summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000e
diff options
context:
space:
mode:
authorJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-04-07 07:42:33 -0700
committerJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-08-10 20:03:27 -0700
commitdee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch)
tree47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/e1000e
parentf7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff)
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and the necessary Kconfig and Makefile changes. Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/e1000e')
-rw-r--r--drivers/net/e1000e/82571.c2115
-rw-r--r--drivers/net/e1000e/Makefile37
-rw-r--r--drivers/net/e1000e/defines.h844
-rw-r--r--drivers/net/e1000e/e1000.h736
-rw-r--r--drivers/net/e1000e/es2lan.c1516
-rw-r--r--drivers/net/e1000e/ethtool.c2081
-rw-r--r--drivers/net/e1000e/hw.h984
-rw-r--r--drivers/net/e1000e/ich8lan.c4111
-rw-r--r--drivers/net/e1000e/lib.c2692
-rw-r--r--drivers/net/e1000e/netdev.c6312
-rw-r--r--drivers/net/e1000e/param.c478
-rw-r--r--drivers/net/e1000e/phy.c3377
12 files changed, 0 insertions, 25283 deletions
diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
deleted file mode 100644
index 480f2592f8a..00000000000
--- a/drivers/net/e1000e/82571.c
+++ /dev/null
@@ -1,2115 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 82571EB Gigabit Ethernet Controller
- * 82571EB Gigabit Ethernet Controller (Copper)
- * 82571EB Gigabit Ethernet Controller (Fiber)
- * 82571EB Dual Port Gigabit Mezzanine Adapter
- * 82571EB Quad Port Gigabit Mezzanine Adapter
- * 82571PT Gigabit PT Quad Port Server ExpressModule
- * 82572EI Gigabit Ethernet Controller (Copper)
- * 82572EI Gigabit Ethernet Controller (Fiber)
- * 82572EI Gigabit Ethernet Controller
- * 82573V Gigabit Ethernet Controller (Copper)
- * 82573E Gigabit Ethernet Controller (Copper)
- * 82573L Gigabit Ethernet Controller
- * 82574L Gigabit Network Connection
- * 82583V Gigabit Network Connection
- */
-
-#include "e1000.h"
-
-#define ID_LED_RESERVED_F746 0xF746
-#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_OFF1_ON2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
-#define E1000_BASE1000T_STATUS 10
-#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
-#define E1000_RECEIVE_ERROR_COUNTER 21
-#define E1000_RECEIVE_ERROR_MAX 0xFFFF
-
-#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
-
-static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
-static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
-static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
-static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
-static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
-static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
-static s32 e1000_setup_link_82571(struct e1000_hw *hw);
-static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
-static void e1000_clear_vfta_82571(struct e1000_hw *hw);
-static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
-static s32 e1000_led_on_82574(struct e1000_hw *hw);
-static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
-static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
-static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
-static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
-static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
-static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
-static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
-
-/**
- * e1000_init_phy_params_82571 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return 0;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
-
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_82571;
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- phy->type = e1000_phy_igp_2;
- break;
- case e1000_82573:
- phy->type = e1000_phy_m88;
- break;
- case e1000_82574:
- case e1000_82583:
- phy->type = e1000_phy_bm;
- phy->ops.acquire = e1000_get_hw_semaphore_82574;
- phy->ops.release = e1000_put_hw_semaphore_82574;
- phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
- phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- /* This can only be done after all function pointers are setup. */
- ret_val = e1000_get_phy_id_82571(hw);
- if (ret_val) {
- e_dbg("Error getting PHY ID\n");
- return ret_val;
- }
-
- /* Verify phy id */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- if (phy->id != IGP01E1000_I_PHY_ID)
- ret_val = -E1000_ERR_PHY;
- break;
- case e1000_82573:
- if (phy->id != M88E1111_I_PHY_ID)
- ret_val = -E1000_ERR_PHY;
- break;
- case e1000_82574:
- case e1000_82583:
- if (phy->id != BME1000_E_PHY_ID_R2)
- ret_val = -E1000_ERR_PHY;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_82571 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u16 size;
-
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (((eecd >> 15) & 0x3) == 0x3) {
- nvm->type = e1000_nvm_flash_hw;
- nvm->word_size = 2048;
- /*
- * Autonomous Flash update bit must be cleared due
- * to Flash update issue.
- */
- eecd &= ~E1000_EECD_AUPDEN;
- ew32(EECD, eecd);
- break;
- }
- /* Fall Through */
- default:
- nvm->type = e1000_nvm_eeprom_spi;
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /*
- * Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- /* EEPROM access above 16k is unsupported */
- if (size > 14)
- size = 14;
- nvm->word_size = 1 << size;
- break;
- }
-
- /* Function Pointers */
- switch (hw->mac.type) {
- case e1000_82574:
- case e1000_82583:
- nvm->ops.acquire = e1000_get_hw_semaphore_82574;
- nvm->ops.release = e1000_put_hw_semaphore_82574;
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_mac_params_82571 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_mac_operations *func = &mac->ops;
- u32 swsm = 0;
- u32 swsm2 = 0;
- bool force_clear_smbi = false;
-
- /* Set media type */
- switch (adapter->pdev->device) {
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- hw->phy.media_type = e1000_media_type_fiber;
- break;
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- default:
- hw->phy.media_type = e1000_media_type_copper;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* Adaptive IFS supported */
- mac->adaptive_ifs = true;
-
- /* check for link */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- func->setup_physical_interface = e1000_setup_copper_link_82571;
- func->check_for_link = e1000e_check_for_copper_link;
- func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
- break;
- case e1000_media_type_fiber:
- func->setup_physical_interface =
- e1000_setup_fiber_serdes_link_82571;
- func->check_for_link = e1000e_check_for_fiber_link;
- func->get_link_up_info =
- e1000e_get_speed_and_duplex_fiber_serdes;
- break;
- case e1000_media_type_internal_serdes:
- func->setup_physical_interface =
- e1000_setup_fiber_serdes_link_82571;
- func->check_for_link = e1000_check_for_serdes_link_82571;
- func->get_link_up_info =
- e1000e_get_speed_and_duplex_fiber_serdes;
- break;
- default:
- return -E1000_ERR_CONFIG;
- break;
- }
-
- switch (hw->mac.type) {
- case e1000_82573:
- func->set_lan_id = e1000_set_lan_id_single_port;
- func->check_mng_mode = e1000e_check_mng_mode_generic;
- func->led_on = e1000e_led_on_generic;
- func->blink_led = e1000e_blink_led_generic;
-
- /* FWSM register */
- mac->has_fwsm = true;
- /*
- * ARC supported; valid only if manageability features are
- * enabled.
- */
- mac->arc_subsystem_valid =
- (er32(FWSM) & E1000_FWSM_MODE_MASK)
- ? true : false;
- break;
- case e1000_82574:
- case e1000_82583:
- func->set_lan_id = e1000_set_lan_id_single_port;
- func->check_mng_mode = e1000_check_mng_mode_82574;
- func->led_on = e1000_led_on_82574;
- break;
- default:
- func->check_mng_mode = e1000e_check_mng_mode_generic;
- func->led_on = e1000e_led_on_generic;
- func->blink_led = e1000e_blink_led_generic;
-
- /* FWSM register */
- mac->has_fwsm = true;
- break;
- }
-
- /*
- * Ensure that the inter-port SWSM.SMBI lock bit is clear before
- * first NVM or PHY access. This should be done for single-port
- * devices, and for one port only on dual-port devices so that
- * for those devices we can still use the SMBI lock to synchronize
- * inter-port accesses to the PHY & NVM.
- */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- swsm2 = er32(SWSM2);
-
- if (!(swsm2 & E1000_SWSM2_LOCK)) {
- /* Only do this for the first interface on this card */
- ew32(SWSM2,
- swsm2 | E1000_SWSM2_LOCK);
- force_clear_smbi = true;
- } else
- force_clear_smbi = false;
- break;
- default:
- force_clear_smbi = true;
- break;
- }
-
- if (force_clear_smbi) {
- /* Make sure SWSM.SMBI is clear */
- swsm = er32(SWSM);
- if (swsm & E1000_SWSM_SMBI) {
- /* This bit should not be set on a first interface, and
- * indicates that the bootagent or EFI code has
- * improperly left this bit enabled
- */
- e_dbg("Please update your 82571 Bootagent\n");
- }
- ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
- }
-
- /*
- * Initialize device specific counter of SMBI acquisition
- * timeouts.
- */
- hw->dev_spec.e82571.smb_counter = 0;
-
- return 0;
-}
-
-static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- static int global_quad_port_a; /* global port a indication */
- struct pci_dev *pdev = adapter->pdev;
- int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
- s32 rc;
-
- rc = e1000_init_mac_params_82571(adapter);
- if (rc)
- return rc;
-
- rc = e1000_init_nvm_params_82571(hw);
- if (rc)
- return rc;
-
- rc = e1000_init_phy_params_82571(hw);
- if (rc)
- return rc;
-
- /* tag quad port adapters first, it's used below */
- switch (pdev->device) {
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
- adapter->flags |= FLAG_IS_QUAD_PORT;
- /* mark the first port */
- if (global_quad_port_a == 0)
- adapter->flags |= FLAG_IS_QUAD_PORT_A;
- /* Reset for multiple quad port adapters */
- global_quad_port_a++;
- if (global_quad_port_a == 4)
- global_quad_port_a = 0;
- break;
- default:
- break;
- }
-
- switch (adapter->hw.mac.type) {
- case e1000_82571:
- /* these dual ports don't have WoL on port B at all */
- if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
- (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
- (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
- (is_port_b))
- adapter->flags &= ~FLAG_HAS_WOL;
- /* quad ports only support WoL on port A */
- if (adapter->flags & FLAG_IS_QUAD_PORT &&
- (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
- adapter->flags &= ~FLAG_HAS_WOL;
- /* Does not support WoL on any port */
- if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
- adapter->flags &= ~FLAG_HAS_WOL;
- break;
- case e1000_82573:
- if (pdev->device == E1000_DEV_ID_82573L) {
- adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
- adapter->max_hw_frame_size = DEFAULT_JUMBO;
- }
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_id = 0;
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /*
- * The 82571 firmware may still be configuring the PHY.
- * In this case, we cannot access the PHY until the
- * configuration is done. So we explicitly set the
- * PHY ID.
- */
- phy->id = IGP01E1000_I_PHY_ID;
- break;
- case e1000_82573:
- return e1000e_get_phy_id(hw);
- break;
- case e1000_82574:
- case e1000_82583:
- ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id = (u32)(phy_id << 16);
- udelay(20);
- ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id |= (u32)(phy_id);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 sw_timeout = hw->nvm.word_size + 1;
- s32 fw_timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- /*
- * If we have timedout 3 times on trying to acquire
- * the inter-port SMBI semaphore, there is old code
- * operating on the other port, and it is not
- * releasing SMBI. Modify the number of times that
- * we try for the semaphore to interwork with this
- * older code.
- */
- if (hw->dev_spec.e82571.smb_counter > 2)
- sw_timeout = 1;
-
- /* Get the SW semaphore */
- while (i < sw_timeout) {
- swsm = er32(SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- udelay(50);
- i++;
- }
-
- if (i == sw_timeout) {
- e_dbg("Driver can't access device - SMBI bit is set.\n");
- hw->dev_spec.e82571.smb_counter++;
- }
- /* Get the FW semaphore. */
- for (i = 0; i < fw_timeout; i++) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (er32(SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- udelay(50);
- }
-
- if (i == fw_timeout) {
- /* Release semaphores */
- e1000_put_hw_semaphore_82571(hw);
- e_dbg("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000_put_hw_semaphore_82571 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
-{
- u32 swsm;
-
- swsm = er32(SWSM);
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- ew32(SWSM, swsm);
-}
-/**
- * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore during reset.
- *
- **/
-static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
- s32 ret_val = 0;
- s32 i = 0;
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
- do {
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = er32(EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
-
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- usleep_range(2000, 4000);
- i++;
- } while (i < MDIO_OWNERSHIP_TIMEOUT);
-
- if (i == MDIO_OWNERSHIP_TIMEOUT) {
- /* Release semaphores */
- e1000_put_hw_semaphore_82573(hw);
- e_dbg("Driver can't access the PHY\n");
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_put_hw_semaphore_82573 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used during reset.
- *
- **/
-static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
-}
-
-static DEFINE_MUTEX(swflag_mutex);
-
-/**
- * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM.
- *
- **/
-static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- mutex_lock(&swflag_mutex);
- ret_val = e1000_get_hw_semaphore_82573(hw);
- if (ret_val)
- mutex_unlock(&swflag_mutex);
- return ret_val;
-}
-
-/**
- * e1000_put_hw_semaphore_82574 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- *
- **/
-static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
-{
- e1000_put_hw_semaphore_82573(hw);
- mutex_unlock(&swflag_mutex);
-}
-
-/**
- * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag.
- * LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
-{
- u16 data = er32(POEMB);
-
- if (active)
- data |= E1000_PHY_CTRL_D0A_LPLU;
- else
- data &= ~E1000_PHY_CTRL_D0A_LPLU;
-
- ew32(POEMB, data);
- return 0;
-}
-
-/**
- * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * The low power link up (lplu) state is set to the power management level D3
- * when active is true, else clear lplu for D3. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
-{
- u16 data = er32(POEMB);
-
- if (!active) {
- data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= E1000_PHY_CTRL_NOND0A_LPLU;
- }
-
- ew32(POEMB, data);
- return 0;
-}
-
-/**
- * e1000_acquire_nvm_82571 - Request for access to the EEPROM
- * @hw: pointer to the HW structure
- *
- * To gain access to the EEPROM, first we must obtain a hardware semaphore.
- * Then for non-82573 hardware, set the EEPROM access request bit and wait
- * for EEPROM access grant bit. If the access grant bit is not set, release
- * hardware semaphore.
- **/
-static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1000_get_hw_semaphore_82571(hw);
- if (ret_val)
- return ret_val;
-
- switch (hw->mac.type) {
- case e1000_82573:
- break;
- default:
- ret_val = e1000e_acquire_nvm(hw);
- break;
- }
-
- if (ret_val)
- e1000_put_hw_semaphore_82571(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_82571 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-static void e1000_release_nvm_82571(struct e1000_hw *hw)
-{
- e1000e_release_nvm(hw);
- e1000_put_hw_semaphore_82571(hw);
-}
-
-/**
- * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
- *
- * If e1000e_update_nvm_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- **/
-static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- s32 ret_val;
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
- break;
- case e1000_82571:
- case e1000_82572:
- ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
- break;
- default:
- ret_val = -E1000_ERR_NVM;
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
-{
- u32 eecd;
- s32 ret_val;
- u16 i;
-
- ret_val = e1000e_update_nvm_checksum_generic(hw);
- if (ret_val)
- return ret_val;
-
- /*
- * If our nvm is an EEPROM, then we're done
- * otherwise, commit the checksum to the flash NVM.
- */
- if (hw->nvm.type != e1000_nvm_flash_hw)
- return ret_val;
-
- /* Check for pending operations. */
- for (i = 0; i < E1000_FLASH_UPDATES; i++) {
- usleep_range(1000, 2000);
- if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
- break;
- }
-
- if (i == E1000_FLASH_UPDATES)
- return -E1000_ERR_NVM;
-
- /* Reset the firmware if using STM opcode. */
- if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
- /*
- * The enabling of and the actual reset must be done
- * in two write cycles.
- */
- ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
- e1e_flush();
- ew32(HICR, E1000_HICR_FW_RESET);
- }
-
- /* Commit the write to flash */
- eecd = er32(EECD) | E1000_EECD_FLUPD;
- ew32(EECD, eecd);
-
- for (i = 0; i < E1000_FLASH_UPDATES; i++) {
- usleep_range(1000, 2000);
- if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
- break;
- }
-
- if (i == E1000_FLASH_UPDATES)
- return -E1000_ERR_NVM;
-
- return 0;
-}
-
-/**
- * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
-{
- if (hw->nvm.type == e1000_nvm_flash_hw)
- e1000_fix_nvm_checksum_82571(hw);
-
- return e1000e_validate_nvm_checksum_generic(hw);
-}
-
-/**
- * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * After checking for invalid values, poll the EEPROM to ensure the previous
- * command has completed before trying to write the next word. After write
- * poll for completion.
- *
- * If e1000e_update_nvm_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- **/
-static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eewr = 0;
- s32 ret_val = 0;
-
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- for (i = 0; i < words; i++) {
- eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
- ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
- E1000_NVM_RW_REG_START;
-
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
- if (ret_val)
- break;
-
- ew32(EEWR, eewr);
-
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
- if (ret_val)
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_cfg_done_82571 - Poll for configuration done
- * @hw: pointer to the HW structure
- *
- * Reads the management control register for the config done bit to be set.
- **/
-static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
-
- while (timeout) {
- if (er32(EEMNGCTL) &
- E1000_NVM_CFG_DONE_PORT_0)
- break;
- usleep_range(1000, 2000);
- timeout--;
- }
- if (!timeout) {
- e_dbg("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return 0;
-}
-
-/**
- * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When activating LPLU
- * this function also disables smart speed and vice versa. LPLU will not be
- * activated unless the device autonegotiation advertisement meets standards
- * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
- * pointer entry point only called by PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (active) {
- data |= IGP02E1000_PM_D0_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- if (ret_val)
- return ret_val;
- } else {
- data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_reset_hw_82571 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state.
- **/
-static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
-{
- u32 ctrl, ctrl_ext;
- s32 ret_val;
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000e_disable_pcie_master(hw);
- if (ret_val)
- e_dbg("PCI-E Master disable polling has failed.\n");
-
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- e1e_flush();
-
- usleep_range(10000, 20000);
-
- /*
- * Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset.
- */
- switch (hw->mac.type) {
- case e1000_82573:
- ret_val = e1000_get_hw_semaphore_82573(hw);
- break;
- case e1000_82574:
- case e1000_82583:
- ret_val = e1000_get_hw_semaphore_82574(hw);
- break;
- default:
- break;
- }
- if (ret_val)
- e_dbg("Cannot acquire MDIO ownership\n");
-
- ctrl = er32(CTRL);
-
- e_dbg("Issuing a global reset to MAC\n");
- ew32(CTRL, ctrl | E1000_CTRL_RST);
-
- /* Must release MDIO ownership and mutex after MAC reset. */
- switch (hw->mac.type) {
- case e1000_82574:
- case e1000_82583:
- e1000_put_hw_semaphore_82574(hw);
- break;
- default:
- break;
- }
-
- if (hw->nvm.type == e1000_nvm_flash_hw) {
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
- }
-
- ret_val = e1000e_get_auto_rd_done(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
-
- /*
- * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
- * Need to wait for Phy configuration completion before accessing
- * NVM and Phy.
- */
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- msleep(25);
- break;
- default:
- break;
- }
-
- /* Clear any pending interrupt events. */
- ew32(IMC, 0xffffffff);
- er32(ICR);
-
- if (hw->mac.type == e1000_82571) {
- /* Install any alternate MAC address into RAR0 */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- return ret_val;
-
- e1000e_set_laa_state_82571(hw, true);
- }
-
- /* Reinitialize the 82571 serdes link state machine */
- if (hw->phy.media_type == e1000_media_type_internal_serdes)
- hw->mac.serdes_link_state = e1000_serdes_link_down;
-
- return 0;
-}
-
-/**
- * e1000_init_hw_82571 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-static s32 e1000_init_hw_82571(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 reg_data;
- s32 ret_val;
- u16 i, rar_count = mac->rar_entry_count;
-
- e1000_initialize_hw_bits_82571(hw);
-
- /* Initialize identification LED */
- ret_val = e1000e_id_led_init(hw);
- if (ret_val)
- e_dbg("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
-
- /* Disabling VLAN filtering */
- e_dbg("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address. */
- /*
- * If, however, a locally administered address was assigned to the
- * 82571, we must reserve a RAR for it to work around an issue where
- * resetting one port will reload the MAC on the other port.
- */
- if (e1000e_get_laa_state_82571(hw))
- rar_count--;
- e1000e_init_rx_addrs(hw, rar_count);
-
- /* Zero out the Multicast HASH table */
- e_dbg("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = e1000_setup_link_82571(hw);
-
- /* Set the transmit descriptor write-back policy */
- reg_data = er32(TXDCTL(0));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL(0), reg_data);
-
- /* ...for both queues. */
- switch (mac->type) {
- case e1000_82573:
- e1000e_enable_tx_pkt_filtering(hw);
- /* fall through */
- case e1000_82574:
- case e1000_82583:
- reg_data = er32(GCR);
- reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- ew32(GCR, reg_data);
- break;
- default:
- reg_data = er32(TXDCTL(1));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL(1), reg_data);
- break;
- }
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82571(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
- * @hw: pointer to the HW structure
- *
- * Initializes required hardware-dependent bits needed for normal operation.
- **/
-static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
-{
- u32 reg;
-
- /* Transmit Descriptor Control 0 */
- reg = er32(TXDCTL(0));
- reg |= (1 << 22);
- ew32(TXDCTL(0), reg);
-
- /* Transmit Descriptor Control 1 */
- reg = er32(TXDCTL(1));
- reg |= (1 << 22);
- ew32(TXDCTL(1), reg);
-
- /* Transmit Arbitration Control 0 */
- reg = er32(TARC(0));
- reg &= ~(0xF << 27); /* 30:27 */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
- break;
- default:
- break;
- }
- ew32(TARC(0), reg);
-
- /* Transmit Arbitration Control 1 */
- reg = er32(TARC(1));
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- reg &= ~((1 << 29) | (1 << 30));
- reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
- if (er32(TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- ew32(TARC(1), reg);
- break;
- default:
- break;
- }
-
- /* Device Control */
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- reg = er32(CTRL);
- reg &= ~(1 << 29);
- ew32(CTRL, reg);
- break;
- default:
- break;
- }
-
- /* Extended Device Control */
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- reg = er32(CTRL_EXT);
- reg &= ~(1 << 23);
- reg |= (1 << 22);
- ew32(CTRL_EXT, reg);
- break;
- default:
- break;
- }
-
- if (hw->mac.type == e1000_82571) {
- reg = er32(PBA_ECC);
- reg |= E1000_PBA_ECC_CORR_EN;
- ew32(PBA_ECC, reg);
- }
- /*
- * Workaround for hardware errata.
- * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
- */
-
- if ((hw->mac.type == e1000_82571) ||
- (hw->mac.type == e1000_82572)) {
- reg = er32(CTRL_EXT);
- reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
- ew32(CTRL_EXT, reg);
- }
-
-
- /* PCI-Ex Control Registers */
- switch (hw->mac.type) {
- case e1000_82574:
- case e1000_82583:
- reg = er32(GCR);
- reg |= (1 << 22);
- ew32(GCR, reg);
-
- /*
- * Workaround for hardware errata.
- * apply workaround for hardware errata documented in errata
- * docs Fixes issue where some error prone or unreliable PCIe
- * completions are occurring, particularly with ASPM enabled.
- * Without fix, issue can cause Tx timeouts.
- */
- reg = er32(GCR2);
- reg |= 1;
- ew32(GCR2, reg);
- break;
- default:
- break;
- }
-}
-
-/**
- * e1000_clear_vfta_82571 - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-static void e1000_clear_vfta_82571(struct e1000_hw *hw)
-{
- u32 offset;
- u32 vfta_value = 0;
- u32 vfta_offset = 0;
- u32 vfta_bit_in_reg = 0;
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (hw->mng_cookie.vlan_id != 0) {
- /*
- * The VFTA is a 4096b bit-field, each identifying
- * a single VLAN ID. The following operations
- * determine which 32b entry (i.e. offset) into the
- * array we want to set the VLAN ID (i.e. bit) of
- * the manageability unit.
- */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- break;
- default:
- break;
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /*
- * If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of
- * the manageability unit.
- */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
- e1e_flush();
- }
-}
-
-/**
- * e1000_check_mng_mode_82574 - Check manageability is enabled
- * @hw: pointer to the HW structure
- *
- * Reads the NVM Initialization Control Word 2 and returns true
- * (>0) if any manageability is enabled, else false (0).
- **/
-static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
-{
- u16 data;
-
- e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
- return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
-}
-
-/**
- * e1000_led_on_82574 - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-static s32 e1000_led_on_82574(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 i;
-
- ctrl = hw->mac.ledctl_mode2;
- if (!(E1000_STATUS_LU & er32(STATUS))) {
- /*
- * If no link, then turn LED on by setting the invert bit
- * for each LED that's "on" (0x0E) in ledctl_mode2.
- */
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
- }
- ew32(LEDCTL, ctrl);
-
- return 0;
-}
-
-/**
- * e1000_check_phy_82574 - check 82574 phy hung state
- * @hw: pointer to the HW structure
- *
- * Returns whether phy is hung or not
- **/
-bool e1000_check_phy_82574(struct e1000_hw *hw)
-{
- u16 status_1kbt = 0;
- u16 receive_errors = 0;
- bool phy_hung = false;
- s32 ret_val = 0;
-
- /*
- * Read PHY Receive Error counter first, if its is max - all F's then
- * read the Base1000T status register If both are max then PHY is hung.
- */
- ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
-
- if (ret_val)
- goto out;
- if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
- ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
- if (ret_val)
- goto out;
- if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
- E1000_IDLE_ERROR_COUNT_MASK)
- phy_hung = true;
- }
-out:
- return phy_hung;
-}
-
-/**
- * e1000_setup_link_82571 - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-static s32 e1000_setup_link_82571(struct e1000_hw *hw)
-{
- /*
- * 82573 does not have a word in the NVM to determine
- * the default flow control setting, so we explicitly
- * set it to full.
- */
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (hw->fc.requested_mode == e1000_fc_default)
- hw->fc.requested_mode = e1000_fc_full;
- break;
- default:
- break;
- }
-
- return e1000e_setup_link(hw);
-}
-
-/**
- * e1000_setup_copper_link_82571 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
-
- switch (hw->phy.type) {
- case e1000_phy_m88:
- case e1000_phy_bm:
- ret_val = e1000e_copper_link_setup_m88(hw);
- break;
- case e1000_phy_igp_2:
- ret_val = e1000e_copper_link_setup_igp(hw);
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_setup_copper_link(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes links.
- * Upon successful setup, poll for link.
- **/
-static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
-{
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /*
- * If SerDes loopback mode is entered, there is no form
- * of reset to take the adapter out of that mode. So we
- * have to explicitly take the adapter out of loopback
- * mode. This prevents drivers from twiddling their thumbs
- * if another tool failed to take it out of loopback mode.
- */
- ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
- break;
- default:
- break;
- }
-
- return e1000e_setup_fiber_serdes_link(hw);
-}
-
-/**
- * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Reports the link state as up or down.
- *
- * If autonegotiation is supported by the link partner, the link state is
- * determined by the result of autonegotiation. This is the most likely case.
- * If autonegotiation is not supported by the link partner, and the link
- * has a valid signal, force the link up.
- *
- * The link state is represented internally here by 4 states:
- *
- * 1) down
- * 2) autoneg_progress
- * 3) autoneg_complete (the link successfully autonegotiated)
- * 4) forced_up (the link has been forced up, it did not autonegotiate)
- *
- **/
-static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- u32 txcw;
- u32 i;
- s32 ret_val = 0;
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
-
- if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
-
- /* Receiver is synchronized with no invalid bits. */
- switch (mac->serdes_link_state) {
- case e1000_serdes_link_autoneg_complete:
- if (!(status & E1000_STATUS_LU)) {
- /*
- * We have lost link, retry autoneg before
- * reporting link failure
- */
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- e_dbg("AN_UP -> AN_PROG\n");
- } else {
- mac->serdes_has_link = true;
- }
- break;
-
- case e1000_serdes_link_forced_up:
- /*
- * If we are receiving /C/ ordered sets, re-enable
- * auto-negotiation in the TXCW register and disable
- * forced link in the Device Control register in an
- * attempt to auto-negotiate with our link partner.
- * If the partner code word is null, stop forcing
- * and restart auto negotiation.
- */
- if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
- /* Enable autoneg, and unforce link up */
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- e_dbg("FORCED_UP -> AN_PROG\n");
- } else {
- mac->serdes_has_link = true;
- }
- break;
-
- case e1000_serdes_link_autoneg_progress:
- if (rxcw & E1000_RXCW_C) {
- /*
- * We received /C/ ordered sets, meaning the
- * link partner has autonegotiated, and we can
- * trust the Link Up (LU) status bit.
- */
- if (status & E1000_STATUS_LU) {
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_complete;
- e_dbg("AN_PROG -> AN_UP\n");
- mac->serdes_has_link = true;
- } else {
- /* Autoneg completed, but failed. */
- mac->serdes_link_state =
- e1000_serdes_link_down;
- e_dbg("AN_PROG -> DOWN\n");
- }
- } else {
- /*
- * The link partner did not autoneg.
- * Force link up and full duplex, and change
- * state to forced.
- */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error config flow control\n");
- break;
- }
- mac->serdes_link_state =
- e1000_serdes_link_forced_up;
- mac->serdes_has_link = true;
- e_dbg("AN_PROG -> FORCED_UP\n");
- }
- break;
-
- case e1000_serdes_link_down:
- default:
- /*
- * The link was down but the receiver has now gained
- * valid sync, so lets see if we can bring the link
- * up.
- */
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- e_dbg("DOWN -> AN_PROG\n");
- break;
- }
- } else {
- if (!(rxcw & E1000_RXCW_SYNCH)) {
- mac->serdes_has_link = false;
- mac->serdes_link_state = e1000_serdes_link_down;
- e_dbg("ANYSTATE -> DOWN\n");
- } else {
- /*
- * Check several times, if Sync and Config
- * both are consistently 1 then simply ignore
- * the Invalid bit and restart Autoneg
- */
- for (i = 0; i < AN_RETRY_COUNT; i++) {
- udelay(10);
- rxcw = er32(RXCW);
- if ((rxcw & E1000_RXCW_IV) &&
- !((rxcw & E1000_RXCW_SYNCH) &&
- (rxcw & E1000_RXCW_C))) {
- mac->serdes_has_link = false;
- mac->serdes_link_state =
- e1000_serdes_link_down;
- e_dbg("ANYSTATE -> DOWN\n");
- break;
- }
- }
-
- if (i == AN_RETRY_COUNT) {
- txcw = er32(TXCW);
- txcw |= E1000_TXCW_ANE;
- ew32(TXCW, txcw);
- mac->serdes_link_state =
- e1000_serdes_link_autoneg_progress;
- mac->serdes_has_link = false;
- e_dbg("ANYSTATE -> AN_PROG\n");
- }
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_valid_led_default_82571 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
-
- switch (hw->mac.type) {
- case e1000_82573:
- case e1000_82574:
- case e1000_82583:
- if (*data == ID_LED_RESERVED_F746)
- *data = ID_LED_DEFAULT_82573;
- break;
- default:
- if (*data == ID_LED_RESERVED_0000 ||
- *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000e_get_laa_state_82571 - Get locally administered address state
- * @hw: pointer to the HW structure
- *
- * Retrieve and return the current locally administered address state.
- **/
-bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
-{
- if (hw->mac.type != e1000_82571)
- return false;
-
- return hw->dev_spec.e82571.laa_is_present;
-}
-
-/**
- * e1000e_set_laa_state_82571 - Set locally administered address state
- * @hw: pointer to the HW structure
- * @state: enable/disable locally administered address
- *
- * Enable/Disable the current locally administered address state.
- **/
-void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
-{
- if (hw->mac.type != e1000_82571)
- return;
-
- hw->dev_spec.e82571.laa_is_present = state;
-
- /* If workaround is activated... */
- if (state)
- /*
- * Hold a copy of the LAA in RAR[14] This is done so that
- * between the time RAR[0] gets clobbered and the time it
- * gets fixed, the actual LAA is in one of the RARs and no
- * incoming packets directed to this port are dropped.
- * Eventually the LAA will be in RAR[0] and RAR[14].
- */
- e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
-}
-
-/**
- * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Verifies that the EEPROM has completed the update. After updating the
- * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
- * the checksum fix is not implemented, we need to set the bit and update
- * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
- * we need to return bad checksum.
- **/
-static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 data;
-
- if (nvm->type != e1000_nvm_flash_hw)
- return 0;
-
- /*
- * Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed.
- */
- ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & 0x10)) {
- /*
- * Read 0x23 and check bit 15. This bit is a 1
- * when the checksum has already been fixed. If
- * the checksum is still wrong and this bit is a
- * 1, we need to return bad checksum. Otherwise,
- * we need to set this bit to a 1 and update the
- * checksum.
- */
- ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & 0x8000)) {
- data |= 0x8000;
- ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_update_nvm_checksum(hw);
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_read_mac_addr_82571 - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
-
- if (hw->mac.type == e1000_82571) {
- /*
- * If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- struct e1000_mac_info *mac = &hw->mac;
-
- if (!(phy->ops.check_reset_block))
- return;
-
- /* If the management interface is not enabled, then power down */
- if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-}
-
-/**
- * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
-{
- e1000e_clear_hw_cntrs_base(hw);
-
- er32(PRC64);
- er32(PRC127);
- er32(PRC255);
- er32(PRC511);
- er32(PRC1023);
- er32(PRC1522);
- er32(PTC64);
- er32(PTC127);
- er32(PTC255);
- er32(PTC511);
- er32(PTC1023);
- er32(PTC1522);
-
- er32(ALGNERRC);
- er32(RXERRC);
- er32(TNCRS);
- er32(CEXTERR);
- er32(TSCTC);
- er32(TSCTFC);
-
- er32(MGTPRC);
- er32(MGTPDC);
- er32(MGTPTC);
-
- er32(IAC);
- er32(ICRXOC);
-
- er32(ICRXPTC);
- er32(ICRXATC);
- er32(ICTXPTC);
- er32(ICTXATC);
- er32(ICTXQEC);
- er32(ICTXQMTC);
- er32(ICRXDMTC);
-}
-
-static struct e1000_mac_operations e82571_mac_ops = {
- /* .check_mng_mode: mac type dependent */
- /* .check_for_link: media type dependent */
- .id_led_init = e1000e_id_led_init,
- .cleanup_led = e1000e_cleanup_led_generic,
- .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
- .get_bus_info = e1000e_get_bus_info_pcie,
- .set_lan_id = e1000_set_lan_id_multi_port_pcie,
- /* .get_link_up_info: media type dependent */
- /* .led_on: mac type dependent */
- .led_off = e1000e_led_off_generic,
- .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
- .write_vfta = e1000_write_vfta_generic,
- .clear_vfta = e1000_clear_vfta_82571,
- .reset_hw = e1000_reset_hw_82571,
- .init_hw = e1000_init_hw_82571,
- .setup_link = e1000_setup_link_82571,
- /* .setup_physical_interface: media type dependent */
- .setup_led = e1000e_setup_led_generic,
- .read_mac_addr = e1000_read_mac_addr_82571,
-};
-
-static struct e1000_phy_operations e82_phy_ops_igp = {
- .acquire = e1000_get_hw_semaphore_82571,
- .check_polarity = e1000_check_polarity_igp,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit = NULL,
- .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
- .get_cfg_done = e1000_get_cfg_done_82571,
- .get_cable_length = e1000e_get_cable_length_igp_2,
- .get_info = e1000e_get_phy_info_igp,
- .read_reg = e1000e_read_phy_reg_igp,
- .release = e1000_put_hw_semaphore_82571,
- .reset = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_reg = e1000e_write_phy_reg_igp,
- .cfg_on_link_up = NULL,
-};
-
-static struct e1000_phy_operations e82_phy_ops_m88 = {
- .acquire = e1000_get_hw_semaphore_82571,
- .check_polarity = e1000_check_polarity_m88,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit = e1000e_phy_sw_reset,
- .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
- .get_cfg_done = e1000e_get_cfg_done,
- .get_cable_length = e1000e_get_cable_length_m88,
- .get_info = e1000e_get_phy_info_m88,
- .read_reg = e1000e_read_phy_reg_m88,
- .release = e1000_put_hw_semaphore_82571,
- .reset = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_reg = e1000e_write_phy_reg_m88,
- .cfg_on_link_up = NULL,
-};
-
-static struct e1000_phy_operations e82_phy_ops_bm = {
- .acquire = e1000_get_hw_semaphore_82571,
- .check_polarity = e1000_check_polarity_m88,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit = e1000e_phy_sw_reset,
- .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
- .get_cfg_done = e1000e_get_cfg_done,
- .get_cable_length = e1000e_get_cable_length_m88,
- .get_info = e1000e_get_phy_info_m88,
- .read_reg = e1000e_read_phy_reg_bm2,
- .release = e1000_put_hw_semaphore_82571,
- .reset = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_reg = e1000e_write_phy_reg_bm2,
- .cfg_on_link_up = NULL,
-};
-
-static struct e1000_nvm_operations e82571_nvm_ops = {
- .acquire = e1000_acquire_nvm_82571,
- .read = e1000e_read_nvm_eerd,
- .release = e1000_release_nvm_82571,
- .update = e1000_update_nvm_checksum_82571,
- .valid_led_default = e1000_valid_led_default_82571,
- .validate = e1000_validate_nvm_checksum_82571,
- .write = e1000_write_nvm_82571,
-};
-
-struct e1000_info e1000_82571_info = {
- .mac = e1000_82571,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_SMART_POWER_DOWN
- | FLAG_RESET_OVERWRITES_LAA /* errata */
- | FLAG_TARC_SPEED_MODE_BIT /* errata */
- | FLAG_APME_CHECK_PORT_B,
- .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
- | FLAG2_DMA_BURST,
- .pba = 38,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_igp,
- .nvm_ops = &e82571_nvm_ops,
-};
-
-struct e1000_info e1000_82572_info = {
- .mac = e1000_82572,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_TARC_SPEED_MODE_BIT, /* errata */
- .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
- | FLAG2_DMA_BURST,
- .pba = 38,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_igp,
- .nvm_ops = &e82571_nvm_ops,
-};
-
-struct e1000_info e1000_82573_info = {
- .mac = e1000_82573,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_SMART_POWER_DOWN
- | FLAG_HAS_AMT
- | FLAG_HAS_SWSM_ON_LOAD,
- .flags2 = FLAG2_DISABLE_ASPM_L1
- | FLAG2_DISABLE_ASPM_L0S,
- .pba = 20,
- .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
- .get_variants = e1000_get_variants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_m88,
- .nvm_ops = &e82571_nvm_ops,
-};
-
-struct e1000_info e1000_82574_info = {
- .mac = e1000_82574,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_MSIX
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_SMART_POWER_DOWN
- | FLAG_HAS_AMT
- | FLAG_HAS_CTRLEXT_ON_LOAD,
- .flags2 = FLAG2_CHECK_PHY_HANG
- | FLAG2_DISABLE_ASPM_L0S,
- .pba = 32,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_bm,
- .nvm_ops = &e82571_nvm_ops,
-};
-
-struct e1000_info e1000_82583_info = {
- .mac = e1000_82583,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_SMART_POWER_DOWN
- | FLAG_HAS_AMT
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_CTRLEXT_ON_LOAD,
- .flags2 = FLAG2_DISABLE_ASPM_L0S,
- .pba = 32,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_bm,
- .nvm_ops = &e82571_nvm_ops,
-};
-
diff --git a/drivers/net/e1000e/Makefile b/drivers/net/e1000e/Makefile
deleted file mode 100644
index 28519acacd2..00000000000
--- a/drivers/net/e1000e/Makefile
+++ /dev/null
@@ -1,37 +0,0 @@
-################################################################################
-#
-# Intel PRO/1000 Linux driver
-# Copyright(c) 1999 - 2011 Intel Corporation.
-#
-# This program is free software; you can redistribute it and/or modify it
-# under the terms and conditions of the GNU General Public License,
-# version 2, as published by the Free Software Foundation.
-#
-# This program is distributed in the hope it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
-# more details.
-#
-# You should have received a copy of the GNU General Public License along with
-# this program; if not, write to the Free Software Foundation, Inc.,
-# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-#
-# The full GNU General Public License is included in this distribution in
-# the file called "COPYING".
-#
-# Contact Information:
-# Linux NICS <linux.nics@intel.com>
-# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
-# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-#
-################################################################################
-
-#
-# Makefile for the Intel(R) PRO/1000 ethernet driver
-#
-
-obj-$(CONFIG_E1000E) += e1000e.o
-
-e1000e-objs := 82571.o ich8lan.o es2lan.o \
- lib.o phy.o param.o ethtool.o netdev.o
-
diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
deleted file mode 100644
index c516a7440be..00000000000
--- a/drivers/net/e1000e/defines.h
+++ /dev/null
@@ -1,844 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#ifndef _E1000_DEFINES_H_
-#define _E1000_DEFINES_H_
-
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC E1000_WUFC_LNKC
-#define E1000_WUS_MAG E1000_WUFC_MAG
-#define E1000_WUS_EX E1000_WUFC_EX
-#define E1000_WUS_MC E1000_WUFC_MC
-#define E1000_WUS_BC E1000_WUFC_BC
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_EIAME 0x01000000
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
-#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
-#define E1000_CTRL_EXT_LSECCK 0x00001000
-#define E1000_CTRL_EXT_PHYPDEN 0x00100000
-
-/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-/* Enable MAC address filtering */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
-/* Enable MNG packets to host memory */
-#define E1000_MANC_EN_MNG2HOST 0x00200000
-
-#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
-#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
-#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
-#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
-
-/* Receive Control */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-
-/*
- * Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* SWFW_SYNC Definitions */
-#define E1000_SWFW_EEP_SM 0x1
-#define E1000_SWFW_PHY0_SM 0x2
-#define E1000_SWFW_PHY1_SM 0x4
-#define E1000_SWFW_CSR_SM 0x8
-
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
-#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-
-/*
- * Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
-#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-
-/* Constants used to interpret the masked PCI-X bus speed. */
-
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
-#define ADVERTISE_1000_FULL 0x0020
-
-/* 1000/H is not supported, nor spec-compliant. */
-#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
-#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
-
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
-
-/* LED Control */
-#define E1000_PHY_LED0_MODE_MASK 0x00000007
-#define E1000_PHY_LED0_IVRT 0x00000008
-#define E1000_PHY_LED0_MASK 0x0000001F
-
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Transmit Control */
-#define E1000_TCTL_EN 0x00000002 /* enable Tx */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-
-/* Transmit Arbitration Count */
-
-/* SerDes Control */
-#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-
-/* Header split receive */
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLD_SHIFT 12
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
-
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008 /* 8KB */
-#define E1000_PBA_16K 0x0010 /* 16KB */
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-#define IFS_MAX 80
-#define IFS_MIN 40
-#define IFS_RATIO 4
-#define IFS_STEP 10
-#define MIN_NUM_XMITS 1000
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
-#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
-#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
-#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
-#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
-#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
-
-/* PBA ECC Register */
-#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
-#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
-#define E1000_PBA_ECC_CORR_EN 0x00000001 /* ECC correction enable */
-#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
-#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 for ECC */
-
-/*
- * This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
-#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
-#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
-#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
-#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
-#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
-/* Enable the counting of desc. still to be processed. */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* 802.1q VLAN Packet Size */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-/* Receive Address */
-/*
- * Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * Technically, we have 16 spots. However, we reserve one of these spots
- * (RAR[15]) for our directed address used by controllers with
- * manageability enabled, allowing us room for 15 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-#define E1000_RAL_MAC_ADDR_LEN 4
-#define E1000_RAH_MAC_ADDR_LEN 2
-
-/* Error Codes */
-#define E1000_ERR_NVM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_INIT 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-#define E1000_NOT_IMPLEMENTED 14
-#define E1000_ERR_INVALID_ARGUMENT 16
-#define E1000_ERR_NO_SPACE 17
-#define E1000_ERR_NVM_PBA_SECTION 18
-
-/* Loop limit on how long we wait for auto-negotiation to complete */
-#define FIBER_LINK_UP_LIMIT 50
-#define COPPER_LINK_UP_LIMIT 10
-#define PHY_AUTO_NEG_LIMIT 45
-#define PHY_FORCE_LIMIT 20
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
-#define MDIO_OWNERSHIP_TIMEOUT 10
-/* Number of milliseconds for NVM auto read done after MAC reset. */
-#define AUTO_READ_DONE_TIMEOUT 10
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-
-/* PCI Express Control */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-
-#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
-
-/* PHY Control Register */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-
-/* PHY Status Register */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CONTROL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Register */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
-
-/* NVM Control */
-#define E1000_EECD_SK 0x00000001 /* NVM Clock */
-#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* NVM Data In */
-#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
-#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* NVM Present */
-#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
-/* NVM Addressing bits based on type (0-small, 1-large) */
-#define E1000_EECD_ADDR_BITS 0x00000400
-#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
-#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
-
-#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */
-#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_NVM_RW_REG_START 1 /* Start operation */
-#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
-#define E1000_FLASH_UPDATES 2000
-
-/* NVM Word Offsets */
-#define NVM_COMPAT 0x0003
-#define NVM_ID_LED_SETTINGS 0x0004
-#define NVM_INIT_CONTROL2_REG 0x000F
-#define NVM_INIT_CONTROL3_PORT_B 0x0014
-#define NVM_INIT_3GIO_3 0x001A
-#define NVM_INIT_CONTROL3_PORT_A 0x0024
-#define NVM_CFG 0x0012
-#define NVM_ALT_MAC_ADDR_PTR 0x0037
-#define NVM_CHECKSUM_REG 0x003F
-
-#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
-
-#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
-#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
-
-/* Mask bits for fields in Word 0x0f of the NVM */
-#define NVM_WORD0F_PAUSE_MASK 0x3000
-#define NVM_WORD0F_PAUSE 0x1000
-#define NVM_WORD0F_ASM_DIR 0x2000
-
-/* Mask bits for fields in Word 0x1a of the NVM */
-#define NVM_WORD1A_ASPM_MASK 0x000C
-
-/* Mask bits for fields in Word 0x03 of the EEPROM */
-#define NVM_COMPAT_LOM 0x0800
-
-/* length of string needed to store PBA number */
-#define E1000_PBANUM_LENGTH 11
-
-/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
-#define NVM_SUM 0xBABA
-
-/* PBA (printed board assembly) number words */
-#define NVM_PBA_OFFSET_0 8
-#define NVM_PBA_OFFSET_1 9
-#define NVM_PBA_PTR_GUARD 0xFAFA
-#define NVM_WORD_SIZE_BASE_SHIFT 6
-
-/* NVM Commands - SPI */
-#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
-#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
-#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
-
-/* SPI NVM Status Register */
-#define NVM_STATUS_RDY_SPI 0x01
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-/* PCI/PCI-X/PCI-EX Config space */
-#define PCI_HEADER_TYPE_REGISTER 0x0E
-#define PCIE_LINK_STATUS 0x12
-
-#define PCI_HEADER_TYPE_MULTIFUNC 0x80
-#define PCIE_LINK_WIDTH_MASK 0x3F0
-#define PCIE_LINK_WIDTH_SHIFT 4
-
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF
-
-/* Bit definitions for valid PHY IDs. */
-/*
- * I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define GG82563_E_PHY_ID 0x01410CA0
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-#define BME1000_E_PHY_ID 0x01410CB0
-#define BME1000_E_PHY_ID_R2 0x01410CB1
-#define I82577_E_PHY_ID 0x01540050
-#define I82578_E_PHY_ID 0x004DD040
-#define I82579_E_PHY_ID 0x01540090
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040
-/* Auto crossover enabled all speeds */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060
-/*
- * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
- * 0=Normal 10BASE-T Rx Threshold
- */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
- * are the master
- */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-/*
- * Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave
- */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-
-#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
-#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
-
-/* BME1000 PHY Specific Control Register */
-#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
-
-
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
- ((reg) & MAX_PHY_REG_ADDRESS))
-
-/*
- * Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-
-/* MDI Control */
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_ERROR 0x40000000
-
-/* SerDes Control */
-#define E1000_GEN_POLL_TIMEOUT 640
-
-#endif /* _E1000_DEFINES_H_ */
diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
deleted file mode 100644
index 638d175792c..00000000000
--- a/drivers/net/e1000e/e1000.h
+++ /dev/null
@@ -1,736 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* Linux PRO/1000 Ethernet Driver main header file */
-
-#ifndef _E1000_H_
-#define _E1000_H_
-
-#include <linux/bitops.h>
-#include <linux/types.h>
-#include <linux/timer.h>
-#include <linux/workqueue.h>
-#include <linux/io.h>
-#include <linux/netdevice.h>
-#include <linux/pci.h>
-#include <linux/pci-aspm.h>
-#include <linux/crc32.h>
-#include <linux/if_vlan.h>
-
-#include "hw.h"
-
-struct e1000_info;
-
-#define e_dbg(format, arg...) \
- netdev_dbg(hw->adapter->netdev, format, ## arg)
-#define e_err(format, arg...) \
- netdev_err(adapter->netdev, format, ## arg)
-#define e_info(format, arg...) \
- netdev_info(adapter->netdev, format, ## arg)
-#define e_warn(format, arg...) \
- netdev_warn(adapter->netdev, format, ## arg)
-#define e_notice(format, arg...) \
- netdev_notice(adapter->netdev, format, ## arg)
-
-
-/* Interrupt modes, as used by the IntMode parameter */
-#define E1000E_INT_MODE_LEGACY 0
-#define E1000E_INT_MODE_MSI 1
-#define E1000E_INT_MODE_MSIX 2
-
-/* Tx/Rx descriptor defines */
-#define E1000_DEFAULT_TXD 256
-#define E1000_MAX_TXD 4096
-#define E1000_MIN_TXD 64
-
-#define E1000_DEFAULT_RXD 256
-#define E1000_MAX_RXD 4096
-#define E1000_MIN_RXD 64
-
-#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
-#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
-
-/* Early Receive defines */
-#define E1000_ERT_2048 0x100
-
-#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
-
-/* How many Tx Descriptors do we need to call netif_wake_queue ? */
-/* How many Rx Buffers do we bundle into one write to the hardware ? */
-#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
-
-#define AUTO_ALL_MODES 0
-#define E1000_EEPROM_APME 0x0400
-
-#define E1000_MNG_VLAN_NONE (-1)
-
-/* Number of packet split data buffers (not including the header buffer) */
-#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
-
-#define DEFAULT_JUMBO 9234
-
-/* BM/HV Specific Registers */
-#define BM_PORT_CTRL_PAGE 769
-
-#define PHY_UPPER_SHIFT 21
-#define BM_PHY_REG(page, reg) \
- (((reg) & MAX_PHY_REG_ADDRESS) |\
- (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
- (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
-
-/* PHY Wakeup Registers and defines */
-#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17)
-#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
-#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
-#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
-#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
-#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
-#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
-#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
-#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
-#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
-
-#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
-#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
-#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
-#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
-#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
-#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
-#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
-
-#define HV_STATS_PAGE 778
-#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */
-#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
-#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */
-#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
-#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */
-#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
-#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */
-#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
-#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */
-#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
-#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
-#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
-#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */
-#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
-
-#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
-
-/* BM PHY Copper Specific Status */
-#define BM_CS_STATUS 17
-#define BM_CS_STATUS_LINK_UP 0x0400
-#define BM_CS_STATUS_RESOLVED 0x0800
-#define BM_CS_STATUS_SPEED_MASK 0xC000
-#define BM_CS_STATUS_SPEED_1000 0x8000
-
-/* 82577 Mobile Phy Status Register */
-#define HV_M_STATUS 26
-#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
-#define HV_M_STATUS_SPEED_MASK 0x0300
-#define HV_M_STATUS_SPEED_1000 0x0200
-#define HV_M_STATUS_LINK_UP 0x0040
-
-/* Time to wait before putting the device into D3 if there's no link (in ms). */
-#define LINK_TIMEOUT 100
-
-#define DEFAULT_RDTR 0
-#define DEFAULT_RADV 8
-#define BURST_RDTR 0x20
-#define BURST_RADV 0x20
-
-/*
- * in the case of WTHRESH, it appears at least the 82571/2 hardware
- * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
- * WTHRESH=4, and since we want 64 bytes at a time written back, set
- * it to 5
- */
-#define E1000_TXDCTL_DMA_BURST_ENABLE \
- (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
- E1000_TXDCTL_COUNT_DESC | \
- (5 << 16) | /* wthresh must be +1 more than desired */\
- (1 << 8) | /* hthresh */ \
- 0x1f) /* pthresh */
-
-#define E1000_RXDCTL_DMA_BURST_ENABLE \
- (0x01000000 | /* set descriptor granularity */ \
- (4 << 16) | /* set writeback threshold */ \
- (4 << 8) | /* set prefetch threshold */ \
- 0x20) /* set hthresh */
-
-#define E1000_TIDV_FPD (1 << 31)
-#define E1000_RDTR_FPD (1 << 31)
-
-enum e1000_boards {
- board_82571,
- board_82572,
- board_82573,
- board_82574,
- board_82583,
- board_80003es2lan,
- board_ich8lan,
- board_ich9lan,
- board_ich10lan,
- board_pchlan,
- board_pch2lan,
-};
-
-struct e1000_ps_page {
- struct page *page;
- u64 dma; /* must be u64 - written to hw */
-};
-
-/*
- * wrappers around a pointer to a socket buffer,
- * so a DMA handle can be stored along with the buffer
- */
-struct e1000_buffer {
- dma_addr_t dma;
- struct sk_buff *skb;
- union {
- /* Tx */
- struct {
- unsigned long time_stamp;
- u16 length;
- u16 next_to_watch;
- unsigned int segs;
- unsigned int bytecount;
- u16 mapped_as_page;
- };
- /* Rx */
- struct {
- /* arrays of page information for packet split */
- struct e1000_ps_page *ps_pages;
- struct page *page;
- };
- };
-};
-
-struct e1000_ring {
- void *desc; /* pointer to ring memory */
- dma_addr_t dma; /* phys address of ring */
- unsigned int size; /* length of ring in bytes */
- unsigned int count; /* number of desc. in ring */
-
- u16 next_to_use;
- u16 next_to_clean;
-
- u16 head;
- u16 tail;
-
- /* array of buffer information structs */
- struct e1000_buffer *buffer_info;
-
- char name[IFNAMSIZ + 5];
- u32 ims_val;
- u32 itr_val;
- u16 itr_register;
- int set_itr;
-
- struct sk_buff *rx_skb_top;
-};
-
-/* PHY register snapshot values */
-struct e1000_phy_regs {
- u16 bmcr; /* basic mode control register */
- u16 bmsr; /* basic mode status register */
- u16 advertise; /* auto-negotiation advertisement */
- u16 lpa; /* link partner ability register */
- u16 expansion; /* auto-negotiation expansion reg */
- u16 ctrl1000; /* 1000BASE-T control register */
- u16 stat1000; /* 1000BASE-T status register */
- u16 estatus; /* extended status register */
-};
-
-/* board specific private data structure */
-struct e1000_adapter {
- struct timer_list watchdog_timer;
- struct timer_list phy_info_timer;
- struct timer_list blink_timer;
-
- struct work_struct reset_task;
- struct work_struct watchdog_task;
-
- const struct e1000_info *ei;
-
- unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
- u32 bd_number;
- u32 rx_buffer_len;
- u16 mng_vlan_id;
- u16 link_speed;
- u16 link_duplex;
- u16 eeprom_vers;
-
- /* track device up/down/testing state */
- unsigned long state;
-
- /* Interrupt Throttle Rate */
- u32 itr;
- u32 itr_setting;
- u16 tx_itr;
- u16 rx_itr;
-
- /*
- * Tx
- */
- struct e1000_ring *tx_ring /* One per active queue */
- ____cacheline_aligned_in_smp;
-
- struct napi_struct napi;
-
- unsigned int restart_queue;
- u32 txd_cmd;
-
- bool detect_tx_hung;
- u8 tx_timeout_factor;
-
- u32 tx_int_delay;
- u32 tx_abs_int_delay;
-
- unsigned int total_tx_bytes;
- unsigned int total_tx_packets;
- unsigned int total_rx_bytes;
- unsigned int total_rx_packets;
-
- /* Tx stats */
- u64 tpt_old;
- u64 colc_old;
- u32 gotc;
- u64 gotc_old;
- u32 tx_timeout_count;
- u32 tx_fifo_head;
- u32 tx_head_addr;
- u32 tx_fifo_size;
- u32 tx_dma_failed;
-
- /*
- * Rx
- */
- bool (*clean_rx) (struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
- ____cacheline_aligned_in_smp;
- void (*alloc_rx_buf) (struct e1000_adapter *adapter,
- int cleaned_count, gfp_t gfp);
- struct e1000_ring *rx_ring;
-
- u32 rx_int_delay;
- u32 rx_abs_int_delay;
-
- /* Rx stats */
- u64 hw_csum_err;
- u64 hw_csum_good;
- u64 rx_hdr_split;
- u32 gorc;
- u64 gorc_old;
- u32 alloc_rx_buff_failed;
- u32 rx_dma_failed;
-
- unsigned int rx_ps_pages;
- u16 rx_ps_bsize0;
- u32 max_frame_size;
- u32 min_frame_size;
-
- /* OS defined structs */
- struct net_device *netdev;
- struct pci_dev *pdev;
-
- /* structs defined in e1000_hw.h */
- struct e1000_hw hw;
-
- spinlock_t stats64_lock;
- struct e1000_hw_stats stats;
- struct e1000_phy_info phy_info;
- struct e1000_phy_stats phy_stats;
-
- /* Snapshot of PHY registers */
- struct e1000_phy_regs phy_regs;
-
- struct e1000_ring test_tx_ring;
- struct e1000_ring test_rx_ring;
- u32 test_icr;
-
- u32 msg_enable;
- unsigned int num_vectors;
- struct msix_entry *msix_entries;
- int int_mode;
- u32 eiac_mask;
-
- u32 eeprom_wol;
- u32 wol;
- u32 pba;
- u32 max_hw_frame_size;
-
- bool fc_autoneg;
-
- unsigned int flags;
- unsigned int flags2;
- struct work_struct downshift_task;
- struct work_struct update_phy_task;
- struct work_struct print_hang_task;
-
- bool idle_check;
- int phy_hang_count;
-};
-
-struct e1000_info {
- enum e1000_mac_type mac;
- unsigned int flags;
- unsigned int flags2;
- u32 pba;
- u32 max_hw_frame_size;
- s32 (*get_variants)(struct e1000_adapter *);
- struct e1000_mac_operations *mac_ops;
- struct e1000_phy_operations *phy_ops;
- struct e1000_nvm_operations *nvm_ops;
-};
-
-/* hardware capability, feature, and workaround flags */
-#define FLAG_HAS_AMT (1 << 0)
-#define FLAG_HAS_FLASH (1 << 1)
-#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
-#define FLAG_HAS_WOL (1 << 3)
-#define FLAG_HAS_ERT (1 << 4)
-#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
-#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
-#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
-#define FLAG_READ_ONLY_NVM (1 << 8)
-#define FLAG_IS_ICH (1 << 9)
-#define FLAG_HAS_MSIX (1 << 10)
-#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
-#define FLAG_IS_QUAD_PORT_A (1 << 12)
-#define FLAG_IS_QUAD_PORT (1 << 13)
-#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14)
-#define FLAG_APME_IN_WUC (1 << 15)
-#define FLAG_APME_IN_CTRL3 (1 << 16)
-#define FLAG_APME_CHECK_PORT_B (1 << 17)
-#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
-#define FLAG_NO_WAKE_UCAST (1 << 19)
-#define FLAG_MNG_PT_ENABLED (1 << 20)
-#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
-#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
-#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
-#define FLAG_RX_NEEDS_RESTART (1 << 24)
-#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
-#define FLAG_SMART_POWER_DOWN (1 << 26)
-#define FLAG_MSI_ENABLED (1 << 27)
-#define FLAG_RX_CSUM_ENABLED (1 << 28)
-#define FLAG_TSO_FORCE (1 << 29)
-#define FLAG_RX_RESTART_NOW (1 << 30)
-#define FLAG_MSI_TEST_FAILED (1 << 31)
-
-/* CRC Stripping defines */
-#define FLAG2_CRC_STRIPPING (1 << 0)
-#define FLAG2_HAS_PHY_WAKEUP (1 << 1)
-#define FLAG2_IS_DISCARDING (1 << 2)
-#define FLAG2_DISABLE_ASPM_L1 (1 << 3)
-#define FLAG2_HAS_PHY_STATS (1 << 4)
-#define FLAG2_HAS_EEE (1 << 5)
-#define FLAG2_DMA_BURST (1 << 6)
-#define FLAG2_DISABLE_ASPM_L0S (1 << 7)
-#define FLAG2_DISABLE_AIM (1 << 8)
-#define FLAG2_CHECK_PHY_HANG (1 << 9)
-
-#define E1000_RX_DESC_PS(R, i) \
- (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
-#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
-#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
-#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
-#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
-
-enum e1000_state_t {
- __E1000_TESTING,
- __E1000_RESETTING,
- __E1000_DOWN
-};
-
-enum latency_range {
- lowest_latency = 0,
- low_latency = 1,
- bulk_latency = 2,
- latency_invalid = 255
-};
-
-extern char e1000e_driver_name[];
-extern const char e1000e_driver_version[];
-
-extern void e1000e_check_options(struct e1000_adapter *adapter);
-extern void e1000e_set_ethtool_ops(struct net_device *netdev);
-
-extern int e1000e_up(struct e1000_adapter *adapter);
-extern void e1000e_down(struct e1000_adapter *adapter);
-extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
-extern void e1000e_reset(struct e1000_adapter *adapter);
-extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
-extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
-extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
-extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
-extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
-extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
- struct rtnl_link_stats64
- *stats);
-extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
-extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
-extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
-extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
-
-extern unsigned int copybreak;
-
-extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
-
-extern struct e1000_info e1000_82571_info;
-extern struct e1000_info e1000_82572_info;
-extern struct e1000_info e1000_82573_info;
-extern struct e1000_info e1000_82574_info;
-extern struct e1000_info e1000_82583_info;
-extern struct e1000_info e1000_ich8_info;
-extern struct e1000_info e1000_ich9_info;
-extern struct e1000_info e1000_ich10_info;
-extern struct e1000_info e1000_pch_info;
-extern struct e1000_info e1000_pch2_info;
-extern struct e1000_info e1000_es2_info;
-
-extern s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size);
-
-extern s32 e1000e_commit_phy(struct e1000_hw *hw);
-
-extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
-
-extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
-extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
-
-extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw);
-extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state);
-extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
-extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
-extern void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
-extern void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
-extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
-extern s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
-extern void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
-
-extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
-extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
-extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
-extern s32 e1000e_setup_led_generic(struct e1000_hw *hw);
-extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
-extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
-extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
-extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
-extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
-extern void e1000_set_lan_id_single_port(struct e1000_hw *hw);
-extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
-extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
-extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
-extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
-extern s32 e1000e_id_led_init(struct e1000_hw *hw);
-extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
-extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
-extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
-extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
-extern s32 e1000e_setup_link(struct e1000_hw *hw);
-extern void e1000_clear_vfta_generic(struct e1000_hw *hw);
-extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
-extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list,
- u32 mc_addr_count);
-extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
-extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
-extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
-extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
-extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
-extern void e1000e_config_collision_dist(struct e1000_hw *hw);
-extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
-extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
-extern s32 e1000e_blink_led_generic(struct e1000_hw *hw);
-extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
-extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
-extern void e1000e_reset_adaptive(struct e1000_hw *hw);
-extern void e1000e_update_adaptive(struct e1000_hw *hw);
-
-extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
-extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
-extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
-extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
-extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
-extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
-extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
-extern s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
-extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
- u16 *data);
-extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
-extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
- u16 data);
-extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
-extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
-extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
-extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
-extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
-extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw);
-extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
-extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
-extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
- u16 *phy_reg);
-extern s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
- u16 *phy_reg);
-extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
-extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
-extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
- u16 data);
-extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
- u16 *data);
-extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success);
-extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
-extern void e1000_power_up_phy_copper(struct e1000_hw *hw);
-extern void e1000_power_down_phy_copper(struct e1000_hw *hw);
-extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_check_downshift(struct e1000_hw *hw);
-extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
- u16 *data);
-extern s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
- u16 *data);
-extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
- u16 data);
-extern s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
- u16 data);
-extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
-extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
-extern s32 e1000_check_polarity_82577(struct e1000_hw *hw);
-extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
-extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
-extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
-
-extern s32 e1000_check_polarity_m88(struct e1000_hw *hw);
-extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
-extern s32 e1000_check_polarity_ife(struct e1000_hw *hw);
-extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
-extern s32 e1000_check_polarity_igp(struct e1000_hw *hw);
-extern bool e1000_check_phy_82574(struct e1000_hw *hw);
-
-static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
- return hw->phy.ops.reset(hw);
-}
-
-static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
-{
- return hw->phy.ops.check_reset_block(hw);
-}
-
-static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return hw->phy.ops.read_reg(hw, offset, data);
-}
-
-static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return hw->phy.ops.write_reg(hw, offset, data);
-}
-
-static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
-{
- return hw->phy.ops.get_cable_length(hw);
-}
-
-extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
-extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
-extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
-extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
-extern void e1000e_release_nvm(struct e1000_hw *hw);
-extern void e1000e_reload_nvm(struct e1000_hw *hw);
-extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
-
-static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
-{
- if (hw->mac.ops.read_mac_addr)
- return hw->mac.ops.read_mac_addr(hw);
-
- return e1000_read_mac_addr_generic(hw);
-}
-
-static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
-{
- return hw->nvm.ops.validate(hw);
-}
-
-static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
-{
- return hw->nvm.ops.update(hw);
-}
-
-static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- return hw->nvm.ops.read(hw, offset, words, data);
-}
-
-static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- return hw->nvm.ops.write(hw, offset, words, data);
-}
-
-static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
-{
- return hw->phy.ops.get_info(hw);
-}
-
-static inline s32 e1000e_check_mng_mode(struct e1000_hw *hw)
-{
- return hw->mac.ops.check_mng_mode(hw);
-}
-
-extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw);
-extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
-extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
-
-static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
-{
- return readl(hw->hw_addr + reg);
-}
-
-static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
-{
- writel(val, hw->hw_addr + reg);
-}
-
-#endif /* _E1000_H_ */
diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
deleted file mode 100644
index e4f42257c24..00000000000
--- a/drivers/net/e1000e/es2lan.c
+++ /dev/null
@@ -1,1516 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 80003ES2LAN Gigabit Ethernet Controller (Copper)
- * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
- */
-
-#include "e1000.h"
-
-#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
-#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
-#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
-#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
-
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
-#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
-
-#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
-#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
-#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
-
-#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
-#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
-
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
-
-#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
-#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
-
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
- /* 1=Reverse Auto-Negotiation */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
- 1 = 50-80M
- 2 = 80-110M
- 3 = 110-140M
- 4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
-
-/* Max number of times Kumeran read/write should be validated */
-#define GG82563_MAX_KMRN_RETRY 0x5
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
- /* 1=Enable SERDES Electrical Idle */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
-
-/*
- * A table for the GG82563 cable length where the range is defined
- * with a lower bound at "index" and the upper bound at
- * "index + 5".
- */
-static const u16 e1000_gg82563_cable_length_table[] = {
- 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
-#define GG82563_CABLE_LENGTH_TABLE_SIZE \
- ARRAY_SIZE(e1000_gg82563_cable_length_table)
-
-static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
-static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
-static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 *data);
-static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 data);
-static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
-
-/**
- * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- if (hw->phy.media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return 0;
- } else {
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
- phy->type = e1000_phy_gg82563;
-
- /* This can only be done after all function pointers are setup. */
- ret_val = e1000e_get_phy_id(hw);
-
- /* Verify phy id */
- if (phy->id != GG82563_E_PHY_ID)
- return -E1000_ERR_PHY;
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u16 size;
-
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- nvm->type = e1000_nvm_eeprom_spi;
-
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
-
- /*
- * Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
-
- /* EEPROM access above 16k is unsupported */
- if (size > 14)
- size = 14;
- nvm->word_size = 1 << size;
-
- return 0;
-}
-
-/**
- * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_mac_operations *func = &mac->ops;
-
- /* Set media type */
- switch (adapter->pdev->device) {
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->phy.media_type = e1000_media_type_internal_serdes;
- break;
- default:
- hw->phy.media_type = e1000_media_type_copper;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC supported; valid only if manageability features are enabled. */
- mac->arc_subsystem_valid =
- (er32(FWSM) & E1000_FWSM_MODE_MASK)
- ? true : false;
- /* Adaptive IFS not supported */
- mac->adaptive_ifs = false;
-
- /* check for link */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
- func->check_for_link = e1000e_check_for_copper_link;
- break;
- case e1000_media_type_fiber:
- func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
- func->check_for_link = e1000e_check_for_fiber_link;
- break;
- case e1000_media_type_internal_serdes:
- func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
- func->check_for_link = e1000e_check_for_serdes_link;
- break;
- default:
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* set lan id for port to determine which phy lock to use */
- hw->mac.ops.set_lan_id(hw);
-
- return 0;
-}
-
-static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- s32 rc;
-
- rc = e1000_init_mac_params_80003es2lan(adapter);
- if (rc)
- return rc;
-
- rc = e1000_init_nvm_params_80003es2lan(hw);
- if (rc)
- return rc;
-
- rc = e1000_init_phy_params_80003es2lan(hw);
- if (rc)
- return rc;
-
- return 0;
-}
-
-/**
- * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to acquire access rights to the correct PHY.
- **/
-static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
- return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_release_phy_80003es2lan - Release rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to release access rights to the correct PHY.
- **/
-static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
- e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
- * @hw: pointer to the HW structure
- *
- * Acquire the semaphore to access the Kumeran interface.
- *
- **/
-static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- mask = E1000_SWFW_CSR_SM;
-
- return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
- * @hw: pointer to the HW structure
- *
- * Release the semaphore used to access the Kumeran interface
- **/
-static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- mask = E1000_SWFW_CSR_SM;
-
- e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
- * @hw: pointer to the HW structure
- *
- * Acquire the semaphore to access the EEPROM.
- **/
-static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_acquire_nvm(hw);
-
- if (ret_val)
- e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
- * @hw: pointer to the HW structure
- *
- * Release the semaphore used to access the EEPROM.
- **/
-static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
-{
- e1000e_release_nvm(hw);
- e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 i = 0;
- s32 timeout = 50;
-
- while (i < timeout) {
- if (e1000e_get_hw_semaphore(hw))
- return -E1000_ERR_SWFW_SYNC;
-
- swfw_sync = er32(SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /*
- * Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask)
- */
- e1000e_put_hw_semaphore(hw);
- mdelay(5);
- i++;
- }
-
- if (i == timeout) {
- e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- swfw_sync |= swmask;
- ew32(SW_FW_SYNC, swfw_sync);
-
- e1000e_put_hw_semaphore(hw);
-
- return 0;
-}
-
-/**
- * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- while (e1000e_get_hw_semaphore(hw) != 0)
- ; /* Empty */
-
- swfw_sync = er32(SW_FW_SYNC);
- swfw_sync &= ~mask;
- ew32(SW_FW_SYNC, swfw_sync);
-
- e1000e_put_hw_semaphore(hw);
-}
-
-/**
- * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @data: pointer to the data returned from the operation
- *
- * Read the GG82563 PHY register.
- **/
-static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 *data)
-{
- s32 ret_val;
- u32 page_select;
- u16 temp;
-
- ret_val = e1000_acquire_phy_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Select Configuration Page */
- if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- page_select = GG82563_PHY_PAGE_SELECT;
- } else {
- /*
- * Use Alternative Page Select register to access
- * registers 30 and 31
- */
- page_select = GG82563_PHY_PAGE_SELECT_ALT;
- }
-
- temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
- ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
- if (ret_val) {
- e1000_release_phy_80003es2lan(hw);
- return ret_val;
- }
-
- if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
- /*
- * The "ready" bit in the MDIC register may be incorrectly set
- * before the device has completed the "Page Select" MDI
- * transaction. So we wait 200us after each MDI command...
- */
- udelay(200);
-
- /* ...and verify the command was successful. */
- ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
-
- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
- ret_val = -E1000_ERR_PHY;
- e1000_release_phy_80003es2lan(hw);
- return ret_val;
- }
-
- udelay(200);
-
- ret_val = e1000e_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- udelay(200);
- } else {
- ret_val = e1000e_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
- }
-
- e1000_release_phy_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @data: value to write to the register
- *
- * Write to the GG82563 PHY register.
- **/
-static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 data)
-{
- s32 ret_val;
- u32 page_select;
- u16 temp;
-
- ret_val = e1000_acquire_phy_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Select Configuration Page */
- if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
- page_select = GG82563_PHY_PAGE_SELECT;
- } else {
- /*
- * Use Alternative Page Select register to access
- * registers 30 and 31
- */
- page_select = GG82563_PHY_PAGE_SELECT_ALT;
- }
-
- temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
- ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
- if (ret_val) {
- e1000_release_phy_80003es2lan(hw);
- return ret_val;
- }
-
- if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
- /*
- * The "ready" bit in the MDIC register may be incorrectly set
- * before the device has completed the "Page Select" MDI
- * transaction. So we wait 200us after each MDI command...
- */
- udelay(200);
-
- /* ...and verify the command was successful. */
- ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
-
- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
- e1000_release_phy_80003es2lan(hw);
- return -E1000_ERR_PHY;
- }
-
- udelay(200);
-
- ret_val = e1000e_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- udelay(200);
- } else {
- ret_val = e1000e_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
- }
-
- e1000_release_phy_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @words: number of words to write
- * @data: buffer of data to write to the NVM
- *
- * Write "words" of data to the ESB2 NVM.
- **/
-static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- return e1000e_write_nvm_spi(hw, offset, words, data);
-}
-
-/**
- * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
- * @hw: pointer to the HW structure
- *
- * Wait a specific amount of time for manageability processes to complete.
- * This is a function pointer entry point called by the phy module.
- **/
-static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
- if (hw->bus.func == 1)
- mask = E1000_NVM_CFG_DONE_PORT_1;
-
- while (timeout) {
- if (er32(EEMNGCTL) & mask)
- break;
- usleep_range(1000, 2000);
- timeout--;
- }
- if (!timeout) {
- e_dbg("MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return 0;
-}
-
-/**
- * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
- * @hw: pointer to the HW structure
- *
- * Force the speed and duplex settings onto the PHY. This is a
- * function pointer entry point called by the phy module.
- **/
-static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- /*
- * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
- ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- e_dbg("GG82563 PSCR: %X\n", phy_data);
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- /* Reset the phy to commit changes. */
- phy_data |= MII_CR_RESET;
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- if (hw->phy.autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link "
- "on GG82563 phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- /*
- * We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = e1000e_phy_reset_dsp(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Resetting the phy means we need to verify the TX_CLK corresponds
- * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
- */
- phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
- if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
- phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
- else
- phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
-
- /*
- * In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_80003es2lan - Set approximate cable length
- * @hw: pointer to the HW structure
- *
- * Find the approximate cable length as measured by the GG82563 PHY.
- * This is a function pointer entry point called by the phy module.
- **/
-static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = 0;
- u16 phy_data, index;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
- if (ret_val)
- goto out;
-
- index = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
- if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- phy->min_cable_length = e1000_gg82563_cable_length_table[index];
- phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_link_up_info_80003es2lan - Report speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to speed buffer
- * @duplex: pointer to duplex buffer
- *
- * Retrieve the current speed and duplex configuration.
- **/
-static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- if (hw->phy.media_type == e1000_media_type_copper) {
- ret_val = e1000e_get_speed_and_duplex_copper(hw,
- speed,
- duplex);
- hw->phy.ops.cfg_on_link_up(hw);
- } else {
- ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
- speed,
- duplex);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
- * @hw: pointer to the HW structure
- *
- * Perform a global reset to the ESB2 controller.
- **/
-static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000e_disable_pcie_master(hw);
- if (ret_val)
- e_dbg("PCI-E Master disable polling has failed.\n");
-
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- e1e_flush();
-
- usleep_range(10000, 20000);
-
- ctrl = er32(CTRL);
-
- ret_val = e1000_acquire_phy_80003es2lan(hw);
- e_dbg("Issuing a global reset to MAC\n");
- ew32(CTRL, ctrl | E1000_CTRL_RST);
- e1000_release_phy_80003es2lan(hw);
-
- ret_val = e1000e_get_auto_rd_done(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
-
- /* Clear any pending interrupt events. */
- ew32(IMC, 0xffffffff);
- er32(ICR);
-
- ret_val = e1000_check_alt_mac_addr_generic(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
- * @hw: pointer to the HW structure
- *
- * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
- **/
-static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 reg_data;
- s32 ret_val;
- u16 kum_reg_data;
- u16 i;
-
- e1000_initialize_hw_bits_80003es2lan(hw);
-
- /* Initialize identification LED */
- ret_val = e1000e_id_led_init(hw);
- if (ret_val)
- e_dbg("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
-
- /* Disabling VLAN filtering */
- e_dbg("Initializing the IEEE VLAN\n");
- mac->ops.clear_vfta(hw);
-
- /* Setup the receive address. */
- e1000e_init_rx_addrs(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- e_dbg("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = e1000e_setup_link(hw);
-
- /* Disable IBIST slave mode (far-end loopback) */
- e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- &kum_reg_data);
- kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
- e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- kum_reg_data);
-
- /* Set the transmit descriptor write-back policy */
- reg_data = er32(TXDCTL(0));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL(0), reg_data);
-
- /* ...for both queues. */
- reg_data = er32(TXDCTL(1));
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL(1), reg_data);
-
- /* Enable retransmit on late collisions */
- reg_data = er32(TCTL);
- reg_data |= E1000_TCTL_RTLC;
- ew32(TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = er32(TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
- ew32(TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = er32(TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
- ew32(TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
-
- /* default to true to enable the MDIC W/A */
- hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
-
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET >>
- E1000_KMRNCTRLSTA_OFFSET_SHIFT,
- &i);
- if (!ret_val) {
- if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
- E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
- hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
- }
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
- * @hw: pointer to the HW structure
- *
- * Initializes required hardware-dependent bits needed for normal operation.
- **/
-static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
-{
- u32 reg;
-
- /* Transmit Descriptor Control 0 */
- reg = er32(TXDCTL(0));
- reg |= (1 << 22);
- ew32(TXDCTL(0), reg);
-
- /* Transmit Descriptor Control 1 */
- reg = er32(TXDCTL(1));
- reg |= (1 << 22);
- ew32(TXDCTL(1), reg);
-
- /* Transmit Arbitration Control 0 */
- reg = er32(TARC(0));
- reg &= ~(0xF << 27); /* 30:27 */
- if (hw->phy.media_type != e1000_media_type_copper)
- reg &= ~(1 << 20);
- ew32(TARC(0), reg);
-
- /* Transmit Arbitration Control 1 */
- reg = er32(TARC(1));
- if (er32(TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- ew32(TARC(1), reg);
-}
-
-/**
- * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
- * @hw: pointer to the HW structure
- *
- * Setup some GG82563 PHY registers for obtaining link
- **/
-static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 ctrl_ext;
- u16 data;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
- data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
-
- ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /*
- * Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
- switch (phy->mdix) {
- case 1:
- data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
- break;
- case 2:
- data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
- break;
- case 0:
- default:
- data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
- break;
- }
-
- /*
- * Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (phy->disable_polarity_correction)
- data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-
- ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Bypass Rx and Tx FIFO's */
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
- &data);
- if (ret_val)
- return ret_val;
- data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
- data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
- if (ret_val)
- return ret_val;
-
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- ew32(CTRL_EXT, ctrl_ext);
-
- ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- /*
- * Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (!e1000e_check_mng_mode(hw)) {
- /* Enable Electrical Idle on the PHY */
- data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
- if (ret_val)
- return ret_val;
- }
-
- /*
- * Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= GG82563_ICR_DIS_PADDING;
- ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
- if (ret_val)
- return ret_val;
-
- return 0;
-}
-
-/**
- * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
- * @hw: pointer to the HW structure
- *
- * Essentially a wrapper for setting up all things "copper" related.
- * This is a function pointer entry point called by the mac module.
- **/
-static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 reg_data;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
-
- /*
- * Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps.
- */
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
- 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
- &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
- reg_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_setup_copper_link(hw);
-
- return 0;
-}
-
-/**
- * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
- * @hw: pointer to the HW structure
- * @duplex: current duplex setting
- *
- * Configure the KMRN interface by applying last minute quirks for
- * 10/100 operation.
- **/
-static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 speed;
- u16 duplex;
-
- if (hw->phy.media_type == e1000_media_type_copper) {
- ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
- &duplex);
- if (ret_val)
- return ret_val;
-
- if (speed == SPEED_1000)
- ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
- else
- ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
- * @hw: pointer to the HW structure
- * @duplex: current duplex setting
- *
- * Configure the KMRN interface by applying last minute quirks for
- * 10/100 operation.
- **/
-static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
-{
- s32 ret_val;
- u32 tipg;
- u32 i = 0;
- u16 reg_data, reg_data2;
-
- reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = er32(TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
- ew32(TIPG, tipg);
-
- do {
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
- if (ret_val)
- return ret_val;
- i++;
- } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
-
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
- ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return 0;
-}
-
-/**
- * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
- * @hw: pointer to the HW structure
- *
- * Configure the KMRN interface by applying last minute quirks for
- * gigabit operation.
- **/
-static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 reg_data, reg_data2;
- u32 tipg;
- u32 i = 0;
-
- reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = er32(TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
- ew32(TIPG, tipg);
-
- do {
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
- if (ret_val)
- return ret_val;
- i++;
- } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
-
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return ret_val;
-}
-
-/**
- * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquire semaphore, then read the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release the semaphore before exiting.
- **/
-static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- u32 kmrnctrlsta;
- s32 ret_val = 0;
-
- ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
- e1e_flush();
-
- udelay(2);
-
- kmrnctrlsta = er32(KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- e1000_release_mac_csr_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquire semaphore, then write the data to PHY register
- * at the offset using the kumeran interface. Release semaphore
- * before exiting.
- **/
-static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
- u16 data)
-{
- u32 kmrnctrlsta;
- s32 ret_val = 0;
-
- ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
- e1e_flush();
-
- udelay(2);
-
- e1000_release_mac_csr_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_mac_addr_80003es2lan - Read device MAC address
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
-
- /*
- * If there's an alternate MAC address place it in RAR0
- * so that it will override the Si installed default perm
- * address.
- */
- ret_val = e1000_check_alt_mac_addr_generic(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_mac_addr_generic(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
-{
- /* If the management interface is not enabled, then power down */
- if (!(hw->mac.ops.check_mng_mode(hw) ||
- hw->phy.ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-}
-
-/**
- * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
-{
- e1000e_clear_hw_cntrs_base(hw);
-
- er32(PRC64);
- er32(PRC127);
- er32(PRC255);
- er32(PRC511);
- er32(PRC1023);
- er32(PRC1522);
- er32(PTC64);
- er32(PTC127);
- er32(PTC255);
- er32(PTC511);
- er32(PTC1023);
- er32(PTC1522);
-
- er32(ALGNERRC);
- er32(RXERRC);
- er32(TNCRS);
- er32(CEXTERR);
- er32(TSCTC);
- er32(TSCTFC);
-
- er32(MGTPRC);
- er32(MGTPDC);
- er32(MGTPTC);
-
- er32(IAC);
- er32(ICRXOC);
-
- er32(ICRXPTC);
- er32(ICRXATC);
- er32(ICTXPTC);
- er32(ICTXATC);
- er32(ICTXQEC);
- er32(ICTXQMTC);
- er32(ICRXDMTC);
-}
-
-static struct e1000_mac_operations es2_mac_ops = {
- .read_mac_addr = e1000_read_mac_addr_80003es2lan,
- .id_led_init = e1000e_id_led_init,
- .blink_led = e1000e_blink_led_generic,
- .check_mng_mode = e1000e_check_mng_mode_generic,
- /* check_for_link dependent on media type */
- .cleanup_led = e1000e_cleanup_led_generic,
- .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
- .get_bus_info = e1000e_get_bus_info_pcie,
- .set_lan_id = e1000_set_lan_id_multi_port_pcie,
- .get_link_up_info = e1000_get_link_up_info_80003es2lan,
- .led_on = e1000e_led_on_generic,
- .led_off = e1000e_led_off_generic,
- .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
- .write_vfta = e1000_write_vfta_generic,
- .clear_vfta = e1000_clear_vfta_generic,
- .reset_hw = e1000_reset_hw_80003es2lan,
- .init_hw = e1000_init_hw_80003es2lan,
- .setup_link = e1000e_setup_link,
- /* setup_physical_interface dependent on media type */
- .setup_led = e1000e_setup_led_generic,
-};
-
-static struct e1000_phy_operations es2_phy_ops = {
- .acquire = e1000_acquire_phy_80003es2lan,
- .check_polarity = e1000_check_polarity_m88,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit = e1000e_phy_sw_reset,
- .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
- .get_cfg_done = e1000_get_cfg_done_80003es2lan,
- .get_cable_length = e1000_get_cable_length_80003es2lan,
- .get_info = e1000e_get_phy_info_m88,
- .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
- .release = e1000_release_phy_80003es2lan,
- .reset = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = NULL,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
- .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
-};
-
-static struct e1000_nvm_operations es2_nvm_ops = {
- .acquire = e1000_acquire_nvm_80003es2lan,
- .read = e1000e_read_nvm_eerd,
- .release = e1000_release_nvm_80003es2lan,
- .update = e1000e_update_nvm_checksum_generic,
- .valid_led_default = e1000e_valid_led_default,
- .validate = e1000e_validate_nvm_checksum_generic,
- .write = e1000_write_nvm_80003es2lan,
-};
-
-struct e1000_info e1000_es2_info = {
- .mac = e1000_80003es2lan,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_RX_NEEDS_RESTART /* errata */
- | FLAG_TARC_SET_BIT_ZERO /* errata */
- | FLAG_APME_CHECK_PORT_B
- | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
- | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
- .flags2 = FLAG2_DMA_BURST,
- .pba = 38,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_80003es2lan,
- .mac_ops = &es2_mac_ops,
- .phy_ops = &es2_phy_ops,
- .nvm_ops = &es2_nvm_ops,
-};
-
diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
deleted file mode 100644
index 06d88f316dc..00000000000
--- a/drivers/net/e1000e/ethtool.c
+++ /dev/null
@@ -1,2081 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* ethtool support for e1000 */
-
-#include <linux/netdevice.h>
-#include <linux/interrupt.h>
-#include <linux/ethtool.h>
-#include <linux/pci.h>
-#include <linux/slab.h>
-#include <linux/delay.h>
-
-#include "e1000.h"
-
-enum {NETDEV_STATS, E1000_STATS};
-
-struct e1000_stats {
- char stat_string[ETH_GSTRING_LEN];
- int type;
- int sizeof_stat;
- int stat_offset;
-};
-
-#define E1000_STAT(str, m) { \
- .stat_string = str, \
- .type = E1000_STATS, \
- .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
- .stat_offset = offsetof(struct e1000_adapter, m) }
-#define E1000_NETDEV_STAT(str, m) { \
- .stat_string = str, \
- .type = NETDEV_STATS, \
- .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
- .stat_offset = offsetof(struct rtnl_link_stats64, m) }
-
-static const struct e1000_stats e1000_gstrings_stats[] = {
- E1000_STAT("rx_packets", stats.gprc),
- E1000_STAT("tx_packets", stats.gptc),
- E1000_STAT("rx_bytes", stats.gorc),
- E1000_STAT("tx_bytes", stats.gotc),
- E1000_STAT("rx_broadcast", stats.bprc),
- E1000_STAT("tx_broadcast", stats.bptc),
- E1000_STAT("rx_multicast", stats.mprc),
- E1000_STAT("tx_multicast", stats.mptc),
- E1000_NETDEV_STAT("rx_errors", rx_errors),
- E1000_NETDEV_STAT("tx_errors", tx_errors),
- E1000_NETDEV_STAT("tx_dropped", tx_dropped),
- E1000_STAT("multicast", stats.mprc),
- E1000_STAT("collisions", stats.colc),
- E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
- E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
- E1000_STAT("rx_crc_errors", stats.crcerrs),
- E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
- E1000_STAT("rx_no_buffer_count", stats.rnbc),
- E1000_STAT("rx_missed_errors", stats.mpc),
- E1000_STAT("tx_aborted_errors", stats.ecol),
- E1000_STAT("tx_carrier_errors", stats.tncrs),
- E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
- E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
- E1000_STAT("tx_window_errors", stats.latecol),
- E1000_STAT("tx_abort_late_coll", stats.latecol),
- E1000_STAT("tx_deferred_ok", stats.dc),
- E1000_STAT("tx_single_coll_ok", stats.scc),
- E1000_STAT("tx_multi_coll_ok", stats.mcc),
- E1000_STAT("tx_timeout_count", tx_timeout_count),
- E1000_STAT("tx_restart_queue", restart_queue),
- E1000_STAT("rx_long_length_errors", stats.roc),
- E1000_STAT("rx_short_length_errors", stats.ruc),
- E1000_STAT("rx_align_errors", stats.algnerrc),
- E1000_STAT("tx_tcp_seg_good", stats.tsctc),
- E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
- E1000_STAT("rx_flow_control_xon", stats.xonrxc),
- E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
- E1000_STAT("tx_flow_control_xon", stats.xontxc),
- E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
- E1000_STAT("rx_long_byte_count", stats.gorc),
- E1000_STAT("rx_csum_offload_good", hw_csum_good),
- E1000_STAT("rx_csum_offload_errors", hw_csum_err),
- E1000_STAT("rx_header_split", rx_hdr_split),
- E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
- E1000_STAT("tx_smbus", stats.mgptc),
- E1000_STAT("rx_smbus", stats.mgprc),
- E1000_STAT("dropped_smbus", stats.mgpdc),
- E1000_STAT("rx_dma_failed", rx_dma_failed),
- E1000_STAT("tx_dma_failed", tx_dma_failed),
-};
-
-#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
-#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
-static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
- "Register test (offline)", "Eeprom test (offline)",
- "Interrupt test (offline)", "Loopback test (offline)",
- "Link test (on/offline)"
-};
-#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
-
-static int e1000_get_settings(struct net_device *netdev,
- struct ethtool_cmd *ecmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 speed;
-
- if (hw->phy.media_type == e1000_media_type_copper) {
-
- ecmd->supported = (SUPPORTED_10baseT_Half |
- SUPPORTED_10baseT_Full |
- SUPPORTED_100baseT_Half |
- SUPPORTED_100baseT_Full |
- SUPPORTED_1000baseT_Full |
- SUPPORTED_Autoneg |
- SUPPORTED_TP);
- if (hw->phy.type == e1000_phy_ife)
- ecmd->supported &= ~SUPPORTED_1000baseT_Full;
- ecmd->advertising = ADVERTISED_TP;
-
- if (hw->mac.autoneg == 1) {
- ecmd->advertising |= ADVERTISED_Autoneg;
- /* the e1000 autoneg seems to match ethtool nicely */
- ecmd->advertising |= hw->phy.autoneg_advertised;
- }
-
- ecmd->port = PORT_TP;
- ecmd->phy_address = hw->phy.addr;
- ecmd->transceiver = XCVR_INTERNAL;
-
- } else {
- ecmd->supported = (SUPPORTED_1000baseT_Full |
- SUPPORTED_FIBRE |
- SUPPORTED_Autoneg);
-
- ecmd->advertising = (ADVERTISED_1000baseT_Full |
- ADVERTISED_FIBRE |
- ADVERTISED_Autoneg);
-
- ecmd->port = PORT_FIBRE;
- ecmd->transceiver = XCVR_EXTERNAL;
- }
-
- speed = -1;
- ecmd->duplex = -1;
-
- if (netif_running(netdev)) {
- if (netif_carrier_ok(netdev)) {
- speed = adapter->link_speed;
- ecmd->duplex = adapter->link_duplex - 1;
- }
- } else {
- u32 status = er32(STATUS);
- if (status & E1000_STATUS_LU) {
- if (status & E1000_STATUS_SPEED_1000)
- speed = SPEED_1000;
- else if (status & E1000_STATUS_SPEED_100)
- speed = SPEED_100;
- else
- speed = SPEED_10;
-
- if (status & E1000_STATUS_FD)
- ecmd->duplex = DUPLEX_FULL;
- else
- ecmd->duplex = DUPLEX_HALF;
- }
- }
-
- ethtool_cmd_speed_set(ecmd, speed);
- ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
- hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
-
- /* MDI-X => 2; MDI =>1; Invalid =>0 */
- if ((hw->phy.media_type == e1000_media_type_copper) &&
- netif_carrier_ok(netdev))
- ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
- ETH_TP_MDI;
- else
- ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
-
- return 0;
-}
-
-static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
-{
- struct e1000_mac_info *mac = &adapter->hw.mac;
-
- mac->autoneg = 0;
-
- /* Make sure dplx is at most 1 bit and lsb of speed is not set
- * for the switch() below to work */
- if ((spd & 1) || (dplx & ~1))
- goto err_inval;
-
- /* Fiber NICs only allow 1000 gbps Full duplex */
- if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
- spd != SPEED_1000 &&
- dplx != DUPLEX_FULL) {
- goto err_inval;
- }
-
- switch (spd + dplx) {
- case SPEED_10 + DUPLEX_HALF:
- mac->forced_speed_duplex = ADVERTISE_10_HALF;
- break;
- case SPEED_10 + DUPLEX_FULL:
- mac->forced_speed_duplex = ADVERTISE_10_FULL;
- break;
- case SPEED_100 + DUPLEX_HALF:
- mac->forced_speed_duplex = ADVERTISE_100_HALF;
- break;
- case SPEED_100 + DUPLEX_FULL:
- mac->forced_speed_duplex = ADVERTISE_100_FULL;
- break;
- case SPEED_1000 + DUPLEX_FULL:
- mac->autoneg = 1;
- adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
- break;
- case SPEED_1000 + DUPLEX_HALF: /* not supported */
- default:
- goto err_inval;
- }
- return 0;
-
-err_inval:
- e_err("Unsupported Speed/Duplex configuration\n");
- return -EINVAL;
-}
-
-static int e1000_set_settings(struct net_device *netdev,
- struct ethtool_cmd *ecmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- /*
- * When SoL/IDER sessions are active, autoneg/speed/duplex
- * cannot be changed
- */
- if (e1000_check_reset_block(hw)) {
- e_err("Cannot change link characteristics when SoL/IDER is "
- "active.\n");
- return -EINVAL;
- }
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- usleep_range(1000, 2000);
-
- if (ecmd->autoneg == AUTONEG_ENABLE) {
- hw->mac.autoneg = 1;
- if (hw->phy.media_type == e1000_media_type_fiber)
- hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
- ADVERTISED_FIBRE |
- ADVERTISED_Autoneg;
- else
- hw->phy.autoneg_advertised = ecmd->advertising |
- ADVERTISED_TP |
- ADVERTISED_Autoneg;
- ecmd->advertising = hw->phy.autoneg_advertised;
- if (adapter->fc_autoneg)
- hw->fc.requested_mode = e1000_fc_default;
- } else {
- u32 speed = ethtool_cmd_speed(ecmd);
- if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
- clear_bit(__E1000_RESETTING, &adapter->state);
- return -EINVAL;
- }
- }
-
- /* reset the link */
-
- if (netif_running(adapter->netdev)) {
- e1000e_down(adapter);
- e1000e_up(adapter);
- } else {
- e1000e_reset(adapter);
- }
-
- clear_bit(__E1000_RESETTING, &adapter->state);
- return 0;
-}
-
-static void e1000_get_pauseparam(struct net_device *netdev,
- struct ethtool_pauseparam *pause)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- pause->autoneg =
- (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
-
- if (hw->fc.current_mode == e1000_fc_rx_pause) {
- pause->rx_pause = 1;
- } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
- pause->tx_pause = 1;
- } else if (hw->fc.current_mode == e1000_fc_full) {
- pause->rx_pause = 1;
- pause->tx_pause = 1;
- }
-}
-
-static int e1000_set_pauseparam(struct net_device *netdev,
- struct ethtool_pauseparam *pause)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int retval = 0;
-
- adapter->fc_autoneg = pause->autoneg;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- usleep_range(1000, 2000);
-
- if (adapter->fc_autoneg == AUTONEG_ENABLE) {
- hw->fc.requested_mode = e1000_fc_default;
- if (netif_running(adapter->netdev)) {
- e1000e_down(adapter);
- e1000e_up(adapter);
- } else {
- e1000e_reset(adapter);
- }
- } else {
- if (pause->rx_pause && pause->tx_pause)
- hw->fc.requested_mode = e1000_fc_full;
- else if (pause->rx_pause && !pause->tx_pause)
- hw->fc.requested_mode = e1000_fc_rx_pause;
- else if (!pause->rx_pause && pause->tx_pause)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else if (!pause->rx_pause && !pause->tx_pause)
- hw->fc.requested_mode = e1000_fc_none;
-
- hw->fc.current_mode = hw->fc.requested_mode;
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- retval = hw->mac.ops.setup_link(hw);
- /* implicit goto out */
- } else {
- retval = e1000e_force_mac_fc(hw);
- if (retval)
- goto out;
- e1000e_set_fc_watermarks(hw);
- }
- }
-
-out:
- clear_bit(__E1000_RESETTING, &adapter->state);
- return retval;
-}
-
-static u32 e1000_get_rx_csum(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return adapter->flags & FLAG_RX_CSUM_ENABLED;
-}
-
-static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (data)
- adapter->flags |= FLAG_RX_CSUM_ENABLED;
- else
- adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
-
- if (netif_running(netdev))
- e1000e_reinit_locked(adapter);
- else
- e1000e_reset(adapter);
- return 0;
-}
-
-static u32 e1000_get_tx_csum(struct net_device *netdev)
-{
- return (netdev->features & NETIF_F_HW_CSUM) != 0;
-}
-
-static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
-{
- if (data)
- netdev->features |= NETIF_F_HW_CSUM;
- else
- netdev->features &= ~NETIF_F_HW_CSUM;
-
- return 0;
-}
-
-static int e1000_set_tso(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (data) {
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
- } else {
- netdev->features &= ~NETIF_F_TSO;
- netdev->features &= ~NETIF_F_TSO6;
- }
-
- adapter->flags |= FLAG_TSO_FORCE;
- return 0;
-}
-
-static u32 e1000_get_msglevel(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return adapter->msg_enable;
-}
-
-static void e1000_set_msglevel(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- adapter->msg_enable = data;
-}
-
-static int e1000_get_regs_len(struct net_device *netdev)
-{
-#define E1000_REGS_LEN 32 /* overestimate */
- return E1000_REGS_LEN * sizeof(u32);
-}
-
-static void e1000_get_regs(struct net_device *netdev,
- struct ethtool_regs *regs, void *p)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 *regs_buff = p;
- u16 phy_data;
-
- memset(p, 0, E1000_REGS_LEN * sizeof(u32));
-
- regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
- adapter->pdev->device;
-
- regs_buff[0] = er32(CTRL);
- regs_buff[1] = er32(STATUS);
-
- regs_buff[2] = er32(RCTL);
- regs_buff[3] = er32(RDLEN);
- regs_buff[4] = er32(RDH);
- regs_buff[5] = er32(RDT);
- regs_buff[6] = er32(RDTR);
-
- regs_buff[7] = er32(TCTL);
- regs_buff[8] = er32(TDLEN);
- regs_buff[9] = er32(TDH);
- regs_buff[10] = er32(TDT);
- regs_buff[11] = er32(TIDV);
-
- regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
-
- /* ethtool doesn't use anything past this point, so all this
- * code is likely legacy junk for apps that may or may not
- * exist */
- if (hw->phy.type == e1000_phy_m88) {
- e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- regs_buff[13] = (u32)phy_data; /* cable length */
- regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
- regs_buff[18] = regs_buff[13]; /* cable polarity */
- regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[20] = regs_buff[17]; /* polarity correction */
- /* phy receive errors */
- regs_buff[22] = adapter->phy_stats.receive_errors;
- regs_buff[23] = regs_buff[13]; /* mdix mode */
- }
- regs_buff[21] = 0; /* was idle_errors */
- e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
- regs_buff[24] = (u32)phy_data; /* phy local receiver status */
- regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
-}
-
-static int e1000_get_eeprom_len(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return adapter->hw.nvm.word_size * 2;
-}
-
-static int e1000_get_eeprom(struct net_device *netdev,
- struct ethtool_eeprom *eeprom, u8 *bytes)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 *eeprom_buff;
- int first_word;
- int last_word;
- int ret_val = 0;
- u16 i;
-
- if (eeprom->len == 0)
- return -EINVAL;
-
- eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
-
- first_word = eeprom->offset >> 1;
- last_word = (eeprom->offset + eeprom->len - 1) >> 1;
-
- eeprom_buff = kmalloc(sizeof(u16) *
- (last_word - first_word + 1), GFP_KERNEL);
- if (!eeprom_buff)
- return -ENOMEM;
-
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- ret_val = e1000_read_nvm(hw, first_word,
- last_word - first_word + 1,
- eeprom_buff);
- } else {
- for (i = 0; i < last_word - first_word + 1; i++) {
- ret_val = e1000_read_nvm(hw, first_word + i, 1,
- &eeprom_buff[i]);
- if (ret_val)
- break;
- }
- }
-
- if (ret_val) {
- /* a read error occurred, throw away the result */
- memset(eeprom_buff, 0xff, sizeof(u16) *
- (last_word - first_word + 1));
- } else {
- /* Device's eeprom is always little-endian, word addressable */
- for (i = 0; i < last_word - first_word + 1; i++)
- le16_to_cpus(&eeprom_buff[i]);
- }
-
- memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
- kfree(eeprom_buff);
-
- return ret_val;
-}
-
-static int e1000_set_eeprom(struct net_device *netdev,
- struct ethtool_eeprom *eeprom, u8 *bytes)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 *eeprom_buff;
- void *ptr;
- int max_len;
- int first_word;
- int last_word;
- int ret_val = 0;
- u16 i;
-
- if (eeprom->len == 0)
- return -EOPNOTSUPP;
-
- if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
- return -EFAULT;
-
- if (adapter->flags & FLAG_READ_ONLY_NVM)
- return -EINVAL;
-
- max_len = hw->nvm.word_size * 2;
-
- first_word = eeprom->offset >> 1;
- last_word = (eeprom->offset + eeprom->len - 1) >> 1;
- eeprom_buff = kmalloc(max_len, GFP_KERNEL);
- if (!eeprom_buff)
- return -ENOMEM;
-
- ptr = (void *)eeprom_buff;
-
- if (eeprom->offset & 1) {
- /* need read/modify/write of first changed EEPROM word */
- /* only the second byte of the word is being modified */
- ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
- ptr++;
- }
- if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
- /* need read/modify/write of last changed EEPROM word */
- /* only the first byte of the word is being modified */
- ret_val = e1000_read_nvm(hw, last_word, 1,
- &eeprom_buff[last_word - first_word]);
-
- if (ret_val)
- goto out;
-
- /* Device's eeprom is always little-endian, word addressable */
- for (i = 0; i < last_word - first_word + 1; i++)
- le16_to_cpus(&eeprom_buff[i]);
-
- memcpy(ptr, bytes, eeprom->len);
-
- for (i = 0; i < last_word - first_word + 1; i++)
- eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
-
- ret_val = e1000_write_nvm(hw, first_word,
- last_word - first_word + 1, eeprom_buff);
-
- if (ret_val)
- goto out;
-
- /*
- * Update the checksum over the first part of the EEPROM if needed
- * and flush shadow RAM for applicable controllers
- */
- if ((first_word <= NVM_CHECKSUM_REG) ||
- (hw->mac.type == e1000_82583) ||
- (hw->mac.type == e1000_82574) ||
- (hw->mac.type == e1000_82573))
- ret_val = e1000e_update_nvm_checksum(hw);
-
-out:
- kfree(eeprom_buff);
- return ret_val;
-}
-
-static void e1000_get_drvinfo(struct net_device *netdev,
- struct ethtool_drvinfo *drvinfo)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- char firmware_version[32];
-
- strncpy(drvinfo->driver, e1000e_driver_name,
- sizeof(drvinfo->driver) - 1);
- strncpy(drvinfo->version, e1000e_driver_version,
- sizeof(drvinfo->version) - 1);
-
- /*
- * EEPROM image version # is reported as firmware version # for
- * PCI-E controllers
- */
- snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
- (adapter->eeprom_vers & 0xF000) >> 12,
- (adapter->eeprom_vers & 0x0FF0) >> 4,
- (adapter->eeprom_vers & 0x000F));
-
- strncpy(drvinfo->fw_version, firmware_version,
- sizeof(drvinfo->fw_version) - 1);
- strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
- sizeof(drvinfo->bus_info) - 1);
- drvinfo->regdump_len = e1000_get_regs_len(netdev);
- drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
-}
-
-static void e1000_get_ringparam(struct net_device *netdev,
- struct ethtool_ringparam *ring)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_ring *rx_ring = adapter->rx_ring;
-
- ring->rx_max_pending = E1000_MAX_RXD;
- ring->tx_max_pending = E1000_MAX_TXD;
- ring->rx_mini_max_pending = 0;
- ring->rx_jumbo_max_pending = 0;
- ring->rx_pending = rx_ring->count;
- ring->tx_pending = tx_ring->count;
- ring->rx_mini_pending = 0;
- ring->rx_jumbo_pending = 0;
-}
-
-static int e1000_set_ringparam(struct net_device *netdev,
- struct ethtool_ringparam *ring)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_ring *tx_ring, *tx_old;
- struct e1000_ring *rx_ring, *rx_old;
- int err;
-
- if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
- return -EINVAL;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- usleep_range(1000, 2000);
-
- if (netif_running(adapter->netdev))
- e1000e_down(adapter);
-
- tx_old = adapter->tx_ring;
- rx_old = adapter->rx_ring;
-
- err = -ENOMEM;
- tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
- if (!tx_ring)
- goto err_alloc_tx;
-
- rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
- if (!rx_ring)
- goto err_alloc_rx;
-
- adapter->tx_ring = tx_ring;
- adapter->rx_ring = rx_ring;
-
- rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
- rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
- rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
-
- tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
- tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
- tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
-
- if (netif_running(adapter->netdev)) {
- /* Try to get new resources before deleting old */
- err = e1000e_setup_rx_resources(adapter);
- if (err)
- goto err_setup_rx;
- err = e1000e_setup_tx_resources(adapter);
- if (err)
- goto err_setup_tx;
-
- /*
- * restore the old in order to free it,
- * then add in the new
- */
- adapter->rx_ring = rx_old;
- adapter->tx_ring = tx_old;
- e1000e_free_rx_resources(adapter);
- e1000e_free_tx_resources(adapter);
- kfree(tx_old);
- kfree(rx_old);
- adapter->rx_ring = rx_ring;
- adapter->tx_ring = tx_ring;
- err = e1000e_up(adapter);
- if (err)
- goto err_setup;
- }
-
- clear_bit(__E1000_RESETTING, &adapter->state);
- return 0;
-err_setup_tx:
- e1000e_free_rx_resources(adapter);
-err_setup_rx:
- adapter->rx_ring = rx_old;
- adapter->tx_ring = tx_old;
- kfree(rx_ring);
-err_alloc_rx:
- kfree(tx_ring);
-err_alloc_tx:
- e1000e_up(adapter);
-err_setup:
- clear_bit(__E1000_RESETTING, &adapter->state);
- return err;
-}
-
-static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
- int reg, int offset, u32 mask, u32 write)
-{
- u32 pat, val;
- static const u32 test[] = {
- 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
- for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
- E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
- (test[pat] & write));
- val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
- if (val != (test[pat] & write & mask)) {
- e_err("pattern test reg %04X failed: got 0x%08X "
- "expected 0x%08X\n", reg + offset, val,
- (test[pat] & write & mask));
- *data = reg;
- return 1;
- }
- }
- return 0;
-}
-
-static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
- int reg, u32 mask, u32 write)
-{
- u32 val;
- __ew32(&adapter->hw, reg, write & mask);
- val = __er32(&adapter->hw, reg);
- if ((write & mask) != (val & mask)) {
- e_err("set/check reg %04X test failed: got 0x%08X "
- "expected 0x%08X\n", reg, (val & mask), (write & mask));
- *data = reg;
- return 1;
- }
- return 0;
-}
-#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
- do { \
- if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
- return 1; \
- } while (0)
-#define REG_PATTERN_TEST(reg, mask, write) \
- REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
-
-#define REG_SET_AND_CHECK(reg, mask, write) \
- do { \
- if (reg_set_and_check(adapter, data, reg, mask, write)) \
- return 1; \
- } while (0)
-
-static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &adapter->hw.mac;
- u32 value;
- u32 before;
- u32 after;
- u32 i;
- u32 toggle;
- u32 mask;
-
- /*
- * The status register is Read Only, so a write should fail.
- * Some bits that get toggled are ignored.
- */
- switch (mac->type) {
- /* there are several bits on newer hardware that are r/w */
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- toggle = 0x7FFFF3FF;
- break;
- default:
- toggle = 0x7FFFF033;
- break;
- }
-
- before = er32(STATUS);
- value = (er32(STATUS) & toggle);
- ew32(STATUS, toggle);
- after = er32(STATUS) & toggle;
- if (value != after) {
- e_err("failed STATUS register test got: 0x%08X expected: "
- "0x%08X\n", after, value);
- *data = 1;
- return 1;
- }
- /* restore previous status */
- ew32(STATUS, before);
-
- if (!(adapter->flags & FLAG_IS_ICH)) {
- REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
- }
-
- REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
- REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
- REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
- REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
-
- REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
-
- before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
- REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
- REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
-
- REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- if (!(adapter->flags & FLAG_IS_ICH))
- REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
- mask = 0x8003FFFF;
- switch (mac->type) {
- case e1000_ich10lan:
- case e1000_pchlan:
- case e1000_pch2lan:
- mask |= (1 << 18);
- break;
- default:
- break;
- }
- for (i = 0; i < mac->rar_entry_count; i++)
- REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
- mask, 0xFFFFFFFF);
-
- for (i = 0; i < mac->mta_reg_count; i++)
- REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
-
- *data = 0;
- return 0;
-}
-
-static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
-{
- u16 temp;
- u16 checksum = 0;
- u16 i;
-
- *data = 0;
- /* Read and add up the contents of the EEPROM */
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
- *data = 1;
- return *data;
- }
- checksum += temp;
- }
-
- /* If Checksum is not Correct return error else test passed */
- if ((checksum != (u16) NVM_SUM) && !(*data))
- *data = 2;
-
- return *data;
-}
-
-static irqreturn_t e1000_test_intr(int irq, void *data)
-{
- struct net_device *netdev = (struct net_device *) data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- adapter->test_icr |= er32(ICR);
-
- return IRQ_HANDLED;
-}
-
-static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 mask;
- u32 shared_int = 1;
- u32 irq = adapter->pdev->irq;
- int i;
- int ret_val = 0;
- int int_mode = E1000E_INT_MODE_LEGACY;
-
- *data = 0;
-
- /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
- if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
- int_mode = adapter->int_mode;
- e1000e_reset_interrupt_capability(adapter);
- adapter->int_mode = E1000E_INT_MODE_LEGACY;
- e1000e_set_interrupt_capability(adapter);
- }
- /* Hook up test interrupt handler just for this test */
- if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
- netdev)) {
- shared_int = 0;
- } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
- netdev->name, netdev)) {
- *data = 1;
- ret_val = -1;
- goto out;
- }
- e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
-
- /* Disable all the interrupts */
- ew32(IMC, 0xFFFFFFFF);
- e1e_flush();
- usleep_range(10000, 20000);
-
- /* Test each interrupt */
- for (i = 0; i < 10; i++) {
- /* Interrupt to test */
- mask = 1 << i;
-
- if (adapter->flags & FLAG_IS_ICH) {
- switch (mask) {
- case E1000_ICR_RXSEQ:
- continue;
- case 0x00000100:
- if (adapter->hw.mac.type == e1000_ich8lan ||
- adapter->hw.mac.type == e1000_ich9lan)
- continue;
- break;
- default:
- break;
- }
- }
-
- if (!shared_int) {
- /*
- * Disable the interrupt to be reported in
- * the cause register and then force the same
- * interrupt and see if one gets posted. If
- * an interrupt was posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMC, mask);
- ew32(ICS, mask);
- e1e_flush();
- usleep_range(10000, 20000);
-
- if (adapter->test_icr & mask) {
- *data = 3;
- break;
- }
- }
-
- /*
- * Enable the interrupt to be reported in
- * the cause register and then force the same
- * interrupt and see if one gets posted. If
- * an interrupt was not posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMS, mask);
- ew32(ICS, mask);
- e1e_flush();
- usleep_range(10000, 20000);
-
- if (!(adapter->test_icr & mask)) {
- *data = 4;
- break;
- }
-
- if (!shared_int) {
- /*
- * Disable the other interrupts to be reported in
- * the cause register and then force the other
- * interrupts and see if any get posted. If
- * an interrupt was posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMC, ~mask & 0x00007FFF);
- ew32(ICS, ~mask & 0x00007FFF);
- e1e_flush();
- usleep_range(10000, 20000);
-
- if (adapter->test_icr) {
- *data = 5;
- break;
- }
- }
- }
-
- /* Disable all the interrupts */
- ew32(IMC, 0xFFFFFFFF);
- e1e_flush();
- usleep_range(10000, 20000);
-
- /* Unhook test interrupt handler */
- free_irq(irq, netdev);
-
-out:
- if (int_mode == E1000E_INT_MODE_MSIX) {
- e1000e_reset_interrupt_capability(adapter);
- adapter->int_mode = int_mode;
- e1000e_set_interrupt_capability(adapter);
- }
-
- return ret_val;
-}
-
-static void e1000_free_desc_rings(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = &adapter->test_tx_ring;
- struct e1000_ring *rx_ring = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- int i;
-
- if (tx_ring->desc && tx_ring->buffer_info) {
- for (i = 0; i < tx_ring->count; i++) {
- if (tx_ring->buffer_info[i].dma)
- dma_unmap_single(&pdev->dev,
- tx_ring->buffer_info[i].dma,
- tx_ring->buffer_info[i].length,
- DMA_TO_DEVICE);
- if (tx_ring->buffer_info[i].skb)
- dev_kfree_skb(tx_ring->buffer_info[i].skb);
- }
- }
-
- if (rx_ring->desc && rx_ring->buffer_info) {
- for (i = 0; i < rx_ring->count; i++) {
- if (rx_ring->buffer_info[i].dma)
- dma_unmap_single(&pdev->dev,
- rx_ring->buffer_info[i].dma,
- 2048, DMA_FROM_DEVICE);
- if (rx_ring->buffer_info[i].skb)
- dev_kfree_skb(rx_ring->buffer_info[i].skb);
- }
- }
-
- if (tx_ring->desc) {
- dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
- tx_ring->dma);
- tx_ring->desc = NULL;
- }
- if (rx_ring->desc) {
- dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
- rx_ring->dma);
- rx_ring->desc = NULL;
- }
-
- kfree(tx_ring->buffer_info);
- tx_ring->buffer_info = NULL;
- kfree(rx_ring->buffer_info);
- rx_ring->buffer_info = NULL;
-}
-
-static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = &adapter->test_tx_ring;
- struct e1000_ring *rx_ring = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
- int i;
- int ret_val;
-
- /* Setup Tx descriptor ring and Tx buffers */
-
- if (!tx_ring->count)
- tx_ring->count = E1000_DEFAULT_TXD;
-
- tx_ring->buffer_info = kcalloc(tx_ring->count,
- sizeof(struct e1000_buffer),
- GFP_KERNEL);
- if (!(tx_ring->buffer_info)) {
- ret_val = 1;
- goto err_nomem;
- }
-
- tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
- tx_ring->size = ALIGN(tx_ring->size, 4096);
- tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
- &tx_ring->dma, GFP_KERNEL);
- if (!tx_ring->desc) {
- ret_val = 2;
- goto err_nomem;
- }
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
-
- ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
- ew32(TDBAH, ((u64) tx_ring->dma >> 32));
- ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
- ew32(TDH, 0);
- ew32(TDT, 0);
- ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
- E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
- E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
-
- for (i = 0; i < tx_ring->count; i++) {
- struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
- struct sk_buff *skb;
- unsigned int skb_size = 1024;
-
- skb = alloc_skb(skb_size, GFP_KERNEL);
- if (!skb) {
- ret_val = 3;
- goto err_nomem;
- }
- skb_put(skb, skb_size);
- tx_ring->buffer_info[i].skb = skb;
- tx_ring->buffer_info[i].length = skb->len;
- tx_ring->buffer_info[i].dma =
- dma_map_single(&pdev->dev, skb->data, skb->len,
- DMA_TO_DEVICE);
- if (dma_mapping_error(&pdev->dev,
- tx_ring->buffer_info[i].dma)) {
- ret_val = 4;
- goto err_nomem;
- }
- tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
- tx_desc->lower.data = cpu_to_le32(skb->len);
- tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
- E1000_TXD_CMD_IFCS |
- E1000_TXD_CMD_RS);
- tx_desc->upper.data = 0;
- }
-
- /* Setup Rx descriptor ring and Rx buffers */
-
- if (!rx_ring->count)
- rx_ring->count = E1000_DEFAULT_RXD;
-
- rx_ring->buffer_info = kcalloc(rx_ring->count,
- sizeof(struct e1000_buffer),
- GFP_KERNEL);
- if (!(rx_ring->buffer_info)) {
- ret_val = 5;
- goto err_nomem;
- }
-
- rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
- rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
- &rx_ring->dma, GFP_KERNEL);
- if (!rx_ring->desc) {
- ret_val = 6;
- goto err_nomem;
- }
- rx_ring->next_to_use = 0;
- rx_ring->next_to_clean = 0;
-
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
- ew32(RDBAH, ((u64) rx_ring->dma >> 32));
- ew32(RDLEN, rx_ring->size);
- ew32(RDH, 0);
- ew32(RDT, 0);
- rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
- E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
- E1000_RCTL_SBP | E1000_RCTL_SECRC |
- E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
- (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
- ew32(RCTL, rctl);
-
- for (i = 0; i < rx_ring->count; i++) {
- struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
- struct sk_buff *skb;
-
- skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
- if (!skb) {
- ret_val = 7;
- goto err_nomem;
- }
- skb_reserve(skb, NET_IP_ALIGN);
- rx_ring->buffer_info[i].skb = skb;
- rx_ring->buffer_info[i].dma =
- dma_map_single(&pdev->dev, skb->data, 2048,
- DMA_FROM_DEVICE);
- if (dma_mapping_error(&pdev->dev,
- rx_ring->buffer_info[i].dma)) {
- ret_val = 8;
- goto err_nomem;
- }
- rx_desc->buffer_addr =
- cpu_to_le64(rx_ring->buffer_info[i].dma);
- memset(skb->data, 0x00, skb->len);
- }
-
- return 0;
-
-err_nomem:
- e1000_free_desc_rings(adapter);
- return ret_val;
-}
-
-static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
-{
- /* Write out to PHY registers 29 and 30 to disable the Receiver. */
- e1e_wphy(&adapter->hw, 29, 0x001F);
- e1e_wphy(&adapter->hw, 30, 0x8FFC);
- e1e_wphy(&adapter->hw, 29, 0x001A);
- e1e_wphy(&adapter->hw, 30, 0x8FF0);
-}
-
-static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_reg = 0;
- u16 phy_reg = 0;
- s32 ret_val = 0;
-
- hw->mac.autoneg = 0;
-
- if (hw->phy.type == e1000_phy_ife) {
- /* force 100, set loopback */
- e1e_wphy(hw, PHY_CONTROL, 0x6100);
-
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg = er32(CTRL);
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_100 |/* Force Speed to 100 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
-
- ew32(CTRL, ctrl_reg);
- e1e_flush();
- udelay(500);
-
- return 0;
- }
-
- /* Specific PHY configuration for loopback */
- switch (hw->phy.type) {
- case e1000_phy_m88:
- /* Auto-MDI/MDIX Off */
- e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
- /* reset to update Auto-MDI/MDIX */
- e1e_wphy(hw, PHY_CONTROL, 0x9140);
- /* autoneg off */
- e1e_wphy(hw, PHY_CONTROL, 0x8140);
- break;
- case e1000_phy_gg82563:
- e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
- break;
- case e1000_phy_bm:
- /* Set Default MAC Interface speed to 1GB */
- e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
- phy_reg &= ~0x0007;
- phy_reg |= 0x006;
- e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
- /* Assert SW reset for above settings to take effect */
- e1000e_commit_phy(hw);
- mdelay(1);
- /* Force Full Duplex */
- e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
- e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
- /* Set Link Up (in force link) */
- e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
- e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
- /* Force Link */
- e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
- e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
- /* Set Early Link Enable */
- e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
- e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
- break;
- case e1000_phy_82577:
- case e1000_phy_82578:
- /* Workaround: K1 must be disabled for stable 1Gbps operation */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val) {
- e_err("Cannot setup 1Gbps loopback.\n");
- return ret_val;
- }
- e1000_configure_k1_ich8lan(hw, false);
- hw->phy.ops.release(hw);
- break;
- case e1000_phy_82579:
- /* Disable PHY energy detect power down */
- e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
- e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
- /* Disable full chip energy detect */
- e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
- e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
- /* Enable loopback on the PHY */
-#define I82577_PHY_LBK_CTRL 19
- e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
- break;
- default:
- break;
- }
-
- /* force 1000, set loopback */
- e1e_wphy(hw, PHY_CONTROL, 0x4140);
- mdelay(250);
-
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg = er32(CTRL);
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
-
- if (adapter->flags & FLAG_IS_ICH)
- ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
-
- if (hw->phy.media_type == e1000_media_type_copper &&
- hw->phy.type == e1000_phy_m88) {
- ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
- } else {
- /*
- * Set the ILOS bit on the fiber Nic if half duplex link is
- * detected.
- */
- if ((er32(STATUS) & E1000_STATUS_FD) == 0)
- ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
- }
-
- ew32(CTRL, ctrl_reg);
-
- /*
- * Disable the receiver on the PHY so when a cable is plugged in, the
- * PHY does not begin to autoneg when a cable is reconnected to the NIC.
- */
- if (hw->phy.type == e1000_phy_m88)
- e1000_phy_disable_receiver(adapter);
-
- udelay(500);
-
- return 0;
-}
-
-static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl = er32(CTRL);
- int link = 0;
-
- /* special requirements for 82571/82572 fiber adapters */
-
- /*
- * jump through hoops to make sure link is up because serdes
- * link is hardwired up
- */
- ctrl |= E1000_CTRL_SLU;
- ew32(CTRL, ctrl);
-
- /* disable autoneg */
- ctrl = er32(TXCW);
- ctrl &= ~(1 << 31);
- ew32(TXCW, ctrl);
-
- link = (er32(STATUS) & E1000_STATUS_LU);
-
- if (!link) {
- /* set invert loss of signal */
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_ILOS;
- ew32(CTRL, ctrl);
- }
-
- /*
- * special write to serdes control register to enable SerDes analog
- * loopback
- */
-#define E1000_SERDES_LB_ON 0x410
- ew32(SCTL, E1000_SERDES_LB_ON);
- e1e_flush();
- usleep_range(10000, 20000);
-
- return 0;
-}
-
-/* only call this for fiber/serdes connections to es2lan */
-static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrlext = er32(CTRL_EXT);
- u32 ctrl = er32(CTRL);
-
- /*
- * save CTRL_EXT to restore later, reuse an empty variable (unused
- * on mac_type 80003es2lan)
- */
- adapter->tx_fifo_head = ctrlext;
-
- /* clear the serdes mode bits, putting the device into mac loopback */
- ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
- ew32(CTRL_EXT, ctrlext);
-
- /* force speed to 1000/FD, link up */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
- E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* set mac loopback */
- ctrl = er32(RCTL);
- ctrl |= E1000_RCTL_LBM_MAC;
- ew32(RCTL, ctrl);
-
- /* set testing mode parameters (no need to reset later) */
-#define KMRNCTRLSTA_OPMODE (0x1F << 16)
-#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
- ew32(KMRNCTRLSTA,
- (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
-
- return 0;
-}
-
-static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes) {
- switch (hw->mac.type) {
- case e1000_80003es2lan:
- return e1000_set_es2lan_mac_loopback(adapter);
- break;
- case e1000_82571:
- case e1000_82572:
- return e1000_set_82571_fiber_loopback(adapter);
- break;
- default:
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_LBM_TCVR;
- ew32(RCTL, rctl);
- return 0;
- }
- } else if (hw->phy.media_type == e1000_media_type_copper) {
- return e1000_integrated_phy_loopback(adapter);
- }
-
- return 7;
-}
-
-static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
- u16 phy_reg;
-
- rctl = er32(RCTL);
- rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
- ew32(RCTL, rctl);
-
- switch (hw->mac.type) {
- case e1000_80003es2lan:
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes) {
- /* restore CTRL_EXT, stealing space from tx_fifo_head */
- ew32(CTRL_EXT, adapter->tx_fifo_head);
- adapter->tx_fifo_head = 0;
- }
- /* fall through */
- case e1000_82571:
- case e1000_82572:
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes) {
-#define E1000_SERDES_LB_OFF 0x400
- ew32(SCTL, E1000_SERDES_LB_OFF);
- e1e_flush();
- usleep_range(10000, 20000);
- break;
- }
- /* Fall Through */
- default:
- hw->mac.autoneg = 1;
- if (hw->phy.type == e1000_phy_gg82563)
- e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
- e1e_rphy(hw, PHY_CONTROL, &phy_reg);
- if (phy_reg & MII_CR_LOOPBACK) {
- phy_reg &= ~MII_CR_LOOPBACK;
- e1e_wphy(hw, PHY_CONTROL, phy_reg);
- e1000e_commit_phy(hw);
- }
- break;
- }
-}
-
-static void e1000_create_lbtest_frame(struct sk_buff *skb,
- unsigned int frame_size)
-{
- memset(skb->data, 0xFF, frame_size);
- frame_size &= ~1;
- memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
- memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
- memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
-}
-
-static int e1000_check_lbtest_frame(struct sk_buff *skb,
- unsigned int frame_size)
-{
- frame_size &= ~1;
- if (*(skb->data + 3) == 0xFF)
- if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
- (*(skb->data + frame_size / 2 + 12) == 0xAF))
- return 0;
- return 13;
-}
-
-static int e1000_run_loopback_test(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = &adapter->test_tx_ring;
- struct e1000_ring *rx_ring = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_hw *hw = &adapter->hw;
- int i, j, k, l;
- int lc;
- int good_cnt;
- int ret_val = 0;
- unsigned long time;
-
- ew32(RDT, rx_ring->count - 1);
-
- /*
- * Calculate the loop count based on the largest descriptor ring
- * The idea is to wrap the largest ring a number of times using 64
- * send/receive pairs during each loop
- */
-
- if (rx_ring->count <= tx_ring->count)
- lc = ((tx_ring->count / 64) * 2) + 1;
- else
- lc = ((rx_ring->count / 64) * 2) + 1;
-
- k = 0;
- l = 0;
- for (j = 0; j <= lc; j++) { /* loop count loop */
- for (i = 0; i < 64; i++) { /* send the packets */
- e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
- 1024);
- dma_sync_single_for_device(&pdev->dev,
- tx_ring->buffer_info[k].dma,
- tx_ring->buffer_info[k].length,
- DMA_TO_DEVICE);
- k++;
- if (k == tx_ring->count)
- k = 0;
- }
- ew32(TDT, k);
- e1e_flush();
- msleep(200);
- time = jiffies; /* set the start time for the receive */
- good_cnt = 0;
- do { /* receive the sent packets */
- dma_sync_single_for_cpu(&pdev->dev,
- rx_ring->buffer_info[l].dma, 2048,
- DMA_FROM_DEVICE);
-
- ret_val = e1000_check_lbtest_frame(
- rx_ring->buffer_info[l].skb, 1024);
- if (!ret_val)
- good_cnt++;
- l++;
- if (l == rx_ring->count)
- l = 0;
- /*
- * time + 20 msecs (200 msecs on 2.4) is more than
- * enough time to complete the receives, if it's
- * exceeded, break and error off
- */
- } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
- if (good_cnt != 64) {
- ret_val = 13; /* ret_val is the same as mis-compare */
- break;
- }
- if (jiffies >= (time + 20)) {
- ret_val = 14; /* error code for time out error */
- break;
- }
- } /* end loop count loop */
- return ret_val;
-}
-
-static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
-{
- /*
- * PHY loopback cannot be performed if SoL/IDER
- * sessions are active
- */
- if (e1000_check_reset_block(&adapter->hw)) {
- e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
- *data = 0;
- goto out;
- }
-
- *data = e1000_setup_desc_rings(adapter);
- if (*data)
- goto out;
-
- *data = e1000_setup_loopback_test(adapter);
- if (*data)
- goto err_loopback;
-
- *data = e1000_run_loopback_test(adapter);
- e1000_loopback_cleanup(adapter);
-
-err_loopback:
- e1000_free_desc_rings(adapter);
-out:
- return *data;
-}
-
-static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- *data = 0;
- if (hw->phy.media_type == e1000_media_type_internal_serdes) {
- int i = 0;
- hw->mac.serdes_has_link = false;
-
- /*
- * On some blade server designs, link establishment
- * could take as long as 2-3 minutes
- */
- do {
- hw->mac.ops.check_for_link(hw);
- if (hw->mac.serdes_has_link)
- return *data;
- msleep(20);
- } while (i++ < 3750);
-
- *data = 1;
- } else {
- hw->mac.ops.check_for_link(hw);
- if (hw->mac.autoneg)
- /*
- * On some Phy/switch combinations, link establishment
- * can take a few seconds more than expected.
- */
- msleep(5000);
-
- if (!(er32(STATUS) & E1000_STATUS_LU))
- *data = 1;
- }
- return *data;
-}
-
-static int e1000e_get_sset_count(struct net_device *netdev, int sset)
-{
- switch (sset) {
- case ETH_SS_TEST:
- return E1000_TEST_LEN;
- case ETH_SS_STATS:
- return E1000_STATS_LEN;
- default:
- return -EOPNOTSUPP;
- }
-}
-
-static void e1000_diag_test(struct net_device *netdev,
- struct ethtool_test *eth_test, u64 *data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- u16 autoneg_advertised;
- u8 forced_speed_duplex;
- u8 autoneg;
- bool if_running = netif_running(netdev);
-
- set_bit(__E1000_TESTING, &adapter->state);
-
- if (!if_running) {
- /* Get control of and reset hardware */
- if (adapter->flags & FLAG_HAS_AMT)
- e1000e_get_hw_control(adapter);
-
- e1000e_power_up_phy(adapter);
-
- adapter->hw.phy.autoneg_wait_to_complete = 1;
- e1000e_reset(adapter);
- adapter->hw.phy.autoneg_wait_to_complete = 0;
- }
-
- if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
- /* Offline tests */
-
- /* save speed, duplex, autoneg settings */
- autoneg_advertised = adapter->hw.phy.autoneg_advertised;
- forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
- autoneg = adapter->hw.mac.autoneg;
-
- e_info("offline testing starting\n");
-
- if (if_running)
- /* indicate we're in test mode */
- dev_close(netdev);
-
- if (e1000_reg_test(adapter, &data[0]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000e_reset(adapter);
- if (e1000_eeprom_test(adapter, &data[1]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000e_reset(adapter);
- if (e1000_intr_test(adapter, &data[2]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000e_reset(adapter);
- if (e1000_loopback_test(adapter, &data[3]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- /* force this routine to wait until autoneg complete/timeout */
- adapter->hw.phy.autoneg_wait_to_complete = 1;
- e1000e_reset(adapter);
- adapter->hw.phy.autoneg_wait_to_complete = 0;
-
- if (e1000_link_test(adapter, &data[4]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- /* restore speed, duplex, autoneg settings */
- adapter->hw.phy.autoneg_advertised = autoneg_advertised;
- adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
- adapter->hw.mac.autoneg = autoneg;
- e1000e_reset(adapter);
-
- clear_bit(__E1000_TESTING, &adapter->state);
- if (if_running)
- dev_open(netdev);
- } else {
- /* Online tests */
-
- e_info("online testing starting\n");
-
- /* register, eeprom, intr and loopback tests not run online */
- data[0] = 0;
- data[1] = 0;
- data[2] = 0;
- data[3] = 0;
-
- if (e1000_link_test(adapter, &data[4]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- clear_bit(__E1000_TESTING, &adapter->state);
- }
-
- if (!if_running) {
- e1000e_reset(adapter);
-
- if (adapter->flags & FLAG_HAS_AMT)
- e1000e_release_hw_control(adapter);
- }
-
- msleep_interruptible(4 * 1000);
-}
-
-static void e1000_get_wol(struct net_device *netdev,
- struct ethtool_wolinfo *wol)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- wol->supported = 0;
- wol->wolopts = 0;
-
- if (!(adapter->flags & FLAG_HAS_WOL) ||
- !device_can_wakeup(&adapter->pdev->dev))
- return;
-
- wol->supported = WAKE_UCAST | WAKE_MCAST |
- WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
-
- /* apply any specific unsupported masks here */
- if (adapter->flags & FLAG_NO_WAKE_UCAST) {
- wol->supported &= ~WAKE_UCAST;
-
- if (adapter->wol & E1000_WUFC_EX)
- e_err("Interface does not support directed (unicast) "
- "frame wake-up packets\n");
- }
-
- if (adapter->wol & E1000_WUFC_EX)
- wol->wolopts |= WAKE_UCAST;
- if (adapter->wol & E1000_WUFC_MC)
- wol->wolopts |= WAKE_MCAST;
- if (adapter->wol & E1000_WUFC_BC)
- wol->wolopts |= WAKE_BCAST;
- if (adapter->wol & E1000_WUFC_MAG)
- wol->wolopts |= WAKE_MAGIC;
- if (adapter->wol & E1000_WUFC_LNKC)
- wol->wolopts |= WAKE_PHY;
-}
-
-static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (!(adapter->flags & FLAG_HAS_WOL) ||
- !device_can_wakeup(&adapter->pdev->dev) ||
- (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
- WAKE_MAGIC | WAKE_PHY)))
- return -EOPNOTSUPP;
-
- /* these settings will always override what we currently have */
- adapter->wol = 0;
-
- if (wol->wolopts & WAKE_UCAST)
- adapter->wol |= E1000_WUFC_EX;
- if (wol->wolopts & WAKE_MCAST)
- adapter->wol |= E1000_WUFC_MC;
- if (wol->wolopts & WAKE_BCAST)
- adapter->wol |= E1000_WUFC_BC;
- if (wol->wolopts & WAKE_MAGIC)
- adapter->wol |= E1000_WUFC_MAG;
- if (wol->wolopts & WAKE_PHY)
- adapter->wol |= E1000_WUFC_LNKC;
-
- device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
-
- return 0;
-}
-
-static int e1000_set_phys_id(struct net_device *netdev,
- enum ethtool_phys_id_state state)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- switch (state) {
- case ETHTOOL_ID_ACTIVE:
- if (!hw->mac.ops.blink_led)
- return 2; /* cycle on/off twice per second */
-
- hw->mac.ops.blink_led(hw);
- break;
-
- case ETHTOOL_ID_INACTIVE:
- if (hw->phy.type == e1000_phy_ife)
- e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
- hw->mac.ops.led_off(hw);
- hw->mac.ops.cleanup_led(hw);
- break;
-
- case ETHTOOL_ID_ON:
- adapter->hw.mac.ops.led_on(&adapter->hw);
- break;
-
- case ETHTOOL_ID_OFF:
- adapter->hw.mac.ops.led_off(&adapter->hw);
- break;
- }
- return 0;
-}
-
-static int e1000_get_coalesce(struct net_device *netdev,
- struct ethtool_coalesce *ec)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (adapter->itr_setting <= 4)
- ec->rx_coalesce_usecs = adapter->itr_setting;
- else
- ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
-
- return 0;
-}
-
-static int e1000_set_coalesce(struct net_device *netdev,
- struct ethtool_coalesce *ec)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
- ((ec->rx_coalesce_usecs > 4) &&
- (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
- (ec->rx_coalesce_usecs == 2))
- return -EINVAL;
-
- if (ec->rx_coalesce_usecs == 4) {
- adapter->itr = adapter->itr_setting = 4;
- } else if (ec->rx_coalesce_usecs <= 3) {
- adapter->itr = 20000;
- adapter->itr_setting = ec->rx_coalesce_usecs;
- } else {
- adapter->itr = (1000000 / ec->rx_coalesce_usecs);
- adapter->itr_setting = adapter->itr & ~3;
- }
-
- if (adapter->itr_setting != 0)
- ew32(ITR, 1000000000 / (adapter->itr * 256));
- else
- ew32(ITR, 0);
-
- return 0;
-}
-
-static int e1000_nway_reset(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (!netif_running(netdev))
- return -EAGAIN;
-
- if (!adapter->hw.mac.autoneg)
- return -EINVAL;
-
- e1000e_reinit_locked(adapter);
-
- return 0;
-}
-
-static void e1000_get_ethtool_stats(struct net_device *netdev,
- struct ethtool_stats *stats,
- u64 *data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct rtnl_link_stats64 net_stats;
- int i;
- char *p = NULL;
-
- e1000e_get_stats64(netdev, &net_stats);
- for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
- switch (e1000_gstrings_stats[i].type) {
- case NETDEV_STATS:
- p = (char *) &net_stats +
- e1000_gstrings_stats[i].stat_offset;
- break;
- case E1000_STATS:
- p = (char *) adapter +
- e1000_gstrings_stats[i].stat_offset;
- break;
- default:
- data[i] = 0;
- continue;
- }
-
- data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
- sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
- }
-}
-
-static void e1000_get_strings(struct net_device *netdev, u32 stringset,
- u8 *data)
-{
- u8 *p = data;
- int i;
-
- switch (stringset) {
- case ETH_SS_TEST:
- memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
- break;
- case ETH_SS_STATS:
- for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
- memcpy(p, e1000_gstrings_stats[i].stat_string,
- ETH_GSTRING_LEN);
- p += ETH_GSTRING_LEN;
- }
- break;
- }
-}
-
-static int e1000e_set_flags(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- bool need_reset = false;
- int rc;
-
- need_reset = (data & ETH_FLAG_RXVLAN) !=
- (netdev->features & NETIF_F_HW_VLAN_RX);
-
- rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN |
- ETH_FLAG_TXVLAN);
-
- if (rc)
- return rc;
-
- if (need_reset) {
- if (netif_running(netdev))
- e1000e_reinit_locked(adapter);
- else
- e1000e_reset(adapter);
- }
-
- return 0;
-}
-
-static const struct ethtool_ops e1000_ethtool_ops = {
- .get_settings = e1000_get_settings,
- .set_settings = e1000_set_settings,
- .get_drvinfo = e1000_get_drvinfo,
- .get_regs_len = e1000_get_regs_len,
- .get_regs = e1000_get_regs,
- .get_wol = e1000_get_wol,
- .set_wol = e1000_set_wol,
- .get_msglevel = e1000_get_msglevel,
- .set_msglevel = e1000_set_msglevel,
- .nway_reset = e1000_nway_reset,
- .get_link = ethtool_op_get_link,
- .get_eeprom_len = e1000_get_eeprom_len,
- .get_eeprom = e1000_get_eeprom,
- .set_eeprom = e1000_set_eeprom,
- .get_ringparam = e1000_get_ringparam,
- .set_ringparam = e1000_set_ringparam,
- .get_pauseparam = e1000_get_pauseparam,
- .set_pauseparam = e1000_set_pauseparam,
- .get_rx_csum = e1000_get_rx_csum,
- .set_rx_csum = e1000_set_rx_csum,
- .get_tx_csum = e1000_get_tx_csum,
- .set_tx_csum = e1000_set_tx_csum,
- .get_sg = ethtool_op_get_sg,
- .set_sg = ethtool_op_set_sg,
- .get_tso = ethtool_op_get_tso,
- .set_tso = e1000_set_tso,
- .self_test = e1000_diag_test,
- .get_strings = e1000_get_strings,
- .set_phys_id = e1000_set_phys_id,
- .get_ethtool_stats = e1000_get_ethtool_stats,
- .get_sset_count = e1000e_get_sset_count,
- .get_coalesce = e1000_get_coalesce,
- .set_coalesce = e1000_set_coalesce,
- .get_flags = ethtool_op_get_flags,
- .set_flags = e1000e_set_flags,
-};
-
-void e1000e_set_ethtool_ops(struct net_device *netdev)
-{
- SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
-}
diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h
deleted file mode 100644
index 29670397079..00000000000
--- a/drivers/net/e1000e/hw.h
+++ /dev/null
@@ -1,984 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#include <linux/types.h>
-
-struct e1000_hw;
-struct e1000_adapter;
-
-#include "defines.h"
-
-#define er32(reg) __er32(hw, E1000_##reg)
-#define ew32(reg,val) __ew32(hw, E1000_##reg, (val))
-#define e1e_flush() er32(STATUS)
-
-#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
- (writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
-
-#define E1000_READ_REG_ARRAY(a, reg, offset) \
- (readl((a)->hw_addr + reg + ((offset) << 2)))
-
-enum e1e_registers {
- E1000_CTRL = 0x00000, /* Device Control - RW */
- E1000_STATUS = 0x00008, /* Device Status - RO */
- E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */
- E1000_EERD = 0x00014, /* EEPROM Read - RW */
- E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
- E1000_FLA = 0x0001C, /* Flash Access - RW */
- E1000_MDIC = 0x00020, /* MDI Control - RW */
- E1000_SCTL = 0x00024, /* SerDes Control - RW */
- E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */
- E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */
- E1000_FEXTNVM4 = 0x00024, /* Future Extended NVM 4 - RW */
- E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */
- E1000_FCT = 0x00030, /* Flow Control Type - RW */
- E1000_VET = 0x00038, /* VLAN Ether Type - RW */
- E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */
- E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */
- E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */
- E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
- E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
- E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */
- E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
- E1000_IVAR = 0x000E4, /* Interrupt Vector Allocation - RW */
- E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */
-#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2))
- E1000_RCTL = 0x00100, /* Rx Control - RW */
- E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
- E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */
- E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */
- E1000_TCTL = 0x00400, /* Tx Control - RW */
- E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
- E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */
- E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
- E1000_LEDCTL = 0x00E00, /* LED Control - RW */
- E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
- E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
- E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */
-#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */
- E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */
- E1000_PBS = 0x01008, /* Packet Buffer Size */
- E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
- E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */
- E1000_FLOP = 0x0103C, /* FLASH Opcode Register */
- E1000_PBA_ECC = 0x01100, /* PBA ECC Register */
- E1000_ERT = 0x02008, /* Early Rx Threshold - RW */
- E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
- E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
- E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
- E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */
- E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */
- E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */
- E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */
- E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */
- E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */
- E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */
-#define E1000_RXDCTL(_n) (E1000_RXDCTL_BASE + (_n << 8))
- E1000_RADV = 0x0282C, /* Rx Interrupt Absolute Delay Timer - RW */
-
-/* Convenience macros
- *
- * Note: "_n" is the queue number of the register to be written to.
- *
- * Example usage:
- * E1000_RDBAL_REG(current_rx_queue)
- *
- */
-#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
- E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
- E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */
- E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */
- E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */
- E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */
- E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */
- E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */
- E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */
-#define E1000_TXDCTL(_n) (E1000_TXDCTL_BASE + (_n << 8))
- E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
- E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */
-#define E1000_TARC(_n) (E1000_TARC_BASE + (_n << 8))
- E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
- E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
- E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
- E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */
- E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */
- E1000_SCC = 0x04014, /* Single Collision Count - R/clr */
- E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */
- E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */
- E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
- E1000_COLC = 0x04028, /* Collision Count - R/clr */
- E1000_DC = 0x04030, /* Defer Count - R/clr */
- E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */
- E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
- E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
- E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
- E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */
- E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */
- E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */
- E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */
- E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
- E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
- E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
- E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
- E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
- E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
- E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
- E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */
- E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */
- E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */
- E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */
- E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */
- E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */
- E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */
- E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */
- E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */
- E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */
- E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */
- E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */
- E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */
- E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */
- E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
- E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */
- E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */
- E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */
- E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */
- E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */
- E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */
- E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */
- E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
- E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
- E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
- E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
- E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
- E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
- E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */
- E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
- E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
- E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
- E1000_IAC = 0x04100, /* Interrupt Assertion Count */
- E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
- E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
- E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
- E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
- E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */
- E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
- E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
- E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
- E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */
- E1000_RFCTL = 0x05008, /* Receive Filter Control */
- E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
- E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */
-#define E1000_RAL(_n) (E1000_RAL_BASE + ((_n) * 8))
-#define E1000_RA (E1000_RAL(0))
- E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */
-#define E1000_RAH(_n) (E1000_RAH_BASE + ((_n) * 8))
- E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */
- E1000_WUC = 0x05800, /* Wakeup Control - RW */
- E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */
- E1000_WUS = 0x05810, /* Wakeup Status - RO */
- E1000_MANC = 0x05820, /* Management Control - RW */
- E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */
- E1000_HOST_IF = 0x08800, /* Host Interface */
-
- E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
- E1000_MANC2H = 0x05860, /* Management Control To Host - RW */
- E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */
-#define E1000_MDEF(_n) (E1000_MDEF_BASE + ((_n) * 4))
- E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
- E1000_GCR = 0x05B00, /* PCI-Ex Control */
- E1000_GCR2 = 0x05B64, /* PCI-Ex Control #2 */
- E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */
- E1000_SWSM = 0x05B50, /* SW Semaphore */
- E1000_FWSM = 0x05B54, /* FW Semaphore */
- E1000_SWSM2 = 0x05B58, /* Driver-only SW semaphore */
- E1000_FFLT_DBG = 0x05F04, /* Debug Register */
- E1000_PCH_RAICC_BASE = 0x05F50, /* Receive Address Initial CRC */
-#define E1000_PCH_RAICC(_n) (E1000_PCH_RAICC_BASE + ((_n) * 4))
-#define E1000_CRC_OFFSET E1000_PCH_RAICC_BASE
- E1000_HICR = 0x08F00, /* Host Interface Control */
-};
-
-#define E1000_MAX_PHY_ADDR 4
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
-#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
-#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
-#define IGP_PAGE_SHIFT 5
-#define PHY_REG_MASK 0x1F
-
-#define BM_WUC_PAGE 800
-#define BM_WUC_ADDRESS_OPCODE 0x11
-#define BM_WUC_DATA_OPCODE 0x12
-#define BM_WUC_ENABLE_PAGE 769
-#define BM_WUC_ENABLE_REG 17
-#define BM_WUC_ENABLE_BIT (1 << 2)
-#define BM_WUC_HOST_WU_BIT (1 << 4)
-#define BM_WUC_ME_WU_BIT (1 << 5)
-
-#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
-#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
-#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
-
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
-
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
-
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-#define IGP02E1000_AGC_RANGE 15
-
-/* manage.c */
-#define E1000_VFTA_ENTRY_SHIFT 5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-#define E1000_HICR_EN 0x01 /* Enable bit - RO */
-/* Driver sets this bit when done to put command in RAM */
-#define E1000_HICR_C 0x02
-#define E1000_HICR_FW_RESET_ENABLE 0x40
-#define E1000_HICR_FW_RESET 0x80
-
-#define E1000_FWSM_MODE_MASK 0xE
-#define E1000_FWSM_MODE_SHIFT 1
-
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
-
-/* nvm.c */
-#define E1000_STM_OPCODE 0xDB00
-
-#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
-#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KMRNCTRLSTA_REN 0x00200000
-#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
-#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
-#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
-#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
-#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
-#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
-#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
-#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002
-#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
-
-/* IFE PHY Extended Status Control */
-#define IFE_PESC_POLARITY_REVERSED 0x0100
-
-/* IFE PHY Special Control */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
-#define IFE_PSC_FORCE_POLARITY 0x0020
-
-/* IFE PHY Special Control and LED Control */
-#define IFE_PSCL_PROBE_MODE 0x0020
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-/* IFE PHY MDIX Control */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
-
-#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
-
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
-#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
-#define E1000_DEV_ID_82574L 0x10D3
-#define E1000_DEV_ID_82574LA 0x10F6
-#define E1000_DEV_ID_82583V 0x150C
-
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-
-#define E1000_DEV_ID_ICH8_82567V_3 0x1501
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
-#define E1000_DEV_ID_ICH9_BM 0x10E5
-#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
-#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
-#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
-#define E1000_DEV_ID_ICH9_IGP_C 0x294C
-#define E1000_DEV_ID_ICH9_IFE 0x10C0
-#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
-#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
-#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
-#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
-#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
-#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
-#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
-#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
-#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
-#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
-#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
-#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
-#define E1000_DEV_ID_PCH2_LV_LM 0x1502
-#define E1000_DEV_ID_PCH2_LV_V 0x1503
-
-#define E1000_REVISION_4 4
-
-#define E1000_FUNC_1 1
-
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
-#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
-
-enum e1000_mac_type {
- e1000_82571,
- e1000_82572,
- e1000_82573,
- e1000_82574,
- e1000_82583,
- e1000_80003es2lan,
- e1000_ich8lan,
- e1000_ich9lan,
- e1000_ich10lan,
- e1000_pchlan,
- e1000_pch2lan,
-};
-
-enum e1000_media_type {
- e1000_media_type_unknown = 0,
- e1000_media_type_copper = 1,
- e1000_media_type_fiber = 2,
- e1000_media_type_internal_serdes = 3,
- e1000_num_media_types
-};
-
-enum e1000_nvm_type {
- e1000_nvm_unknown = 0,
- e1000_nvm_none,
- e1000_nvm_eeprom_spi,
- e1000_nvm_flash_hw,
- e1000_nvm_flash_sw
-};
-
-enum e1000_nvm_override {
- e1000_nvm_override_none = 0,
- e1000_nvm_override_spi_small,
- e1000_nvm_override_spi_large
-};
-
-enum e1000_phy_type {
- e1000_phy_unknown = 0,
- e1000_phy_none,
- e1000_phy_m88,
- e1000_phy_igp,
- e1000_phy_igp_2,
- e1000_phy_gg82563,
- e1000_phy_igp_3,
- e1000_phy_ife,
- e1000_phy_bm,
- e1000_phy_82578,
- e1000_phy_82577,
- e1000_phy_82579,
-};
-
-enum e1000_bus_width {
- e1000_bus_width_unknown = 0,
- e1000_bus_width_pcie_x1,
- e1000_bus_width_pcie_x2,
- e1000_bus_width_pcie_x4 = 4,
- e1000_bus_width_32,
- e1000_bus_width_64,
- e1000_bus_width_reserved
-};
-
-enum e1000_1000t_rx_status {
- e1000_1000t_rx_status_not_ok = 0,
- e1000_1000t_rx_status_ok,
- e1000_1000t_rx_status_undefined = 0xFF
-};
-
-enum e1000_rev_polarity{
- e1000_rev_polarity_normal = 0,
- e1000_rev_polarity_reversed,
- e1000_rev_polarity_undefined = 0xFF
-};
-
-enum e1000_fc_mode {
- e1000_fc_none = 0,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full,
- e1000_fc_default = 0xFF
-};
-
-enum e1000_ms_type {
- e1000_ms_hw_default = 0,
- e1000_ms_force_master,
- e1000_ms_force_slave,
- e1000_ms_auto
-};
-
-enum e1000_smart_speed {
- e1000_smart_speed_default = 0,
- e1000_smart_speed_on,
- e1000_smart_speed_off
-};
-
-enum e1000_serdes_link_state {
- e1000_serdes_link_down = 0,
- e1000_serdes_link_autoneg_progress,
- e1000_serdes_link_autoneg_complete,
- e1000_serdes_link_forced_up
-};
-
-/* Receive Descriptor */
-struct e1000_rx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- __le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
- __le16 special;
-};
-
-/* Receive Descriptor - Extended */
-union e1000_rx_desc_extended {
- struct {
- __le64 buffer_addr;
- __le64 reserved;
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length;
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- __le64 buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
- } middle;
- struct {
- __le16 header_status;
- __le16 length[3]; /* length of buffers 1-3 */
- } upper;
- __le64 reserved;
- } wb; /* writeback */
-};
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Offload Context Descriptor */
-struct e1000_context_desc {
- union {
- __le32 ip_config;
- struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- __le32 tcp_config;
- struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- __le32 cmd_and_length;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 typ_len_ext;
- u8 cmd;
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
- __le16 special; /* */
- } fields;
- } upper;
-};
-
-/* Statistics counters collected by the MAC */
-struct e1000_hw_stats {
- u64 crcerrs;
- u64 algnerrc;
- u64 symerrs;
- u64 rxerrc;
- u64 mpc;
- u64 scc;
- u64 ecol;
- u64 mcc;
- u64 latecol;
- u64 colc;
- u64 dc;
- u64 tncrs;
- u64 sec;
- u64 cexterr;
- u64 rlec;
- u64 xonrxc;
- u64 xontxc;
- u64 xoffrxc;
- u64 xofftxc;
- u64 fcruc;
- u64 prc64;
- u64 prc127;
- u64 prc255;
- u64 prc511;
- u64 prc1023;
- u64 prc1522;
- u64 gprc;
- u64 bprc;
- u64 mprc;
- u64 gptc;
- u64 gorc;
- u64 gotc;
- u64 rnbc;
- u64 ruc;
- u64 rfc;
- u64 roc;
- u64 rjc;
- u64 mgprc;
- u64 mgpdc;
- u64 mgptc;
- u64 tor;
- u64 tot;
- u64 tpr;
- u64 tpt;
- u64 ptc64;
- u64 ptc127;
- u64 ptc255;
- u64 ptc511;
- u64 ptc1023;
- u64 ptc1522;
- u64 mptc;
- u64 bptc;
- u64 tsctc;
- u64 tsctfc;
- u64 iac;
- u64 icrxptc;
- u64 icrxatc;
- u64 ictxptc;
- u64 ictxatc;
- u64 ictxqec;
- u64 ictxqmtc;
- u64 icrxdmtc;
- u64 icrxoc;
-};
-
-struct e1000_phy_stats {
- u32 idle_errors;
- u32 receive_errors;
-};
-
-struct e1000_host_mng_dhcp_cookie {
- u32 signature;
- u8 status;
- u8 reserved0;
- u16 vlan_id;
- u32 reserved1;
- u16 reserved2;
- u8 reserved3;
- u8 checksum;
-};
-
-/* Host Interface "Rev 1" */
-struct e1000_host_command_header {
- u8 command_id;
- u8 command_length;
- u8 command_options;
- u8 checksum;
-};
-
-#define E1000_HI_MAX_DATA_LENGTH 252
-struct e1000_host_command_info {
- struct e1000_host_command_header command_header;
- u8 command_data[E1000_HI_MAX_DATA_LENGTH];
-};
-
-/* Host Interface "Rev 2" */
-struct e1000_host_mng_command_header {
- u8 command_id;
- u8 checksum;
- u16 reserved1;
- u16 reserved2;
- u16 command_length;
-};
-
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
-struct e1000_host_mng_command_info {
- struct e1000_host_mng_command_header command_header;
- u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
-};
-
-/* Function pointers and static data for the MAC. */
-struct e1000_mac_operations {
- s32 (*id_led_init)(struct e1000_hw *);
- s32 (*blink_led)(struct e1000_hw *);
- bool (*check_mng_mode)(struct e1000_hw *);
- s32 (*check_for_link)(struct e1000_hw *);
- s32 (*cleanup_led)(struct e1000_hw *);
- void (*clear_hw_cntrs)(struct e1000_hw *);
- void (*clear_vfta)(struct e1000_hw *);
- s32 (*get_bus_info)(struct e1000_hw *);
- void (*set_lan_id)(struct e1000_hw *);
- s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
- s32 (*led_on)(struct e1000_hw *);
- s32 (*led_off)(struct e1000_hw *);
- void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
- s32 (*reset_hw)(struct e1000_hw *);
- s32 (*init_hw)(struct e1000_hw *);
- s32 (*setup_link)(struct e1000_hw *);
- s32 (*setup_physical_interface)(struct e1000_hw *);
- s32 (*setup_led)(struct e1000_hw *);
- void (*write_vfta)(struct e1000_hw *, u32, u32);
- s32 (*read_mac_addr)(struct e1000_hw *);
-};
-
-/*
- * When to use various PHY register access functions:
- *
- * Func Caller
- * Function Does Does When to use
- * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- * X_reg L,P,A n/a for simple PHY reg accesses
- * X_reg_locked P,A L for multiple accesses of different regs
- * on different pages
- * X_reg_page A L,P for multiple accesses of different regs
- * on the same page
- *
- * Where X=[read|write], L=locking, P=sets page, A=register access
- *
- */
-struct e1000_phy_operations {
- s32 (*acquire)(struct e1000_hw *);
- s32 (*cfg_on_link_up)(struct e1000_hw *);
- s32 (*check_polarity)(struct e1000_hw *);
- s32 (*check_reset_block)(struct e1000_hw *);
- s32 (*commit)(struct e1000_hw *);
- s32 (*force_speed_duplex)(struct e1000_hw *);
- s32 (*get_cfg_done)(struct e1000_hw *hw);
- s32 (*get_cable_length)(struct e1000_hw *);
- s32 (*get_info)(struct e1000_hw *);
- s32 (*set_page)(struct e1000_hw *, u16);
- s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
- s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
- s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *);
- void (*release)(struct e1000_hw *);
- s32 (*reset)(struct e1000_hw *);
- s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
- s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
- s32 (*write_reg)(struct e1000_hw *, u32, u16);
- s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
- s32 (*write_reg_page)(struct e1000_hw *, u32, u16);
- void (*power_up)(struct e1000_hw *);
- void (*power_down)(struct e1000_hw *);
-};
-
-/* Function pointers for the NVM. */
-struct e1000_nvm_operations {
- s32 (*acquire)(struct e1000_hw *);
- s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
- void (*release)(struct e1000_hw *);
- s32 (*update)(struct e1000_hw *);
- s32 (*valid_led_default)(struct e1000_hw *, u16 *);
- s32 (*validate)(struct e1000_hw *);
- s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
-};
-
-struct e1000_mac_info {
- struct e1000_mac_operations ops;
- u8 addr[ETH_ALEN];
- u8 perm_addr[ETH_ALEN];
-
- enum e1000_mac_type type;
-
- u32 collision_delta;
- u32 ledctl_default;
- u32 ledctl_mode1;
- u32 ledctl_mode2;
- u32 mc_filter_type;
- u32 tx_packet_delta;
- u32 txcw;
-
- u16 current_ifs_val;
- u16 ifs_max_val;
- u16 ifs_min_val;
- u16 ifs_ratio;
- u16 ifs_step_size;
- u16 mta_reg_count;
-
- /* Maximum size of the MTA register table in all supported adapters */
- #define MAX_MTA_REG 128
- u32 mta_shadow[MAX_MTA_REG];
- u16 rar_entry_count;
-
- u8 forced_speed_duplex;
-
- bool adaptive_ifs;
- bool has_fwsm;
- bool arc_subsystem_valid;
- bool autoneg;
- bool autoneg_failed;
- bool get_link_status;
- bool in_ifs_mode;
- bool serdes_has_link;
- bool tx_pkt_filtering;
- enum e1000_serdes_link_state serdes_link_state;
-};
-
-struct e1000_phy_info {
- struct e1000_phy_operations ops;
-
- enum e1000_phy_type type;
-
- enum e1000_1000t_rx_status local_rx;
- enum e1000_1000t_rx_status remote_rx;
- enum e1000_ms_type ms_type;
- enum e1000_ms_type original_ms_type;
- enum e1000_rev_polarity cable_polarity;
- enum e1000_smart_speed smart_speed;
-
- u32 addr;
- u32 id;
- u32 reset_delay_us; /* in usec */
- u32 revision;
-
- enum e1000_media_type media_type;
-
- u16 autoneg_advertised;
- u16 autoneg_mask;
- u16 cable_length;
- u16 max_cable_length;
- u16 min_cable_length;
-
- u8 mdix;
-
- bool disable_polarity_correction;
- bool is_mdix;
- bool polarity_correction;
- bool speed_downgraded;
- bool autoneg_wait_to_complete;
-};
-
-struct e1000_nvm_info {
- struct e1000_nvm_operations ops;
-
- enum e1000_nvm_type type;
- enum e1000_nvm_override override;
-
- u32 flash_bank_size;
- u32 flash_base_addr;
-
- u16 word_size;
- u16 delay_usec;
- u16 address_bits;
- u16 opcode_bits;
- u16 page_size;
-};
-
-struct e1000_bus_info {
- enum e1000_bus_width width;
-
- u16 func;
-};
-
-struct e1000_fc_info {
- u32 high_water; /* Flow control high-water mark */
- u32 low_water; /* Flow control low-water mark */
- u16 pause_time; /* Flow control pause timer */
- u16 refresh_time; /* Flow control refresh timer */
- bool send_xon; /* Flow control send XON */
- bool strict_ieee; /* Strict IEEE mode */
- enum e1000_fc_mode current_mode; /* FC mode in effect */
- enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
-};
-
-struct e1000_dev_spec_82571 {
- bool laa_is_present;
- u32 smb_counter;
-};
-
-struct e1000_dev_spec_80003es2lan {
- bool mdic_wa_enable;
-};
-
-struct e1000_shadow_ram {
- u16 value;
- bool modified;
-};
-
-#define E1000_ICH8_SHADOW_RAM_WORDS 2048
-
-struct e1000_dev_spec_ich8lan {
- bool kmrn_lock_loss_workaround_enabled;
- struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
- bool nvm_k1_enabled;
- bool eee_disable;
-};
-
-struct e1000_hw {
- struct e1000_adapter *adapter;
-
- u8 __iomem *hw_addr;
- u8 __iomem *flash_address;
-
- struct e1000_mac_info mac;
- struct e1000_fc_info fc;
- struct e1000_phy_info phy;
- struct e1000_nvm_info nvm;
- struct e1000_bus_info bus;
- struct e1000_host_mng_dhcp_cookie mng_cookie;
-
- union {
- struct e1000_dev_spec_82571 e82571;
- struct e1000_dev_spec_80003es2lan e80003es2lan;
- struct e1000_dev_spec_ich8lan ich8lan;
- } dev_spec;
-};
-
-#endif
diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
deleted file mode 100644
index 4e36978b8fd..00000000000
--- a/drivers/net/e1000e/ich8lan.c
+++ /dev/null
@@ -1,4111 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 82562G 10/100 Network Connection
- * 82562G-2 10/100 Network Connection
- * 82562GT 10/100 Network Connection
- * 82562GT-2 10/100 Network Connection
- * 82562V 10/100 Network Connection
- * 82562V-2 10/100 Network Connection
- * 82566DC-2 Gigabit Network Connection
- * 82566DC Gigabit Network Connection
- * 82566DM-2 Gigabit Network Connection
- * 82566DM Gigabit Network Connection
- * 82566MC Gigabit Network Connection
- * 82566MM Gigabit Network Connection
- * 82567LM Gigabit Network Connection
- * 82567LF Gigabit Network Connection
- * 82567V Gigabit Network Connection
- * 82567LM-2 Gigabit Network Connection
- * 82567LF-2 Gigabit Network Connection
- * 82567V-2 Gigabit Network Connection
- * 82567LF-3 Gigabit Network Connection
- * 82567LM-3 Gigabit Network Connection
- * 82567LM-4 Gigabit Network Connection
- * 82577LM Gigabit Network Connection
- * 82577LC Gigabit Network Connection
- * 82578DM Gigabit Network Connection
- * 82578DC Gigabit Network Connection
- * 82579LM Gigabit Network Connection
- * 82579V Gigabit Network Connection
- */
-
-#include "e1000.h"
-
-#define ICH_FLASH_GFPREG 0x0000
-#define ICH_FLASH_HSFSTS 0x0004
-#define ICH_FLASH_HSFCTL 0x0006
-#define ICH_FLASH_FADDR 0x0008
-#define ICH_FLASH_FDATA0 0x0010
-#define ICH_FLASH_PR0 0x0074
-
-#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
-#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
-#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
-
-#define ICH_CYCLE_READ 0
-#define ICH_CYCLE_WRITE 2
-#define ICH_CYCLE_ERASE 3
-
-#define FLASH_GFPREG_BASE_MASK 0x1FFF
-#define FLASH_SECTOR_ADDR_SHIFT 12
-
-#define ICH_FLASH_SEG_SIZE_256 256
-#define ICH_FLASH_SEG_SIZE_4K 4096
-#define ICH_FLASH_SEG_SIZE_8K 8192
-#define ICH_FLASH_SEG_SIZE_64K 65536
-
-
-#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
-/* FW established a valid mode */
-#define E1000_ICH_FWSM_FW_VALID 0x00008000
-
-#define E1000_ICH_MNG_IAMT_MODE 0x2
-
-#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_OFF2 << 8) | \
- (ID_LED_DEF1_ON2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_ICH_NVM_SIG_WORD 0x13
-#define E1000_ICH_NVM_SIG_MASK 0xC000
-#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
-#define E1000_ICH_NVM_SIG_VALUE 0x80
-
-#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
-
-#define E1000_FEXTNVM_SW_CONFIG 1
-#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
-
-#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
-#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
-
-#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
-
-#define E1000_ICH_RAR_ENTRIES 7
-
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
- ((reg) & MAX_PHY_REG_ADDRESS))
-#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
-#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
-
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
-#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
-#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
-
-#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
-
-#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
-
-/* SMBus Address Phy Register */
-#define HV_SMB_ADDR PHY_REG(768, 26)
-#define HV_SMB_ADDR_MASK 0x007F
-#define HV_SMB_ADDR_PEC_EN 0x0200
-#define HV_SMB_ADDR_VALID 0x0080
-
-/* PHY Power Management Control */
-#define HV_PM_CTRL PHY_REG(770, 17)
-
-/* PHY Low Power Idle Control */
-#define I82579_LPI_CTRL PHY_REG(772, 20)
-#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
-
-/* EMI Registers */
-#define I82579_EMI_ADDR 0x10
-#define I82579_EMI_DATA 0x11
-#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
-
-/* Strapping Option Register - RO */
-#define E1000_STRAP 0x0000C
-#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
-#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
-
-/* OEM Bits Phy Register */
-#define HV_OEM_BITS PHY_REG(768, 25)
-#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
-#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
-#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
-
-#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
-#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
-
-/* KMRN Mode Control */
-#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
-#define HV_KMRN_MDIO_SLOW 0x0400
-
-/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
- struct ich8_hsfsts {
- u16 flcdone :1; /* bit 0 Flash Cycle Done */
- u16 flcerr :1; /* bit 1 Flash Cycle Error */
- u16 dael :1; /* bit 2 Direct Access error Log */
- u16 berasesz :2; /* bit 4:3 Sector Erase Size */
- u16 flcinprog :1; /* bit 5 flash cycle in Progress */
- u16 reserved1 :2; /* bit 13:6 Reserved */
- u16 reserved2 :6; /* bit 13:6 Reserved */
- u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
- u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
- } hsf_status;
- u16 regval;
-};
-
-/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
- struct ich8_hsflctl {
- u16 flcgo :1; /* 0 Flash Cycle Go */
- u16 flcycle :2; /* 2:1 Flash Cycle */
- u16 reserved :5; /* 7:3 Reserved */
- u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
- u16 flockdn :6; /* 15:10 Reserved */
- } hsf_ctrl;
- u16 regval;
-};
-
-/* ICH Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
- struct ich8_flracc {
- u32 grra :8; /* 0:7 GbE region Read Access */
- u32 grwa :8; /* 8:15 GbE region Write Access */
- u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
- u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
- } hsf_flregacc;
- u16 regval;
-};
-
-/* ICH Flash Protected Region */
-union ich8_flash_protected_range {
- struct ich8_pr {
- u32 base:13; /* 0:12 Protected Range Base */
- u32 reserved1:2; /* 13:14 Reserved */
- u32 rpe:1; /* 15 Read Protection Enable */
- u32 limit:13; /* 16:28 Protected Range Limit */
- u32 reserved2:2; /* 29:30 Reserved */
- u32 wpe:1; /* 31 Write Protection Enable */
- } range;
- u32 regval;
-};
-
-static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
-static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
-static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
-static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
-static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte);
-static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 *data);
-static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
- u16 *data);
-static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data);
-static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
-static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
-static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
-static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
-static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
-static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
-static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
-static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
-static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
-static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
-static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
-static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
-static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
-static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
-static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
-static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
-static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
-static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
-static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
-static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
-
-static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
-{
- return readw(hw->flash_address + reg);
-}
-
-static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
-{
- return readl(hw->flash_address + reg);
-}
-
-static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
-{
- writew(val, hw->flash_address + reg);
-}
-
-static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
-{
- writel(val, hw->flash_address + reg);
-}
-
-#define er16flash(reg) __er16flash(hw, (reg))
-#define er32flash(reg) __er32flash(hw, (reg))
-#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
-#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
-
-static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
- ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
- ew32(CTRL, ctrl);
- e1e_flush();
- udelay(10);
- ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
- ew32(CTRL, ctrl);
-}
-
-/**
- * e1000_init_phy_params_pchlan - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific PHY parameters and function pointers.
- **/
-static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 fwsm;
- s32 ret_val = 0;
-
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->ops.set_page = e1000_set_page_igp;
- phy->ops.read_reg = e1000_read_phy_reg_hv;
- phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
- phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
- phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
- phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
- phy->ops.write_reg = e1000_write_phy_reg_hv;
- phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
- phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /*
- * The MAC-PHY interconnect may still be in SMBus mode
- * after Sx->S0. If the manageability engine (ME) is
- * disabled, then toggle the LANPHYPC Value bit to force
- * the interconnect to PCIe mode.
- */
- fwsm = er32(FWSM);
- if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
- e1000_toggle_lanphypc_value_ich8lan(hw);
- msleep(50);
-
- /*
- * Gate automatic PHY configuration by hardware on
- * non-managed 82579
- */
- if (hw->mac.type == e1000_pch2lan)
- e1000_gate_hw_phy_config_ich8lan(hw, true);
- }
-
- /*
- * Reset the PHY before any access to it. Doing so, ensures that
- * the PHY is in a known good state before we read/write PHY registers.
- * The generic reset is sufficient here, because we haven't determined
- * the PHY type yet.
- */
- ret_val = e1000e_phy_hw_reset_generic(hw);
- if (ret_val)
- goto out;
-
- /* Ungate automatic PHY configuration on non-managed 82579 */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
- usleep_range(10000, 20000);
- e1000_gate_hw_phy_config_ich8lan(hw, false);
- }
-
- phy->id = e1000_phy_unknown;
- switch (hw->mac.type) {
- default:
- ret_val = e1000e_get_phy_id(hw);
- if (ret_val)
- goto out;
- if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
- break;
- /* fall-through */
- case e1000_pch2lan:
- /*
- * In case the PHY needs to be in mdio slow mode,
- * set slow mode and try to get the PHY id again.
- */
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (ret_val)
- goto out;
- ret_val = e1000e_get_phy_id(hw);
- if (ret_val)
- goto out;
- break;
- }
- phy->type = e1000e_get_phy_type_from_id(phy->id);
-
- switch (phy->type) {
- case e1000_phy_82577:
- case e1000_phy_82579:
- phy->ops.check_polarity = e1000_check_polarity_82577;
- phy->ops.force_speed_duplex =
- e1000_phy_force_speed_duplex_82577;
- phy->ops.get_cable_length = e1000_get_cable_length_82577;
- phy->ops.get_info = e1000_get_phy_info_82577;
- phy->ops.commit = e1000e_phy_sw_reset;
- break;
- case e1000_phy_82578:
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
- phy->ops.get_cable_length = e1000e_get_cable_length_m88;
- phy->ops.get_info = e1000e_get_phy_info_m88;
- break;
- default:
- ret_val = -E1000_ERR_PHY;
- break;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific PHY parameters and function pointers.
- **/
-static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 i = 0;
-
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->ops.power_up = e1000_power_up_phy_copper;
- phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
-
- /*
- * We may need to do this twice - once for IGP and if that fails,
- * we'll set BM func pointers and try again
- */
- ret_val = e1000e_determine_phy_address(hw);
- if (ret_val) {
- phy->ops.write_reg = e1000e_write_phy_reg_bm;
- phy->ops.read_reg = e1000e_read_phy_reg_bm;
- ret_val = e1000e_determine_phy_address(hw);
- if (ret_val) {
- e_dbg("Cannot determine PHY addr. Erroring out\n");
- return ret_val;
- }
- }
-
- phy->id = 0;
- while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
- (i++ < 100)) {
- usleep_range(1000, 2000);
- ret_val = e1000e_get_phy_id(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Verify phy id */
- switch (phy->id) {
- case IGP03E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
- phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
- phy->ops.get_info = e1000e_get_phy_info_igp;
- phy->ops.check_polarity = e1000_check_polarity_igp;
- phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy->type = e1000_phy_ife;
- phy->autoneg_mask = E1000_ALL_NOT_GIG;
- phy->ops.get_info = e1000_get_phy_info_ife;
- phy->ops.check_polarity = e1000_check_polarity_ife;
- phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
- break;
- case BME1000_E_PHY_ID:
- phy->type = e1000_phy_bm;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->ops.read_reg = e1000e_read_phy_reg_bm;
- phy->ops.write_reg = e1000e_write_phy_reg_bm;
- phy->ops.commit = e1000e_phy_sw_reset;
- phy->ops.get_info = e1000e_get_phy_info_m88;
- phy->ops.check_polarity = e1000_check_polarity_m88;
- phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific NVM parameters and function
- * pointers.
- **/
-static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 gfpreg, sector_base_addr, sector_end_addr;
- u16 i;
-
- /* Can't read flash registers if the register set isn't mapped. */
- if (!hw->flash_address) {
- e_dbg("ERROR: Flash registers not mapped\n");
- return -E1000_ERR_CONFIG;
- }
-
- nvm->type = e1000_nvm_flash_sw;
-
- gfpreg = er32flash(ICH_FLASH_GFPREG);
-
- /*
- * sector_X_addr is a "sector"-aligned address (4096 bytes)
- * Add 1 to sector_end_addr since this sector is included in
- * the overall size.
- */
- sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
- sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
-
- /* flash_base_addr is byte-aligned */
- nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
-
- /*
- * find total size of the NVM, then cut in half since the total
- * size represents two separate NVM banks.
- */
- nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
- << FLASH_SECTOR_ADDR_SHIFT;
- nvm->flash_bank_size /= 2;
- /* Adjust to word count */
- nvm->flash_bank_size /= sizeof(u16);
-
- nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
-
- /* Clear shadow ram */
- for (i = 0; i < nvm->word_size; i++) {
- dev_spec->shadow_ram[i].modified = false;
- dev_spec->shadow_ram[i].value = 0xFFFF;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific MAC parameters and function
- * pointers.
- **/
-static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
-
- /* Set media type function pointer */
- hw->phy.media_type = e1000_media_type_copper;
-
- /* Set mta register count */
- mac->mta_reg_count = 32;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
- if (mac->type == e1000_ich8lan)
- mac->rar_entry_count--;
- /* FWSM register */
- mac->has_fwsm = true;
- /* ARC subsystem not supported */
- mac->arc_subsystem_valid = false;
- /* Adaptive IFS supported */
- mac->adaptive_ifs = true;
-
- /* LED operations */
- switch (mac->type) {
- case e1000_ich8lan:
- case e1000_ich9lan:
- case e1000_ich10lan:
- /* check management mode */
- mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
- /* ID LED init */
- mac->ops.id_led_init = e1000e_id_led_init;
- /* blink LED */
- mac->ops.blink_led = e1000e_blink_led_generic;
- /* setup LED */
- mac->ops.setup_led = e1000e_setup_led_generic;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_ich8lan;
- mac->ops.led_off = e1000_led_off_ich8lan;
- break;
- case e1000_pchlan:
- case e1000_pch2lan:
- /* check management mode */
- mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
- /* ID LED init */
- mac->ops.id_led_init = e1000_id_led_init_pchlan;
- /* setup LED */
- mac->ops.setup_led = e1000_setup_led_pchlan;
- /* cleanup LED */
- mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
- /* turn on/off LED */
- mac->ops.led_on = e1000_led_on_pchlan;
- mac->ops.led_off = e1000_led_off_pchlan;
- break;
- default:
- break;
- }
-
- /* Enable PCS Lock-loss workaround for ICH8 */
- if (mac->type == e1000_ich8lan)
- e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
-
- /* Gate automatic PHY configuration by hardware on managed 82579 */
- if ((mac->type == e1000_pch2lan) &&
- (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
- e1000_gate_hw_phy_config_ich8lan(hw, true);
-
- return 0;
-}
-
-/**
- * e1000_set_eee_pchlan - Enable/disable EEE support
- * @hw: pointer to the HW structure
- *
- * Enable/disable EEE based on setting in dev_spec structure. The bits in
- * the LPI Control register will remain set only if/when link is up.
- **/
-static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 phy_reg;
-
- if (hw->phy.type != e1000_phy_82579)
- goto out;
-
- ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
- if (ret_val)
- goto out;
-
- if (hw->dev_spec.ich8lan.eee_disable)
- phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
- else
- phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
-
- ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status) {
- ret_val = 0;
- goto out;
- }
-
- /*
- * First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (hw->mac.type == e1000_pchlan) {
- ret_val = e1000_k1_gig_workaround_hv(hw, link);
- if (ret_val)
- goto out;
- }
-
- if (!link)
- goto out; /* No link detected */
-
- mac->get_link_status = false;
-
- if (hw->phy.type == e1000_phy_82578) {
- ret_val = e1000_link_stall_workaround_hv(hw);
- if (ret_val)
- goto out;
- }
-
- if (hw->mac.type == e1000_pch2lan) {
- ret_val = e1000_k1_workaround_lv(hw);
- if (ret_val)
- goto out;
- }
-
- /*
- * Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000e_check_downshift(hw);
-
- /* Enable/Disable EEE after link up */
- ret_val = e1000_set_eee_pchlan(hw);
- if (ret_val)
- goto out;
-
- /*
- * If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- e1000e_config_collision_dist(hw);
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val)
- e_dbg("Error configuring flow control\n");
-
-out:
- return ret_val;
-}
-
-static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- s32 rc;
-
- rc = e1000_init_mac_params_ich8lan(adapter);
- if (rc)
- return rc;
-
- rc = e1000_init_nvm_params_ich8lan(hw);
- if (rc)
- return rc;
-
- switch (hw->mac.type) {
- case e1000_ich8lan:
- case e1000_ich9lan:
- case e1000_ich10lan:
- rc = e1000_init_phy_params_ich8lan(hw);
- break;
- case e1000_pchlan:
- case e1000_pch2lan:
- rc = e1000_init_phy_params_pchlan(hw);
- break;
- default:
- break;
- }
- if (rc)
- return rc;
-
- /*
- * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
- * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
- */
- if ((adapter->hw.phy.type == e1000_phy_ife) ||
- ((adapter->hw.mac.type >= e1000_pch2lan) &&
- (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
- adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
- adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
-
- hw->mac.ops.blink_led = NULL;
- }
-
- if ((adapter->hw.mac.type == e1000_ich8lan) &&
- (adapter->hw.phy.type == e1000_phy_igp_3))
- adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
-
- /* Disable EEE by default until IEEE802.3az spec is finalized */
- if (adapter->flags2 & FLAG2_HAS_EEE)
- adapter->hw.dev_spec.ich8lan.eee_disable = true;
-
- return 0;
-}
-
-static DEFINE_MUTEX(nvm_mutex);
-
-/**
- * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
- * @hw: pointer to the HW structure
- *
- * Acquires the mutex for performing NVM operations.
- **/
-static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
-{
- mutex_lock(&nvm_mutex);
-
- return 0;
-}
-
-/**
- * e1000_release_nvm_ich8lan - Release NVM mutex
- * @hw: pointer to the HW structure
- *
- * Releases the mutex used while performing NVM operations.
- **/
-static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
-{
- mutex_unlock(&nvm_mutex);
-}
-
-static DEFINE_MUTEX(swflag_mutex);
-
-/**
- * e1000_acquire_swflag_ich8lan - Acquire software control flag
- * @hw: pointer to the HW structure
- *
- * Acquires the software control flag for performing PHY and select
- * MAC CSR accesses.
- **/
-static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
- s32 ret_val = 0;
-
- mutex_lock(&swflag_mutex);
-
- while (timeout) {
- extcnf_ctrl = er32(EXTCNF_CTRL);
- if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
- break;
-
- mdelay(1);
- timeout--;
- }
-
- if (!timeout) {
- e_dbg("SW/FW/HW has locked the resource for too long.\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- timeout = SW_FLAG_TIMEOUT;
-
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
-
- while (timeout) {
- extcnf_ctrl = er32(EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
-
- mdelay(1);
- timeout--;
- }
-
- if (!timeout) {
- e_dbg("Failed to acquire the semaphore.\n");
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
-out:
- if (ret_val)
- mutex_unlock(&swflag_mutex);
-
- return ret_val;
-}
-
-/**
- * e1000_release_swflag_ich8lan - Release software control flag
- * @hw: pointer to the HW structure
- *
- * Releases the software control flag for performing PHY and select
- * MAC CSR accesses.
- **/
-static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- } else {
- e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
- }
-
- mutex_unlock(&swflag_mutex);
-}
-
-/**
- * e1000_check_mng_mode_ich8lan - Checks management mode
- * @hw: pointer to the HW structure
- *
- * This checks if the adapter has any manageability enabled.
- * This is a function pointer entry point only called by read/write
- * routines for the PHY and NVM parts.
- **/
-static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- fwsm = er32(FWSM);
- return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
-}
-
-/**
- * e1000_check_mng_mode_pchlan - Checks management mode
- * @hw: pointer to the HW structure
- *
- * This checks if the adapter has iAMT enabled.
- * This is a function pointer entry point only called by read/write
- * routines for the PHY and NVM parts.
- **/
-static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- fwsm = er32(FWSM);
- return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
- (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
-}
-
-/**
- * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Checks if firmware is blocking the reset of the PHY.
- * This is a function pointer entry point only called by
- * reset routines.
- **/
-static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- fwsm = er32(FWSM);
-
- return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
-}
-
-/**
- * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
- * @hw: pointer to the HW structure
- *
- * Assumes semaphore already acquired.
- *
- **/
-static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
-{
- u16 phy_data;
- u32 strap = er32(STRAP);
- s32 ret_val = 0;
-
- strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
-
- ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data &= ~HV_SMB_ADDR_MASK;
- phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
- phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
- ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
- * @hw: pointer to the HW structure
- *
- * SW should configure the LCD from the NVM extended configuration region
- * as a workaround for certain parts.
- **/
-static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
- s32 ret_val = 0;
- u16 word_addr, reg_data, reg_addr, phy_page = 0;
-
- /*
- * Initialize the PHY from the NVM on ICH platforms. This
- * is needed due to an issue where the NVM configuration is
- * not properly autoloaded after power transitions.
- * Therefore, after each PHY reset, we will load the
- * configuration data out of the NVM manually.
- */
- switch (hw->mac.type) {
- case e1000_ich8lan:
- if (phy->type != e1000_phy_igp_3)
- return ret_val;
-
- if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
- (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
- sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
- break;
- }
- /* Fall-thru */
- case e1000_pchlan:
- case e1000_pch2lan:
- sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
- break;
- default:
- return ret_val;
- }
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- data = er32(FEXTNVM);
- if (!(data & sw_cfg_mask))
- goto out;
-
- /*
- * Make sure HW does not configure LCD from PHY
- * extended configuration before SW configuration
- */
- data = er32(EXTCNF_CTRL);
- if (!(hw->mac.type == e1000_pch2lan)) {
- if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
- goto out;
- }
-
- cnf_size = er32(EXTCNF_SIZE);
- cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
- cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
- if (!cnf_size)
- goto out;
-
- cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
- cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
-
- if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
- (hw->mac.type == e1000_pchlan)) ||
- (hw->mac.type == e1000_pch2lan)) {
- /*
- * HW configures the SMBus address and LEDs when the
- * OEM and LCD Write Enable bits are set in the NVM.
- * When both NVM bits are cleared, SW will configure
- * them instead.
- */
- ret_val = e1000_write_smbus_addr(hw);
- if (ret_val)
- goto out;
-
- data = er32(LEDCTL);
- ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
- (u16)data);
- if (ret_val)
- goto out;
- }
-
- /* Configure LCD from extended configuration region. */
-
- /* cnf_base_addr is in DWORD */
- word_addr = (u16)(cnf_base_addr << 1);
-
- for (i = 0; i < cnf_size; i++) {
- ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
- &reg_data);
- if (ret_val)
- goto out;
-
- ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
- 1, &reg_addr);
- if (ret_val)
- goto out;
-
- /* Save off the PHY page for future writes. */
- if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
- phy_page = reg_data;
- continue;
- }
-
- reg_addr &= PHY_REG_MASK;
- reg_addr |= phy_page;
-
- ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
- reg_data);
- if (ret_val)
- goto out;
- }
-
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_k1_gig_workaround_hv - K1 Si workaround
- * @hw: pointer to the HW structure
- * @link: link up bool flag
- *
- * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
- * from a lower speed. This workaround disables K1 whenever link is at 1Gig
- * If link is down, the function will restore the default K1 setting located
- * in the NVM.
- **/
-static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
-{
- s32 ret_val = 0;
- u16 status_reg = 0;
- bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
-
- if (hw->mac.type != e1000_pchlan)
- goto out;
-
- /* Wrap the whole flow with the sw flag */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
-
- /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
- if (link) {
- if (hw->phy.type == e1000_phy_82578) {
- ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
- &status_reg);
- if (ret_val)
- goto release;
-
- status_reg &= BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
-
- if (status_reg == (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
- k1_enable = false;
- }
-
- if (hw->phy.type == e1000_phy_82577) {
- ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
- &status_reg);
- if (ret_val)
- goto release;
-
- status_reg &= HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_MASK;
-
- if (status_reg == (HV_M_STATUS_LINK_UP |
- HV_M_STATUS_AUTONEG_COMPLETE |
- HV_M_STATUS_SPEED_1000))
- k1_enable = false;
- }
-
- /* Link stall fix for link up */
- ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
- 0x0100);
- if (ret_val)
- goto release;
-
- } else {
- /* Link stall fix for link down */
- ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
- 0x4100);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
-
-release:
- hw->phy.ops.release(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_configure_k1_ich8lan - Configure K1 power state
- * @hw: pointer to the HW structure
- * @enable: K1 state to configure
- *
- * Configure the K1 power state based on the provided parameter.
- * Assumes semaphore already acquired.
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- **/
-s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
-{
- s32 ret_val = 0;
- u32 ctrl_reg = 0;
- u32 ctrl_ext = 0;
- u32 reg = 0;
- u16 kmrn_reg = 0;
-
- ret_val = e1000e_read_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_K1_CONFIG,
- &kmrn_reg);
- if (ret_val)
- goto out;
-
- if (k1_enable)
- kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
- else
- kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
-
- ret_val = e1000e_write_kmrn_reg_locked(hw,
- E1000_KMRNCTRLSTA_K1_CONFIG,
- kmrn_reg);
- if (ret_val)
- goto out;
-
- udelay(20);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_reg = er32(CTRL);
-
- reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- reg |= E1000_CTRL_FRCSPD;
- ew32(CTRL, reg);
-
- ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
- e1e_flush();
- udelay(20);
- ew32(CTRL, ctrl_reg);
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
- udelay(20);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
- * @hw: pointer to the HW structure
- * @d0_state: boolean if entering d0 or d3 device state
- *
- * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
- * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
- * in NVM determines whether HW should configure LPLU and Gbe Disable.
- **/
-static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
-{
- s32 ret_val = 0;
- u32 mac_reg;
- u16 oem_reg;
-
- if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
- return ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- if (!(hw->mac.type == e1000_pch2lan)) {
- mac_reg = er32(EXTCNF_CTRL);
- if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
- goto out;
- }
-
- mac_reg = er32(FEXTNVM);
- if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
- goto out;
-
- mac_reg = er32(PHY_CTRL);
-
- ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
- if (ret_val)
- goto out;
-
- oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
-
- if (d0_state) {
- if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
- oem_reg |= HV_OEM_BITS_GBE_DIS;
-
- if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
- oem_reg |= HV_OEM_BITS_LPLU;
- } else {
- if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
- oem_reg |= HV_OEM_BITS_GBE_DIS;
-
- if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
- oem_reg |= HV_OEM_BITS_LPLU;
- }
- /* Restart auto-neg to activate the bits */
- if (!e1000_check_reset_block(hw))
- oem_reg |= HV_OEM_BITS_RESTART_AN;
- ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
-
-out:
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-
-/**
- * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= HV_KMRN_MDIO_SLOW;
-
- ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
-
- return ret_val;
-}
-
-/**
- * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
- * done after every PHY reset.
- **/
-static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 phy_data;
-
- if (hw->mac.type != e1000_pchlan)
- return ret_val;
-
- /* Set MDIO slow mode before any other MDIO access */
- if (hw->phy.type == e1000_phy_82577) {
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
- if (ret_val)
- goto out;
- }
-
- if (((hw->phy.type == e1000_phy_82577) &&
- ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
- ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
- /* Disable generation of early preamble */
- ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
- if (ret_val)
- return ret_val;
-
- /* Preamble tuning for SSC */
- ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->phy.type == e1000_phy_82578) {
- /*
- * Return registers to default by doing a soft reset then
- * writing 0x3140 to the control register.
- */
- if (hw->phy.revision < 2) {
- e1000e_phy_sw_reset(hw);
- ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
- }
- }
-
- /* Select page 0 */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- hw->phy.addr = 1;
- ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
- hw->phy.ops.release(hw);
- if (ret_val)
- goto out;
-
- /*
- * Configure the K1 Si workaround during phy reset assuming there is
- * link so that it disables K1 if link is in 1Gbps.
- */
- ret_val = e1000_k1_gig_workaround_hv(hw, true);
- if (ret_val)
- goto out;
-
- /* Workaround for link disconnects on a busy hub in half duplex */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
- if (ret_val)
- goto release;
- ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
- phy_data & 0x00FF);
-release:
- hw->phy.ops.release(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
- * @hw: pointer to the HW structure
- **/
-void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
-{
- u32 mac_reg;
- u16 i, phy_reg = 0;
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
- ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
- if (ret_val)
- goto release;
-
- /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
- for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
- mac_reg = er32(RAL(i));
- hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
- (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
- (u16)((mac_reg >> 16) & 0xFFFF));
-
- mac_reg = er32(RAH(i));
- hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
- (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
- (u16)((mac_reg & E1000_RAH_AV)
- >> 16));
- }
-
- e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-release:
- hw->phy.ops.release(hw);
-}
-
-/**
- * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
- * with 82579 PHY
- * @hw: pointer to the HW structure
- * @enable: flag to enable/disable workaround when enabling/disabling jumbos
- **/
-s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
-{
- s32 ret_val = 0;
- u16 phy_reg, data;
- u32 mac_reg;
- u16 i;
-
- if (hw->mac.type != e1000_pch2lan)
- goto out;
-
- /* disable Rx path while enabling/disabling workaround */
- e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
- ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
- if (ret_val)
- goto out;
-
- if (enable) {
- /*
- * Write Rx addresses (rar_entry_count for RAL/H, +4 for
- * SHRAL/H) and initial CRC values to the MAC
- */
- for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
- u8 mac_addr[ETH_ALEN] = {0};
- u32 addr_high, addr_low;
-
- addr_high = er32(RAH(i));
- if (!(addr_high & E1000_RAH_AV))
- continue;
- addr_low = er32(RAL(i));
- mac_addr[0] = (addr_low & 0xFF);
- mac_addr[1] = ((addr_low >> 8) & 0xFF);
- mac_addr[2] = ((addr_low >> 16) & 0xFF);
- mac_addr[3] = ((addr_low >> 24) & 0xFF);
- mac_addr[4] = (addr_high & 0xFF);
- mac_addr[5] = ((addr_high >> 8) & 0xFF);
-
- ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
- }
-
- /* Write Rx addresses to the PHY */
- e1000_copy_rx_addrs_to_phy_ich8lan(hw);
-
- /* Enable jumbo frame workaround in the MAC */
- mac_reg = er32(FFLT_DBG);
- mac_reg &= ~(1 << 14);
- mac_reg |= (7 << 15);
- ew32(FFLT_DBG, mac_reg);
-
- mac_reg = er32(RCTL);
- mac_reg |= E1000_RCTL_SECRC;
- ew32(RCTL, mac_reg);
-
- ret_val = e1000e_read_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- &data);
- if (ret_val)
- goto out;
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- data | (1 << 0));
- if (ret_val)
- goto out;
- ret_val = e1000e_read_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- &data);
- if (ret_val)
- goto out;
- data &= ~(0xF << 8);
- data |= (0xB << 8);
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- data);
- if (ret_val)
- goto out;
-
- /* Enable jumbo frame workaround in the PHY */
- e1e_rphy(hw, PHY_REG(769, 23), &data);
- data &= ~(0x7F << 5);
- data |= (0x37 << 5);
- ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
- if (ret_val)
- goto out;
- e1e_rphy(hw, PHY_REG(769, 16), &data);
- data &= ~(1 << 13);
- ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
- if (ret_val)
- goto out;
- e1e_rphy(hw, PHY_REG(776, 20), &data);
- data &= ~(0x3FF << 2);
- data |= (0x1A << 2);
- ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
- if (ret_val)
- goto out;
- ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
- if (ret_val)
- goto out;
- e1e_rphy(hw, HV_PM_CTRL, &data);
- ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
- if (ret_val)
- goto out;
- } else {
- /* Write MAC register values back to h/w defaults */
- mac_reg = er32(FFLT_DBG);
- mac_reg &= ~(0xF << 14);
- ew32(FFLT_DBG, mac_reg);
-
- mac_reg = er32(RCTL);
- mac_reg &= ~E1000_RCTL_SECRC;
- ew32(RCTL, mac_reg);
-
- ret_val = e1000e_read_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- &data);
- if (ret_val)
- goto out;
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_CTRL_OFFSET,
- data & ~(1 << 0));
- if (ret_val)
- goto out;
- ret_val = e1000e_read_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- &data);
- if (ret_val)
- goto out;
- data &= ~(0xF << 8);
- data |= (0xB << 8);
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_HD_CTRL,
- data);
- if (ret_val)
- goto out;
-
- /* Write PHY register values back to h/w defaults */
- e1e_rphy(hw, PHY_REG(769, 23), &data);
- data &= ~(0x7F << 5);
- ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
- if (ret_val)
- goto out;
- e1e_rphy(hw, PHY_REG(769, 16), &data);
- data |= (1 << 13);
- ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
- if (ret_val)
- goto out;
- e1e_rphy(hw, PHY_REG(776, 20), &data);
- data &= ~(0x3FF << 2);
- data |= (0x8 << 2);
- ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
- if (ret_val)
- goto out;
- ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
- if (ret_val)
- goto out;
- e1e_rphy(hw, HV_PM_CTRL, &data);
- ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
- if (ret_val)
- goto out;
- }
-
- /* re-enable Rx path after enabling/disabling workaround */
- ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
- * done after every PHY reset.
- **/
-static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
-
- if (hw->mac.type != e1000_pch2lan)
- goto out;
-
- /* Set MDIO slow mode before any other MDIO access */
- ret_val = e1000_set_mdio_slow_mode_hv(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_k1_gig_workaround_lv - K1 Si workaround
- * @hw: pointer to the HW structure
- *
- * Workaround to set the K1 beacon duration for 82579 parts
- **/
-static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 status_reg = 0;
- u32 mac_reg;
-
- if (hw->mac.type != e1000_pch2lan)
- goto out;
-
- /* Set K1 beacon duration based on 1Gbps speed or otherwise */
- ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
- if (ret_val)
- goto out;
-
- if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
- == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
- mac_reg = er32(FEXTNVM4);
- mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
-
- if (status_reg & HV_M_STATUS_SPEED_1000)
- mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
- else
- mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
-
- ew32(FEXTNVM4, mac_reg);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
- * @hw: pointer to the HW structure
- * @gate: boolean set to true to gate, false to ungate
- *
- * Gate/ungate the automatic PHY configuration via hardware; perform
- * the configuration via software instead.
- **/
-static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
-{
- u32 extcnf_ctrl;
-
- if (hw->mac.type != e1000_pch2lan)
- return;
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
-
- if (gate)
- extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
- else
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
-
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- return;
-}
-
-/**
- * e1000_lan_init_done_ich8lan - Check for PHY config completion
- * @hw: pointer to the HW structure
- *
- * Check the appropriate indication the MAC has finished configuring the
- * PHY after a software reset.
- **/
-static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
-{
- u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
-
- /* Wait for basic configuration completes before proceeding */
- do {
- data = er32(STATUS);
- data &= E1000_STATUS_LAN_INIT_DONE;
- udelay(100);
- } while ((!data) && --loop);
-
- /*
- * If basic configuration is incomplete before the above loop
- * count reaches 0, loading the configuration from NVM will
- * leave the PHY in a bad state possibly resulting in no link.
- */
- if (loop == 0)
- e_dbg("LAN_INIT_DONE not set, increase timeout\n");
-
- /* Clear the Init Done bit for the next init event */
- data = er32(STATUS);
- data &= ~E1000_STATUS_LAN_INIT_DONE;
- ew32(STATUS, data);
-}
-
-/**
- * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
- * @hw: pointer to the HW structure
- **/
-static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 reg;
-
- if (e1000_check_reset_block(hw))
- goto out;
-
- /* Allow time for h/w to get to quiescent state after reset */
- usleep_range(10000, 20000);
-
- /* Perform any necessary post-reset workarounds */
- switch (hw->mac.type) {
- case e1000_pchlan:
- ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
- if (ret_val)
- goto out;
- break;
- case e1000_pch2lan:
- ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
- if (ret_val)
- goto out;
- break;
- default:
- break;
- }
-
- /* Clear the host wakeup bit after lcd reset */
- if (hw->mac.type >= e1000_pchlan) {
- e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
- reg &= ~BM_WUC_HOST_WU_BIT;
- e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
- }
-
- /* Configure the LCD with the extended configuration region in NVM */
- ret_val = e1000_sw_lcd_config_ich8lan(hw);
- if (ret_val)
- goto out;
-
- /* Configure the LCD with the OEM bits in NVM */
- ret_val = e1000_oem_bits_config_ich8lan(hw, true);
-
- if (hw->mac.type == e1000_pch2lan) {
- /* Ungate automatic PHY configuration on non-managed 82579 */
- if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
- usleep_range(10000, 20000);
- e1000_gate_hw_phy_config_ich8lan(hw, false);
- }
-
- /* Set EEE LPI Update Timer to 200usec */
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
- I82579_LPI_UPDATE_TIMER);
- if (ret_val)
- goto release;
- ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
- 0x1387);
-release:
- hw->phy.ops.release(hw);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
- * @hw: pointer to the HW structure
- *
- * Resets the PHY
- * This is a function pointer entry point called by drivers
- * or other shared routines.
- **/
-static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
-
- /* Gate automatic PHY configuration by hardware on non-managed 82579 */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
- e1000_gate_hw_phy_config_ich8lan(hw, true);
-
- ret_val = e1000e_phy_hw_reset_generic(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_post_phy_reset_ich8lan(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU state according to the active flag. For PCH, if OEM write
- * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
- * the phy speed. This function will manually set the LPLU bit and restart
- * auto-neg as hw would do. D3 and D0 LPLU will call the same function
- * since it configures the same bit.
- **/
-static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
-{
- s32 ret_val = 0;
- u16 oem_reg;
-
- ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
- if (ret_val)
- goto out;
-
- if (active)
- oem_reg |= HV_OEM_BITS_LPLU;
- else
- oem_reg &= ~HV_OEM_BITS_LPLU;
-
- oem_reg |= HV_OEM_BITS_RESTART_AN;
- ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 phy_ctrl;
- s32 ret_val = 0;
- u16 data;
-
- if (phy->type == e1000_phy_ife)
- return ret_val;
-
- phy_ctrl = er32(PHY_CTRL);
-
- if (active) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return 0;
-
- /*
- * Call gig speed drop workaround on LPLU before accessing
- * any PHY registers
- */
- if (hw->mac.type == e1000_ich8lan)
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- if (ret_val)
- return ret_val;
- } else {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return 0;
-
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
- * @hw: pointer to the HW structure
- * @active: true to enable LPLU, false to disable
- *
- * Sets the LPLU D3 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 phy_ctrl;
- s32 ret_val;
- u16 data;
-
- phy_ctrl = er32(PHY_CTRL);
-
- if (!active) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return 0;
-
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- if (phy->type != e1000_phy_igp_3)
- return 0;
-
- /*
- * Call gig speed drop workaround on LPLU before accessing
- * any PHY registers
- */
- if (hw->mac.type == e1000_ich8lan)
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- }
-
- return 0;
-}
-
-/**
- * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
- * @hw: pointer to the HW structure
- * @bank: pointer to the variable that returns the active bank
- *
- * Reads signature byte from the NVM using the flash access registers.
- * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
- **/
-static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
-{
- u32 eecd;
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
- u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
- u8 sig_byte = 0;
- s32 ret_val = 0;
-
- switch (hw->mac.type) {
- case e1000_ich8lan:
- case e1000_ich9lan:
- eecd = er32(EECD);
- if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
- E1000_EECD_SEC1VAL_VALID_MASK) {
- if (eecd & E1000_EECD_SEC1VAL)
- *bank = 1;
- else
- *bank = 0;
-
- return 0;
- }
- e_dbg("Unable to determine valid NVM bank via EEC - "
- "reading flash signature\n");
- /* fall-thru */
- default:
- /* set bank to 0 in case flash read fails */
- *bank = 0;
-
- /* Check bank 0 */
- ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
- &sig_byte);
- if (ret_val)
- return ret_val;
- if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
- E1000_ICH_NVM_SIG_VALUE) {
- *bank = 0;
- return 0;
- }
-
- /* Check bank 1 */
- ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
- bank1_offset,
- &sig_byte);
- if (ret_val)
- return ret_val;
- if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
- E1000_ICH_NVM_SIG_VALUE) {
- *bank = 1;
- return 0;
- }
-
- e_dbg("ERROR: No valid NVM bank present\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000_read_nvm_ich8lan - Read word(s) from the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the word(s) to read.
- * @words: Size of data to read in words
- * @data: Pointer to the word(s) to read at offset.
- *
- * Reads a word(s) from the NVM using the flash access registers.
- **/
-static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 act_offset;
- s32 ret_val = 0;
- u32 bank = 0;
- u16 i, word;
-
- if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- ret_val = -E1000_ERR_NVM;
- goto out;
- }
-
- nvm->ops.acquire(hw);
-
- ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
- if (ret_val) {
- e_dbg("Could not detect valid bank, assuming bank 0\n");
- bank = 0;
- }
-
- act_offset = (bank) ? nvm->flash_bank_size : 0;
- act_offset += offset;
-
- ret_val = 0;
- for (i = 0; i < words; i++) {
- if (dev_spec->shadow_ram[offset+i].modified) {
- data[i] = dev_spec->shadow_ram[offset+i].value;
- } else {
- ret_val = e1000_read_flash_word_ich8lan(hw,
- act_offset + i,
- &word);
- if (ret_val)
- break;
- data[i] = word;
- }
- }
-
- nvm->ops.release(hw);
-
-out:
- if (ret_val)
- e_dbg("NVM read error: %d\n", ret_val);
-
- return ret_val;
-}
-
-/**
- * e1000_flash_cycle_init_ich8lan - Initialize flash
- * @hw: pointer to the HW structure
- *
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- **/
-static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
-{
- union ich8_hws_flash_status hsfsts;
- s32 ret_val = -E1000_ERR_NVM;
-
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
-
- /* Check if the flash descriptor is valid */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- e_dbg("Flash descriptor invalid. "
- "SW Sequencing must be used.\n");
- return -E1000_ERR_NVM;
- }
-
- /* Clear FCERR and DAEL in hw status by writing 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
-
- ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
-
- /*
- * Either we should have a hardware SPI cycle in progress
- * bit to check against, in order to start a new cycle or
- * FDONE bit should be changed in the hardware so that it
- * is 1 after hardware reset, which can then be used as an
- * indication whether a cycle is in progress or has been
- * completed.
- */
-
- if (hsfsts.hsf_status.flcinprog == 0) {
- /*
- * There is no cycle running at present,
- * so we can start a cycle.
- * Begin by setting Flash Cycle Done.
- */
- hsfsts.hsf_status.flcdone = 1;
- ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
- ret_val = 0;
- } else {
- s32 i = 0;
-
- /*
- * Otherwise poll for sometime so the current
- * cycle has a chance to end before giving up.
- */
- for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
- ret_val = 0;
- break;
- }
- udelay(1);
- }
- if (ret_val == 0) {
- /*
- * Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done.
- */
- hsfsts.hsf_status.flcdone = 1;
- ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
- } else {
- e_dbg("Flash controller busy, cannot get access\n");
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
- * @hw: pointer to the HW structure
- * @timeout: maximum time to wait for completion
- *
- * This function starts a flash cycle and waits for its completion.
- **/
-static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
-{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- s32 ret_val = -E1000_ERR_NVM;
- u32 i = 0;
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
- break;
- udelay(1);
- } while (i++ < timeout);
-
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
- return 0;
-
- return ret_val;
-}
-
-/**
- * e1000_read_flash_word_ich8lan - Read word from flash
- * @hw: pointer to the HW structure
- * @offset: offset to data location
- * @data: pointer to the location for storing the data
- *
- * Reads the flash word at offset into data. Offset is converted
- * to bytes before read.
- **/
-static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- /* Must convert offset into bytes. */
- offset <<= 1;
-
- return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
-}
-
-/**
- * e1000_read_flash_byte_ich8lan - Read byte from flash
- * @hw: pointer to the HW structure
- * @offset: The offset of the byte to read.
- * @data: Pointer to a byte to store the value read.
- *
- * Reads a single byte from the NVM using the flash access registers.
- **/
-static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 *data)
-{
- s32 ret_val;
- u16 word = 0;
-
- ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
- if (ret_val)
- return ret_val;
-
- *data = (u8)word;
-
- return 0;
-}
-
-/**
- * e1000_read_flash_data_ich8lan - Read byte or word from NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the byte or word to read.
- * @size: Size of data to read, 1=byte 2=word
- * @data: Pointer to the word to store the value read.
- *
- * Reads a byte or word from the NVM using the flash access registers.
- **/
-static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- u32 flash_data = 0;
- s32 ret_val = -E1000_ERR_NVM;
- u8 count = 0;
-
- if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
- return -E1000_ERR_NVM;
-
- flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
-
- do {
- udelay(1);
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val != 0)
- break;
-
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
-
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_READ_COMMAND_TIMEOUT);
-
- /*
- * Check if FCERR is set to 1, if set to 1, clear it
- * and try the whole sequence a few more times, else
- * read in (shift in) the Flash Data0, the order is
- * least significant byte first msb to lsb
- */
- if (ret_val == 0) {
- flash_data = er32flash(ICH_FLASH_FDATA0);
- if (size == 1)
- *data = (u8)(flash_data & 0x000000FF);
- else if (size == 2)
- *data = (u16)(flash_data & 0x0000FFFF);
- break;
- } else {
- /*
- * If we've gotten here, then things are probably
- * completely hosed, but if the error condition is
- * detected, it won't hurt to give it another try...
- * ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- e_dbg("Timeout error - flash cycle "
- "did not complete.\n");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_ich8lan - Write word(s) to the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the word(s) to write.
- * @words: Size of data to write in words
- * @data: Pointer to the word(s) to write at offset.
- *
- * Writes a byte or word to the NVM using the flash access registers.
- **/
-static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u16 i;
-
- if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- nvm->ops.acquire(hw);
-
- for (i = 0; i < words; i++) {
- dev_spec->shadow_ram[offset+i].modified = true;
- dev_spec->shadow_ram[offset+i].value = data[i];
- }
-
- nvm->ops.release(hw);
-
- return 0;
-}
-
-/**
- * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
- * @hw: pointer to the HW structure
- *
- * The NVM checksum is updated by calling the generic update_nvm_checksum,
- * which writes the checksum to the shadow ram. The changes in the shadow
- * ram are then committed to the EEPROM by processing each bank at a time
- * checking for the modified bit and writing only the pending changes.
- * After a successful commit, the shadow ram is cleared and is ready for
- * future writes.
- **/
-static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
- s32 ret_val;
- u16 data;
-
- ret_val = e1000e_update_nvm_checksum_generic(hw);
- if (ret_val)
- goto out;
-
- if (nvm->type != e1000_nvm_flash_sw)
- goto out;
-
- nvm->ops.acquire(hw);
-
- /*
- * We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written
- */
- ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
- if (ret_val) {
- e_dbg("Could not detect valid bank, assuming bank 0\n");
- bank = 0;
- }
-
- if (bank == 0) {
- new_bank_offset = nvm->flash_bank_size;
- old_bank_offset = 0;
- ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
- if (ret_val)
- goto release;
- } else {
- old_bank_offset = nvm->flash_bank_size;
- new_bank_offset = 0;
- ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
- if (ret_val)
- goto release;
- }
-
- for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
- /*
- * Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM
- */
- if (dev_spec->shadow_ram[i].modified) {
- data = dev_spec->shadow_ram[i].value;
- } else {
- ret_val = e1000_read_flash_word_ich8lan(hw, i +
- old_bank_offset,
- &data);
- if (ret_val)
- break;
- }
-
- /*
- * If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress
- */
- if (i == E1000_ICH_NVM_SIG_WORD)
- data |= E1000_ICH_NVM_SIG_MASK;
-
- /* Convert offset to bytes. */
- act_offset = (i + new_bank_offset) << 1;
-
- udelay(100);
- /* Write the bytes to the new bank. */
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset,
- (u8)data);
- if (ret_val)
- break;
-
- udelay(100);
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset + 1,
- (u8)(data >> 8));
- if (ret_val)
- break;
- }
-
- /*
- * Don't bother writing the segment valid bits if sector
- * programming failed.
- */
- if (ret_val) {
- /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
- e_dbg("Flash commit failed.\n");
- goto release;
- }
-
- /*
- * Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b
- */
- act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
- ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
- if (ret_val)
- goto release;
-
- data &= 0xBFFF;
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset * 2 + 1,
- (u8)(data >> 8));
- if (ret_val)
- goto release;
-
- /*
- * And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase
- */
- act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
- if (ret_val)
- goto release;
-
- /* Great! Everything worked, we can now clear the cached entries. */
- for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
- dev_spec->shadow_ram[i].modified = false;
- dev_spec->shadow_ram[i].value = 0xFFFF;
- }
-
-release:
- nvm->ops.release(hw);
-
- /*
- * Reload the EEPROM, or else modifications will not appear
- * until after the next adapter reset.
- */
- if (!ret_val) {
- e1000e_reload_nvm(hw);
- usleep_range(10000, 20000);
- }
-
-out:
- if (ret_val)
- e_dbg("NVM update error: %d\n", ret_val);
-
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
- * If the bit is 0, that the EEPROM had been modified, but the checksum was not
- * calculated, in which case we need to calculate the checksum and set bit 6.
- **/
-static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 data;
-
- /*
- * Read 0x19 and check bit 6. If this bit is 0, the checksum
- * needs to be fixed. This bit is an indication that the NVM
- * was prepared by OEM software and did not calculate the
- * checksum...a likely scenario.
- */
- ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
- if (ret_val)
- return ret_val;
-
- if ((data & 0x40) == 0) {
- data |= 0x40;
- ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_update_nvm_checksum(hw);
- if (ret_val)
- return ret_val;
- }
-
- return e1000e_validate_nvm_checksum_generic(hw);
-}
-
-/**
- * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
- * @hw: pointer to the HW structure
- *
- * To prevent malicious write/erase of the NVM, set it to be read-only
- * so that the hardware ignores all write/erase cycles of the NVM via
- * the flash control registers. The shadow-ram copy of the NVM will
- * still be updated, however any updates to this copy will not stick
- * across driver reloads.
- **/
-void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- union ich8_flash_protected_range pr0;
- union ich8_hws_flash_status hsfsts;
- u32 gfpreg;
-
- nvm->ops.acquire(hw);
-
- gfpreg = er32flash(ICH_FLASH_GFPREG);
-
- /* Write-protect GbE Sector of NVM */
- pr0.regval = er32flash(ICH_FLASH_PR0);
- pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
- pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
- pr0.range.wpe = true;
- ew32flash(ICH_FLASH_PR0, pr0.regval);
-
- /*
- * Lock down a subset of GbE Flash Control Registers, e.g.
- * PR0 to prevent the write-protection from being lifted.
- * Once FLOCKDN is set, the registers protected by it cannot
- * be written until FLOCKDN is cleared by a hardware reset.
- */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- hsfsts.hsf_status.flockdn = true;
- ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
-
- nvm->ops.release(hw);
-}
-
-/**
- * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the byte/word to read.
- * @size: Size of data to read, 1=byte 2=word
- * @data: The byte(s) to write to the NVM.
- *
- * Writes one/two bytes to the NVM using the flash access registers.
- **/
-static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- u32 flash_data = 0;
- s32 ret_val;
- u8 count = 0;
-
- if (size < 1 || size > 2 || data > size * 0xff ||
- offset > ICH_FLASH_LINEAR_ADDR_MASK)
- return -E1000_ERR_NVM;
-
- flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
-
- do {
- udelay(1);
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val)
- break;
-
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
-
- if (size == 1)
- flash_data = (u32)data & 0x00FF;
- else
- flash_data = (u32)data;
-
- ew32flash(ICH_FLASH_FDATA0, flash_data);
-
- /*
- * check if FCERR is set to 1 , if set to 1, clear it
- * and try the whole sequence a few more times else done
- */
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_WRITE_COMMAND_TIMEOUT);
- if (!ret_val)
- break;
-
- /*
- * If we're here, then things are most likely
- * completely hosed, but if the error condition
- * is detected, it won't hurt to give it another
- * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1)
- /* Repeat for some time before giving up. */
- continue;
- if (hsfsts.hsf_status.flcdone == 0) {
- e_dbg("Timeout error - flash cycle "
- "did not complete.");
- break;
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return ret_val;
-}
-
-/**
- * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
- * @hw: pointer to the HW structure
- * @offset: The index of the byte to read.
- * @data: The byte to write to the NVM.
- *
- * Writes a single byte to the NVM using the flash access registers.
- **/
-static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 data)
-{
- u16 word = (u16)data;
-
- return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
-}
-
-/**
- * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
- * @hw: pointer to the HW structure
- * @offset: The offset of the byte to write.
- * @byte: The byte to write to the NVM.
- *
- * Writes a single byte to the NVM using the flash access registers.
- * Goes through a retry algorithm before giving up.
- **/
-static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte)
-{
- s32 ret_val;
- u16 program_retries;
-
- ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (!ret_val)
- return ret_val;
-
- for (program_retries = 0; program_retries < 100; program_retries++) {
- e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
- udelay(100);
- ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (!ret_val)
- break;
- }
- if (program_retries == 100)
- return -E1000_ERR_NVM;
-
- return 0;
-}
-
-/**
- * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
- * @hw: pointer to the HW structure
- * @bank: 0 for first bank, 1 for second bank, etc.
- *
- * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
- * bank N is 4096 * N + flash_reg_addr.
- **/
-static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- /* bank size is in 16bit words - adjust to bytes */
- u32 flash_bank_size = nvm->flash_bank_size * 2;
- s32 ret_val;
- s32 count = 0;
- s32 j, iteration, sector_size;
-
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
-
- /*
- * Determine HW Sector size: Read BERASE bits of hw flash status
- * register
- * 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector
- * can be calculated as = bank * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as = bank * 4096
- * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
- * (ich9 only, otherwise error condition)
- * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
- */
- switch (hsfsts.hsf_status.berasesz) {
- case 0:
- /* Hw sector size 256 */
- sector_size = ICH_FLASH_SEG_SIZE_256;
- iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
- break;
- case 1:
- sector_size = ICH_FLASH_SEG_SIZE_4K;
- iteration = 1;
- break;
- case 2:
- sector_size = ICH_FLASH_SEG_SIZE_8K;
- iteration = 1;
- break;
- case 3:
- sector_size = ICH_FLASH_SEG_SIZE_64K;
- iteration = 1;
- break;
- default:
- return -E1000_ERR_NVM;
- }
-
- /* Start with the base address, then add the sector offset. */
- flash_linear_addr = hw->nvm.flash_base_addr;
- flash_linear_addr += (bank) ? flash_bank_size : 0;
-
- for (j = 0; j < iteration ; j++) {
- do {
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- /*
- * Write a value 11 (block Erase) in Flash
- * Cycle field in hw flash control
- */
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /*
- * Write the last 24 bits of an index within the
- * block into Flash Linear address field in Flash
- * Address.
- */
- flash_linear_addr += (j * sector_size);
- ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
-
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_ERASE_COMMAND_TIMEOUT);
- if (ret_val == 0)
- break;
-
- /*
- * Check if FCERR is set to 1. If 1,
- * clear it and try the whole sequence
- * a few more times else Done
- */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1)
- /* repeat for some time before giving up */
- continue;
- else if (hsfsts.hsf_status.flcdone == 0)
- return ret_val;
- } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
- }
-
- return 0;
-}
-
-/**
- * e1000_valid_led_default_ich8lan - Set the default LED settings
- * @hw: pointer to the HW structure
- * @data: Pointer to the LED settings
- *
- * Reads the LED default settings from the NVM to data. If the NVM LED
- * settings is all 0's or F's, set the LED default to a valid LED default
- * setting.
- **/
-static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 ||
- *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT_ICH8LAN;
-
- return 0;
-}
-
-/**
- * e1000_id_led_init_pchlan - store LED configurations
- * @hw: pointer to the HW structure
- *
- * PCH does not control LEDs via the LEDCTL register, rather it uses
- * the PHY LED configuration register.
- *
- * PCH also does not have an "always on" or "always off" mode which
- * complicates the ID feature. Instead of using the "on" mode to indicate
- * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
- * use "link_up" mode. The LEDs will still ID on request if there is no
- * link based on logic in e1000_led_[on|off]_pchlan().
- **/
-static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
- u16 data, i, temp, shift;
-
- /* Get default ID LED modes */
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- goto out;
-
- mac->ledctl_default = er32(LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
- shift = (i * 5);
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode1 |= (ledctl_on << shift);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode1 |= (ledctl_off << shift);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode2 |= (ledctl_on << shift);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
- mac->ledctl_mode2 |= (ledctl_off << shift);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
- * @hw: pointer to the HW structure
- *
- * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
- * register, so the the bus width is hard coded.
- **/
-static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
-
- ret_val = e1000e_get_bus_info_pcie(hw);
-
- /*
- * ICH devices are "PCI Express"-ish. They have
- * a configuration space, but do not contain
- * PCI Express Capability registers, so bus width
- * must be hardcoded.
- */
- if (bus->width == e1000_bus_width_unknown)
- bus->width = e1000_bus_width_pcie_x1;
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_ich8lan - Reset the hardware
- * @hw: pointer to the HW structure
- *
- * Does a full reset of the hardware which includes a reset of the PHY and
- * MAC.
- **/
-static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u16 reg;
- u32 ctrl, kab;
- s32 ret_val;
-
- /*
- * Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000e_disable_pcie_master(hw);
- if (ret_val)
- e_dbg("PCI-E Master disable polling has failed.\n");
-
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- /*
- * Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC
- * with the global reset.
- */
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- e1e_flush();
-
- usleep_range(10000, 20000);
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac.type == e1000_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- ew32(PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- ew32(PBS, E1000_PBS_16K);
- }
-
- if (hw->mac.type == e1000_pchlan) {
- /* Save the NVM K1 bit setting*/
- ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
- if (ret_val)
- return ret_val;
-
- if (reg & E1000_NVM_K1_ENABLE)
- dev_spec->nvm_k1_enabled = true;
- else
- dev_spec->nvm_k1_enabled = false;
- }
-
- ctrl = er32(CTRL);
-
- if (!e1000_check_reset_block(hw)) {
- /*
- * Full-chip reset requires MAC and PHY reset at the same
- * time to make sure the interface between MAC and the
- * external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
-
- /*
- * Gate automatic PHY configuration by hardware on
- * non-managed 82579
- */
- if ((hw->mac.type == e1000_pch2lan) &&
- !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
- e1000_gate_hw_phy_config_ich8lan(hw, true);
- }
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- e_dbg("Issuing a global reset to ich8lan\n");
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
- /* cannot issue a flush here because it hangs the hardware */
- msleep(20);
-
- if (!ret_val)
- mutex_unlock(&swflag_mutex);
-
- if (ctrl & E1000_CTRL_PHY_RST) {
- ret_val = hw->phy.ops.get_cfg_done(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1000_post_phy_reset_ich8lan(hw);
- if (ret_val)
- goto out;
- }
-
- /*
- * For PCH, this write will make sure that any noise
- * will be detected as a CRC error and be dropped rather than show up
- * as a bad packet to the DMA engine.
- */
- if (hw->mac.type == e1000_pchlan)
- ew32(CRC_OFFSET, 0x65656565);
-
- ew32(IMC, 0xffffffff);
- er32(ICR);
-
- kab = er32(KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- ew32(KABGTXD, kab);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_init_hw_ich8lan - Initialize the hardware
- * @hw: pointer to the HW structure
- *
- * Prepares the hardware for transmit and receive by doing the following:
- * - initialize hardware bits
- * - initialize LED identification
- * - setup receive address registers
- * - setup flow control
- * - setup transmit descriptors
- * - clear statistics
- **/
-static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl_ext, txdctl, snoop;
- s32 ret_val;
- u16 i;
-
- e1000_initialize_hw_bits_ich8lan(hw);
-
- /* Initialize identification LED */
- ret_val = mac->ops.id_led_init(hw);
- if (ret_val)
- e_dbg("Error initializing identification LED\n");
- /* This is not fatal and we should not stop init due to this */
-
- /* Setup the receive address. */
- e1000e_init_rx_addrs(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- e_dbg("Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /*
- * The 82578 Rx buffer will stall if wakeup is enabled in host and
- * the ME. Disable wakeup by clearing the host wakeup bit.
- * Reset the phy after disabling host wakeup to reset the Rx buffer.
- */
- if (hw->phy.type == e1000_phy_82578) {
- e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
- i &= ~BM_WUC_HOST_WU_BIT;
- e1e_wphy(hw, BM_PORT_GEN_CFG, i);
- ret_val = e1000_phy_hw_reset_ich8lan(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Setup link and flow control */
- ret_val = e1000_setup_link_ich8lan(hw);
-
- /* Set the transmit descriptor write-back policy for both queues */
- txdctl = er32(TXDCTL(0));
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
- ew32(TXDCTL(0), txdctl);
- txdctl = er32(TXDCTL(1));
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
- ew32(TXDCTL(1), txdctl);
-
- /*
- * ICH8 has opposite polarity of no_snoop bits.
- * By default, we should use snoop behavior.
- */
- if (mac->type == e1000_ich8lan)
- snoop = PCIE_ICH8_SNOOP_ALL;
- else
- snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
- e1000e_set_pcie_no_snoop(hw, snoop);
-
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- ew32(CTRL_EXT, ctrl_ext);
-
- /*
- * Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_ich8lan(hw);
-
- return 0;
-}
-/**
- * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
- * @hw: pointer to the HW structure
- *
- * Sets/Clears required hardware bits necessary for correctly setting up the
- * hardware for transmit and receive.
- **/
-static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
-{
- u32 reg;
-
- /* Extended Device Control */
- reg = er32(CTRL_EXT);
- reg |= (1 << 22);
- /* Enable PHY low-power state when MAC is at D3 w/o WoL */
- if (hw->mac.type >= e1000_pchlan)
- reg |= E1000_CTRL_EXT_PHYPDEN;
- ew32(CTRL_EXT, reg);
-
- /* Transmit Descriptor Control 0 */
- reg = er32(TXDCTL(0));
- reg |= (1 << 22);
- ew32(TXDCTL(0), reg);
-
- /* Transmit Descriptor Control 1 */
- reg = er32(TXDCTL(1));
- reg |= (1 << 22);
- ew32(TXDCTL(1), reg);
-
- /* Transmit Arbitration Control 0 */
- reg = er32(TARC(0));
- if (hw->mac.type == e1000_ich8lan)
- reg |= (1 << 28) | (1 << 29);
- reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
- ew32(TARC(0), reg);
-
- /* Transmit Arbitration Control 1 */
- reg = er32(TARC(1));
- if (er32(TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- reg |= (1 << 24) | (1 << 26) | (1 << 30);
- ew32(TARC(1), reg);
-
- /* Device Status */
- if (hw->mac.type == e1000_ich8lan) {
- reg = er32(STATUS);
- reg &= ~(1 << 31);
- ew32(STATUS, reg);
- }
-
- /*
- * work-around descriptor data corruption issue during nfs v2 udp
- * traffic, just disable the nfs filtering capability
- */
- reg = er32(RFCTL);
- reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
- ew32(RFCTL, reg);
-}
-
-/**
- * e1000_setup_link_ich8lan - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- if (e1000_check_reset_block(hw))
- return 0;
-
- /*
- * ICH parts do not have a word in the NVM to determine
- * the default flow control setting, so we explicitly
- * set it to full.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- /* Workaround h/w hang when Tx flow control enabled */
- if (hw->mac.type == e1000_pchlan)
- hw->fc.requested_mode = e1000_fc_rx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
- }
-
- /*
- * Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- e_dbg("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Continue to configure the copper link. */
- ret_val = e1000_setup_copper_link_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- ew32(FCTTV, hw->fc.pause_time);
- if ((hw->phy.type == e1000_phy_82578) ||
- (hw->phy.type == e1000_phy_82579) ||
- (hw->phy.type == e1000_phy_82577)) {
- ew32(FCRTV_PCH, hw->fc.refresh_time);
-
- ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
- hw->fc.pause_time);
- if (ret_val)
- return ret_val;
- }
-
- return e1000e_set_fc_watermarks(hw);
-}
-
-/**
- * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
- * @hw: pointer to the HW structure
- *
- * Configures the kumeran interface to the PHY to wait the appropriate time
- * when polling the PHY, then call the generic setup_copper_link to finish
- * configuring the copper link.
- **/
-static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 reg_data;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
-
- /*
- * Set the mac to wait the maximum time between each iteration
- * and increase the max iterations when polling the phy;
- * this fixes erroneous timeouts at 10Mbps.
- */
- ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
- reg_data);
- if (ret_val)
- return ret_val;
-
- switch (hw->phy.type) {
- case e1000_phy_igp_3:
- ret_val = e1000e_copper_link_setup_igp(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_phy_bm:
- case e1000_phy_82578:
- ret_val = e1000e_copper_link_setup_m88(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_phy_82577:
- case e1000_phy_82579:
- ret_val = e1000_copper_link_setup_82577(hw);
- if (ret_val)
- return ret_val;
- break;
- case e1000_phy_ife:
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
- if (ret_val)
- return ret_val;
-
- reg_data &= ~IFE_PMC_AUTO_MDIX;
-
- switch (hw->phy.mdix) {
- case 1:
- reg_data &= ~IFE_PMC_FORCE_MDIX;
- break;
- case 2:
- reg_data |= IFE_PMC_FORCE_MDIX;
- break;
- case 0:
- default:
- reg_data |= IFE_PMC_AUTO_MDIX;
- break;
- }
- ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
- if (ret_val)
- return ret_val;
- break;
- default:
- break;
- }
- return e1000e_setup_copper_link(hw);
-}
-
-/**
- * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to store current link speed
- * @duplex: pointer to store the current link duplex
- *
- * Calls the generic get_speed_and_duplex to retrieve the current link
- * information and then calls the Kumeran lock loss workaround for links at
- * gigabit speeds.
- **/
-static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac.type == e1000_ich8lan) &&
- (hw->phy.type == e1000_phy_igp_3) &&
- (*speed == SPEED_1000)) {
- ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
- * @hw: pointer to the HW structure
- *
- * Work-around for 82566 Kumeran PCS lock loss:
- * On link status change (i.e. PCI reset, speed change) and link is up and
- * speed is gigabit-
- * 0) if workaround is optionally disabled do nothing
- * 1) wait 1ms for Kumeran link to come up
- * 2) check Kumeran Diagnostic register PCS lock loss bit
- * 3) if not set the link is locked (all is good), otherwise...
- * 4) reset the PHY
- * 5) repeat up to 10 times
- * Note: this is only called for IGP3 copper when speed is 1gb.
- **/
-static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 phy_ctrl;
- s32 ret_val;
- u16 i, data;
- bool link;
-
- if (!dev_spec->kmrn_lock_loss_workaround_enabled)
- return 0;
-
- /*
- * Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouled up link
- * stability
- */
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (!link)
- return 0;
-
- for (i = 0; i < 10; i++) {
- /* read once to clear */
- ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return 0;
-
- /* Issue PHY reset */
- e1000_phy_hw_reset(hw);
- mdelay(5);
- }
- /* Disable GigE link negotiation */
- phy_ctrl = er32(PHY_CTRL);
- phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- ew32(PHY_CTRL, phy_ctrl);
-
- /*
- * Call gig speed drop workaround on Gig disable before accessing
- * any PHY registers
- */
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* unable to acquire PCS lock */
- return -E1000_ERR_PHY;
-}
-
-/**
- * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
- * @hw: pointer to the HW structure
- * @state: boolean value used to set the current Kumeran workaround state
- *
- * If ICH8, set the current Kumeran workaround state (enabled - true
- * /disabled - false).
- **/
-void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-
- if (hw->mac.type != e1000_ich8lan) {
- e_dbg("Workaround applies to ICH8 only.\n");
- return;
- }
-
- dev_spec->kmrn_lock_loss_workaround_enabled = state;
-}
-
-/**
- * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
- * @hw: pointer to the HW structure
- *
- * Workaround for 82566 power-down on D3 entry:
- * 1) disable gigabit link
- * 2) write VR power-down enable
- * 3) read it back
- * Continue if successful, else issue LCD reset and repeat
- **/
-void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
-{
- u32 reg;
- u16 data;
- u8 retry = 0;
-
- if (hw->phy.type != e1000_phy_igp_3)
- return;
-
- /* Try the workaround twice (if needed) */
- do {
- /* Disable link */
- reg = er32(PHY_CTRL);
- reg |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- ew32(PHY_CTRL, reg);
-
- /*
- * Call gig speed drop workaround on Gig disable before
- * accessing any PHY registers
- */
- if (hw->mac.type == e1000_ich8lan)
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* Write VR power-down enable */
- e1e_rphy(hw, IGP3_VR_CTRL, &data);
- data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
- e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
-
- /* Read it back and test */
- e1e_rphy(hw, IGP3_VR_CTRL, &data);
- data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
- if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
- break;
-
- /* Issue PHY reset and repeat at most one more time */
- reg = er32(CTRL);
- ew32(CTRL, reg | E1000_CTRL_PHY_RST);
- retry++;
- } while (retry);
-}
-
-/**
- * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
- * @hw: pointer to the HW structure
- *
- * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
- * LPLU, Gig disable, MDIC PHY reset):
- * 1) Set Kumeran Near-end loopback
- * 2) Clear Kumeran Near-end loopback
- * Should only be called for ICH8[m] devices with IGP_3 Phy.
- **/
-void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 reg_data;
-
- if ((hw->mac.type != e1000_ich8lan) ||
- (hw->phy.type != e1000_phy_igp_3))
- return;
-
- ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- &reg_data);
- if (ret_val)
- return;
- reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
- ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
- if (ret_val)
- return;
- reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
- ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
-}
-
-/**
- * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
- * @hw: pointer to the HW structure
- *
- * During S0 to Sx transition, it is possible the link remains at gig
- * instead of negotiating to a lower speed. Before going to Sx, set
- * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
- * to a lower speed. For PCH and newer parts, the OEM bits PHY register
- * (LED, GbE disable and LPLU configurations) also needs to be written.
- **/
-void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
-{
- u32 phy_ctrl;
- s32 ret_val;
-
- phy_ctrl = er32(PHY_CTRL);
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
- ew32(PHY_CTRL, phy_ctrl);
-
- if (hw->mac.type >= e1000_pchlan) {
- e1000_oem_bits_config_ich8lan(hw, false);
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
- e1000_write_smbus_addr(hw);
- hw->phy.ops.release(hw);
- }
-}
-
-/**
- * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
- * @hw: pointer to the HW structure
- *
- * During Sx to S0 transitions on non-managed devices or managed devices
- * on which PHY resets are not blocked, if the PHY registers cannot be
- * accessed properly by the s/w toggle the LANPHYPC value to power cycle
- * the PHY.
- **/
-void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- if (hw->mac.type != e1000_pch2lan)
- return;
-
- fwsm = er32(FWSM);
- if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
- u16 phy_id1, phy_id2;
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val) {
- e_dbg("Failed to acquire PHY semaphore in resume\n");
- return;
- }
-
- /* Test access to the PHY registers by reading the ID regs */
- ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
- if (ret_val)
- goto release;
- ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
- if (ret_val)
- goto release;
-
- if (hw->phy.id == ((u32)(phy_id1 << 16) |
- (u32)(phy_id2 & PHY_REVISION_MASK)))
- goto release;
-
- e1000_toggle_lanphypc_value_ich8lan(hw);
-
- hw->phy.ops.release(hw);
- msleep(50);
- e1000_phy_hw_reset(hw);
- msleep(50);
- return;
- }
-
-release:
- hw->phy.ops.release(hw);
-
- return;
-}
-
-/**
- * e1000_cleanup_led_ich8lan - Restore the default LED operation
- * @hw: pointer to the HW structure
- *
- * Return the LED back to the default configuration.
- **/
-static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
-{
- if (hw->phy.type == e1000_phy_ife)
- return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
-
- ew32(LEDCTL, hw->mac.ledctl_default);
- return 0;
-}
-
-/**
- * e1000_led_on_ich8lan - Turn LEDs on
- * @hw: pointer to the HW structure
- *
- * Turn on the LEDs.
- **/
-static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
-{
- if (hw->phy.type == e1000_phy_ife)
- return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-
- ew32(LEDCTL, hw->mac.ledctl_mode2);
- return 0;
-}
-
-/**
- * e1000_led_off_ich8lan - Turn LEDs off
- * @hw: pointer to the HW structure
- *
- * Turn off the LEDs.
- **/
-static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
-{
- if (hw->phy.type == e1000_phy_ife)
- return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE |
- IFE_PSCL_PROBE_LEDS_OFF));
-
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- return 0;
-}
-
-/**
- * e1000_setup_led_pchlan - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use.
- **/
-static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
-{
- return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
-}
-
-/**
- * e1000_cleanup_led_pchlan - Restore the default LED operation
- * @hw: pointer to the HW structure
- *
- * Return the LED back to the default configuration.
- **/
-static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
-{
- return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
-}
-
-/**
- * e1000_led_on_pchlan - Turn LEDs on
- * @hw: pointer to the HW structure
- *
- * Turn on the LEDs.
- **/
-static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
-{
- u16 data = (u16)hw->mac.ledctl_mode2;
- u32 i, led;
-
- /*
- * If no link, then turn LED on by setting the invert bit
- * for each LED that's mode is "link_up" in ledctl_mode2.
- */
- if (!(er32(STATUS) & E1000_STATUS_LU)) {
- for (i = 0; i < 3; i++) {
- led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
- if ((led & E1000_PHY_LED0_MODE_MASK) !=
- E1000_LEDCTL_MODE_LINK_UP)
- continue;
- if (led & E1000_PHY_LED0_IVRT)
- data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
- else
- data |= (E1000_PHY_LED0_IVRT << (i * 5));
- }
- }
-
- return e1e_wphy(hw, HV_LED_CONFIG, data);
-}
-
-/**
- * e1000_led_off_pchlan - Turn LEDs off
- * @hw: pointer to the HW structure
- *
- * Turn off the LEDs.
- **/
-static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
-{
- u16 data = (u16)hw->mac.ledctl_mode1;
- u32 i, led;
-
- /*
- * If no link, then turn LED off by clearing the invert bit
- * for each LED that's mode is "link_up" in ledctl_mode1.
- */
- if (!(er32(STATUS) & E1000_STATUS_LU)) {
- for (i = 0; i < 3; i++) {
- led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
- if ((led & E1000_PHY_LED0_MODE_MASK) !=
- E1000_LEDCTL_MODE_LINK_UP)
- continue;
- if (led & E1000_PHY_LED0_IVRT)
- data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
- else
- data |= (E1000_PHY_LED0_IVRT << (i * 5));
- }
- }
-
- return e1e_wphy(hw, HV_LED_CONFIG, data);
-}
-
-/**
- * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
- * @hw: pointer to the HW structure
- *
- * Read appropriate register for the config done bit for completion status
- * and configure the PHY through s/w for EEPROM-less parts.
- *
- * NOTE: some silicon which is EEPROM-less will fail trying to read the
- * config done bit, so only an error is logged and continues. If we were
- * to return with error, EEPROM-less silicon would not be able to be reset
- * or change link.
- **/
-static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u32 bank = 0;
- u32 status;
-
- e1000e_get_cfg_done(hw);
-
- /* Wait for indication from h/w that it has completed basic config */
- if (hw->mac.type >= e1000_ich10lan) {
- e1000_lan_init_done_ich8lan(hw);
- } else {
- ret_val = e1000e_get_auto_rd_done(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- e_dbg("Auto Read Done did not complete\n");
- ret_val = 0;
- }
- }
-
- /* Clear PHY Reset Asserted bit */
- status = er32(STATUS);
- if (status & E1000_STATUS_PHYRA)
- ew32(STATUS, status & ~E1000_STATUS_PHYRA);
- else
- e_dbg("PHY Reset Asserted not set - needs delay\n");
-
- /* If EEPROM is not marked present, init the IGP 3 PHY manually */
- if (hw->mac.type <= e1000_ich9lan) {
- if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
- (hw->phy.type == e1000_phy_igp_3)) {
- e1000e_phy_init_script_igp3(hw);
- }
- } else {
- if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
- /* Maybe we should do a basic PHY config */
- e_dbg("EEPROM not present\n");
- ret_val = -E1000_ERR_CONFIG;
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, remove the link.
- **/
-static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
-{
- /* If the management interface is not enabled, then power down */
- if (!(hw->mac.ops.check_mng_mode(hw) ||
- hw->phy.ops.check_reset_block(hw)))
- e1000_power_down_phy_copper(hw);
-}
-
-/**
- * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
- * @hw: pointer to the HW structure
- *
- * Clears hardware counters specific to the silicon family and calls
- * clear_hw_cntrs_generic to clear all general purpose counters.
- **/
-static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
-{
- u16 phy_data;
- s32 ret_val;
-
- e1000e_clear_hw_cntrs_base(hw);
-
- er32(ALGNERRC);
- er32(RXERRC);
- er32(TNCRS);
- er32(CEXTERR);
- er32(TSCTC);
- er32(TSCTFC);
-
- er32(MGTPRC);
- er32(MGTPDC);
- er32(MGTPTC);
-
- er32(IAC);
- er32(ICRXOC);
-
- /* Clear PHY statistics registers */
- if ((hw->phy.type == e1000_phy_82578) ||
- (hw->phy.type == e1000_phy_82579) ||
- (hw->phy.type == e1000_phy_82577)) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
- ret_val = hw->phy.ops.set_page(hw,
- HV_STATS_PAGE << IGP_PAGE_SHIFT);
- if (ret_val)
- goto release;
- hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
- hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
-release:
- hw->phy.ops.release(hw);
- }
-}
-
-static struct e1000_mac_operations ich8_mac_ops = {
- .id_led_init = e1000e_id_led_init,
- /* check_mng_mode dependent on mac type */
- .check_for_link = e1000_check_for_copper_link_ich8lan,
- /* cleanup_led dependent on mac type */
- .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
- .get_bus_info = e1000_get_bus_info_ich8lan,
- .set_lan_id = e1000_set_lan_id_single_port,
- .get_link_up_info = e1000_get_link_up_info_ich8lan,
- /* led_on dependent on mac type */
- /* led_off dependent on mac type */
- .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
- .reset_hw = e1000_reset_hw_ich8lan,
- .init_hw = e1000_init_hw_ich8lan,
- .setup_link = e1000_setup_link_ich8lan,
- .setup_physical_interface= e1000_setup_copper_link_ich8lan,
- /* id_led_init dependent on mac type */
-};
-
-static struct e1000_phy_operations ich8_phy_ops = {
- .acquire = e1000_acquire_swflag_ich8lan,
- .check_reset_block = e1000_check_reset_block_ich8lan,
- .commit = NULL,
- .get_cfg_done = e1000_get_cfg_done_ich8lan,
- .get_cable_length = e1000e_get_cable_length_igp_2,
- .read_reg = e1000e_read_phy_reg_igp,
- .release = e1000_release_swflag_ich8lan,
- .reset = e1000_phy_hw_reset_ich8lan,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
- .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
- .write_reg = e1000e_write_phy_reg_igp,
-};
-
-static struct e1000_nvm_operations ich8_nvm_ops = {
- .acquire = e1000_acquire_nvm_ich8lan,
- .read = e1000_read_nvm_ich8lan,
- .release = e1000_release_nvm_ich8lan,
- .update = e1000_update_nvm_checksum_ich8lan,
- .valid_led_default = e1000_valid_led_default_ich8lan,
- .validate = e1000_validate_nvm_checksum_ich8lan,
- .write = e1000_write_nvm_ich8lan,
-};
-
-struct e1000_info e1000_ich8_info = {
- .mac = e1000_ich8lan,
- .flags = FLAG_HAS_WOL
- | FLAG_IS_ICH
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_FLASH
- | FLAG_APME_IN_WUC,
- .pba = 8,
- .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
- .get_variants = e1000_get_variants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
-
-struct e1000_info e1000_ich9_info = {
- .mac = e1000_ich9lan,
- .flags = FLAG_HAS_JUMBO_FRAMES
- | FLAG_IS_ICH
- | FLAG_HAS_WOL
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_ERT
- | FLAG_HAS_FLASH
- | FLAG_APME_IN_WUC,
- .pba = 10,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
-
-struct e1000_info e1000_ich10_info = {
- .mac = e1000_ich10lan,
- .flags = FLAG_HAS_JUMBO_FRAMES
- | FLAG_IS_ICH
- | FLAG_HAS_WOL
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_ERT
- | FLAG_HAS_FLASH
- | FLAG_APME_IN_WUC,
- .pba = 10,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
-
-struct e1000_info e1000_pch_info = {
- .mac = e1000_pchlan,
- .flags = FLAG_IS_ICH
- | FLAG_HAS_WOL
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_FLASH
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
- | FLAG_APME_IN_WUC,
- .flags2 = FLAG2_HAS_PHY_STATS,
- .pba = 26,
- .max_hw_frame_size = 4096,
- .get_variants = e1000_get_variants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
-
-struct e1000_info e1000_pch2_info = {
- .mac = e1000_pch2lan,
- .flags = FLAG_IS_ICH
- | FLAG_HAS_WOL
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_FLASH
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_APME_IN_WUC,
- .flags2 = FLAG2_HAS_PHY_STATS
- | FLAG2_HAS_EEE,
- .pba = 26,
- .max_hw_frame_size = DEFAULT_JUMBO,
- .get_variants = e1000_get_variants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
deleted file mode 100644
index 7898a67d650..00000000000
--- a/drivers/net/e1000e/lib.c
+++ /dev/null
@@ -1,2692 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include "e1000.h"
-
-enum e1000_mng_mode {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_if_only
-};
-
-#define E1000_FACTPS_MNGCG 0x20000000
-
-/* Intel(R) Active Management Technology signature */
-#define E1000_IAMT_SIGNATURE 0x544D4149
-
-/**
- * e1000e_get_bus_info_pcie - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
-s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_bus_info *bus = &hw->bus;
- struct e1000_adapter *adapter = hw->adapter;
- u16 pcie_link_status, cap_offset;
-
- cap_offset = adapter->pdev->pcie_cap;
- if (!cap_offset) {
- bus->width = e1000_bus_width_unknown;
- } else {
- pci_read_config_word(adapter->pdev,
- cap_offset + PCIE_LINK_STATUS,
- &pcie_link_status);
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >>
- PCIE_LINK_WIDTH_SHIFT);
- }
-
- mac->ops.set_lan_id(hw);
-
- return 0;
-}
-
-/**
- * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
- *
- * @hw: pointer to the HW structure
- *
- * Determines the LAN function id by reading memory-mapped registers
- * and swaps the port value if requested.
- **/
-void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- u32 reg;
-
- /*
- * The status register reports the correct function number
- * for the device regardless of function swap state.
- */
- reg = er32(STATUS);
- bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
-}
-
-/**
- * e1000_set_lan_id_single_port - Set LAN id for a single port device
- * @hw: pointer to the HW structure
- *
- * Sets the LAN function id to zero for a single port device.
- **/
-void e1000_set_lan_id_single_port(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
-
- bus->func = 0;
-}
-
-/**
- * e1000_clear_vfta_generic - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000_clear_vfta_generic(struct e1000_hw *hw)
-{
- u32 offset;
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
- e1e_flush();
- }
-}
-
-/**
- * e1000_write_vfta_generic - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
-{
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- e1e_flush();
-}
-
-/**
- * e1000e_init_rx_addrs - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setup the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
-void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
-{
- u32 i;
- u8 mac_addr[ETH_ALEN] = {0};
-
- /* Setup the receive address */
- e_dbg("Programming MAC Address into RAR[0]\n");
-
- e1000e_rar_set(hw, hw->mac.addr, 0);
-
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++)
- e1000e_rar_set(hw, mac_addr, i);
-}
-
-/**
- * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
- * @hw: pointer to the HW structure
- *
- * Checks the nvm for an alternate MAC address. An alternate MAC address
- * can be setup by pre-boot software and must be treated like a permanent
- * address and must override the actual permanent MAC address. If an
- * alternate MAC address is found it is programmed into RAR0, replacing
- * the permanent address that was installed into RAR0 by the Si on reset.
- * This function will return SUCCESS unless it encounters an error while
- * reading the EEPROM.
- **/
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 i;
- s32 ret_val = 0;
- u16 offset, nvm_alt_mac_addr_offset, nvm_data;
- u8 alt_mac_addr[ETH_ALEN];
-
- ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
- if (ret_val)
- goto out;
-
- /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
- if (!((nvm_data & NVM_COMPAT_LOM) ||
- (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
- (hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)))
- goto out;
-
- ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &nvm_alt_mac_addr_offset);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- goto out;
- }
-
- if (nvm_alt_mac_addr_offset == 0xFFFF) {
- /* There is no Alternate MAC Address */
- goto out;
- }
-
- if (hw->bus.func == E1000_FUNC_1)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
- for (i = 0; i < ETH_ALEN; i += 2) {
- offset = nvm_alt_mac_addr_offset + (i >> 1);
- ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- goto out;
- }
-
- alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
- alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
- }
-
- /* if multicast bit is set, the alternate address will not be used */
- if (is_multicast_ether_addr(alt_mac_addr)) {
- e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
- goto out;
- }
-
- /*
- * We have a valid alternate MAC address, and we want to treat it the
- * same as the normal permanent MAC address stored by the HW into the
- * RAR. Do this by mapping this address into RAR0.
- */
- e1000e_rar_set(hw, alt_mac_addr, 0);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_rar_set - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
-void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- /*
- * HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- /*
- * Some bridges will combine consecutive 32-bit writes into
- * a single burst write, which will malfunction on some parts.
- * The flushes avoid this.
- */
- ew32(RAL(index), rar_low);
- e1e_flush();
- ew32(RAH(index), rar_high);
- e1e_flush();
-}
-
-/**
- * e1000_hash_mc_addr - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value. See
- * e1000_mta_set_generic()
- **/
-static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /*
- * For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- /*
- * The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- *
- * For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-/**
- * e1000e_update_mc_addr_list_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- u32 hash_value, hash_bit, hash_reg;
- int i;
-
- /* clear mta_shadow */
- memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
-
- /* update mta_shadow from mc_addr_list */
- for (i = 0; (u32) i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
-
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
-
- hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
- mc_addr_list += (ETH_ALEN);
- }
-
- /* replace the entire MTA table */
- for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
- e1e_flush();
-}
-
-/**
- * e1000e_clear_hw_cntrs_base - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
-void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
-{
- er32(CRCERRS);
- er32(SYMERRS);
- er32(MPC);
- er32(SCC);
- er32(ECOL);
- er32(MCC);
- er32(LATECOL);
- er32(COLC);
- er32(DC);
- er32(SEC);
- er32(RLEC);
- er32(XONRXC);
- er32(XONTXC);
- er32(XOFFRXC);
- er32(XOFFTXC);
- er32(FCRUC);
- er32(GPRC);
- er32(BPRC);
- er32(MPRC);
- er32(GPTC);
- er32(GORCL);
- er32(GORCH);
- er32(GOTCL);
- er32(GOTCH);
- er32(RNBC);
- er32(RUC);
- er32(RFC);
- er32(ROC);
- er32(RJC);
- er32(TORL);
- er32(TORH);
- er32(TOTL);
- er32(TOTH);
- er32(TPR);
- er32(TPT);
- er32(MPTC);
- er32(BPTC);
-}
-
-/**
- * e1000e_check_for_copper_link - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- /*
- * We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status)
- return 0;
-
- /*
- * First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- return ret_val; /* No link detected */
-
- mac->get_link_status = false;
-
- /*
- * Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000e_check_downshift(hw);
-
- /*
- * If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- return ret_val;
- }
-
- /*
- * Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- e1000e_config_collision_dist(hw);
-
- /*
- * Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val)
- e_dbg("Error configuring flow control\n");
-
- return ret_val;
-}
-
-/**
- * e1000e_check_for_fiber_link - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
-
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- return 0;
- }
- e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- }
-
- return 0;
-}
-
-/**
- * e1000e_check_for_serdes_link - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
-
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- return 0;
- }
- e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
- /*
- * If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- e_dbg("SERDES: Link up - forced.\n");
- }
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - force failed.\n");
- }
- }
-
- if (E1000_TXCW_ANE & er32(TXCW)) {
- status = er32(STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- e_dbg("SERDES: Link up - autoneg "
- "completed successfully.\n");
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - invalid"
- "codewords detected in autoneg.\n");
- }
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - no sync.\n");
- }
- } else {
- mac->serdes_has_link = false;
- e_dbg("SERDES: Link down - autoneg failed\n");
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
-static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 nvm_data;
-
- /*
- * Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
-
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
-
- if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
-
- return 0;
-}
-
-/**
- * e1000e_setup_link - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-s32 e1000e_setup_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
-
- /*
- * In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (e1000_check_reset_block(hw))
- return 0;
-
- /*
- * If requested flow control is set to default, set flow control
- * based on the EEPROM flow control settings.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- return ret_val;
- }
-
- /*
- * Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- e_dbg("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = mac->ops.setup_physical_interface(hw);
- if (ret_val)
- return ret_val;
-
- /*
- * Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- e_dbg("Initializing the Flow Control address, type and timer regs\n");
- ew32(FCT, FLOW_CONTROL_TYPE);
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
- ew32(FCTTV, hw->fc.pause_time);
-
- return e1000e_set_fc_watermarks(hw);
-}
-
-/**
- * e1000_commit_fc_settings_generic - Configure flow control
- * @hw: pointer to the HW structure
- *
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
- **/
-static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
-
- /*
- * Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled and Tx Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- ew32(TXCW, txcw);
- mac->txcw = txcw;
-
- return 0;
-}
-
-/**
- * e1000_poll_fiber_serdes_link_generic - Poll for link up
- * @hw: pointer to the HW structure
- *
- * Polls for link up by reading the status register, if link fails to come
- * up with auto-negotiation, then the link is forced if a signal is detected.
- **/
-static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 i, status;
- s32 ret_val;
-
- /*
- * If we have a signal (the cable is plugged in, or assumed true for
- * serdes media) then poll for a "Link-Up" indication in the Device
- * Status Register. Time-out if a link isn't seen in 500 milliseconds
- * seconds (Auto-negotiation should complete in less than 500
- * milliseconds even if the other end is doing it in SW).
- */
- for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
- usleep_range(10000, 20000);
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == FIBER_LINK_UP_LIMIT) {
- e_dbg("Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = 1;
- /*
- * AutoNeg failed to achieve a link, so we'll call
- * mac->check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = mac->ops.check_for_link(hw);
- if (ret_val) {
- e_dbg("Error while checking for link\n");
- return ret_val;
- }
- mac->autoneg_failed = 0;
- } else {
- mac->autoneg_failed = 0;
- e_dbg("Valid Link Found\n");
- }
-
- return 0;
-}
-
-/**
- * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
- **/
-s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- ctrl = er32(CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- e1000e_config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- return ret_val;
-
- /*
- * Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- e_dbg("Auto-negotiation enabled\n");
-
- ew32(CTRL, ctrl);
- e1e_flush();
- usleep_range(1000, 2000);
-
- /*
- * For these adapters, the SW definable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
- */
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- e_dbg("No signal detected\n");
- }
-
- return 0;
-}
-
-/**
- * e1000e_config_collision_dist - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-void e1000e_config_collision_dist(struct e1000_hw *hw)
-{
- u32 tctl;
-
- tctl = er32(TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- ew32(TCTL, tctl);
- e1e_flush();
-}
-
-/**
- * e1000e_set_fc_watermarks - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * transmission as well.
- **/
-s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
-{
- u32 fcrtl = 0, fcrth = 0;
-
- /*
- * Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /*
- * We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = hw->fc.low_water;
- fcrtl |= E1000_FCRTL_XONE;
- fcrth = hw->fc.high_water;
- }
- ew32(FCRTL, fcrtl);
- ew32(FCRTH, fcrth);
-
- return 0;
-}
-
-/**
- * e1000e_force_mac_fc - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
-s32 e1000e_force_mac_fc(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- ctrl = er32(CTRL);
-
- /*
- * Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc.current_mode" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and Tx flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
-
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ew32(CTRL, ctrl);
-
- return 0;
-}
-
-/**
- * e1000e_config_fc_after_link_up - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
-s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = 0;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
-
- /*
- * Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes)
- ret_val = e1000e_force_mac_fc(hw);
- } else {
- if (hw->phy.media_type == e1000_media_type_copper)
- ret_val = e1000e_force_mac_fc(hw);
- }
-
- if (ret_val) {
- e_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
-
- /*
- * Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /*
- * Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- e_dbg("Copper PHY and Auto Neg "
- "has not completed.\n");
- return ret_val;
- }
-
- /*
- * The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val =
- e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /*
- * Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /*
- * Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- e_dbg("Flow Control = FULL.\r\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- e_dbg("Flow Control = "
- "Rx PAUSE frames only.\r\n");
- }
- }
- /*
- * For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
- }
- /*
- * For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
- } else {
- /*
- * Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- e_dbg("Flow Control = NONE.\r\n");
- }
-
- /*
- * Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc.current_mode = e1000_fc_none;
-
- /*
- * Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000e_force_mac_fc(hw);
- if (ret_val) {
- e_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
-s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- u32 status;
-
- status = er32(STATUS);
- if (status & E1000_STATUS_SPEED_1000)
- *speed = SPEED_1000;
- else if (status & E1000_STATUS_SPEED_100)
- *speed = SPEED_100;
- else
- *speed = SPEED_10;
-
- if (status & E1000_STATUS_FD)
- *duplex = FULL_DUPLEX;
- else
- *duplex = HALF_DUPLEX;
-
- e_dbg("%u Mbps, %s Duplex\n",
- *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
- *duplex == FULL_DUPLEX ? "Full" : "Half");
-
- return 0;
-}
-
-/**
- * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Sets the speed and duplex to gigabit full duplex (the only possible option)
- * for fiber/serdes links.
- **/
-s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
-
- return 0;
-}
-
-/**
- * e1000e_get_hw_semaphore - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = er32(SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- udelay(50);
- i++;
- }
-
- if (i == timeout) {
- e_dbg("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (er32(SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- udelay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000e_put_hw_semaphore(hw);
- e_dbg("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000e_put_hw_semaphore - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-void e1000e_put_hw_semaphore(struct e1000_hw *hw)
-{
- u32 swsm;
-
- swsm = er32(SWSM);
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- ew32(SWSM, swsm);
-}
-
-/**
- * e1000e_get_auto_rd_done - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
-s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
-{
- s32 i = 0;
-
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (er32(EECD) & E1000_EECD_AUTO_RD)
- break;
- usleep_range(1000, 2000);
- i++;
- }
-
- if (i == AUTO_READ_DONE_TIMEOUT) {
- e_dbg("Auto read by HW from NVM has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return 0;
-}
-
-/**
- * e1000e_valid_led_default - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
-
- return 0;
-}
-
-/**
- * e1000e_id_led_init -
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000e_id_led_init(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
-
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- return ret_val;
-
- mac->ledctl_default = er32(LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000e_setup_led_generic - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored.
- **/
-s32 e1000e_setup_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl;
-
- if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
- return -E1000_ERR_CONFIG;
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- ledctl = er32(LEDCTL);
- hw->mac.ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- ew32(LEDCTL, ledctl);
- } else if (hw->phy.media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- }
-
- return 0;
-}
-
-/**
- * e1000e_cleanup_led_generic - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
-s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
-{
- ew32(LEDCTL, hw->mac.ledctl_default);
- return 0;
-}
-
-/**
- * e1000e_blink_led_generic - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the LEDs which are set to be on.
- **/
-s32 e1000e_blink_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl_blink = 0;
- u32 i;
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /*
- * set the blink bit for each LED that's "on" (0x0E)
- * in ledctl_mode2
- */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
- (i * 8));
- }
-
- ew32(LEDCTL, ledctl_blink);
-
- return 0;
-}
-
-/**
- * e1000e_led_on_generic - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-s32 e1000e_led_on_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = er32(CTRL);
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- ew32(CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- ew32(LEDCTL, hw->mac.ledctl_mode2);
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000e_led_off_generic - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
-s32 e1000e_led_off_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- ew32(CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
- * @hw: pointer to the HW structure
- * @no_snoop: bitmap of snoop events
- *
- * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
-void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
-{
- u32 gcr;
-
- if (no_snoop) {
- gcr = er32(GCR);
- gcr &= ~(PCIE_NO_SNOOP_ALL);
- gcr |= no_snoop;
- ew32(GCR, gcr);
- }
-}
-
-/**
- * e1000e_disable_pcie_master - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns 0 if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
-s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- ew32(CTRL, ctrl);
-
- while (timeout) {
- if (!(er32(STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- udelay(100);
- timeout--;
- }
-
- if (!timeout) {
- e_dbg("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return 0;
-}
-
-/**
- * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Reset the Adaptive Interframe Spacing throttle to default values.
- **/
-void e1000e_reset_adaptive(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- if (!mac->adaptive_ifs) {
- e_dbg("Not in Adaptive IFS mode!\n");
- goto out;
- }
-
- mac->current_ifs_val = 0;
- mac->ifs_min_val = IFS_MIN;
- mac->ifs_max_val = IFS_MAX;
- mac->ifs_step_size = IFS_STEP;
- mac->ifs_ratio = IFS_RATIO;
-
- mac->in_ifs_mode = false;
- ew32(AIT, 0);
-out:
- return;
-}
-
-/**
- * e1000e_update_adaptive - Update Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Update the Adaptive Interframe Spacing Throttle value based on the
- * time between transmitted packets and time between collisions.
- **/
-void e1000e_update_adaptive(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- if (!mac->adaptive_ifs) {
- e_dbg("Not in Adaptive IFS mode!\n");
- goto out;
- }
-
- if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
- if (mac->tx_packet_delta > MIN_NUM_XMITS) {
- mac->in_ifs_mode = true;
- if (mac->current_ifs_val < mac->ifs_max_val) {
- if (!mac->current_ifs_val)
- mac->current_ifs_val = mac->ifs_min_val;
- else
- mac->current_ifs_val +=
- mac->ifs_step_size;
- ew32(AIT, mac->current_ifs_val);
- }
- }
- } else {
- if (mac->in_ifs_mode &&
- (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
- mac->current_ifs_val = 0;
- mac->in_ifs_mode = false;
- ew32(AIT, 0);
- }
- }
-out:
- return;
-}
-
-/**
- * e1000_raise_eec_clk - Raise EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Enable/Raise the EEPROM clock bit.
- **/
-static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd | E1000_EECD_SK;
- ew32(EECD, *eecd);
- e1e_flush();
- udelay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_lower_eec_clk - Lower EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Clear/Lower the EEPROM clock bit.
- **/
-static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd & ~E1000_EECD_SK;
- ew32(EECD, *eecd);
- e1e_flush();
- udelay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- * @hw: pointer to the HW structure
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- *
- * We need to shift 'count' bits out to the EEPROM. So, the value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- **/
-static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u32 mask;
-
- mask = 0x01 << (count - 1);
- if (nvm->type == e1000_nvm_eeprom_spi)
- eecd |= E1000_EECD_DO;
-
- do {
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- ew32(EECD, eecd);
- e1e_flush();
-
- udelay(nvm->delay_usec);
-
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
-
- mask >>= 1;
- } while (mask);
-
- eecd &= ~E1000_EECD_DI;
- ew32(EECD, eecd);
-}
-
-/**
- * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- * @hw: pointer to the HW structure
- * @count: number of bits to shift in
- *
- * In order to read a register from the EEPROM, we need to shift 'count' bits
- * in from the EEPROM. Bits are "shifted in" by raising the clock input to
- * the EEPROM (setting the SK bit), and then reading the value of the data out
- * "DO" bit. During this "shifting in" process the data in "DI" bit should
- * always be clear.
- **/
-static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
-{
- u32 eecd;
- u32 i;
- u16 data;
-
- eecd = er32(EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data <<= 1;
- e1000_raise_eec_clk(hw, &eecd);
-
- eecd = er32(EECD);
-
- eecd &= ~E1000_EECD_DI;
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- e1000_lower_eec_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/**
- * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- * @hw: pointer to the HW structure
- * @ee_reg: EEPROM flag for polling
- *
- * Polls the EEPROM status bit for either read or write completion based
- * upon the value of 'ee_reg'.
- **/
-s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
-{
- u32 attempts = 100000;
- u32 i, reg = 0;
-
- for (i = 0; i < attempts; i++) {
- if (ee_reg == E1000_NVM_POLL_READ)
- reg = er32(EERD);
- else
- reg = er32(EEWR);
-
- if (reg & E1000_NVM_RW_REG_DONE)
- return 0;
-
- udelay(5);
- }
-
- return -E1000_ERR_NVM;
-}
-
-/**
- * e1000e_acquire_nvm - Generic request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-s32 e1000e_acquire_nvm(struct e1000_hw *hw)
-{
- u32 eecd = er32(EECD);
- s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
-
- ew32(EECD, eecd | E1000_EECD_REQ);
- eecd = er32(EECD);
-
- while (timeout) {
- if (eecd & E1000_EECD_GNT)
- break;
- udelay(5);
- eecd = er32(EECD);
- timeout--;
- }
-
- if (!timeout) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- e_dbg("Could not acquire NVM grant\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000_standby_nvm - Return EEPROM to standby state
- * @hw: pointer to the HW structure
- *
- * Return the EEPROM to a standby state.
- **/
-static void e1000_standby_nvm(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
-
- if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- eecd &= ~E1000_EECD_CS;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- }
-}
-
-/**
- * e1000_stop_nvm - Terminate EEPROM command
- * @hw: pointer to the HW structure
- *
- * Terminates the current command by inverting the EEPROM's chip select pin.
- **/
-static void e1000_stop_nvm(struct e1000_hw *hw)
-{
- u32 eecd;
-
- eecd = er32(EECD);
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- /* Pull CS high */
- eecd |= E1000_EECD_CS;
- e1000_lower_eec_clk(hw, &eecd);
- }
-}
-
-/**
- * e1000e_release_nvm - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-void e1000e_release_nvm(struct e1000_hw *hw)
-{
- u32 eecd;
-
- e1000_stop_nvm(hw);
-
- eecd = er32(EECD);
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
-}
-
-/**
- * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- * @hw: pointer to the HW structure
- *
- * Setups the EEPROM for reading and writing.
- **/
-static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u8 spi_stat_reg;
-
- if (nvm->type == e1000_nvm_eeprom_spi) {
- u16 timeout = NVM_MAX_RETRY_SPI;
-
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- e1e_flush();
- udelay(1);
-
- /*
- * Read "Status Register" repeatedly until the LSB is cleared.
- * The EEPROM will signal that the command has been completed
- * by clearing bit 0 of the internal status register. If it's
- * not cleared within 'timeout', then error out.
- */
- while (timeout) {
- e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
- if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
- break;
-
- udelay(5);
- e1000_standby_nvm(hw);
- timeout--;
- }
-
- if (!timeout) {
- e_dbg("SPI NVM Status error\n");
- return -E1000_ERR_NVM;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM using the EERD register.
- **/
-s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eerd = 0;
- s32 ret_val = 0;
-
- /*
- * A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
- E1000_NVM_RW_REG_START;
-
- ew32(EERD, eerd);
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
- if (ret_val)
- break;
-
- data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_write_nvm_spi - Write to EEPROM using SPI
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using SPI interface.
- *
- * If e1000e_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 widx = 0;
-
- /*
- * A check for invalid values: offset too large, too many words,
- * and not enough words.
- */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- e_dbg("nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = nvm->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- while (widx < words) {
- u8 write_opcode = NVM_WRITE_OPCODE_SPI;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val) {
- nvm->ops.release(hw);
- return ret_val;
- }
-
- e1000_standby_nvm(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode) */
- e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
-
- e1000_standby_nvm(hw);
-
- /*
- * Some SPI eeproms use the 8th address bit embedded in the
- * opcode
- */
- if ((nvm->address_bits == 8) && (offset >= 128))
- write_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
-
- /* Loop to allow for up to whole page write of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_eec_bits(hw, word_out, 16);
- widx++;
-
- if ((((offset + widx) * 2) % nvm->page_size) == 0) {
- e1000_standby_nvm(hw);
- break;
- }
- }
- }
-
- usleep_range(10000, 20000);
- nvm->ops.release(hw);
- return 0;
-}
-
-/**
- * e1000_read_pba_string_generic - Read device part number
- * @hw: pointer to the HW structure
- * @pba_num: pointer to device part number
- * @pba_num_size: size of part number buffer
- *
- * Reads the product board assembly (PBA) number from the EEPROM and stores
- * the value in pba_num.
- **/
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
- u32 pba_num_size)
-{
- s32 ret_val;
- u16 nvm_data;
- u16 pba_ptr;
- u16 offset;
- u16 length;
-
- if (pba_num == NULL) {
- e_dbg("PBA string buffer was null\n");
- ret_val = E1000_ERR_INVALID_ARGUMENT;
- goto out;
- }
-
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- goto out;
- }
-
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- goto out;
- }
-
- /*
- * if nvm_data is not ptr guard the PBA must be in legacy format which
- * means pba_ptr is actually our second data word for the PBA number
- * and we can decode it into an ascii string
- */
- if (nvm_data != NVM_PBA_PTR_GUARD) {
- e_dbg("NVM PBA number is not stored as string\n");
-
- /* we will need 11 characters to store the PBA */
- if (pba_num_size < 11) {
- e_dbg("PBA string buffer too small\n");
- return E1000_ERR_NO_SPACE;
- }
-
- /* extract hex string from data and pba_ptr */
- pba_num[0] = (nvm_data >> 12) & 0xF;
- pba_num[1] = (nvm_data >> 8) & 0xF;
- pba_num[2] = (nvm_data >> 4) & 0xF;
- pba_num[3] = nvm_data & 0xF;
- pba_num[4] = (pba_ptr >> 12) & 0xF;
- pba_num[5] = (pba_ptr >> 8) & 0xF;
- pba_num[6] = '-';
- pba_num[7] = 0;
- pba_num[8] = (pba_ptr >> 4) & 0xF;
- pba_num[9] = pba_ptr & 0xF;
-
- /* put a null character on the end of our string */
- pba_num[10] = '\0';
-
- /* switch all the data but the '-' to hex char */
- for (offset = 0; offset < 10; offset++) {
- if (pba_num[offset] < 0xA)
- pba_num[offset] += '0';
- else if (pba_num[offset] < 0x10)
- pba_num[offset] += 'A' - 0xA;
- }
-
- goto out;
- }
-
- ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- goto out;
- }
-
- if (length == 0xFFFF || length == 0) {
- e_dbg("NVM PBA number section invalid length\n");
- ret_val = E1000_ERR_NVM_PBA_SECTION;
- goto out;
- }
- /* check if pba_num buffer is big enough */
- if (pba_num_size < (((u32)length * 2) - 1)) {
- e_dbg("PBA string buffer too small\n");
- ret_val = E1000_ERR_NO_SPACE;
- goto out;
- }
-
- /* trim pba length from start of string */
- pba_ptr++;
- length--;
-
- for (offset = 0; offset < length; offset++) {
- ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- goto out;
- }
- pba_num[offset * 2] = (u8)(nvm_data >> 8);
- pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
- }
- pba_num[offset * 2] = '\0';
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_read_mac_addr_generic - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- * Since devices with two ports use the same EEPROM, we increment the
- * last bit in the MAC address for the second port.
- **/
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 rar_high;
- u32 rar_low;
- u16 i;
-
- rar_high = er32(RAH(0));
- rar_low = er32(RAL(0));
-
- for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
- hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
-
- for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
- hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
-
- for (i = 0; i < ETH_ALEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
- return 0;
-}
-
-/**
- * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- e_dbg("NVM Checksum Invalid\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error while updating checksum.\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
- if (ret_val)
- e_dbg("NVM Write Error while updating checksum.\n");
-
- return ret_val;
-}
-
-/**
- * e1000e_reload_nvm - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
-void e1000e_reload_nvm(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
-
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
-}
-
-/**
- * e1000_calculate_checksum - Calculate checksum for buffer
- * @buffer: pointer to EEPROM
- * @length: size of EEPROM to calculate a checksum for
- *
- * Calculates the checksum for some buffer on a specified length. The
- * checksum calculated is returned.
- **/
-static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
-{
- u32 i;
- u8 sum = 0;
-
- if (!buffer)
- return 0;
-
- for (i = 0; i < length; i++)
- sum += buffer[i];
-
- return (u8) (0 - sum);
-}
-
-/**
- * e1000_mng_enable_host_if - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
-{
- u32 hicr;
- u8 i;
-
- if (!(hw->mac.arc_subsystem_valid)) {
- e_dbg("ARC subsystem not valid.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- /* Check that the host interface is enabled. */
- hicr = er32(HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- e_dbg("E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = er32(HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- mdelay(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- e_dbg("Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- return 0;
-}
-
-/**
- * e1000e_check_mng_mode_generic - check management mode
- * @hw: pointer to the HW structure
- *
- * Reads the firmware semaphore register and returns true (>0) if
- * manageability is enabled, else false (0).
- **/
-bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
-{
- u32 fwsm = er32(FWSM);
-
- return (fwsm & E1000_FWSM_MODE_MASK) ==
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
-}
-
-/**
- * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- **/
-bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
- struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
- u32 *buffer = (u32 *)&hw->mng_cookie;
- u32 offset;
- s32 ret_val, hdr_csum, csum;
- u8 i, len;
-
- hw->mac.tx_pkt_filtering = true;
-
- /* No manageability, no filtering */
- if (!e1000e_check_mng_mode(hw)) {
- hw->mac.tx_pkt_filtering = false;
- goto out;
- }
-
- /*
- * If we can't read from the host interface for whatever
- * reason, disable filtering.
- */
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val) {
- hw->mac.tx_pkt_filtering = false;
- goto out;
- }
-
- /* Read in the header. Length and offset are in dwords. */
- len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
- offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
- for (i = 0; i < len; i++)
- *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
- hdr_csum = hdr->checksum;
- hdr->checksum = 0;
- csum = e1000_calculate_checksum((u8 *)hdr,
- E1000_MNG_DHCP_COOKIE_LENGTH);
- /*
- * If either the checksums or signature don't match, then
- * the cookie area isn't considered valid, in which case we
- * take the safe route of assuming Tx filtering is enabled.
- */
- if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
- hw->mac.tx_pkt_filtering = true;
- goto out;
- }
-
- /* Cookie area is valid, make the final check for filtering. */
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
- hw->mac.tx_pkt_filtering = false;
- goto out;
- }
-
-out:
- return hw->mac.tx_pkt_filtering;
-}
-
-/**
- * e1000_mng_write_cmd_header - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
-static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
-{
- u16 i, length = sizeof(struct e1000_host_mng_command_header);
-
- /* Write the whole command header structure with new checksum. */
-
- hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
-
- length >>= 2;
- /* Write the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
- *((u32 *) hdr + i));
- e1e_flush();
- }
-
- return 0;
-}
-
-/**
- * e1000_mng_host_if_write - Write to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum)
-{
- u8 *tmp;
- u8 *bufptr = buffer;
- u32 data = 0;
- u16 remaining, i, j, prev_bytes;
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
- return -E1000_ERR_PARAM;
-
- tmp = (u8 *)&data;
- prev_bytes = offset & 0x3;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /*
- * The device driver writes the relevant command block into the
- * ram area.
- */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(u32); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
- }
-
- return 0;
-}
-
-/**
- * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
-{
- struct e1000_host_mng_command_header hdr;
- s32 ret_val;
- u32 hicr;
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- /* Enable the host interface */
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val)
- return ret_val;
-
- /* Populate the host interface with the contents of "buffer". */
- ret_val = e1000_mng_host_if_write(hw, buffer, length,
- sizeof(hdr), &(hdr.checksum));
- if (ret_val)
- return ret_val;
-
- /* Write the manageability command header */
- ret_val = e1000_mng_write_cmd_header(hw, &hdr);
- if (ret_val)
- return ret_val;
-
- /* Tell the ARC a new command is pending. */
- hicr = er32(HICR);
- ew32(HICR, hicr | E1000_HICR_C);
-
- return 0;
-}
-
-/**
- * e1000e_enable_mng_pass_thru - Check if management passthrough is needed
- * @hw: pointer to the HW structure
- *
- * Verifies the hardware needs to leave interface enabled so that frames can
- * be directed to and from the management interface.
- **/
-bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
-{
- u32 manc;
- u32 fwsm, factps;
- bool ret_val = false;
-
- manc = er32(MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN))
- goto out;
-
- if (hw->mac.has_fwsm) {
- fwsm = er32(FWSM);
- factps = er32(FACTPS);
-
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
- ret_val = true;
- goto out;
- }
- } else if ((hw->mac.type == e1000_82574) ||
- (hw->mac.type == e1000_82583)) {
- u16 data;
-
- factps = er32(FACTPS);
- e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
-
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
- (e1000_mng_mode_pt << 13))) {
- ret_val = true;
- goto out;
- }
- } else if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- ret_val = true;
- goto out;
- }
-
-out:
- return ret_val;
-}
diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
deleted file mode 100644
index ab4be80f7ab..00000000000
--- a/drivers/net/e1000e/netdev.c
+++ /dev/null
@@ -1,6312 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/init.h>
-#include <linux/pci.h>
-#include <linux/vmalloc.h>
-#include <linux/pagemap.h>
-#include <linux/delay.h>
-#include <linux/netdevice.h>
-#include <linux/interrupt.h>
-#include <linux/tcp.h>
-#include <linux/ipv6.h>
-#include <linux/slab.h>
-#include <net/checksum.h>
-#include <net/ip6_checksum.h>
-#include <linux/mii.h>
-#include <linux/ethtool.h>
-#include <linux/if_vlan.h>
-#include <linux/cpu.h>
-#include <linux/smp.h>
-#include <linux/pm_qos_params.h>
-#include <linux/pm_runtime.h>
-#include <linux/aer.h>
-#include <linux/prefetch.h>
-
-#include "e1000.h"
-
-#define DRV_EXTRAVERSION "-k"
-
-#define DRV_VERSION "1.3.16" DRV_EXTRAVERSION
-char e1000e_driver_name[] = "e1000e";
-const char e1000e_driver_version[] = DRV_VERSION;
-
-static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
-
-static const struct e1000_info *e1000_info_tbl[] = {
- [board_82571] = &e1000_82571_info,
- [board_82572] = &e1000_82572_info,
- [board_82573] = &e1000_82573_info,
- [board_82574] = &e1000_82574_info,
- [board_82583] = &e1000_82583_info,
- [board_80003es2lan] = &e1000_es2_info,
- [board_ich8lan] = &e1000_ich8_info,
- [board_ich9lan] = &e1000_ich9_info,
- [board_ich10lan] = &e1000_ich10_info,
- [board_pchlan] = &e1000_pch_info,
- [board_pch2lan] = &e1000_pch2_info,
-};
-
-struct e1000_reg_info {
- u32 ofs;
- char *name;
-};
-
-#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
-#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
-#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
-#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
-#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
-
-#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
-
-static const struct e1000_reg_info e1000_reg_info_tbl[] = {
-
- /* General Registers */
- {E1000_CTRL, "CTRL"},
- {E1000_STATUS, "STATUS"},
- {E1000_CTRL_EXT, "CTRL_EXT"},
-
- /* Interrupt Registers */
- {E1000_ICR, "ICR"},
-
- /* Rx Registers */
- {E1000_RCTL, "RCTL"},
- {E1000_RDLEN, "RDLEN"},
- {E1000_RDH, "RDH"},
- {E1000_RDT, "RDT"},
- {E1000_RDTR, "RDTR"},
- {E1000_RXDCTL(0), "RXDCTL"},
- {E1000_ERT, "ERT"},
- {E1000_RDBAL, "RDBAL"},
- {E1000_RDBAH, "RDBAH"},
- {E1000_RDFH, "RDFH"},
- {E1000_RDFT, "RDFT"},
- {E1000_RDFHS, "RDFHS"},
- {E1000_RDFTS, "RDFTS"},
- {E1000_RDFPC, "RDFPC"},
-
- /* Tx Registers */
- {E1000_TCTL, "TCTL"},
- {E1000_TDBAL, "TDBAL"},
- {E1000_TDBAH, "TDBAH"},
- {E1000_TDLEN, "TDLEN"},
- {E1000_TDH, "TDH"},
- {E1000_TDT, "TDT"},
- {E1000_TIDV, "TIDV"},
- {E1000_TXDCTL(0), "TXDCTL"},
- {E1000_TADV, "TADV"},
- {E1000_TARC(0), "TARC"},
- {E1000_TDFH, "TDFH"},
- {E1000_TDFT, "TDFT"},
- {E1000_TDFHS, "TDFHS"},
- {E1000_TDFTS, "TDFTS"},
- {E1000_TDFPC, "TDFPC"},
-
- /* List Terminator */
- {}
-};
-
-/*
- * e1000_regdump - register printout routine
- */
-static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
-{
- int n = 0;
- char rname[16];
- u32 regs[8];
-
- switch (reginfo->ofs) {
- case E1000_RXDCTL(0):
- for (n = 0; n < 2; n++)
- regs[n] = __er32(hw, E1000_RXDCTL(n));
- break;
- case E1000_TXDCTL(0):
- for (n = 0; n < 2; n++)
- regs[n] = __er32(hw, E1000_TXDCTL(n));
- break;
- case E1000_TARC(0):
- for (n = 0; n < 2; n++)
- regs[n] = __er32(hw, E1000_TARC(n));
- break;
- default:
- printk(KERN_INFO "%-15s %08x\n",
- reginfo->name, __er32(hw, reginfo->ofs));
- return;
- }
-
- snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
- printk(KERN_INFO "%-15s ", rname);
- for (n = 0; n < 2; n++)
- printk(KERN_CONT "%08x ", regs[n]);
- printk(KERN_CONT "\n");
-}
-
-/*
- * e1000e_dump - Print registers, Tx-ring and Rx-ring
- */
-static void e1000e_dump(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_reg_info *reginfo;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_tx_desc *tx_desc;
- struct my_u0 {
- u64 a;
- u64 b;
- } *u0;
- struct e1000_buffer *buffer_info;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- union e1000_rx_desc_packet_split *rx_desc_ps;
- struct e1000_rx_desc *rx_desc;
- struct my_u1 {
- u64 a;
- u64 b;
- u64 c;
- u64 d;
- } *u1;
- u32 staterr;
- int i = 0;
-
- if (!netif_msg_hw(adapter))
- return;
-
- /* Print netdevice Info */
- if (netdev) {
- dev_info(&adapter->pdev->dev, "Net device Info\n");
- printk(KERN_INFO "Device Name state "
- "trans_start last_rx\n");
- printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
- netdev->name, netdev->state, netdev->trans_start,
- netdev->last_rx);
- }
-
- /* Print Registers */
- dev_info(&adapter->pdev->dev, "Register Dump\n");
- printk(KERN_INFO " Register Name Value\n");
- for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
- reginfo->name; reginfo++) {
- e1000_regdump(hw, reginfo);
- }
-
- /* Print Tx Ring Summary */
- if (!netdev || !netif_running(netdev))
- goto exit;
-
- dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
- printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
- " leng ntw timestamp\n");
- buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
- printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
- 0, tx_ring->next_to_use, tx_ring->next_to_clean,
- (unsigned long long)buffer_info->dma,
- buffer_info->length,
- buffer_info->next_to_watch,
- (unsigned long long)buffer_info->time_stamp);
-
- /* Print Tx Ring */
- if (!netif_msg_tx_done(adapter))
- goto rx_ring_summary;
-
- dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
-
- /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
- *
- * Legacy Transmit Descriptor
- * +--------------------------------------------------------------+
- * 0 | Buffer Address [63:0] (Reserved on Write Back) |
- * +--------------------------------------------------------------+
- * 8 | Special | CSS | Status | CMD | CSO | Length |
- * +--------------------------------------------------------------+
- * 63 48 47 36 35 32 31 24 23 16 15 0
- *
- * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
- * 63 48 47 40 39 32 31 16 15 8 7 0
- * +----------------------------------------------------------------+
- * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
- * +----------------------------------------------------------------+
- * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
- * +----------------------------------------------------------------+
- * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
- *
- * Extended Data Descriptor (DTYP=0x1)
- * +----------------------------------------------------------------+
- * 0 | Buffer Address [63:0] |
- * +----------------------------------------------------------------+
- * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
- * +----------------------------------------------------------------+
- * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
- */
- printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
- " [bi->dma ] leng ntw timestamp bi->skb "
- "<-- Legacy format\n");
- printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
- " [bi->dma ] leng ntw timestamp bi->skb "
- "<-- Ext Context format\n");
- printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
- " [bi->dma ] leng ntw timestamp bi->skb "
- "<-- Ext Data format\n");
- for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
- u0 = (struct my_u0 *)tx_desc;
- printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
- "%04X %3X %016llX %p",
- (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
- ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
- (unsigned long long)le64_to_cpu(u0->a),
- (unsigned long long)le64_to_cpu(u0->b),
- (unsigned long long)buffer_info->dma,
- buffer_info->length, buffer_info->next_to_watch,
- (unsigned long long)buffer_info->time_stamp,
- buffer_info->skb);
- if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
- printk(KERN_CONT " NTC/U\n");
- else if (i == tx_ring->next_to_use)
- printk(KERN_CONT " NTU\n");
- else if (i == tx_ring->next_to_clean)
- printk(KERN_CONT " NTC\n");
- else
- printk(KERN_CONT "\n");
-
- if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
- print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
- 16, 1, phys_to_virt(buffer_info->dma),
- buffer_info->length, true);
- }
-
- /* Print Rx Ring Summary */
-rx_ring_summary:
- dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
- printk(KERN_INFO "Queue [NTU] [NTC]\n");
- printk(KERN_INFO " %5d %5X %5X\n", 0,
- rx_ring->next_to_use, rx_ring->next_to_clean);
-
- /* Print Rx Ring */
- if (!netif_msg_rx_status(adapter))
- goto exit;
-
- dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
- switch (adapter->rx_ps_pages) {
- case 1:
- case 2:
- case 3:
- /* [Extended] Packet Split Receive Descriptor Format
- *
- * +-----------------------------------------------------+
- * 0 | Buffer Address 0 [63:0] |
- * +-----------------------------------------------------+
- * 8 | Buffer Address 1 [63:0] |
- * +-----------------------------------------------------+
- * 16 | Buffer Address 2 [63:0] |
- * +-----------------------------------------------------+
- * 24 | Buffer Address 3 [63:0] |
- * +-----------------------------------------------------+
- */
- printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
- "[buffer 1 63:0 ] "
- "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
- "[bi->skb] <-- Ext Pkt Split format\n");
- /* [Extended] Receive Descriptor (Write-Back) Format
- *
- * 63 48 47 32 31 13 12 8 7 4 3 0
- * +------------------------------------------------------+
- * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
- * | Checksum | Ident | | Queue | | Type |
- * +------------------------------------------------------+
- * 8 | VLAN Tag | Length | Extended Error | Extended Status |
- * +------------------------------------------------------+
- * 63 48 47 32 31 20 19 0
- */
- printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
- "[vl l0 ee es] "
- "[ l3 l2 l1 hs] [reserved ] ---------------- "
- "[bi->skb] <-- Ext Rx Write-Back format\n");
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
- u1 = (struct my_u1 *)rx_desc_ps;
- staterr =
- le32_to_cpu(rx_desc_ps->wb.middle.status_error);
- if (staterr & E1000_RXD_STAT_DD) {
- /* Descriptor Done */
- printk(KERN_INFO "RWB[0x%03X] %016llX "
- "%016llX %016llX %016llX "
- "---------------- %p", i,
- (unsigned long long)le64_to_cpu(u1->a),
- (unsigned long long)le64_to_cpu(u1->b),
- (unsigned long long)le64_to_cpu(u1->c),
- (unsigned long long)le64_to_cpu(u1->d),
- buffer_info->skb);
- } else {
- printk(KERN_INFO "R [0x%03X] %016llX "
- "%016llX %016llX %016llX %016llX %p", i,
- (unsigned long long)le64_to_cpu(u1->a),
- (unsigned long long)le64_to_cpu(u1->b),
- (unsigned long long)le64_to_cpu(u1->c),
- (unsigned long long)le64_to_cpu(u1->d),
- (unsigned long long)buffer_info->dma,
- buffer_info->skb);
-
- if (netif_msg_pktdata(adapter))
- print_hex_dump(KERN_INFO, "",
- DUMP_PREFIX_ADDRESS, 16, 1,
- phys_to_virt(buffer_info->dma),
- adapter->rx_ps_bsize0, true);
- }
-
- if (i == rx_ring->next_to_use)
- printk(KERN_CONT " NTU\n");
- else if (i == rx_ring->next_to_clean)
- printk(KERN_CONT " NTC\n");
- else
- printk(KERN_CONT "\n");
- }
- break;
- default:
- case 0:
- /* Legacy Receive Descriptor Format
- *
- * +-----------------------------------------------------+
- * | Buffer Address [63:0] |
- * +-----------------------------------------------------+
- * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
- * +-----------------------------------------------------+
- * 63 48 47 40 39 32 31 16 15 0
- */
- printk(KERN_INFO "Rl[desc] [address 63:0 ] "
- "[vl er S cks ln] [bi->dma ] [bi->skb] "
- "<-- Legacy format\n");
- for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- buffer_info = &rx_ring->buffer_info[i];
- u0 = (struct my_u0 *)rx_desc;
- printk(KERN_INFO "Rl[0x%03X] %016llX %016llX "
- "%016llX %p", i,
- (unsigned long long)le64_to_cpu(u0->a),
- (unsigned long long)le64_to_cpu(u0->b),
- (unsigned long long)buffer_info->dma,
- buffer_info->skb);
- if (i == rx_ring->next_to_use)
- printk(KERN_CONT " NTU\n");
- else if (i == rx_ring->next_to_clean)
- printk(KERN_CONT " NTC\n");
- else
- printk(KERN_CONT "\n");
-
- if (netif_msg_pktdata(adapter))
- print_hex_dump(KERN_INFO, "",
- DUMP_PREFIX_ADDRESS,
- 16, 1,
- phys_to_virt(buffer_info->dma),
- adapter->rx_buffer_len, true);
- }
- }
-
-exit:
- return;
-}
-
-/**
- * e1000_desc_unused - calculate if we have unused descriptors
- **/
-static int e1000_desc_unused(struct e1000_ring *ring)
-{
- if (ring->next_to_clean > ring->next_to_use)
- return ring->next_to_clean - ring->next_to_use - 1;
-
- return ring->count + ring->next_to_clean - ring->next_to_use - 1;
-}
-
-/**
- * e1000_receive_skb - helper function to handle Rx indications
- * @adapter: board private structure
- * @status: descriptor status field as written by hardware
- * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
- * @skb: pointer to sk_buff to be indicated to stack
- **/
-static void e1000_receive_skb(struct e1000_adapter *adapter,
- struct net_device *netdev, struct sk_buff *skb,
- u8 status, __le16 vlan)
-{
- u16 tag = le16_to_cpu(vlan);
- skb->protocol = eth_type_trans(skb, netdev);
-
- if (status & E1000_RXD_STAT_VP)
- __vlan_hwaccel_put_tag(skb, tag);
-
- napi_gro_receive(&adapter->napi, skb);
-}
-
-/**
- * e1000_rx_checksum - Receive Checksum Offload
- * @adapter: board private structure
- * @status_err: receive descriptor status and error fields
- * @csum: receive descriptor csum field
- * @sk_buff: socket buffer with received data
- **/
-static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
- u32 csum, struct sk_buff *skb)
-{
- u16 status = (u16)status_err;
- u8 errors = (u8)(status_err >> 24);
-
- skb_checksum_none_assert(skb);
-
- /* Ignore Checksum bit is set */
- if (status & E1000_RXD_STAT_IXSM)
- return;
- /* TCP/UDP checksum error bit is set */
- if (errors & E1000_RXD_ERR_TCPE) {
- /* let the stack verify checksum errors */
- adapter->hw_csum_err++;
- return;
- }
-
- /* TCP/UDP Checksum has not been calculated */
- if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
- return;
-
- /* It must be a TCP or UDP packet with a valid checksum */
- if (status & E1000_RXD_STAT_TCPCS) {
- /* TCP checksum is good */
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- } else {
- /*
- * IP fragment with UDP payload
- * Hardware complements the payload checksum, so we undo it
- * and then put the value in host order for further stack use.
- */
- __sum16 sum = (__force __sum16)htons(csum);
- skb->csum = csum_unfold(~sum);
- skb->ip_summed = CHECKSUM_COMPLETE;
- }
- adapter->hw_csum_good++;
-}
-
-/**
- * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
- * @adapter: address of board private structure
- **/
-static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
- int cleaned_count, gfp_t gfp)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_rx_desc *rx_desc;
- struct e1000_buffer *buffer_info;
- struct sk_buff *skb;
- unsigned int i;
- unsigned int bufsz = adapter->rx_buffer_len;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- skb = buffer_info->skb;
- if (skb) {
- skb_trim(skb, 0);
- goto map_skb;
- }
-
- skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
- if (!skb) {
- /* Better luck next round */
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- buffer_info->skb = skb;
-map_skb:
- buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
- adapter->rx_buffer_len,
- DMA_FROM_DEVICE);
- if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
- dev_err(&pdev->dev, "Rx DMA map failed\n");
- adapter->rx_dma_failed++;
- break;
- }
-
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
- if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
- /*
- * Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64).
- */
- wmb();
- writel(i, adapter->hw.hw_addr + rx_ring->tail);
- }
- i++;
- if (i == rx_ring->count)
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
- rx_ring->next_to_use = i;
-}
-
-/**
- * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
- * @adapter: address of board private structure
- **/
-static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
- int cleaned_count, gfp_t gfp)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- union e1000_rx_desc_packet_split *rx_desc;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- struct e1000_ps_page *ps_page;
- struct sk_buff *skb;
- unsigned int i, j;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
-
- for (j = 0; j < PS_PAGE_BUFFERS; j++) {
- ps_page = &buffer_info->ps_pages[j];
- if (j >= adapter->rx_ps_pages) {
- /* all unused desc entries get hw null ptr */
- rx_desc->read.buffer_addr[j + 1] =
- ~cpu_to_le64(0);
- continue;
- }
- if (!ps_page->page) {
- ps_page->page = alloc_page(gfp);
- if (!ps_page->page) {
- adapter->alloc_rx_buff_failed++;
- goto no_buffers;
- }
- ps_page->dma = dma_map_page(&pdev->dev,
- ps_page->page,
- 0, PAGE_SIZE,
- DMA_FROM_DEVICE);
- if (dma_mapping_error(&pdev->dev,
- ps_page->dma)) {
- dev_err(&adapter->pdev->dev,
- "Rx DMA page map failed\n");
- adapter->rx_dma_failed++;
- goto no_buffers;
- }
- }
- /*
- * Refresh the desc even if buffer_addrs
- * didn't change because each write-back
- * erases this info.
- */
- rx_desc->read.buffer_addr[j + 1] =
- cpu_to_le64(ps_page->dma);
- }
-
- skb = __netdev_alloc_skb_ip_align(netdev,
- adapter->rx_ps_bsize0,
- gfp);
-
- if (!skb) {
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- buffer_info->skb = skb;
- buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
- adapter->rx_ps_bsize0,
- DMA_FROM_DEVICE);
- if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
- dev_err(&pdev->dev, "Rx DMA map failed\n");
- adapter->rx_dma_failed++;
- /* cleanup skb */
- dev_kfree_skb_any(skb);
- buffer_info->skb = NULL;
- break;
- }
-
- rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
-
- if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
- /*
- * Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64).
- */
- wmb();
- writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
- }
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
-no_buffers:
- rx_ring->next_to_use = i;
-}
-
-/**
- * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
- * @adapter: address of board private structure
- * @cleaned_count: number of buffers to allocate this pass
- **/
-
-static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
- int cleaned_count, gfp_t gfp)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_rx_desc *rx_desc;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- struct sk_buff *skb;
- unsigned int i;
- unsigned int bufsz = 256 - 16 /* for skb_reserve */;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- skb = buffer_info->skb;
- if (skb) {
- skb_trim(skb, 0);
- goto check_page;
- }
-
- skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
- if (unlikely(!skb)) {
- /* Better luck next round */
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- buffer_info->skb = skb;
-check_page:
- /* allocate a new page if necessary */
- if (!buffer_info->page) {
- buffer_info->page = alloc_page(gfp);
- if (unlikely(!buffer_info->page)) {
- adapter->alloc_rx_buff_failed++;
- break;
- }
- }
-
- if (!buffer_info->dma)
- buffer_info->dma = dma_map_page(&pdev->dev,
- buffer_info->page, 0,
- PAGE_SIZE,
- DMA_FROM_DEVICE);
-
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
- if (unlikely(++i == rx_ring->count))
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
- if (likely(rx_ring->next_to_use != i)) {
- rx_ring->next_to_use = i;
- if (unlikely(i-- == 0))
- i = (rx_ring->count - 1);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
- writel(i, adapter->hw.hw_addr + rx_ring->tail);
- }
-}
-
-/**
- * e1000_clean_rx_irq - Send received data up the network stack; legacy
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_rx_desc *rx_desc, *next_rxd;
- struct e1000_buffer *buffer_info, *next_buffer;
- u32 length;
- unsigned int i;
- int cleaned_count = 0;
- bool cleaned = 0;
- unsigned int total_rx_bytes = 0, total_rx_packets = 0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (rx_desc->status & E1000_RXD_STAT_DD) {
- struct sk_buff *skb;
- u8 status;
-
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
- rmb(); /* read descriptor and rx_buffer_info after status DD */
-
- status = rx_desc->status;
- skb = buffer_info->skb;
- buffer_info->skb = NULL;
-
- prefetch(skb->data - NET_IP_ALIGN);
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- next_rxd = E1000_RX_DESC(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = 1;
- cleaned_count++;
- dma_unmap_single(&pdev->dev,
- buffer_info->dma,
- adapter->rx_buffer_len,
- DMA_FROM_DEVICE);
- buffer_info->dma = 0;
-
- length = le16_to_cpu(rx_desc->length);
-
- /*
- * !EOP means multiple descriptors were used to store a single
- * packet, if that's the case we need to toss it. In fact, we
- * need to toss every packet with the EOP bit clear and the
- * next frame that _does_ have the EOP bit set, as it is by
- * definition only a frame fragment
- */
- if (unlikely(!(status & E1000_RXD_STAT_EOP)))
- adapter->flags2 |= FLAG2_IS_DISCARDING;
-
- if (adapter->flags2 & FLAG2_IS_DISCARDING) {
- /* All receives must fit into a single buffer */
- e_dbg("Receive packet consumed multiple buffers\n");
- /* recycle */
- buffer_info->skb = skb;
- if (status & E1000_RXD_STAT_EOP)
- adapter->flags2 &= ~FLAG2_IS_DISCARDING;
- goto next_desc;
- }
-
- if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
- /* recycle */
- buffer_info->skb = skb;
- goto next_desc;
- }
-
- /* adjust length to remove Ethernet CRC */
- if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
- length -= 4;
-
- total_rx_bytes += length;
- total_rx_packets++;
-
- /*
- * code added for copybreak, this should improve
- * performance for small packets with large amounts
- * of reassembly being done in the stack
- */
- if (length < copybreak) {
- struct sk_buff *new_skb =
- netdev_alloc_skb_ip_align(netdev, length);
- if (new_skb) {
- skb_copy_to_linear_data_offset(new_skb,
- -NET_IP_ALIGN,
- (skb->data -
- NET_IP_ALIGN),
- (length +
- NET_IP_ALIGN));
- /* save the skb in buffer_info as good */
- buffer_info->skb = skb;
- skb = new_skb;
- }
- /* else just continue with the old one */
- }
- /* end copybreak code */
- skb_put(skb, length);
-
- /* Receive Checksum Offload */
- e1000_rx_checksum(adapter,
- (u32)(status) |
- ((u32)(rx_desc->errors) << 24),
- le16_to_cpu(rx_desc->csum), skb);
-
- e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
-
-next_desc:
- rx_desc->status = 0;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
- adapter->alloc_rx_buf(adapter, cleaned_count,
- GFP_ATOMIC);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = e1000_desc_unused(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
-
- adapter->total_rx_bytes += total_rx_bytes;
- adapter->total_rx_packets += total_rx_packets;
- return cleaned;
-}
-
-static void e1000_put_txbuf(struct e1000_adapter *adapter,
- struct e1000_buffer *buffer_info)
-{
- if (buffer_info->dma) {
- if (buffer_info->mapped_as_page)
- dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
- buffer_info->length, DMA_TO_DEVICE);
- else
- dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
- buffer_info->length, DMA_TO_DEVICE);
- buffer_info->dma = 0;
- }
- if (buffer_info->skb) {
- dev_kfree_skb_any(buffer_info->skb);
- buffer_info->skb = NULL;
- }
- buffer_info->time_stamp = 0;
-}
-
-static void e1000_print_hw_hang(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter,
- print_hang_task);
- struct e1000_ring *tx_ring = adapter->tx_ring;
- unsigned int i = tx_ring->next_to_clean;
- unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
- struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
- struct e1000_hw *hw = &adapter->hw;
- u16 phy_status, phy_1000t_status, phy_ext_status;
- u16 pci_status;
-
- if (test_bit(__E1000_DOWN, &adapter->state))
- return;
-
- e1e_rphy(hw, PHY_STATUS, &phy_status);
- e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
- e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
-
- pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
-
- /* detected Hardware unit hang */
- e_err("Detected Hardware Unit Hang:\n"
- " TDH <%x>\n"
- " TDT <%x>\n"
- " next_to_use <%x>\n"
- " next_to_clean <%x>\n"
- "buffer_info[next_to_clean]:\n"
- " time_stamp <%lx>\n"
- " next_to_watch <%x>\n"
- " jiffies <%lx>\n"
- " next_to_watch.status <%x>\n"
- "MAC Status <%x>\n"
- "PHY Status <%x>\n"
- "PHY 1000BASE-T Status <%x>\n"
- "PHY Extended Status <%x>\n"
- "PCI Status <%x>\n",
- readl(adapter->hw.hw_addr + tx_ring->head),
- readl(adapter->hw.hw_addr + tx_ring->tail),
- tx_ring->next_to_use,
- tx_ring->next_to_clean,
- tx_ring->buffer_info[eop].time_stamp,
- eop,
- jiffies,
- eop_desc->upper.fields.status,
- er32(STATUS),
- phy_status,
- phy_1000t_status,
- phy_ext_status,
- pci_status);
-}
-
-/**
- * e1000_clean_tx_irq - Reclaim resources after transmit completes
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_tx_desc *tx_desc, *eop_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i, eop;
- unsigned int count = 0;
- unsigned int total_tx_bytes = 0, total_tx_packets = 0;
-
- i = tx_ring->next_to_clean;
- eop = tx_ring->buffer_info[i].next_to_watch;
- eop_desc = E1000_TX_DESC(*tx_ring, eop);
-
- while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
- (count < tx_ring->count)) {
- bool cleaned = false;
- rmb(); /* read buffer_info after eop_desc */
- for (; !cleaned; count++) {
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
- cleaned = (i == eop);
-
- if (cleaned) {
- total_tx_packets += buffer_info->segs;
- total_tx_bytes += buffer_info->bytecount;
- }
-
- e1000_put_txbuf(adapter, buffer_info);
- tx_desc->upper.data = 0;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- }
-
- if (i == tx_ring->next_to_use)
- break;
- eop = tx_ring->buffer_info[i].next_to_watch;
- eop_desc = E1000_TX_DESC(*tx_ring, eop);
- }
-
- tx_ring->next_to_clean = i;
-
-#define TX_WAKE_THRESHOLD 32
- if (count && netif_carrier_ok(netdev) &&
- e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
- /* Make sure that anybody stopping the queue after this
- * sees the new next_to_clean.
- */
- smp_mb();
-
- if (netif_queue_stopped(netdev) &&
- !(test_bit(__E1000_DOWN, &adapter->state))) {
- netif_wake_queue(netdev);
- ++adapter->restart_queue;
- }
- }
-
- if (adapter->detect_tx_hung) {
- /*
- * Detect a transmit hang in hardware, this serializes the
- * check with the clearing of time_stamp and movement of i
- */
- adapter->detect_tx_hung = 0;
- if (tx_ring->buffer_info[i].time_stamp &&
- time_after(jiffies, tx_ring->buffer_info[i].time_stamp
- + (adapter->tx_timeout_factor * HZ)) &&
- !(er32(STATUS) & E1000_STATUS_TXOFF)) {
- schedule_work(&adapter->print_hang_task);
- netif_stop_queue(netdev);
- }
- }
- adapter->total_tx_bytes += total_tx_bytes;
- adapter->total_tx_packets += total_tx_packets;
- return count < tx_ring->count;
-}
-
-/**
- * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
-{
- struct e1000_hw *hw = &adapter->hw;
- union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info, *next_buffer;
- struct e1000_ps_page *ps_page;
- struct sk_buff *skb;
- unsigned int i, j;
- u32 length, staterr;
- int cleaned_count = 0;
- bool cleaned = 0;
- unsigned int total_rx_bytes = 0, total_rx_packets = 0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
- staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (staterr & E1000_RXD_STAT_DD) {
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
- skb = buffer_info->skb;
- rmb(); /* read descriptor and rx_buffer_info after status DD */
-
- /* in the packet split case this is header only */
- prefetch(skb->data - NET_IP_ALIGN);
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = 1;
- cleaned_count++;
- dma_unmap_single(&pdev->dev, buffer_info->dma,
- adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
- buffer_info->dma = 0;
-
- /* see !EOP comment in other Rx routine */
- if (!(staterr & E1000_RXD_STAT_EOP))
- adapter->flags2 |= FLAG2_IS_DISCARDING;
-
- if (adapter->flags2 & FLAG2_IS_DISCARDING) {
- e_dbg("Packet Split buffers didn't pick up the full "
- "packet\n");
- dev_kfree_skb_irq(skb);
- if (staterr & E1000_RXD_STAT_EOP)
- adapter->flags2 &= ~FLAG2_IS_DISCARDING;
- goto next_desc;
- }
-
- if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
- dev_kfree_skb_irq(skb);
- goto next_desc;
- }
-
- length = le16_to_cpu(rx_desc->wb.middle.length0);
-
- if (!length) {
- e_dbg("Last part of the packet spanning multiple "
- "descriptors\n");
- dev_kfree_skb_irq(skb);
- goto next_desc;
- }
-
- /* Good Receive */
- skb_put(skb, length);
-
- {
- /*
- * this looks ugly, but it seems compiler issues make it
- * more efficient than reusing j
- */
- int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
-
- /*
- * page alloc/put takes too long and effects small packet
- * throughput, so unsplit small packets and save the alloc/put
- * only valid in softirq (napi) context to call kmap_*
- */
- if (l1 && (l1 <= copybreak) &&
- ((length + l1) <= adapter->rx_ps_bsize0)) {
- u8 *vaddr;
-
- ps_page = &buffer_info->ps_pages[0];
-
- /*
- * there is no documentation about how to call
- * kmap_atomic, so we can't hold the mapping
- * very long
- */
- dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
- PAGE_SIZE, DMA_FROM_DEVICE);
- vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
- memcpy(skb_tail_pointer(skb), vaddr, l1);
- kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
- dma_sync_single_for_device(&pdev->dev, ps_page->dma,
- PAGE_SIZE, DMA_FROM_DEVICE);
-
- /* remove the CRC */
- if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
- l1 -= 4;
-
- skb_put(skb, l1);
- goto copydone;
- } /* if */
- }
-
- for (j = 0; j < PS_PAGE_BUFFERS; j++) {
- length = le16_to_cpu(rx_desc->wb.upper.length[j]);
- if (!length)
- break;
-
- ps_page = &buffer_info->ps_pages[j];
- dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
- DMA_FROM_DEVICE);
- ps_page->dma = 0;
- skb_fill_page_desc(skb, j, ps_page->page, 0, length);
- ps_page->page = NULL;
- skb->len += length;
- skb->data_len += length;
- skb->truesize += length;
- }
-
- /* strip the ethernet crc, problem is we're using pages now so
- * this whole operation can get a little cpu intensive
- */
- if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
- pskb_trim(skb, skb->len - 4);
-
-copydone:
- total_rx_bytes += skb->len;
- total_rx_packets++;
-
- e1000_rx_checksum(adapter, staterr, le16_to_cpu(
- rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
-
- if (rx_desc->wb.upper.header_status &
- cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
- adapter->rx_hdr_split++;
-
- e1000_receive_skb(adapter, netdev, skb,
- staterr, rx_desc->wb.middle.vlan);
-
-next_desc:
- rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
- buffer_info->skb = NULL;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
- adapter->alloc_rx_buf(adapter, cleaned_count,
- GFP_ATOMIC);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
-
- staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = e1000_desc_unused(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
-
- adapter->total_rx_bytes += total_rx_bytes;
- adapter->total_rx_packets += total_rx_packets;
- return cleaned;
-}
-
-/**
- * e1000_consume_page - helper function
- **/
-static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
- u16 length)
-{
- bi->page = NULL;
- skb->len += length;
- skb->data_len += length;
- skb->truesize += length;
-}
-
-/**
- * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-
-static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_rx_desc *rx_desc, *next_rxd;
- struct e1000_buffer *buffer_info, *next_buffer;
- u32 length;
- unsigned int i;
- int cleaned_count = 0;
- bool cleaned = false;
- unsigned int total_rx_bytes=0, total_rx_packets=0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (rx_desc->status & E1000_RXD_STAT_DD) {
- struct sk_buff *skb;
- u8 status;
-
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
- rmb(); /* read descriptor and rx_buffer_info after status DD */
-
- status = rx_desc->status;
- skb = buffer_info->skb;
- buffer_info->skb = NULL;
-
- ++i;
- if (i == rx_ring->count)
- i = 0;
- next_rxd = E1000_RX_DESC(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = true;
- cleaned_count++;
- dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
- DMA_FROM_DEVICE);
- buffer_info->dma = 0;
-
- length = le16_to_cpu(rx_desc->length);
-
- /* errors is only valid for DD + EOP descriptors */
- if (unlikely((status & E1000_RXD_STAT_EOP) &&
- (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
- /* recycle both page and skb */
- buffer_info->skb = skb;
- /* an error means any chain goes out the window
- * too */
- if (rx_ring->rx_skb_top)
- dev_kfree_skb_irq(rx_ring->rx_skb_top);
- rx_ring->rx_skb_top = NULL;
- goto next_desc;
- }
-
-#define rxtop (rx_ring->rx_skb_top)
- if (!(status & E1000_RXD_STAT_EOP)) {
- /* this descriptor is only the beginning (or middle) */
- if (!rxtop) {
- /* this is the beginning of a chain */
- rxtop = skb;
- skb_fill_page_desc(rxtop, 0, buffer_info->page,
- 0, length);
- } else {
- /* this is the middle of a chain */
- skb_fill_page_desc(rxtop,
- skb_shinfo(rxtop)->nr_frags,
- buffer_info->page, 0, length);
- /* re-use the skb, only consumed the page */
- buffer_info->skb = skb;
- }
- e1000_consume_page(buffer_info, rxtop, length);
- goto next_desc;
- } else {
- if (rxtop) {
- /* end of the chain */
- skb_fill_page_desc(rxtop,
- skb_shinfo(rxtop)->nr_frags,
- buffer_info->page, 0, length);
- /* re-use the current skb, we only consumed the
- * page */
- buffer_info->skb = skb;
- skb = rxtop;
- rxtop = NULL;
- e1000_consume_page(buffer_info, skb, length);
- } else {
- /* no chain, got EOP, this buf is the packet
- * copybreak to save the put_page/alloc_page */
- if (length <= copybreak &&
- skb_tailroom(skb) >= length) {
- u8 *vaddr;
- vaddr = kmap_atomic(buffer_info->page,
- KM_SKB_DATA_SOFTIRQ);
- memcpy(skb_tail_pointer(skb), vaddr,
- length);
- kunmap_atomic(vaddr,
- KM_SKB_DATA_SOFTIRQ);
- /* re-use the page, so don't erase
- * buffer_info->page */
- skb_put(skb, length);
- } else {
- skb_fill_page_desc(skb, 0,
- buffer_info->page, 0,
- length);
- e1000_consume_page(buffer_info, skb,
- length);
- }
- }
- }
-
- /* Receive Checksum Offload XXX recompute due to CRC strip? */
- e1000_rx_checksum(adapter,
- (u32)(status) |
- ((u32)(rx_desc->errors) << 24),
- le16_to_cpu(rx_desc->csum), skb);
-
- /* probably a little skewed due to removing CRC */
- total_rx_bytes += skb->len;
- total_rx_packets++;
-
- /* eth type trans needs skb->data to point to something */
- if (!pskb_may_pull(skb, ETH_HLEN)) {
- e_err("pskb_may_pull failed.\n");
- dev_kfree_skb_irq(skb);
- goto next_desc;
- }
-
- e1000_receive_skb(adapter, netdev, skb, status,
- rx_desc->special);
-
-next_desc:
- rx_desc->status = 0;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
- adapter->alloc_rx_buf(adapter, cleaned_count,
- GFP_ATOMIC);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = e1000_desc_unused(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
-
- adapter->total_rx_bytes += total_rx_bytes;
- adapter->total_rx_packets += total_rx_packets;
- return cleaned;
-}
-
-/**
- * e1000_clean_rx_ring - Free Rx Buffers per Queue
- * @adapter: board private structure
- **/
-static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
-{
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- struct e1000_ps_page *ps_page;
- struct pci_dev *pdev = adapter->pdev;
- unsigned int i, j;
-
- /* Free all the Rx ring sk_buffs */
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- if (buffer_info->dma) {
- if (adapter->clean_rx == e1000_clean_rx_irq)
- dma_unmap_single(&pdev->dev, buffer_info->dma,
- adapter->rx_buffer_len,
- DMA_FROM_DEVICE);
- else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
- dma_unmap_page(&pdev->dev, buffer_info->dma,
- PAGE_SIZE,
- DMA_FROM_DEVICE);
- else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
- dma_unmap_single(&pdev->dev, buffer_info->dma,
- adapter->rx_ps_bsize0,
- DMA_FROM_DEVICE);
- buffer_info->dma = 0;
- }
-
- if (buffer_info->page) {
- put_page(buffer_info->page);
- buffer_info->page = NULL;
- }
-
- if (buffer_info->skb) {
- dev_kfree_skb(buffer_info->skb);
- buffer_info->skb = NULL;
- }
-
- for (j = 0; j < PS_PAGE_BUFFERS; j++) {
- ps_page = &buffer_info->ps_pages[j];
- if (!ps_page->page)
- break;
- dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
- DMA_FROM_DEVICE);
- ps_page->dma = 0;
- put_page(ps_page->page);
- ps_page->page = NULL;
- }
- }
-
- /* there also may be some cached data from a chained receive */
- if (rx_ring->rx_skb_top) {
- dev_kfree_skb(rx_ring->rx_skb_top);
- rx_ring->rx_skb_top = NULL;
- }
-
- /* Zero out the descriptor ring */
- memset(rx_ring->desc, 0, rx_ring->size);
-
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
- adapter->flags2 &= ~FLAG2_IS_DISCARDING;
-
- writel(0, adapter->hw.hw_addr + rx_ring->head);
- writel(0, adapter->hw.hw_addr + rx_ring->tail);
-}
-
-static void e1000e_downshift_workaround(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter, downshift_task);
-
- if (test_bit(__E1000_DOWN, &adapter->state))
- return;
-
- e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
-}
-
-/**
- * e1000_intr_msi - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-static irqreturn_t e1000_intr_msi(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 icr = er32(ICR);
-
- /*
- * read ICR disables interrupts using IAM
- */
-
- if (icr & E1000_ICR_LSC) {
- hw->mac.get_link_status = 1;
- /*
- * ICH8 workaround-- Call gig speed drop workaround on cable
- * disconnect (LSC) before accessing any PHY registers
- */
- if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
- (!(er32(STATUS) & E1000_STATUS_LU)))
- schedule_work(&adapter->downshift_task);
-
- /*
- * 80003ES2LAN workaround-- For packet buffer work-around on
- * link down event; disable receives here in the ISR and reset
- * adapter in watchdog
- */
- if (netif_carrier_ok(netdev) &&
- adapter->flags & FLAG_RX_NEEDS_RESTART) {
- /* disable receives */
- u32 rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- adapter->flags |= FLAG_RX_RESTART_NOW;
- }
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
- if (napi_schedule_prep(&adapter->napi)) {
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __napi_schedule(&adapter->napi);
- }
-
- return IRQ_HANDLED;
-}
-
-/**
- * e1000_intr - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-static irqreturn_t e1000_intr(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl, icr = er32(ICR);
-
- if (!icr || test_bit(__E1000_DOWN, &adapter->state))
- return IRQ_NONE; /* Not our interrupt */
-
- /*
- * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
- * not set, then the adapter didn't send an interrupt
- */
- if (!(icr & E1000_ICR_INT_ASSERTED))
- return IRQ_NONE;
-
- /*
- * Interrupt Auto-Mask...upon reading ICR,
- * interrupts are masked. No need for the
- * IMC write
- */
-
- if (icr & E1000_ICR_LSC) {
- hw->mac.get_link_status = 1;
- /*
- * ICH8 workaround-- Call gig speed drop workaround on cable
- * disconnect (LSC) before accessing any PHY registers
- */
- if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
- (!(er32(STATUS) & E1000_STATUS_LU)))
- schedule_work(&adapter->downshift_task);
-
- /*
- * 80003ES2LAN workaround--
- * For packet buffer work-around on link down event;
- * disable receives here in the ISR and
- * reset adapter in watchdog
- */
- if (netif_carrier_ok(netdev) &&
- (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
- /* disable receives */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- adapter->flags |= FLAG_RX_RESTART_NOW;
- }
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
- if (napi_schedule_prep(&adapter->napi)) {
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __napi_schedule(&adapter->napi);
- }
-
- return IRQ_HANDLED;
-}
-
-static irqreturn_t e1000_msix_other(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 icr = er32(ICR);
-
- if (!(icr & E1000_ICR_INT_ASSERTED)) {
- if (!test_bit(__E1000_DOWN, &adapter->state))
- ew32(IMS, E1000_IMS_OTHER);
- return IRQ_NONE;
- }
-
- if (icr & adapter->eiac_mask)
- ew32(ICS, (icr & adapter->eiac_mask));
-
- if (icr & E1000_ICR_OTHER) {
- if (!(icr & E1000_ICR_LSC))
- goto no_link_interrupt;
- hw->mac.get_link_status = 1;
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
-no_link_interrupt:
- if (!test_bit(__E1000_DOWN, &adapter->state))
- ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
-
- return IRQ_HANDLED;
-}
-
-
-static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *tx_ring = adapter->tx_ring;
-
-
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
-
- if (!e1000_clean_tx_irq(adapter))
- /* Ring was not completely cleaned, so fire another interrupt */
- ew32(ICS, tx_ring->ims_val);
-
- return IRQ_HANDLED;
-}
-
-static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /* Write the ITR value calculated at the end of the
- * previous interrupt.
- */
- if (adapter->rx_ring->set_itr) {
- writel(1000000000 / (adapter->rx_ring->itr_val * 256),
- adapter->hw.hw_addr + adapter->rx_ring->itr_register);
- adapter->rx_ring->set_itr = 0;
- }
-
- if (napi_schedule_prep(&adapter->napi)) {
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __napi_schedule(&adapter->napi);
- }
- return IRQ_HANDLED;
-}
-
-/**
- * e1000_configure_msix - Configure MSI-X hardware
- *
- * e1000_configure_msix sets up the hardware to properly
- * generate MSI-X interrupts.
- **/
-static void e1000_configure_msix(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- int vector = 0;
- u32 ctrl_ext, ivar = 0;
-
- adapter->eiac_mask = 0;
-
- /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
- if (hw->mac.type == e1000_82574) {
- u32 rfctl = er32(RFCTL);
- rfctl |= E1000_RFCTL_ACK_DIS;
- ew32(RFCTL, rfctl);
- }
-
-#define E1000_IVAR_INT_ALLOC_VALID 0x8
- /* Configure Rx vector */
- rx_ring->ims_val = E1000_IMS_RXQ0;
- adapter->eiac_mask |= rx_ring->ims_val;
- if (rx_ring->itr_val)
- writel(1000000000 / (rx_ring->itr_val * 256),
- hw->hw_addr + rx_ring->itr_register);
- else
- writel(1, hw->hw_addr + rx_ring->itr_register);
- ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
-
- /* Configure Tx vector */
- tx_ring->ims_val = E1000_IMS_TXQ0;
- vector++;
- if (tx_ring->itr_val)
- writel(1000000000 / (tx_ring->itr_val * 256),
- hw->hw_addr + tx_ring->itr_register);
- else
- writel(1, hw->hw_addr + tx_ring->itr_register);
- adapter->eiac_mask |= tx_ring->ims_val;
- ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
-
- /* set vector for Other Causes, e.g. link changes */
- vector++;
- ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
- if (rx_ring->itr_val)
- writel(1000000000 / (rx_ring->itr_val * 256),
- hw->hw_addr + E1000_EITR_82574(vector));
- else
- writel(1, hw->hw_addr + E1000_EITR_82574(vector));
-
- /* Cause Tx interrupts on every write back */
- ivar |= (1 << 31);
-
- ew32(IVAR, ivar);
-
- /* enable MSI-X PBA support */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
-
- /* Auto-Mask Other interrupts upon ICR read */
-#define E1000_EIAC_MASK_82574 0x01F00000
- ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
- ctrl_ext |= E1000_CTRL_EXT_EIAME;
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
-}
-
-void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
-{
- if (adapter->msix_entries) {
- pci_disable_msix(adapter->pdev);
- kfree(adapter->msix_entries);
- adapter->msix_entries = NULL;
- } else if (adapter->flags & FLAG_MSI_ENABLED) {
- pci_disable_msi(adapter->pdev);
- adapter->flags &= ~FLAG_MSI_ENABLED;
- }
-}
-
-/**
- * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
- *
- * Attempt to configure interrupts using the best available
- * capabilities of the hardware and kernel.
- **/
-void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
-{
- int err;
- int i;
-
- switch (adapter->int_mode) {
- case E1000E_INT_MODE_MSIX:
- if (adapter->flags & FLAG_HAS_MSIX) {
- adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
- adapter->msix_entries = kcalloc(adapter->num_vectors,
- sizeof(struct msix_entry),
- GFP_KERNEL);
- if (adapter->msix_entries) {
- for (i = 0; i < adapter->num_vectors; i++)
- adapter->msix_entries[i].entry = i;
-
- err = pci_enable_msix(adapter->pdev,
- adapter->msix_entries,
- adapter->num_vectors);
- if (err == 0)
- return;
- }
- /* MSI-X failed, so fall through and try MSI */
- e_err("Failed to initialize MSI-X interrupts. "
- "Falling back to MSI interrupts.\n");
- e1000e_reset_interrupt_capability(adapter);
- }
- adapter->int_mode = E1000E_INT_MODE_MSI;
- /* Fall through */
- case E1000E_INT_MODE_MSI:
- if (!pci_enable_msi(adapter->pdev)) {
- adapter->flags |= FLAG_MSI_ENABLED;
- } else {
- adapter->int_mode = E1000E_INT_MODE_LEGACY;
- e_err("Failed to initialize MSI interrupts. Falling "
- "back to legacy interrupts.\n");
- }
- /* Fall through */
- case E1000E_INT_MODE_LEGACY:
- /* Don't do anything; this is the system default */
- break;
- }
-
- /* store the number of vectors being used */
- adapter->num_vectors = 1;
-}
-
-/**
- * e1000_request_msix - Initialize MSI-X interrupts
- *
- * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
- * kernel.
- **/
-static int e1000_request_msix(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- int err = 0, vector = 0;
-
- if (strlen(netdev->name) < (IFNAMSIZ - 5))
- snprintf(adapter->rx_ring->name,
- sizeof(adapter->rx_ring->name) - 1,
- "%s-rx-0", netdev->name);
- else
- memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
- err = request_irq(adapter->msix_entries[vector].vector,
- e1000_intr_msix_rx, 0, adapter->rx_ring->name,
- netdev);
- if (err)
- goto out;
- adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
- adapter->rx_ring->itr_val = adapter->itr;
- vector++;
-
- if (strlen(netdev->name) < (IFNAMSIZ - 5))
- snprintf(adapter->tx_ring->name,
- sizeof(adapter->tx_ring->name) - 1,
- "%s-tx-0", netdev->name);
- else
- memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
- err = request_irq(adapter->msix_entries[vector].vector,
- e1000_intr_msix_tx, 0, adapter->tx_ring->name,
- netdev);
- if (err)
- goto out;
- adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
- adapter->tx_ring->itr_val = adapter->itr;
- vector++;
-
- err = request_irq(adapter->msix_entries[vector].vector,
- e1000_msix_other, 0, netdev->name, netdev);
- if (err)
- goto out;
-
- e1000_configure_msix(adapter);
- return 0;
-out:
- return err;
-}
-
-/**
- * e1000_request_irq - initialize interrupts
- *
- * Attempts to configure interrupts using the best available
- * capabilities of the hardware and kernel.
- **/
-static int e1000_request_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- int err;
-
- if (adapter->msix_entries) {
- err = e1000_request_msix(adapter);
- if (!err)
- return err;
- /* fall back to MSI */
- e1000e_reset_interrupt_capability(adapter);
- adapter->int_mode = E1000E_INT_MODE_MSI;
- e1000e_set_interrupt_capability(adapter);
- }
- if (adapter->flags & FLAG_MSI_ENABLED) {
- err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
- netdev->name, netdev);
- if (!err)
- return err;
-
- /* fall back to legacy interrupt */
- e1000e_reset_interrupt_capability(adapter);
- adapter->int_mode = E1000E_INT_MODE_LEGACY;
- }
-
- err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
- netdev->name, netdev);
- if (err)
- e_err("Unable to allocate interrupt, Error: %d\n", err);
-
- return err;
-}
-
-static void e1000_free_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
-
- if (adapter->msix_entries) {
- int vector = 0;
-
- free_irq(adapter->msix_entries[vector].vector, netdev);
- vector++;
-
- free_irq(adapter->msix_entries[vector].vector, netdev);
- vector++;
-
- /* Other Causes interrupt vector */
- free_irq(adapter->msix_entries[vector].vector, netdev);
- return;
- }
-
- free_irq(adapter->pdev->irq, netdev);
-}
-
-/**
- * e1000_irq_disable - Mask off interrupt generation on the NIC
- **/
-static void e1000_irq_disable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- ew32(IMC, ~0);
- if (adapter->msix_entries)
- ew32(EIAC_82574, 0);
- e1e_flush();
-
- if (adapter->msix_entries) {
- int i;
- for (i = 0; i < adapter->num_vectors; i++)
- synchronize_irq(adapter->msix_entries[i].vector);
- } else {
- synchronize_irq(adapter->pdev->irq);
- }
-}
-
-/**
- * e1000_irq_enable - Enable default interrupt generation settings
- **/
-static void e1000_irq_enable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- if (adapter->msix_entries) {
- ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
- ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
- } else {
- ew32(IMS, IMS_ENABLE_MASK);
- }
- e1e_flush();
-}
-
-/**
- * e1000e_get_hw_control - get control of the h/w from f/w
- * @adapter: address of board private structure
- *
- * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that
- * the driver is loaded. For AMT version (only with 82573)
- * of the f/w this means that the network i/f is open.
- **/
-void e1000e_get_hw_control(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_ext;
- u32 swsm;
-
- /* Let firmware know the driver has taken over */
- if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
- } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
- ctrl_ext = er32(CTRL_EXT);
- ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
- }
-}
-
-/**
- * e1000e_release_hw_control - release control of the h/w to f/w
- * @adapter: address of board private structure
- *
- * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded. For AMT version (only with 82573) i
- * of the f/w this means that the network i/f is closed.
- *
- **/
-void e1000e_release_hw_control(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_ext;
- u32 swsm;
-
- /* Let firmware taken over control of h/w */
- if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
- } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
- ctrl_ext = er32(CTRL_EXT);
- ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
- }
-}
-
-/**
- * @e1000_alloc_ring - allocate memory for a ring structure
- **/
-static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
- struct e1000_ring *ring)
-{
- struct pci_dev *pdev = adapter->pdev;
-
- ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
- GFP_KERNEL);
- if (!ring->desc)
- return -ENOMEM;
-
- return 0;
-}
-
-/**
- * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
- * @adapter: board private structure
- *
- * Return 0 on success, negative on failure
- **/
-int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- int err = -ENOMEM, size;
-
- size = sizeof(struct e1000_buffer) * tx_ring->count;
- tx_ring->buffer_info = vzalloc(size);
- if (!tx_ring->buffer_info)
- goto err;
-
- /* round up to nearest 4K */
- tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
- tx_ring->size = ALIGN(tx_ring->size, 4096);
-
- err = e1000_alloc_ring_dma(adapter, tx_ring);
- if (err)
- goto err;
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
-
- return 0;
-err:
- vfree(tx_ring->buffer_info);
- e_err("Unable to allocate memory for the transmit descriptor ring\n");
- return err;
-}
-
-/**
- * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
- * @adapter: board private structure
- *
- * Returns 0 on success, negative on failure
- **/
-int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
-{
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- int i, size, desc_len, err = -ENOMEM;
-
- size = sizeof(struct e1000_buffer) * rx_ring->count;
- rx_ring->buffer_info = vzalloc(size);
- if (!rx_ring->buffer_info)
- goto err;
-
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
- sizeof(struct e1000_ps_page),
- GFP_KERNEL);
- if (!buffer_info->ps_pages)
- goto err_pages;
- }
-
- desc_len = sizeof(union e1000_rx_desc_packet_split);
-
- /* Round up to nearest 4K */
- rx_ring->size = rx_ring->count * desc_len;
- rx_ring->size = ALIGN(rx_ring->size, 4096);
-
- err = e1000_alloc_ring_dma(adapter, rx_ring);
- if (err)
- goto err_pages;
-
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
- rx_ring->rx_skb_top = NULL;
-
- return 0;
-
-err_pages:
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- kfree(buffer_info->ps_pages);
- }
-err:
- vfree(rx_ring->buffer_info);
- e_err("Unable to allocate memory for the receive descriptor ring\n");
- return err;
-}
-
-/**
- * e1000_clean_tx_ring - Free Tx Buffers
- * @adapter: board private structure
- **/
-static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_buffer *buffer_info;
- unsigned long size;
- unsigned int i;
-
- for (i = 0; i < tx_ring->count; i++) {
- buffer_info = &tx_ring->buffer_info[i];
- e1000_put_txbuf(adapter, buffer_info);
- }
-
- size = sizeof(struct e1000_buffer) * tx_ring->count;
- memset(tx_ring->buffer_info, 0, size);
-
- memset(tx_ring->desc, 0, tx_ring->size);
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
-
- writel(0, adapter->hw.hw_addr + tx_ring->head);
- writel(0, adapter->hw.hw_addr + tx_ring->tail);
-}
-
-/**
- * e1000e_free_tx_resources - Free Tx Resources per Queue
- * @adapter: board private structure
- *
- * Free all transmit software resources
- **/
-void e1000e_free_tx_resources(struct e1000_adapter *adapter)
-{
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *tx_ring = adapter->tx_ring;
-
- e1000_clean_tx_ring(adapter);
-
- vfree(tx_ring->buffer_info);
- tx_ring->buffer_info = NULL;
-
- dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
- tx_ring->dma);
- tx_ring->desc = NULL;
-}
-
-/**
- * e1000e_free_rx_resources - Free Rx Resources
- * @adapter: board private structure
- *
- * Free all receive software resources
- **/
-
-void e1000e_free_rx_resources(struct e1000_adapter *adapter)
-{
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- int i;
-
- e1000_clean_rx_ring(adapter);
-
- for (i = 0; i < rx_ring->count; i++)
- kfree(rx_ring->buffer_info[i].ps_pages);
-
- vfree(rx_ring->buffer_info);
- rx_ring->buffer_info = NULL;
-
- dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
- rx_ring->dma);
- rx_ring->desc = NULL;
-}
-
-/**
- * e1000_update_itr - update the dynamic ITR value based on statistics
- * @adapter: pointer to adapter
- * @itr_setting: current adapter->itr
- * @packets: the number of packets during this measurement interval
- * @bytes: the number of bytes during this measurement interval
- *
- * Stores a new ITR value based on packets and byte
- * counts during the last interrupt. The advantage of per interrupt
- * computation is faster updates and more accurate ITR for the current
- * traffic pattern. Constants in this function were computed
- * based on theoretical maximum wire speed and thresholds were set based
- * on testing data as well as attempting to minimize response time
- * while increasing bulk throughput. This functionality is controlled
- * by the InterruptThrottleRate module parameter.
- **/
-static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
- u16 itr_setting, int packets,
- int bytes)
-{
- unsigned int retval = itr_setting;
-
- if (packets == 0)
- goto update_itr_done;
-
- switch (itr_setting) {
- case lowest_latency:
- /* handle TSO and jumbo frames */
- if (bytes/packets > 8000)
- retval = bulk_latency;
- else if ((packets < 5) && (bytes > 512))
- retval = low_latency;
- break;
- case low_latency: /* 50 usec aka 20000 ints/s */
- if (bytes > 10000) {
- /* this if handles the TSO accounting */
- if (bytes/packets > 8000)
- retval = bulk_latency;
- else if ((packets < 10) || ((bytes/packets) > 1200))
- retval = bulk_latency;
- else if ((packets > 35))
- retval = lowest_latency;
- } else if (bytes/packets > 2000) {
- retval = bulk_latency;
- } else if (packets <= 2 && bytes < 512) {
- retval = lowest_latency;
- }
- break;
- case bulk_latency: /* 250 usec aka 4000 ints/s */
- if (bytes > 25000) {
- if (packets > 35)
- retval = low_latency;
- } else if (bytes < 6000) {
- retval = low_latency;
- }
- break;
- }
-
-update_itr_done:
- return retval;
-}
-
-static void e1000_set_itr(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 current_itr;
- u32 new_itr = adapter->itr;
-
- /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
- if (adapter->link_speed != SPEED_1000) {
- current_itr = 0;
- new_itr = 4000;
- goto set_itr_now;
- }
-
- if (adapter->flags2 & FLAG2_DISABLE_AIM) {
- new_itr = 0;
- goto set_itr_now;
- }
-
- adapter->tx_itr = e1000_update_itr(adapter,
- adapter->tx_itr,
- adapter->total_tx_packets,
- adapter->total_tx_bytes);
- /* conservative mode (itr 3) eliminates the lowest_latency setting */
- if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
- adapter->tx_itr = low_latency;
-
- adapter->rx_itr = e1000_update_itr(adapter,
- adapter->rx_itr,
- adapter->total_rx_packets,
- adapter->total_rx_bytes);
- /* conservative mode (itr 3) eliminates the lowest_latency setting */
- if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
- adapter->rx_itr = low_latency;
-
- current_itr = max(adapter->rx_itr, adapter->tx_itr);
-
- switch (current_itr) {
- /* counts and packets in update_itr are dependent on these numbers */
- case lowest_latency:
- new_itr = 70000;
- break;
- case low_latency:
- new_itr = 20000; /* aka hwitr = ~200 */
- break;
- case bulk_latency:
- new_itr = 4000;
- break;
- default:
- break;
- }
-
-set_itr_now:
- if (new_itr != adapter->itr) {
- /*
- * this attempts to bias the interrupt rate towards Bulk
- * by adding intermediate steps when interrupt rate is
- * increasing
- */
- new_itr = new_itr > adapter->itr ?
- min(adapter->itr + (new_itr >> 2), new_itr) :
- new_itr;
- adapter->itr = new_itr;
- adapter->rx_ring->itr_val = new_itr;
- if (adapter->msix_entries)
- adapter->rx_ring->set_itr = 1;
- else
- if (new_itr)
- ew32(ITR, 1000000000 / (new_itr * 256));
- else
- ew32(ITR, 0);
- }
-}
-
-/**
- * e1000_alloc_queues - Allocate memory for all rings
- * @adapter: board private structure to initialize
- **/
-static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
-{
- adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
- if (!adapter->tx_ring)
- goto err;
-
- adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
- if (!adapter->rx_ring)
- goto err;
-
- return 0;
-err:
- e_err("Unable to allocate memory for queues\n");
- kfree(adapter->rx_ring);
- kfree(adapter->tx_ring);
- return -ENOMEM;
-}
-
-/**
- * e1000_clean - NAPI Rx polling callback
- * @napi: struct associated with this polling callback
- * @budget: amount of packets driver is allowed to process this poll
- **/
-static int e1000_clean(struct napi_struct *napi, int budget)
-{
- struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *poll_dev = adapter->netdev;
- int tx_cleaned = 1, work_done = 0;
-
- adapter = netdev_priv(poll_dev);
-
- if (adapter->msix_entries &&
- !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
- goto clean_rx;
-
- tx_cleaned = e1000_clean_tx_irq(adapter);
-
-clean_rx:
- adapter->clean_rx(adapter, &work_done, budget);
-
- if (!tx_cleaned)
- work_done = budget;
-
- /* If budget not fully consumed, exit the polling mode */
- if (work_done < budget) {
- if (adapter->itr_setting & 3)
- e1000_set_itr(adapter);
- napi_complete(napi);
- if (!test_bit(__E1000_DOWN, &adapter->state)) {
- if (adapter->msix_entries)
- ew32(IMS, adapter->rx_ring->ims_val);
- else
- e1000_irq_enable(adapter);
- }
- }
-
- return work_done;
-}
-
-static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 vfta, index;
-
- /* don't update vlan cookie if already programmed */
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
- (vid == adapter->mng_vlan_id))
- return;
-
- /* add VID to filter table */
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
- index = (vid >> 5) & 0x7F;
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
- vfta |= (1 << (vid & 0x1F));
- hw->mac.ops.write_vfta(hw, index, vfta);
- }
-
- set_bit(vid, adapter->active_vlans);
-}
-
-static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 vfta, index;
-
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
- (vid == adapter->mng_vlan_id)) {
- /* release control to f/w */
- e1000e_release_hw_control(adapter);
- return;
- }
-
- /* remove VID from filter table */
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
- index = (vid >> 5) & 0x7F;
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
- vfta &= ~(1 << (vid & 0x1F));
- hw->mac.ops.write_vfta(hw, index, vfta);
- }
-
- clear_bit(vid, adapter->active_vlans);
-}
-
-/**
- * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
- * @adapter: board private structure to initialize
- **/
-static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
- /* disable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
- ew32(RCTL, rctl);
-
- if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
- e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- }
- }
-}
-
-/**
- * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
- * @adapter: board private structure to initialize
- **/
-static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
- /* enable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_VFE;
- rctl &= ~E1000_RCTL_CFIEN;
- ew32(RCTL, rctl);
- }
-}
-
-/**
- * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
- * @adapter: board private structure to initialize
- **/
-static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl;
-
- /* disable VLAN tag insert/strip */
- ctrl = er32(CTRL);
- ctrl &= ~E1000_CTRL_VME;
- ew32(CTRL, ctrl);
-}
-
-/**
- * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
- * @adapter: board private structure to initialize
- **/
-static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl;
-
- /* enable VLAN tag insert/strip */
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_VME;
- ew32(CTRL, ctrl);
-}
-
-static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- u16 vid = adapter->hw.mng_cookie.vlan_id;
- u16 old_vid = adapter->mng_vlan_id;
-
- if (adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
- e1000_vlan_rx_add_vid(netdev, vid);
- adapter->mng_vlan_id = vid;
- }
-
- if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
- e1000_vlan_rx_kill_vid(netdev, old_vid);
-}
-
-static void e1000_restore_vlan(struct e1000_adapter *adapter)
-{
- u16 vid;
-
- e1000_vlan_rx_add_vid(adapter->netdev, 0);
-
- for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
- e1000_vlan_rx_add_vid(adapter->netdev, vid);
-}
-
-static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 manc, manc2h, mdef, i, j;
-
- if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
- return;
-
- manc = er32(MANC);
-
- /*
- * enable receiving management packets to the host. this will probably
- * generate destination unreachable messages from the host OS, but
- * the packets will be handled on SMBUS
- */
- manc |= E1000_MANC_EN_MNG2HOST;
- manc2h = er32(MANC2H);
-
- switch (hw->mac.type) {
- default:
- manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
- break;
- case e1000_82574:
- case e1000_82583:
- /*
- * Check if IPMI pass-through decision filter already exists;
- * if so, enable it.
- */
- for (i = 0, j = 0; i < 8; i++) {
- mdef = er32(MDEF(i));
-
- /* Ignore filters with anything other than IPMI ports */
- if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
- continue;
-
- /* Enable this decision filter in MANC2H */
- if (mdef)
- manc2h |= (1 << i);
-
- j |= mdef;
- }
-
- if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
- break;
-
- /* Create new decision filter in an empty filter */
- for (i = 0, j = 0; i < 8; i++)
- if (er32(MDEF(i)) == 0) {
- ew32(MDEF(i), (E1000_MDEF_PORT_623 |
- E1000_MDEF_PORT_664));
- manc2h |= (1 << 1);
- j++;
- break;
- }
-
- if (!j)
- e_warn("Unable to create IPMI pass-through filter\n");
- break;
- }
-
- ew32(MANC2H, manc2h);
- ew32(MANC, manc);
-}
-
-/**
- * e1000_configure_tx - Configure Transmit Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Tx unit of the MAC after a reset.
- **/
-static void e1000_configure_tx(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- u64 tdba;
- u32 tdlen, tctl, tipg, tarc;
- u32 ipgr1, ipgr2;
-
- /* Setup the HW Tx Head and Tail descriptor pointers */
- tdba = tx_ring->dma;
- tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
- ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
- ew32(TDBAH, (tdba >> 32));
- ew32(TDLEN, tdlen);
- ew32(TDH, 0);
- ew32(TDT, 0);
- tx_ring->head = E1000_TDH;
- tx_ring->tail = E1000_TDT;
-
- /* Set the default values for the Tx Inter Packet Gap timer */
- tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
- ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
- ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
-
- if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
- ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
-
- tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
- tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
- ew32(TIPG, tipg);
-
- /* Set the Tx Interrupt Delay register */
- ew32(TIDV, adapter->tx_int_delay);
- /* Tx irq moderation */
- ew32(TADV, adapter->tx_abs_int_delay);
-
- if (adapter->flags2 & FLAG2_DMA_BURST) {
- u32 txdctl = er32(TXDCTL(0));
- txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
- E1000_TXDCTL_WTHRESH);
- /*
- * set up some performance related parameters to encourage the
- * hardware to use the bus more efficiently in bursts, depends
- * on the tx_int_delay to be enabled,
- * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
- * hthresh = 1 ==> prefetch when one or more available
- * pthresh = 0x1f ==> prefetch if internal cache 31 or less
- * BEWARE: this seems to work but should be considered first if
- * there are Tx hangs or other Tx related bugs
- */
- txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
- ew32(TXDCTL(0), txdctl);
- /* erratum work around: set txdctl the same for both queues */
- ew32(TXDCTL(1), txdctl);
- }
-
- /* Program the Transmit Control Register */
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-
- if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
- tarc = er32(TARC(0));
- /*
- * set the speed mode bit, we'll clear it if we're not at
- * gigabit link later
- */
-#define SPEED_MODE_BIT (1 << 21)
- tarc |= SPEED_MODE_BIT;
- ew32(TARC(0), tarc);
- }
-
- /* errata: program both queues to unweighted RR */
- if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
- tarc = er32(TARC(0));
- tarc |= 1;
- ew32(TARC(0), tarc);
- tarc = er32(TARC(1));
- tarc |= 1;
- ew32(TARC(1), tarc);
- }
-
- /* Setup Transmit Descriptor Settings for eop descriptor */
- adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
-
- /* only set IDE if we are delaying interrupts using the timers */
- if (adapter->tx_int_delay)
- adapter->txd_cmd |= E1000_TXD_CMD_IDE;
-
- /* enable Report Status bit */
- adapter->txd_cmd |= E1000_TXD_CMD_RS;
-
- ew32(TCTL, tctl);
-
- e1000e_config_collision_dist(hw);
-}
-
-/**
- * e1000_setup_rctl - configure the receive control registers
- * @adapter: Board private structure
- **/
-#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
- (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
-static void e1000_setup_rctl(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl, rfctl;
- u32 pages = 0;
-
- /* Workaround Si errata on 82579 - configure jumbo frame flow */
- if (hw->mac.type == e1000_pch2lan) {
- s32 ret_val;
-
- if (adapter->netdev->mtu > ETH_DATA_LEN)
- ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
- else
- ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
-
- if (ret_val)
- e_dbg("failed to enable jumbo frame workaround mode\n");
- }
-
- /* Program MC offset vector base */
- rctl = er32(RCTL);
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
- E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
- (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- /* Do not Store bad packets */
- rctl &= ~E1000_RCTL_SBP;
-
- /* Enable Long Packet receive */
- if (adapter->netdev->mtu <= ETH_DATA_LEN)
- rctl &= ~E1000_RCTL_LPE;
- else
- rctl |= E1000_RCTL_LPE;
-
- /* Some systems expect that the CRC is included in SMBUS traffic. The
- * hardware strips the CRC before sending to both SMBUS (BMC) and to
- * host memory when this is enabled
- */
- if (adapter->flags2 & FLAG2_CRC_STRIPPING)
- rctl |= E1000_RCTL_SECRC;
-
- /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
- if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
- u16 phy_data;
-
- e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
- phy_data &= 0xfff8;
- phy_data |= (1 << 2);
- e1e_wphy(hw, PHY_REG(770, 26), phy_data);
-
- e1e_rphy(hw, 22, &phy_data);
- phy_data &= 0x0fff;
- phy_data |= (1 << 14);
- e1e_wphy(hw, 0x10, 0x2823);
- e1e_wphy(hw, 0x11, 0x0003);
- e1e_wphy(hw, 22, phy_data);
- }
-
- /* Setup buffer sizes */
- rctl &= ~E1000_RCTL_SZ_4096;
- rctl |= E1000_RCTL_BSEX;
- switch (adapter->rx_buffer_len) {
- case 2048:
- default:
- rctl |= E1000_RCTL_SZ_2048;
- rctl &= ~E1000_RCTL_BSEX;
- break;
- case 4096:
- rctl |= E1000_RCTL_SZ_4096;
- break;
- case 8192:
- rctl |= E1000_RCTL_SZ_8192;
- break;
- case 16384:
- rctl |= E1000_RCTL_SZ_16384;
- break;
- }
-
- /*
- * 82571 and greater support packet-split where the protocol
- * header is placed in skb->data and the packet data is
- * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
- * In the case of a non-split, skb->data is linearly filled,
- * followed by the page buffers. Therefore, skb->data is
- * sized to hold the largest protocol header.
- *
- * allocations using alloc_page take too long for regular MTU
- * so only enable packet split for jumbo frames
- *
- * Using pages when the page size is greater than 16k wastes
- * a lot of memory, since we allocate 3 pages at all times
- * per packet.
- */
- pages = PAGE_USE_COUNT(adapter->netdev->mtu);
- if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
- (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
- adapter->rx_ps_pages = pages;
- else
- adapter->rx_ps_pages = 0;
-
- if (adapter->rx_ps_pages) {
- u32 psrctl = 0;
-
- /* Configure extra packet-split registers */
- rfctl = er32(RFCTL);
- rfctl |= E1000_RFCTL_EXTEN;
- /*
- * disable packet split support for IPv6 extension headers,
- * because some malformed IPv6 headers can hang the Rx
- */
- rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
- E1000_RFCTL_NEW_IPV6_EXT_DIS);
-
- ew32(RFCTL, rfctl);
-
- /* Enable Packet split descriptors */
- rctl |= E1000_RCTL_DTYP_PS;
-
- psrctl |= adapter->rx_ps_bsize0 >>
- E1000_PSRCTL_BSIZE0_SHIFT;
-
- switch (adapter->rx_ps_pages) {
- case 3:
- psrctl |= PAGE_SIZE <<
- E1000_PSRCTL_BSIZE3_SHIFT;
- case 2:
- psrctl |= PAGE_SIZE <<
- E1000_PSRCTL_BSIZE2_SHIFT;
- case 1:
- psrctl |= PAGE_SIZE >>
- E1000_PSRCTL_BSIZE1_SHIFT;
- break;
- }
-
- ew32(PSRCTL, psrctl);
- }
-
- ew32(RCTL, rctl);
- /* just started the receive unit, no need to restart */
- adapter->flags &= ~FLAG_RX_RESTART_NOW;
-}
-
-/**
- * e1000_configure_rx - Configure Receive Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Rx unit of the MAC after a reset.
- **/
-static void e1000_configure_rx(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- u64 rdba;
- u32 rdlen, rctl, rxcsum, ctrl_ext;
-
- if (adapter->rx_ps_pages) {
- /* this is a 32 byte descriptor */
- rdlen = rx_ring->count *
- sizeof(union e1000_rx_desc_packet_split);
- adapter->clean_rx = e1000_clean_rx_irq_ps;
- adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
- } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
- rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
- adapter->clean_rx = e1000_clean_jumbo_rx_irq;
- adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
- } else {
- rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
- adapter->clean_rx = e1000_clean_rx_irq;
- adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
- }
-
- /* disable receives while setting up the descriptors */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- e1e_flush();
- usleep_range(10000, 20000);
-
- if (adapter->flags2 & FLAG2_DMA_BURST) {
- /*
- * set the writeback threshold (only takes effect if the RDTR
- * is set). set GRAN=1 and write back up to 0x4 worth, and
- * enable prefetching of 0x20 Rx descriptors
- * granularity = 01
- * wthresh = 04,
- * hthresh = 04,
- * pthresh = 0x20
- */
- ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
- ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
-
- /*
- * override the delay timers for enabling bursting, only if
- * the value was not set by the user via module options
- */
- if (adapter->rx_int_delay == DEFAULT_RDTR)
- adapter->rx_int_delay = BURST_RDTR;
- if (adapter->rx_abs_int_delay == DEFAULT_RADV)
- adapter->rx_abs_int_delay = BURST_RADV;
- }
-
- /* set the Receive Delay Timer Register */
- ew32(RDTR, adapter->rx_int_delay);
-
- /* irq moderation */
- ew32(RADV, adapter->rx_abs_int_delay);
- if ((adapter->itr_setting != 0) && (adapter->itr != 0))
- ew32(ITR, 1000000000 / (adapter->itr * 256));
-
- ctrl_ext = er32(CTRL_EXT);
- /* Auto-Mask interrupts upon ICR access */
- ctrl_ext |= E1000_CTRL_EXT_IAME;
- ew32(IAM, 0xffffffff);
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
-
- /*
- * Setup the HW Rx Head and Tail Descriptor Pointers and
- * the Base and Length of the Rx Descriptor Ring
- */
- rdba = rx_ring->dma;
- ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
- ew32(RDBAH, (rdba >> 32));
- ew32(RDLEN, rdlen);
- ew32(RDH, 0);
- ew32(RDT, 0);
- rx_ring->head = E1000_RDH;
- rx_ring->tail = E1000_RDT;
-
- /* Enable Receive Checksum Offload for TCP and UDP */
- rxcsum = er32(RXCSUM);
- if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
- rxcsum |= E1000_RXCSUM_TUOFL;
-
- /*
- * IPv4 payload checksum for UDP fragments must be
- * used in conjunction with packet-split.
- */
- if (adapter->rx_ps_pages)
- rxcsum |= E1000_RXCSUM_IPPCSE;
- } else {
- rxcsum &= ~E1000_RXCSUM_TUOFL;
- /* no need to clear IPPCSE as it defaults to 0 */
- }
- ew32(RXCSUM, rxcsum);
-
- /*
- * Enable early receives on supported devices, only takes effect when
- * packet size is equal or larger than the specified value (in 8 byte
- * units), e.g. using jumbo frames when setting to E1000_ERT_2048
- */
- if ((adapter->flags & FLAG_HAS_ERT) ||
- (adapter->hw.mac.type == e1000_pch2lan)) {
- if (adapter->netdev->mtu > ETH_DATA_LEN) {
- u32 rxdctl = er32(RXDCTL(0));
- ew32(RXDCTL(0), rxdctl | 0x3);
- if (adapter->flags & FLAG_HAS_ERT)
- ew32(ERT, E1000_ERT_2048 | (1 << 13));
- /*
- * With jumbo frames and early-receive enabled,
- * excessive C-state transition latencies result in
- * dropped transactions.
- */
- pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
- } else {
- pm_qos_update_request(&adapter->netdev->pm_qos_req,
- PM_QOS_DEFAULT_VALUE);
- }
- }
-
- /* Enable Receives */
- ew32(RCTL, rctl);
-}
-
-/**
- * e1000_update_mc_addr_list - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates the Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
- u32 mc_addr_count)
-{
- hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
-}
-
-/**
- * e1000_set_multi - Multicast and Promiscuous mode set
- * @netdev: network interface device structure
- *
- * The set_multi entry point is called whenever the multicast address
- * list or the network interface flags are updated. This routine is
- * responsible for configuring the hardware for proper multicast,
- * promiscuous mode, and all-multi behavior.
- **/
-static void e1000_set_multi(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct netdev_hw_addr *ha;
- u8 *mta_list;
- u32 rctl;
-
- /* Check for Promiscuous and All Multicast modes */
-
- rctl = er32(RCTL);
-
- if (netdev->flags & IFF_PROMISC) {
- rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- rctl &= ~E1000_RCTL_VFE;
- /* Do not hardware filter VLANs in promisc mode */
- e1000e_vlan_filter_disable(adapter);
- } else {
- if (netdev->flags & IFF_ALLMULTI) {
- rctl |= E1000_RCTL_MPE;
- rctl &= ~E1000_RCTL_UPE;
- } else {
- rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
- }
- e1000e_vlan_filter_enable(adapter);
- }
-
- ew32(RCTL, rctl);
-
- if (!netdev_mc_empty(netdev)) {
- int i = 0;
-
- mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
- if (!mta_list)
- return;
-
- /* prepare a packed array of only addresses. */
- netdev_for_each_mc_addr(ha, netdev)
- memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
-
- e1000_update_mc_addr_list(hw, mta_list, i);
- kfree(mta_list);
- } else {
- /*
- * if we're called from probe, we might not have
- * anything to do here, so clear out the list
- */
- e1000_update_mc_addr_list(hw, NULL, 0);
- }
-
- if (netdev->features & NETIF_F_HW_VLAN_RX)
- e1000e_vlan_strip_enable(adapter);
- else
- e1000e_vlan_strip_disable(adapter);
-}
-
-/**
- * e1000_configure - configure the hardware for Rx and Tx
- * @adapter: private board structure
- **/
-static void e1000_configure(struct e1000_adapter *adapter)
-{
- e1000_set_multi(adapter->netdev);
-
- e1000_restore_vlan(adapter);
- e1000_init_manageability_pt(adapter);
-
- e1000_configure_tx(adapter);
- e1000_setup_rctl(adapter);
- e1000_configure_rx(adapter);
- adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
- GFP_KERNEL);
-}
-
-/**
- * e1000e_power_up_phy - restore link in case the phy was powered down
- * @adapter: address of board private structure
- *
- * The phy may be powered down to save power and turn off link when the
- * driver is unloaded and wake on lan is not enabled (among others)
- * *** this routine MUST be followed by a call to e1000e_reset ***
- **/
-void e1000e_power_up_phy(struct e1000_adapter *adapter)
-{
- if (adapter->hw.phy.ops.power_up)
- adapter->hw.phy.ops.power_up(&adapter->hw);
-
- adapter->hw.mac.ops.setup_link(&adapter->hw);
-}
-
-/**
- * e1000_power_down_phy - Power down the PHY
- *
- * Power down the PHY so no link is implied when interface is down.
- * The PHY cannot be powered down if management or WoL is active.
- */
-static void e1000_power_down_phy(struct e1000_adapter *adapter)
-{
- /* WoL is enabled */
- if (adapter->wol)
- return;
-
- if (adapter->hw.phy.ops.power_down)
- adapter->hw.phy.ops.power_down(&adapter->hw);
-}
-
-/**
- * e1000e_reset - bring the hardware into a known good state
- *
- * This function boots the hardware and enables some settings that
- * require a configuration cycle of the hardware - those cannot be
- * set/changed during runtime. After reset the device needs to be
- * properly configured for Rx, Tx etc.
- */
-void e1000e_reset(struct e1000_adapter *adapter)
-{
- struct e1000_mac_info *mac = &adapter->hw.mac;
- struct e1000_fc_info *fc = &adapter->hw.fc;
- struct e1000_hw *hw = &adapter->hw;
- u32 tx_space, min_tx_space, min_rx_space;
- u32 pba = adapter->pba;
- u16 hwm;
-
- /* reset Packet Buffer Allocation to default */
- ew32(PBA, pba);
-
- if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
- /*
- * To maintain wire speed transmits, the Tx FIFO should be
- * large enough to accommodate two full transmit packets,
- * rounded up to the next 1KB and expressed in KB. Likewise,
- * the Rx FIFO should be large enough to accommodate at least
- * one full receive packet and is similarly rounded up and
- * expressed in KB.
- */
- pba = er32(PBA);
- /* upper 16 bits has Tx packet buffer allocation size in KB */
- tx_space = pba >> 16;
- /* lower 16 bits has Rx packet buffer allocation size in KB */
- pba &= 0xffff;
- /*
- * the Tx fifo also stores 16 bytes of information about the Tx
- * but don't include ethernet FCS because hardware appends it
- */
- min_tx_space = (adapter->max_frame_size +
- sizeof(struct e1000_tx_desc) -
- ETH_FCS_LEN) * 2;
- min_tx_space = ALIGN(min_tx_space, 1024);
- min_tx_space >>= 10;
- /* software strips receive CRC, so leave room for it */
- min_rx_space = adapter->max_frame_size;
- min_rx_space = ALIGN(min_rx_space, 1024);
- min_rx_space >>= 10;
-
- /*
- * If current Tx allocation is less than the min Tx FIFO size,
- * and the min Tx FIFO size is less than the current Rx FIFO
- * allocation, take space away from current Rx allocation
- */
- if ((tx_space < min_tx_space) &&
- ((min_tx_space - tx_space) < pba)) {
- pba -= min_tx_space - tx_space;
-
- /*
- * if short on Rx space, Rx wins and must trump Tx
- * adjustment or use Early Receive if available
- */
- if ((pba < min_rx_space) &&
- (!(adapter->flags & FLAG_HAS_ERT)))
- /* ERT enabled in e1000_configure_rx */
- pba = min_rx_space;
- }
-
- ew32(PBA, pba);
- }
-
- /*
- * flow control settings
- *
- * The high water mark must be low enough to fit one full frame
- * (or the size used for early receive) above it in the Rx FIFO.
- * Set it to the lower of:
- * - 90% of the Rx FIFO size, and
- * - the full Rx FIFO size minus the early receive size (for parts
- * with ERT support assuming ERT set to E1000_ERT_2048), or
- * - the full Rx FIFO size minus one full frame
- */
- if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
- fc->pause_time = 0xFFFF;
- else
- fc->pause_time = E1000_FC_PAUSE_TIME;
- fc->send_xon = 1;
- fc->current_mode = fc->requested_mode;
-
- switch (hw->mac.type) {
- default:
- if ((adapter->flags & FLAG_HAS_ERT) &&
- (adapter->netdev->mtu > ETH_DATA_LEN))
- hwm = min(((pba << 10) * 9 / 10),
- ((pba << 10) - (E1000_ERT_2048 << 3)));
- else
- hwm = min(((pba << 10) * 9 / 10),
- ((pba << 10) - adapter->max_frame_size));
-
- fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
- fc->low_water = fc->high_water - 8;
- break;
- case e1000_pchlan:
- /*
- * Workaround PCH LOM adapter hangs with certain network
- * loads. If hangs persist, try disabling Tx flow control.
- */
- if (adapter->netdev->mtu > ETH_DATA_LEN) {
- fc->high_water = 0x3500;
- fc->low_water = 0x1500;
- } else {
- fc->high_water = 0x5000;
- fc->low_water = 0x3000;
- }
- fc->refresh_time = 0x1000;
- break;
- case e1000_pch2lan:
- fc->high_water = 0x05C20;
- fc->low_water = 0x05048;
- fc->pause_time = 0x0650;
- fc->refresh_time = 0x0400;
- if (adapter->netdev->mtu > ETH_DATA_LEN) {
- pba = 14;
- ew32(PBA, pba);
- }
- break;
- }
-
- /*
- * Disable Adaptive Interrupt Moderation if 2 full packets cannot
- * fit in receive buffer and early-receive not supported.
- */
- if (adapter->itr_setting & 0x3) {
- if (((adapter->max_frame_size * 2) > (pba << 10)) &&
- !(adapter->flags & FLAG_HAS_ERT)) {
- if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
- dev_info(&adapter->pdev->dev,
- "Interrupt Throttle Rate turned off\n");
- adapter->flags2 |= FLAG2_DISABLE_AIM;
- ew32(ITR, 0);
- }
- } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
- dev_info(&adapter->pdev->dev,
- "Interrupt Throttle Rate turned on\n");
- adapter->flags2 &= ~FLAG2_DISABLE_AIM;
- adapter->itr = 20000;
- ew32(ITR, 1000000000 / (adapter->itr * 256));
- }
- }
-
- /* Allow time for pending master requests to run */
- mac->ops.reset_hw(hw);
-
- /*
- * For parts with AMT enabled, let the firmware know
- * that the network interface is in control
- */
- if (adapter->flags & FLAG_HAS_AMT)
- e1000e_get_hw_control(adapter);
-
- ew32(WUC, 0);
-
- if (mac->ops.init_hw(hw))
- e_err("Hardware Error\n");
-
- e1000_update_mng_vlan(adapter);
-
- /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
- ew32(VET, ETH_P_8021Q);
-
- e1000e_reset_adaptive(hw);
-
- if (!netif_running(adapter->netdev) &&
- !test_bit(__E1000_TESTING, &adapter->state)) {
- e1000_power_down_phy(adapter);
- return;
- }
-
- e1000_get_phy_info(hw);
-
- if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
- !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
- u16 phy_data = 0;
- /*
- * speed up time to link by disabling smart power down, ignore
- * the return value of this function because there is nothing
- * different we would do if it failed
- */
- e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- phy_data &= ~IGP02E1000_PM_SPD;
- e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- }
-}
-
-int e1000e_up(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- /* hardware has been reset, we need to reload some things */
- e1000_configure(adapter);
-
- clear_bit(__E1000_DOWN, &adapter->state);
-
- napi_enable(&adapter->napi);
- if (adapter->msix_entries)
- e1000_configure_msix(adapter);
- e1000_irq_enable(adapter);
-
- netif_start_queue(adapter->netdev);
-
- /* fire a link change interrupt to start the watchdog */
- if (adapter->msix_entries)
- ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
- else
- ew32(ICS, E1000_ICS_LSC);
-
- return 0;
-}
-
-static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- if (!(adapter->flags2 & FLAG2_DMA_BURST))
- return;
-
- /* flush pending descriptor writebacks to memory */
- ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
- ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
-
- /* execute the writes immediately */
- e1e_flush();
-}
-
-static void e1000e_update_stats(struct e1000_adapter *adapter);
-
-void e1000e_down(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 tctl, rctl;
-
- /*
- * signal that we're down so the interrupt handler does not
- * reschedule our watchdog timer
- */
- set_bit(__E1000_DOWN, &adapter->state);
-
- /* disable receives in the hardware */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- /* flush and sleep below */
-
- netif_stop_queue(netdev);
-
- /* disable transmits in the hardware */
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_EN;
- ew32(TCTL, tctl);
- /* flush both disables and wait for them to finish */
- e1e_flush();
- usleep_range(10000, 20000);
-
- napi_disable(&adapter->napi);
- e1000_irq_disable(adapter);
-
- del_timer_sync(&adapter->watchdog_timer);
- del_timer_sync(&adapter->phy_info_timer);
-
- netif_carrier_off(netdev);
-
- spin_lock(&adapter->stats64_lock);
- e1000e_update_stats(adapter);
- spin_unlock(&adapter->stats64_lock);
-
- e1000e_flush_descriptors(adapter);
- e1000_clean_tx_ring(adapter);
- e1000_clean_rx_ring(adapter);
-
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
-
- if (!pci_channel_offline(adapter->pdev))
- e1000e_reset(adapter);
-
- /*
- * TODO: for power management, we could drop the link and
- * pci_disable_device here.
- */
-}
-
-void e1000e_reinit_locked(struct e1000_adapter *adapter)
-{
- might_sleep();
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- usleep_range(1000, 2000);
- e1000e_down(adapter);
- e1000e_up(adapter);
- clear_bit(__E1000_RESETTING, &adapter->state);
-}
-
-/**
- * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
- * @adapter: board private structure to initialize
- *
- * e1000_sw_init initializes the Adapter private data structure.
- * Fields are initialized based on PCI device information and
- * OS network device settings (MTU size).
- **/
-static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
-
- adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
- adapter->rx_ps_bsize0 = 128;
- adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
- adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
-
- spin_lock_init(&adapter->stats64_lock);
-
- e1000e_set_interrupt_capability(adapter);
-
- if (e1000_alloc_queues(adapter))
- return -ENOMEM;
-
- /* Explicitly disable IRQ since the NIC can be in any state. */
- e1000_irq_disable(adapter);
-
- set_bit(__E1000_DOWN, &adapter->state);
- return 0;
-}
-
-/**
- * e1000_intr_msi_test - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-static irqreturn_t e1000_intr_msi_test(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 icr = er32(ICR);
-
- e_dbg("icr is %08X\n", icr);
- if (icr & E1000_ICR_RXSEQ) {
- adapter->flags &= ~FLAG_MSI_TEST_FAILED;
- wmb();
- }
-
- return IRQ_HANDLED;
-}
-
-/**
- * e1000_test_msi_interrupt - Returns 0 for successful test
- * @adapter: board private struct
- *
- * code flow taken from tg3.c
- **/
-static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- int err;
-
- /* poll_enable hasn't been called yet, so don't need disable */
- /* clear any pending events */
- er32(ICR);
-
- /* free the real vector and request a test handler */
- e1000_free_irq(adapter);
- e1000e_reset_interrupt_capability(adapter);
-
- /* Assume that the test fails, if it succeeds then the test
- * MSI irq handler will unset this flag */
- adapter->flags |= FLAG_MSI_TEST_FAILED;
-
- err = pci_enable_msi(adapter->pdev);
- if (err)
- goto msi_test_failed;
-
- err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
- netdev->name, netdev);
- if (err) {
- pci_disable_msi(adapter->pdev);
- goto msi_test_failed;
- }
-
- wmb();
-
- e1000_irq_enable(adapter);
-
- /* fire an unusual interrupt on the test handler */
- ew32(ICS, E1000_ICS_RXSEQ);
- e1e_flush();
- msleep(50);
-
- e1000_irq_disable(adapter);
-
- rmb();
-
- if (adapter->flags & FLAG_MSI_TEST_FAILED) {
- adapter->int_mode = E1000E_INT_MODE_LEGACY;
- e_info("MSI interrupt test failed, using legacy interrupt.\n");
- } else
- e_dbg("MSI interrupt test succeeded!\n");
-
- free_irq(adapter->pdev->irq, netdev);
- pci_disable_msi(adapter->pdev);
-
-msi_test_failed:
- e1000e_set_interrupt_capability(adapter);
- return e1000_request_irq(adapter);
-}
-
-/**
- * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
- * @adapter: board private struct
- *
- * code flow taken from tg3.c, called with e1000 interrupts disabled.
- **/
-static int e1000_test_msi(struct e1000_adapter *adapter)
-{
- int err;
- u16 pci_cmd;
-
- if (!(adapter->flags & FLAG_MSI_ENABLED))
- return 0;
-
- /* disable SERR in case the MSI write causes a master abort */
- pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
- if (pci_cmd & PCI_COMMAND_SERR)
- pci_write_config_word(adapter->pdev, PCI_COMMAND,
- pci_cmd & ~PCI_COMMAND_SERR);
-
- err = e1000_test_msi_interrupt(adapter);
-
- /* re-enable SERR */
- if (pci_cmd & PCI_COMMAND_SERR) {
- pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
- pci_cmd |= PCI_COMMAND_SERR;
- pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
- }
-
- return err;
-}
-
-/**
- * e1000_open - Called when a network interface is made active
- * @netdev: network interface device structure
- *
- * Returns 0 on success, negative value on failure
- *
- * The open entry point is called when a network interface is made
- * active by the system (IFF_UP). At this point all resources needed
- * for transmit and receive operations are allocated, the interrupt
- * handler is registered with the OS, the watchdog timer is started,
- * and the stack is notified that the interface is ready.
- **/
-static int e1000_open(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct pci_dev *pdev = adapter->pdev;
- int err;
-
- /* disallow open during test */
- if (test_bit(__E1000_TESTING, &adapter->state))
- return -EBUSY;
-
- pm_runtime_get_sync(&pdev->dev);
-
- netif_carrier_off(netdev);
-
- /* allocate transmit descriptors */
- err = e1000e_setup_tx_resources(adapter);
- if (err)
- goto err_setup_tx;
-
- /* allocate receive descriptors */
- err = e1000e_setup_rx_resources(adapter);
- if (err)
- goto err_setup_rx;
-
- /*
- * If AMT is enabled, let the firmware know that the network
- * interface is now open and reset the part to a known state.
- */
- if (adapter->flags & FLAG_HAS_AMT) {
- e1000e_get_hw_control(adapter);
- e1000e_reset(adapter);
- }
-
- e1000e_power_up_phy(adapter);
-
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
- e1000_update_mng_vlan(adapter);
-
- /* DMA latency requirement to workaround early-receive/jumbo issue */
- if ((adapter->flags & FLAG_HAS_ERT) ||
- (adapter->hw.mac.type == e1000_pch2lan))
- pm_qos_add_request(&adapter->netdev->pm_qos_req,
- PM_QOS_CPU_DMA_LATENCY,
- PM_QOS_DEFAULT_VALUE);
-
- /*
- * before we allocate an interrupt, we must be ready to handle it.
- * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
- * as soon as we call pci_request_irq, so we have to setup our
- * clean_rx handler before we do so.
- */
- e1000_configure(adapter);
-
- err = e1000_request_irq(adapter);
- if (err)
- goto err_req_irq;
-
- /*
- * Work around PCIe errata with MSI interrupts causing some chipsets to
- * ignore e1000e MSI messages, which means we need to test our MSI
- * interrupt now
- */
- if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
- err = e1000_test_msi(adapter);
- if (err) {
- e_err("Interrupt allocation failed\n");
- goto err_req_irq;
- }
- }
-
- /* From here on the code is the same as e1000e_up() */
- clear_bit(__E1000_DOWN, &adapter->state);
-
- napi_enable(&adapter->napi);
-
- e1000_irq_enable(adapter);
-
- netif_start_queue(netdev);
-
- adapter->idle_check = true;
- pm_runtime_put(&pdev->dev);
-
- /* fire a link status change interrupt to start the watchdog */
- if (adapter->msix_entries)
- ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
- else
- ew32(ICS, E1000_ICS_LSC);
-
- return 0;
-
-err_req_irq:
- e1000e_release_hw_control(adapter);
- e1000_power_down_phy(adapter);
- e1000e_free_rx_resources(adapter);
-err_setup_rx:
- e1000e_free_tx_resources(adapter);
-err_setup_tx:
- e1000e_reset(adapter);
- pm_runtime_put_sync(&pdev->dev);
-
- return err;
-}
-
-/**
- * e1000_close - Disables a network interface
- * @netdev: network interface device structure
- *
- * Returns 0, this is not allowed to fail
- *
- * The close entry point is called when an interface is de-activated
- * by the OS. The hardware is still under the drivers control, but
- * needs to be disabled. A global MAC reset is issued to stop the
- * hardware, and all transmit and receive resources are freed.
- **/
-static int e1000_close(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct pci_dev *pdev = adapter->pdev;
-
- WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
-
- pm_runtime_get_sync(&pdev->dev);
-
- if (!test_bit(__E1000_DOWN, &adapter->state)) {
- e1000e_down(adapter);
- e1000_free_irq(adapter);
- }
- e1000_power_down_phy(adapter);
-
- e1000e_free_tx_resources(adapter);
- e1000e_free_rx_resources(adapter);
-
- /*
- * kill manageability vlan ID if supported, but not if a vlan with
- * the same ID is registered on the host OS (let 8021q kill it)
- */
- if (adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
- e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
-
- /*
- * If AMT is enabled, let the firmware know that the network
- * interface is now closed
- */
- if ((adapter->flags & FLAG_HAS_AMT) &&
- !test_bit(__E1000_TESTING, &adapter->state))
- e1000e_release_hw_control(adapter);
-
- if ((adapter->flags & FLAG_HAS_ERT) ||
- (adapter->hw.mac.type == e1000_pch2lan))
- pm_qos_remove_request(&adapter->netdev->pm_qos_req);
-
- pm_runtime_put_sync(&pdev->dev);
-
- return 0;
-}
-/**
- * e1000_set_mac - Change the Ethernet Address of the NIC
- * @netdev: network interface device structure
- * @p: pointer to an address structure
- *
- * Returns 0 on success, negative on failure
- **/
-static int e1000_set_mac(struct net_device *netdev, void *p)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct sockaddr *addr = p;
-
- if (!is_valid_ether_addr(addr->sa_data))
- return -EADDRNOTAVAIL;
-
- memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
- memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
-
- e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
-
- if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
- /* activate the work around */
- e1000e_set_laa_state_82571(&adapter->hw, 1);
-
- /*
- * Hold a copy of the LAA in RAR[14] This is done so that
- * between the time RAR[0] gets clobbered and the time it
- * gets fixed (in e1000_watchdog), the actual LAA is in one
- * of the RARs and no incoming packets directed to this port
- * are dropped. Eventually the LAA will be in RAR[0] and
- * RAR[14]
- */
- e1000e_rar_set(&adapter->hw,
- adapter->hw.mac.addr,
- adapter->hw.mac.rar_entry_count - 1);
- }
-
- return 0;
-}
-
-/**
- * e1000e_update_phy_task - work thread to update phy
- * @work: pointer to our work struct
- *
- * this worker thread exists because we must acquire a
- * semaphore to read the phy, which we could msleep while
- * waiting for it, and we can't msleep in a timer.
- **/
-static void e1000e_update_phy_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter, update_phy_task);
-
- if (test_bit(__E1000_DOWN, &adapter->state))
- return;
-
- e1000_get_phy_info(&adapter->hw);
-}
-
-/*
- * Need to wait a few seconds after link up to get diagnostic information from
- * the phy
- */
-static void e1000_update_phy_info(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *) data;
-
- if (test_bit(__E1000_DOWN, &adapter->state))
- return;
-
- schedule_work(&adapter->update_phy_task);
-}
-
-/**
- * e1000e_update_phy_stats - Update the PHY statistics counters
- * @adapter: board private structure
- *
- * Read/clear the upper 16-bit PHY registers and read/accumulate lower
- **/
-static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- s32 ret_val;
- u16 phy_data;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return;
-
- /*
- * A page set is expensive so check if already on desired page.
- * If not, set to the page with the PHY status registers.
- */
- hw->phy.addr = 1;
- ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
- &phy_data);
- if (ret_val)
- goto release;
- if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
- ret_val = hw->phy.ops.set_page(hw,
- HV_STATS_PAGE << IGP_PAGE_SHIFT);
- if (ret_val)
- goto release;
- }
-
- /* Single Collision Count */
- hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
- if (!ret_val)
- adapter->stats.scc += phy_data;
-
- /* Excessive Collision Count */
- hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
- if (!ret_val)
- adapter->stats.ecol += phy_data;
-
- /* Multiple Collision Count */
- hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
- if (!ret_val)
- adapter->stats.mcc += phy_data;
-
- /* Late Collision Count */
- hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
- if (!ret_val)
- adapter->stats.latecol += phy_data;
-
- /* Collision Count - also used for adaptive IFS */
- hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
- if (!ret_val)
- hw->mac.collision_delta = phy_data;
-
- /* Defer Count */
- hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
- if (!ret_val)
- adapter->stats.dc += phy_data;
-
- /* Transmit with no CRS */
- hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
- ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
- if (!ret_val)
- adapter->stats.tncrs += phy_data;
-
-release:
- hw->phy.ops.release(hw);
-}
-
-/**
- * e1000e_update_stats - Update the board statistics counters
- * @adapter: board private structure
- **/
-static void e1000e_update_stats(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- struct pci_dev *pdev = adapter->pdev;
-
- /*
- * Prevent stats update while adapter is being reset, or if the pci
- * connection is down.
- */
- if (adapter->link_speed == 0)
- return;
- if (pci_channel_offline(pdev))
- return;
-
- adapter->stats.crcerrs += er32(CRCERRS);
- adapter->stats.gprc += er32(GPRC);
- adapter->stats.gorc += er32(GORCL);
- er32(GORCH); /* Clear gorc */
- adapter->stats.bprc += er32(BPRC);
- adapter->stats.mprc += er32(MPRC);
- adapter->stats.roc += er32(ROC);
-
- adapter->stats.mpc += er32(MPC);
-
- /* Half-duplex statistics */
- if (adapter->link_duplex == HALF_DUPLEX) {
- if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
- e1000e_update_phy_stats(adapter);
- } else {
- adapter->stats.scc += er32(SCC);
- adapter->stats.ecol += er32(ECOL);
- adapter->stats.mcc += er32(MCC);
- adapter->stats.latecol += er32(LATECOL);
- adapter->stats.dc += er32(DC);
-
- hw->mac.collision_delta = er32(COLC);
-
- if ((hw->mac.type != e1000_82574) &&
- (hw->mac.type != e1000_82583))
- adapter->stats.tncrs += er32(TNCRS);
- }
- adapter->stats.colc += hw->mac.collision_delta;
- }
-
- adapter->stats.xonrxc += er32(XONRXC);
- adapter->stats.xontxc += er32(XONTXC);
- adapter->stats.xoffrxc += er32(XOFFRXC);
- adapter->stats.xofftxc += er32(XOFFTXC);
- adapter->stats.gptc += er32(GPTC);
- adapter->stats.gotc += er32(GOTCL);
- er32(GOTCH); /* Clear gotc */
- adapter->stats.rnbc += er32(RNBC);
- adapter->stats.ruc += er32(RUC);
-
- adapter->stats.mptc += er32(MPTC);
- adapter->stats.bptc += er32(BPTC);
-
- /* used for adaptive IFS */
-
- hw->mac.tx_packet_delta = er32(TPT);
- adapter->stats.tpt += hw->mac.tx_packet_delta;
-
- adapter->stats.algnerrc += er32(ALGNERRC);
- adapter->stats.rxerrc += er32(RXERRC);
- adapter->stats.cexterr += er32(CEXTERR);
- adapter->stats.tsctc += er32(TSCTC);
- adapter->stats.tsctfc += er32(TSCTFC);
-
- /* Fill out the OS statistics structure */
- netdev->stats.multicast = adapter->stats.mprc;
- netdev->stats.collisions = adapter->stats.colc;
-
- /* Rx Errors */
-
- /*
- * RLEC on some newer hardware can be incorrect so build
- * our own version based on RUC and ROC
- */
- netdev->stats.rx_errors = adapter->stats.rxerrc +
- adapter->stats.crcerrs + adapter->stats.algnerrc +
- adapter->stats.ruc + adapter->stats.roc +
- adapter->stats.cexterr;
- netdev->stats.rx_length_errors = adapter->stats.ruc +
- adapter->stats.roc;
- netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
- netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
- netdev->stats.rx_missed_errors = adapter->stats.mpc;
-
- /* Tx Errors */
- netdev->stats.tx_errors = adapter->stats.ecol +
- adapter->stats.latecol;
- netdev->stats.tx_aborted_errors = adapter->stats.ecol;
- netdev->stats.tx_window_errors = adapter->stats.latecol;
- netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
-
- /* Tx Dropped needs to be maintained elsewhere */
-
- /* Management Stats */
- adapter->stats.mgptc += er32(MGTPTC);
- adapter->stats.mgprc += er32(MGTPRC);
- adapter->stats.mgpdc += er32(MGTPDC);
-}
-
-/**
- * e1000_phy_read_status - Update the PHY register status snapshot
- * @adapter: board private structure
- **/
-static void e1000_phy_read_status(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_phy_regs *phy = &adapter->phy_regs;
-
- if ((er32(STATUS) & E1000_STATUS_LU) &&
- (adapter->hw.phy.media_type == e1000_media_type_copper)) {
- int ret_val;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
- ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
- ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
- ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
- ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
- ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
- ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
- ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
- if (ret_val)
- e_warn("Error reading PHY register\n");
- } else {
- /*
- * Do not read PHY registers if link is not up
- * Set values to typical power-on defaults
- */
- phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
- phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
- BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
- BMSR_ERCAP);
- phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
- ADVERTISE_ALL | ADVERTISE_CSMA);
- phy->lpa = 0;
- phy->expansion = EXPANSION_ENABLENPAGE;
- phy->ctrl1000 = ADVERTISE_1000FULL;
- phy->stat1000 = 0;
- phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
- }
-}
-
-static void e1000_print_link_info(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl = er32(CTRL);
-
- /* Link status message must follow this format for user tools */
- printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
- "Flow Control: %s\n",
- adapter->netdev->name,
- adapter->link_speed,
- (adapter->link_duplex == FULL_DUPLEX) ?
- "Full Duplex" : "Half Duplex",
- ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
- "Rx/Tx" :
- ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
- ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
-}
-
-static bool e1000e_has_link(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- bool link_active = 0;
- s32 ret_val = 0;
-
- /*
- * get_link_status is set on LSC (link status) interrupt or
- * Rx sequence error interrupt. get_link_status will stay
- * false until the check_for_link establishes link
- * for copper adapters ONLY
- */
- switch (hw->phy.media_type) {
- case e1000_media_type_copper:
- if (hw->mac.get_link_status) {
- ret_val = hw->mac.ops.check_for_link(hw);
- link_active = !hw->mac.get_link_status;
- } else {
- link_active = 1;
- }
- break;
- case e1000_media_type_fiber:
- ret_val = hw->mac.ops.check_for_link(hw);
- link_active = !!(er32(STATUS) & E1000_STATUS_LU);
- break;
- case e1000_media_type_internal_serdes:
- ret_val = hw->mac.ops.check_for_link(hw);
- link_active = adapter->hw.mac.serdes_has_link;
- break;
- default:
- case e1000_media_type_unknown:
- break;
- }
-
- if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
- (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
- /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
- e_info("Gigabit has been disabled, downgrading speed\n");
- }
-
- return link_active;
-}
-
-static void e1000e_enable_receives(struct e1000_adapter *adapter)
-{
- /* make sure the receive unit is started */
- if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
- (adapter->flags & FLAG_RX_RESTART_NOW)) {
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl = er32(RCTL);
- ew32(RCTL, rctl | E1000_RCTL_EN);
- adapter->flags &= ~FLAG_RX_RESTART_NOW;
- }
-}
-
-static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- /*
- * With 82574 controllers, PHY needs to be checked periodically
- * for hung state and reset, if two calls return true
- */
- if (e1000_check_phy_82574(hw))
- adapter->phy_hang_count++;
- else
- adapter->phy_hang_count = 0;
-
- if (adapter->phy_hang_count > 1) {
- adapter->phy_hang_count = 0;
- schedule_work(&adapter->reset_task);
- }
-}
-
-/**
- * e1000_watchdog - Timer Call-back
- * @data: pointer to adapter cast into an unsigned long
- **/
-static void e1000_watchdog(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *) data;
-
- /* Do the rest outside of interrupt context */
- schedule_work(&adapter->watchdog_task);
-
- /* TODO: make this use queue_delayed_work() */
-}
-
-static void e1000_watchdog_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter, watchdog_task);
- struct net_device *netdev = adapter->netdev;
- struct e1000_mac_info *mac = &adapter->hw.mac;
- struct e1000_phy_info *phy = &adapter->hw.phy;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_hw *hw = &adapter->hw;
- u32 link, tctl;
-
- if (test_bit(__E1000_DOWN, &adapter->state))
- return;
-
- link = e1000e_has_link(adapter);
- if ((netif_carrier_ok(netdev)) && link) {
- /* Cancel scheduled suspend requests. */
- pm_runtime_resume(netdev->dev.parent);
-
- e1000e_enable_receives(adapter);
- goto link_up;
- }
-
- if ((e1000e_enable_tx_pkt_filtering(hw)) &&
- (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
- e1000_update_mng_vlan(adapter);
-
- if (link) {
- if (!netif_carrier_ok(netdev)) {
- bool txb2b = 1;
-
- /* Cancel scheduled suspend requests. */
- pm_runtime_resume(netdev->dev.parent);
-
- /* update snapshot of PHY registers on LSC */
- e1000_phy_read_status(adapter);
- mac->ops.get_link_up_info(&adapter->hw,
- &adapter->link_speed,
- &adapter->link_duplex);
- e1000_print_link_info(adapter);
- /*
- * On supported PHYs, check for duplex mismatch only
- * if link has autonegotiated at 10/100 half
- */
- if ((hw->phy.type == e1000_phy_igp_3 ||
- hw->phy.type == e1000_phy_bm) &&
- (hw->mac.autoneg == true) &&
- (adapter->link_speed == SPEED_10 ||
- adapter->link_speed == SPEED_100) &&
- (adapter->link_duplex == HALF_DUPLEX)) {
- u16 autoneg_exp;
-
- e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
-
- if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
- e_info("Autonegotiated half duplex but"
- " link partner cannot autoneg. "
- " Try forcing full duplex if "
- "link gets many collisions.\n");
- }
-
- /* adjust timeout factor according to speed/duplex */
- adapter->tx_timeout_factor = 1;
- switch (adapter->link_speed) {
- case SPEED_10:
- txb2b = 0;
- adapter->tx_timeout_factor = 16;
- break;
- case SPEED_100:
- txb2b = 0;
- adapter->tx_timeout_factor = 10;
- break;
- }
-
- /*
- * workaround: re-program speed mode bit after
- * link-up event
- */
- if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
- !txb2b) {
- u32 tarc0;
- tarc0 = er32(TARC(0));
- tarc0 &= ~SPEED_MODE_BIT;
- ew32(TARC(0), tarc0);
- }
-
- /*
- * disable TSO for pcie and 10/100 speeds, to avoid
- * some hardware issues
- */
- if (!(adapter->flags & FLAG_TSO_FORCE)) {
- switch (adapter->link_speed) {
- case SPEED_10:
- case SPEED_100:
- e_info("10/100 speed: disabling TSO\n");
- netdev->features &= ~NETIF_F_TSO;
- netdev->features &= ~NETIF_F_TSO6;
- break;
- case SPEED_1000:
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
- break;
- default:
- /* oops */
- break;
- }
- }
-
- /*
- * enable transmits in the hardware, need to do this
- * after setting TARC(0)
- */
- tctl = er32(TCTL);
- tctl |= E1000_TCTL_EN;
- ew32(TCTL, tctl);
-
- /*
- * Perform any post-link-up configuration before
- * reporting link up.
- */
- if (phy->ops.cfg_on_link_up)
- phy->ops.cfg_on_link_up(hw);
-
- netif_carrier_on(netdev);
-
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->phy_info_timer,
- round_jiffies(jiffies + 2 * HZ));
- }
- } else {
- if (netif_carrier_ok(netdev)) {
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- /* Link status message must follow this format */
- printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
- adapter->netdev->name);
- netif_carrier_off(netdev);
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->phy_info_timer,
- round_jiffies(jiffies + 2 * HZ));
-
- if (adapter->flags & FLAG_RX_NEEDS_RESTART)
- schedule_work(&adapter->reset_task);
- else
- pm_schedule_suspend(netdev->dev.parent,
- LINK_TIMEOUT);
- }
- }
-
-link_up:
- spin_lock(&adapter->stats64_lock);
- e1000e_update_stats(adapter);
-
- mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
- adapter->tpt_old = adapter->stats.tpt;
- mac->collision_delta = adapter->stats.colc - adapter->colc_old;
- adapter->colc_old = adapter->stats.colc;
-
- adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
- adapter->gorc_old = adapter->stats.gorc;
- adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
- adapter->gotc_old = adapter->stats.gotc;
- spin_unlock(&adapter->stats64_lock);
-
- e1000e_update_adaptive(&adapter->hw);
-
- if (!netif_carrier_ok(netdev) &&
- (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
- /*
- * We've lost link, so the controller stops DMA,
- * but we've got queued Tx work that's never going
- * to get done, so reset controller to flush Tx.
- * (Do the reset outside of interrupt context).
- */
- schedule_work(&adapter->reset_task);
- /* return immediately since reset is imminent */
- return;
- }
-
- /* Simple mode for Interrupt Throttle Rate (ITR) */
- if (adapter->itr_setting == 4) {
- /*
- * Symmetric Tx/Rx gets a reduced ITR=2000;
- * Total asymmetrical Tx or Rx gets ITR=8000;
- * everyone else is between 2000-8000.
- */
- u32 goc = (adapter->gotc + adapter->gorc) / 10000;
- u32 dif = (adapter->gotc > adapter->gorc ?
- adapter->gotc - adapter->gorc :
- adapter->gorc - adapter->gotc) / 10000;
- u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
-
- ew32(ITR, 1000000000 / (itr * 256));
- }
-
- /* Cause software interrupt to ensure Rx ring is cleaned */
- if (adapter->msix_entries)
- ew32(ICS, adapter->rx_ring->ims_val);
- else
- ew32(ICS, E1000_ICS_RXDMT0);
-
- /* flush pending descriptors to memory before detecting Tx hang */
- e1000e_flush_descriptors(adapter);
-
- /* Force detection of hung controller every watchdog period */
- adapter->detect_tx_hung = 1;
-
- /*
- * With 82571 controllers, LAA may be overwritten due to controller
- * reset from the other port. Set the appropriate LAA in RAR[0]
- */
- if (e1000e_get_laa_state_82571(hw))
- e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
-
- if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
- e1000e_check_82574_phy_workaround(adapter);
-
- /* Reset the timer */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer,
- round_jiffies(jiffies + 2 * HZ));
-}
-
-#define E1000_TX_FLAGS_CSUM 0x00000001
-#define E1000_TX_FLAGS_VLAN 0x00000002
-#define E1000_TX_FLAGS_TSO 0x00000004
-#define E1000_TX_FLAGS_IPV4 0x00000008
-#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
-#define E1000_TX_FLAGS_VLAN_SHIFT 16
-
-static int e1000_tso(struct e1000_adapter *adapter,
- struct sk_buff *skb)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_context_desc *context_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i;
- u32 cmd_length = 0;
- u16 ipcse = 0, tucse, mss;
- u8 ipcss, ipcso, tucss, tucso, hdr_len;
-
- if (!skb_is_gso(skb))
- return 0;
-
- if (skb_header_cloned(skb)) {
- int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
-
- if (err)
- return err;
- }
-
- hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
- mss = skb_shinfo(skb)->gso_size;
- if (skb->protocol == htons(ETH_P_IP)) {
- struct iphdr *iph = ip_hdr(skb);
- iph->tot_len = 0;
- iph->check = 0;
- tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
- 0, IPPROTO_TCP, 0);
- cmd_length = E1000_TXD_CMD_IP;
- ipcse = skb_transport_offset(skb) - 1;
- } else if (skb_is_gso_v6(skb)) {
- ipv6_hdr(skb)->payload_len = 0;
- tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
- &ipv6_hdr(skb)->daddr,
- 0, IPPROTO_TCP, 0);
- ipcse = 0;
- }
- ipcss = skb_network_offset(skb);
- ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
- tucss = skb_transport_offset(skb);
- tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
- tucse = 0;
-
- cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
- E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
-
- i = tx_ring->next_to_use;
- context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
-
- context_desc->lower_setup.ip_fields.ipcss = ipcss;
- context_desc->lower_setup.ip_fields.ipcso = ipcso;
- context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
- context_desc->upper_setup.tcp_fields.tucss = tucss;
- context_desc->upper_setup.tcp_fields.tucso = tucso;
- context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
- context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
- context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
- context_desc->cmd_and_length = cpu_to_le32(cmd_length);
-
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- tx_ring->next_to_use = i;
-
- return 1;
-}
-
-static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_context_desc *context_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i;
- u8 css;
- u32 cmd_len = E1000_TXD_CMD_DEXT;
- __be16 protocol;
-
- if (skb->ip_summed != CHECKSUM_PARTIAL)
- return 0;
-
- if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
- protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
- else
- protocol = skb->protocol;
-
- switch (protocol) {
- case cpu_to_be16(ETH_P_IP):
- if (ip_hdr(skb)->protocol == IPPROTO_TCP)
- cmd_len |= E1000_TXD_CMD_TCP;
- break;
- case cpu_to_be16(ETH_P_IPV6):
- /* XXX not handling all IPV6 headers */
- if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
- cmd_len |= E1000_TXD_CMD_TCP;
- break;
- default:
- if (unlikely(net_ratelimit()))
- e_warn("checksum_partial proto=%x!\n",
- be16_to_cpu(protocol));
- break;
- }
-
- css = skb_checksum_start_offset(skb);
-
- i = tx_ring->next_to_use;
- buffer_info = &tx_ring->buffer_info[i];
- context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
-
- context_desc->lower_setup.ip_config = 0;
- context_desc->upper_setup.tcp_fields.tucss = css;
- context_desc->upper_setup.tcp_fields.tucso =
- css + skb->csum_offset;
- context_desc->upper_setup.tcp_fields.tucse = 0;
- context_desc->tcp_seg_setup.data = 0;
- context_desc->cmd_and_length = cpu_to_le32(cmd_len);
-
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- tx_ring->next_to_use = i;
-
- return 1;
-}
-
-#define E1000_MAX_PER_TXD 8192
-#define E1000_MAX_TXD_PWR 12
-
-static int e1000_tx_map(struct e1000_adapter *adapter,
- struct sk_buff *skb, unsigned int first,
- unsigned int max_per_txd, unsigned int nr_frags,
- unsigned int mss)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_buffer *buffer_info;
- unsigned int len = skb_headlen(skb);
- unsigned int offset = 0, size, count = 0, i;
- unsigned int f, bytecount, segs;
-
- i = tx_ring->next_to_use;
-
- while (len) {
- buffer_info = &tx_ring->buffer_info[i];
- size = min(len, max_per_txd);
-
- buffer_info->length = size;
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
- buffer_info->dma = dma_map_single(&pdev->dev,
- skb->data + offset,
- size, DMA_TO_DEVICE);
- buffer_info->mapped_as_page = false;
- if (dma_mapping_error(&pdev->dev, buffer_info->dma))
- goto dma_error;
-
- len -= size;
- offset += size;
- count++;
-
- if (len) {
- i++;
- if (i == tx_ring->count)
- i = 0;
- }
- }
-
- for (f = 0; f < nr_frags; f++) {
- struct skb_frag_struct *frag;
-
- frag = &skb_shinfo(skb)->frags[f];
- len = frag->size;
- offset = frag->page_offset;
-
- while (len) {
- i++;
- if (i == tx_ring->count)
- i = 0;
-
- buffer_info = &tx_ring->buffer_info[i];
- size = min(len, max_per_txd);
-
- buffer_info->length = size;
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
- buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
- offset, size,
- DMA_TO_DEVICE);
- buffer_info->mapped_as_page = true;
- if (dma_mapping_error(&pdev->dev, buffer_info->dma))
- goto dma_error;
-
- len -= size;
- offset += size;
- count++;
- }
- }
-
- segs = skb_shinfo(skb)->gso_segs ? : 1;
- /* multiply data chunks by size of headers */
- bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
-
- tx_ring->buffer_info[i].skb = skb;
- tx_ring->buffer_info[i].segs = segs;
- tx_ring->buffer_info[i].bytecount = bytecount;
- tx_ring->buffer_info[first].next_to_watch = i;
-
- return count;
-
-dma_error:
- dev_err(&pdev->dev, "Tx DMA map failed\n");
- buffer_info->dma = 0;
- if (count)
- count--;
-
- while (count--) {
- if (i == 0)
- i += tx_ring->count;
- i--;
- buffer_info = &tx_ring->buffer_info[i];
- e1000_put_txbuf(adapter, buffer_info);
- }
-
- return 0;
-}
-
-static void e1000_tx_queue(struct e1000_adapter *adapter,
- int tx_flags, int count)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_tx_desc *tx_desc = NULL;
- struct e1000_buffer *buffer_info;
- u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
- unsigned int i;
-
- if (tx_flags & E1000_TX_FLAGS_TSO) {
- txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
- E1000_TXD_CMD_TSE;
- txd_upper |= E1000_TXD_POPTS_TXSM << 8;
-
- if (tx_flags & E1000_TX_FLAGS_IPV4)
- txd_upper |= E1000_TXD_POPTS_IXSM << 8;
- }
-
- if (tx_flags & E1000_TX_FLAGS_CSUM) {
- txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- txd_upper |= E1000_TXD_POPTS_TXSM << 8;
- }
-
- if (tx_flags & E1000_TX_FLAGS_VLAN) {
- txd_lower |= E1000_TXD_CMD_VLE;
- txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
- }
-
- i = tx_ring->next_to_use;
-
- do {
- buffer_info = &tx_ring->buffer_info[i];
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
- tx_desc->lower.data =
- cpu_to_le32(txd_lower | buffer_info->length);
- tx_desc->upper.data = cpu_to_le32(txd_upper);
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- } while (--count > 0);
-
- tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
-
- /*
- * Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64).
- */
- wmb();
-
- tx_ring->next_to_use = i;
- writel(i, adapter->hw.hw_addr + tx_ring->tail);
- /*
- * we need this if more than one processor can write to our tail
- * at a time, it synchronizes IO on IA64/Altix systems
- */
- mmiowb();
-}
-
-#define MINIMUM_DHCP_PACKET_SIZE 282
-static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
- struct sk_buff *skb)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 length, offset;
-
- if (vlan_tx_tag_present(skb)) {
- if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
- (adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
- return 0;
- }
-
- if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
- return 0;
-
- if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
- return 0;
-
- {
- const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
- struct udphdr *udp;
-
- if (ip->protocol != IPPROTO_UDP)
- return 0;
-
- udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
- if (ntohs(udp->dest) != 67)
- return 0;
-
- offset = (u8 *)udp + 8 - skb->data;
- length = skb->len - offset;
- return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
- }
-
- return 0;
-}
-
-static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- netif_stop_queue(netdev);
- /*
- * Herbert's original patch had:
- * smp_mb__after_netif_stop_queue();
- * but since that doesn't exist yet, just open code it.
- */
- smp_mb();
-
- /*
- * We need to check again in a case another CPU has just
- * made room available.
- */
- if (e1000_desc_unused(adapter->tx_ring) < size)
- return -EBUSY;
-
- /* A reprieve! */
- netif_start_queue(netdev);
- ++adapter->restart_queue;
- return 0;
-}
-
-static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (e1000_desc_unused(adapter->tx_ring) >= size)
- return 0;
- return __e1000_maybe_stop_tx(netdev, size);
-}
-
-#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
-static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
- struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_ring *tx_ring = adapter->tx_ring;
- unsigned int first;
- unsigned int max_per_txd = E1000_MAX_PER_TXD;
- unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
- unsigned int tx_flags = 0;
- unsigned int len = skb_headlen(skb);
- unsigned int nr_frags;
- unsigned int mss;
- int count = 0;
- int tso;
- unsigned int f;
-
- if (test_bit(__E1000_DOWN, &adapter->state)) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- if (skb->len <= 0) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- mss = skb_shinfo(skb)->gso_size;
- /*
- * The controller does a simple calculation to
- * make sure there is enough room in the FIFO before
- * initiating the DMA for each buffer. The calc is:
- * 4 = ceil(buffer len/mss). To make sure we don't
- * overrun the FIFO, adjust the max buffer len if mss
- * drops.
- */
- if (mss) {
- u8 hdr_len;
- max_per_txd = min(mss << 2, max_per_txd);
- max_txd_pwr = fls(max_per_txd) - 1;
-
- /*
- * TSO Workaround for 82571/2/3 Controllers -- if skb->data
- * points to just header, pull a few bytes of payload from
- * frags into skb->data
- */
- hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
- /*
- * we do this workaround for ES2LAN, but it is un-necessary,
- * avoiding it could save a lot of cycles
- */
- if (skb->data_len && (hdr_len == len)) {
- unsigned int pull_size;
-
- pull_size = min((unsigned int)4, skb->data_len);
- if (!__pskb_pull_tail(skb, pull_size)) {
- e_err("__pskb_pull_tail failed.\n");
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
- len = skb_headlen(skb);
- }
- }
-
- /* reserve a descriptor for the offload context */
- if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
- count++;
- count++;
-
- count += TXD_USE_COUNT(len, max_txd_pwr);
-
- nr_frags = skb_shinfo(skb)->nr_frags;
- for (f = 0; f < nr_frags; f++)
- count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
- max_txd_pwr);
-
- if (adapter->hw.mac.tx_pkt_filtering)
- e1000_transfer_dhcp_info(adapter, skb);
-
- /*
- * need: count + 2 desc gap to keep tail from touching
- * head, otherwise try next time
- */
- if (e1000_maybe_stop_tx(netdev, count + 2))
- return NETDEV_TX_BUSY;
-
- if (vlan_tx_tag_present(skb)) {
- tx_flags |= E1000_TX_FLAGS_VLAN;
- tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
- }
-
- first = tx_ring->next_to_use;
-
- tso = e1000_tso(adapter, skb);
- if (tso < 0) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- if (tso)
- tx_flags |= E1000_TX_FLAGS_TSO;
- else if (e1000_tx_csum(adapter, skb))
- tx_flags |= E1000_TX_FLAGS_CSUM;
-
- /*
- * Old method was to assume IPv4 packet by default if TSO was enabled.
- * 82571 hardware supports TSO capabilities for IPv6 as well...
- * no longer assume, we must.
- */
- if (skb->protocol == htons(ETH_P_IP))
- tx_flags |= E1000_TX_FLAGS_IPV4;
-
- /* if count is 0 then mapping error has occurred */
- count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
- if (count) {
- e1000_tx_queue(adapter, tx_flags, count);
- /* Make sure there is space in the ring for the next send. */
- e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
-
- } else {
- dev_kfree_skb_any(skb);
- tx_ring->buffer_info[first].time_stamp = 0;
- tx_ring->next_to_use = first;
- }
-
- return NETDEV_TX_OK;
-}
-
-/**
- * e1000_tx_timeout - Respond to a Tx Hang
- * @netdev: network interface device structure
- **/
-static void e1000_tx_timeout(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /* Do the reset outside of interrupt context */
- adapter->tx_timeout_count++;
- schedule_work(&adapter->reset_task);
-}
-
-static void e1000_reset_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter;
- adapter = container_of(work, struct e1000_adapter, reset_task);
-
- /* don't run the task if already down */
- if (test_bit(__E1000_DOWN, &adapter->state))
- return;
-
- if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
- (adapter->flags & FLAG_RX_RESTART_NOW))) {
- e1000e_dump(adapter);
- e_err("Reset adapter\n");
- }
- e1000e_reinit_locked(adapter);
-}
-
-/**
- * e1000_get_stats64 - Get System Network Statistics
- * @netdev: network interface device structure
- * @stats: rtnl_link_stats64 pointer
- *
- * Returns the address of the device statistics structure.
- **/
-struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
- struct rtnl_link_stats64 *stats)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- memset(stats, 0, sizeof(struct rtnl_link_stats64));
- spin_lock(&adapter->stats64_lock);
- e1000e_update_stats(adapter);
- /* Fill out the OS statistics structure */
- stats->rx_bytes = adapter->stats.gorc;
- stats->rx_packets = adapter->stats.gprc;
- stats->tx_bytes = adapter->stats.gotc;
- stats->tx_packets = adapter->stats.gptc;
- stats->multicast = adapter->stats.mprc;
- stats->collisions = adapter->stats.colc;
-
- /* Rx Errors */
-
- /*
- * RLEC on some newer hardware can be incorrect so build
- * our own version based on RUC and ROC
- */
- stats->rx_errors = adapter->stats.rxerrc +
- adapter->stats.crcerrs + adapter->stats.algnerrc +
- adapter->stats.ruc + adapter->stats.roc +
- adapter->stats.cexterr;
- stats->rx_length_errors = adapter->stats.ruc +
- adapter->stats.roc;
- stats->rx_crc_errors = adapter->stats.crcerrs;
- stats->rx_frame_errors = adapter->stats.algnerrc;
- stats->rx_missed_errors = adapter->stats.mpc;
-
- /* Tx Errors */
- stats->tx_errors = adapter->stats.ecol +
- adapter->stats.latecol;
- stats->tx_aborted_errors = adapter->stats.ecol;
- stats->tx_window_errors = adapter->stats.latecol;
- stats->tx_carrier_errors = adapter->stats.tncrs;
-
- /* Tx Dropped needs to be maintained elsewhere */
-
- spin_unlock(&adapter->stats64_lock);
- return stats;
-}
-
-/**
- * e1000_change_mtu - Change the Maximum Transfer Unit
- * @netdev: network interface device structure
- * @new_mtu: new value for maximum frame size
- *
- * Returns 0 on success, negative on failure
- **/
-static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
-
- /* Jumbo frame support */
- if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
- !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
- e_err("Jumbo Frames not supported.\n");
- return -EINVAL;
- }
-
- /* Supported frame sizes */
- if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
- (max_frame > adapter->max_hw_frame_size)) {
- e_err("Unsupported MTU setting\n");
- return -EINVAL;
- }
-
- /* Jumbo frame workaround on 82579 requires CRC be stripped */
- if ((adapter->hw.mac.type == e1000_pch2lan) &&
- !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
- (new_mtu > ETH_DATA_LEN)) {
- e_err("Jumbo Frames not supported on 82579 when CRC "
- "stripping is disabled.\n");
- return -EINVAL;
- }
-
- /* 82573 Errata 17 */
- if (((adapter->hw.mac.type == e1000_82573) ||
- (adapter->hw.mac.type == e1000_82574)) &&
- (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
- adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
- e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
- }
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- usleep_range(1000, 2000);
- /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
- adapter->max_frame_size = max_frame;
- e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
- netdev->mtu = new_mtu;
- if (netif_running(netdev))
- e1000e_down(adapter);
-
- /*
- * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
- * means we reserve 2 more, this pushes us to allocate from the next
- * larger slab size.
- * i.e. RXBUFFER_2048 --> size-4096 slab
- * However with the new *_jumbo_rx* routines, jumbo receives will use
- * fragmented skbs
- */
-
- if (max_frame <= 2048)
- adapter->rx_buffer_len = 2048;
- else
- adapter->rx_buffer_len = 4096;
-
- /* adjust allocation if LPE protects us, and we aren't using SBP */
- if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
- (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
- adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
- + ETH_FCS_LEN;
-
- if (netif_running(netdev))
- e1000e_up(adapter);
- else
- e1000e_reset(adapter);
-
- clear_bit(__E1000_RESETTING, &adapter->state);
-
- return 0;
-}
-
-static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
- int cmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct mii_ioctl_data *data = if_mii(ifr);
-
- if (adapter->hw.phy.media_type != e1000_media_type_copper)
- return -EOPNOTSUPP;
-
- switch (cmd) {
- case SIOCGMIIPHY:
- data->phy_id = adapter->hw.phy.addr;
- break;
- case SIOCGMIIREG:
- e1000_phy_read_status(adapter);
-
- switch (data->reg_num & 0x1F) {
- case MII_BMCR:
- data->val_out = adapter->phy_regs.bmcr;
- break;
- case MII_BMSR:
- data->val_out = adapter->phy_regs.bmsr;
- break;
- case MII_PHYSID1:
- data->val_out = (adapter->hw.phy.id >> 16);
- break;
- case MII_PHYSID2:
- data->val_out = (adapter->hw.phy.id & 0xFFFF);
- break;
- case MII_ADVERTISE:
- data->val_out = adapter->phy_regs.advertise;
- break;
- case MII_LPA:
- data->val_out = adapter->phy_regs.lpa;
- break;
- case MII_EXPANSION:
- data->val_out = adapter->phy_regs.expansion;
- break;
- case MII_CTRL1000:
- data->val_out = adapter->phy_regs.ctrl1000;
- break;
- case MII_STAT1000:
- data->val_out = adapter->phy_regs.stat1000;
- break;
- case MII_ESTATUS:
- data->val_out = adapter->phy_regs.estatus;
- break;
- default:
- return -EIO;
- }
- break;
- case SIOCSMIIREG:
- default:
- return -EOPNOTSUPP;
- }
- return 0;
-}
-
-static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
-{
- switch (cmd) {
- case SIOCGMIIPHY:
- case SIOCGMIIREG:
- case SIOCSMIIREG:
- return e1000_mii_ioctl(netdev, ifr, cmd);
- default:
- return -EOPNOTSUPP;
- }
-}
-
-static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 i, mac_reg;
- u16 phy_reg, wuc_enable;
- int retval = 0;
-
- /* copy MAC RARs to PHY RARs */
- e1000_copy_rx_addrs_to_phy_ich8lan(hw);
-
- retval = hw->phy.ops.acquire(hw);
- if (retval) {
- e_err("Could not acquire PHY\n");
- return retval;
- }
-
- /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
- retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
- if (retval)
- goto out;
-
- /* copy MAC MTA to PHY MTA - only needed for pchlan */
- for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
- mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
- hw->phy.ops.write_reg_page(hw, BM_MTA(i),
- (u16)(mac_reg & 0xFFFF));
- hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
- (u16)((mac_reg >> 16) & 0xFFFF));
- }
-
- /* configure PHY Rx Control register */
- hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
- mac_reg = er32(RCTL);
- if (mac_reg & E1000_RCTL_UPE)
- phy_reg |= BM_RCTL_UPE;
- if (mac_reg & E1000_RCTL_MPE)
- phy_reg |= BM_RCTL_MPE;
- phy_reg &= ~(BM_RCTL_MO_MASK);
- if (mac_reg & E1000_RCTL_MO_3)
- phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
- << BM_RCTL_MO_SHIFT);
- if (mac_reg & E1000_RCTL_BAM)
- phy_reg |= BM_RCTL_BAM;
- if (mac_reg & E1000_RCTL_PMCF)
- phy_reg |= BM_RCTL_PMCF;
- mac_reg = er32(CTRL);
- if (mac_reg & E1000_CTRL_RFCE)
- phy_reg |= BM_RCTL_RFCE;
- hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
-
- /* enable PHY wakeup in MAC register */
- ew32(WUFC, wufc);
- ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
-
- /* configure and enable PHY wakeup in PHY registers */
- hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
- hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
-
- /* activate PHY wakeup */
- wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
- retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
- if (retval)
- e_err("Could not set PHY Host Wakeup bit\n");
-out:
- hw->phy.ops.release(hw);
-
- return retval;
-}
-
-static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
- bool runtime)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl, ctrl_ext, rctl, status;
- /* Runtime suspend should only enable wakeup for link changes */
- u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
- int retval = 0;
-
- netif_device_detach(netdev);
-
- if (netif_running(netdev)) {
- WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
- e1000e_down(adapter);
- e1000_free_irq(adapter);
- }
- e1000e_reset_interrupt_capability(adapter);
-
- retval = pci_save_state(pdev);
- if (retval)
- return retval;
-
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- wufc &= ~E1000_WUFC_LNKC;
-
- if (wufc) {
- e1000_setup_rctl(adapter);
- e1000_set_multi(netdev);
-
- /* turn on all-multi mode if wake on multicast is enabled */
- if (wufc & E1000_WUFC_MC) {
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_MPE;
- ew32(RCTL, rctl);
- }
-
- ctrl = er32(CTRL);
- /* advertise wake from D3Cold */
- #define E1000_CTRL_ADVD3WUC 0x00100000
- /* phy power management enable */
- #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
- ctrl |= E1000_CTRL_ADVD3WUC;
- if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
- ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
- ew32(CTRL, ctrl);
-
- if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
- adapter->hw.phy.media_type ==
- e1000_media_type_internal_serdes) {
- /* keep the laser running in D3 */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- if (adapter->flags & FLAG_IS_ICH)
- e1000_suspend_workarounds_ich8lan(&adapter->hw);
-
- /* Allow time for pending master requests to run */
- e1000e_disable_pcie_master(&adapter->hw);
-
- if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
- /* enable wakeup by the PHY */
- retval = e1000_init_phy_wakeup(adapter, wufc);
- if (retval)
- return retval;
- } else {
- /* enable wakeup by the MAC */
- ew32(WUFC, wufc);
- ew32(WUC, E1000_WUC_PME_EN);
- }
- } else {
- ew32(WUC, 0);
- ew32(WUFC, 0);
- }
-
- *enable_wake = !!wufc;
-
- /* make sure adapter isn't asleep if manageability is enabled */
- if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
- (hw->mac.ops.check_mng_mode(hw)))
- *enable_wake = true;
-
- if (adapter->hw.phy.type == e1000_phy_igp_3)
- e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
-
- /*
- * Release control of h/w to f/w. If f/w is AMT enabled, this
- * would have already happened in close and is redundant.
- */
- e1000e_release_hw_control(adapter);
-
- pci_disable_device(pdev);
-
- return 0;
-}
-
-static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
-{
- if (sleep && wake) {
- pci_prepare_to_sleep(pdev);
- return;
- }
-
- pci_wake_from_d3(pdev, wake);
- pci_set_power_state(pdev, PCI_D3hot);
-}
-
-static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
- bool wake)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /*
- * The pci-e switch on some quad port adapters will report a
- * correctable error when the MAC transitions from D0 to D3. To
- * prevent this we need to mask off the correctable errors on the
- * downstream port of the pci-e switch.
- */
- if (adapter->flags & FLAG_IS_QUAD_PORT) {
- struct pci_dev *us_dev = pdev->bus->self;
- int pos = pci_pcie_cap(us_dev);
- u16 devctl;
-
- pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
- pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
- (devctl & ~PCI_EXP_DEVCTL_CERE));
-
- e1000_power_off(pdev, sleep, wake);
-
- pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
- } else {
- e1000_power_off(pdev, sleep, wake);
- }
-}
-
-#ifdef CONFIG_PCIEASPM
-static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
-{
- pci_disable_link_state_locked(pdev, state);
-}
-#else
-static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
-{
- int pos;
- u16 reg16;
-
- /*
- * Both device and parent should have the same ASPM setting.
- * Disable ASPM in downstream component first and then upstream.
- */
- pos = pci_pcie_cap(pdev);
- pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
- reg16 &= ~state;
- pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
-
- if (!pdev->bus->self)
- return;
-
- pos = pci_pcie_cap(pdev->bus->self);
- pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
- reg16 &= ~state;
- pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
-}
-#endif
-static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
-{
- dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
- (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
- (state & PCIE_LINK_STATE_L1) ? "L1" : "");
-
- __e1000e_disable_aspm(pdev, state);
-}
-
-#ifdef CONFIG_PM
-static bool e1000e_pm_ready(struct e1000_adapter *adapter)
-{
- return !!adapter->tx_ring->buffer_info;
-}
-
-static int __e1000_resume(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 aspm_disable_flag = 0;
- u32 err;
-
- if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
- aspm_disable_flag = PCIE_LINK_STATE_L0S;
- if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
- aspm_disable_flag |= PCIE_LINK_STATE_L1;
- if (aspm_disable_flag)
- e1000e_disable_aspm(pdev, aspm_disable_flag);
-
- pci_set_power_state(pdev, PCI_D0);
- pci_restore_state(pdev);
- pci_save_state(pdev);
-
- e1000e_set_interrupt_capability(adapter);
- if (netif_running(netdev)) {
- err = e1000_request_irq(adapter);
- if (err)
- return err;
- }
-
- if (hw->mac.type == e1000_pch2lan)
- e1000_resume_workarounds_pchlan(&adapter->hw);
-
- e1000e_power_up_phy(adapter);
-
- /* report the system wakeup cause from S3/S4 */
- if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
- u16 phy_data;
-
- e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
- if (phy_data) {
- e_info("PHY Wakeup cause - %s\n",
- phy_data & E1000_WUS_EX ? "Unicast Packet" :
- phy_data & E1000_WUS_MC ? "Multicast Packet" :
- phy_data & E1000_WUS_BC ? "Broadcast Packet" :
- phy_data & E1000_WUS_MAG ? "Magic Packet" :
- phy_data & E1000_WUS_LNKC ? "Link Status "
- " Change" : "other");
- }
- e1e_wphy(&adapter->hw, BM_WUS, ~0);
- } else {
- u32 wus = er32(WUS);
- if (wus) {
- e_info("MAC Wakeup cause - %s\n",
- wus & E1000_WUS_EX ? "Unicast Packet" :
- wus & E1000_WUS_MC ? "Multicast Packet" :
- wus & E1000_WUS_BC ? "Broadcast Packet" :
- wus & E1000_WUS_MAG ? "Magic Packet" :
- wus & E1000_WUS_LNKC ? "Link Status Change" :
- "other");
- }
- ew32(WUS, ~0);
- }
-
- e1000e_reset(adapter);
-
- e1000_init_manageability_pt(adapter);
-
- if (netif_running(netdev))
- e1000e_up(adapter);
-
- netif_device_attach(netdev);
-
- /*
- * If the controller has AMT, do not set DRV_LOAD until the interface
- * is up. For all other cases, let the f/w know that the h/w is now
- * under the control of the driver.
- */
- if (!(adapter->flags & FLAG_HAS_AMT))
- e1000e_get_hw_control(adapter);
-
- return 0;
-}
-
-#ifdef CONFIG_PM_SLEEP
-static int e1000_suspend(struct device *dev)
-{
- struct pci_dev *pdev = to_pci_dev(dev);
- int retval;
- bool wake;
-
- retval = __e1000_shutdown(pdev, &wake, false);
- if (!retval)
- e1000_complete_shutdown(pdev, true, wake);
-
- return retval;
-}
-
-static int e1000_resume(struct device *dev)
-{
- struct pci_dev *pdev = to_pci_dev(dev);
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (e1000e_pm_ready(adapter))
- adapter->idle_check = true;
-
- return __e1000_resume(pdev);
-}
-#endif /* CONFIG_PM_SLEEP */
-
-#ifdef CONFIG_PM_RUNTIME
-static int e1000_runtime_suspend(struct device *dev)
-{
- struct pci_dev *pdev = to_pci_dev(dev);
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (e1000e_pm_ready(adapter)) {
- bool wake;
-
- __e1000_shutdown(pdev, &wake, true);
- }
-
- return 0;
-}
-
-static int e1000_idle(struct device *dev)
-{
- struct pci_dev *pdev = to_pci_dev(dev);
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (!e1000e_pm_ready(adapter))
- return 0;
-
- if (adapter->idle_check) {
- adapter->idle_check = false;
- if (!e1000e_has_link(adapter))
- pm_schedule_suspend(dev, MSEC_PER_SEC);
- }
-
- return -EBUSY;
-}
-
-static int e1000_runtime_resume(struct device *dev)
-{
- struct pci_dev *pdev = to_pci_dev(dev);
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (!e1000e_pm_ready(adapter))
- return 0;
-
- adapter->idle_check = !dev->power.runtime_auto;
- return __e1000_resume(pdev);
-}
-#endif /* CONFIG_PM_RUNTIME */
-#endif /* CONFIG_PM */
-
-static void e1000_shutdown(struct pci_dev *pdev)
-{
- bool wake = false;
-
- __e1000_shutdown(pdev, &wake, false);
-
- if (system_state == SYSTEM_POWER_OFF)
- e1000_complete_shutdown(pdev, false, wake);
-}
-
-#ifdef CONFIG_NET_POLL_CONTROLLER
-
-static irqreturn_t e1000_intr_msix(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (adapter->msix_entries) {
- int vector, msix_irq;
-
- vector = 0;
- msix_irq = adapter->msix_entries[vector].vector;
- disable_irq(msix_irq);
- e1000_intr_msix_rx(msix_irq, netdev);
- enable_irq(msix_irq);
-
- vector++;
- msix_irq = adapter->msix_entries[vector].vector;
- disable_irq(msix_irq);
- e1000_intr_msix_tx(msix_irq, netdev);
- enable_irq(msix_irq);
-
- vector++;
- msix_irq = adapter->msix_entries[vector].vector;
- disable_irq(msix_irq);
- e1000_msix_other(msix_irq, netdev);
- enable_irq(msix_irq);
- }
-
- return IRQ_HANDLED;
-}
-
-/*
- * Polling 'interrupt' - used by things like netconsole to send skbs
- * without having to re-enable interrupts. It's not called while
- * the interrupt routine is executing.
- */
-static void e1000_netpoll(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- switch (adapter->int_mode) {
- case E1000E_INT_MODE_MSIX:
- e1000_intr_msix(adapter->pdev->irq, netdev);
- break;
- case E1000E_INT_MODE_MSI:
- disable_irq(adapter->pdev->irq);
- e1000_intr_msi(adapter->pdev->irq, netdev);
- enable_irq(adapter->pdev->irq);
- break;
- default: /* E1000E_INT_MODE_LEGACY */
- disable_irq(adapter->pdev->irq);
- e1000_intr(adapter->pdev->irq, netdev);
- enable_irq(adapter->pdev->irq);
- break;
- }
-}
-#endif
-
-/**
- * e1000_io_error_detected - called when PCI error is detected
- * @pdev: Pointer to PCI device
- * @state: The current pci connection state
- *
- * This function is called after a PCI bus error affecting
- * this device has been detected.
- */
-static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
- pci_channel_state_t state)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- netif_device_detach(netdev);
-
- if (state == pci_channel_io_perm_failure)
- return PCI_ERS_RESULT_DISCONNECT;
-
- if (netif_running(netdev))
- e1000e_down(adapter);
- pci_disable_device(pdev);
-
- /* Request a slot slot reset. */
- return PCI_ERS_RESULT_NEED_RESET;
-}
-
-/**
- * e1000_io_slot_reset - called after the pci bus has been reset.
- * @pdev: Pointer to PCI device
- *
- * Restart the card from scratch, as if from a cold-boot. Implementation
- * resembles the first-half of the e1000_resume routine.
- */
-static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 aspm_disable_flag = 0;
- int err;
- pci_ers_result_t result;
-
- if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
- aspm_disable_flag = PCIE_LINK_STATE_L0S;
- if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
- aspm_disable_flag |= PCIE_LINK_STATE_L1;
- if (aspm_disable_flag)
- e1000e_disable_aspm(pdev, aspm_disable_flag);
-
- err = pci_enable_device_mem(pdev);
- if (err) {
- dev_err(&pdev->dev,
- "Cannot re-enable PCI device after reset.\n");
- result = PCI_ERS_RESULT_DISCONNECT;
- } else {
- pci_set_master(pdev);
- pdev->state_saved = true;
- pci_restore_state(pdev);
-
- pci_enable_wake(pdev, PCI_D3hot, 0);
- pci_enable_wake(pdev, PCI_D3cold, 0);
-
- e1000e_reset(adapter);
- ew32(WUS, ~0);
- result = PCI_ERS_RESULT_RECOVERED;
- }
-
- pci_cleanup_aer_uncorrect_error_status(pdev);
-
- return result;
-}
-
-/**
- * e1000_io_resume - called when traffic can start flowing again.
- * @pdev: Pointer to PCI device
- *
- * This callback is called when the error recovery driver tells us that
- * its OK to resume normal operation. Implementation resembles the
- * second-half of the e1000_resume routine.
- */
-static void e1000_io_resume(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- e1000_init_manageability_pt(adapter);
-
- if (netif_running(netdev)) {
- if (e1000e_up(adapter)) {
- dev_err(&pdev->dev,
- "can't bring device back up after reset\n");
- return;
- }
- }
-
- netif_device_attach(netdev);
-
- /*
- * If the controller has AMT, do not set DRV_LOAD until the interface
- * is up. For all other cases, let the f/w know that the h/w is now
- * under the control of the driver.
- */
- if (!(adapter->flags & FLAG_HAS_AMT))
- e1000e_get_hw_control(adapter);
-
-}
-
-static void e1000_print_device_info(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u32 ret_val;
- u8 pba_str[E1000_PBANUM_LENGTH];
-
- /* print bus type/speed/width info */
- e_info("(PCI Express:2.5GT/s:%s) %pM\n",
- /* bus width */
- ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
- "Width x1"),
- /* MAC address */
- netdev->dev_addr);
- e_info("Intel(R) PRO/%s Network Connection\n",
- (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
- ret_val = e1000_read_pba_string_generic(hw, pba_str,
- E1000_PBANUM_LENGTH);
- if (ret_val)
- strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
- e_info("MAC: %d, PHY: %d, PBA No: %s\n",
- hw->mac.type, hw->phy.type, pba_str);
-}
-
-static void e1000_eeprom_checks(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- int ret_val;
- u16 buf = 0;
-
- if (hw->mac.type != e1000_82573)
- return;
-
- ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
- if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
- /* Deep Smart Power Down (DSPD) */
- dev_warn(&adapter->pdev->dev,
- "Warning: detected DSPD enabled in EEPROM\n");
- }
-}
-
-static const struct net_device_ops e1000e_netdev_ops = {
- .ndo_open = e1000_open,
- .ndo_stop = e1000_close,
- .ndo_start_xmit = e1000_xmit_frame,
- .ndo_get_stats64 = e1000e_get_stats64,
- .ndo_set_multicast_list = e1000_set_multi,
- .ndo_set_mac_address = e1000_set_mac,
- .ndo_change_mtu = e1000_change_mtu,
- .ndo_do_ioctl = e1000_ioctl,
- .ndo_tx_timeout = e1000_tx_timeout,
- .ndo_validate_addr = eth_validate_addr,
-
- .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
- .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
-#ifdef CONFIG_NET_POLL_CONTROLLER
- .ndo_poll_controller = e1000_netpoll,
-#endif
-};
-
-/**
- * e1000_probe - Device Initialization Routine
- * @pdev: PCI device information struct
- * @ent: entry in e1000_pci_tbl
- *
- * Returns 0 on success, negative on failure
- *
- * e1000_probe initializes an adapter identified by a pci_dev structure.
- * The OS initialization, configuring of the adapter private structure,
- * and a hardware reset occur.
- **/
-static int __devinit e1000_probe(struct pci_dev *pdev,
- const struct pci_device_id *ent)
-{
- struct net_device *netdev;
- struct e1000_adapter *adapter;
- struct e1000_hw *hw;
- const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
- resource_size_t mmio_start, mmio_len;
- resource_size_t flash_start, flash_len;
-
- static int cards_found;
- u16 aspm_disable_flag = 0;
- int i, err, pci_using_dac;
- u16 eeprom_data = 0;
- u16 eeprom_apme_mask = E1000_EEPROM_APME;
-
- if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
- aspm_disable_flag = PCIE_LINK_STATE_L0S;
- if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
- aspm_disable_flag |= PCIE_LINK_STATE_L1;
- if (aspm_disable_flag)
- e1000e_disable_aspm(pdev, aspm_disable_flag);
-
- err = pci_enable_device_mem(pdev);
- if (err)
- return err;
-
- pci_using_dac = 0;
- err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
- if (!err) {
- err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
- if (!err)
- pci_using_dac = 1;
- } else {
- err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
- if (err) {
- err = dma_set_coherent_mask(&pdev->dev,
- DMA_BIT_MASK(32));
- if (err) {
- dev_err(&pdev->dev, "No usable DMA "
- "configuration, aborting\n");
- goto err_dma;
- }
- }
- }
-
- err = pci_request_selected_regions_exclusive(pdev,
- pci_select_bars(pdev, IORESOURCE_MEM),
- e1000e_driver_name);
- if (err)
- goto err_pci_reg;
-
- /* AER (Advanced Error Reporting) hooks */
- pci_enable_pcie_error_reporting(pdev);
-
- pci_set_master(pdev);
- /* PCI config space info */
- err = pci_save_state(pdev);
- if (err)
- goto err_alloc_etherdev;
-
- err = -ENOMEM;
- netdev = alloc_etherdev(sizeof(struct e1000_adapter));
- if (!netdev)
- goto err_alloc_etherdev;
-
- SET_NETDEV_DEV(netdev, &pdev->dev);
-
- netdev->irq = pdev->irq;
-
- pci_set_drvdata(pdev, netdev);
- adapter = netdev_priv(netdev);
- hw = &adapter->hw;
- adapter->netdev = netdev;
- adapter->pdev = pdev;
- adapter->ei = ei;
- adapter->pba = ei->pba;
- adapter->flags = ei->flags;
- adapter->flags2 = ei->flags2;
- adapter->hw.adapter = adapter;
- adapter->hw.mac.type = ei->mac;
- adapter->max_hw_frame_size = ei->max_hw_frame_size;
- adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
-
- mmio_start = pci_resource_start(pdev, 0);
- mmio_len = pci_resource_len(pdev, 0);
-
- err = -EIO;
- adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
- if (!adapter->hw.hw_addr)
- goto err_ioremap;
-
- if ((adapter->flags & FLAG_HAS_FLASH) &&
- (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
- flash_start = pci_resource_start(pdev, 1);
- flash_len = pci_resource_len(pdev, 1);
- adapter->hw.flash_address = ioremap(flash_start, flash_len);
- if (!adapter->hw.flash_address)
- goto err_flashmap;
- }
-
- /* construct the net_device struct */
- netdev->netdev_ops = &e1000e_netdev_ops;
- e1000e_set_ethtool_ops(netdev);
- netdev->watchdog_timeo = 5 * HZ;
- netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
- strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
-
- netdev->mem_start = mmio_start;
- netdev->mem_end = mmio_start + mmio_len;
-
- adapter->bd_number = cards_found++;
-
- e1000e_check_options(adapter);
-
- /* setup adapter struct */
- err = e1000_sw_init(adapter);
- if (err)
- goto err_sw_init;
-
- memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
- memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
- memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
-
- err = ei->get_variants(adapter);
- if (err)
- goto err_hw_init;
-
- if ((adapter->flags & FLAG_IS_ICH) &&
- (adapter->flags & FLAG_READ_ONLY_NVM))
- e1000e_write_protect_nvm_ich8lan(&adapter->hw);
-
- hw->mac.ops.get_bus_info(&adapter->hw);
-
- adapter->hw.phy.autoneg_wait_to_complete = 0;
-
- /* Copper options */
- if (adapter->hw.phy.media_type == e1000_media_type_copper) {
- adapter->hw.phy.mdix = AUTO_ALL_MODES;
- adapter->hw.phy.disable_polarity_correction = 0;
- adapter->hw.phy.ms_type = e1000_ms_hw_default;
- }
-
- if (e1000_check_reset_block(&adapter->hw))
- e_info("PHY reset is blocked due to SOL/IDER session.\n");
-
- netdev->features = NETIF_F_SG |
- NETIF_F_HW_CSUM |
- NETIF_F_HW_VLAN_TX |
- NETIF_F_HW_VLAN_RX;
-
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
- netdev->features |= NETIF_F_HW_VLAN_FILTER;
-
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
-
- netdev->vlan_features |= NETIF_F_TSO;
- netdev->vlan_features |= NETIF_F_TSO6;
- netdev->vlan_features |= NETIF_F_HW_CSUM;
- netdev->vlan_features |= NETIF_F_SG;
-
- if (pci_using_dac) {
- netdev->features |= NETIF_F_HIGHDMA;
- netdev->vlan_features |= NETIF_F_HIGHDMA;
- }
-
- if (e1000e_enable_mng_pass_thru(&adapter->hw))
- adapter->flags |= FLAG_MNG_PT_ENABLED;
-
- /*
- * before reading the NVM, reset the controller to
- * put the device in a known good starting state
- */
- adapter->hw.mac.ops.reset_hw(&adapter->hw);
-
- /*
- * systems with ASPM and others may see the checksum fail on the first
- * attempt. Let's give it a few tries
- */
- for (i = 0;; i++) {
- if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
- break;
- if (i == 2) {
- e_err("The NVM Checksum Is Not Valid\n");
- err = -EIO;
- goto err_eeprom;
- }
- }
-
- e1000_eeprom_checks(adapter);
-
- /* copy the MAC address */
- if (e1000e_read_mac_addr(&adapter->hw))
- e_err("NVM Read Error while reading MAC address\n");
-
- memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
- memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
-
- if (!is_valid_ether_addr(netdev->perm_addr)) {
- e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
- err = -EIO;
- goto err_eeprom;
- }
-
- init_timer(&adapter->watchdog_timer);
- adapter->watchdog_timer.function = e1000_watchdog;
- adapter->watchdog_timer.data = (unsigned long) adapter;
-
- init_timer(&adapter->phy_info_timer);
- adapter->phy_info_timer.function = e1000_update_phy_info;
- adapter->phy_info_timer.data = (unsigned long) adapter;
-
- INIT_WORK(&adapter->reset_task, e1000_reset_task);
- INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
- INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
- INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
- INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
-
- /* Initialize link parameters. User can change them with ethtool */
- adapter->hw.mac.autoneg = 1;
- adapter->fc_autoneg = 1;
- adapter->hw.fc.requested_mode = e1000_fc_default;
- adapter->hw.fc.current_mode = e1000_fc_default;
- adapter->hw.phy.autoneg_advertised = 0x2f;
-
- /* ring size defaults */
- adapter->rx_ring->count = 256;
- adapter->tx_ring->count = 256;
-
- /*
- * Initial Wake on LAN setting - If APM wake is enabled in
- * the EEPROM, enable the ACPI Magic Packet filter
- */
- if (adapter->flags & FLAG_APME_IN_WUC) {
- /* APME bit in EEPROM is mapped to WUC.APME */
- eeprom_data = er32(WUC);
- eeprom_apme_mask = E1000_WUC_APME;
- if ((hw->mac.type > e1000_ich10lan) &&
- (eeprom_data & E1000_WUC_PHY_WAKE))
- adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
- } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
- if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
- (adapter->hw.bus.func == 1))
- e1000_read_nvm(&adapter->hw,
- NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
- else
- e1000_read_nvm(&adapter->hw,
- NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
- }
-
- /* fetch WoL from EEPROM */
- if (eeprom_data & eeprom_apme_mask)
- adapter->eeprom_wol |= E1000_WUFC_MAG;
-
- /*
- * now that we have the eeprom settings, apply the special cases
- * where the eeprom may be wrong or the board simply won't support
- * wake on lan on a particular port
- */
- if (!(adapter->flags & FLAG_HAS_WOL))
- adapter->eeprom_wol = 0;
-
- /* initialize the wol settings based on the eeprom settings */
- adapter->wol = adapter->eeprom_wol;
- device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
-
- /* save off EEPROM version number */
- e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
-
- /* reset the hardware with the new settings */
- e1000e_reset(adapter);
-
- /*
- * If the controller has AMT, do not set DRV_LOAD until the interface
- * is up. For all other cases, let the f/w know that the h/w is now
- * under the control of the driver.
- */
- if (!(adapter->flags & FLAG_HAS_AMT))
- e1000e_get_hw_control(adapter);
-
- strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
- err = register_netdev(netdev);
- if (err)
- goto err_register;
-
- /* carrier off reporting is important to ethtool even BEFORE open */
- netif_carrier_off(netdev);
-
- e1000_print_device_info(adapter);
-
- if (pci_dev_run_wake(pdev))
- pm_runtime_put_noidle(&pdev->dev);
-
- return 0;
-
-err_register:
- if (!(adapter->flags & FLAG_HAS_AMT))
- e1000e_release_hw_control(adapter);
-err_eeprom:
- if (!e1000_check_reset_block(&adapter->hw))
- e1000_phy_hw_reset(&adapter->hw);
-err_hw_init:
- kfree(adapter->tx_ring);
- kfree(adapter->rx_ring);
-err_sw_init:
- if (adapter->hw.flash_address)
- iounmap(adapter->hw.flash_address);
- e1000e_reset_interrupt_capability(adapter);
-err_flashmap:
- iounmap(adapter->hw.hw_addr);
-err_ioremap:
- free_netdev(netdev);
-err_alloc_etherdev:
- pci_release_selected_regions(pdev,
- pci_select_bars(pdev, IORESOURCE_MEM));
-err_pci_reg:
-err_dma:
- pci_disable_device(pdev);
- return err;
-}
-
-/**
- * e1000_remove - Device Removal Routine
- * @pdev: PCI device information struct
- *
- * e1000_remove is called by the PCI subsystem to alert the driver
- * that it should release a PCI device. The could be caused by a
- * Hot-Plug event, or because the driver is going to be removed from
- * memory.
- **/
-static void __devexit e1000_remove(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- bool down = test_bit(__E1000_DOWN, &adapter->state);
-
- /*
- * The timers may be rescheduled, so explicitly disable them
- * from being rescheduled.
- */
- if (!down)
- set_bit(__E1000_DOWN, &adapter->state);
- del_timer_sync(&adapter->watchdog_timer);
- del_timer_sync(&adapter->phy_info_timer);
-
- cancel_work_sync(&adapter->reset_task);
- cancel_work_sync(&adapter->watchdog_task);
- cancel_work_sync(&adapter->downshift_task);
- cancel_work_sync(&adapter->update_phy_task);
- cancel_work_sync(&adapter->print_hang_task);
-
- if (!(netdev->flags & IFF_UP))
- e1000_power_down_phy(adapter);
-
- /* Don't lie to e1000_close() down the road. */
- if (!down)
- clear_bit(__E1000_DOWN, &adapter->state);
- unregister_netdev(netdev);
-
- if (pci_dev_run_wake(pdev))
- pm_runtime_get_noresume(&pdev->dev);
-
- /*
- * Release control of h/w to f/w. If f/w is AMT enabled, this
- * would have already happened in close and is redundant.
- */
- e1000e_release_hw_control(adapter);
-
- e1000e_reset_interrupt_capability(adapter);
- kfree(adapter->tx_ring);
- kfree(adapter->rx_ring);
-
- iounmap(adapter->hw.hw_addr);
- if (adapter->hw.flash_address)
- iounmap(adapter->hw.flash_address);
- pci_release_selected_regions(pdev,
- pci_select_bars(pdev, IORESOURCE_MEM));
-
- free_netdev(netdev);
-
- /* AER disable */
- pci_disable_pcie_error_reporting(pdev);
-
- pci_disable_device(pdev);
-}
-
-/* PCI Error Recovery (ERS) */
-static struct pci_error_handlers e1000_err_handler = {
- .error_detected = e1000_io_error_detected,
- .slot_reset = e1000_io_slot_reset,
- .resume = e1000_io_resume,
-};
-
-static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
- board_80003es2lan },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
-
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
-
- { } /* terminate list */
-};
-MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
-
-#ifdef CONFIG_PM
-static const struct dev_pm_ops e1000_pm_ops = {
- SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
- SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
- e1000_runtime_resume, e1000_idle)
-};
-#endif
-
-/* PCI Device API Driver */
-static struct pci_driver e1000_driver = {
- .name = e1000e_driver_name,
- .id_table = e1000_pci_tbl,
- .probe = e1000_probe,
- .remove = __devexit_p(e1000_remove),
-#ifdef CONFIG_PM
- .driver.pm = &e1000_pm_ops,
-#endif
- .shutdown = e1000_shutdown,
- .err_handler = &e1000_err_handler
-};
-
-/**
- * e1000_init_module - Driver Registration Routine
- *
- * e1000_init_module is the first routine called when the driver is
- * loaded. All it does is register with the PCI subsystem.
- **/
-static int __init e1000_init_module(void)
-{
- int ret;
- pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
- e1000e_driver_version);
- pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
- ret = pci_register_driver(&e1000_driver);
-
- return ret;
-}
-module_init(e1000_init_module);
-
-/**
- * e1000_exit_module - Driver Exit Cleanup Routine
- *
- * e1000_exit_module is called just before the driver is removed
- * from memory.
- **/
-static void __exit e1000_exit_module(void)
-{
- pci_unregister_driver(&e1000_driver);
-}
-module_exit(e1000_exit_module);
-
-
-MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
-MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
-MODULE_LICENSE("GPL");
-MODULE_VERSION(DRV_VERSION);
-
-/* e1000_main.c */
diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c
deleted file mode 100644
index 4dd9b63273f..00000000000
--- a/drivers/net/e1000e/param.c
+++ /dev/null
@@ -1,478 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/netdevice.h>
-#include <linux/pci.h>
-
-#include "e1000.h"
-
-/*
- * This is the only thing that needs to be changed to adjust the
- * maximum number of ports that the driver can manage.
- */
-
-#define E1000_MAX_NIC 32
-
-#define OPTION_UNSET -1
-#define OPTION_DISABLED 0
-#define OPTION_ENABLED 1
-
-#define COPYBREAK_DEFAULT 256
-unsigned int copybreak = COPYBREAK_DEFAULT;
-module_param(copybreak, uint, 0644);
-MODULE_PARM_DESC(copybreak,
- "Maximum size of packet that is copied to a new buffer on receive");
-
-/*
- * All parameters are treated the same, as an integer array of values.
- * This macro just reduces the need to repeat the same declaration code
- * over and over (plus this helps to avoid typo bugs).
- */
-
-#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
-#define E1000_PARAM(X, desc) \
- static int __devinitdata X[E1000_MAX_NIC+1] \
- = E1000_PARAM_INIT; \
- static unsigned int num_##X; \
- module_param_array_named(X, X, int, &num_##X, 0); \
- MODULE_PARM_DESC(X, desc);
-
-/*
- * Transmit Interrupt Delay in units of 1.024 microseconds
- * Tx interrupt delay needs to typically be set to something non-zero
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
-#define DEFAULT_TIDV 8
-#define MAX_TXDELAY 0xFFFF
-#define MIN_TXDELAY 0
-
-/*
- * Transmit Absolute Interrupt Delay in units of 1.024 microseconds
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
-#define DEFAULT_TADV 32
-#define MAX_TXABSDELAY 0xFFFF
-#define MIN_TXABSDELAY 0
-
-/*
- * Receive Interrupt Delay in units of 1.024 microseconds
- * hardware will likely hang if you set this to anything but zero.
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
-#define MAX_RXDELAY 0xFFFF
-#define MIN_RXDELAY 0
-
-/*
- * Receive Absolute Interrupt Delay in units of 1.024 microseconds
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
-#define MAX_RXABSDELAY 0xFFFF
-#define MIN_RXABSDELAY 0
-
-/*
- * Interrupt Throttle Rate (interrupts/sec)
- *
- * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
- */
-E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
-#define DEFAULT_ITR 3
-#define MAX_ITR 100000
-#define MIN_ITR 100
-
-/* IntMode (Interrupt Mode)
- *
- * Valid Range: 0 - 2
- *
- * Default Value: 2 (MSI-X)
- */
-E1000_PARAM(IntMode, "Interrupt Mode");
-#define MAX_INTMODE 2
-#define MIN_INTMODE 0
-
-/*
- * Enable Smart Power Down of the PHY
- *
- * Valid Range: 0, 1
- *
- * Default Value: 0 (disabled)
- */
-E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
-
-/*
- * Enable Kumeran Lock Loss workaround
- *
- * Valid Range: 0, 1
- *
- * Default Value: 1 (enabled)
- */
-E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
-
-/*
- * Write Protect NVM
- *
- * Valid Range: 0, 1
- *
- * Default Value: 1 (enabled)
- */
-E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");
-
-/*
- * Enable CRC Stripping
- *
- * Valid Range: 0, 1
- *
- * Default Value: 1 (enabled)
- */
-E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \
- "the CRC");
-
-struct e1000_option {
- enum { enable_option, range_option, list_option } type;
- const char *name;
- const char *err;
- int def;
- union {
- struct { /* range_option info */
- int min;
- int max;
- } r;
- struct { /* list_option info */
- int nr;
- struct e1000_opt_list { int i; char *str; } *p;
- } l;
- } arg;
-};
-
-static int __devinit e1000_validate_option(unsigned int *value,
- const struct e1000_option *opt,
- struct e1000_adapter *adapter)
-{
- if (*value == OPTION_UNSET) {
- *value = opt->def;
- return 0;
- }
-
- switch (opt->type) {
- case enable_option:
- switch (*value) {
- case OPTION_ENABLED:
- e_info("%s Enabled\n", opt->name);
- return 0;
- case OPTION_DISABLED:
- e_info("%s Disabled\n", opt->name);
- return 0;
- }
- break;
- case range_option:
- if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
- e_info("%s set to %i\n", opt->name, *value);
- return 0;
- }
- break;
- case list_option: {
- int i;
- struct e1000_opt_list *ent;
-
- for (i = 0; i < opt->arg.l.nr; i++) {
- ent = &opt->arg.l.p[i];
- if (*value == ent->i) {
- if (ent->str[0] != '\0')
- e_info("%s\n", ent->str);
- return 0;
- }
- }
- }
- break;
- default:
- BUG();
- }
-
- e_info("Invalid %s value specified (%i) %s\n", opt->name, *value,
- opt->err);
- *value = opt->def;
- return -1;
-}
-
-/**
- * e1000e_check_options - Range Checking for Command Line Parameters
- * @adapter: board private structure
- *
- * This routine checks all command line parameters for valid user
- * input. If an invalid value is given, or if no user specified
- * value exists, a default value is used. The final value is stored
- * in a variable in the adapter structure.
- **/
-void __devinit e1000e_check_options(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- int bd = adapter->bd_number;
-
- if (bd >= E1000_MAX_NIC) {
- e_notice("Warning: no configuration for board #%i\n", bd);
- e_notice("Using defaults for all values\n");
- }
-
- { /* Transmit Interrupt Delay */
- static const struct e1000_option opt = {
- .type = range_option,
- .name = "Transmit Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_TIDV),
- .def = DEFAULT_TIDV,
- .arg = { .r = { .min = MIN_TXDELAY,
- .max = MAX_TXDELAY } }
- };
-
- if (num_TxIntDelay > bd) {
- adapter->tx_int_delay = TxIntDelay[bd];
- e1000_validate_option(&adapter->tx_int_delay, &opt,
- adapter);
- } else {
- adapter->tx_int_delay = opt.def;
- }
- }
- { /* Transmit Absolute Interrupt Delay */
- static const struct e1000_option opt = {
- .type = range_option,
- .name = "Transmit Absolute Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_TADV),
- .def = DEFAULT_TADV,
- .arg = { .r = { .min = MIN_TXABSDELAY,
- .max = MAX_TXABSDELAY } }
- };
-
- if (num_TxAbsIntDelay > bd) {
- adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
- e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
- adapter);
- } else {
- adapter->tx_abs_int_delay = opt.def;
- }
- }
- { /* Receive Interrupt Delay */
- static struct e1000_option opt = {
- .type = range_option,
- .name = "Receive Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_RDTR),
- .def = DEFAULT_RDTR,
- .arg = { .r = { .min = MIN_RXDELAY,
- .max = MAX_RXDELAY } }
- };
-
- if (num_RxIntDelay > bd) {
- adapter->rx_int_delay = RxIntDelay[bd];
- e1000_validate_option(&adapter->rx_int_delay, &opt,
- adapter);
- } else {
- adapter->rx_int_delay = opt.def;
- }
- }
- { /* Receive Absolute Interrupt Delay */
- static const struct e1000_option opt = {
- .type = range_option,
- .name = "Receive Absolute Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_RADV),
- .def = DEFAULT_RADV,
- .arg = { .r = { .min = MIN_RXABSDELAY,
- .max = MAX_RXABSDELAY } }
- };
-
- if (num_RxAbsIntDelay > bd) {
- adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
- e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
- adapter);
- } else {
- adapter->rx_abs_int_delay = opt.def;
- }
- }
- { /* Interrupt Throttling Rate */
- static const struct e1000_option opt = {
- .type = range_option,
- .name = "Interrupt Throttling Rate (ints/sec)",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_ITR),
- .def = DEFAULT_ITR,
- .arg = { .r = { .min = MIN_ITR,
- .max = MAX_ITR } }
- };
-
- if (num_InterruptThrottleRate > bd) {
- adapter->itr = InterruptThrottleRate[bd];
- switch (adapter->itr) {
- case 0:
- e_info("%s turned off\n", opt.name);
- break;
- case 1:
- e_info("%s set to dynamic mode\n", opt.name);
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- break;
- case 3:
- e_info("%s set to dynamic conservative mode\n",
- opt.name);
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- break;
- case 4:
- e_info("%s set to simplified (2000-8000 ints) "
- "mode\n", opt.name);
- adapter->itr_setting = 4;
- break;
- default:
- /*
- * Save the setting, because the dynamic bits
- * change itr.
- */
- if (e1000_validate_option(&adapter->itr, &opt,
- adapter) &&
- (adapter->itr == 3)) {
- /*
- * In case of invalid user value,
- * default to conservative mode.
- */
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- } else {
- /*
- * Clear the lower two bits because
- * they are used as control.
- */
- adapter->itr_setting =
- adapter->itr & ~3;
- }
- break;
- }
- } else {
- adapter->itr_setting = opt.def;
- adapter->itr = 20000;
- }
- }
- { /* Interrupt Mode */
- static struct e1000_option opt = {
- .type = range_option,
- .name = "Interrupt Mode",
- .err = "defaulting to 2 (MSI-X)",
- .def = E1000E_INT_MODE_MSIX,
- .arg = { .r = { .min = MIN_INTMODE,
- .max = MAX_INTMODE } }
- };
-
- if (num_IntMode > bd) {
- unsigned int int_mode = IntMode[bd];
- e1000_validate_option(&int_mode, &opt, adapter);
- adapter->int_mode = int_mode;
- } else {
- adapter->int_mode = opt.def;
- }
- }
- { /* Smart Power Down */
- static const struct e1000_option opt = {
- .type = enable_option,
- .name = "PHY Smart Power Down",
- .err = "defaulting to Disabled",
- .def = OPTION_DISABLED
- };
-
- if (num_SmartPowerDownEnable > bd) {
- unsigned int spd = SmartPowerDownEnable[bd];
- e1000_validate_option(&spd, &opt, adapter);
- if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
- && spd)
- adapter->flags |= FLAG_SMART_POWER_DOWN;
- }
- }
- { /* CRC Stripping */
- static const struct e1000_option opt = {
- .type = enable_option,
- .name = "CRC Stripping",
- .err = "defaulting to Enabled",
- .def = OPTION_ENABLED
- };
-
- if (num_CrcStripping > bd) {
- unsigned int crc_stripping = CrcStripping[bd];
- e1000_validate_option(&crc_stripping, &opt, adapter);
- if (crc_stripping == OPTION_ENABLED)
- adapter->flags2 |= FLAG2_CRC_STRIPPING;
- } else {
- adapter->flags2 |= FLAG2_CRC_STRIPPING;
- }
- }
- { /* Kumeran Lock Loss Workaround */
- static const struct e1000_option opt = {
- .type = enable_option,
- .name = "Kumeran Lock Loss Workaround",
- .err = "defaulting to Enabled",
- .def = OPTION_ENABLED
- };
-
- if (num_KumeranLockLoss > bd) {
- unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
- e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
- if (hw->mac.type == e1000_ich8lan)
- e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
- kmrn_lock_loss);
- } else {
- if (hw->mac.type == e1000_ich8lan)
- e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
- opt.def);
- }
- }
- { /* Write-protect NVM */
- static const struct e1000_option opt = {
- .type = enable_option,
- .name = "Write-protect NVM",
- .err = "defaulting to Enabled",
- .def = OPTION_ENABLED
- };
-
- if (adapter->flags & FLAG_IS_ICH) {
- if (num_WriteProtectNVM > bd) {
- unsigned int write_protect_nvm = WriteProtectNVM[bd];
- e1000_validate_option(&write_protect_nvm, &opt,
- adapter);
- if (write_protect_nvm)
- adapter->flags |= FLAG_READ_ONLY_NVM;
- } else {
- if (opt.def)
- adapter->flags |= FLAG_READ_ONLY_NVM;
- }
- }
- }
-}
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
deleted file mode 100644
index 8666476cb9b..00000000000
--- a/drivers/net/e1000e/phy.c
+++ /dev/null
@@ -1,3377 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2011 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/delay.h>
-
-#include "e1000.h"
-
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_wait_autoneg(struct e1000_hw *hw);
-static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
-static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read, bool page_set);
-static u32 e1000_get_phy_addr_for_hv_page(u32 page);
-static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read);
-
-/* Cable length tables */
-static const u16 e1000_m88_cable_length_table[] = {
- 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
-#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
- ARRAY_SIZE(e1000_m88_cable_length_table)
-
-static const u16 e1000_igp_2_cable_length_table[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
- 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
- 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
- 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
- 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
- 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
- 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
- 124};
-#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
- ARRAY_SIZE(e1000_igp_2_cable_length_table)
-
-#define BM_PHY_REG_PAGE(offset) \
- ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
-#define BM_PHY_REG_NUM(offset) \
- ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
- (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
- ~MAX_PHY_REG_ADDRESS)))
-
-#define HV_INTC_FC_PAGE_START 768
-#define I82578_ADDR_REG 29
-#define I82577_ADDR_REG 16
-#define I82577_CFG_REG 22
-#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
-#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
-#define I82577_CTRL_REG 23
-
-/* 82577 specific PHY registers */
-#define I82577_PHY_CTRL_2 18
-#define I82577_PHY_STATUS_2 26
-#define I82577_PHY_DIAG_STATUS 31
-
-/* I82577 PHY Status 2 */
-#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
-#define I82577_PHY_STATUS2_MDIX 0x0800
-#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
-#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
-
-/* I82577 PHY Control 2 */
-#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
-#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
-
-/* I82577 PHY Diagnostics Status */
-#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
-#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
-
-/* BM PHY Copper Specific Control 1 */
-#define BM_CS_CTRL1 16
-
-#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
-#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
-#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
-
-/**
- * e1000e_check_reset_block_generic - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Read the PHY management control register and check whether a PHY reset
- * is blocked. If a reset is not blocked return 0, otherwise
- * return E1000_BLK_PHY_RESET (12).
- **/
-s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
-{
- u32 manc;
-
- manc = er32(MANC);
-
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : 0;
-}
-
-/**
- * e1000e_get_phy_id - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-s32 e1000e_get_phy_id(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val = 0;
- u16 phy_id;
- u16 retry_count = 0;
-
- if (!(phy->ops.read_reg))
- goto out;
-
- while (retry_count < 2) {
- ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
- if (ret_val)
- goto out;
-
- phy->id = (u32)(phy_id << 16);
- udelay(20);
- ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
- if (ret_val)
- goto out;
-
- phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-
- if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
- goto out;
-
- retry_count++;
- }
-out:
- return ret_val;
-}
-
-/**
- * e1000e_phy_reset_dsp - Reset PHY DSP
- * @hw: pointer to the HW structure
- *
- * Reset the digital signal processor.
- **/
-s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
- if (ret_val)
- return ret_val;
-
- return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
-}
-
-/**
- * e1000e_read_phy_reg_mdic - Read MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- ew32(MDIC, mdic);
-
- /*
- * Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- e_dbg("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *data = (u16) mdic;
-
- /*
- * Allow some time after each MDIC transaction to avoid
- * reading duplicate data in the next MDIC transaction.
- */
- if (hw->mac.type == e1000_pch2lan)
- udelay(100);
-
- return 0;
-}
-
-/**
- * e1000e_write_phy_reg_mdic - Write MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /*
- * Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = (((u32)data) |
- (offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- ew32(MDIC, mdic);
-
- /*
- * Poll the ready bit to see if the MDI read completed
- * Increasing the time out as testing showed failures with
- * the lower time out
- */
- for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- e_dbg("MDI Error\n");
- return -E1000_ERR_PHY;
- }
-
- /*
- * Allow some time after each MDIC transaction to avoid
- * reading duplicate data in the next MDIC transaction.
- */
- if (hw->mac.type == e1000_pch2lan)
- udelay(100);
-
- return 0;
-}
-
-/**
- * e1000e_read_phy_reg_m88 - Read m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_m88 - Write m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_set_page_igp - Set page as on IGP-like PHY(s)
- * @hw: pointer to the HW structure
- * @page: page to set (shifted left when necessary)
- *
- * Sets PHY page required for PHY register access. Assumes semaphore is
- * already acquired. Note, this function sets phy.addr to 1 so the caller
- * must set it appropriately (if necessary) after this function returns.
- **/
-s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
-{
- e_dbg("Setting page 0x%x\n", page);
-
- hw->phy.addr = 1;
-
- return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
-}
-
-/**
- * __e1000e_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000e_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- if (!locked)
- hw->phy.ops.release(hw);
-out:
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores the
- * retrieved information in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000e_read_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- * e1000e_read_phy_reg_igp_locked - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000e_read_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- * e1000e_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000e_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val)
- goto release;
- }
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-release:
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000e_write_phy_reg_igp(hw, offset, data, false);
-}
-
-/**
- * e1000e_write_phy_reg_igp_locked - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset.
- * Assumes semaphore already acquired.
- **/
-s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000e_write_phy_reg_igp(hw, offset, data, true);
-}
-
-/**
- * __e1000_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then reads the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release any acquired semaphores before exiting.
- **/
-static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked)
-{
- u32 kmrnctrlsta;
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
- e1e_flush();
-
- udelay(2);
-
- kmrnctrlsta = er32(KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset using the
- * kumeran interface. The information retrieved is stored in data.
- * Release the acquired semaphore before exiting.
- **/
-s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- * e1000e_read_kmrn_reg_locked - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset using the kumeran interface. The
- * information retrieved is stored in data.
- * Assumes semaphore already acquired.
- **/
-s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- * __e1000_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary. Then write the data to PHY register
- * at the offset using the kumeran interface. Release any acquired semaphores
- * before exiting.
- **/
-static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked)
-{
- u32 kmrnctrlsta;
- s32 ret_val = 0;
-
- if (!locked) {
- if (!(hw->phy.ops.acquire))
- goto out;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- goto out;
- }
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
- e1e_flush();
-
- udelay(2);
-
- if (!locked)
- hw->phy.ops.release(hw);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to the PHY register at the offset
- * using the kumeran interface. Release the acquired semaphore before exiting.
- **/
-s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, false);
-}
-
-/**
- * e1000e_write_kmrn_reg_locked - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Write the data to PHY register at the offset using the kumeran interface.
- * Assumes semaphore already acquired.
- **/
-s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_kmrn_reg(hw, offset, data, true);
-}
-
-/**
- * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up Carrier-sense on Transmit and downshift values.
- **/
-s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
- if (ret_val)
- goto out;
-
- phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
-
- /* Enable downshift */
- phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
-
- ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
- * and downshift values are set also.
- **/
-s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- /* Enable CRS on Tx. This must be set for half-duplex operation. */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* For BM PHY this bit is downshift enable */
- if (phy->type != e1000_phy_bm)
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /*
- * Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /*
- * Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- /* Enable downshift on BM (disabled by default) */
- if (phy->type == e1000_phy_bm)
- phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
-
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((phy->type == e1000_phy_m88) &&
- (phy->revision < E1000_REVISION_4) &&
- (phy->id != BME1000_E_PHY_ID_R2)) {
- /*
- * Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((phy->revision == 2) &&
- (phy->id == M88E1111_I_PHY_ID)) {
- /* 82573L PHY - set the downshift counter to 5x. */
- phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- }
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
- /* Set PHY page 0, register 29 to 0x0003 */
- ret_val = e1e_wphy(hw, 29, 0x0003);
- if (ret_val)
- return ret_val;
-
- /* Set PHY page 0, register 30 to 0x0000 */
- ret_val = e1e_wphy(hw, 30, 0x0000);
- if (ret_val)
- return ret_val;
- }
-
- /* Commit the changes. */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val) {
- e_dbg("Error committing the PHY changes\n");
- return ret_val;
- }
-
- if (phy->type == e1000_phy_82578) {
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* 82578 PHY - set the downshift count to 1x. */
- phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
- phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return 0;
-}
-
-/**
- * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
- * igp PHY's.
- **/
-s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val) {
- e_dbg("Error resetting the PHY.\n");
- return ret_val;
- }
-
- /*
- * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
- * timeout issues when LFS is enabled.
- */
- msleep(100);
-
- /* disable lplu d0 during driver init */
- ret_val = e1000_set_d0_lplu_state(hw, false);
- if (ret_val) {
- e_dbg("Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (phy->mdix) {
- case 1:
- data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->mac.autoneg) {
- /*
- * when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default.
- */
- if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
-
- /* Set auto Master/Slave resolution process */
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~CR_1000T_MS_ENABLE;
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
- ((data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy->ms_type) {
- case e1000_ms_force_master:
- data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- data |= CR_1000T_MS_ENABLE;
- data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
- * @hw: pointer to the HW structure
- *
- * Reads the MII auto-neg advertisement register and/or the 1000T control
- * register and if the PHY is already setup for auto-negotiation, then
- * return successful. Otherwise, setup advertisement and flow control to
- * the appropriate values for the wanted auto-negotiation.
- **/
-static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg = 0;
-
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- /*
- * Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /*
- * First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
- NWAY_AR_100TX_HD_CAPS |
- NWAY_AR_10T_FD_CAPS |
- NWAY_AR_10T_HD_CAPS);
- mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
-
- e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
- e_dbg("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
- e_dbg("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
- e_dbg("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
- e_dbg("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
- e_dbg("Advertise 1000mb Half duplex request denied!\n");
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
- e_dbg("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /*
- * Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
- * negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /*
- * Flow control (Rx & Tx) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_rx_pause:
- /*
- * Rx Flow control is enabled, and Tx Flow control is
- * disabled, by a software over-ride.
- *
- * Since there really isn't a way to advertise that we are
- * capable of Rx Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric Rx PAUSE. Later
- * (in e1000e_config_fc_after_link_up) we will disable the
- * hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_tx_pause:
- /*
- * Tx Flow control is enabled, and Rx Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case e1000_fc_full:
- /*
- * Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- return ret_val;
- }
-
- ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL)
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-
- return ret_val;
-}
-
-/**
- * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- * @hw: pointer to the HW structure
- *
- * Performs initial bounds checking on autoneg advertisement parameter, then
- * configure to advertise the full capability. Setup the PHY to autoneg
- * and restart the negotiation process between the link partner. If
- * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
- **/
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_ctrl;
-
- /*
- * Perform some bounds checking on the autoneg advertisement
- * parameter.
- */
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /*
- * If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (phy->autoneg_advertised == 0)
- phy->autoneg_advertised = phy->autoneg_mask;
-
- e_dbg("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- e_dbg("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- e_dbg("Restarting Auto-Neg\n");
-
- /*
- * Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- /*
- * Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (phy->autoneg_wait_to_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- e_dbg("Error while waiting for "
- "autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->mac.get_link_status = 1;
-
- return ret_val;
-}
-
-/**
- * e1000e_setup_copper_link - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-s32 e1000e_setup_copper_link(struct e1000_hw *hw)
-{
- s32 ret_val;
- bool link;
-
- if (hw->mac.autoneg) {
- /*
- * Setup autoneg and flow control advertisement and perform
- * autonegotiation.
- */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /*
- * PHY will be set to 10H, 10F, 100H or 100F
- * depending on user settings.
- */
- e_dbg("Forcing Speed and Duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if (ret_val) {
- e_dbg("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /*
- * Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- ret_val = e1000e_phy_has_link_generic(hw,
- COPPER_LINK_UP_LIMIT,
- 10,
- &link);
- if (ret_val)
- return ret_val;
-
- if (link) {
- e_dbg("Valid link established!!!\n");
- e1000e_config_collision_dist(hw);
- ret_val = e1000e_config_fc_after_link_up(hw);
- } else {
- e_dbg("Unable to establish link!!!\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Waits for link and returns
- * successful if link up is successful, else -E1000_ERR_PHY (-2).
- **/
-s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- e_dbg("IGP PSCR: %X\n", phy_data);
-
- udelay(1);
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- e_dbg("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Resets the PHY to commit the
- * changes. If time expires while waiting for link up, we reset the DSP.
- * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
- * successful completion, else return corresponding error code.
- **/
-s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- /*
- * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- e_dbg("M88E1000 PSCR: %X\n", phy_data);
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Reset the phy to commit changes. */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- if (hw->phy.type != e1000_phy_m88) {
- e_dbg("Link taking longer than expected.\n");
- } else {
- /*
- * We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
- 0x001d);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_phy_reset_dsp(hw);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- if (hw->phy.type != e1000_phy_m88)
- return 0;
-
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Resetting the phy means we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock from
- * the reset value of 2.5MHz.
- */
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
- * @hw: pointer to the HW structure
- *
- * Forces the speed and duplex settings of the PHY.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
- if (ret_val)
- goto out;
-
- e1000e_phy_force_speed_duplex_setup(hw, &data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, data);
- if (ret_val)
- goto out;
-
- /* Disable MDI-X support for 10/100 */
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- goto out;
-
- data &= ~IFE_PMC_AUTO_MDIX;
- data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
- if (ret_val)
- goto out;
-
- e_dbg("IFE PMC: %X\n", data);
-
- udelay(1);
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- e_dbg("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
- * @hw: pointer to the HW structure
- * @phy_ctrl: pointer to current value of PHY_CONTROL
- *
- * Forces speed and duplex on the PHY by doing the following: disable flow
- * control, force speed/duplex on the MAC, disable auto speed detection,
- * disable auto-negotiation, configure duplex, configure speed, configure
- * the collision distance, write configuration to CTRL register. The
- * caller must write to the PHY_CONTROL register for these settings to
- * take affect.
- **/
-void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
-
- /* Turn off flow control when forcing speed/duplex */
- hw->fc.current_mode = e1000_fc_none;
-
- /* Force speed/duplex on the mac */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~E1000_CTRL_SPD_SEL;
-
- /* Disable Auto Speed Detection */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Disable autoneg on the phy */
- *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
-
- /* Forcing Full or Half Duplex? */
- if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
- ctrl &= ~E1000_CTRL_FD;
- *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
- e_dbg("Half Duplex\n");
- } else {
- ctrl |= E1000_CTRL_FD;
- *phy_ctrl |= MII_CR_FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- }
-
- /* Forcing 10mb or 100mb? */
- if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
- ctrl |= E1000_CTRL_SPD_100;
- *phy_ctrl |= MII_CR_SPEED_100;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- e_dbg("Forcing 100mb\n");
- } else {
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- *phy_ctrl |= MII_CR_SPEED_10;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- e_dbg("Forcing 10mb\n");
- }
-
- e1000e_config_collision_dist(hw);
-
- ew32(CTRL, ctrl);
-}
-
-/**
- * e1000e_set_d3_lplu_state - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (!active) {
- data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
- /*
- * LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained.
- */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= IGP02E1000_PM_D3_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_check_downshift - Checks whether a downshift in speed occurred
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns 1
- *
- * A downshift is detected by querying the PHY link health.
- **/
-s32 e1000e_check_downshift(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- switch (phy->type) {
- case e1000_phy_m88:
- case e1000_phy_gg82563:
- case e1000_phy_bm:
- case e1000_phy_82578:
- offset = M88E1000_PHY_SPEC_STATUS;
- mask = M88E1000_PSSR_DOWNSHIFT;
- break;
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- offset = IGP01E1000_PHY_LINK_HEALTH;
- mask = IGP01E1000_PLHR_SS_DOWNGRADE;
- break;
- default:
- /* speed downshift not supported */
- phy->speed_downgraded = false;
- return 0;
- }
-
- ret_val = e1e_rphy(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->speed_downgraded = (phy_data & mask);
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_m88 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_igp - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY port status register, and the
- * current speed (since there is no polarity at 100Mbps).
- **/
-s32 e1000_check_polarity_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data, offset, mask;
-
- /*
- * Polarity is determined based on the speed of
- * our connection.
- */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- offset = IGP01E1000_PHY_PCS_INIT_REG;
- mask = IGP01E1000_PHY_POLARITY_MASK;
- } else {
- /*
- * This really only applies to 10Mbps since
- * there is no polarity for 100Mbps (always 0).
- */
- offset = IGP01E1000_PHY_PORT_STATUS;
- mask = IGP01E1000_PSSR_POLARITY_REVERSED;
- }
-
- ret_val = e1e_rphy(hw, offset, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_ife - Check cable polarity for IFE PHY
- * @hw: pointer to the HW structure
- *
- * Polarity is determined on the polarity reversal feature being enabled.
- **/
-s32 e1000_check_polarity_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- /*
- * Polarity is determined based on the reversal feature being enabled.
- */
- if (phy->polarity_correction) {
- offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
- mask = IFE_PESC_POLARITY_REVERSED;
- } else {
- offset = IFE_PHY_SPECIAL_CONTROL;
- mask = IFE_PSC_FORCE_POLARITY;
- }
-
- ret_val = e1e_rphy(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->cable_polarity = (phy_data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_wait_autoneg - Wait for auto-neg completion
- * @hw: pointer to the HW structure
- *
- * Waits for auto-negotiation to complete or for the auto-negotiation time
- * limit to expire, which ever happens first.
- **/
-static s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 i, phy_status;
-
- /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
- for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_AUTONEG_COMPLETE)
- break;
- msleep(100);
- }
-
- /*
- * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
- * has completed.
- */
- return ret_val;
-}
-
-/**
- * e1000e_phy_has_link_generic - Polls PHY for link
- * @hw: pointer to the HW structure
- * @iterations: number of times to poll for link
- * @usec_interval: delay between polling attempts
- * @success: pointer to whether polling was successful or not
- *
- * Polls the PHY status register for link, 'iterations' number of times.
- **/
-s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success)
-{
- s32 ret_val = 0;
- u16 i, phy_status;
-
- for (i = 0; i < iterations; i++) {
- /*
- * Some PHYs require the PHY_STATUS register to be read
- * twice due to the link bit being sticky. No harm doing
- * it across the board.
- */
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- /*
- * If the first read fails, another entity may have
- * ownership of the resources, wait and try again to
- * see if they have relinquished the resources yet.
- */
- udelay(usec_interval);
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_LINK_STATUS)
- break;
- if (usec_interval >= 1000)
- mdelay(usec_interval/1000);
- else
- udelay(usec_interval);
- }
-
- *success = (i < iterations);
-
- return ret_val;
-}
-
-/**
- * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the PHY specific status register to retrieve the cable length
- * information. The cable length is determined by averaging the minimum and
- * maximum values to get the "average" cable length. The m88 PHY has four
- * possible cable length values, which are:
- * Register Value Cable Length
- * 0 < 50 meters
- * 1 50 - 80 meters
- * 2 80 - 110 meters
- * 3 110 - 140 meters
- * 4 > 140 meters
- **/
-s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, index;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
- ret_val = -E1000_ERR_PHY;
- goto out;
- }
-
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
- * @hw: pointer to the HW structure
- *
- * The automatic gain control (agc) normalizes the amplitude of the
- * received signal, adjusting for the attenuation produced by the
- * cable. By reading the AGC registers, which represent the
- * combination of coarse and fine gain value, the value can be put
- * into a lookup table to obtain the approximate cable length
- * for each channel.
- **/
-s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, i, agc_value = 0;
- u16 cur_agc_index, max_agc_index = 0;
- u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
- static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
- IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D
- };
-
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /*
- * Getting bits 15:9, which represent the combination of
- * coarse and fine gain values. The result is a number
- * that can be put into the lookup table to obtain the
- * approximate cable length.
- */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (e1000_igp_2_cable_length_table[min_agc_index] >
- e1000_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (e1000_igp_2_cable_length_table[max_agc_index] <
- e1000_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return ret_val;
-}
-
-/**
- * e1000e_get_phy_info_m88 - Retrieve PHY information
- * @hw: pointer to the HW structure
- *
- * Valid for only copper links. Read the PHY status register (sticky read)
- * to verify that link is up. Read the PHY special control register to
- * determine the polarity and 10base-T extended distance. Read the PHY
- * special status register to determine MDI/MDIx and current speed. If
- * speed is 1000, then determine cable length, local and remote receiver.
- **/
-s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- if (phy->media_type != e1000_media_type_copper) {
- e_dbg("Phy info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->polarity_correction = (phy_data &
- M88E1000_PSCR_POLARITY_REVERSAL);
-
- ret_val = e1000_check_polarity_m88(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- ret_val = e1000_get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- /* Set values to "undefined" */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_get_phy_info_igp - Retrieve igp PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- phy->polarity_correction = true;
-
- ret_val = e1000_check_polarity_igp(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- ret_val = e1000_get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_ife - Retrieves various IFE PHY states
- * @hw: pointer to the HW structure
- *
- * Populates "phy" structure with various feature states.
- **/
-s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
- if (ret_val)
- goto out;
- phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
- ? false : true;
-
- if (phy->polarity_correction) {
- ret_val = e1000_check_polarity_ife(hw);
- if (ret_val)
- goto out;
- } else {
- /* Polarity is forced */
- phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
- }
-
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
-
- /* The following parameters are undefined for 10/100 operation. */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
-
-out:
- return ret_val;
-}
-
-/**
- * e1000e_phy_sw_reset - PHY software reset
- * @hw: pointer to the HW structure
- *
- * Does a software reset of the PHY by reading the PHY control register and
- * setting/write the control register reset bit to the PHY.
- **/
-s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_ctrl;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= MII_CR_RESET;
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_hw_reset_generic - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Verify the reset block is not blocking us from resetting. Acquire
- * semaphore (if necessary) and read/set/write the device control reset
- * bit in the PHY. Wait the appropriate delay time for the device to
- * reset and release the semaphore (if necessary).
- **/
-s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 ctrl;
-
- ret_val = e1000_check_reset_block(hw);
- if (ret_val)
- return 0;
-
- ret_val = phy->ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
- e1e_flush();
-
- udelay(phy->reset_delay_us);
-
- ew32(CTRL, ctrl);
- e1e_flush();
-
- udelay(150);
-
- phy->ops.release(hw);
-
- return e1000_get_phy_cfg_done(hw);
-}
-
-/**
- * e1000e_get_cfg_done - Generic configuration done
- * @hw: pointer to the HW structure
- *
- * Generic function to wait 10 milli-seconds for configuration to complete
- * and return success.
- **/
-s32 e1000e_get_cfg_done(struct e1000_hw *hw)
-{
- mdelay(10);
- return 0;
-}
-
-/**
- * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
- * @hw: pointer to the HW structure
- *
- * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
- **/
-s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
-{
- e_dbg("Running IGP 3 PHY init script\n");
-
- /* PHY init IGP 3 */
- /* Enable rise/fall, 10-mode work in class-A */
- e1e_wphy(hw, 0x2F5B, 0x9018);
- /* Remove all caps from Replica path filter */
- e1e_wphy(hw, 0x2F52, 0x0000);
- /* Bias trimming for ADC, AFE and Driver (Default) */
- e1e_wphy(hw, 0x2FB1, 0x8B24);
- /* Increase Hybrid poly bias */
- e1e_wphy(hw, 0x2FB2, 0xF8F0);
- /* Add 4% to Tx amplitude in Gig mode */
- e1e_wphy(hw, 0x2010, 0x10B0);
- /* Disable trimming (TTT) */
- e1e_wphy(hw, 0x2011, 0x0000);
- /* Poly DC correction to 94.6% + 2% for all channels */
- e1e_wphy(hw, 0x20DD, 0x249A);
- /* ABS DC correction to 95.9% */
- e1e_wphy(hw, 0x20DE, 0x00D3);
- /* BG temp curve trim */
- e1e_wphy(hw, 0x28B4, 0x04CE);
- /* Increasing ADC OPAMP stage 1 currents to max */
- e1e_wphy(hw, 0x2F70, 0x29E4);
- /* Force 1000 ( required for enabling PHY regs configuration) */
- e1e_wphy(hw, 0x0000, 0x0140);
- /* Set upd_freq to 6 */
- e1e_wphy(hw, 0x1F30, 0x1606);
- /* Disable NPDFE */
- e1e_wphy(hw, 0x1F31, 0xB814);
- /* Disable adaptive fixed FFE (Default) */
- e1e_wphy(hw, 0x1F35, 0x002A);
- /* Enable FFE hysteresis */
- e1e_wphy(hw, 0x1F3E, 0x0067);
- /* Fixed FFE for short cable lengths */
- e1e_wphy(hw, 0x1F54, 0x0065);
- /* Fixed FFE for medium cable lengths */
- e1e_wphy(hw, 0x1F55, 0x002A);
- /* Fixed FFE for long cable lengths */
- e1e_wphy(hw, 0x1F56, 0x002A);
- /* Enable Adaptive Clip Threshold */
- e1e_wphy(hw, 0x1F72, 0x3FB0);
- /* AHT reset limit to 1 */
- e1e_wphy(hw, 0x1F76, 0xC0FF);
- /* Set AHT master delay to 127 msec */
- e1e_wphy(hw, 0x1F77, 0x1DEC);
- /* Set scan bits for AHT */
- e1e_wphy(hw, 0x1F78, 0xF9EF);
- /* Set AHT Preset bits */
- e1e_wphy(hw, 0x1F79, 0x0210);
- /* Change integ_factor of channel A to 3 */
- e1e_wphy(hw, 0x1895, 0x0003);
- /* Change prop_factor of channels BCD to 8 */
- e1e_wphy(hw, 0x1796, 0x0008);
- /* Change cg_icount + enable integbp for channels BCD */
- e1e_wphy(hw, 0x1798, 0xD008);
- /*
- * Change cg_icount + enable integbp + change prop_factor_master
- * to 8 for channel A
- */
- e1e_wphy(hw, 0x1898, 0xD918);
- /* Disable AHT in Slave mode on channel A */
- e1e_wphy(hw, 0x187A, 0x0800);
- /*
- * Enable LPLU and disable AN to 1000 in non-D0a states,
- * Enable SPD+B2B
- */
- e1e_wphy(hw, 0x0019, 0x008D);
- /* Enable restart AN on an1000_dis change */
- e1e_wphy(hw, 0x001B, 0x2080);
- /* Enable wh_fifo read clock in 10/100 modes */
- e1e_wphy(hw, 0x0014, 0x0045);
- /* Restart AN, Speed selection is 1000 */
- e1e_wphy(hw, 0x0000, 0x1340);
-
- return 0;
-}
-
-/* Internal function pointers */
-
-/**
- * e1000_get_phy_cfg_done - Generic PHY configuration done
- * @hw: pointer to the HW structure
- *
- * Return success if silicon family did not implement a family specific
- * get_cfg_done function.
- **/
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_cfg_done)
- return hw->phy.ops.get_cfg_done(hw);
-
- return 0;
-}
-
-/**
- * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
- * @hw: pointer to the HW structure
- *
- * When the silicon family has not implemented a forced speed/duplex
- * function for the PHY, simply return 0.
- **/
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
-{
- if (hw->phy.ops.force_speed_duplex)
- return hw->phy.ops.force_speed_duplex(hw);
-
- return 0;
-}
-
-/**
- * e1000e_get_phy_type_from_id - Get PHY type from id
- * @phy_id: phy_id read from the phy
- *
- * Returns the phy type from the id.
- **/
-enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
-{
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- switch (phy_id) {
- case M88E1000_I_PHY_ID:
- case M88E1000_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
- phy_type = e1000_phy_igp_2;
- break;
- case GG82563_E_PHY_ID:
- phy_type = e1000_phy_gg82563;
- break;
- case IGP03E1000_E_PHY_ID:
- phy_type = e1000_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy_type = e1000_phy_ife;
- break;
- case BME1000_E_PHY_ID:
- case BME1000_E_PHY_ID_R2:
- phy_type = e1000_phy_bm;
- break;
- case I82578_E_PHY_ID:
- phy_type = e1000_phy_82578;
- break;
- case I82577_E_PHY_ID:
- phy_type = e1000_phy_82577;
- break;
- case I82579_E_PHY_ID:
- phy_type = e1000_phy_82579;
- break;
- default:
- phy_type = e1000_phy_unknown;
- break;
- }
- return phy_type;
-}
-
-/**
- * e1000e_determine_phy_address - Determines PHY address.
- * @hw: pointer to the HW structure
- *
- * This uses a trial and error method to loop through possible PHY
- * addresses. It tests each by reading the PHY ID registers and
- * checking for a match.
- **/
-s32 e1000e_determine_phy_address(struct e1000_hw *hw)
-{
- s32 ret_val = -E1000_ERR_PHY_TYPE;
- u32 phy_addr = 0;
- u32 i;
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- hw->phy.id = phy_type;
-
- for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
- hw->phy.addr = phy_addr;
- i = 0;
-
- do {
- e1000e_get_phy_id(hw);
- phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
-
- /*
- * If phy_type is valid, break - we found our
- * PHY address
- */
- if (phy_type != e1000_phy_unknown) {
- ret_val = 0;
- goto out;
- }
- usleep_range(1000, 2000);
- i++;
- } while (i < 10);
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
- * @page: page to access
- *
- * Returns the phy address for the page requested.
- **/
-static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
-{
- u32 phy_addr = 2;
-
- if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
- phy_addr = 1;
-
- return phy_addr;
-}
-
-/**
- * e1000e_write_phy_reg_bm - Write BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u32 page = offset >> IGP_PAGE_SHIFT;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, false);
- goto out;
- }
-
- hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- u32 page_shift, page_select;
-
- /*
- * Page select is register 31 for phy address 1 and 22 for
- * phy address 2 and 3. Page select is shifted only for
- * phy address 1.
- */
- if (hw->phy.addr == 1) {
- page_shift = IGP_PAGE_SHIFT;
- page_select = IGP01E1000_PHY_PAGE_SELECT;
- } else {
- page_shift = 0;
- page_select = BM_PHY_PAGE_SELECT;
- }
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_bm - Read BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u32 page = offset >> IGP_PAGE_SHIFT;
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, false);
- goto out;
- }
-
- hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- u32 page_shift, page_select;
-
- /*
- * Page select is register 31 for phy address 1 and 22 for
- * phy address 2 and 3. Page select is shifted only for
- * phy address 1.
- */
- if (hw->phy.addr == 1) {
- page_shift = IGP_PAGE_SHIFT;
- page_select = IGP01E1000_PHY_PAGE_SELECT;
- } else {
- page_shift = 0;
- page_select = BM_PHY_PAGE_SELECT;
- }
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
- (page << page_shift));
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_bm2 - Read BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
- u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, false);
- goto out;
- }
-
- hw->phy.addr = 1;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
-
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
-
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_bm2 - Write BM PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
- u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
-
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, false);
- goto out;
- }
-
- hw->phy.addr = 1;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
- page);
-
- if (ret_val)
- goto out;
- }
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
- data);
-
-out:
- hw->phy.ops.release(hw);
- return ret_val;
-}
-
-/**
- * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
- * @hw: pointer to the HW structure
- * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
- *
- * Assumes semaphore already acquired and phy_reg points to a valid memory
- * address to store contents of the BM_WUC_ENABLE_REG register.
- **/
-s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
- s32 ret_val;
- u16 temp;
-
- /* All page select, port ctrl and wakeup registers use phy address 1 */
- hw->phy.addr = 1;
-
- /* Select Port Control Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
- if (ret_val) {
- e_dbg("Could not set Port Control page\n");
- goto out;
- }
-
- ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
- if (ret_val) {
- e_dbg("Could not read PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
- goto out;
- }
-
- /*
- * Enable both PHY wakeup mode and Wakeup register page writes.
- * Prevent a power state change by disabling ME and Host PHY wakeup.
- */
- temp = *phy_reg;
- temp |= BM_WUC_ENABLE_BIT;
- temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
-
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
- if (ret_val) {
- e_dbg("Could not write PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
- goto out;
- }
-
- /* Select Host Wakeup Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
-
- /* caller now able to write registers on the Wakeup registers page */
-out:
- return ret_val;
-}
-
-/**
- * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
- * @hw: pointer to the HW structure
- * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
- *
- * Restore BM_WUC_ENABLE_REG to its original value.
- *
- * Assumes semaphore already acquired and *phy_reg is the contents of the
- * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
- * caller.
- **/
-s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
-{
- s32 ret_val = 0;
-
- /* Select Port Control Registers page */
- ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
- if (ret_val) {
- e_dbg("Could not set Port Control page\n");
- goto out;
- }
-
- /* Restore 769.17 to its original value */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
- if (ret_val)
- e_dbg("Could not restore PHY register %d.%d\n",
- BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
-out:
- return ret_val;
-}
-
-/**
- * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read or written
- * @data: pointer to the data to read or write
- * @read: determines if operation is read or write
- * @page_set: BM_WUC_PAGE already set and access enabled
- *
- * Read the PHY register at offset and store the retrieved information in
- * data, or write data to PHY register at offset. Note the procedure to
- * access the PHY wakeup registers is different than reading the other PHY
- * registers. It works as such:
- * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
- * 2) Set page to 800 for host (801 if we were manageability)
- * 3) Write the address using the address opcode (0x11)
- * 4) Read or write the data using the data opcode (0x12)
- * 5) Restore 769.17.2 to its original value
- *
- * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
- * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
- *
- * Assumes semaphore is already acquired. When page_set==true, assumes
- * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
- * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
- **/
-static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read, bool page_set)
-{
- s32 ret_val;
- u16 reg = BM_PHY_REG_NUM(offset);
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 phy_reg = 0;
-
- /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
- if ((hw->mac.type == e1000_pchlan) &&
- (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
- e_dbg("Attempting to access page %d while gig enabled.\n",
- page);
-
- if (!page_set) {
- /* Enable access to PHY wakeup registers */
- ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
- if (ret_val) {
- e_dbg("Could not enable PHY wakeup reg access\n");
- goto out;
- }
- }
-
- e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
-
- /* Write the Wakeup register page offset value using opcode 0x11 */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
- if (ret_val) {
- e_dbg("Could not write address opcode to page %d\n", page);
- goto out;
- }
-
- if (read) {
- /* Read the Wakeup register page value using opcode 0x12 */
- ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- data);
- } else {
- /* Write the Wakeup register page value using opcode 0x12 */
- ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
- *data);
- }
-
- if (ret_val) {
- e_dbg("Could not access PHY reg %d.%d\n", page, reg);
- goto out;
- }
-
- if (!page_set)
- ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_up_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- e1e_rphy(hw, PHY_CONTROL, &mii_reg);
- mii_reg &= ~MII_CR_POWER_DOWN;
- e1e_wphy(hw, PHY_CONTROL, mii_reg);
-}
-
-/**
- * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
- * @hw: pointer to the HW structure
- *
- * In the case of a PHY power down to save power, or to turn off link during a
- * driver unload, or wake on lan is not enabled, restore the link to previous
- * settings.
- **/
-void e1000_power_down_phy_copper(struct e1000_hw *hw)
-{
- u16 mii_reg = 0;
-
- /* The PHY will retain its settings across a power down/up cycle */
- e1e_rphy(hw, PHY_CONTROL, &mii_reg);
- mii_reg |= MII_CR_POWER_DOWN;
- e1e_wphy(hw, PHY_CONTROL, mii_reg);
- usleep_range(1000, 2000);
-}
-
-/**
- * e1000e_commit_phy - Soft PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a soft PHY reset on those that apply. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000e_commit_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.commit)
- return hw->phy.ops.commit(hw);
-
- return 0;
-}
-
-/**
- * e1000_set_d0_lplu_state - Sets low power link up state for D0
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D0
- * and SmartSpeed is disabled when active is true, else clear lplu for D0
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d0_lplu_state)
- return hw->phy.ops.set_d0_lplu_state(hw, active);
-
- return 0;
-}
-
-/**
- * __e1000_read_phy_reg_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and stores the retrieved information in data. Release any acquired
- * semaphore before exiting.
- **/
-static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
- bool locked, bool page_set)
-{
- s32 ret_val;
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 reg = BM_PHY_REG_NUM(offset);
- u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- if (!locked) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
- true, page_set);
- goto out;
- }
-
- if (page > 0 && page < HV_INTC_FC_PAGE_START) {
- ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- data, true);
- goto out;
- }
-
- if (!page_set) {
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_set_page_igp(hw,
- (page << IGP_PAGE_SHIFT));
-
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
- }
- }
-
- e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
- page << IGP_PAGE_SHIFT, reg);
-
- ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
-out:
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_read_phy_reg_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore then reads the PHY register at offset and stores
- * the retrieved information in data. Release the acquired semaphore
- * before exiting.
- **/
-s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- * e1000_read_phy_reg_hv_locked - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired.
- **/
-s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- * e1000_read_phy_reg_page_hv - Read HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Reads the PHY register at offset and stores the retrieved information
- * in data. Assumes semaphore already acquired and page already set.
- **/
-s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- * __e1000_write_phy_reg_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- * @locked: semaphore has already been acquired or not
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
- bool locked, bool page_set)
-{
- s32 ret_val;
- u16 page = BM_PHY_REG_PAGE(offset);
- u16 reg = BM_PHY_REG_NUM(offset);
- u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
-
- if (!locked) {
- ret_val = hw->phy.ops.acquire(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Page 800 works differently than the rest so it has its own func */
- if (page == BM_WUC_PAGE) {
- ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
- false, page_set);
- goto out;
- }
-
- if (page > 0 && page < HV_INTC_FC_PAGE_START) {
- ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
- &data, false);
- goto out;
- }
-
- if (!page_set) {
- if (page == HV_INTC_FC_PAGE_START)
- page = 0;
-
- /*
- * Workaround MDIO accesses being disabled after entering IEEE
- * Power Down (when bit 11 of the PHY Control register is set)
- */
- if ((hw->phy.type == e1000_phy_82578) &&
- (hw->phy.revision >= 1) &&
- (hw->phy.addr == 2) &&
- ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
- u16 data2 = 0x7EFF;
- ret_val = e1000_access_phy_debug_regs_hv(hw,
- (1 << 6) | 0x3,
- &data2, false);
- if (ret_val)
- goto out;
- }
-
- if (reg > MAX_PHY_MULTI_PAGE_REG) {
- /* Page is shifted left, PHY expects (page x 32) */
- ret_val = e1000_set_page_igp(hw,
- (page << IGP_PAGE_SHIFT));
-
- hw->phy.addr = phy_addr;
-
- if (ret_val)
- goto out;
- }
- }
-
- e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
- page << IGP_PAGE_SHIFT, reg);
-
- ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
- data);
-
-out:
- if (!locked)
- hw->phy.ops.release(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore then writes the data to PHY register at the offset.
- * Release the acquired semaphores before exiting.
- **/
-s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
-}
-
-/**
- * e1000_write_phy_reg_hv_locked - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset. Assumes semaphore
- * already acquired.
- **/
-s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
-}
-
-/**
- * e1000_write_phy_reg_page_hv - Write HV PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes the data to PHY register at the offset. Assumes semaphore
- * already acquired and page already set.
- **/
-s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
-}
-
-/**
- * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
- * @page: page to be accessed
- **/
-static u32 e1000_get_phy_addr_for_hv_page(u32 page)
-{
- u32 phy_addr = 2;
-
- if (page >= HV_INTC_FC_PAGE_START)
- phy_addr = 1;
-
- return phy_addr;
-}
-
-/**
- * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
- * @hw: pointer to the HW structure
- * @offset: register offset to be read or written
- * @data: pointer to the data to be read or written
- * @read: determines if operation is read or write
- *
- * Reads the PHY register at offset and stores the retreived information
- * in data. Assumes semaphore already acquired. Note that the procedure
- * to access these regs uses the address port and data port to read/write.
- * These accesses done with PHY address 2 and without using pages.
- **/
-static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
- u16 *data, bool read)
-{
- s32 ret_val;
- u32 addr_reg = 0;
- u32 data_reg = 0;
-
- /* This takes care of the difference with desktop vs mobile phy */
- addr_reg = (hw->phy.type == e1000_phy_82578) ?
- I82578_ADDR_REG : I82577_ADDR_REG;
- data_reg = addr_reg + 1;
-
- /* All operations in this function are phy address 2 */
- hw->phy.addr = 2;
-
- /* masking with 0x3F to remove the page from offset */
- ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
- if (ret_val) {
- e_dbg("Could not write the Address Offset port register\n");
- goto out;
- }
-
- /* Read or write the data value next */
- if (read)
- ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
- else
- ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
-
- if (ret_val) {
- e_dbg("Could not access the Data port register\n");
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_link_stall_workaround_hv - Si workaround
- * @hw: pointer to the HW structure
- *
- * This function works around a Si bug where the link partner can get
- * a link up indication before the PHY does. If small packets are sent
- * by the link partner they can be placed in the packet buffer without
- * being properly accounted for by the PHY and will stall preventing
- * further packets from being received. The workaround is to clear the
- * packet buffer after the PHY detects link up.
- **/
-s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 data;
-
- if (hw->phy.type != e1000_phy_82578)
- goto out;
-
- /* Do not apply workaround if in PHY loopback bit 14 set */
- e1e_rphy(hw, PHY_CONTROL, &data);
- if (data & PHY_CONTROL_LB)
- goto out;
-
- /* check if link is up and at 1Gbps */
- ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
- if (ret_val)
- goto out;
-
- data &= BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_MASK;
-
- if (data != (BM_CS_STATUS_LINK_UP |
- BM_CS_STATUS_RESOLVED |
- BM_CS_STATUS_SPEED_1000))
- goto out;
-
- mdelay(200);
-
- /* flush the packets in the fifo buffer */
- ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
- HV_MUX_DATA_CTRL_FORCE_SPEED);
- if (ret_val)
- goto out;
-
- ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_82577 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-s32 e1000_check_polarity_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex.
- **/
-s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- goto out;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- goto out;
-
- udelay(1);
-
- if (phy->autoneg_wait_to_complete) {
- e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
-
- if (!link)
- e_dbg("Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- goto out;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- goto out;
-
- if (!link) {
- e_dbg("Phy info is only valid if link is up\n");
- ret_val = -E1000_ERR_CONFIG;
- goto out;
- }
-
- phy->polarity_correction = true;
-
- ret_val = e1000_check_polarity_82577(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
- if (ret_val)
- goto out;
-
- phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
-
- if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
- I82577_PHY_STATUS2_SPEED_1000MBPS) {
- ret_val = hw->phy.ops.get_cable_length(hw);
- if (ret_val)
- goto out;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- goto out;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
-out:
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the diagnostic status register and verifies result is valid before
- * placing it in the phy_cable_length field.
- **/
-s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, length;
-
- ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
- if (ret_val)
- goto out;
-
- length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
- I82577_DSTATUS_CABLE_LENGTH_SHIFT;
-
- if (length == E1000_CABLE_LENGTH_UNDEFINED)
- ret_val = -E1000_ERR_PHY;
-
- phy->cable_length = length;
-
-out:
- return ret_val;
-}