac.get_link_status = 1; - /* - * ICH8 workaround-- Call gig speed drop workaround on cable - * disconnect (LSC) before accessing any PHY registers - */ - if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && - (!(er32(STATUS) & E1000_STATUS_LU))) - schedule_work(&adapter->downshift_task); - - /* - * 80003ES2LAN workaround-- - * For packet buffer work-around on link down event; - * disable receives here in the ISR and - * reset adapter in watchdog - */ - if (netif_carrier_ok(netdev) && - (adapter->flags & FLAG_RX_NEEDS_RESTART)) { - /* disable receives */ - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - adapter->flags |= FLAG_RX_RESTART_NOW; - } - /* guard against interrupt when we're going down */ - if (!test_bit(__E1000_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - - if (napi_schedule_prep(&adapter->napi)) { - adapter->total_tx_bytes = 0; - adapter->total_tx_packets = 0; - adapter->total_rx_bytes = 0; - adapter->total_rx_packets = 0; - __napi_schedule(&adapter->napi); - } - - return IRQ_HANDLED; -} - -static irqreturn_t e1000_msix_other(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 icr = er32(ICR); - - if (!(icr & E1000_ICR_INT_ASSERTED)) { - if (!test_bit(__E1000_DOWN, &adapter->state)) - ew32(IMS, E1000_IMS_OTHER); - return IRQ_NONE; - } - - if (icr & adapter->eiac_mask) - ew32(ICS, (icr & adapter->eiac_mask)); - - if (icr & E1000_ICR_OTHER) { - if (!(icr & E1000_ICR_LSC)) - goto no_link_interrupt; - hw->mac.get_link_status = 1; - /* guard against interrupt when we're going down */ - if (!test_bit(__E1000_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - -no_link_interrupt: - if (!test_bit(__E1000_DOWN, &adapter->state)) - ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); - - return IRQ_HANDLED; -} - - -static irqreturn_t e1000_intr_msix_tx(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct e1000_ring *tx_ring = adapter->tx_ring; - - - adapter->total_tx_bytes = 0; - adapter->total_tx_packets = 0; - - if (!e1000_clean_tx_irq(adapter)) - /* Ring was not completely cleaned, so fire another interrupt */ - ew32(ICS, tx_ring->ims_val); - - return IRQ_HANDLED; -} - -static irqreturn_t e1000_intr_msix_rx(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - - /* Write the ITR value calculated at the end of the - * previous interrupt. - */ - if (adapter->rx_ring->set_itr) { - writel(1000000000 / (adapter->rx_ring->itr_val * 256), - adapter->hw.hw_addr + adapter->rx_ring->itr_register); - adapter->rx_ring->set_itr = 0; - } - - if (napi_schedule_prep(&adapter->napi)) { - adapter->total_rx_bytes = 0; - adapter->total_rx_packets = 0; - __napi_schedule(&adapter->napi); - } - return IRQ_HANDLED; -} - -/** - * e1000_configure_msix - Configure MSI-X hardware - * - * e1000_configure_msix sets up the hardware to properly - * generate MSI-X interrupts. - **/ -static void e1000_configure_msix(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_ring *tx_ring = adapter->tx_ring; - int vector = 0; - u32 ctrl_ext, ivar = 0; - - adapter->eiac_mask = 0; - - /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ - if (hw->mac.type == e1000_82574) { - u32 rfctl = er32(RFCTL); - rfctl |= E1000_RFCTL_ACK_DIS; - ew32(RFCTL, rfctl); - } - -#define E1000_IVAR_INT_ALLOC_VALID 0x8 - /* Configure Rx vector */ - rx_ring->ims_val = E1000_IMS_RXQ0; - adapter->eiac_mask |= rx_ring->ims_val; - if (rx_ring->itr_val) - writel(1000000000 / (rx_ring->itr_val * 256), - hw->hw_addr + rx_ring->itr_register); - else - writel(1, hw->hw_addr + rx_ring->itr_register); - ivar = E1000_IVAR_INT_ALLOC_VALID | vector; - - /* Configure Tx vector */ - tx_ring->ims_val = E1000_IMS_TXQ0; - vector++; - if (tx_ring->itr_val) - writel(1000000000 / (tx_ring->itr_val * 256), - hw->hw_addr + tx_ring->itr_register); - else - writel(1, hw->hw_addr + tx_ring->itr_register); - adapter->eiac_mask |= tx_ring->ims_val; - ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); - - /* set vector for Other Causes, e.g. link changes */ - vector++; - ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); - if (rx_ring->itr_val) - writel(1000000000 / (rx_ring->itr_val * 256), - hw->hw_addr + E1000_EITR_82574(vector)); - else - writel(1, hw->hw_addr + E1000_EITR_82574(vector)); - - /* Cause Tx interrupts on every write back */ - ivar |= (1 << 31); - - ew32(IVAR, ivar); - - /* enable MSI-X PBA support */ - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; - - /* Auto-Mask Other interrupts upon ICR read */ -#define E1000_EIAC_MASK_82574 0x01F00000 - ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); - ctrl_ext |= E1000_CTRL_EXT_EIAME; - ew32(CTRL_EXT, ctrl_ext); - e1e_flush(); -} - -void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) -{ - if (adapter->msix_entries) { - pci_disable_msix(adapter->pdev); - kfree(adapter->msix_entries); - adapter->msix_entries = NULL; - } else if (adapter->flags & FLAG_MSI_ENABLED) { - pci_disable_msi(adapter->pdev); - adapter->flags &= ~FLAG_MSI_ENABLED; - } -} - -/** - * e1000e_set_interrupt_capability - set MSI or MSI-X if supported - * - * Attempt to configure interrupts using the best available - * capabilities of the hardware and kernel. - **/ -void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) -{ - int err; - int i; - - switch (adapter->int_mode) { - case E1000E_INT_MODE_MSIX: - if (adapter->flags & FLAG_HAS_MSIX) { - adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ - adapter->msix_entries = kcalloc(adapter->num_vectors, - sizeof(struct msix_entry), - GFP_KERNEL); - if (adapter->msix_entries) { - for (i = 0; i < adapter->num_vectors; i++) - adapter->msix_entries[i].entry = i; - - err = pci_enable_msix(adapter->pdev, - adapter->msix_entries, - adapter->num_vectors); - if (err == 0) - return; - } - /* MSI-X failed, so fall through and try MSI */ - e_err("Failed to initialize MSI-X interrupts. " - "Falling back to MSI interrupts.\n"); - e1000e_reset_interrupt_capability(adapter); - } - adapter->int_mode = E1000E_INT_MODE_MSI; - /* Fall through */ - case E1000E_INT_MODE_MSI: - if (!pci_enable_msi(adapter->pdev)) { - adapter->flags |= FLAG_MSI_ENABLED; - } else { - adapter->int_mode = E1000E_INT_MODE_LEGACY; - e_err("Failed to initialize MSI interrupts. Falling " - "back to legacy interrupts.\n"); - } - /* Fall through */ - case E1000E_INT_MODE_LEGACY: - /* Don't do anything; this is the system default */ - break; - } - - /* store the number of vectors being used */ - adapter->num_vectors = 1; -} - -/** - * e1000_request_msix - Initialize MSI-X interrupts - * - * e1000_request_msix allocates MSI-X vectors and requests interrupts from the - * kernel. - **/ -static int e1000_request_msix(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - int err = 0, vector = 0; - - if (strlen(netdev->name) < (IFNAMSIZ - 5)) - snprintf(adapter->rx_ring->name, - sizeof(adapter->rx_ring->name) - 1, - "%s-rx-0", netdev->name); - else - memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); - err = request_irq(adapter->msix_entries[vector].vector, - e1000_intr_msix_rx, 0, adapter->rx_ring->name, - netdev); - if (err) - goto out; - adapter->rx_ring->itr_register = E1000_EITR_82574(vector); - adapter->rx_ring->itr_val = adapter->itr; - vector++; - - if (strlen(netdev->name) < (IFNAMSIZ - 5)) - snprintf(adapter->tx_ring->name, - sizeof(adapter->tx_ring->name) - 1, - "%s-tx-0", netdev->name); - else - memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); - err = request_irq(adapter->msix_entries[vector].vector, - e1000_intr_msix_tx, 0, adapter->tx_ring->name, - netdev); - if (err) - goto out; - adapter->tx_ring->itr_register = E1000_EITR_82574(vector); - adapter->tx_ring->itr_val = adapter->itr; - vector++; - - err = request_irq(adapter->msix_entries[vector].vector, - e1000_msix_other, 0, netdev->name, netdev); - if (err) - goto out; - - e1000_configure_msix(adapter); - return 0; -out: - return err; -} - -/** - * e1000_request_irq - initialize interrupts - * - * Attempts to configure interrupts using the best available - * capabilities of the hardware and kernel. - **/ -static int e1000_request_irq(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - int err; - - if (adapter->msix_entries) { - err = e1000_request_msix(adapter); - if (!err) - return err; - /* fall back to MSI */ - e1000e_reset_interrupt_capability(adapter); - adapter->int_mode = E1000E_INT_MODE_MSI; - e1000e_set_interrupt_capability(adapter); - } - if (adapter->flags & FLAG_MSI_ENABLED) { - err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, - netdev->name, netdev); - if (!err) - return err; - - /* fall back to legacy interrupt */ - e1000e_reset_interrupt_capability(adapter); - adapter->int_mode = E1000E_INT_MODE_LEGACY; - } - - err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, - netdev->name, netdev); - if (err) - e_err("Unable to allocate interrupt, Error: %d\n", err); - - return err; -} - -static void e1000_free_irq(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - - if (adapter->msix_entries) { - int vector = 0; - - free_irq(adapter->msix_entries[vector].vector, netdev); - vector++; - - free_irq(adapter->msix_entries[vector].vector, netdev); - vector++; - - /* Other Causes interrupt vector */ - free_irq(adapter->msix_entries[vector].vector, netdev); - return; - } - - free_irq(adapter->pdev->irq, netdev); -} - -/** - * e1000_irq_disable - Mask off interrupt generation on the NIC - **/ -static void e1000_irq_disable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - ew32(IMC, ~0); - if (adapter->msix_entries) - ew32(EIAC_82574, 0); - e1e_flush(); - - if (adapter->msix_entries) { - int i; - for (i = 0; i < adapter->num_vectors; i++) - synchronize_irq(adapter->msix_entries[i].vector); - } else { - synchronize_irq(adapter->pdev->irq); - } -} - -/** - * e1000_irq_enable - Enable default interrupt generation settings - **/ -static void e1000_irq_enable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - if (adapter->msix_entries) { - ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); - ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); - } else { - ew32(IMS, IMS_ENABLE_MASK); - } - e1e_flush(); -} - -/** - * e1000e_get_hw_control - get control of the h/w from f/w - * @adapter: address of board private structure - * - * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that - * the driver is loaded. For AMT version (only with 82573) - * of the f/w this means that the network i/f is open. - **/ -void e1000e_get_hw_control(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_ext; - u32 swsm; - - /* Let firmware know the driver has taken over */ - if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { - swsm = er32(SWSM); - ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); - } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { - ctrl_ext = er32(CTRL_EXT); - ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); - } -} - -/** - * e1000e_release_hw_control - release control of the h/w to f/w - * @adapter: address of board private structure - * - * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that the - * driver is no longer loaded. For AMT version (only with 82573) i - * of the f/w this means that the network i/f is closed. - * - **/ -void e1000e_release_hw_control(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_ext; - u32 swsm; - - /* Let firmware taken over control of h/w */ - if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { - swsm = er32(SWSM); - ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); - } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { - ctrl_ext = er32(CTRL_EXT); - ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); - } -} - -/** - * @e1000_alloc_ring - allocate memory for a ring structure - **/ -static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, - struct e1000_ring *ring) -{ - struct pci_dev *pdev = adapter->pdev; - - ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, - GFP_KERNEL); - if (!ring->desc) - return -ENOMEM; - - return 0; -} - -/** - * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) - * @adapter: board private structure - * - * Return 0 on success, negative on failure - **/ -int e1000e_setup_tx_resources(struct e1000_adapter *adapter) -{ - struct e1000_ring *tx_ring = adapter->tx_ring; - int err = -ENOMEM, size; - - size = sizeof(struct e1000_buffer) * tx_ring->count; - tx_ring->buffer_info = vzalloc(size); - if (!tx_ring->buffer_info) - goto err; - - /* round up to nearest 4K */ - tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); - tx_ring->size = ALIGN(tx_ring->size, 4096); - - err = e1000_alloc_ring_dma(adapter, tx_ring); - if (err) - goto err; - - tx_ring->next_to_use = 0; - tx_ring->next_to_clean = 0; - - return 0; -err: - vfree(tx_ring->buffer_info); - e_err("Unable to allocate memory for the transmit descriptor ring\n"); - return err; -} - -/** - * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) - * @adapter: board private structure - * - * Returns 0 on success, negative on failure - **/ -int e1000e_setup_rx_resources(struct e1000_adapter *adapter) -{ - struct e1000_ring *rx_ring = adapter->rx_ring; - struct e1000_buffer *buffer_info; - int i, size, desc_len, err = -ENOMEM; - - size = sizeof(struct e1000_buffer) * rx_ring->count; - rx_ring->buffer_info = vzalloc(size); - if (!rx_ring->buffer_info) - goto err; - - for (i = 0; i < rx_ring->count; i++) { - buffer_info = &rx_ring->buffer_info[i]; - buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, - sizeof(struct e1000_ps_page), - GFP_KERNEL); - if (!buffer_info->ps_pages) - goto err_pages; - } - - desc_len = sizeof(union e1000_rx_desc_packet_split); - - /* Round up to nearest 4K */ - rx_ring->size = rx_ring->count * desc_len; - rx_ring->size = ALIGN(rx_ring->size, 4096); - - err = e1000_alloc_ring_dma(adapter, rx_ring); - if (err) - goto err_pages; - - rx_ring->next_to_clean = 0; - rx_ring->next_to_use = 0; - rx_ring->rx_skb_top = NULL; - - return 0; - -err_pages: - for (i = 0; i < rx_ring->count; i++) { - buffer_info = &rx_ring->buffer_info[i]; - kfree(buffer_info->ps_pages); - } -err: - vfree(rx_ring->buffer_info); - e_err("Unable to allocate memory for the receive descriptor ring\n"); - return err; -} - -/** - * e1000_clean_tx_ring - Free Tx Buffers - * @adapter: board private structure - **/ -static void e1000_clean_tx_ring(struct e1000_adapter *adapter) -{ - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_buffer *buffer_info; - unsigned long size; - unsigned int i; - - for (i = 0; i < tx_ring->count; i++) { - buffer_info = &tx_ring->buffer_info[i]; - e1000_put_txbuf(adapter, buffer_info); - } - - size = sizeof(struct e1000_buffer) * tx_ring->count; - memset(tx_ring->buffer_info, 0, size); - - memset(tx_ring->desc, 0, tx_ring->size); - - tx_ring->next_to_use = 0; - tx_ring->next_to_clean = 0; - - writel(0, adapter->hw.hw_addr + tx_ring->head); - writel(0, adapter->hw.hw_addr + tx_ring->tail); -} - -/** - * e1000e_free_tx_resources - Free Tx Resources per Queue - * @adapter: board private structure - * - * Free all transmit software resources - **/ -void e1000e_free_tx_resources(struct e1000_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - struct e1000_ring *tx_ring = adapter->tx_ring; - - e1000_clean_tx_ring(adapter); - - vfree(tx_ring->buffer_info); - tx_ring->buffer_info = NULL; - - dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, - tx_ring->dma); - tx_ring->desc = NULL; -} - -/** - * e1000e_free_rx_resources - Free Rx Resources - * @adapter: board private structure - * - * Free all receive software resources - **/ - -void e1000e_free_rx_resources(struct e1000_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - struct e1000_ring *rx_ring = adapter->rx_ring; - int i; - - e1000_clean_rx_ring(adapter); - - for (i = 0; i < rx_ring->count; i++) - kfree(rx_ring->buffer_info[i].ps_pages); - - vfree(rx_ring->buffer_info); - rx_ring->buffer_info = NULL; - - dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, - rx_ring->dma); - rx_ring->desc = NULL; -} - -/** - * e1000_update_itr - update the dynamic ITR value based on statistics - * @adapter: pointer to adapter - * @itr_setting: current adapter->itr - * @packets: the number of packets during this measurement interval - * @bytes: the number of bytes during this measurement interval - * - * Stores a new ITR value based on packets and byte - * counts during the last interrupt. The advantage of per interrupt - * computation is faster updates and more accurate ITR for the current - * traffic pattern. Constants in this function were computed - * based on theoretical maximum wire speed and thresholds were set based - * on testing data as well as attempting to minimize response time - * while increasing bulk throughput. This functionality is controlled - * by the InterruptThrottleRate module parameter. - **/ -static unsigned int e1000_update_itr(struct e1000_adapter *adapter, - u16 itr_setting, int packets, - int bytes) -{ - unsigned int retval = itr_setting; - - if (packets == 0) - goto update_itr_done; - - switch (itr_setting) { - case lowest_latency: - /* handle TSO and jumbo frames */ - if (bytes/packets > 8000) - retval = bulk_latency; - else if ((packets < 5) && (bytes > 512)) - retval = low_latency; - break; - case low_latency: /* 50 usec aka 20000 ints/s */ - if (bytes > 10000) { - /* this if handles the TSO accounting */ - if (bytes/packets > 8000) - retval = bulk_latency; - else if ((packets < 10) || ((bytes/packets) > 1200)) - retval = bulk_latency; - else if ((packets > 35)) - retval = lowest_latency; - } else if (bytes/packets > 2000) { - retval = bulk_latency; - } else if (packets <= 2 && bytes < 512) { - retval = lowest_latency; - } - break; - case bulk_latency: /* 250 usec aka 4000 ints/s */ - if (bytes > 25000) { - if (packets > 35) - retval = low_latency; - } else if (bytes < 6000) { - retval = low_latency; - } - break; - } - -update_itr_done: - return retval; -} - -static void e1000_set_itr(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 current_itr; - u32 new_itr = adapter->itr; - - /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ - if (adapter->link_speed != SPEED_1000) { - current_itr = 0; - new_itr = 4000; - goto set_itr_now; - } - - if (adapter->flags2 & FLAG2_DISABLE_AIM) { - new_itr = 0; - goto set_itr_now; - } - - adapter->tx_itr = e1000_update_itr(adapter, - adapter->tx_itr, - adapter->total_tx_packets, - adapter->total_tx_bytes); - /* conservative mode (itr 3) eliminates the lowest_latency setting */ - if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) - adapter->tx_itr = low_latency; - - adapter->rx_itr = e1000_update_itr(adapter, - adapter->rx_itr, - adapter->total_rx_packets, - adapter->total_rx_bytes); - /* conservative mode (itr 3) eliminates the lowest_latency setting */ - if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) - adapter->rx_itr = low_latency; - - current_itr = max(adapter->rx_itr, adapter->tx_itr); - - switch (current_itr) { - /* counts and packets in update_itr are dependent on these numbers */ - case lowest_latency: - new_itr = 70000; - break; - case low_latency: - new_itr = 20000; /* aka hwitr = ~200 */ - break; - case bulk_latency: - new_itr = 4000; - break; - default: - break; - } - -set_itr_now: - if (new_itr != adapter->itr) { - /* - * this attempts to bias the interrupt rate towards Bulk - * by adding intermediate steps when interrupt rate is - * increasing - */ - new_itr = new_itr > adapter->itr ? - min(adapter->itr + (new_itr >> 2), new_itr) : - new_itr; - adapter->itr = new_itr; - adapter->rx_ring->itr_val = new_itr; - if (adapter->msix_entries) - adapter->rx_ring->set_itr = 1; - else - if (new_itr) - ew32(ITR, 1000000000 / (new_itr * 256)); - else - ew32(ITR, 0); - } -} - -/** - * e1000_alloc_queues - Allocate memory for all rings - * @adapter: board private structure to initialize - **/ -static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) -{ - adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); - if (!adapter->tx_ring) - goto err; - - adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); - if (!adapter->rx_ring) - goto err; - - return 0; -err: - e_err("Unable to allocate memory for queues\n"); - kfree(adapter->rx_ring); - kfree(adapter->tx_ring); - return -ENOMEM; -} - -/** - * e1000_clean - NAPI Rx polling callback - * @napi: struct associated with this polling callback - * @budget: amount of packets driver is allowed to process this poll - **/ -static int e1000_clean(struct napi_struct *napi, int budget) -{ - struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); - struct e1000_hw *hw = &adapter->hw; - struct net_device *poll_dev = adapter->netdev; - int tx_cleaned = 1, work_done = 0; - - adapter = netdev_priv(poll_dev); - - if (adapter->msix_entries && - !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) - goto clean_rx; - - tx_cleaned = e1000_clean_tx_irq(adapter); - -clean_rx: - adapter->clean_rx(adapter, &work_done, budget); - - if (!tx_cleaned) - work_done = budget; - - /* If budget not fully consumed, exit the polling mode */ - if (work_done < budget) { - if (adapter->itr_setting & 3) - e1000_set_itr(adapter); - napi_complete(napi); - if (!test_bit(__E1000_DOWN, &adapter->state)) { - if (adapter->msix_entries) - ew32(IMS, adapter->rx_ring->ims_val); - else - e1000_irq_enable(adapter); - } - } - - return work_done; -} - -static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 vfta, index; - - /* don't update vlan cookie if already programmed */ - if ((adapter->hw.mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && - (vid == adapter->mng_vlan_id)) - return; - - /* add VID to filter table */ - if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { - index = (vid >> 5) & 0x7F; - vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); - vfta |= (1 << (vid & 0x1F)); - hw->mac.ops.write_vfta(hw, index, vfta); - } - - set_bit(vid, adapter->active_vlans); -} - -static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 vfta, index; - - if ((adapter->hw.mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && - (vid == adapter->mng_vlan_id)) { - /* release control to f/w */ - e1000e_release_hw_control(adapter); - return; - } - - /* remove VID from filter table */ - if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { - index = (vid >> 5) & 0x7F; - vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); - vfta &= ~(1 << (vid & 0x1F)); - hw->mac.ops.write_vfta(hw, index, vfta); - } - - clear_bit(vid, adapter->active_vlans); -} - -/** - * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering - * @adapter: board private structure to initialize - **/ -static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { - /* disable VLAN receive filtering */ - rctl = er32(RCTL); - rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); - ew32(RCTL, rctl); - - if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { - e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); - adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; - } - } -} - -/** - * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering - * @adapter: board private structure to initialize - **/ -static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { - /* enable VLAN receive filtering */ - rctl = er32(RCTL); - rctl |= E1000_RCTL_VFE; - rctl &= ~E1000_RCTL_CFIEN; - ew32(RCTL, rctl); - } -} - -/** - * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping - * @adapter: board private structure to initialize - **/ -static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl; - - /* disable VLAN tag insert/strip */ - ctrl = er32(CTRL); - ctrl &= ~E1000_CTRL_VME; - ew32(CTRL, ctrl); -} - -/** - * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping - * @adapter: board private structure to initialize - **/ -static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl; - - /* enable VLAN tag insert/strip */ - ctrl = er32(CTRL); - ctrl |= E1000_CTRL_VME; - ew32(CTRL, ctrl); -} - -static void e1000_update_mng_vlan(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - u16 vid = adapter->hw.mng_cookie.vlan_id; - u16 old_vid = adapter->mng_vlan_id; - - if (adapter->hw.mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { - e1000_vlan_rx_add_vid(netdev, vid); - adapter->mng_vlan_id = vid; - } - - if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) - e1000_vlan_rx_kill_vid(netdev, old_vid); -} - -static void e1000_restore_vlan(struct e1000_adapter *adapter) -{ - u16 vid; - - e1000_vlan_rx_add_vid(adapter->netdev, 0); - - for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) - e1000_vlan_rx_add_vid(adapter->netdev, vid); -} - -static void e1000_init_manageability_pt(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 manc, manc2h, mdef, i, j; - - if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) - return; - - manc = er32(MANC); - - /* - * enable receiving management packets to the host. this will probably - * generate destination unreachable messages from the host OS, but - * the packets will be handled on SMBUS - */ - manc |= E1000_MANC_EN_MNG2HOST; - manc2h = er32(MANC2H); - - switch (hw->mac.type) { - default: - manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); - break; - case e1000_82574: - case e1000_82583: - /* - * Check if IPMI pass-through decision filter already exists; - * if so, enable it. - */ - for (i = 0, j = 0; i < 8; i++) { - mdef = er32(MDEF(i)); - - /* Ignore filters with anything other than IPMI ports */ - if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) - continue; - - /* Enable this decision filter in MANC2H */ - if (mdef) - manc2h |= (1 << i); - - j |= mdef; - } - - if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) - break; - - /* Create new decision filter in an empty filter */ - for (i = 0, j = 0; i < 8; i++) - if (er32(MDEF(i)) == 0) { - ew32(MDEF(i), (E1000_MDEF_PORT_623 | - E1000_MDEF_PORT_664)); - manc2h |= (1 << 1); - j++; - break; - } - - if (!j) - e_warn("Unable to create IPMI pass-through filter\n"); - break; - } - - ew32(MANC2H, manc2h); - ew32(MANC, manc); -} - -/** - * e1000_configure_tx - Configure Transmit Unit after Reset - * @adapter: board private structure - * - * Configure the Tx unit of the MAC after a reset. - **/ -static void e1000_configure_tx(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_ring *tx_ring = adapter->tx_ring; - u64 tdba; - u32 tdlen, tctl, tipg, tarc; - u32 ipgr1, ipgr2; - - /* Setup the HW Tx Head and Tail descriptor pointers */ - tdba = tx_ring->dma; - tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); - ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); - ew32(TDBAH, (tdba >> 32)); - ew32(TDLEN, tdlen); - ew32(TDH, 0); - ew32(TDT, 0); - tx_ring->head = E1000_TDH; - tx_ring->tail = E1000_TDT; - - /* Set the default values for the Tx Inter Packet Gap timer */ - tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ - ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ - ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ - - if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) - ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ - - tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; - tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; - ew32(TIPG, tipg); - - /* Set the Tx Interrupt Delay register */ - ew32(TIDV, adapter->tx_int_delay); - /* Tx irq moderation */ - ew32(TADV, adapter->tx_abs_int_delay); - - if (adapter->flags2 & FLAG2_DMA_BURST) { - u32 txdctl = er32(TXDCTL(0)); - txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | - E1000_TXDCTL_WTHRESH); - /* - * set up some performance related parameters to encourage the - * hardware to use the bus more efficiently in bursts, depends - * on the tx_int_delay to be enabled, - * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time - * hthresh = 1 ==> prefetch when one or more available - * pthresh = 0x1f ==> prefetch if internal cache 31 or less - * BEWARE: this seems to work but should be considered first if - * there are Tx hangs or other Tx related bugs - */ - txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; - ew32(TXDCTL(0), txdctl); - /* erratum work around: set txdctl the same for both queues */ - ew32(TXDCTL(1), txdctl); - } - - /* Program the Transmit Control Register */ - tctl = er32(TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); - - if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { - tarc = er32(TARC(0)); - /* - * set the speed mode bit, we'll clear it if we're not at - * gigabit link later - */ -#define SPEED_MODE_BIT (1 << 21) - tarc |= SPEED_MODE_BIT; - ew32(TARC(0), tarc); - } - - /* errata: program both queues to unweighted RR */ - if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { - tarc = er32(TARC(0)); - tarc |= 1; - ew32(TARC(0), tarc); - tarc = er32(TARC(1)); - tarc |= 1; - ew32(TARC(1), tarc); - } - - /* Setup Transmit Descriptor Settings for eop descriptor */ - adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; - - /* only set IDE if we are delaying interrupts using the timers */ - if (adapter->tx_int_delay) - adapter->txd_cmd |= E1000_TXD_CMD_IDE; - - /* enable Report Status bit */ - adapter->txd_cmd |= E1000_TXD_CMD_RS; - - ew32(TCTL, tctl); - - e1000e_config_collision_dist(hw); -} - -/** - * e1000_setup_rctl - configure the receive control registers - * @adapter: Board private structure - **/ -#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ - (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) -static void e1000_setup_rctl(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl, rfctl; - u32 pages = 0; - - /* Workaround Si errata on 82579 - configure jumbo frame flow */ - if (hw->mac.type == e1000_pch2lan) { - s32 ret_val; - - if (adapter->netdev->mtu > ETH_DATA_LEN) - ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); - else - ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); - - if (ret_val) - e_dbg("failed to enable jumbo frame workaround mode\n"); - } - - /* Program MC offset vector base */ - rctl = er32(RCTL); - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | - E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | - (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); - - /* Do not Store bad packets */ - rctl &= ~E1000_RCTL_SBP; - - /* Enable Long Packet receive */ - if (adapter->netdev->mtu <= ETH_DATA_LEN) - rctl &= ~E1000_RCTL_LPE; - else - rctl |= E1000_RCTL_LPE; - - /* Some systems expect that the CRC is included in SMBUS traffic. The - * hardware strips the CRC before sending to both SMBUS (BMC) and to - * host memory when this is enabled - */ - if (adapter->flags2 & FLAG2_CRC_STRIPPING) - rctl |= E1000_RCTL_SECRC; - - /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ - if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { - u16 phy_data; - - e1e_rphy(hw, PHY_REG(770, 26), &phy_data); - phy_data &= 0xfff8; - phy_data |= (1 << 2); - e1e_wphy(hw, PHY_REG(770, 26), phy_data); - - e1e_rphy(hw, 22, &phy_data); - phy_data &= 0x0fff; - phy_data |= (1 << 14); - e1e_wphy(hw, 0x10, 0x2823); - e1e_wphy(hw, 0x11, 0x0003); - e1e_wphy(hw, 22, phy_data); - } - - /* Setup buffer sizes */ - rctl &= ~E1000_RCTL_SZ_4096; - rctl |= E1000_RCTL_BSEX; - switch (adapter->rx_buffer_len) { - case 2048: - default: - rctl |= E1000_RCTL_SZ_2048; - rctl &= ~E1000_RCTL_BSEX; - break; - case 4096: - rctl |= E1000_RCTL_SZ_4096; - break; - case 8192: - rctl |= E1000_RCTL_SZ_8192; - break; - case 16384: - rctl |= E1000_RCTL_SZ_16384; - break; - } - - /* - * 82571 and greater support packet-split where the protocol - * header is placed in skb->data and the packet data is - * placed in pages hanging off of skb_shinfo(skb)->nr_frags. - * In the case of a non-split, skb->data is linearly filled, - * followed by the page buffers. Therefore, skb->data is - * sized to hold the largest protocol header. - * - * allocations using alloc_page take too long for regular MTU - * so only enable packet split for jumbo frames - * - * Using pages when the page size is greater than 16k wastes - * a lot of memory, since we allocate 3 pages at all times - * per packet. - */ - pages = PAGE_USE_COUNT(adapter->netdev->mtu); - if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) && - (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) - adapter->rx_ps_pages = pages; - else - adapter->rx_ps_pages = 0; - - if (adapter->rx_ps_pages) { - u32 psrctl = 0; - - /* Configure extra packet-split registers */ - rfctl = er32(RFCTL); - rfctl |= E1000_RFCTL_EXTEN; - /* - * disable packet split support for IPv6 extension headers, - * because some malformed IPv6 headers can hang the Rx - */ - rfctl |= (E1000_RFCTL_IPV6_EX_DIS | - E1000_RFCTL_NEW_IPV6_EXT_DIS); - - ew32(RFCTL, rfctl); - - /* Enable Packet split descriptors */ - rctl |= E1000_RCTL_DTYP_PS; - - psrctl |= adapter->rx_ps_bsize0 >> - E1000_PSRCTL_BSIZE0_SHIFT; - - switch (adapter->rx_ps_pages) { - case 3: - psrctl |= PAGE_SIZE << - E1000_PSRCTL_BSIZE3_SHIFT; - case 2: - psrctl |= PAGE_SIZE << - E1000_PSRCTL_BSIZE2_SHIFT; - case 1: - psrctl |= PAGE_SIZE >> - E1000_PSRCTL_BSIZE1_SHIFT; - break; - } - - ew32(PSRCTL, psrctl); - } - - ew32(RCTL, rctl); - /* just started the receive unit, no need to restart */ - adapter->flags &= ~FLAG_RX_RESTART_NOW; -} - -/** - * e1000_configure_rx - Configure Receive Unit after Reset - * @adapter: board private structure - * - * Configure the Rx unit of the MAC after a reset. - **/ -static void e1000_configure_rx(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_ring *rx_ring = adapter->rx_ring; - u64 rdba; - u32 rdlen, rctl, rxcsum, ctrl_ext; - - if (adapter->rx_ps_pages) { - /* this is a 32 byte descriptor */ - rdlen = rx_ring->count * - sizeof(union e1000_rx_desc_packet_split); - adapter->clean_rx = e1000_clean_rx_irq_ps; - adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; - } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { - rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); - adapter->clean_rx = e1000_clean_jumbo_rx_irq; - adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; - } else { - rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); - adapter->clean_rx = e1000_clean_rx_irq; - adapter->alloc_rx_buf = e1000_alloc_rx_buffers; - } - - /* disable receives while setting up the descriptors */ - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - e1e_flush(); - usleep_range(10000, 20000); - - if (adapter->flags2 & FLAG2_DMA_BURST) { - /* - * set the writeback threshold (only takes effect if the RDTR - * is set). set GRAN=1 and write back up to 0x4 worth, and - * enable prefetching of 0x20 Rx descriptors - * granularity = 01 - * wthresh = 04, - * hthresh = 04, - * pthresh = 0x20 - */ - ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); - ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); - - /* - * override the delay timers for enabling bursting, only if - * the value was not set by the user via module options - */ - if (adapter->rx_int_delay == DEFAULT_RDTR) - adapter->rx_int_delay = BURST_RDTR; - if (adapter->rx_abs_int_delay == DEFAULT_RADV) - adapter->rx_abs_int_delay = BURST_RADV; - } - - /* set the Receive Delay Timer Register */ - ew32(RDTR, adapter->rx_int_delay); - - /* irq moderation */ - ew32(RADV, adapter->rx_abs_int_delay); - if ((adapter->itr_setting != 0) && (adapter->itr != 0)) - ew32(ITR, 1000000000 / (adapter->itr * 256)); - - ctrl_ext = er32(CTRL_EXT); - /* Auto-Mask interrupts upon ICR access */ - ctrl_ext |= E1000_CTRL_EXT_IAME; - ew32(IAM, 0xffffffff); - ew32(CTRL_EXT, ctrl_ext); - e1e_flush(); - - /* - * Setup the HW Rx Head and Tail Descriptor Pointers and - * the Base and Length of the Rx Descriptor Ring - */ - rdba = rx_ring->dma; - ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); - ew32(RDBAH, (rdba >> 32)); - ew32(RDLEN, rdlen); - ew32(RDH, 0); - ew32(RDT, 0); - rx_ring->head = E1000_RDH; - rx_ring->tail = E1000_RDT; - - /* Enable Receive Checksum Offload for TCP and UDP */ - rxcsum = er32(RXCSUM); - if (adapter->flags & FLAG_RX_CSUM_ENABLED) { - rxcsum |= E1000_RXCSUM_TUOFL; - - /* - * IPv4 payload checksum for UDP fragments must be - * used in conjunction with packet-split. - */ - if (adapter->rx_ps_pages) - rxcsum |= E1000_RXCSUM_IPPCSE; - } else { - rxcsum &= ~E1000_RXCSUM_TUOFL; - /* no need to clear IPPCSE as it defaults to 0 */ - } - ew32(RXCSUM, rxcsum); - - /* - * Enable early receives on supported devices, only takes effect when - * packet size is equal or larger than the specified value (in 8 byte - * units), e.g. using jumbo frames when setting to E1000_ERT_2048 - */ - if ((adapter->flags & FLAG_HAS_ERT) || - (adapter->hw.mac.type == e1000_pch2lan)) { - if (adapter->netdev->mtu > ETH_DATA_LEN) { - u32 rxdctl = er32(RXDCTL(0)); - ew32(RXDCTL(0), rxdctl | 0x3); - if (adapter->flags & FLAG_HAS_ERT) - ew32(ERT, E1000_ERT_2048 | (1 << 13)); - /* - * With jumbo frames and early-receive enabled, - * excessive C-state transition latencies result in - * dropped transactions. - */ - pm_qos_update_request(&adapter->netdev->pm_qos_req, 55); - } else { - pm_qos_update_request(&adapter->netdev->pm_qos_req, - PM_QOS_DEFAULT_VALUE); - } - } - - /* Enable Receives */ - ew32(RCTL, rctl); -} - -/** - * e1000_update_mc_addr_list - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count) -{ - hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); -} - -/** - * e1000_set_multi - Multicast and Promiscuous mode set - * @netdev: network interface device structure - * - * The set_multi entry point is called whenever the multicast address - * list or the network interface flags are updated. This routine is - * responsible for configuring the hardware for proper multicast, - * promiscuous mode, and all-multi behavior. - **/ -static void e1000_set_multi(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct netdev_hw_addr *ha; - u8 *mta_list; - u32 rctl; - - /* Check for Promiscuous and All Multicast modes */ - - rctl = er32(RCTL); - - if (netdev->flags & IFF_PROMISC) { - rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); - rctl &= ~E1000_RCTL_VFE; - /* Do not hardware filter VLANs in promisc mode */ - e1000e_vlan_filter_disable(adapter); - } else { - if (netdev->flags & IFF_ALLMULTI) { - rctl |= E1000_RCTL_MPE; - rctl &= ~E1000_RCTL_UPE; - } else { - rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); - } - e1000e_vlan_filter_enable(adapter); - } - - ew32(RCTL, rctl); - - if (!netdev_mc_empty(netdev)) { - int i = 0; - - mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); - if (!mta_list) - return; - - /* prepare a packed array of only addresses. */ - netdev_for_each_mc_addr(ha, netdev) - memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); - - e1000_update_mc_addr_list(hw, mta_list, i); - kfree(mta_list); - } else { - /* - * if we're called from probe, we might not have - * anything to do here, so clear out the list - */ - e1000_update_mc_addr_list(hw, NULL, 0); - } - - if (netdev->features & NETIF_F_HW_VLAN_RX) - e1000e_vlan_strip_enable(adapter); - else - e1000e_vlan_strip_disable(adapter); -} - -/** - * e1000_configure - configure the hardware for Rx and Tx - * @adapter: private board structure - **/ -static void e1000_configure(struct e1000_adapter *adapter) -{ - e1000_set_multi(adapter->netdev); - - e1000_restore_vlan(adapter); - e1000_init_manageability_pt(adapter); - - e1000_configure_tx(adapter); - e1000_setup_rctl(adapter); - e1000_configure_rx(adapter); - adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring), - GFP_KERNEL); -} - -/** - * e1000e_power_up_phy - restore link in case the phy was powered down - * @adapter: address of board private structure - * - * The phy may be powered down to save power and turn off link when the - * driver is unloaded and wake on lan is not enabled (among others) - * *** this routine MUST be followed by a call to e1000e_reset *** - **/ -void e1000e_power_up_phy(struct e1000_adapter *adapter) -{ - if (adapter->hw.phy.ops.power_up) - adapter->hw.phy.ops.power_up(&adapter->hw); - - adapter->hw.mac.ops.setup_link(&adapter->hw); -} - -/** - * e1000_power_down_phy - Power down the PHY - * - * Power down the PHY so no link is implied when interface is down. - * The PHY cannot be powered down if management or WoL is active. - */ -static void e1000_power_down_phy(struct e1000_adapter *adapter) -{ - /* WoL is enabled */ - if (adapter->wol) - return; - - if (adapter->hw.phy.ops.power_down) - adapter->hw.phy.ops.power_down(&adapter->hw); -} - -/** - * e1000e_reset - bring the hardware into a known good state - * - * This function boots the hardware and enables some settings that - * require a configuration cycle of the hardware - those cannot be - * set/changed during runtime. After reset the device needs to be - * properly configured for Rx, Tx etc. - */ -void e1000e_reset(struct e1000_adapter *adapter) -{ - struct e1000_mac_info *mac = &adapter->hw.mac; - struct e1000_fc_info *fc = &adapter->hw.fc; - struct e1000_hw *hw = &adapter->hw; - u32 tx_space, min_tx_space, min_rx_space; - u32 pba = adapter->pba; - u16 hwm; - - /* reset Packet Buffer Allocation to default */ - ew32(PBA, pba); - - if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { - /* - * To maintain wire speed transmits, the Tx FIFO should be - * large enough to accommodate two full transmit packets, - * rounded up to the next 1KB and expressed in KB. Likewise, - * the Rx FIFO should be large enough to accommodate at least - * one full receive packet and is similarly rounded up and - * expressed in KB. - */ - pba = er32(PBA); - /* upper 16 bits has Tx packet buffer allocation size in KB */ - tx_space = pba >> 16; - /* lower 16 bits has Rx packet buffer allocation size in KB */ - pba &= 0xffff; - /* - * the Tx fifo also stores 16 bytes of information about the Tx - * but don't include ethernet FCS because hardware appends it - */ - min_tx_space = (adapter->max_frame_size + - sizeof(struct e1000_tx_desc) - - ETH_FCS_LEN) * 2; - min_tx_space = ALIGN(min_tx_space, 1024); - min_tx_space >>= 10; - /* software strips receive CRC, so leave room for it */ - min_rx_space = adapter->max_frame_size; - min_rx_space = ALIGN(min_rx_space, 1024); - min_rx_space >>= 10; - - /* - * If current Tx allocation is less than the min Tx FIFO size, - * and the min Tx FIFO size is less than the current Rx FIFO - * allocation, take space away from current Rx allocation - */ - if ((tx_space < min_tx_space) && - ((min_tx_space - tx_space) < pba)) { - pba -= min_tx_space - tx_space; - - /* - * if short on Rx space, Rx wins and must trump Tx - * adjustment or use Early Receive if available - */ - if ((pba < min_rx_space) && - (!(adapter->flags & FLAG_HAS_ERT))) - /* ERT enabled in e1000_configure_rx */ - pba = min_rx_space; - } - - ew32(PBA, pba); - } - - /* - * flow control settings - * - * The high water mark must be low enough to fit one full frame - * (or the size used for early receive) above it in the Rx FIFO. - * Set it to the lower of: - * - 90% of the Rx FIFO size, and - * - the full Rx FIFO size minus the early receive size (for parts - * with ERT support assuming ERT set to E1000_ERT_2048), or - * - the full Rx FIFO size minus one full frame - */ - if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) - fc->pause_time = 0xFFFF; - else - fc->pause_time = E1000_FC_PAUSE_TIME; - fc->send_xon = 1; - fc->current_mode = fc->requested_mode; - - switch (hw->mac.type) { - default: - if ((adapter->flags & FLAG_HAS_ERT) && - (adapter->netdev->mtu > ETH_DATA_LEN)) - hwm = min(((pba << 10) * 9 / 10), - ((pba << 10) - (E1000_ERT_2048 << 3))); - else - hwm = min(((pba << 10) * 9 / 10), - ((pba << 10) - adapter->max_frame_size)); - - fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ - fc->low_water = fc->high_water - 8; - break; - case e1000_pchlan: - /* - * Workaround PCH LOM adapter hangs with certain network - * loads. If hangs persist, try disabling Tx flow control. - */ - if (adapter->netdev->mtu > ETH_DATA_LEN) { - fc->high_water = 0x3500; - fc->low_water = 0x1500; - } else { - fc->high_water = 0x5000; - fc->low_water = 0x3000; - } - fc->refresh_time = 0x1000; - break; - case e1000_pch2lan: - fc->high_water = 0x05C20; - fc->low_water = 0x05048; - fc->pause_time = 0x0650; - fc->refresh_time = 0x0400; - if (adapter->netdev->mtu > ETH_DATA_LEN) { - pba = 14; - ew32(PBA, pba); - } - break; - } - - /* - * Disable Adaptive Interrupt Moderation if 2 full packets cannot - * fit in receive buffer and early-receive not supported. - */ - if (adapter->itr_setting & 0x3) { - if (((adapter->max_frame_size * 2) > (pba << 10)) && - !(adapter->flags & FLAG_HAS_ERT)) { - if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { - dev_info(&adapter->pdev->dev, - "Interrupt Throttle Rate turned off\n"); - adapter->flags2 |= FLAG2_DISABLE_AIM; - ew32(ITR, 0); - } - } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { - dev_info(&adapter->pdev->dev, - "Interrupt Throttle Rate turned on\n"); - adapter->flags2 &= ~FLAG2_DISABLE_AIM; - adapter->itr = 20000; - ew32(ITR, 1000000000 / (adapter->itr * 256)); - } - } - - /* Allow time for pending master requests to run */ - mac->ops.reset_hw(hw); - - /* - * For parts with AMT enabled, let the firmware know - * that the network interface is in control - */ - if (adapter->flags & FLAG_HAS_AMT) - e1000e_get_hw_control(adapter); - - ew32(WUC, 0); - - if (mac->ops.init_hw(hw)) - e_err("Hardware Error\n"); - - e1000_update_mng_vlan(adapter); - - /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ - ew32(VET, ETH_P_8021Q); - - e1000e_reset_adaptive(hw); - - if (!netif_running(adapter->netdev) && - !test_bit(__E1000_TESTING, &adapter->state)) { - e1000_power_down_phy(adapter); - return; - } - - e1000_get_phy_info(hw); - - if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && - !(adapter->flags & FLAG_SMART_POWER_DOWN)) { - u16 phy_data = 0; - /* - * speed up time to link by disabling smart power down, ignore - * the return value of this function because there is nothing - * different we would do if it failed - */ - e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - phy_data &= ~IGP02E1000_PM_SPD; - e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); - } -} - -int e1000e_up(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* hardware has been reset, we need to reload some things */ - e1000_configure(adapter); - - clear_bit(__E1000_DOWN, &adapter->state); - - napi_enable(&adapter->napi); - if (adapter->msix_entries) - e1000_configure_msix(adapter); - e1000_irq_enable(adapter); - - netif_start_queue(adapter->netdev); - - /* fire a link change interrupt to start the watchdog */ - if (adapter->msix_entries) - ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); - else - ew32(ICS, E1000_ICS_LSC); - - return 0; -} - -static void e1000e_flush_descriptors(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - if (!(adapter->flags2 & FLAG2_DMA_BURST)) - return; - - /* flush pending descriptor writebacks to memory */ - ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); - ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); - - /* execute the writes immediately */ - e1e_flush(); -} - -static void e1000e_update_stats(struct e1000_adapter *adapter); - -void e1000e_down(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - u32 tctl, rctl; - - /* - * signal that we're down so the interrupt handler does not - * reschedule our watchdog timer - */ - set_bit(__E1000_DOWN, &adapter->state); - - /* disable receives in the hardware */ - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - /* flush and sleep below */ - - netif_stop_queue(netdev); - - /* disable transmits in the hardware */ - tctl = er32(TCTL); - tctl &= ~E1000_TCTL_EN; - ew32(TCTL, tctl); - /* flush both disables and wait for them to finish */ - e1e_flush(); - usleep_range(10000, 20000); - - napi_disable(&adapter->napi); - e1000_irq_disable(adapter); - - del_timer_sync(&adapter->watchdog_timer); - del_timer_sync(&adapter->phy_info_timer); - - netif_carrier_off(netdev); - - spin_lock(&adapter->stats64_lock); - e1000e_update_stats(adapter); - spin_unlock(&adapter->stats64_lock); - - e1000e_flush_descriptors(adapter); - e1000_clean_tx_ring(adapter); - e1000_clean_rx_ring(adapter); - - adapter->link_speed = 0; - adapter->link_duplex = 0; - - if (!pci_channel_offline(adapter->pdev)) - e1000e_reset(adapter); - - /* - * TODO: for power management, we could drop the link and - * pci_disable_device here. - */ -} - -void e1000e_reinit_locked(struct e1000_adapter *adapter) -{ - might_sleep(); - while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - e1000e_down(adapter); - e1000e_up(adapter); - clear_bit(__E1000_RESETTING, &adapter->state); -} - -/** - * e1000_sw_init - Initialize general software structures (struct e1000_adapter) - * @adapter: board private structure to initialize - * - * e1000_sw_init initializes the Adapter private data structure. - * Fields are initialized based on PCI device information and - * OS network device settings (MTU size). - **/ -static int __devinit e1000_sw_init(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - - adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; - adapter->rx_ps_bsize0 = 128; - adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; - adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; - - spin_lock_init(&adapter->stats64_lock); - - e1000e_set_interrupt_capability(adapter); - - if (e1000_alloc_queues(adapter)) - return -ENOMEM; - - /* Explicitly disable IRQ since the NIC can be in any state. */ - e1000_irq_disable(adapter); - - set_bit(__E1000_DOWN, &adapter->state); - return 0; -} - -/** - * e1000_intr_msi_test - Interrupt Handler - * @irq: interrupt number - * @data: pointer to a network interface device structure - **/ -static irqreturn_t e1000_intr_msi_test(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 icr = er32(ICR); - - e_dbg("icr is %08X\n", icr); - if (icr & E1000_ICR_RXSEQ) { - adapter->flags &= ~FLAG_MSI_TEST_FAILED; - wmb(); - } - - return IRQ_HANDLED; -} - -/** - * e1000_test_msi_interrupt - Returns 0 for successful test - * @adapter: board private struct - * - * code flow taken from tg3.c - **/ -static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - int err; - - /* poll_enable hasn't been called yet, so don't need disable */ - /* clear any pending events */ - er32(ICR); - - /* free the real vector and request a test handler */ - e1000_free_irq(adapter); - e1000e_reset_interrupt_capability(adapter); - - /* Assume that the test fails, if it succeeds then the test - * MSI irq handler will unset this flag */ - adapter->flags |= FLAG_MSI_TEST_FAILED; - - err = pci_enable_msi(adapter->pdev); - if (err) - goto msi_test_failed; - - err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, - netdev->name, netdev); - if (err) { - pci_disable_msi(adapter->pdev); - goto msi_test_failed; - } - - wmb(); - - e1000_irq_enable(adapter); - - /* fire an unusual interrupt on the test handler */ - ew32(ICS, E1000_ICS_RXSEQ); - e1e_flush(); - msleep(50); - - e1000_irq_disable(adapter); - - rmb(); - - if (adapter->flags & FLAG_MSI_TEST_FAILED) { - adapter->int_mode = E1000E_INT_MODE_LEGACY; - e_info("MSI interrupt test failed, using legacy interrupt.\n"); - } else - e_dbg("MSI interrupt test succeeded!\n"); - - free_irq(adapter->pdev->irq, netdev); - pci_disable_msi(adapter->pdev); - -msi_test_failed: - e1000e_set_interrupt_capability(adapter); - return e1000_request_irq(adapter); -} - -/** - * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored - * @adapter: board private struct - * - * code flow taken from tg3.c, called with e1000 interrupts disabled. - **/ -static int e1000_test_msi(struct e1000_adapter *adapter) -{ - int err; - u16 pci_cmd; - - if (!(adapter->flags & FLAG_MSI_ENABLED)) - return 0; - - /* disable SERR in case the MSI write causes a master abort */ - pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); - if (pci_cmd & PCI_COMMAND_SERR) - pci_write_config_word(adapter->pdev, PCI_COMMAND, - pci_cmd & ~PCI_COMMAND_SERR); - - err = e1000_test_msi_interrupt(adapter); - - /* re-enable SERR */ - if (pci_cmd & PCI_COMMAND_SERR) { - pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); - pci_cmd |= PCI_COMMAND_SERR; - pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); - } - - return err; -} - -/** - * e1000_open - Called when a network interface is made active - * @netdev: network interface device structure - * - * Returns 0 on success, negative value on failure - * - * The open entry point is called when a network interface is made - * active by the system (IFF_UP). At this point all resources needed - * for transmit and receive operations are allocated, the interrupt - * handler is registered with the OS, the watchdog timer is started, - * and the stack is notified that the interface is ready. - **/ -static int e1000_open(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct pci_dev *pdev = adapter->pdev; - int err; - - /* disallow open during test */ - if (test_bit(__E1000_TESTING, &adapter->state)) - return -EBUSY; - - pm_runtime_get_sync(&pdev->dev); - - netif_carrier_off(netdev); - - /* allocate transmit descriptors */ - err = e1000e_setup_tx_resources(adapter); - if (err) - goto err_setup_tx; - - /* allocate receive descriptors */ - err = e1000e_setup_rx_resources(adapter); - if (err) - goto err_setup_rx; - - /* - * If AMT is enabled, let the firmware know that the network - * interface is now open and reset the part to a known state. - */ - if (adapter->flags & FLAG_HAS_AMT) { - e1000e_get_hw_control(adapter); - e1000e_reset(adapter); - } - - e1000e_power_up_phy(adapter); - - adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; - if ((adapter->hw.mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) - e1000_update_mng_vlan(adapter); - - /* DMA latency requirement to workaround early-receive/jumbo issue */ - if ((adapter->flags & FLAG_HAS_ERT) || - (adapter->hw.mac.type == e1000_pch2lan)) - pm_qos_add_request(&adapter->netdev->pm_qos_req, - PM_QOS_CPU_DMA_LATENCY, - PM_QOS_DEFAULT_VALUE); - - /* - * before we allocate an interrupt, we must be ready to handle it. - * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt - * as soon as we call pci_request_irq, so we have to setup our - * clean_rx handler before we do so. - */ - e1000_configure(adapter); - - err = e1000_request_irq(adapter); - if (err) - goto err_req_irq; - - /* - * Work around PCIe errata with MSI interrupts causing some chipsets to - * ignore e1000e MSI messages, which means we need to test our MSI - * interrupt now - */ - if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { - err = e1000_test_msi(adapter); - if (err) { - e_err("Interrupt allocation failed\n"); - goto err_req_irq; - } - } - - /* From here on the code is the same as e1000e_up() */ - clear_bit(__E1000_DOWN, &adapter->state); - - napi_enable(&adapter->napi); - - e1000_irq_enable(adapter); - - netif_start_queue(netdev); - - adapter->idle_check = true; - pm_runtime_put(&pdev->dev); - - /* fire a link status change interrupt to start the watchdog */ - if (adapter->msix_entries) - ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); - else - ew32(ICS, E1000_ICS_LSC); - - return 0; - -err_req_irq: - e1000e_release_hw_control(adapter); - e1000_power_down_phy(adapter); - e1000e_free_rx_resources(adapter); -err_setup_rx: - e1000e_free_tx_resources(adapter); -err_setup_tx: - e1000e_reset(adapter); - pm_runtime_put_sync(&pdev->dev); - - return err; -} - -/** - * e1000_close - Disables a network interface - * @netdev: network interface device structure - * - * Returns 0, this is not allowed to fail - * - * The close entry point is called when an interface is de-activated - * by the OS. The hardware is still under the drivers control, but - * needs to be disabled. A global MAC reset is issued to stop the - * hardware, and all transmit and receive resources are freed. - **/ -static int e1000_close(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct pci_dev *pdev = adapter->pdev; - - WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); - - pm_runtime_get_sync(&pdev->dev); - - if (!test_bit(__E1000_DOWN, &adapter->state)) { - e1000e_down(adapter); - e1000_free_irq(adapter); - } - e1000_power_down_phy(adapter); - - e1000e_free_tx_resources(adapter); - e1000e_free_rx_resources(adapter); - - /* - * kill manageability vlan ID if supported, but not if a vlan with - * the same ID is registered on the host OS (let 8021q kill it) - */ - if (adapter->hw.mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN) - e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); - - /* - * If AMT is enabled, let the firmware know that the network - * interface is now closed - */ - if ((adapter->flags & FLAG_HAS_AMT) && - !test_bit(__E1000_TESTING, &adapter->state)) - e1000e_release_hw_control(adapter); - - if ((adapter->flags & FLAG_HAS_ERT) || - (adapter->hw.mac.type == e1000_pch2lan)) - pm_qos_remove_request(&adapter->netdev->pm_qos_req); - - pm_runtime_put_sync(&pdev->dev); - - return 0; -} -/** - * e1000_set_mac - Change the Ethernet Address of the NIC - * @netdev: network interface device structure - * @p: pointer to an address structure - * - * Returns 0 on success, negative on failure - **/ -static int e1000_set_mac(struct net_device *netdev, void *p) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct sockaddr *addr = p; - - if (!is_valid_ether_addr(addr->sa_data)) - return -EADDRNOTAVAIL; - - memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); - memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); - - e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); - - if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { - /* activate the work around */ - e1000e_set_laa_state_82571(&adapter->hw, 1); - - /* - * Hold a copy of the LAA in RAR[14] This is done so that - * between the time RAR[0] gets clobbered and the time it - * gets fixed (in e1000_watchdog), the actual LAA is in one - * of the RARs and no incoming packets directed to this port - * are dropped. Eventually the LAA will be in RAR[0] and - * RAR[14] - */ - e1000e_rar_set(&adapter->hw, - adapter->hw.mac.addr, - adapter->hw.mac.rar_entry_count - 1); - } - - return 0; -} - -/** - * e1000e_update_phy_task - work thread to update phy - * @work: pointer to our work struct - * - * this worker thread exists because we must acquire a - * semaphore to read the phy, which we could msleep while - * waiting for it, and we can't msleep in a timer. - **/ -static void e1000e_update_phy_task(struct work_struct *work) -{ - struct e1000_adapter *adapter = container_of(work, - struct e1000_adapter, update_phy_task); - - if (test_bit(__E1000_DOWN, &adapter->state)) - return; - - e1000_get_phy_info(&adapter->hw); -} - -/* - * Need to wait a few seconds after link up to get diagnostic information from - * the phy - */ -static void e1000_update_phy_info(unsigned long data) -{ - struct e1000_adapter *adapter = (struct e1000_adapter *) data; - - if (test_bit(__E1000_DOWN, &adapter->state)) - return; - - schedule_work(&adapter->update_phy_task); -} - -/** - * e1000e_update_phy_stats - Update the PHY statistics counters - * @adapter: board private structure - * - * Read/clear the upper 16-bit PHY registers and read/accumulate lower - **/ -static void e1000e_update_phy_stats(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - s32 ret_val; - u16 phy_data; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - - /* - * A page set is expensive so check if already on desired page. - * If not, set to the page with the PHY status registers. - */ - hw->phy.addr = 1; - ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, - &phy_data); - if (ret_val) - goto release; - if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { - ret_val = hw->phy.ops.set_page(hw, - HV_STATS_PAGE << IGP_PAGE_SHIFT); - if (ret_val) - goto release; - } - - /* Single Collision Count */ - hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); - if (!ret_val) - adapter->stats.scc += phy_data; - - /* Excessive Collision Count */ - hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); - if (!ret_val) - adapter->stats.ecol += phy_data; - - /* Multiple Collision Count */ - hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); - if (!ret_val) - adapter->stats.mcc += phy_data; - - /* Late Collision Count */ - hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); - if (!ret_val) - adapter->stats.latecol += phy_data; - - /* Collision Count - also used for adaptive IFS */ - hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); - if (!ret_val) - hw->mac.collision_delta = phy_data; - - /* Defer Count */ - hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); - if (!ret_val) - adapter->stats.dc += phy_data; - - /* Transmit with no CRS */ - hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); - ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); - if (!ret_val) - adapter->stats.tncrs += phy_data; - -release: - hw->phy.ops.release(hw); -} - -/** - * e1000e_update_stats - Update the board statistics counters - * @adapter: board private structure - **/ -static void e1000e_update_stats(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - struct pci_dev *pdev = adapter->pdev; - - /* - * Prevent stats update while adapter is being reset, or if the pci - * connection is down. - */ - if (adapter->link_speed == 0) - return; - if (pci_channel_offline(pdev)) - return; - - adapter->stats.crcerrs += er32(CRCERRS); - adapter->stats.gprc += er32(GPRC); - adapter->stats.gorc += er32(GORCL); - er32(GORCH); /* Clear gorc */ - adapter->stats.bprc += er32(BPRC); - adapter->stats.mprc += er32(MPRC); - adapter->stats.roc += er32(ROC); - - adapter->stats.mpc += er32(MPC); - - /* Half-duplex statistics */ - if (adapter->link_duplex == HALF_DUPLEX) { - if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { - e1000e_update_phy_stats(adapter); - } else { - adapter->stats.scc += er32(SCC); - adapter->stats.ecol += er32(ECOL); - adapter->stats.mcc += er32(MCC); - adapter->stats.latecol += er32(LATECOL); - adapter->stats.dc += er32(DC); - - hw->mac.collision_delta = er32(COLC); - - if ((hw->mac.type != e1000_82574) && - (hw->mac.type != e1000_82583)) - adapter->stats.tncrs += er32(TNCRS); - } - adapter->stats.colc += hw->mac.collision_delta; - } - - adapter->stats.xonrxc += er32(XONRXC); - adapter->stats.xontxc += er32(XONTXC); - adapter->stats.xoffrxc += er32(XOFFRXC); - adapter->stats.xofftxc += er32(XOFFTXC); - adapter->stats.gptc += er32(GPTC); - adapter->stats.gotc += er32(GOTCL); - er32(GOTCH); /* Clear gotc */ - adapter->stats.rnbc += er32(RNBC); - adapter->stats.ruc += er32(RUC); - - adapter->stats.mptc += er32(MPTC); - adapter->stats.bptc += er32(BPTC); - - /* used for adaptive IFS */ - - hw->mac.tx_packet_delta = er32(TPT); - adapter->stats.tpt += hw->mac.tx_packet_delta; - - adapter->stats.algnerrc += er32(ALGNERRC); - adapter->stats.rxerrc += er32(RXERRC); - adapter->stats.cexterr += er32(CEXTERR); - adapter->stats.tsctc += er32(TSCTC); - adapter->stats.tsctfc += er32(TSCTFC); - - /* Fill out the OS statistics structure */ - netdev->stats.multicast = adapter->stats.mprc; - netdev->stats.collisions = adapter->stats.colc; - - /* Rx Errors */ - - /* - * RLEC on some newer hardware can be incorrect so build - * our own version based on RUC and ROC - */ - netdev->stats.rx_errors = adapter->stats.rxerrc + - adapter->stats.crcerrs + adapter->stats.algnerrc + - adapter->stats.ruc + adapter->stats.roc + - adapter->stats.cexterr; - netdev->stats.rx_length_errors = adapter->stats.ruc + - adapter->stats.roc; - netdev->stats.rx_crc_errors = adapter->stats.crcerrs; - netdev->stats.rx_frame_errors = adapter->stats.algnerrc; - netdev->stats.rx_missed_errors = adapter->stats.mpc; - - /* Tx Errors */ - netdev->stats.tx_errors = adapter->stats.ecol + - adapter->stats.latecol; - netdev->stats.tx_aborted_errors = adapter->stats.ecol; - netdev->stats.tx_window_errors = adapter->stats.latecol; - netdev->stats.tx_carrier_errors = adapter->stats.tncrs; - - /* Tx Dropped needs to be maintained elsewhere */ - - /* Management Stats */ - adapter->stats.mgptc += er32(MGTPTC); - adapter->stats.mgprc += er32(MGTPRC); - adapter->stats.mgpdc += er32(MGTPDC); -} - -/** - * e1000_phy_read_status - Update the PHY register status snapshot - * @adapter: board private structure - **/ -static void e1000_phy_read_status(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_phy_regs *phy = &adapter->phy_regs; - - if ((er32(STATUS) & E1000_STATUS_LU) && - (adapter->hw.phy.media_type == e1000_media_type_copper)) { - int ret_val; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); - ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); - ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); - ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); - ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); - ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); - ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); - ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); - if (ret_val) - e_warn("Error reading PHY register\n"); - } else { - /* - * Do not read PHY registers if link is not up - * Set values to typical power-on defaults - */ - phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); - phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | - BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | - BMSR_ERCAP); - phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | - ADVERTISE_ALL | ADVERTISE_CSMA); - phy->lpa = 0; - phy->expansion = EXPANSION_ENABLENPAGE; - phy->ctrl1000 = ADVERTISE_1000FULL; - phy->stat1000 = 0; - phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); - } -} - -static void e1000_print_link_info(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl = er32(CTRL); - - /* Link status message must follow this format for user tools */ - printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " - "Flow Control: %s\n", - adapter->netdev->name, - adapter->link_speed, - (adapter->link_duplex == FULL_DUPLEX) ? - "Full Duplex" : "Half Duplex", - ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? - "Rx/Tx" : - ((ctrl & E1000_CTRL_RFCE) ? "Rx" : - ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"))); -} - -static bool e1000e_has_link(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - bool link_active = 0; - s32 ret_val = 0; - - /* - * get_link_status is set on LSC (link status) interrupt or - * Rx sequence error interrupt. get_link_status will stay - * false until the check_for_link establishes link - * for copper adapters ONLY - */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - if (hw->mac.get_link_status) { - ret_val = hw->mac.ops.check_for_link(hw); - link_active = !hw->mac.get_link_status; - } else { - link_active = 1; - } - break; - case e1000_media_type_fiber: - ret_val = hw->mac.ops.check_for_link(hw); - link_active = !!(er32(STATUS) & E1000_STATUS_LU); - break; - case e1000_media_type_internal_serdes: - ret_val = hw->mac.ops.check_for_link(hw); - link_active = adapter->hw.mac.serdes_has_link; - break; - default: - case e1000_media_type_unknown: - break; - } - - if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && - (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { - /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ - e_info("Gigabit has been disabled, downgrading speed\n"); - } - - return link_active; -} - -static void e1000e_enable_receives(struct e1000_adapter *adapter) -{ - /* make sure the receive unit is started */ - if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && - (adapter->flags & FLAG_RX_RESTART_NOW)) { - struct e1000_hw *hw = &adapter->hw; - u32 rctl = er32(RCTL); - ew32(RCTL, rctl | E1000_RCTL_EN); - adapter->flags &= ~FLAG_RX_RESTART_NOW; - } -} - -static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* - * With 82574 controllers, PHY needs to be checked periodically - * for hung state and reset, if two calls return true - */ - if (e1000_check_phy_82574(hw)) - adapter->phy_hang_count++; - else - adapter->phy_hang_count = 0; - - if (adapter->phy_hang_count > 1) { - adapter->phy_hang_count = 0; - schedule_work(&adapter->reset_task); - } -} - -/** - * e1000_watchdog - Timer Call-back - * @data: pointer to adapter cast into an unsigned long - **/ -static void e1000_watchdog(unsigned long data) -{ - struct e1000_adapter *adapter = (struct e1000_adapter *) data; - - /* Do the rest outside of interrupt context */ - schedule_work(&adapter->watchdog_task); - - /* TODO: make this use queue_delayed_work() */ -} - -static void e1000_watchdog_task(struct work_struct *work) -{ - struct e1000_adapter *adapter = container_of(work, - struct e1000_adapter, watchdog_task); - struct net_device *netdev = adapter->netdev; - struct e1000_mac_info *mac = &adapter->hw.mac; - struct e1000_phy_info *phy = &adapter->hw.phy; - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_hw *hw = &adapter->hw; - u32 link, tctl; - - if (test_bit(__E1000_DOWN, &adapter->state)) - return; - - link = e1000e_has_link(adapter); - if ((netif_carrier_ok(netdev)) && link) { - /* Cancel scheduled suspend requests. */ - pm_runtime_resume(netdev->dev.parent); - - e1000e_enable_receives(adapter); - goto link_up; - } - - if ((e1000e_enable_tx_pkt_filtering(hw)) && - (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) - e1000_update_mng_vlan(adapter); - - if (link) { - if (!netif_carrier_ok(netdev)) { - bool txb2b = 1; - - /* Cancel scheduled suspend requests. */ - pm_runtime_resume(netdev->dev.parent); - - /* update snapshot of PHY registers on LSC */ - e1000_phy_read_status(adapter); - mac->ops.get_link_up_info(&adapter->hw, - &adapter->link_speed, - &adapter->link_duplex); - e1000_print_link_info(adapter); - /* - * On supported PHYs, check for duplex mismatch only - * if link has autonegotiated at 10/100 half - */ - if ((hw->phy.type == e1000_phy_igp_3 || - hw->phy.type == e1000_phy_bm) && - (hw->mac.autoneg == true) && - (adapter->link_speed == SPEED_10 || - adapter->link_speed == SPEED_100) && - (adapter->link_duplex == HALF_DUPLEX)) { - u16 autoneg_exp; - - e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); - - if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) - e_info("Autonegotiated half duplex but" - " link partner cannot autoneg. " - " Try forcing full duplex if " - "link gets many collisions.\n"); - } - - /* adjust timeout factor according to speed/duplex */ - adapter->tx_timeout_factor = 1; - switch (adapter->link_speed) { - case SPEED_10: - txb2b = 0; - adapter->tx_timeout_factor = 16; - break; - case SPEED_100: - txb2b = 0; - adapter->tx_timeout_factor = 10; - break; - } - - /* - * workaround: re-program speed mode bit after - * link-up event - */ - if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && - !txb2b) { - u32 tarc0; - tarc0 = er32(TARC(0)); - tarc0 &= ~SPEED_MODE_BIT; - ew32(TARC(0), tarc0); - } - - /* - * disable TSO for pcie and 10/100 speeds, to avoid - * some hardware issues - */ - if (!(adapter->flags & FLAG_TSO_FORCE)) { - switch (adapter->link_speed) { - case SPEED_10: - case SPEED_100: - e_info("10/100 speed: disabling TSO\n"); - netdev->features &= ~NETIF_F_TSO; - netdev->features &= ~NETIF_F_TSO6; - break; - case SPEED_1000: - netdev->features |= NETIF_F_TSO; - netdev->features |= NETIF_F_TSO6; - break; - default: - /* oops */ - break; - } - } - - /* - * enable transmits in the hardware, need to do this - * after setting TARC(0) - */ - tctl = er32(TCTL); - tctl |= E1000_TCTL_EN; - ew32(TCTL, tctl); - - /* - * Perform any post-link-up configuration before - * reporting link up. - */ - if (phy->ops.cfg_on_link_up) - phy->ops.cfg_on_link_up(hw); - - netif_carrier_on(netdev); - - if (!test_bit(__E1000_DOWN, &adapter->state)) - mod_timer(&adapter->phy_info_timer, - round_jiffies(jiffies + 2 * HZ)); - } - } else { - if (netif_carrier_ok(netdev)) { - adapter->link_speed = 0; - adapter->link_duplex = 0; - /* Link status message must follow this format */ - printk(KERN_INFO "e1000e: %s NIC Link is Down\n", - adapter->netdev->name); - netif_carrier_off(netdev); - if (!test_bit(__E1000_DOWN, &adapter->state)) - mod_timer(&adapter->phy_info_timer, - round_jiffies(jiffies + 2 * HZ)); - - if (adapter->flags & FLAG_RX_NEEDS_RESTART) - schedule_work(&adapter->reset_task); - else - pm_schedule_suspend(netdev->dev.parent, - LINK_TIMEOUT); - } - } - -link_up: - spin_lock(&adapter->stats64_lock); - e1000e_update_stats(adapter); - - mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; - adapter->tpt_old = adapter->stats.tpt; - mac->collision_delta = adapter->stats.colc - adapter->colc_old; - adapter->colc_old = adapter->stats.colc; - - adapter->gorc = adapter->stats.gorc - adapter->gorc_old; - adapter->gorc_old = adapter->stats.gorc; - adapter->gotc = adapter->stats.gotc - adapter->gotc_old; - adapter->gotc_old = adapter->stats.gotc; - spin_unlock(&adapter->stats64_lock); - - e1000e_update_adaptive(&adapter->hw); - - if (!netif_carrier_ok(netdev) && - (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) { - /* - * We've lost link, so the controller stops DMA, - * but we've got queued Tx work that's never going - * to get done, so reset controller to flush Tx. - * (Do the reset outside of interrupt context). - */ - schedule_work(&adapter->reset_task); - /* return immediately since reset is imminent */ - return; - } - - /* Simple mode for Interrupt Throttle Rate (ITR) */ - if (adapter->itr_setting == 4) { - /* - * Symmetric Tx/Rx gets a reduced ITR=2000; - * Total asymmetrical Tx or Rx gets ITR=8000; - * everyone else is between 2000-8000. - */ - u32 goc = (adapter->gotc + adapter->gorc) / 10000; - u32 dif = (adapter->gotc > adapter->gorc ? - adapter->gotc - adapter->gorc : - adapter->gorc - adapter->gotc) / 10000; - u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; - - ew32(ITR, 1000000000 / (itr * 256)); - } - - /* Cause software interrupt to ensure Rx ring is cleaned */ - if (adapter->msix_entries) - ew32(ICS, adapter->rx_ring->ims_val); - else - ew32(ICS, E1000_ICS_RXDMT0); - - /* flush pending descriptors to memory before detecting Tx hang */ - e1000e_flush_descriptors(adapter); - - /* Force detection of hung controller every watchdog period */ - adapter->detect_tx_hung = 1; - - /* - * With 82571 controllers, LAA may be overwritten due to controller - * reset from the other port. Set the appropriate LAA in RAR[0] - */ - if (e1000e_get_laa_state_82571(hw)) - e1000e_rar_set(hw, adapter->hw.mac.addr, 0); - - if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) - e1000e_check_82574_phy_workaround(adapter); - - /* Reset the timer */ - if (!test_bit(__E1000_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, - round_jiffies(jiffies + 2 * HZ)); -} - -#define E1000_TX_FLAGS_CSUM 0x00000001 -#define E1000_TX_FLAGS_VLAN 0x00000002 -#define E1000_TX_FLAGS_TSO 0x00000004 -#define E1000_TX_FLAGS_IPV4 0x00000008 -#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 -#define E1000_TX_FLAGS_VLAN_SHIFT 16 - -static int e1000_tso(struct e1000_adapter *adapter, - struct sk_buff *skb) -{ - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_context_desc *context_desc; - struct e1000_buffer *buffer_info; - unsigned int i; - u32 cmd_length = 0; - u16 ipcse = 0, tucse, mss; - u8 ipcss, ipcso, tucss, tucso, hdr_len; - - if (!skb_is_gso(skb)) - return 0; - - if (skb_header_cloned(skb)) { - int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); - - if (err) - return err; - } - - hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); - mss = skb_shinfo(skb)->gso_size; - if (skb->protocol == htons(ETH_P_IP)) { - struct iphdr *iph = ip_hdr(skb); - iph->tot_len = 0; - iph->check = 0; - tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, - 0, IPPROTO_TCP, 0); - cmd_length = E1000_TXD_CMD_IP; - ipcse = skb_transport_offset(skb) - 1; - } else if (skb_is_gso_v6(skb)) { - ipv6_hdr(skb)->payload_len = 0; - tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, - &ipv6_hdr(skb)->daddr, - 0, IPPROTO_TCP, 0); - ipcse = 0; - } - ipcss = skb_network_offset(skb); - ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; - tucss = skb_transport_offset(skb); - tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; - tucse = 0; - - cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | - E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); - - i = tx_ring->next_to_use; - context_desc = E1000_CONTEXT_DESC(*tx_ring, i); - buffer_info = &tx_ring->buffer_info[i]; - - context_desc->lower_setup.ip_fields.ipcss = ipcss; - context_desc->lower_setup.ip_fields.ipcso = ipcso; - context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); - context_desc->upper_setup.tcp_fields.tucss = tucss; - context_desc->upper_setup.tcp_fields.tucso = tucso; - context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); - context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); - context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; - context_desc->cmd_and_length = cpu_to_le32(cmd_length); - - buffer_info->time_stamp = jiffies; - buffer_info->next_to_watch = i; - - i++; - if (i == tx_ring->count) - i = 0; - tx_ring->next_to_use = i; - - return 1; -} - -static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) -{ - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_context_desc *context_desc; - struct e1000_buffer *buffer_info; - unsigned int i; - u8 css; - u32 cmd_len = E1000_TXD_CMD_DEXT; - __be16 protocol; - - if (skb->ip_summed != CHECKSUM_PARTIAL) - return 0; - - if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) - protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; - else - protocol = skb->protocol; - - switch (protocol) { - case cpu_to_be16(ETH_P_IP): - if (ip_hdr(skb)->protocol == IPPROTO_TCP) - cmd_len |= E1000_TXD_CMD_TCP; - break; - case cpu_to_be16(ETH_P_IPV6): - /* XXX not handling all IPV6 headers */ - if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) - cmd_len |= E1000_TXD_CMD_TCP; - break; - default: - if (unlikely(net_ratelimit())) - e_warn("checksum_partial proto=%x!\n", - be16_to_cpu(protocol)); - break; - } - - css = skb_checksum_start_offset(skb); - - i = tx_ring->next_to_use; - buffer_info = &tx_ring->buffer_info[i]; - context_desc = E1000_CONTEXT_DESC(*tx_ring, i); - - context_desc->lower_setup.ip_config = 0; - context_desc->upper_setup.tcp_fields.tucss = css; - context_desc->upper_setup.tcp_fields.tucso = - css + skb->csum_offset; - context_desc->upper_setup.tcp_fields.tucse = 0; - context_desc->tcp_seg_setup.data = 0; - context_desc->cmd_and_length = cpu_to_le32(cmd_len); - - buffer_info->time_stamp = jiffies; - buffer_info->next_to_watch = i; - - i++; - if (i == tx_ring->count) - i = 0; - tx_ring->next_to_use = i; - - return 1; -} - -#define E1000_MAX_PER_TXD 8192 -#define E1000_MAX_TXD_PWR 12 - -static int e1000_tx_map(struct e1000_adapter *adapter, - struct sk_buff *skb, unsigned int first, - unsigned int max_per_txd, unsigned int nr_frags, - unsigned int mss) -{ - struct e1000_ring *tx_ring = adapter->tx_ring; - struct pci_dev *pdev = adapter->pdev; - struct e1000_buffer *buffer_info; - unsigned int len = skb_headlen(skb); - unsigned int offset = 0, size, count = 0, i; - unsigned int f, bytecount, segs; - - i = tx_ring->next_to_use; - - while (len) { - buffer_info = &tx_ring->buffer_info[i]; - size = min(len, max_per_txd); - - buffer_info->length = size; - buffer_info->time_stamp = jiffies; - buffer_info->next_to_watch = i; - buffer_info->dma = dma_map_single(&pdev->dev, - skb->data + offset, - size, DMA_TO_DEVICE); - buffer_info->mapped_as_page = false; - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) - goto dma_error; - - len -= size; - offset += size; - count++; - - if (len) { - i++; - if (i == tx_ring->count) - i = 0; - } - } - - for (f = 0; f < nr_frags; f++) { - struct skb_frag_struct *frag; - - frag = &skb_shinfo(skb)->frags[f]; - len = frag->size; - offset = frag->page_offset; - - while (len) { - i++; - if (i == tx_ring->count) - i = 0; - - buffer_info = &tx_ring->buffer_info[i]; - size = min(len, max_per_txd); - - buffer_info->length = size; - buffer_info->time_stamp = jiffies; - buffer_info->next_to_watch = i; - buffer_info->dma = dma_map_page(&pdev->dev, frag->page, - offset, size, - DMA_TO_DEVICE); - buffer_info->mapped_as_page = true; - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) - goto dma_error; - - len -= size; - offset += size; - count++; - } - } - - segs = skb_shinfo(skb)->gso_segs ? : 1; - /* multiply data chunks by size of headers */ - bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; - - tx_ring->buffer_info[i].skb = skb; - tx_ring->buffer_info[i].segs = segs; - tx_ring->buffer_info[i].bytecount = bytecount; - tx_ring->buffer_info[first].next_to_watch = i; - - return count; - -dma_error: - dev_err(&pdev->dev, "Tx DMA map failed\n"); - buffer_info->dma = 0; - if (count) - count--; - - while (count--) { - if (i == 0) - i += tx_ring->count; - i--; - buffer_info = &tx_ring->buffer_info[i]; - e1000_put_txbuf(adapter, buffer_info); - } - - return 0; -} - -static void e1000_tx_queue(struct e1000_adapter *adapter, - int tx_flags, int count) -{ - struct e1000_ring *tx_ring = adapter->tx_ring; - struct e1000_tx_desc *tx_desc = NULL; - struct e1000_buffer *buffer_info; - u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; - unsigned int i; - - if (tx_flags & E1000_TX_FLAGS_TSO) { - txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | - E1000_TXD_CMD_TSE; - txd_upper |= E1000_TXD_POPTS_TXSM << 8; - - if (tx_flags & E1000_TX_FLAGS_IPV4) - txd_upper |= E1000_TXD_POPTS_IXSM << 8; - } - - if (tx_flags & E1000_TX_FLAGS_CSUM) { - txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; - txd_upper |= E1000_TXD_POPTS_TXSM << 8; - } - - if (tx_flags & E1000_TX_FLAGS_VLAN) { - txd_lower |= E1000_TXD_CMD_VLE; - txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); - } - - i = tx_ring->next_to_use; - - do { - buffer_info = &tx_ring->buffer_info[i]; - tx_desc = E1000_TX_DESC(*tx_ring, i); - tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); - tx_desc->lower.data = - cpu_to_le32(txd_lower | buffer_info->length); - tx_desc->upper.data = cpu_to_le32(txd_upper); - - i++; - if (i == tx_ring->count) - i = 0; - } while (--count > 0); - - tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); - - /* - * Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). - */ - wmb(); - - tx_ring->next_to_use = i; - writel(i, adapter->hw.hw_addr + tx_ring->tail); - /* - * we need this if more than one processor can write to our tail - * at a time, it synchronizes IO on IA64/Altix systems - */ - mmiowb(); -} - -#define MINIMUM_DHCP_PACKET_SIZE 282 -static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, - struct sk_buff *skb) -{ - struct e1000_hw *hw = &adapter->hw; - u16 length, offset; - - if (vlan_tx_tag_present(skb)) { - if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && - (adapter->hw.mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) - return 0; - } - - if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) - return 0; - - if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) - return 0; - - { - const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); - struct udphdr *udp; - - if (ip->protocol != IPPROTO_UDP) - return 0; - - udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); - if (ntohs(udp->dest) != 67) - return 0; - - offset = (u8 *)udp + 8 - skb->data; - length = skb->len - offset; - return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); - } - - return 0; -} - -static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - netif_stop_queue(netdev); - /* - * Herbert's original patch had: - * smp_mb__after_netif_stop_queue(); - * but since that doesn't exist yet, just open code it. - */ - smp_mb(); - - /* - * We need to check again in a case another CPU has just - * made room available. - */ - if (e1000_desc_unused(adapter->tx_ring) < size) - return -EBUSY; - - /* A reprieve! */ - netif_start_queue(netdev); - ++adapter->restart_queue; - return 0; -} - -static int e1000_maybe_stop_tx(struct net_device *netdev, int size) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (e1000_desc_unused(adapter->tx_ring) >= size) - return 0; - return __e1000_maybe_stop_tx(netdev, size); -} - -#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) -static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, - struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_ring *tx_ring = adapter->tx_ring; - unsigned int first; - unsigned int max_per_txd = E1000_MAX_PER_TXD; - unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; - unsigned int tx_flags = 0; - unsigned int len = skb_headlen(skb); - unsigned int nr_frags; - unsigned int mss; - int count = 0; - int tso; - unsigned int f; - - if (test_bit(__E1000_DOWN, &adapter->state)) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - if (skb->len <= 0) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - mss = skb_shinfo(skb)->gso_size; - /* - * The controller does a simple calculation to - * make sure there is enough room in the FIFO before - * initiating the DMA for each buffer. The calc is: - * 4 = ceil(buffer len/mss). To make sure we don't - * overrun the FIFO, adjust the max buffer len if mss - * drops. - */ - if (mss) { - u8 hdr_len; - max_per_txd = min(mss << 2, max_per_txd); - max_txd_pwr = fls(max_per_txd) - 1; - - /* - * TSO Workaround for 82571/2/3 Controllers -- if skb->data - * points to just header, pull a few bytes of payload from - * frags into skb->data - */ - hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); - /* - * we do this workaround for ES2LAN, but it is un-necessary, - * avoiding it could save a lot of cycles - */ - if (skb->data_len && (hdr_len == len)) { - unsigned int pull_size; - - pull_size = min((unsigned int)4, skb->data_len); - if (!__pskb_pull_tail(skb, pull_size)) { - e_err("__pskb_pull_tail failed.\n"); - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - len = skb_headlen(skb); - } - } - - /* reserve a descriptor for the offload context */ - if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) - count++; - count++; - - count += TXD_USE_COUNT(len, max_txd_pwr); - - nr_frags = skb_shinfo(skb)->nr_frags; - for (f = 0; f < nr_frags; f++) - count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, - max_txd_pwr); - - if (adapter->hw.mac.tx_pkt_filtering) - e1000_transfer_dhcp_info(adapter, skb); - - /* - * need: count + 2 desc gap to keep tail from touching - * head, otherwise try next time - */ - if (e1000_maybe_stop_tx(netdev, count + 2)) - return NETDEV_TX_BUSY; - - if (vlan_tx_tag_present(skb)) { - tx_flags |= E1000_TX_FLAGS_VLAN; - tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); - } - - first = tx_ring->next_to_use; - - tso = e1000_tso(adapter, skb); - if (tso < 0) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - if (tso) - tx_flags |= E1000_TX_FLAGS_TSO; - else if (e1000_tx_csum(adapter, skb)) - tx_flags |= E1000_TX_FLAGS_CSUM; - - /* - * Old method was to assume IPv4 packet by default if TSO was enabled. - * 82571 hardware supports TSO capabilities for IPv6 as well... - * no longer assume, we must. - */ - if (skb->protocol == htons(ETH_P_IP)) - tx_flags |= E1000_TX_FLAGS_IPV4; - - /* if count is 0 then mapping error has occurred */ - count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); - if (count) { - e1000_tx_queue(adapter, tx_flags, count); - /* Make sure there is space in the ring for the next send. */ - e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); - - } else { - dev_kfree_skb_any(skb); - tx_ring->buffer_info[first].time_stamp = 0; - tx_ring->next_to_use = first; - } - - return NETDEV_TX_OK; -} - -/** - * e1000_tx_timeout - Respond to a Tx Hang - * @netdev: network interface device structure - **/ -static void e1000_tx_timeout(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - /* Do the reset outside of interrupt context */ - adapter->tx_timeout_count++; - schedule_work(&adapter->reset_task); -} - -static void e1000_reset_task(struct work_struct *work) -{ - struct e1000_adapter *adapter; - adapter = container_of(work, struct e1000_adapter, reset_task); - - /* don't run the task if already down */ - if (test_bit(__E1000_DOWN, &adapter->state)) - return; - - if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) && - (adapter->flags & FLAG_RX_RESTART_NOW))) { - e1000e_dump(adapter); - e_err("Reset adapter\n"); - } - e1000e_reinit_locked(adapter); -} - -/** - * e1000_get_stats64 - Get System Network Statistics - * @netdev: network interface device structure - * @stats: rtnl_link_stats64 pointer - * - * Returns the address of the device statistics structure. - **/ -struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, - struct rtnl_link_stats64 *stats) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - memset(stats, 0, sizeof(struct rtnl_link_stats64)); - spin_lock(&adapter->stats64_lock); - e1000e_update_stats(adapter); - /* Fill out the OS statistics structure */ - stats->rx_bytes = adapter->stats.gorc; - stats->rx_packets = adapter->stats.gprc; - stats->tx_bytes = adapter->stats.gotc; - stats->tx_packets = adapter->stats.gptc; - stats->multicast = adapter->stats.mprc; - stats->collisions = adapter->stats.colc; - - /* Rx Errors */ - - /* - * RLEC on some newer hardware can be incorrect so build - * our own version based on RUC and ROC - */ - stats->rx_errors = adapter->stats.rxerrc + - adapter->stats.crcerrs + adapter->stats.algnerrc + - adapter->stats.ruc + adapter->stats.roc + - adapter->stats.cexterr; - stats->rx_length_errors = adapter->stats.ruc + - adapter->stats.roc; - stats->rx_crc_errors = adapter->stats.crcerrs; - stats->rx_frame_errors = adapter->stats.algnerrc; - stats->rx_missed_errors = adapter->stats.mpc; - - /* Tx Errors */ - stats->tx_errors = adapter->stats.ecol + - adapter->stats.latecol; - stats->tx_aborted_errors = adapter->stats.ecol; - stats->tx_window_errors = adapter->stats.latecol; - stats->tx_carrier_errors = adapter->stats.tncrs; - - /* Tx Dropped needs to be maintained elsewhere */ - - spin_unlock(&adapter->stats64_lock); - return stats; -} - -/** - * e1000_change_mtu - Change the Maximum Transfer Unit - * @netdev: network interface device structure - * @new_mtu: new value for maximum frame size - * - * Returns 0 on success, negative on failure - **/ -static int e1000_change_mtu(struct net_device *netdev, int new_mtu) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; - - /* Jumbo frame support */ - if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && - !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { - e_err("Jumbo Frames not supported.\n"); - return -EINVAL; - } - - /* Supported frame sizes */ - if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || - (max_frame > adapter->max_hw_frame_size)) { - e_err("Unsupported MTU setting\n"); - return -EINVAL; - } - - /* Jumbo frame workaround on 82579 requires CRC be stripped */ - if ((adapter->hw.mac.type == e1000_pch2lan) && - !(adapter->flags2 & FLAG2_CRC_STRIPPING) && - (new_mtu > ETH_DATA_LEN)) { - e_err("Jumbo Frames not supported on 82579 when CRC " - "stripping is disabled.\n"); - return -EINVAL; - } - - /* 82573 Errata 17 */ - if (((adapter->hw.mac.type == e1000_82573) || - (adapter->hw.mac.type == e1000_82574)) && - (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) { - adapter->flags2 |= FLAG2_DISABLE_ASPM_L1; - e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1); - } - - while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ - adapter->max_frame_size = max_frame; - e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); - netdev->mtu = new_mtu; - if (netif_running(netdev)) - e1000e_down(adapter); - - /* - * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN - * means we reserve 2 more, this pushes us to allocate from the next - * larger slab size. - * i.e. RXBUFFER_2048 --> size-4096 slab - * However with the new *_jumbo_rx* routines, jumbo receives will use - * fragmented skbs - */ - - if (max_frame <= 2048) - adapter->rx_buffer_len = 2048; - else - adapter->rx_buffer_len = 4096; - - /* adjust allocation if LPE protects us, and we aren't using SBP */ - if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || - (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) - adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN - + ETH_FCS_LEN; - - if (netif_running(netdev)) - e1000e_up(adapter); - else - e1000e_reset(adapter); - - clear_bit(__E1000_RESETTING, &adapter->state); - - return 0; -} - -static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, - int cmd) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct mii_ioctl_data *data = if_mii(ifr); - - if (adapter->hw.phy.media_type != e1000_media_type_copper) - return -EOPNOTSUPP; - - switch (cmd) { - case SIOCGMIIPHY: - data->phy_id = adapter->hw.phy.addr; - break; - case SIOCGMIIREG: - e1000_phy_read_status(adapter); - - switch (data->reg_num & 0x1F) { - case MII_BMCR: - data->val_out = adapter->phy_regs.bmcr; - break; - case MII_BMSR: - data->val_out = adapter->phy_regs.bmsr; - break; - case MII_PHYSID1: - data->val_out = (adapter->hw.phy.id >> 16); - break; - case MII_PHYSID2: - data->val_out = (adapter->hw.phy.id & 0xFFFF); - break; - case MII_ADVERTISE: - data->val_out = adapter->phy_regs.advertise; - break; - case MII_LPA: - data->val_out = adapter->phy_regs.lpa; - break; - case MII_EXPANSION: - data->val_out = adapter->phy_regs.expansion; - break; - case MII_CTRL1000: - data->val_out = adapter->phy_regs.ctrl1000; - break; - case MII_STAT1000: - data->val_out = adapter->phy_regs.stat1000; - break; - case MII_ESTATUS: - data->val_out = adapter->phy_regs.estatus; - break; - default: - return -EIO; - } - break; - case SIOCSMIIREG: - default: - return -EOPNOTSUPP; - } - return 0; -} - -static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) -{ - switch (cmd) { - case SIOCGMIIPHY: - case SIOCGMIIREG: - case SIOCSMIIREG: - return e1000_mii_ioctl(netdev, ifr, cmd); - default: - return -EOPNOTSUPP; - } -} - -static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) -{ - struct e1000_hw *hw = &adapter->hw; - u32 i, mac_reg; - u16 phy_reg, wuc_enable; - int retval = 0; - - /* copy MAC RARs to PHY RARs */ - e1000_copy_rx_addrs_to_phy_ich8lan(hw); - - retval = hw->phy.ops.acquire(hw); - if (retval) { - e_err("Could not acquire PHY\n"); - return retval; - } - - /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ - retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); - if (retval) - goto out; - - /* copy MAC MTA to PHY MTA - only needed for pchlan */ - for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { - mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); - hw->phy.ops.write_reg_page(hw, BM_MTA(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, - (u16)((mac_reg >> 16) & 0xFFFF)); - } - - /* configure PHY Rx Control register */ - hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); - mac_reg = er32(RCTL); - if (mac_reg & E1000_RCTL_UPE) - phy_reg |= BM_RCTL_UPE; - if (mac_reg & E1000_RCTL_MPE) - phy_reg |= BM_RCTL_MPE; - phy_reg &= ~(BM_RCTL_MO_MASK); - if (mac_reg & E1000_RCTL_MO_3) - phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) - << BM_RCTL_MO_SHIFT); - if (mac_reg & E1000_RCTL_BAM) - phy_reg |= BM_RCTL_BAM; - if (mac_reg & E1000_RCTL_PMCF) - phy_reg |= BM_RCTL_PMCF; - mac_reg = er32(CTRL); - if (mac_reg & E1000_CTRL_RFCE) - phy_reg |= BM_RCTL_RFCE; - hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); - - /* enable PHY wakeup in MAC register */ - ew32(WUFC, wufc); - ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); - - /* configure and enable PHY wakeup in PHY registers */ - hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); - hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); - - /* activate PHY wakeup */ - wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; - retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); - if (retval) - e_err("Could not set PHY Host Wakeup bit\n"); -out: - hw->phy.ops.release(hw); - - return retval; -} - -static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, - bool runtime) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 ctrl, ctrl_ext, rctl, status; - /* Runtime suspend should only enable wakeup for link changes */ - u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; - int retval = 0; - - netif_device_detach(netdev); - - if (netif_running(netdev)) { - WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); - e1000e_down(adapter); - e1000_free_irq(adapter); - } - e1000e_reset_interrupt_capability(adapter); - - retval = pci_save_state(pdev); - if (retval) - return retval; - - status = er32(STATUS); - if (status & E1000_STATUS_LU) - wufc &= ~E1000_WUFC_LNKC; - - if (wufc) { - e1000_setup_rctl(adapter); - e1000_set_multi(netdev); - - /* turn on all-multi mode if wake on multicast is enabled */ - if (wufc & E1000_WUFC_MC) { - rctl = er32(RCTL); - rctl |= E1000_RCTL_MPE; - ew32(RCTL, rctl); - } - - ctrl = er32(CTRL); - /* advertise wake from D3Cold */ - #define E1000_CTRL_ADVD3WUC 0x00100000 - /* phy power management enable */ - #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 - ctrl |= E1000_CTRL_ADVD3WUC; - if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) - ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; - ew32(CTRL, ctrl); - - if (adapter->hw.phy.media_type == e1000_media_type_fiber || - adapter->hw.phy.media_type == - e1000_media_type_internal_serdes) { - /* keep the laser running in D3 */ - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; - ew32(CTRL_EXT, ctrl_ext); - } - - if (adapter->flags & FLAG_IS_ICH) - e1000_suspend_workarounds_ich8lan(&adapter->hw); - - /* Allow time for pending master requests to run */ - e1000e_disable_pcie_master(&adapter->hw); - - if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { - /* enable wakeup by the PHY */ - retval = e1000_init_phy_wakeup(adapter, wufc); - if (retval) - return retval; - } else { - /* enable wakeup by the MAC */ - ew32(WUFC, wufc); - ew32(WUC, E1000_WUC_PME_EN); - } - } else { - ew32(WUC, 0); - ew32(WUFC, 0); - } - - *enable_wake = !!wufc; - - /* make sure adapter isn't asleep if manageability is enabled */ - if ((adapter->flags & FLAG_MNG_PT_ENABLED) || - (hw->mac.ops.check_mng_mode(hw))) - *enable_wake = true; - - if (adapter->hw.phy.type == e1000_phy_igp_3) - e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); - - /* - * Release control of h/w to f/w. If f/w is AMT enabled, this - * would have already happened in close and is redundant. - */ - e1000e_release_hw_control(adapter); - - pci_disable_device(pdev); - - return 0; -} - -static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) -{ - if (sleep && wake) { - pci_prepare_to_sleep(pdev); - return; - } - - pci_wake_from_d3(pdev, wake); - pci_set_power_state(pdev, PCI_D3hot); -} - -static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, - bool wake) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - /* - * The pci-e switch on some quad port adapters will report a - * correctable error when the MAC transitions from D0 to D3. To - * prevent this we need to mask off the correctable errors on the - * downstream port of the pci-e switch. - */ - if (adapter->flags & FLAG_IS_QUAD_PORT) { - struct pci_dev *us_dev = pdev->bus->self; - int pos = pci_pcie_cap(us_dev); - u16 devctl; - - pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); - pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, - (devctl & ~PCI_EXP_DEVCTL_CERE)); - - e1000_power_off(pdev, sleep, wake); - - pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); - } else { - e1000_power_off(pdev, sleep, wake); - } -} - -#ifdef CONFIG_PCIEASPM -static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) -{ - pci_disable_link_state_locked(pdev, state); -} -#else -static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) -{ - int pos; - u16 reg16; - - /* - * Both device and parent should have the same ASPM setting. - * Disable ASPM in downstream component first and then upstream. - */ - pos = pci_pcie_cap(pdev); - pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16); - reg16 &= ~state; - pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); - - if (!pdev->bus->self) - return; - - pos = pci_pcie_cap(pdev->bus->self); - pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16); - reg16 &= ~state; - pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); -} -#endif -static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) -{ - dev_info(&pdev->dev, "Disabling ASPM %s %s\n", - (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", - (state & PCIE_LINK_STATE_L1) ? "L1" : ""); - - __e1000e_disable_aspm(pdev, state); -} - -#ifdef CONFIG_PM -static bool e1000e_pm_ready(struct e1000_adapter *adapter) -{ - return !!adapter->tx_ring->buffer_info; -} - -static int __e1000_resume(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 aspm_disable_flag = 0; - u32 err; - - if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) - aspm_disable_flag = PCIE_LINK_STATE_L0S; - if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) - aspm_disable_flag |= PCIE_LINK_STATE_L1; - if (aspm_disable_flag) - e1000e_disable_aspm(pdev, aspm_disable_flag); - - pci_set_power_state(pdev, PCI_D0); - pci_restore_state(pdev); - pci_save_state(pdev); - - e1000e_set_interrupt_capability(adapter); - if (netif_running(netdev)) { - err = e1000_request_irq(adapter); - if (err) - return err; - } - - if (hw->mac.type == e1000_pch2lan) - e1000_resume_workarounds_pchlan(&adapter->hw); - - e1000e_power_up_phy(adapter); - - /* report the system wakeup cause from S3/S4 */ - if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { - u16 phy_data; - - e1e_rphy(&adapter->hw, BM_WUS, &phy_data); - if (phy_data) { - e_info("PHY Wakeup cause - %s\n", - phy_data & E1000_WUS_EX ? "Unicast Packet" : - phy_data & E1000_WUS_MC ? "Multicast Packet" : - phy_data & E1000_WUS_BC ? "Broadcast Packet" : - phy_data & E1000_WUS_MAG ? "Magic Packet" : - phy_data & E1000_WUS_LNKC ? "Link Status " - " Change" : "other"); - } - e1e_wphy(&adapter->hw, BM_WUS, ~0); - } else { - u32 wus = er32(WUS); - if (wus) { - e_info("MAC Wakeup cause - %s\n", - wus & E1000_WUS_EX ? "Unicast Packet" : - wus & E1000_WUS_MC ? "Multicast Packet" : - wus & E1000_WUS_BC ? "Broadcast Packet" : - wus & E1000_WUS_MAG ? "Magic Packet" : - wus & E1000_WUS_LNKC ? "Link Status Change" : - "other"); - } - ew32(WUS, ~0); - } - - e1000e_reset(adapter); - - e1000_init_manageability_pt(adapter); - - if (netif_running(netdev)) - e1000e_up(adapter); - - netif_device_attach(netdev); - - /* - * If the controller has AMT, do not set DRV_LOAD until the interface - * is up. For all other cases, let the f/w know that the h/w is now - * under the control of the driver. - */ - if (!(adapter->flags & FLAG_HAS_AMT)) - e1000e_get_hw_control(adapter); - - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int e1000_suspend(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - int retval; - bool wake; - - retval = __e1000_shutdown(pdev, &wake, false); - if (!retval) - e1000_complete_shutdown(pdev, true, wake); - - return retval; -} - -static int e1000_resume(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (e1000e_pm_ready(adapter)) - adapter->idle_check = true; - - return __e1000_resume(pdev); -} -#endif /* CONFIG_PM_SLEEP */ - -#ifdef CONFIG_PM_RUNTIME -static int e1000_runtime_suspend(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (e1000e_pm_ready(adapter)) { - bool wake; - - __e1000_shutdown(pdev, &wake, true); - } - - return 0; -} - -static int e1000_idle(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (!e1000e_pm_ready(adapter)) - return 0; - - if (adapter->idle_check) { - adapter->idle_check = false; - if (!e1000e_has_link(adapter)) - pm_schedule_suspend(dev, MSEC_PER_SEC); - } - - return -EBUSY; -} - -static int e1000_runtime_resume(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (!e1000e_pm_ready(adapter)) - return 0; - - adapter->idle_check = !dev->power.runtime_auto; - return __e1000_resume(pdev); -} -#endif /* CONFIG_PM_RUNTIME */ -#endif /* CONFIG_PM */ - -static void e1000_shutdown(struct pci_dev *pdev) -{ - bool wake = false; - - __e1000_shutdown(pdev, &wake, false); - - if (system_state == SYSTEM_POWER_OFF) - e1000_complete_shutdown(pdev, false, wake); -} - -#ifdef CONFIG_NET_POLL_CONTROLLER - -static irqreturn_t e1000_intr_msix(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (adapter->msix_entries) { - int vector, msix_irq; - - vector = 0; - msix_irq = adapter->msix_entries[vector].vector; - disable_irq(msix_irq); - e1000_intr_msix_rx(msix_irq, netdev); - enable_irq(msix_irq); - - vector++; - msix_irq = adapter->msix_entries[vector].vector; - disable_irq(msix_irq); - e1000_intr_msix_tx(msix_irq, netdev); - enable_irq(msix_irq); - - vector++; - msix_irq = adapter->msix_entries[vector].vector; - disable_irq(msix_irq); - e1000_msix_other(msix_irq, netdev); - enable_irq(msix_irq); - } - - return IRQ_HANDLED; -} - -/* - * Polling 'interrupt' - used by things like netconsole to send skbs - * without having to re-enable interrupts. It's not called while - * the interrupt routine is executing. - */ -static void e1000_netpoll(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - switch (adapter->int_mode) { - case E1000E_INT_MODE_MSIX: - e1000_intr_msix(adapter->pdev->irq, netdev); - break; - case E1000E_INT_MODE_MSI: - disable_irq(adapter->pdev->irq); - e1000_intr_msi(adapter->pdev->irq, netdev); - enable_irq(adapter->pdev->irq); - break; - default: /* E1000E_INT_MODE_LEGACY */ - disable_irq(adapter->pdev->irq); - e1000_intr(adapter->pdev->irq, netdev); - enable_irq(adapter->pdev->irq); - break; - } -} -#endif - -/** - * e1000_io_error_detected - called when PCI error is detected - * @pdev: Pointer to PCI device - * @state: The current pci connection state - * - * This function is called after a PCI bus error affecting - * this device has been detected. - */ -static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, - pci_channel_state_t state) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - netif_device_detach(netdev); - - if (state == pci_channel_io_perm_failure) - return PCI_ERS_RESULT_DISCONNECT; - - if (netif_running(netdev)) - e1000e_down(adapter); - pci_disable_device(pdev); - - /* Request a slot slot reset. */ - return PCI_ERS_RESULT_NEED_RESET; -} - -/** - * e1000_io_slot_reset - called after the pci bus has been reset. - * @pdev: Pointer to PCI device - * - * Restart the card from scratch, as if from a cold-boot. Implementation - * resembles the first-half of the e1000_resume routine. - */ -static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 aspm_disable_flag = 0; - int err; - pci_ers_result_t result; - - if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) - aspm_disable_flag = PCIE_LINK_STATE_L0S; - if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) - aspm_disable_flag |= PCIE_LINK_STATE_L1; - if (aspm_disable_flag) - e1000e_disable_aspm(pdev, aspm_disable_flag); - - err = pci_enable_device_mem(pdev); - if (err) { - dev_err(&pdev->dev, - "Cannot re-enable PCI device after reset.\n"); - result = PCI_ERS_RESULT_DISCONNECT; - } else { - pci_set_master(pdev); - pdev->state_saved = true; - pci_restore_state(pdev); - - pci_enable_wake(pdev, PCI_D3hot, 0); - pci_enable_wake(pdev, PCI_D3cold, 0); - - e1000e_reset(adapter); - ew32(WUS, ~0); - result = PCI_ERS_RESULT_RECOVERED; - } - - pci_cleanup_aer_uncorrect_error_status(pdev); - - return result; -} - -/** - * e1000_io_resume - called when traffic can start flowing again. - * @pdev: Pointer to PCI device - * - * This callback is called when the error recovery driver tells us that - * its OK to resume normal operation. Implementation resembles the - * second-half of the e1000_resume routine. - */ -static void e1000_io_resume(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - e1000_init_manageability_pt(adapter); - - if (netif_running(netdev)) { - if (e1000e_up(adapter)) { - dev_err(&pdev->dev, - "can't bring device back up after reset\n"); - return; - } - } - - netif_device_attach(netdev); - - /* - * If the controller has AMT, do not set DRV_LOAD until the interface - * is up. For all other cases, let the f/w know that the h/w is now - * under the control of the driver. - */ - if (!(adapter->flags & FLAG_HAS_AMT)) - e1000e_get_hw_control(adapter); - -} - -static void e1000_print_device_info(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 ret_val; - u8 pba_str[E1000_PBANUM_LENGTH]; - - /* print bus type/speed/width info */ - e_info("(PCI Express:2.5GT/s:%s) %pM\n", - /* bus width */ - ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : - "Width x1"), - /* MAC address */ - netdev->dev_addr); - e_info("Intel(R) PRO/%s Network Connection\n", - (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); - ret_val = e1000_read_pba_string_generic(hw, pba_str, - E1000_PBANUM_LENGTH); - if (ret_val) - strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1); - e_info("MAC: %d, PHY: %d, PBA No: %s\n", - hw->mac.type, hw->phy.type, pba_str); -} - -static void e1000_eeprom_checks(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int ret_val; - u16 buf = 0; - - if (hw->mac.type != e1000_82573) - return; - - ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); - if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { - /* Deep Smart Power Down (DSPD) */ - dev_warn(&adapter->pdev->dev, - "Warning: detected DSPD enabled in EEPROM\n"); - } -} - -static const struct net_device_ops e1000e_netdev_ops = { - .ndo_open = e1000_open, - .ndo_stop = e1000_close, - .ndo_start_xmit = e1000_xmit_frame, - .ndo_get_stats64 = e1000e_get_stats64, - .ndo_set_multicast_list = e1000_set_multi, - .ndo_set_mac_address = e1000_set_mac, - .ndo_change_mtu = e1000_change_mtu, - .ndo_do_ioctl = e1000_ioctl, - .ndo_tx_timeout = e1000_tx_timeout, - .ndo_validate_addr = eth_validate_addr, - - .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, - .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, -#ifdef CONFIG_NET_POLL_CONTROLLER - .ndo_poll_controller = e1000_netpoll, -#endif -}; - -/** - * e1000_probe - Device Initialization Routine - * @pdev: PCI device information struct - * @ent: entry in e1000_pci_tbl - * - * Returns 0 on success, negative on failure - * - * e1000_probe initializes an adapter identified by a pci_dev structure. - * The OS initialization, configuring of the adapter private structure, - * and a hardware reset occur. - **/ -static int __devinit e1000_probe(struct pci_dev *pdev, - const struct pci_device_id *ent) -{ - struct net_device *netdev; - struct e1000_adapter *adapter; - struct e1000_hw *hw; - const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; - resource_size_t mmio_start, mmio_len; - resource_size_t flash_start, flash_len; - - static int cards_found; - u16 aspm_disable_flag = 0; - int i, err, pci_using_dac; - u16 eeprom_data = 0; - u16 eeprom_apme_mask = E1000_EEPROM_APME; - - if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) - aspm_disable_flag = PCIE_LINK_STATE_L0S; - if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) - aspm_disable_flag |= PCIE_LINK_STATE_L1; - if (aspm_disable_flag) - e1000e_disable_aspm(pdev, aspm_disable_flag); - - err = pci_enable_device_mem(pdev); - if (err) - return err; - - pci_using_dac = 0; - err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); - if (!err) { - err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); - if (!err) - pci_using_dac = 1; - } else { - err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); - if (err) { - err = dma_set_coherent_mask(&pdev->dev, - DMA_BIT_MASK(32)); - if (err) { - dev_err(&pdev->dev, "No usable DMA " - "configuration, aborting\n"); - goto err_dma; - } - } - } - - err = pci_request_selected_regions_exclusive(pdev, - pci_select_bars(pdev, IORESOURCE_MEM), - e1000e_driver_name); - if (err) - goto err_pci_reg; - - /* AER (Advanced Error Reporting) hooks */ - pci_enable_pcie_error_reporting(pdev); - - pci_set_master(pdev); - /* PCI config space info */ - err = pci_save_state(pdev); - if (err) - goto err_alloc_etherdev; - - err = -ENOMEM; - netdev = alloc_etherdev(sizeof(struct e1000_adapter)); - if (!netdev) - goto err_alloc_etherdev; - - SET_NETDEV_DEV(netdev, &pdev->dev); - - netdev->irq = pdev->irq; - - pci_set_drvdata(pdev, netdev); - adapter = netdev_priv(netdev); - hw = &adapter->hw; - adapter->netdev = netdev; - adapter->pdev = pdev; - adapter->ei = ei; - adapter->pba = ei->pba; - adapter->flags = ei->flags; - adapter->flags2 = ei->flags2; - adapter->hw.adapter = adapter; - adapter->hw.mac.type = ei->mac; - adapter->max_hw_frame_size = ei->max_hw_frame_size; - adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; - - mmio_start = pci_resource_start(pdev, 0); - mmio_len = pci_resource_len(pdev, 0); - - err = -EIO; - adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); - if (!adapter->hw.hw_addr) - goto err_ioremap; - - if ((adapter->flags & FLAG_HAS_FLASH) && - (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { - flash_start = pci_resource_start(pdev, 1); - flash_len = pci_resource_len(pdev, 1); - adapter->hw.flash_address = ioremap(flash_start, flash_len); - if (!adapter->hw.flash_address) - goto err_flashmap; - } - - /* construct the net_device struct */ - netdev->netdev_ops = &e1000e_netdev_ops; - e1000e_set_ethtool_ops(netdev); - netdev->watchdog_timeo = 5 * HZ; - netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); - strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); - - netdev->mem_start = mmio_start; - netdev->mem_end = mmio_start + mmio_len; - - adapter->bd_number = cards_found++; - - e1000e_check_options(adapter); - - /* setup adapter struct */ - err = e1000_sw_init(adapter); - if (err) - goto err_sw_init; - - memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); - memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); - memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); - - err = ei->get_variants(adapter); - if (err) - goto err_hw_init; - - if ((adapter->flags & FLAG_IS_ICH) && - (adapter->flags & FLAG_READ_ONLY_NVM)) - e1000e_write_protect_nvm_ich8lan(&adapter->hw); - - hw->mac.ops.get_bus_info(&adapter->hw); - - adapter->hw.phy.autoneg_wait_to_complete = 0; - - /* Copper options */ - if (adapter->hw.phy.media_type == e1000_media_type_copper) { - adapter->hw.phy.mdix = AUTO_ALL_MODES; - adapter->hw.phy.disable_polarity_correction = 0; - adapter->hw.phy.ms_type = e1000_ms_hw_default; - } - - if (e1000_check_reset_block(&adapter->hw)) - e_info("PHY reset is blocked due to SOL/IDER session.\n"); - - netdev->features = NETIF_F_SG | - NETIF_F_HW_CSUM | - NETIF_F_HW_VLAN_TX | - NETIF_F_HW_VLAN_RX; - - if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) - netdev->features |= NETIF_F_HW_VLAN_FILTER; - - netdev->features |= NETIF_F_TSO; - netdev->features |= NETIF_F_TSO6; - - netdev->vlan_features |= NETIF_F_TSO; - netdev->vlan_features |= NETIF_F_TSO6; - netdev->vlan_features |= NETIF_F_HW_CSUM; - netdev->vlan_features |= NETIF_F_SG; - - if (pci_using_dac) { - netdev->features |= NETIF_F_HIGHDMA; - netdev->vlan_features |= NETIF_F_HIGHDMA; - } - - if (e1000e_enable_mng_pass_thru(&adapter->hw)) - adapter->flags |= FLAG_MNG_PT_ENABLED; - - /* - * before reading the NVM, reset the controller to - * put the device in a known good starting state - */ - adapter->hw.mac.ops.reset_hw(&adapter->hw); - - /* - * systems with ASPM and others may see the checksum fail on the first - * attempt. Let's give it a few tries - */ - for (i = 0;; i++) { - if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) - break; - if (i == 2) { - e_err("The NVM Checksum Is Not Valid\n"); - err = -EIO; - goto err_eeprom; - } - } - - e1000_eeprom_checks(adapter); - - /* copy the MAC address */ - if (e1000e_read_mac_addr(&adapter->hw)) - e_err("NVM Read Error while reading MAC address\n"); - - memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); - memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); - - if (!is_valid_ether_addr(netdev->perm_addr)) { - e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); - err = -EIO; - goto err_eeprom; - } - - init_timer(&adapter->watchdog_timer); - adapter->watchdog_timer.function = e1000_watchdog; - adapter->watchdog_timer.data = (unsigned long) adapter; - - init_timer(&adapter->phy_info_timer); - adapter->phy_info_timer.function = e1000_update_phy_info; - adapter->phy_info_timer.data = (unsigned long) adapter; - - INIT_WORK(&adapter->reset_task, e1000_reset_task); - INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); - INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); - INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); - INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); - - /* Initialize link parameters. User can change them with ethtool */ - adapter->hw.mac.autoneg = 1; - adapter->fc_autoneg = 1; - adapter->hw.fc.requested_mode = e1000_fc_default; - adapter->hw.fc.current_mode = e1000_fc_default; - adapter->hw.phy.autoneg_advertised = 0x2f; - - /* ring size defaults */ - adapter->rx_ring->count = 256; - adapter->tx_ring->count = 256; - - /* - * Initial Wake on LAN setting - If APM wake is enabled in - * the EEPROM, enable the ACPI Magic Packet filter - */ - if (adapter->flags & FLAG_APME_IN_WUC) { - /* APME bit in EEPROM is mapped to WUC.APME */ - eeprom_data = er32(WUC); - eeprom_apme_mask = E1000_WUC_APME; - if ((hw->mac.type > e1000_ich10lan) && - (eeprom_data & E1000_WUC_PHY_WAKE)) - adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; - } else if (adapter->flags & FLAG_APME_IN_CTRL3) { - if (adapter->flags & FLAG_APME_CHECK_PORT_B && - (adapter->hw.bus.func == 1)) - e1000_read_nvm(&adapter->hw, - NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); - else - e1000_read_nvm(&adapter->hw, - NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); - } - - /* fetch WoL from EEPROM */ - if (eeprom_data & eeprom_apme_mask) - adapter->eeprom_wol |= E1000_WUFC_MAG; - - /* - * now that we have the eeprom settings, apply the special cases - * where the eeprom may be wrong or the board simply won't support - * wake on lan on a particular port - */ - if (!(adapter->flags & FLAG_HAS_WOL)) - adapter->eeprom_wol = 0; - - /* initialize the wol settings based on the eeprom settings */ - adapter->wol = adapter->eeprom_wol; - device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); - - /* save off EEPROM version number */ - e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); - - /* reset the hardware with the new settings */ - e1000e_reset(adapter); - - /* - * If the controller has AMT, do not set DRV_LOAD until the interface - * is up. For all other cases, let the f/w know that the h/w is now - * under the control of the driver. - */ - if (!(adapter->flags & FLAG_HAS_AMT)) - e1000e_get_hw_control(adapter); - - strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1); - err = register_netdev(netdev); - if (err) - goto err_register; - - /* carrier off reporting is important to ethtool even BEFORE open */ - netif_carrier_off(netdev); - - e1000_print_device_info(adapter); - - if (pci_dev_run_wake(pdev)) - pm_runtime_put_noidle(&pdev->dev); - - return 0; - -err_register: - if (!(adapter->flags & FLAG_HAS_AMT)) - e1000e_release_hw_control(adapter); -err_eeprom: - if (!e1000_check_reset_block(&adapter->hw)) - e1000_phy_hw_reset(&adapter->hw); -err_hw_init: - kfree(adapter->tx_ring); - kfree(adapter->rx_ring); -err_sw_init: - if (adapter->hw.flash_address) - iounmap(adapter->hw.flash_address); - e1000e_reset_interrupt_capability(adapter); -err_flashmap: - iounmap(adapter->hw.hw_addr); -err_ioremap: - free_netdev(netdev); -err_alloc_etherdev: - pci_release_selected_regions(pdev, - pci_select_bars(pdev, IORESOURCE_MEM)); -err_pci_reg: -err_dma: - pci_disable_device(pdev); - return err; -} - -/** - * e1000_remove - Device Removal Routine - * @pdev: PCI device information struct - * - * e1000_remove is called by the PCI subsystem to alert the driver - * that it should release a PCI device. The could be caused by a - * Hot-Plug event, or because the driver is going to be removed from - * memory. - **/ -static void __devexit e1000_remove(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - bool down = test_bit(__E1000_DOWN, &adapter->state); - - /* - * The timers may be rescheduled, so explicitly disable them - * from being rescheduled. - */ - if (!down) - set_bit(__E1000_DOWN, &adapter->state); - del_timer_sync(&adapter->watchdog_timer); - del_timer_sync(&adapter->phy_info_timer); - - cancel_work_sync(&adapter->reset_task); - cancel_work_sync(&adapter->watchdog_task); - cancel_work_sync(&adapter->downshift_task); - cancel_work_sync(&adapter->update_phy_task); - cancel_work_sync(&adapter->print_hang_task); - - if (!(netdev->flags & IFF_UP)) - e1000_power_down_phy(adapter); - - /* Don't lie to e1000_close() down the road. */ - if (!down) - clear_bit(__E1000_DOWN, &adapter->state); - unregister_netdev(netdev); - - if (pci_dev_run_wake(pdev)) - pm_runtime_get_noresume(&pdev->dev); - - /* - * Release control of h/w to f/w. If f/w is AMT enabled, this - * would have already happened in close and is redundant. - */ - e1000e_release_hw_control(adapter); - - e1000e_reset_interrupt_capability(adapter); - kfree(adapter->tx_ring); - kfree(adapter->rx_ring); - - iounmap(adapter->hw.hw_addr); - if (adapter->hw.flash_address) - iounmap(adapter->hw.flash_address); - pci_release_selected_regions(pdev, - pci_select_bars(pdev, IORESOURCE_MEM)); - - free_netdev(netdev); - - /* AER disable */ - pci_disable_pcie_error_reporting(pdev); - - pci_disable_device(pdev); -} - -/* PCI Error Recovery (ERS) */ -static struct pci_error_handlers e1000_err_handler = { - .error_detected = e1000_io_error_detected, - .slot_reset = e1000_io_slot_reset, - .resume = e1000_io_resume, -}; - -static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), - board_80003es2lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), - board_80003es2lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), - board_80003es2lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), - board_80003es2lan }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, - - { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, - - { } /* terminate list */ -}; -MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); - -#ifdef CONFIG_PM -static const struct dev_pm_ops e1000_pm_ops = { - SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) - SET_RUNTIME_PM_OPS(e1000_runtime_suspend, - e1000_runtime_resume, e1000_idle) -}; -#endif - -/* PCI Device API Driver */ -static struct pci_driver e1000_driver = { - .name = e1000e_driver_name, - .id_table = e1000_pci_tbl, - .probe = e1000_probe, - .remove = __devexit_p(e1000_remove), -#ifdef CONFIG_PM - .driver.pm = &e1000_pm_ops, -#endif - .shutdown = e1000_shutdown, - .err_handler = &e1000_err_handler -}; - -/** - * e1000_init_module - Driver Registration Routine - * - * e1000_init_module is the first routine called when the driver is - * loaded. All it does is register with the PCI subsystem. - **/ -static int __init e1000_init_module(void) -{ - int ret; - pr_info("Intel(R) PRO/1000 Network Driver - %s\n", - e1000e_driver_version); - pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n"); - ret = pci_register_driver(&e1000_driver); - - return ret; -} -module_init(e1000_init_module); - -/** - * e1000_exit_module - Driver Exit Cleanup Routine - * - * e1000_exit_module is called just before the driver is removed - * from memory. - **/ -static void __exit e1000_exit_module(void) -{ - pci_unregister_driver(&e1000_driver); -} -module_exit(e1000_exit_module); - - -MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); -MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); -MODULE_LICENSE("GPL"); -MODULE_VERSION(DRV_VERSION); - -/* e1000_main.c */ diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c deleted file mode 100644 index 4dd9b63273f..00000000000 --- a/drivers/net/e1000e/param.c +++ /dev/null @@ -1,478 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include <linux/netdevice.h> -#include <linux/pci.h> - -#include "e1000.h" - -/* - * This is the only thing that needs to be changed to adjust the - * maximum number of ports that the driver can manage. - */ - -#define E1000_MAX_NIC 32 - -#define OPTION_UNSET -1 -#define OPTION_DISABLED 0 -#define OPTION_ENABLED 1 - -#define COPYBREAK_DEFAULT 256 -unsigned int copybreak = COPYBREAK_DEFAULT; -module_param(copybreak, uint, 0644); -MODULE_PARM_DESC(copybreak, - "Maximum size of packet that is copied to a new buffer on receive"); - -/* - * All parameters are treated the same, as an integer array of values. - * This macro just reduces the need to repeat the same declaration code - * over and over (plus this helps to avoid typo bugs). - */ - -#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } -#define E1000_PARAM(X, desc) \ - static int __devinitdata X[E1000_MAX_NIC+1] \ - = E1000_PARAM_INIT; \ - static unsigned int num_##X; \ - module_param_array_named(X, X, int, &num_##X, 0); \ - MODULE_PARM_DESC(X, desc); - -/* - * Transmit Interrupt Delay in units of 1.024 microseconds - * Tx interrupt delay needs to typically be set to something non-zero - * - * Valid Range: 0-65535 - */ -E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); -#define DEFAULT_TIDV 8 -#define MAX_TXDELAY 0xFFFF -#define MIN_TXDELAY 0 - -/* - * Transmit Absolute Interrupt Delay in units of 1.024 microseconds - * - * Valid Range: 0-65535 - */ -E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); -#define DEFAULT_TADV 32 -#define MAX_TXABSDELAY 0xFFFF -#define MIN_TXABSDELAY 0 - -/* - * Receive Interrupt Delay in units of 1.024 microseconds - * hardware will likely hang if you set this to anything but zero. - * - * Valid Range: 0-65535 - */ -E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); -#define MAX_RXDELAY 0xFFFF -#define MIN_RXDELAY 0 - -/* - * Receive Absolute Interrupt Delay in units of 1.024 microseconds - * - * Valid Range: 0-65535 - */ -E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); -#define MAX_RXABSDELAY 0xFFFF -#define MIN_RXABSDELAY 0 - -/* - * Interrupt Throttle Rate (interrupts/sec) - * - * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative) - */ -E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); -#define DEFAULT_ITR 3 -#define MAX_ITR 100000 -#define MIN_ITR 100 - -/* IntMode (Interrupt Mode) - * - * Valid Range: 0 - 2 - * - * Default Value: 2 (MSI-X) - */ -E1000_PARAM(IntMode, "Interrupt Mode"); -#define MAX_INTMODE 2 -#define MIN_INTMODE 0 - -/* - * Enable Smart Power Down of the PHY - * - * Valid Range: 0, 1 - * - * Default Value: 0 (disabled) - */ -E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); - -/* - * Enable Kumeran Lock Loss workaround - * - * Valid Range: 0, 1 - * - * Default Value: 1 (enabled) - */ -E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround"); - -/* - * Write Protect NVM - * - * Valid Range: 0, 1 - * - * Default Value: 1 (enabled) - */ -E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]"); - -/* - * Enable CRC Stripping - * - * Valid Range: 0, 1 - * - * Default Value: 1 (enabled) - */ -E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \ - "the CRC"); - -struct e1000_option { - enum { enable_option, range_option, list_option } type; - const char *name; - const char *err; - int def; - union { - struct { /* range_option info */ - int min; - int max; - } r; - struct { /* list_option info */ - int nr; - struct e1000_opt_list { int i; char *str; } *p; - } l; - } arg; -}; - -static int __devinit e1000_validate_option(unsigned int *value, - const struct e1000_option *opt, - struct e1000_adapter *adapter) -{ - if (*value == OPTION_UNSET) { - *value = opt->def; - return 0; - } - - switch (opt->type) { - case enable_option: - switch (*value) { - case OPTION_ENABLED: - e_info("%s Enabled\n", opt->name); - return 0; - case OPTION_DISABLED: - e_info("%s Disabled\n", opt->name); - return 0; - } - break; - case range_option: - if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { - e_info("%s set to %i\n", opt->name, *value); - return 0; - } - break; - case list_option: { - int i; - struct e1000_opt_list *ent; - - for (i = 0; i < opt->arg.l.nr; i++) { - ent = &opt->arg.l.p[i]; - if (*value == ent->i) { - if (ent->str[0] != '\0') - e_info("%s\n", ent->str); - return 0; - } - } - } - break; - default: - BUG(); - } - - e_info("Invalid %s value specified (%i) %s\n", opt->name, *value, - opt->err); - *value = opt->def; - return -1; -} - -/** - * e1000e_check_options - Range Checking for Command Line Parameters - * @adapter: board private structure - * - * This routine checks all command line parameters for valid user - * input. If an invalid value is given, or if no user specified - * value exists, a default value is used. The final value is stored - * in a variable in the adapter structure. - **/ -void __devinit e1000e_check_options(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int bd = adapter->bd_number; - - if (bd >= E1000_MAX_NIC) { - e_notice("Warning: no configuration for board #%i\n", bd); - e_notice("Using defaults for all values\n"); - } - - { /* Transmit Interrupt Delay */ - static const struct e1000_option opt = { - .type = range_option, - .name = "Transmit Interrupt Delay", - .err = "using default of " - __MODULE_STRING(DEFAULT_TIDV), - .def = DEFAULT_TIDV, - .arg = { .r = { .min = MIN_TXDELAY, - .max = MAX_TXDELAY } } - }; - - if (num_TxIntDelay > bd) { - adapter->tx_int_delay = TxIntDelay[bd]; - e1000_validate_option(&adapter->tx_int_delay, &opt, - adapter); - } else { - adapter->tx_int_delay = opt.def; - } - } - { /* Transmit Absolute Interrupt Delay */ - static const struct e1000_option opt = { - .type = range_option, - .name = "Transmit Absolute Interrupt Delay", - .err = "using default of " - __MODULE_STRING(DEFAULT_TADV), - .def = DEFAULT_TADV, - .arg = { .r = { .min = MIN_TXABSDELAY, - .max = MAX_TXABSDELAY } } - }; - - if (num_TxAbsIntDelay > bd) { - adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; - e1000_validate_option(&adapter->tx_abs_int_delay, &opt, - adapter); - } else { - adapter->tx_abs_int_delay = opt.def; - } - } - { /* Receive Interrupt Delay */ - static struct e1000_option opt = { - .type = range_option, - .name = "Receive Interrupt Delay", - .err = "using default of " - __MODULE_STRING(DEFAULT_RDTR), - .def = DEFAULT_RDTR, - .arg = { .r = { .min = MIN_RXDELAY, - .max = MAX_RXDELAY } } - }; - - if (num_RxIntDelay > bd) { - adapter->rx_int_delay = RxIntDelay[bd]; - e1000_validate_option(&adapter->rx_int_delay, &opt, - adapter); - } else { - adapter->rx_int_delay = opt.def; - } - } - { /* Receive Absolute Interrupt Delay */ - static const struct e1000_option opt = { - .type = range_option, - .name = "Receive Absolute Interrupt Delay", - .err = "using default of " - __MODULE_STRING(DEFAULT_RADV), - .def = DEFAULT_RADV, - .arg = { .r = { .min = MIN_RXABSDELAY, - .max = MAX_RXABSDELAY } } - }; - - if (num_RxAbsIntDelay > bd) { - adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; - e1000_validate_option(&adapter->rx_abs_int_delay, &opt, - adapter); - } else { - adapter->rx_abs_int_delay = opt.def; - } - } - { /* Interrupt Throttling Rate */ - static const struct e1000_option opt = { - .type = range_option, - .name = "Interrupt Throttling Rate (ints/sec)", - .err = "using default of " - __MODULE_STRING(DEFAULT_ITR), - .def = DEFAULT_ITR, - .arg = { .r = { .min = MIN_ITR, - .max = MAX_ITR } } - }; - - if (num_InterruptThrottleRate > bd) { - adapter->itr = InterruptThrottleRate[bd]; - switch (adapter->itr) { - case 0: - e_info("%s turned off\n", opt.name); - break; - case 1: - e_info("%s set to dynamic mode\n", opt.name); - adapter->itr_setting = adapter->itr; - adapter->itr = 20000; - break; - case 3: - e_info("%s set to dynamic conservative mode\n", - opt.name); - adapter->itr_setting = adapter->itr; - adapter->itr = 20000; - break; - case 4: - e_info("%s set to simplified (2000-8000 ints) " - "mode\n", opt.name); - adapter->itr_setting = 4; - break; - default: - /* - * Save the setting, because the dynamic bits - * change itr. - */ - if (e1000_validate_option(&adapter->itr, &opt, - adapter) && - (adapter->itr == 3)) { - /* - * In case of invalid user value, - * default to conservative mode. - */ - adapter->itr_setting = adapter->itr; - adapter->itr = 20000; - } else { - /* - * Clear the lower two bits because - * they are used as control. - */ - adapter->itr_setting = - adapter->itr & ~3; - } - break; - } - } else { - adapter->itr_setting = opt.def; - adapter->itr = 20000; - } - } - { /* Interrupt Mode */ - static struct e1000_option opt = { - .type = range_option, - .name = "Interrupt Mode", - .err = "defaulting to 2 (MSI-X)", - .def = E1000E_INT_MODE_MSIX, - .arg = { .r = { .min = MIN_INTMODE, - .max = MAX_INTMODE } } - }; - - if (num_IntMode > bd) { - unsigned int int_mode = IntMode[bd]; - e1000_validate_option(&int_mode, &opt, adapter); - adapter->int_mode = int_mode; - } else { - adapter->int_mode = opt.def; - } - } - { /* Smart Power Down */ - static const struct e1000_option opt = { - .type = enable_option, - .name = "PHY Smart Power Down", - .err = "defaulting to Disabled", - .def = OPTION_DISABLED - }; - - if (num_SmartPowerDownEnable > bd) { - unsigned int spd = SmartPowerDownEnable[bd]; - e1000_validate_option(&spd, &opt, adapter); - if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) - && spd) - adapter->flags |= FLAG_SMART_POWER_DOWN; - } - } - { /* CRC Stripping */ - static const struct e1000_option opt = { - .type = enable_option, - .name = "CRC Stripping", - .err = "defaulting to Enabled", - .def = OPTION_ENABLED - }; - - if (num_CrcStripping > bd) { - unsigned int crc_stripping = CrcStripping[bd]; - e1000_validate_option(&crc_stripping, &opt, adapter); - if (crc_stripping == OPTION_ENABLED) - adapter->flags2 |= FLAG2_CRC_STRIPPING; - } else { - adapter->flags2 |= FLAG2_CRC_STRIPPING; - } - } - { /* Kumeran Lock Loss Workaround */ - static const struct e1000_option opt = { - .type = enable_option, - .name = "Kumeran Lock Loss Workaround", - .err = "defaulting to Enabled", - .def = OPTION_ENABLED - }; - - if (num_KumeranLockLoss > bd) { - unsigned int kmrn_lock_loss = KumeranLockLoss[bd]; - e1000_validate_option(&kmrn_lock_loss, &opt, adapter); - if (hw->mac.type == e1000_ich8lan) - e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, - kmrn_lock_loss); - } else { - if (hw->mac.type == e1000_ich8lan) - e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, - opt.def); - } - } - { /* Write-protect NVM */ - static const struct e1000_option opt = { - .type = enable_option, - .name = "Write-protect NVM", - .err = "defaulting to Enabled", - .def = OPTION_ENABLED - }; - - if (adapter->flags & FLAG_IS_ICH) { - if (num_WriteProtectNVM > bd) { - unsigned int write_protect_nvm = WriteProtectNVM[bd]; - e1000_validate_option(&write_protect_nvm, &opt, - adapter); - if (write_protect_nvm) - adapter->flags |= FLAG_READ_ONLY_NVM; - } else { - if (opt.def) - adapter->flags |= FLAG_READ_ONLY_NVM; - } - } - } -} diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c deleted file mode 100644 index 8666476cb9b..00000000000 --- a/drivers/net/e1000e/phy.c +++ /dev/null @@ -1,3377 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2011 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include <linux/delay.h> - -#include "e1000.h" - -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); -static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -static s32 e1000_wait_autoneg(struct e1000_hw *hw); -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read, bool page_set); -static u32 e1000_get_phy_addr_for_hv_page(u32 page); -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read); - -/* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = { - 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - ARRAY_SIZE(e1000_m88_cable_length_table) - -static const u16 e1000_igp_2_cable_length_table[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, - 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, - 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, - 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, - 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, - 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, - 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, - 124}; -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ - ARRAY_SIZE(e1000_igp_2_cable_length_table) - -#define BM_PHY_REG_PAGE(offset) \ - ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) -#define BM_PHY_REG_NUM(offset) \ - ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ - (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ - ~MAX_PHY_REG_ADDRESS))) - -#define HV_INTC_FC_PAGE_START 768 -#define I82578_ADDR_REG 29 -#define I82577_ADDR_REG 16 -#define I82577_CFG_REG 22 -#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ -#define I82577_CTRL_REG 23 - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2 18 -#define I82577_PHY_STATUS_2 26 -#define I82577_PHY_DIAG_STATUS 31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 -#define I82577_PHY_STATUS2_MDIX 0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400 -#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH 0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -/* BM PHY Copper Specific Control 1 */ -#define BM_CS_CTRL1 16 - -#define HV_MUX_DATA_CTRL PHY_REG(776, 16) -#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 -#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 - -/** - * e1000e_check_reset_block_generic - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return 0, otherwise - * return E1000_BLK_PHY_RESET (12). - **/ -s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) -{ - u32 manc; - - manc = er32(MANC); - - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : 0; -} - -/** - * e1000e_get_phy_id - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - **/ -s32 e1000e_get_phy_id(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = 0; - u16 phy_id; - u16 retry_count = 0; - - if (!(phy->ops.read_reg)) - goto out; - - while (retry_count < 2) { - ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); - if (ret_val) - goto out; - - phy->id = (u32)(phy_id << 16); - udelay(20); - ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); - if (ret_val) - goto out; - - phy->id |= (u32)(phy_id & PHY_REVISION_MASK); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - - if (phy->id != 0 && phy->id != PHY_REVISION_MASK) - goto out; - - retry_count++; - } -out: - return ret_val; -} - -/** - * e1000e_phy_reset_dsp - Reset PHY DSP - * @hw: pointer to the HW structure - * - * Reset the digital signal processor. - **/ -s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) -{ - s32 ret_val; - - ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); - if (ret_val) - return ret_val; - - return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); -} - -/** - * e1000e_read_phy_reg_mdic - Read MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - **/ -s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - if (offset > MAX_PHY_REG_ADDRESS) { - e_dbg("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* - * Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - ew32(MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - udelay(50); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - e_dbg("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - e_dbg("MDI Error\n"); - return -E1000_ERR_PHY; - } - *data = (u16) mdic; - - /* - * Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - udelay(100); - - return 0; -} - -/** - * e1000e_write_phy_reg_mdic - Write MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - **/ -s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - if (offset > MAX_PHY_REG_ADDRESS) { - e_dbg("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* - * Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = (((u32)data) | - (offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - ew32(MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - udelay(50); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - e_dbg("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - e_dbg("MDI Error\n"); - return -E1000_ERR_PHY; - } - - /* - * Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - udelay(100); - - return 0; -} - -/** - * e1000e_read_phy_reg_m88 - Read m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000e_write_phy_reg_m88 - Write m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_set_page_igp - Set page as on IGP-like PHY(s) - * @hw: pointer to the HW structure - * @page: page to set (shifted left when necessary) - * - * Sets PHY page required for PHY register access. Assumes semaphore is - * already acquired. Note, this function sets phy.addr to 1 so the caller - * must set it appropriately (if necessary) after this function returns. - **/ -s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) -{ - e_dbg("Setting page 0x%x\n", page); - - hw->phy.addr = 1; - - return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); -} - -/** - * __e1000e_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000e_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - if (!locked) - hw->phy.ops.release(hw); -out: - return ret_val; -} - -/** - * e1000e_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores the - * retrieved information in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000e_read_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000e_read_phy_reg_igp_locked - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000e_read_phy_reg_igp(hw, offset, data, true); -} - -/** - * e1000e_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000e_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - if (!locked) - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000e_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000e_write_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000e_write_phy_reg_igp_locked - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. - * Assumes semaphore already acquired. - **/ -s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000e_write_phy_reg_igp(hw, offset, data, true); -} - -/** - * __e1000_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then reads the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release any acquired semaphores before exiting. - **/ -static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - ew32(KMRNCTRLSTA, kmrnctrlsta); - e1e_flush(); - - udelay(2); - - kmrnctrlsta = er32(KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - if (!locked) - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000e_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset using the - * kumeran interface. The information retrieved is stored in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000e_read_kmrn_reg_locked - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the kumeran interface. The - * information retrieved is stored in data. - * Assumes semaphore already acquired. - **/ -s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, true); -} - -/** - * __e1000_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then write the data to PHY register - * at the offset using the kumeran interface. Release any acquired semaphores - * before exiting. - **/ -static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = 0; - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - ew32(KMRNCTRLSTA, kmrnctrlsta); - e1e_flush(); - - udelay(2); - - if (!locked) - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000e_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to the PHY register at the offset - * using the kumeran interface. Release the acquired semaphore before exiting. - **/ -s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000e_write_kmrn_reg_locked - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Write the data to PHY register at the offset using the kumeran interface. - * Assumes semaphore already acquired. - **/ -s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, true); -} - -/** - * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - * @hw: pointer to the HW structure - * - * Sets up Carrier-sense on Transmit and downshift values. - **/ -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); - if (ret_val) - goto out; - - phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - - /* Enable downshift */ - phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - - ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); - -out: - return ret_val; -} - -/** - * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock - * and downshift values are set also. - **/ -s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* For BM PHY this bit is downshift enable */ - if (phy->type != e1000_phy_bm) - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* - * Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* - * Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift on BM (disabled by default) */ - if (phy->type == e1000_phy_bm) - phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; - - ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((phy->type == e1000_phy_m88) && - (phy->revision < E1000_REVISION_4) && - (phy->id != BME1000_E_PHY_ID_R2)) { - /* - * Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((phy->revision == 2) && - (phy->id == M88E1111_I_PHY_ID)) { - /* 82573L PHY - set the downshift counter to 5x. */ - phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - } - ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { - /* Set PHY page 0, register 29 to 0x0003 */ - ret_val = e1e_wphy(hw, 29, 0x0003); - if (ret_val) - return ret_val; - - /* Set PHY page 0, register 30 to 0x0000 */ - ret_val = e1e_wphy(hw, 30, 0x0000); - if (ret_val) - return ret_val; - } - - /* Commit the changes. */ - ret_val = e1000e_commit_phy(hw); - if (ret_val) { - e_dbg("Error committing the PHY changes\n"); - return ret_val; - } - - if (phy->type == e1000_phy_82578) { - ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* 82578 PHY - set the downshift count to 1x. */ - phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; - phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; - ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - return 0; -} - -/** - * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - * igp PHY's. - **/ -s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) { - e_dbg("Error resetting the PHY.\n"); - return ret_val; - } - - /* - * Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msleep(100); - - /* disable lplu d0 during driver init */ - ret_val = e1000_set_d0_lplu_state(hw, false); - if (ret_val) { - e_dbg("Error Disabling LPLU D0\n"); - return ret_val; - } - /* Configure mdi-mdix settings */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (phy->mdix) { - case 1: - data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->mac.autoneg) { - /* - * when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. - */ - if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - - /* Set auto Master/Slave resolution process */ - ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~CR_1000T_MS_ENABLE; - ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); - if (ret_val) - return ret_val; - } - - ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? - ((data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy->ms_type) { - case e1000_ms_force_master: - data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - data |= CR_1000T_MS_ENABLE; - data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); - } - - return ret_val; -} - -/** - * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - * @hw: pointer to the HW structure - * - * Reads the MII auto-neg advertisement register and/or the 1000T control - * register and if the PHY is already setup for auto-negotiation, then - * return successful. Otherwise, setup advertisement and flow control to - * the appropriate values for the wanted auto-negotiation. - **/ -static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg = 0; - - phy->autoneg_advertised &= phy->autoneg_mask; - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - /* - * Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* - * First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | - NWAY_AR_100TX_HD_CAPS | - NWAY_AR_10T_FD_CAPS | - NWAY_AR_10T_HD_CAPS); - mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - - e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - e_dbg("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - e_dbg("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - e_dbg("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - e_dbg("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (phy->autoneg_advertised & ADVERTISE_1000_HALF) - e_dbg("Advertise 1000mb Half duplex request denied!\n"); - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - e_dbg("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* - * Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- - * negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* - * Flow control (Rx & Tx) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled, and Tx Flow control is - * disabled, by a software over-ride. - * - * Since there really isn't a way to advertise that we are - * capable of Rx Pause ONLY, we will advertise that we - * support both symmetric and asymmetric Rx PAUSE. Later - * (in e1000e_config_fc_after_link_up) we will disable the - * hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - return ret_val; - } - - ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) - ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - - return ret_val; -} - -/** - * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - **/ -static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - /* - * Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* - * If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (phy->autoneg_advertised == 0) - phy->autoneg_advertised = phy->autoneg_mask; - - e_dbg("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - e_dbg("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - e_dbg("Restarting Auto-Neg\n"); - - /* - * Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - /* - * Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - e_dbg("Error while waiting for " - "autoneg to complete\n"); - return ret_val; - } - } - - hw->mac.get_link_status = 1; - - return ret_val; -} - -/** - * e1000e_setup_copper_link - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - **/ -s32 e1000e_setup_copper_link(struct e1000_hw *hw) -{ - s32 ret_val; - bool link; - - if (hw->mac.autoneg) { - /* - * Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* - * PHY will be set to 10H, 10F, 100H or 100F - * depending on user settings. - */ - e_dbg("Forcing Speed and Duplex\n"); - ret_val = e1000_phy_force_speed_duplex(hw); - if (ret_val) { - e_dbg("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* - * Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000e_phy_has_link_generic(hw, - COPPER_LINK_UP_LIMIT, - 10, - &link); - if (ret_val) - return ret_val; - - if (link) { - e_dbg("Valid link established!!!\n"); - e1000e_config_collision_dist(hw); - ret_val = e1000e_config_fc_after_link_up(hw); - } else { - e_dbg("Unable to establish link!!!\n"); - } - - return ret_val; -} - -/** - * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - **/ -s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* - * Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - e_dbg("IGP PSCR: %X\n", phy_data); - - udelay(1); - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - return ret_val; - - if (!link) - e_dbg("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - return ret_val; - } - - return ret_val; -} - -/** - * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Resets the PHY to commit the - * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on Tx must be set. Return successful upon - * successful completion, else return corresponding error code. - **/ -s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - /* - * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - e_dbg("M88E1000 PSCR: %X\n", phy_data); - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Reset the phy to commit changes. */ - ret_val = e1000e_commit_phy(hw); - if (ret_val) - return ret_val; - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) { - if (hw->phy.type != e1000_phy_m88) { - e_dbg("Link taking longer than expected.\n"); - } else { - /* - * We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, - 0x001d); - if (ret_val) - return ret_val; - ret_val = e1000e_phy_reset_dsp(hw); - if (ret_val) - return ret_val; - } - } - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - if (hw->phy.type != e1000_phy_m88) - return 0; - - ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* - * Resetting the phy means we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock from - * the reset value of 2.5MHz. - */ - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* - * In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - * @hw: pointer to the HW structure - * - * Forces the speed and duplex settings of the PHY. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &data); - if (ret_val) - goto out; - - e1000e_phy_force_speed_duplex_setup(hw, &data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, data); - if (ret_val) - goto out; - - /* Disable MDI-X support for 10/100 */ - ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - data &= ~IFE_PMC_AUTO_MDIX; - data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); - if (ret_val) - goto out; - - e_dbg("IFE PMC: %X\n", data); - - udelay(1); - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); - - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) - e_dbg("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - * @hw: pointer to the HW structure - * @phy_ctrl: pointer to current value of PHY_CONTROL - * - * Forces speed and duplex on the PHY by doing the following: disable flow - * control, force speed/duplex on the MAC, disable auto speed detection, - * disable auto-negotiation, configure duplex, configure speed, configure - * the collision distance, write configuration to CTRL register. The - * caller must write to the PHY_CONTROL register for these settings to - * take affect. - **/ -void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl; - - /* Turn off flow control when forcing speed/duplex */ - hw->fc.current_mode = e1000_fc_none; - - /* Force speed/duplex on the mac */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~E1000_CTRL_SPD_SEL; - - /* Disable Auto Speed Detection */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Disable autoneg on the phy */ - *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - - /* Forcing Full or Half Duplex? */ - if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { - ctrl &= ~E1000_CTRL_FD; - *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - e_dbg("Half Duplex\n"); - } else { - ctrl |= E1000_CTRL_FD; - *phy_ctrl |= MII_CR_FULL_DUPLEX; - e_dbg("Full Duplex\n"); - } - - /* Forcing 10mb or 100mb? */ - if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { - ctrl |= E1000_CTRL_SPD_100; - *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - e_dbg("Forcing 100mb\n"); - } else { - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - *phy_ctrl |= MII_CR_SPEED_10; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - e_dbg("Forcing 10mb\n"); - } - - e1000e_config_collision_dist(hw); - - ew32(CTRL, ctrl); -} - -/** - * e1000e_set_d3_lplu_state - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - return ret_val; - - if (!active) { - data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); - if (ret_val) - return ret_val; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP02E1000_PM_D3_LPLU; - ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); - if (ret_val) - return ret_val; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); - } - - return ret_val; -} - -/** - * e1000e_check_downshift - Checks whether a downshift in speed occurred - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns 1 - * - * A downshift is detected by querying the PHY link health. - **/ -s32 e1000e_check_downshift(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - switch (phy->type) { - case e1000_phy_m88: - case e1000_phy_gg82563: - case e1000_phy_bm: - case e1000_phy_82578: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; - break; - case e1000_phy_igp_2: - case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; - break; - default: - /* speed downshift not supported */ - phy->speed_downgraded = false; - return 0; - } - - ret_val = e1e_rphy(hw, offset, &phy_data); - - if (!ret_val) - phy->speed_downgraded = (phy_data & mask); - - return ret_val; -} - -/** - * e1000_check_polarity_m88 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); - - if (!ret_val) - phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_check_polarity_igp - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY port status register, and the - * current speed (since there is no polarity at 100Mbps). - **/ -s32 e1000_check_polarity_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data, offset, mask; - - /* - * Polarity is determined based on the speed of - * our connection. - */ - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; - } else { - /* - * This really only applies to 10Mbps since - * there is no polarity for 100Mbps (always 0). - */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; - } - - ret_val = e1e_rphy(hw, offset, &data); - - if (!ret_val) - phy->cable_polarity = (data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_check_polarity_ife - Check cable polarity for IFE PHY - * @hw: pointer to the HW structure - * - * Polarity is determined on the polarity reversal feature being enabled. - **/ -s32 e1000_check_polarity_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - /* - * Polarity is determined based on the reversal feature being enabled. - */ - if (phy->polarity_correction) { - offset = IFE_PHY_EXTENDED_STATUS_CONTROL; - mask = IFE_PESC_POLARITY_REVERSED; - } else { - offset = IFE_PHY_SPECIAL_CONTROL; - mask = IFE_PSC_FORCE_POLARITY; - } - - ret_val = e1e_rphy(hw, offset, &phy_data); - - if (!ret_val) - phy->cable_polarity = (phy_data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_wait_autoneg - Wait for auto-neg completion - * @hw: pointer to the HW structure - * - * Waits for auto-negotiation to complete or for the auto-negotiation time - * limit to expire, which ever happens first. - **/ -static s32 e1000_wait_autoneg(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 i, phy_status; - - /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ - for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_AUTONEG_COMPLETE) - break; - msleep(100); - } - - /* - * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation - * has completed. - */ - return ret_val; -} - -/** - * e1000e_phy_has_link_generic - Polls PHY for link - * @hw: pointer to the HW structure - * @iterations: number of times to poll for link - * @usec_interval: delay between polling attempts - * @success: pointer to whether polling was successful or not - * - * Polls the PHY status register for link, 'iterations' number of times. - **/ -s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success) -{ - s32 ret_val = 0; - u16 i, phy_status; - - for (i = 0; i < iterations; i++) { - /* - * Some PHYs require the PHY_STATUS register to be read - * twice due to the link bit being sticky. No harm doing - * it across the board. - */ - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - /* - * If the first read fails, another entity may have - * ownership of the resources, wait and try again to - * see if they have relinquished the resources yet. - */ - udelay(usec_interval); - ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_LINK_STATUS) - break; - if (usec_interval >= 1000) - mdelay(usec_interval/1000); - else - udelay(usec_interval); - } - - *success = (i < iterations); - - return ret_val; -} - -/** - * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY - * @hw: pointer to the HW structure - * - * Reads the PHY specific status register to retrieve the cable length - * information. The cable length is determined by averaging the minimum and - * maximum values to get the "average" cable length. The m88 PHY has four - * possible cable length values, which are: - * Register Value Cable Length - * 0 < 50 meters - * 1 50 - 80 meters - * 2 80 - 110 meters - * 3 110 - 140 meters - * 4 > 140 meters - **/ -s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return ret_val; -} - -/** - * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - **/ -s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, i, agc_value = 0; - u16 cur_agc_index, max_agc_index = 0; - u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; - static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { - IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D - }; - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - /* - * Getting bits 15:9, which represent the combination of - * coarse and fine gain values. The result is a number - * that can be put into the lookup table to obtain the - * approximate cable length. - */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0; - phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return ret_val; -} - -/** - * e1000e_get_phy_info_m88 - Retrieve PHY information - * @hw: pointer to the HW structure - * - * Valid for only copper links. Read the PHY status register (sticky read) - * to verify that link is up. Read the PHY special control register to - * determine the polarity and 10base-T extended distance. Read the PHY - * special status register to determine MDI/MDIx and current speed. If - * speed is 1000, then determine cable length, local and remote receiver. - **/ -s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - if (phy->media_type != e1000_media_type_copper) { - e_dbg("Phy info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy->polarity_correction = (phy_data & - M88E1000_PSCR_POLARITY_REVERSAL); - - ret_val = e1000_check_polarity_m88(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - ret_val = e1000_get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - /* Set values to "undefined" */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000e_get_phy_info_igp - Retrieve igp PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_igp(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - ret_val = e1000_get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); - if (ret_val) - return ret_val; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000_get_phy_info_ife - Retrieves various IFE PHY states - * @hw: pointer to the HW structure - * - * Populates "phy" structure with various feature states. - **/ -s32 e1000_get_phy_info_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); - if (ret_val) - goto out; - phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) - ? false : true; - - if (phy->polarity_correction) { - ret_val = e1000_check_polarity_ife(hw); - if (ret_val) - goto out; - } else { - /* Polarity is forced */ - phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - } - - ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false; - - /* The following parameters are undefined for 10/100 operation. */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - -out: - return ret_val; -} - -/** - * e1000e_phy_sw_reset - PHY software reset - * @hw: pointer to the HW structure - * - * Does a software reset of the PHY by reading the PHY control register and - * setting/write the control register reset bit to the PHY. - **/ -s32 e1000e_phy_sw_reset(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_ctrl; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= MII_CR_RESET; - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - udelay(1); - - return ret_val; -} - -/** - * e1000e_phy_hw_reset_generic - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - **/ -s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u32 ctrl; - - ret_val = e1000_check_reset_block(hw); - if (ret_val) - return 0; - - ret_val = phy->ops.acquire(hw); - if (ret_val) - return ret_val; - - ctrl = er32(CTRL); - ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); - e1e_flush(); - - udelay(phy->reset_delay_us); - - ew32(CTRL, ctrl); - e1e_flush(); - - udelay(150); - - phy->ops.release(hw); - - return e1000_get_phy_cfg_done(hw); -} - -/** - * e1000e_get_cfg_done - Generic configuration done - * @hw: pointer to the HW structure - * - * Generic function to wait 10 milli-seconds for configuration to complete - * and return success. - **/ -s32 e1000e_get_cfg_done(struct e1000_hw *hw) -{ - mdelay(10); - return 0; -} - -/** - * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY - * @hw: pointer to the HW structure - * - * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - **/ -s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) -{ - e_dbg("Running IGP 3 PHY init script\n"); - - /* PHY init IGP 3 */ - /* Enable rise/fall, 10-mode work in class-A */ - e1e_wphy(hw, 0x2F5B, 0x9018); - /* Remove all caps from Replica path filter */ - e1e_wphy(hw, 0x2F52, 0x0000); - /* Bias trimming for ADC, AFE and Driver (Default) */ - e1e_wphy(hw, 0x2FB1, 0x8B24); - /* Increase Hybrid poly bias */ - e1e_wphy(hw, 0x2FB2, 0xF8F0); - /* Add 4% to Tx amplitude in Gig mode */ - e1e_wphy(hw, 0x2010, 0x10B0); - /* Disable trimming (TTT) */ - e1e_wphy(hw, 0x2011, 0x0000); - /* Poly DC correction to 94.6% + 2% for all channels */ - e1e_wphy(hw, 0x20DD, 0x249A); - /* ABS DC correction to 95.9% */ - e1e_wphy(hw, 0x20DE, 0x00D3); - /* BG temp curve trim */ - e1e_wphy(hw, 0x28B4, 0x04CE); - /* Increasing ADC OPAMP stage 1 currents to max */ - e1e_wphy(hw, 0x2F70, 0x29E4); - /* Force 1000 ( required for enabling PHY regs configuration) */ - e1e_wphy(hw, 0x0000, 0x0140); - /* Set upd_freq to 6 */ - e1e_wphy(hw, 0x1F30, 0x1606); - /* Disable NPDFE */ - e1e_wphy(hw, 0x1F31, 0xB814); - /* Disable adaptive fixed FFE (Default) */ - e1e_wphy(hw, 0x1F35, 0x002A); - /* Enable FFE hysteresis */ - e1e_wphy(hw, 0x1F3E, 0x0067); - /* Fixed FFE for short cable lengths */ - e1e_wphy(hw, 0x1F54, 0x0065); - /* Fixed FFE for medium cable lengths */ - e1e_wphy(hw, 0x1F55, 0x002A); - /* Fixed FFE for long cable lengths */ - e1e_wphy(hw, 0x1F56, 0x002A); - /* Enable Adaptive Clip Threshold */ - e1e_wphy(hw, 0x1F72, 0x3FB0); - /* AHT reset limit to 1 */ - e1e_wphy(hw, 0x1F76, 0xC0FF); - /* Set AHT master delay to 127 msec */ - e1e_wphy(hw, 0x1F77, 0x1DEC); - /* Set scan bits for AHT */ - e1e_wphy(hw, 0x1F78, 0xF9EF); - /* Set AHT Preset bits */ - e1e_wphy(hw, 0x1F79, 0x0210); - /* Change integ_factor of channel A to 3 */ - e1e_wphy(hw, 0x1895, 0x0003); - /* Change prop_factor of channels BCD to 8 */ - e1e_wphy(hw, 0x1796, 0x0008); - /* Change cg_icount + enable integbp for channels BCD */ - e1e_wphy(hw, 0x1798, 0xD008); - /* - * Change cg_icount + enable integbp + change prop_factor_master - * to 8 for channel A - */ - e1e_wphy(hw, 0x1898, 0xD918); - /* Disable AHT in Slave mode on channel A */ - e1e_wphy(hw, 0x187A, 0x0800); - /* - * Enable LPLU and disable AN to 1000 in non-D0a states, - * Enable SPD+B2B - */ - e1e_wphy(hw, 0x0019, 0x008D); - /* Enable restart AN on an1000_dis change */ - e1e_wphy(hw, 0x001B, 0x2080); - /* Enable wh_fifo read clock in 10/100 modes */ - e1e_wphy(hw, 0x0014, 0x0045); - /* Restart AN, Speed selection is 1000 */ - e1e_wphy(hw, 0x0000, 0x1340); - - return 0; -} - -/* Internal function pointers */ - -/** - * e1000_get_phy_cfg_done - Generic PHY configuration done - * @hw: pointer to the HW structure - * - * Return success if silicon family did not implement a family specific - * get_cfg_done function. - **/ -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_cfg_done) - return hw->phy.ops.get_cfg_done(hw); - - return 0; -} - -/** - * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex - * @hw: pointer to the HW structure - * - * When the silicon family has not implemented a forced speed/duplex - * function for the PHY, simply return 0. - **/ -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) -{ - if (hw->phy.ops.force_speed_duplex) - return hw->phy.ops.force_speed_duplex(hw); - - return 0; -} - -/** - * e1000e_get_phy_type_from_id - Get PHY type from id - * @phy_id: phy_id read from the phy - * - * Returns the phy type from the id. - **/ -enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) -{ - enum e1000_phy_type phy_type = e1000_phy_unknown; - - switch (phy_id) { - case M88E1000_I_PHY_ID: - case M88E1000_E_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1011_I_PHY_ID: - phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ - phy_type = e1000_phy_igp_2; - break; - case GG82563_E_PHY_ID: - phy_type = e1000_phy_gg82563; - break; - case IGP03E1000_E_PHY_ID: - phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy_type = e1000_phy_ife; - break; - case BME1000_E_PHY_ID: - case BME1000_E_PHY_ID_R2: - phy_type = e1000_phy_bm; - break; - case I82578_E_PHY_ID: - phy_type = e1000_phy_82578; - break; - case I82577_E_PHY_ID: - phy_type = e1000_phy_82577; - break; - case I82579_E_PHY_ID: - phy_type = e1000_phy_82579; - break; - default: - phy_type = e1000_phy_unknown; - break; - } - return phy_type; -} - -/** - * e1000e_determine_phy_address - Determines PHY address. - * @hw: pointer to the HW structure - * - * This uses a trial and error method to loop through possible PHY - * addresses. It tests each by reading the PHY ID registers and - * checking for a match. - **/ -s32 e1000e_determine_phy_address(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_PHY_TYPE; - u32 phy_addr = 0; - u32 i; - enum e1000_phy_type phy_type = e1000_phy_unknown; - - hw->phy.id = phy_type; - - for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { - hw->phy.addr = phy_addr; - i = 0; - - do { - e1000e_get_phy_id(hw); - phy_type = e1000e_get_phy_type_from_id(hw->phy.id); - - /* - * If phy_type is valid, break - we found our - * PHY address - */ - if (phy_type != e1000_phy_unknown) { - ret_val = 0; - goto out; - } - usleep_range(1000, 2000); - i++; - } while (i < 10); - } - -out: - return ret_val; -} - -/** - * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address - * @page: page to access - * - * Returns the phy address for the page requested. - **/ -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) -{ - u32 phy_addr = 2; - - if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) - phy_addr = 1; - - return phy_addr; -} - -/** - * e1000e_write_phy_reg_bm - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u32 page = offset >> IGP_PAGE_SHIFT; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, false); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - u32 page_shift, page_select; - - /* - * Page select is register 31 for phy address 1 and 22 for - * phy address 2 and 3. Page select is shifted only for - * phy address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto out; - } - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000e_read_phy_reg_bm - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u32 page = offset >> IGP_PAGE_SHIFT; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, false); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - u32 page_shift, page_select; - - /* - * Page select is register 31 for phy address 1 and 22 for - * phy address 2 and 3. Page select is shifted only for - * phy address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto out; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000e_read_phy_reg_bm2 - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, false); - goto out; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto out; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000e_write_phy_reg_bm2 - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, false); - goto out; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto out; - } - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers - * @hw: pointer to the HW structure - * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG - * - * Assumes semaphore already acquired and phy_reg points to a valid memory - * address to store contents of the BM_WUC_ENABLE_REG register. - **/ -s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) -{ - s32 ret_val; - u16 temp; - - /* All page select, port ctrl and wakeup registers use phy address 1 */ - hw->phy.addr = 1; - - /* Select Port Control Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); - if (ret_val) { - e_dbg("Could not set Port Control page\n"); - goto out; - } - - ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); - if (ret_val) { - e_dbg("Could not read PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - goto out; - } - - /* - * Enable both PHY wakeup mode and Wakeup register page writes. - * Prevent a power state change by disabling ME and Host PHY wakeup. - */ - temp = *phy_reg; - temp |= BM_WUC_ENABLE_BIT; - temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); - - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); - if (ret_val) { - e_dbg("Could not write PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - goto out; - } - - /* Select Host Wakeup Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); - - /* caller now able to write registers on the Wakeup registers page */ -out: - return ret_val; -} - -/** - * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs - * @hw: pointer to the HW structure - * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG - * - * Restore BM_WUC_ENABLE_REG to its original value. - * - * Assumes semaphore already acquired and *phy_reg is the contents of the - * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by - * caller. - **/ -s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) -{ - s32 ret_val = 0; - - /* Select Port Control Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); - if (ret_val) { - e_dbg("Could not set Port Control page\n"); - goto out; - } - - /* Restore 769.17 to its original value */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); - if (ret_val) - e_dbg("Could not restore PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); -out: - return ret_val; -} - -/** - * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to read or write - * @read: determines if operation is read or write - * @page_set: BM_WUC_PAGE already set and access enabled - * - * Read the PHY register at offset and store the retrieved information in - * data, or write data to PHY register at offset. Note the procedure to - * access the PHY wakeup registers is different than reading the other PHY - * registers. It works as such: - * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 - * 2) Set page to 800 for host (801 if we were manageability) - * 3) Write the address using the address opcode (0x11) - * 4) Read or write the data using the data opcode (0x12) - * 5) Restore 769.17.2 to its original value - * - * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and - * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). - * - * Assumes semaphore is already acquired. When page_set==true, assumes - * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack - * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). - **/ -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read, bool page_set) -{ - s32 ret_val; - u16 reg = BM_PHY_REG_NUM(offset); - u16 page = BM_PHY_REG_PAGE(offset); - u16 phy_reg = 0; - - /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ - if ((hw->mac.type == e1000_pchlan) && - (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) - e_dbg("Attempting to access page %d while gig enabled.\n", - page); - - if (!page_set) { - /* Enable access to PHY wakeup registers */ - ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); - if (ret_val) { - e_dbg("Could not enable PHY wakeup reg access\n"); - goto out; - } - } - - e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); - - /* Write the Wakeup register page offset value using opcode 0x11 */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); - if (ret_val) { - e_dbg("Could not write address opcode to page %d\n", page); - goto out; - } - - if (read) { - /* Read the Wakeup register page value using opcode 0x12 */ - ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - data); - } else { - /* Write the Wakeup register page value using opcode 0x12 */ - ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - *data); - } - - if (ret_val) { - e_dbg("Could not access PHY reg %d.%d\n", page, reg); - goto out; - } - - if (!page_set) - ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); - -out: - return ret_val; -} - -/** - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_up_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - e1e_rphy(hw, PHY_CONTROL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - e1e_wphy(hw, PHY_CONTROL, mii_reg); -} - -/** - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_down_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - e1e_rphy(hw, PHY_CONTROL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - e1e_wphy(hw, PHY_CONTROL, mii_reg); - usleep_range(1000, 2000); -} - -/** - * e1000e_commit_phy - Soft PHY reset - * @hw: pointer to the HW structure - * - * Performs a soft PHY reset on those that apply. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000e_commit_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.commit) - return hw->phy.ops.commit(hw); - - return 0; -} - -/** - * e1000_set_d0_lplu_state - Sets low power link up state for D0 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D0 - * and SmartSpeed is disabled when active is true, else clear lplu for D0 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - **/ -static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d0_lplu_state) - return hw->phy.ops.set_d0_lplu_state(hw, active); - - return 0; -} - -/** - * __e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphore before exiting. - **/ -static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked, bool page_set) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, page_set); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - data, true); - goto out; - } - - if (!page_set) { - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_set_page_igp(hw, - (page << IGP_PAGE_SHIFT)); - - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - } - - e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, - page << IGP_PAGE_SHIFT, reg); - - ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); -out: - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores - * the retrieved information in data. Release the acquired semaphore - * before exiting. - **/ -s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, false, false); -} - -/** - * e1000_read_phy_reg_hv_locked - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, true, false); -} - -/** - * e1000_read_phy_reg_page_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired and page already set. - **/ -s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, true, true); -} - -/** - * __e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, - bool locked, bool page_set) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, page_set); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - &data, false); - goto out; - } - - if (!page_set) { - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - /* - * Workaround MDIO accesses being disabled after entering IEEE - * Power Down (when bit 11 of the PHY Control register is set) - */ - if ((hw->phy.type == e1000_phy_82578) && - (hw->phy.revision >= 1) && - (hw->phy.addr == 2) && - ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) { - u16 data2 = 0x7EFF; - ret_val = e1000_access_phy_debug_regs_hv(hw, - (1 << 6) | 0x3, - &data2, false); - if (ret_val) - goto out; - } - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_set_page_igp(hw, - (page << IGP_PAGE_SHIFT)); - - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - } - - e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, - page << IGP_PAGE_SHIFT, reg); - - ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); - -out: - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register at the offset. - * Release the acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, false, false); -} - -/** - * e1000_write_phy_reg_hv_locked - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired. - **/ -s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, true, false); -} - -/** - * e1000_write_phy_reg_page_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired and page already set. - **/ -s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, true, true); -} - -/** - * e1000_get_phy_addr_for_hv_page - Get PHY address based on page - * @page: page to be accessed - **/ -static u32 e1000_get_phy_addr_for_hv_page(u32 page) -{ - u32 phy_addr = 2; - - if (page >= HV_INTC_FC_PAGE_START) - phy_addr = 1; - - return phy_addr; -} - -/** - * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to be read or written - * @read: determines if operation is read or write - * - * Reads the PHY register at offset and stores the retreived information - * in data. Assumes semaphore already acquired. Note that the procedure - * to access these regs uses the address port and data port to read/write. - * These accesses done with PHY address 2 and without using pages. - **/ -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read) -{ - s32 ret_val; - u32 addr_reg = 0; - u32 data_reg = 0; - - /* This takes care of the difference with desktop vs mobile phy */ - addr_reg = (hw->phy.type == e1000_phy_82578) ? - I82578_ADDR_REG : I82577_ADDR_REG; - data_reg = addr_reg + 1; - - /* All operations in this function are phy address 2 */ - hw->phy.addr = 2; - - /* masking with 0x3F to remove the page from offset */ - ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); - if (ret_val) { - e_dbg("Could not write the Address Offset port register\n"); - goto out; - } - - /* Read or write the data value next */ - if (read) - ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); - else - ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); - - if (ret_val) { - e_dbg("Could not access the Data port register\n"); - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_link_stall_workaround_hv - Si workaround - * @hw: pointer to the HW structure - * - * This function works around a Si bug where the link partner can get - * a link up indication before the PHY does. If small packets are sent - * by the link partner they can be placed in the packet buffer without - * being properly accounted for by the PHY and will stall preventing - * further packets from being received. The workaround is to clear the - * packet buffer after the PHY detects link up. - **/ -s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) -{ - s32 ret_val = 0; - u16 data; - - if (hw->phy.type != e1000_phy_82578) - goto out; - - /* Do not apply workaround if in PHY loopback bit 14 set */ - e1e_rphy(hw, PHY_CONTROL, &data); - if (data & PHY_CONTROL_LB) - goto out; - - /* check if link is up and at 1Gbps */ - ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); - if (ret_val) - goto out; - - data &= BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK; - - if (data != (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - goto out; - - mdelay(200); - - /* flush the packets in the fifo buffer */ - ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC | - HV_MUX_DATA_CTRL_FORCE_SPEED); - if (ret_val) - goto out; - - ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); - -out: - return ret_val; -} - -/** - * e1000_check_polarity_82577 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); - - if (!ret_val) - phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. - **/ -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000e_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - udelay(1); - - if (phy->autoneg_wait_to_complete) { - e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); - - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) - e_dbg("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000e_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_get_phy_info_82577 - Retrieve I82577 PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - e_dbg("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_82577(hw); - if (ret_val) - goto out; - - ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; - - if ((data & I82577_PHY_STATUS2_SPEED_MASK) == - I82577_PHY_STATUS2_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); - if (ret_val) - goto out; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return ret_val; -} - -/** - * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - * @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - **/ -s32 e1000_get_cable_length_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, length; - - ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); - if (ret_val) - goto out; - - length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> - I82577_DSTATUS_CABLE_LENGTH_SHIFT; - - if (length == E1000_CABLE_LENGTH_UNDEFINED) - ret_val = -E1000_ERR_PHY; - - phy->cable_length = length; - -out: - return ret_val; -} |