summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/neterion/s2io.c
diff options
context:
space:
mode:
authorJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-05-13 02:51:01 -0700
committerJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-08-11 02:41:47 -0700
commit86387e1ac4fcaa45ff5578013a78593d1a0ba279 (patch)
tree25c662fa8226419e73c72873888634fe1df04693 /drivers/net/ethernet/neterion/s2io.c
parent93f7848b77bcf1108879defd32612422ae80d785 (diff)
s2io/vxge: Move the Exar drivers
Move the Exar drivers into drivers/net/ethernet/neterion/ and make the necessary Kconfig and Makefile changes. CC: Jon Mason <jdmason@kudzu.us> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/ethernet/neterion/s2io.c')
-rw-r--r--drivers/net/ethernet/neterion/s2io.c8674
1 files changed, 8674 insertions, 0 deletions
diff --git a/drivers/net/ethernet/neterion/s2io.c b/drivers/net/ethernet/neterion/s2io.c
new file mode 100644
index 00000000000..277d48b0800
--- /dev/null
+++ b/drivers/net/ethernet/neterion/s2io.c
@@ -0,0 +1,8674 @@
+/************************************************************************
+ * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
+ * Copyright(c) 2002-2010 Exar Corp.
+ *
+ * This software may be used and distributed according to the terms of
+ * the GNU General Public License (GPL), incorporated herein by reference.
+ * Drivers based on or derived from this code fall under the GPL and must
+ * retain the authorship, copyright and license notice. This file is not
+ * a complete program and may only be used when the entire operating
+ * system is licensed under the GPL.
+ * See the file COPYING in this distribution for more information.
+ *
+ * Credits:
+ * Jeff Garzik : For pointing out the improper error condition
+ * check in the s2io_xmit routine and also some
+ * issues in the Tx watch dog function. Also for
+ * patiently answering all those innumerable
+ * questions regaring the 2.6 porting issues.
+ * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
+ * macros available only in 2.6 Kernel.
+ * Francois Romieu : For pointing out all code part that were
+ * deprecated and also styling related comments.
+ * Grant Grundler : For helping me get rid of some Architecture
+ * dependent code.
+ * Christopher Hellwig : Some more 2.6 specific issues in the driver.
+ *
+ * The module loadable parameters that are supported by the driver and a brief
+ * explanation of all the variables.
+ *
+ * rx_ring_num : This can be used to program the number of receive rings used
+ * in the driver.
+ * rx_ring_sz: This defines the number of receive blocks each ring can have.
+ * This is also an array of size 8.
+ * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
+ * values are 1, 2.
+ * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
+ * tx_fifo_len: This too is an array of 8. Each element defines the number of
+ * Tx descriptors that can be associated with each corresponding FIFO.
+ * intr_type: This defines the type of interrupt. The values can be 0(INTA),
+ * 2(MSI_X). Default value is '2(MSI_X)'
+ * lro_max_pkts: This parameter defines maximum number of packets can be
+ * aggregated as a single large packet
+ * napi: This parameter used to enable/disable NAPI (polling Rx)
+ * Possible values '1' for enable and '0' for disable. Default is '1'
+ * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
+ * Possible values '1' for enable and '0' for disable. Default is '0'
+ * vlan_tag_strip: This can be used to enable or disable vlan stripping.
+ * Possible values '1' for enable , '0' for disable.
+ * Default is '2' - which means disable in promisc mode
+ * and enable in non-promiscuous mode.
+ * multiq: This parameter used to enable/disable MULTIQUEUE support.
+ * Possible values '1' for enable and '0' for disable. Default is '0'
+ ************************************************************************/
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/mdio.h>
+#include <linux/skbuff.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/stddef.h>
+#include <linux/ioctl.h>
+#include <linux/timex.h>
+#include <linux/ethtool.h>
+#include <linux/workqueue.h>
+#include <linux/if_vlan.h>
+#include <linux/ip.h>
+#include <linux/tcp.h>
+#include <linux/uaccess.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/prefetch.h>
+#include <net/tcp.h>
+
+#include <asm/system.h>
+#include <asm/div64.h>
+#include <asm/irq.h>
+
+/* local include */
+#include "s2io.h"
+#include "s2io-regs.h"
+
+#define DRV_VERSION "2.0.26.28"
+
+/* S2io Driver name & version. */
+static const char s2io_driver_name[] = "Neterion";
+static const char s2io_driver_version[] = DRV_VERSION;
+
+static const int rxd_size[2] = {32, 48};
+static const int rxd_count[2] = {127, 85};
+
+static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
+{
+ int ret;
+
+ ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
+ (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
+
+ return ret;
+}
+
+/*
+ * Cards with following subsystem_id have a link state indication
+ * problem, 600B, 600C, 600D, 640B, 640C and 640D.
+ * macro below identifies these cards given the subsystem_id.
+ */
+#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
+ (dev_type == XFRAME_I_DEVICE) ? \
+ ((((subid >= 0x600B) && (subid <= 0x600D)) || \
+ ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
+
+#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
+ ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
+
+static inline int is_s2io_card_up(const struct s2io_nic *sp)
+{
+ return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
+}
+
+/* Ethtool related variables and Macros. */
+static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
+ "Register test\t(offline)",
+ "Eeprom test\t(offline)",
+ "Link test\t(online)",
+ "RLDRAM test\t(offline)",
+ "BIST Test\t(offline)"
+};
+
+static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
+ {"tmac_frms"},
+ {"tmac_data_octets"},
+ {"tmac_drop_frms"},
+ {"tmac_mcst_frms"},
+ {"tmac_bcst_frms"},
+ {"tmac_pause_ctrl_frms"},
+ {"tmac_ttl_octets"},
+ {"tmac_ucst_frms"},
+ {"tmac_nucst_frms"},
+ {"tmac_any_err_frms"},
+ {"tmac_ttl_less_fb_octets"},
+ {"tmac_vld_ip_octets"},
+ {"tmac_vld_ip"},
+ {"tmac_drop_ip"},
+ {"tmac_icmp"},
+ {"tmac_rst_tcp"},
+ {"tmac_tcp"},
+ {"tmac_udp"},
+ {"rmac_vld_frms"},
+ {"rmac_data_octets"},
+ {"rmac_fcs_err_frms"},
+ {"rmac_drop_frms"},
+ {"rmac_vld_mcst_frms"},
+ {"rmac_vld_bcst_frms"},
+ {"rmac_in_rng_len_err_frms"},
+ {"rmac_out_rng_len_err_frms"},
+ {"rmac_long_frms"},
+ {"rmac_pause_ctrl_frms"},
+ {"rmac_unsup_ctrl_frms"},
+ {"rmac_ttl_octets"},
+ {"rmac_accepted_ucst_frms"},
+ {"rmac_accepted_nucst_frms"},
+ {"rmac_discarded_frms"},
+ {"rmac_drop_events"},
+ {"rmac_ttl_less_fb_octets"},
+ {"rmac_ttl_frms"},
+ {"rmac_usized_frms"},
+ {"rmac_osized_frms"},
+ {"rmac_frag_frms"},
+ {"rmac_jabber_frms"},
+ {"rmac_ttl_64_frms"},
+ {"rmac_ttl_65_127_frms"},
+ {"rmac_ttl_128_255_frms"},
+ {"rmac_ttl_256_511_frms"},
+ {"rmac_ttl_512_1023_frms"},
+ {"rmac_ttl_1024_1518_frms"},
+ {"rmac_ip"},
+ {"rmac_ip_octets"},
+ {"rmac_hdr_err_ip"},
+ {"rmac_drop_ip"},
+ {"rmac_icmp"},
+ {"rmac_tcp"},
+ {"rmac_udp"},
+ {"rmac_err_drp_udp"},
+ {"rmac_xgmii_err_sym"},
+ {"rmac_frms_q0"},
+ {"rmac_frms_q1"},
+ {"rmac_frms_q2"},
+ {"rmac_frms_q3"},
+ {"rmac_frms_q4"},
+ {"rmac_frms_q5"},
+ {"rmac_frms_q6"},
+ {"rmac_frms_q7"},
+ {"rmac_full_q0"},
+ {"rmac_full_q1"},
+ {"rmac_full_q2"},
+ {"rmac_full_q3"},
+ {"rmac_full_q4"},
+ {"rmac_full_q5"},
+ {"rmac_full_q6"},
+ {"rmac_full_q7"},
+ {"rmac_pause_cnt"},
+ {"rmac_xgmii_data_err_cnt"},
+ {"rmac_xgmii_ctrl_err_cnt"},
+ {"rmac_accepted_ip"},
+ {"rmac_err_tcp"},
+ {"rd_req_cnt"},
+ {"new_rd_req_cnt"},
+ {"new_rd_req_rtry_cnt"},
+ {"rd_rtry_cnt"},
+ {"wr_rtry_rd_ack_cnt"},
+ {"wr_req_cnt"},
+ {"new_wr_req_cnt"},
+ {"new_wr_req_rtry_cnt"},
+ {"wr_rtry_cnt"},
+ {"wr_disc_cnt"},
+ {"rd_rtry_wr_ack_cnt"},
+ {"txp_wr_cnt"},
+ {"txd_rd_cnt"},
+ {"txd_wr_cnt"},
+ {"rxd_rd_cnt"},
+ {"rxd_wr_cnt"},
+ {"txf_rd_cnt"},
+ {"rxf_wr_cnt"}
+};
+
+static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
+ {"rmac_ttl_1519_4095_frms"},
+ {"rmac_ttl_4096_8191_frms"},
+ {"rmac_ttl_8192_max_frms"},
+ {"rmac_ttl_gt_max_frms"},
+ {"rmac_osized_alt_frms"},
+ {"rmac_jabber_alt_frms"},
+ {"rmac_gt_max_alt_frms"},
+ {"rmac_vlan_frms"},
+ {"rmac_len_discard"},
+ {"rmac_fcs_discard"},
+ {"rmac_pf_discard"},
+ {"rmac_da_discard"},
+ {"rmac_red_discard"},
+ {"rmac_rts_discard"},
+ {"rmac_ingm_full_discard"},
+ {"link_fault_cnt"}
+};
+
+static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
+ {"\n DRIVER STATISTICS"},
+ {"single_bit_ecc_errs"},
+ {"double_bit_ecc_errs"},
+ {"parity_err_cnt"},
+ {"serious_err_cnt"},
+ {"soft_reset_cnt"},
+ {"fifo_full_cnt"},
+ {"ring_0_full_cnt"},
+ {"ring_1_full_cnt"},
+ {"ring_2_full_cnt"},
+ {"ring_3_full_cnt"},
+ {"ring_4_full_cnt"},
+ {"ring_5_full_cnt"},
+ {"ring_6_full_cnt"},
+ {"ring_7_full_cnt"},
+ {"alarm_transceiver_temp_high"},
+ {"alarm_transceiver_temp_low"},
+ {"alarm_laser_bias_current_high"},
+ {"alarm_laser_bias_current_low"},
+ {"alarm_laser_output_power_high"},
+ {"alarm_laser_output_power_low"},
+ {"warn_transceiver_temp_high"},
+ {"warn_transceiver_temp_low"},
+ {"warn_laser_bias_current_high"},
+ {"warn_laser_bias_current_low"},
+ {"warn_laser_output_power_high"},
+ {"warn_laser_output_power_low"},
+ {"lro_aggregated_pkts"},
+ {"lro_flush_both_count"},
+ {"lro_out_of_sequence_pkts"},
+ {"lro_flush_due_to_max_pkts"},
+ {"lro_avg_aggr_pkts"},
+ {"mem_alloc_fail_cnt"},
+ {"pci_map_fail_cnt"},
+ {"watchdog_timer_cnt"},
+ {"mem_allocated"},
+ {"mem_freed"},
+ {"link_up_cnt"},
+ {"link_down_cnt"},
+ {"link_up_time"},
+ {"link_down_time"},
+ {"tx_tcode_buf_abort_cnt"},
+ {"tx_tcode_desc_abort_cnt"},
+ {"tx_tcode_parity_err_cnt"},
+ {"tx_tcode_link_loss_cnt"},
+ {"tx_tcode_list_proc_err_cnt"},
+ {"rx_tcode_parity_err_cnt"},
+ {"rx_tcode_abort_cnt"},
+ {"rx_tcode_parity_abort_cnt"},
+ {"rx_tcode_rda_fail_cnt"},
+ {"rx_tcode_unkn_prot_cnt"},
+ {"rx_tcode_fcs_err_cnt"},
+ {"rx_tcode_buf_size_err_cnt"},
+ {"rx_tcode_rxd_corrupt_cnt"},
+ {"rx_tcode_unkn_err_cnt"},
+ {"tda_err_cnt"},
+ {"pfc_err_cnt"},
+ {"pcc_err_cnt"},
+ {"tti_err_cnt"},
+ {"tpa_err_cnt"},
+ {"sm_err_cnt"},
+ {"lso_err_cnt"},
+ {"mac_tmac_err_cnt"},
+ {"mac_rmac_err_cnt"},
+ {"xgxs_txgxs_err_cnt"},
+ {"xgxs_rxgxs_err_cnt"},
+ {"rc_err_cnt"},
+ {"prc_pcix_err_cnt"},
+ {"rpa_err_cnt"},
+ {"rda_err_cnt"},
+ {"rti_err_cnt"},
+ {"mc_err_cnt"}
+};
+
+#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
+#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
+#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
+
+#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
+#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
+
+#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
+#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
+
+#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
+#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
+
+#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
+ init_timer(&timer); \
+ timer.function = handle; \
+ timer.data = (unsigned long)arg; \
+ mod_timer(&timer, (jiffies + exp)) \
+
+/* copy mac addr to def_mac_addr array */
+static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
+{
+ sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
+ sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
+ sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
+ sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
+ sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
+ sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
+}
+
+/*
+ * Constants to be programmed into the Xena's registers, to configure
+ * the XAUI.
+ */
+
+#define END_SIGN 0x0
+static const u64 herc_act_dtx_cfg[] = {
+ /* Set address */
+ 0x8000051536750000ULL, 0x80000515367500E0ULL,
+ /* Write data */
+ 0x8000051536750004ULL, 0x80000515367500E4ULL,
+ /* Set address */
+ 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
+ /* Write data */
+ 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
+ /* Set address */
+ 0x801205150D440000ULL, 0x801205150D4400E0ULL,
+ /* Write data */
+ 0x801205150D440004ULL, 0x801205150D4400E4ULL,
+ /* Set address */
+ 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
+ /* Write data */
+ 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
+ /* Done */
+ END_SIGN
+};
+
+static const u64 xena_dtx_cfg[] = {
+ /* Set address */
+ 0x8000051500000000ULL, 0x80000515000000E0ULL,
+ /* Write data */
+ 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
+ /* Set address */
+ 0x8001051500000000ULL, 0x80010515000000E0ULL,
+ /* Write data */
+ 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
+ /* Set address */
+ 0x8002051500000000ULL, 0x80020515000000E0ULL,
+ /* Write data */
+ 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
+ END_SIGN
+};
+
+/*
+ * Constants for Fixing the MacAddress problem seen mostly on
+ * Alpha machines.
+ */
+static const u64 fix_mac[] = {
+ 0x0060000000000000ULL, 0x0060600000000000ULL,
+ 0x0040600000000000ULL, 0x0000600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0060600000000000ULL,
+ 0x0020600000000000ULL, 0x0000600000000000ULL,
+ 0x0040600000000000ULL, 0x0060600000000000ULL,
+ END_SIGN
+};
+
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+
+/* Module Loadable parameters. */
+S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
+S2IO_PARM_INT(rx_ring_num, 1);
+S2IO_PARM_INT(multiq, 0);
+S2IO_PARM_INT(rx_ring_mode, 1);
+S2IO_PARM_INT(use_continuous_tx_intrs, 1);
+S2IO_PARM_INT(rmac_pause_time, 0x100);
+S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
+S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
+S2IO_PARM_INT(shared_splits, 0);
+S2IO_PARM_INT(tmac_util_period, 5);
+S2IO_PARM_INT(rmac_util_period, 5);
+S2IO_PARM_INT(l3l4hdr_size, 128);
+/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
+S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
+/* Frequency of Rx desc syncs expressed as power of 2 */
+S2IO_PARM_INT(rxsync_frequency, 3);
+/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
+S2IO_PARM_INT(intr_type, 2);
+/* Large receive offload feature */
+
+/* Max pkts to be aggregated by LRO at one time. If not specified,
+ * aggregation happens until we hit max IP pkt size(64K)
+ */
+S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
+S2IO_PARM_INT(indicate_max_pkts, 0);
+
+S2IO_PARM_INT(napi, 1);
+S2IO_PARM_INT(ufo, 0);
+S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
+
+static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
+{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
+static unsigned int rx_ring_sz[MAX_RX_RINGS] =
+{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
+static unsigned int rts_frm_len[MAX_RX_RINGS] =
+{[0 ...(MAX_RX_RINGS - 1)] = 0 };
+
+module_param_array(tx_fifo_len, uint, NULL, 0);
+module_param_array(rx_ring_sz, uint, NULL, 0);
+module_param_array(rts_frm_len, uint, NULL, 0);
+
+/*
+ * S2IO device table.
+ * This table lists all the devices that this driver supports.
+ */
+static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
+ PCI_ANY_ID, PCI_ANY_ID},
+ {0,}
+};
+
+MODULE_DEVICE_TABLE(pci, s2io_tbl);
+
+static struct pci_error_handlers s2io_err_handler = {
+ .error_detected = s2io_io_error_detected,
+ .slot_reset = s2io_io_slot_reset,
+ .resume = s2io_io_resume,
+};
+
+static struct pci_driver s2io_driver = {
+ .name = "S2IO",
+ .id_table = s2io_tbl,
+ .probe = s2io_init_nic,
+ .remove = __devexit_p(s2io_rem_nic),
+ .err_handler = &s2io_err_handler,
+};
+
+/* A simplifier macro used both by init and free shared_mem Fns(). */
+#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
+
+/* netqueue manipulation helper functions */
+static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
+{
+ if (!sp->config.multiq) {
+ int i;
+
+ for (i = 0; i < sp->config.tx_fifo_num; i++)
+ sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
+ }
+ netif_tx_stop_all_queues(sp->dev);
+}
+
+static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
+{
+ if (!sp->config.multiq)
+ sp->mac_control.fifos[fifo_no].queue_state =
+ FIFO_QUEUE_STOP;
+
+ netif_tx_stop_all_queues(sp->dev);
+}
+
+static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
+{
+ if (!sp->config.multiq) {
+ int i;
+
+ for (i = 0; i < sp->config.tx_fifo_num; i++)
+ sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
+ }
+ netif_tx_start_all_queues(sp->dev);
+}
+
+static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
+{
+ if (!sp->config.multiq)
+ sp->mac_control.fifos[fifo_no].queue_state =
+ FIFO_QUEUE_START;
+
+ netif_tx_start_all_queues(sp->dev);
+}
+
+static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
+{
+ if (!sp->config.multiq) {
+ int i;
+
+ for (i = 0; i < sp->config.tx_fifo_num; i++)
+ sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
+ }
+ netif_tx_wake_all_queues(sp->dev);
+}
+
+static inline void s2io_wake_tx_queue(
+ struct fifo_info *fifo, int cnt, u8 multiq)
+{
+
+ if (multiq) {
+ if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
+ netif_wake_subqueue(fifo->dev, fifo->fifo_no);
+ } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
+ if (netif_queue_stopped(fifo->dev)) {
+ fifo->queue_state = FIFO_QUEUE_START;
+ netif_wake_queue(fifo->dev);
+ }
+ }
+}
+
+/**
+ * init_shared_mem - Allocation and Initialization of Memory
+ * @nic: Device private variable.
+ * Description: The function allocates all the memory areas shared
+ * between the NIC and the driver. This includes Tx descriptors,
+ * Rx descriptors and the statistics block.
+ */
+
+static int init_shared_mem(struct s2io_nic *nic)
+{
+ u32 size;
+ void *tmp_v_addr, *tmp_v_addr_next;
+ dma_addr_t tmp_p_addr, tmp_p_addr_next;
+ struct RxD_block *pre_rxd_blk = NULL;
+ int i, j, blk_cnt;
+ int lst_size, lst_per_page;
+ struct net_device *dev = nic->dev;
+ unsigned long tmp;
+ struct buffAdd *ba;
+ struct config_param *config = &nic->config;
+ struct mac_info *mac_control = &nic->mac_control;
+ unsigned long long mem_allocated = 0;
+
+ /* Allocation and initialization of TXDLs in FIFOs */
+ size = 0;
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ size += tx_cfg->fifo_len;
+ }
+ if (size > MAX_AVAILABLE_TXDS) {
+ DBG_PRINT(ERR_DBG,
+ "Too many TxDs requested: %d, max supported: %d\n",
+ size, MAX_AVAILABLE_TXDS);
+ return -EINVAL;
+ }
+
+ size = 0;
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ size = tx_cfg->fifo_len;
+ /*
+ * Legal values are from 2 to 8192
+ */
+ if (size < 2) {
+ DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
+ "Valid lengths are 2 through 8192\n",
+ i, size);
+ return -EINVAL;
+ }
+ }
+
+ lst_size = (sizeof(struct TxD) * config->max_txds);
+ lst_per_page = PAGE_SIZE / lst_size;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct fifo_info *fifo = &mac_control->fifos[i];
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+ int fifo_len = tx_cfg->fifo_len;
+ int list_holder_size = fifo_len * sizeof(struct list_info_hold);
+
+ fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
+ if (!fifo->list_info) {
+ DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
+ return -ENOMEM;
+ }
+ mem_allocated += list_holder_size;
+ }
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
+ lst_per_page);
+ struct fifo_info *fifo = &mac_control->fifos[i];
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ fifo->tx_curr_put_info.offset = 0;
+ fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
+ fifo->tx_curr_get_info.offset = 0;
+ fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
+ fifo->fifo_no = i;
+ fifo->nic = nic;
+ fifo->max_txds = MAX_SKB_FRAGS + 2;
+ fifo->dev = dev;
+
+ for (j = 0; j < page_num; j++) {
+ int k = 0;
+ dma_addr_t tmp_p;
+ void *tmp_v;
+ tmp_v = pci_alloc_consistent(nic->pdev,
+ PAGE_SIZE, &tmp_p);
+ if (!tmp_v) {
+ DBG_PRINT(INFO_DBG,
+ "pci_alloc_consistent failed for TxDL\n");
+ return -ENOMEM;
+ }
+ /* If we got a zero DMA address(can happen on
+ * certain platforms like PPC), reallocate.
+ * Store virtual address of page we don't want,
+ * to be freed later.
+ */
+ if (!tmp_p) {
+ mac_control->zerodma_virt_addr = tmp_v;
+ DBG_PRINT(INIT_DBG,
+ "%s: Zero DMA address for TxDL. "
+ "Virtual address %p\n",
+ dev->name, tmp_v);
+ tmp_v = pci_alloc_consistent(nic->pdev,
+ PAGE_SIZE, &tmp_p);
+ if (!tmp_v) {
+ DBG_PRINT(INFO_DBG,
+ "pci_alloc_consistent failed for TxDL\n");
+ return -ENOMEM;
+ }
+ mem_allocated += PAGE_SIZE;
+ }
+ while (k < lst_per_page) {
+ int l = (j * lst_per_page) + k;
+ if (l == tx_cfg->fifo_len)
+ break;
+ fifo->list_info[l].list_virt_addr =
+ tmp_v + (k * lst_size);
+ fifo->list_info[l].list_phy_addr =
+ tmp_p + (k * lst_size);
+ k++;
+ }
+ }
+ }
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct fifo_info *fifo = &mac_control->fifos[i];
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ size = tx_cfg->fifo_len;
+ fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
+ if (!fifo->ufo_in_band_v)
+ return -ENOMEM;
+ mem_allocated += (size * sizeof(u64));
+ }
+
+ /* Allocation and initialization of RXDs in Rings */
+ size = 0;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+ struct ring_info *ring = &mac_control->rings[i];
+
+ if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
+ DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
+ "multiple of RxDs per Block\n",
+ dev->name, i);
+ return FAILURE;
+ }
+ size += rx_cfg->num_rxd;
+ ring->block_count = rx_cfg->num_rxd /
+ (rxd_count[nic->rxd_mode] + 1);
+ ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
+ }
+ if (nic->rxd_mode == RXD_MODE_1)
+ size = (size * (sizeof(struct RxD1)));
+ else
+ size = (size * (sizeof(struct RxD3)));
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+ struct ring_info *ring = &mac_control->rings[i];
+
+ ring->rx_curr_get_info.block_index = 0;
+ ring->rx_curr_get_info.offset = 0;
+ ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
+ ring->rx_curr_put_info.block_index = 0;
+ ring->rx_curr_put_info.offset = 0;
+ ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
+ ring->nic = nic;
+ ring->ring_no = i;
+
+ blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
+ /* Allocating all the Rx blocks */
+ for (j = 0; j < blk_cnt; j++) {
+ struct rx_block_info *rx_blocks;
+ int l;
+
+ rx_blocks = &ring->rx_blocks[j];
+ size = SIZE_OF_BLOCK; /* size is always page size */
+ tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
+ &tmp_p_addr);
+ if (tmp_v_addr == NULL) {
+ /*
+ * In case of failure, free_shared_mem()
+ * is called, which should free any
+ * memory that was alloced till the
+ * failure happened.
+ */
+ rx_blocks->block_virt_addr = tmp_v_addr;
+ return -ENOMEM;
+ }
+ mem_allocated += size;
+ memset(tmp_v_addr, 0, size);
+
+ size = sizeof(struct rxd_info) *
+ rxd_count[nic->rxd_mode];
+ rx_blocks->block_virt_addr = tmp_v_addr;
+ rx_blocks->block_dma_addr = tmp_p_addr;
+ rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
+ if (!rx_blocks->rxds)
+ return -ENOMEM;
+ mem_allocated += size;
+ for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
+ rx_blocks->rxds[l].virt_addr =
+ rx_blocks->block_virt_addr +
+ (rxd_size[nic->rxd_mode] * l);
+ rx_blocks->rxds[l].dma_addr =
+ rx_blocks->block_dma_addr +
+ (rxd_size[nic->rxd_mode] * l);
+ }
+ }
+ /* Interlinking all Rx Blocks */
+ for (j = 0; j < blk_cnt; j++) {
+ int next = (j + 1) % blk_cnt;
+ tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
+ tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
+ tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
+ tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
+
+ pre_rxd_blk = tmp_v_addr;
+ pre_rxd_blk->reserved_2_pNext_RxD_block =
+ (unsigned long)tmp_v_addr_next;
+ pre_rxd_blk->pNext_RxD_Blk_physical =
+ (u64)tmp_p_addr_next;
+ }
+ }
+ if (nic->rxd_mode == RXD_MODE_3B) {
+ /*
+ * Allocation of Storages for buffer addresses in 2BUFF mode
+ * and the buffers as well.
+ */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+ struct ring_info *ring = &mac_control->rings[i];
+
+ blk_cnt = rx_cfg->num_rxd /
+ (rxd_count[nic->rxd_mode] + 1);
+ size = sizeof(struct buffAdd *) * blk_cnt;
+ ring->ba = kmalloc(size, GFP_KERNEL);
+ if (!ring->ba)
+ return -ENOMEM;
+ mem_allocated += size;
+ for (j = 0; j < blk_cnt; j++) {
+ int k = 0;
+
+ size = sizeof(struct buffAdd) *
+ (rxd_count[nic->rxd_mode] + 1);
+ ring->ba[j] = kmalloc(size, GFP_KERNEL);
+ if (!ring->ba[j])
+ return -ENOMEM;
+ mem_allocated += size;
+ while (k != rxd_count[nic->rxd_mode]) {
+ ba = &ring->ba[j][k];
+ size = BUF0_LEN + ALIGN_SIZE;
+ ba->ba_0_org = kmalloc(size, GFP_KERNEL);
+ if (!ba->ba_0_org)
+ return -ENOMEM;
+ mem_allocated += size;
+ tmp = (unsigned long)ba->ba_0_org;
+ tmp += ALIGN_SIZE;
+ tmp &= ~((unsigned long)ALIGN_SIZE);
+ ba->ba_0 = (void *)tmp;
+
+ size = BUF1_LEN + ALIGN_SIZE;
+ ba->ba_1_org = kmalloc(size, GFP_KERNEL);
+ if (!ba->ba_1_org)
+ return -ENOMEM;
+ mem_allocated += size;
+ tmp = (unsigned long)ba->ba_1_org;
+ tmp += ALIGN_SIZE;
+ tmp &= ~((unsigned long)ALIGN_SIZE);
+ ba->ba_1 = (void *)tmp;
+ k++;
+ }
+ }
+ }
+ }
+
+ /* Allocation and initialization of Statistics block */
+ size = sizeof(struct stat_block);
+ mac_control->stats_mem =
+ pci_alloc_consistent(nic->pdev, size,
+ &mac_control->stats_mem_phy);
+
+ if (!mac_control->stats_mem) {
+ /*
+ * In case of failure, free_shared_mem() is called, which
+ * should free any memory that was alloced till the
+ * failure happened.
+ */
+ return -ENOMEM;
+ }
+ mem_allocated += size;
+ mac_control->stats_mem_sz = size;
+
+ tmp_v_addr = mac_control->stats_mem;
+ mac_control->stats_info = tmp_v_addr;
+ memset(tmp_v_addr, 0, size);
+ DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
+ dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
+ mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
+ return SUCCESS;
+}
+
+/**
+ * free_shared_mem - Free the allocated Memory
+ * @nic: Device private variable.
+ * Description: This function is to free all memory locations allocated by
+ * the init_shared_mem() function and return it to the kernel.
+ */
+
+static void free_shared_mem(struct s2io_nic *nic)
+{
+ int i, j, blk_cnt, size;
+ void *tmp_v_addr;
+ dma_addr_t tmp_p_addr;
+ int lst_size, lst_per_page;
+ struct net_device *dev;
+ int page_num = 0;
+ struct config_param *config;
+ struct mac_info *mac_control;
+ struct stat_block *stats;
+ struct swStat *swstats;
+
+ if (!nic)
+ return;
+
+ dev = nic->dev;
+
+ config = &nic->config;
+ mac_control = &nic->mac_control;
+ stats = mac_control->stats_info;
+ swstats = &stats->sw_stat;
+
+ lst_size = sizeof(struct TxD) * config->max_txds;
+ lst_per_page = PAGE_SIZE / lst_size;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct fifo_info *fifo = &mac_control->fifos[i];
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
+ for (j = 0; j < page_num; j++) {
+ int mem_blks = (j * lst_per_page);
+ struct list_info_hold *fli;
+
+ if (!fifo->list_info)
+ return;
+
+ fli = &fifo->list_info[mem_blks];
+ if (!fli->list_virt_addr)
+ break;
+ pci_free_consistent(nic->pdev, PAGE_SIZE,
+ fli->list_virt_addr,
+ fli->list_phy_addr);
+ swstats->mem_freed += PAGE_SIZE;
+ }
+ /* If we got a zero DMA address during allocation,
+ * free the page now
+ */
+ if (mac_control->zerodma_virt_addr) {
+ pci_free_consistent(nic->pdev, PAGE_SIZE,
+ mac_control->zerodma_virt_addr,
+ (dma_addr_t)0);
+ DBG_PRINT(INIT_DBG,
+ "%s: Freeing TxDL with zero DMA address. "
+ "Virtual address %p\n",
+ dev->name, mac_control->zerodma_virt_addr);
+ swstats->mem_freed += PAGE_SIZE;
+ }
+ kfree(fifo->list_info);
+ swstats->mem_freed += tx_cfg->fifo_len *
+ sizeof(struct list_info_hold);
+ }
+
+ size = SIZE_OF_BLOCK;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ blk_cnt = ring->block_count;
+ for (j = 0; j < blk_cnt; j++) {
+ tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
+ tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
+ if (tmp_v_addr == NULL)
+ break;
+ pci_free_consistent(nic->pdev, size,
+ tmp_v_addr, tmp_p_addr);
+ swstats->mem_freed += size;
+ kfree(ring->rx_blocks[j].rxds);
+ swstats->mem_freed += sizeof(struct rxd_info) *
+ rxd_count[nic->rxd_mode];
+ }
+ }
+
+ if (nic->rxd_mode == RXD_MODE_3B) {
+ /* Freeing buffer storage addresses in 2BUFF mode. */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+ struct ring_info *ring = &mac_control->rings[i];
+
+ blk_cnt = rx_cfg->num_rxd /
+ (rxd_count[nic->rxd_mode] + 1);
+ for (j = 0; j < blk_cnt; j++) {
+ int k = 0;
+ if (!ring->ba[j])
+ continue;
+ while (k != rxd_count[nic->rxd_mode]) {
+ struct buffAdd *ba = &ring->ba[j][k];
+ kfree(ba->ba_0_org);
+ swstats->mem_freed +=
+ BUF0_LEN + ALIGN_SIZE;
+ kfree(ba->ba_1_org);
+ swstats->mem_freed +=
+ BUF1_LEN + ALIGN_SIZE;
+ k++;
+ }
+ kfree(ring->ba[j]);
+ swstats->mem_freed += sizeof(struct buffAdd) *
+ (rxd_count[nic->rxd_mode] + 1);
+ }
+ kfree(ring->ba);
+ swstats->mem_freed += sizeof(struct buffAdd *) *
+ blk_cnt;
+ }
+ }
+
+ for (i = 0; i < nic->config.tx_fifo_num; i++) {
+ struct fifo_info *fifo = &mac_control->fifos[i];
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ if (fifo->ufo_in_band_v) {
+ swstats->mem_freed += tx_cfg->fifo_len *
+ sizeof(u64);
+ kfree(fifo->ufo_in_band_v);
+ }
+ }
+
+ if (mac_control->stats_mem) {
+ swstats->mem_freed += mac_control->stats_mem_sz;
+ pci_free_consistent(nic->pdev,
+ mac_control->stats_mem_sz,
+ mac_control->stats_mem,
+ mac_control->stats_mem_phy);
+ }
+}
+
+/**
+ * s2io_verify_pci_mode -
+ */
+
+static int s2io_verify_pci_mode(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0;
+ int mode;
+
+ val64 = readq(&bar0->pci_mode);
+ mode = (u8)GET_PCI_MODE(val64);
+
+ if (val64 & PCI_MODE_UNKNOWN_MODE)
+ return -1; /* Unknown PCI mode */
+ return mode;
+}
+
+#define NEC_VENID 0x1033
+#define NEC_DEVID 0x0125
+static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
+{
+ struct pci_dev *tdev = NULL;
+ while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
+ if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
+ if (tdev->bus == s2io_pdev->bus->parent) {
+ pci_dev_put(tdev);
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
+/**
+ * s2io_print_pci_mode -
+ */
+static int s2io_print_pci_mode(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0;
+ int mode;
+ struct config_param *config = &nic->config;
+ const char *pcimode;
+
+ val64 = readq(&bar0->pci_mode);
+ mode = (u8)GET_PCI_MODE(val64);
+
+ if (val64 & PCI_MODE_UNKNOWN_MODE)
+ return -1; /* Unknown PCI mode */
+
+ config->bus_speed = bus_speed[mode];
+
+ if (s2io_on_nec_bridge(nic->pdev)) {
+ DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
+ nic->dev->name);
+ return mode;
+ }
+
+ switch (mode) {
+ case PCI_MODE_PCI_33:
+ pcimode = "33MHz PCI bus";
+ break;
+ case PCI_MODE_PCI_66:
+ pcimode = "66MHz PCI bus";
+ break;
+ case PCI_MODE_PCIX_M1_66:
+ pcimode = "66MHz PCIX(M1) bus";
+ break;
+ case PCI_MODE_PCIX_M1_100:
+ pcimode = "100MHz PCIX(M1) bus";
+ break;
+ case PCI_MODE_PCIX_M1_133:
+ pcimode = "133MHz PCIX(M1) bus";
+ break;
+ case PCI_MODE_PCIX_M2_66:
+ pcimode = "133MHz PCIX(M2) bus";
+ break;
+ case PCI_MODE_PCIX_M2_100:
+ pcimode = "200MHz PCIX(M2) bus";
+ break;
+ case PCI_MODE_PCIX_M2_133:
+ pcimode = "266MHz PCIX(M2) bus";
+ break;
+ default:
+ pcimode = "unsupported bus!";
+ mode = -1;
+ }
+
+ DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
+ nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
+
+ return mode;
+}
+
+/**
+ * init_tti - Initialization transmit traffic interrupt scheme
+ * @nic: device private variable
+ * @link: link status (UP/DOWN) used to enable/disable continuous
+ * transmit interrupts
+ * Description: The function configures transmit traffic interrupts
+ * Return Value: SUCCESS on success and
+ * '-1' on failure
+ */
+
+static int init_tti(struct s2io_nic *nic, int link)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0;
+ int i;
+ struct config_param *config = &nic->config;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ /*
+ * TTI Initialization. Default Tx timer gets us about
+ * 250 interrupts per sec. Continuous interrupts are enabled
+ * by default.
+ */
+ if (nic->device_type == XFRAME_II_DEVICE) {
+ int count = (nic->config.bus_speed * 125)/2;
+ val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
+ } else
+ val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
+
+ val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
+ TTI_DATA1_MEM_TX_URNG_B(0x10) |
+ TTI_DATA1_MEM_TX_URNG_C(0x30) |
+ TTI_DATA1_MEM_TX_TIMER_AC_EN;
+ if (i == 0)
+ if (use_continuous_tx_intrs && (link == LINK_UP))
+ val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
+ writeq(val64, &bar0->tti_data1_mem);
+
+ if (nic->config.intr_type == MSI_X) {
+ val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
+ TTI_DATA2_MEM_TX_UFC_B(0x100) |
+ TTI_DATA2_MEM_TX_UFC_C(0x200) |
+ TTI_DATA2_MEM_TX_UFC_D(0x300);
+ } else {
+ if ((nic->config.tx_steering_type ==
+ TX_DEFAULT_STEERING) &&
+ (config->tx_fifo_num > 1) &&
+ (i >= nic->udp_fifo_idx) &&
+ (i < (nic->udp_fifo_idx +
+ nic->total_udp_fifos)))
+ val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
+ TTI_DATA2_MEM_TX_UFC_B(0x80) |
+ TTI_DATA2_MEM_TX_UFC_C(0x100) |
+ TTI_DATA2_MEM_TX_UFC_D(0x120);
+ else
+ val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
+ TTI_DATA2_MEM_TX_UFC_B(0x20) |
+ TTI_DATA2_MEM_TX_UFC_C(0x40) |
+ TTI_DATA2_MEM_TX_UFC_D(0x80);
+ }
+
+ writeq(val64, &bar0->tti_data2_mem);
+
+ val64 = TTI_CMD_MEM_WE |
+ TTI_CMD_MEM_STROBE_NEW_CMD |
+ TTI_CMD_MEM_OFFSET(i);
+ writeq(val64, &bar0->tti_command_mem);
+
+ if (wait_for_cmd_complete(&bar0->tti_command_mem,
+ TTI_CMD_MEM_STROBE_NEW_CMD,
+ S2IO_BIT_RESET) != SUCCESS)
+ return FAILURE;
+ }
+
+ return SUCCESS;
+}
+
+/**
+ * init_nic - Initialization of hardware
+ * @nic: device private variable
+ * Description: The function sequentially configures every block
+ * of the H/W from their reset values.
+ * Return Value: SUCCESS on success and
+ * '-1' on failure (endian settings incorrect).
+ */
+
+static int init_nic(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ struct net_device *dev = nic->dev;
+ register u64 val64 = 0;
+ void __iomem *add;
+ u32 time;
+ int i, j;
+ int dtx_cnt = 0;
+ unsigned long long mem_share;
+ int mem_size;
+ struct config_param *config = &nic->config;
+ struct mac_info *mac_control = &nic->mac_control;
+
+ /* to set the swapper controle on the card */
+ if (s2io_set_swapper(nic)) {
+ DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
+ return -EIO;
+ }
+
+ /*
+ * Herc requires EOI to be removed from reset before XGXS, so..
+ */
+ if (nic->device_type & XFRAME_II_DEVICE) {
+ val64 = 0xA500000000ULL;
+ writeq(val64, &bar0->sw_reset);
+ msleep(500);
+ val64 = readq(&bar0->sw_reset);
+ }
+
+ /* Remove XGXS from reset state */
+ val64 = 0;
+ writeq(val64, &bar0->sw_reset);
+ msleep(500);
+ val64 = readq(&bar0->sw_reset);
+
+ /* Ensure that it's safe to access registers by checking
+ * RIC_RUNNING bit is reset. Check is valid only for XframeII.
+ */
+ if (nic->device_type == XFRAME_II_DEVICE) {
+ for (i = 0; i < 50; i++) {
+ val64 = readq(&bar0->adapter_status);
+ if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
+ break;
+ msleep(10);
+ }
+ if (i == 50)
+ return -ENODEV;
+ }
+
+ /* Enable Receiving broadcasts */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 |= MAC_RMAC_BCAST_ENABLE;
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32)val64, add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+
+ /* Read registers in all blocks */
+ val64 = readq(&bar0->mac_int_mask);
+ val64 = readq(&bar0->mc_int_mask);
+ val64 = readq(&bar0->xgxs_int_mask);
+
+ /* Set MTU */
+ val64 = dev->mtu;
+ writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
+
+ if (nic->device_type & XFRAME_II_DEVICE) {
+ while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
+ SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
+ &bar0->dtx_control, UF);
+ if (dtx_cnt & 0x1)
+ msleep(1); /* Necessary!! */
+ dtx_cnt++;
+ }
+ } else {
+ while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
+ SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
+ &bar0->dtx_control, UF);
+ val64 = readq(&bar0->dtx_control);
+ dtx_cnt++;
+ }
+ }
+
+ /* Tx DMA Initialization */
+ val64 = 0;
+ writeq(val64, &bar0->tx_fifo_partition_0);
+ writeq(val64, &bar0->tx_fifo_partition_1);
+ writeq(val64, &bar0->tx_fifo_partition_2);
+ writeq(val64, &bar0->tx_fifo_partition_3);
+
+ for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
+ vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
+
+ if (i == (config->tx_fifo_num - 1)) {
+ if (i % 2 == 0)
+ i++;
+ }
+
+ switch (i) {
+ case 1:
+ writeq(val64, &bar0->tx_fifo_partition_0);
+ val64 = 0;
+ j = 0;
+ break;
+ case 3:
+ writeq(val64, &bar0->tx_fifo_partition_1);
+ val64 = 0;
+ j = 0;
+ break;
+ case 5:
+ writeq(val64, &bar0->tx_fifo_partition_2);
+ val64 = 0;
+ j = 0;
+ break;
+ case 7:
+ writeq(val64, &bar0->tx_fifo_partition_3);
+ val64 = 0;
+ j = 0;
+ break;
+ default:
+ j++;
+ break;
+ }
+ }
+
+ /*
+ * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
+ * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
+ */
+ if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
+ writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
+
+ val64 = readq(&bar0->tx_fifo_partition_0);
+ DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
+ &bar0->tx_fifo_partition_0, (unsigned long long)val64);
+
+ /*
+ * Initialization of Tx_PA_CONFIG register to ignore packet
+ * integrity checking.
+ */
+ val64 = readq(&bar0->tx_pa_cfg);
+ val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
+ TX_PA_CFG_IGNORE_SNAP_OUI |
+ TX_PA_CFG_IGNORE_LLC_CTRL |
+ TX_PA_CFG_IGNORE_L2_ERR;
+ writeq(val64, &bar0->tx_pa_cfg);
+
+ /* Rx DMA intialization. */
+ val64 = 0;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+
+ val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
+ }
+ writeq(val64, &bar0->rx_queue_priority);
+
+ /*
+ * Allocating equal share of memory to all the
+ * configured Rings.
+ */
+ val64 = 0;
+ if (nic->device_type & XFRAME_II_DEVICE)
+ mem_size = 32;
+ else
+ mem_size = 64;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ switch (i) {
+ case 0:
+ mem_share = (mem_size / config->rx_ring_num +
+ mem_size % config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
+ continue;
+ case 1:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
+ continue;
+ case 2:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
+ continue;
+ case 3:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
+ continue;
+ case 4:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
+ continue;
+ case 5:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
+ continue;
+ case 6:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
+ continue;
+ case 7:
+ mem_share = (mem_size / config->rx_ring_num);
+ val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
+ continue;
+ }
+ }
+ writeq(val64, &bar0->rx_queue_cfg);
+
+ /*
+ * Filling Tx round robin registers
+ * as per the number of FIFOs for equal scheduling priority
+ */
+ switch (config->tx_fifo_num) {
+ case 1:
+ val64 = 0x0;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 2:
+ val64 = 0x0001000100010001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0001000100000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 3:
+ val64 = 0x0001020001020001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ val64 = 0x0200010200010200ULL;
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ val64 = 0x0102000102000102ULL;
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ val64 = 0x0001020001020001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0200010200000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 4:
+ val64 = 0x0001020300010203ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0001020300000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 5:
+ val64 = 0x0001020304000102ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ val64 = 0x0304000102030400ULL;
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ val64 = 0x0102030400010203ULL;
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ val64 = 0x0400010203040001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0203040000000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 6:
+ val64 = 0x0001020304050001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ val64 = 0x0203040500010203ULL;
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ val64 = 0x0405000102030405ULL;
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ val64 = 0x0001020304050001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0203040500000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 7:
+ val64 = 0x0001020304050600ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ val64 = 0x0102030405060001ULL;
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ val64 = 0x0203040506000102ULL;
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ val64 = 0x0304050600010203ULL;
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0405060000000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ case 8:
+ val64 = 0x0001020304050607ULL;
+ writeq(val64, &bar0->tx_w_round_robin_0);
+ writeq(val64, &bar0->tx_w_round_robin_1);
+ writeq(val64, &bar0->tx_w_round_robin_2);
+ writeq(val64, &bar0->tx_w_round_robin_3);
+ val64 = 0x0001020300000000ULL;
+ writeq(val64, &bar0->tx_w_round_robin_4);
+ break;
+ }
+
+ /* Enable all configured Tx FIFO partitions */
+ val64 = readq(&bar0->tx_fifo_partition_0);
+ val64 |= (TX_FIFO_PARTITION_EN);
+ writeq(val64, &bar0->tx_fifo_partition_0);
+
+ /* Filling the Rx round robin registers as per the
+ * number of Rings and steering based on QoS with
+ * equal priority.
+ */
+ switch (config->rx_ring_num) {
+ case 1:
+ val64 = 0x0;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080808080808080ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 2:
+ val64 = 0x0001000100010001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0001000100000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080808040404040ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 3:
+ val64 = 0x0001020001020001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ val64 = 0x0200010200010200ULL;
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ val64 = 0x0102000102000102ULL;
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ val64 = 0x0001020001020001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0200010200000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080804040402020ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 4:
+ val64 = 0x0001020300010203ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0001020300000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080404020201010ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 5:
+ val64 = 0x0001020304000102ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ val64 = 0x0304000102030400ULL;
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ val64 = 0x0102030400010203ULL;
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ val64 = 0x0400010203040001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0203040000000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080404020201008ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 6:
+ val64 = 0x0001020304050001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ val64 = 0x0203040500010203ULL;
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ val64 = 0x0405000102030405ULL;
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ val64 = 0x0001020304050001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0203040500000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080404020100804ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 7:
+ val64 = 0x0001020304050600ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ val64 = 0x0102030405060001ULL;
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ val64 = 0x0203040506000102ULL;
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ val64 = 0x0304050600010203ULL;
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0405060000000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8080402010080402ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ case 8:
+ val64 = 0x0001020304050607ULL;
+ writeq(val64, &bar0->rx_w_round_robin_0);
+ writeq(val64, &bar0->rx_w_round_robin_1);
+ writeq(val64, &bar0->rx_w_round_robin_2);
+ writeq(val64, &bar0->rx_w_round_robin_3);
+ val64 = 0x0001020300000000ULL;
+ writeq(val64, &bar0->rx_w_round_robin_4);
+
+ val64 = 0x8040201008040201ULL;
+ writeq(val64, &bar0->rts_qos_steering);
+ break;
+ }
+
+ /* UDP Fix */
+ val64 = 0;
+ for (i = 0; i < 8; i++)
+ writeq(val64, &bar0->rts_frm_len_n[i]);
+
+ /* Set the default rts frame length for the rings configured */
+ val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
+ for (i = 0 ; i < config->rx_ring_num ; i++)
+ writeq(val64, &bar0->rts_frm_len_n[i]);
+
+ /* Set the frame length for the configured rings
+ * desired by the user
+ */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ /* If rts_frm_len[i] == 0 then it is assumed that user not
+ * specified frame length steering.
+ * If the user provides the frame length then program
+ * the rts_frm_len register for those values or else
+ * leave it as it is.
+ */
+ if (rts_frm_len[i] != 0) {
+ writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
+ &bar0->rts_frm_len_n[i]);
+ }
+ }
+
+ /* Disable differentiated services steering logic */
+ for (i = 0; i < 64; i++) {
+ if (rts_ds_steer(nic, i, 0) == FAILURE) {
+ DBG_PRINT(ERR_DBG,
+ "%s: rts_ds_steer failed on codepoint %d\n",
+ dev->name, i);
+ return -ENODEV;
+ }
+ }
+
+ /* Program statistics memory */
+ writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
+
+ if (nic->device_type == XFRAME_II_DEVICE) {
+ val64 = STAT_BC(0x320);
+ writeq(val64, &bar0->stat_byte_cnt);
+ }
+
+ /*
+ * Initializing the sampling rate for the device to calculate the
+ * bandwidth utilization.
+ */
+ val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
+ MAC_RX_LINK_UTIL_VAL(rmac_util_period);
+ writeq(val64, &bar0->mac_link_util);
+
+ /*
+ * Initializing the Transmit and Receive Traffic Interrupt
+ * Scheme.
+ */
+
+ /* Initialize TTI */
+ if (SUCCESS != init_tti(nic, nic->last_link_state))
+ return -ENODEV;
+
+ /* RTI Initialization */
+ if (nic->device_type == XFRAME_II_DEVICE) {
+ /*
+ * Programmed to generate Apprx 500 Intrs per
+ * second
+ */
+ int count = (nic->config.bus_speed * 125)/4;
+ val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
+ } else
+ val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
+ val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
+ RTI_DATA1_MEM_RX_URNG_B(0x10) |
+ RTI_DATA1_MEM_RX_URNG_C(0x30) |
+ RTI_DATA1_MEM_RX_TIMER_AC_EN;
+
+ writeq(val64, &bar0->rti_data1_mem);
+
+ val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
+ RTI_DATA2_MEM_RX_UFC_B(0x2) ;
+ if (nic->config.intr_type == MSI_X)
+ val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
+ RTI_DATA2_MEM_RX_UFC_D(0x40));
+ else
+ val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
+ RTI_DATA2_MEM_RX_UFC_D(0x80));
+ writeq(val64, &bar0->rti_data2_mem);
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ val64 = RTI_CMD_MEM_WE |
+ RTI_CMD_MEM_STROBE_NEW_CMD |
+ RTI_CMD_MEM_OFFSET(i);
+ writeq(val64, &bar0->rti_command_mem);
+
+ /*
+ * Once the operation completes, the Strobe bit of the
+ * command register will be reset. We poll for this
+ * particular condition. We wait for a maximum of 500ms
+ * for the operation to complete, if it's not complete
+ * by then we return error.
+ */
+ time = 0;
+ while (true) {
+ val64 = readq(&bar0->rti_command_mem);
+ if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
+ break;
+
+ if (time > 10) {
+ DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
+ dev->name);
+ return -ENODEV;
+ }
+ time++;
+ msleep(50);
+ }
+ }
+
+ /*
+ * Initializing proper values as Pause threshold into all
+ * the 8 Queues on Rx side.
+ */
+ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
+ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
+
+ /* Disable RMAC PAD STRIPPING */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64), add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+ val64 = readq(&bar0->mac_cfg);
+
+ /* Enable FCS stripping by adapter */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 |= MAC_CFG_RMAC_STRIP_FCS;
+ if (nic->device_type == XFRAME_II_DEVICE)
+ writeq(val64, &bar0->mac_cfg);
+ else {
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64), add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+ }
+
+ /*
+ * Set the time value to be inserted in the pause frame
+ * generated by xena.
+ */
+ val64 = readq(&bar0->rmac_pause_cfg);
+ val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
+ val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
+ writeq(val64, &bar0->rmac_pause_cfg);
+
+ /*
+ * Set the Threshold Limit for Generating the pause frame
+ * If the amount of data in any Queue exceeds ratio of
+ * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
+ * pause frame is generated
+ */
+ val64 = 0;
+ for (i = 0; i < 4; i++) {
+ val64 |= (((u64)0xFF00 |
+ nic->mac_control.mc_pause_threshold_q0q3)
+ << (i * 2 * 8));
+ }
+ writeq(val64, &bar0->mc_pause_thresh_q0q3);
+
+ val64 = 0;
+ for (i = 0; i < 4; i++) {
+ val64 |= (((u64)0xFF00 |
+ nic->mac_control.mc_pause_threshold_q4q7)
+ << (i * 2 * 8));
+ }
+ writeq(val64, &bar0->mc_pause_thresh_q4q7);
+
+ /*
+ * TxDMA will stop Read request if the number of read split has
+ * exceeded the limit pointed by shared_splits
+ */
+ val64 = readq(&bar0->pic_control);
+ val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
+ writeq(val64, &bar0->pic_control);
+
+ if (nic->config.bus_speed == 266) {
+ writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
+ writeq(0x0, &bar0->read_retry_delay);
+ writeq(0x0, &bar0->write_retry_delay);
+ }
+
+ /*
+ * Programming the Herc to split every write transaction
+ * that does not start on an ADB to reduce disconnects.
+ */
+ if (nic->device_type == XFRAME_II_DEVICE) {
+ val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
+ MISC_LINK_STABILITY_PRD(3);
+ writeq(val64, &bar0->misc_control);
+ val64 = readq(&bar0->pic_control2);
+ val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
+ writeq(val64, &bar0->pic_control2);
+ }
+ if (strstr(nic->product_name, "CX4")) {
+ val64 = TMAC_AVG_IPG(0x17);
+ writeq(val64, &bar0->tmac_avg_ipg);
+ }
+
+ return SUCCESS;
+}
+#define LINK_UP_DOWN_INTERRUPT 1
+#define MAC_RMAC_ERR_TIMER 2
+
+static int s2io_link_fault_indication(struct s2io_nic *nic)
+{
+ if (nic->device_type == XFRAME_II_DEVICE)
+ return LINK_UP_DOWN_INTERRUPT;
+ else
+ return MAC_RMAC_ERR_TIMER;
+}
+
+/**
+ * do_s2io_write_bits - update alarm bits in alarm register
+ * @value: alarm bits
+ * @flag: interrupt status
+ * @addr: address value
+ * Description: update alarm bits in alarm register
+ * Return Value:
+ * NONE.
+ */
+static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
+{
+ u64 temp64;
+
+ temp64 = readq(addr);
+
+ if (flag == ENABLE_INTRS)
+ temp64 &= ~((u64)value);
+ else
+ temp64 |= ((u64)value);
+ writeq(temp64, addr);
+}
+
+static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 gen_int_mask = 0;
+ u64 interruptible;
+
+ writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
+ if (mask & TX_DMA_INTR) {
+ gen_int_mask |= TXDMA_INT_M;
+
+ do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
+ TXDMA_PCC_INT | TXDMA_TTI_INT |
+ TXDMA_LSO_INT | TXDMA_TPA_INT |
+ TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
+
+ do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
+ PFC_MISC_0_ERR | PFC_MISC_1_ERR |
+ PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
+ &bar0->pfc_err_mask);
+
+ do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
+ TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
+ TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
+
+ do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
+ PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
+ PCC_N_SERR | PCC_6_COF_OV_ERR |
+ PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
+ PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
+ PCC_TXB_ECC_SG_ERR,
+ flag, &bar0->pcc_err_mask);
+
+ do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
+ TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
+
+ do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
+ LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
+ LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
+ flag, &bar0->lso_err_mask);
+
+ do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
+ flag, &bar0->tpa_err_mask);
+
+ do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
+ }
+
+ if (mask & TX_MAC_INTR) {
+ gen_int_mask |= TXMAC_INT_M;
+ do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
+ &bar0->mac_int_mask);
+ do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
+ TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
+ TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
+ flag, &bar0->mac_tmac_err_mask);
+ }
+
+ if (mask & TX_XGXS_INTR) {
+ gen_int_mask |= TXXGXS_INT_M;
+ do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
+ &bar0->xgxs_int_mask);
+ do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
+ TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
+ flag, &bar0->xgxs_txgxs_err_mask);
+ }
+
+ if (mask & RX_DMA_INTR) {
+ gen_int_mask |= RXDMA_INT_M;
+ do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
+ RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
+ flag, &bar0->rxdma_int_mask);
+ do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
+ RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
+ RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
+ RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
+ do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
+ PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
+ PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
+ &bar0->prc_pcix_err_mask);
+ do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
+ RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
+ &bar0->rpa_err_mask);
+ do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
+ RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
+ RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
+ RDA_FRM_ECC_SG_ERR |
+ RDA_MISC_ERR|RDA_PCIX_ERR,
+ flag, &bar0->rda_err_mask);
+ do_s2io_write_bits(RTI_SM_ERR_ALARM |
+ RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
+ flag, &bar0->rti_err_mask);
+ }
+
+ if (mask & RX_MAC_INTR) {
+ gen_int_mask |= RXMAC_INT_M;
+ do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
+ &bar0->mac_int_mask);
+ interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
+ RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
+ RMAC_DOUBLE_ECC_ERR);
+ if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
+ interruptible |= RMAC_LINK_STATE_CHANGE_INT;
+ do_s2io_write_bits(interruptible,
+ flag, &bar0->mac_rmac_err_mask);
+ }
+
+ if (mask & RX_XGXS_INTR) {
+ gen_int_mask |= RXXGXS_INT_M;
+ do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
+ &bar0->xgxs_int_mask);
+ do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
+ &bar0->xgxs_rxgxs_err_mask);
+ }
+
+ if (mask & MC_INTR) {
+ gen_int_mask |= MC_INT_M;
+ do_s2io_write_bits(MC_INT_MASK_MC_INT,
+ flag, &bar0->mc_int_mask);
+ do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
+ MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
+ &bar0->mc_err_mask);
+ }
+ nic->general_int_mask = gen_int_mask;
+
+ /* Remove this line when alarm interrupts are enabled */
+ nic->general_int_mask = 0;
+}
+
+/**
+ * en_dis_able_nic_intrs - Enable or Disable the interrupts
+ * @nic: device private variable,
+ * @mask: A mask indicating which Intr block must be modified and,
+ * @flag: A flag indicating whether to enable or disable the Intrs.
+ * Description: This function will either disable or enable the interrupts
+ * depending on the flag argument. The mask argument can be used to
+ * enable/disable any Intr block.
+ * Return Value: NONE.
+ */
+
+static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 temp64 = 0, intr_mask = 0;
+
+ intr_mask = nic->general_int_mask;
+
+ /* Top level interrupt classification */
+ /* PIC Interrupts */
+ if (mask & TX_PIC_INTR) {
+ /* Enable PIC Intrs in the general intr mask register */
+ intr_mask |= TXPIC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ /*
+ * If Hercules adapter enable GPIO otherwise
+ * disable all PCIX, Flash, MDIO, IIC and GPIO
+ * interrupts for now.
+ * TODO
+ */
+ if (s2io_link_fault_indication(nic) ==
+ LINK_UP_DOWN_INTERRUPT) {
+ do_s2io_write_bits(PIC_INT_GPIO, flag,
+ &bar0->pic_int_mask);
+ do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
+ &bar0->gpio_int_mask);
+ } else
+ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable PIC Intrs in the general
+ * intr mask register
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
+ }
+ }
+
+ /* Tx traffic interrupts */
+ if (mask & TX_TRAFFIC_INTR) {
+ intr_mask |= TXTRAFFIC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ /*
+ * Enable all the Tx side interrupts
+ * writing 0 Enables all 64 TX interrupt levels
+ */
+ writeq(0x0, &bar0->tx_traffic_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable Tx Traffic Intrs in the general intr mask
+ * register.
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
+ }
+ }
+
+ /* Rx traffic interrupts */
+ if (mask & RX_TRAFFIC_INTR) {
+ intr_mask |= RXTRAFFIC_INT_M;
+ if (flag == ENABLE_INTRS) {
+ /* writing 0 Enables all 8 RX interrupt levels */
+ writeq(0x0, &bar0->rx_traffic_mask);
+ } else if (flag == DISABLE_INTRS) {
+ /*
+ * Disable Rx Traffic Intrs in the general intr mask
+ * register.
+ */
+ writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
+ }
+ }
+
+ temp64 = readq(&bar0->general_int_mask);
+ if (flag == ENABLE_INTRS)
+ temp64 &= ~((u64)intr_mask);
+ else
+ temp64 = DISABLE_ALL_INTRS;
+ writeq(temp64, &bar0->general_int_mask);
+
+ nic->general_int_mask = readq(&bar0->general_int_mask);
+}
+
+/**
+ * verify_pcc_quiescent- Checks for PCC quiescent state
+ * Return: 1 If PCC is quiescence
+ * 0 If PCC is not quiescence
+ */
+static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
+{
+ int ret = 0, herc;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64 = readq(&bar0->adapter_status);
+
+ herc = (sp->device_type == XFRAME_II_DEVICE);
+
+ if (flag == false) {
+ if ((!herc && (sp->pdev->revision >= 4)) || herc) {
+ if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
+ ret = 1;
+ } else {
+ if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
+ ret = 1;
+ }
+ } else {
+ if ((!herc && (sp->pdev->revision >= 4)) || herc) {
+ if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
+ ADAPTER_STATUS_RMAC_PCC_IDLE))
+ ret = 1;
+ } else {
+ if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
+ ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
+ ret = 1;
+ }
+ }
+
+ return ret;
+}
+/**
+ * verify_xena_quiescence - Checks whether the H/W is ready
+ * Description: Returns whether the H/W is ready to go or not. Depending
+ * on whether adapter enable bit was written or not the comparison
+ * differs and the calling function passes the input argument flag to
+ * indicate this.
+ * Return: 1 If xena is quiescence
+ * 0 If Xena is not quiescence
+ */
+
+static int verify_xena_quiescence(struct s2io_nic *sp)
+{
+ int mode;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64 = readq(&bar0->adapter_status);
+ mode = s2io_verify_pci_mode(sp);
+
+ if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
+ DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
+ DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
+ DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
+ DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
+ DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
+ DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
+ DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
+ return 0;
+ }
+ if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
+ DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
+ return 0;
+ }
+
+ /*
+ * In PCI 33 mode, the P_PLL is not used, and therefore,
+ * the the P_PLL_LOCK bit in the adapter_status register will
+ * not be asserted.
+ */
+ if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
+ sp->device_type == XFRAME_II_DEVICE &&
+ mode != PCI_MODE_PCI_33) {
+ DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
+ return 0;
+ }
+ if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
+ ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
+ DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
+ return 0;
+ }
+ return 1;
+}
+
+/**
+ * fix_mac_address - Fix for Mac addr problem on Alpha platforms
+ * @sp: Pointer to device specifc structure
+ * Description :
+ * New procedure to clear mac address reading problems on Alpha platforms
+ *
+ */
+
+static void fix_mac_address(struct s2io_nic *sp)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ int i = 0;
+
+ while (fix_mac[i] != END_SIGN) {
+ writeq(fix_mac[i++], &bar0->gpio_control);
+ udelay(10);
+ (void) readq(&bar0->gpio_control);
+ }
+}
+
+/**
+ * start_nic - Turns the device on
+ * @nic : device private variable.
+ * Description:
+ * This function actually turns the device on. Before this function is
+ * called,all Registers are configured from their reset states
+ * and shared memory is allocated but the NIC is still quiescent. On
+ * calling this function, the device interrupts are cleared and the NIC is
+ * literally switched on by writing into the adapter control register.
+ * Return Value:
+ * SUCCESS on success and -1 on failure.
+ */
+
+static int start_nic(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ struct net_device *dev = nic->dev;
+ register u64 val64 = 0;
+ u16 subid, i;
+ struct config_param *config = &nic->config;
+ struct mac_info *mac_control = &nic->mac_control;
+
+ /* PRC Initialization and configuration */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ writeq((u64)ring->rx_blocks[0].block_dma_addr,
+ &bar0->prc_rxd0_n[i]);
+
+ val64 = readq(&bar0->prc_ctrl_n[i]);
+ if (nic->rxd_mode == RXD_MODE_1)
+ val64 |= PRC_CTRL_RC_ENABLED;
+ else
+ val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
+ if (nic->device_type == XFRAME_II_DEVICE)
+ val64 |= PRC_CTRL_GROUP_READS;
+ val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
+ val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
+ writeq(val64, &bar0->prc_ctrl_n[i]);
+ }
+
+ if (nic->rxd_mode == RXD_MODE_3B) {
+ /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
+ val64 = readq(&bar0->rx_pa_cfg);
+ val64 |= RX_PA_CFG_IGNORE_L2_ERR;
+ writeq(val64, &bar0->rx_pa_cfg);
+ }
+
+ if (vlan_tag_strip == 0) {
+ val64 = readq(&bar0->rx_pa_cfg);
+ val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
+ writeq(val64, &bar0->rx_pa_cfg);
+ nic->vlan_strip_flag = 0;
+ }
+
+ /*
+ * Enabling MC-RLDRAM. After enabling the device, we timeout
+ * for around 100ms, which is approximately the time required
+ * for the device to be ready for operation.
+ */
+ val64 = readq(&bar0->mc_rldram_mrs);
+ val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+ val64 = readq(&bar0->mc_rldram_mrs);
+
+ msleep(100); /* Delay by around 100 ms. */
+
+ /* Enabling ECC Protection. */
+ val64 = readq(&bar0->adapter_control);
+ val64 &= ~ADAPTER_ECC_EN;
+ writeq(val64, &bar0->adapter_control);
+
+ /*
+ * Verify if the device is ready to be enabled, if so enable
+ * it.
+ */
+ val64 = readq(&bar0->adapter_status);
+ if (!verify_xena_quiescence(nic)) {
+ DBG_PRINT(ERR_DBG, "%s: device is not ready, "
+ "Adapter status reads: 0x%llx\n",
+ dev->name, (unsigned long long)val64);
+ return FAILURE;
+ }
+
+ /*
+ * With some switches, link might be already up at this point.
+ * Because of this weird behavior, when we enable laser,
+ * we may not get link. We need to handle this. We cannot
+ * figure out which switch is misbehaving. So we are forced to
+ * make a global change.
+ */
+
+ /* Enabling Laser. */
+ val64 = readq(&bar0->adapter_control);
+ val64 |= ADAPTER_EOI_TX_ON;
+ writeq(val64, &bar0->adapter_control);
+
+ if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
+ /*
+ * Dont see link state interrupts initially on some switches,
+ * so directly scheduling the link state task here.
+ */
+ schedule_work(&nic->set_link_task);
+ }
+ /* SXE-002: Initialize link and activity LED */
+ subid = nic->pdev->subsystem_device;
+ if (((subid & 0xFF) >= 0x07) &&
+ (nic->device_type == XFRAME_I_DEVICE)) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= 0x0000800000000000ULL;
+ writeq(val64, &bar0->gpio_control);
+ val64 = 0x0411040400000000ULL;
+ writeq(val64, (void __iomem *)bar0 + 0x2700);
+ }
+
+ return SUCCESS;
+}
+/**
+ * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
+ */
+static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
+ struct TxD *txdlp, int get_off)
+{
+ struct s2io_nic *nic = fifo_data->nic;
+ struct sk_buff *skb;
+ struct TxD *txds;
+ u16 j, frg_cnt;
+
+ txds = txdlp;
+ if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
+ pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
+ sizeof(u64), PCI_DMA_TODEVICE);
+ txds++;
+ }
+
+ skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
+ if (!skb) {
+ memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
+ return NULL;
+ }
+ pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
+ skb_headlen(skb), PCI_DMA_TODEVICE);
+ frg_cnt = skb_shinfo(skb)->nr_frags;
+ if (frg_cnt) {
+ txds++;
+ for (j = 0; j < frg_cnt; j++, txds++) {
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
+ if (!txds->Buffer_Pointer)
+ break;
+ pci_unmap_page(nic->pdev,
+ (dma_addr_t)txds->Buffer_Pointer,
+ frag->size, PCI_DMA_TODEVICE);
+ }
+ }
+ memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
+ return skb;
+}
+
+/**
+ * free_tx_buffers - Free all queued Tx buffers
+ * @nic : device private variable.
+ * Description:
+ * Free all queued Tx buffers.
+ * Return Value: void
+ */
+
+static void free_tx_buffers(struct s2io_nic *nic)
+{
+ struct net_device *dev = nic->dev;
+ struct sk_buff *skb;
+ struct TxD *txdp;
+ int i, j;
+ int cnt = 0;
+ struct config_param *config = &nic->config;
+ struct mac_info *mac_control = &nic->mac_control;
+ struct stat_block *stats = mac_control->stats_info;
+ struct swStat *swstats = &stats->sw_stat;
+
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+ struct fifo_info *fifo = &mac_control->fifos[i];
+ unsigned long flags;
+
+ spin_lock_irqsave(&fifo->tx_lock, flags);
+ for (j = 0; j < tx_cfg->fifo_len; j++) {
+ txdp = fifo->list_info[j].list_virt_addr;
+ skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
+ if (skb) {
+ swstats->mem_freed += skb->truesize;
+ dev_kfree_skb(skb);
+ cnt++;
+ }
+ }
+ DBG_PRINT(INTR_DBG,
+ "%s: forcibly freeing %d skbs on FIFO%d\n",
+ dev->name, cnt, i);
+ fifo->tx_curr_get_info.offset = 0;
+ fifo->tx_curr_put_info.offset = 0;
+ spin_unlock_irqrestore(&fifo->tx_lock, flags);
+ }
+}
+
+/**
+ * stop_nic - To stop the nic
+ * @nic ; device private variable.
+ * Description:
+ * This function does exactly the opposite of what the start_nic()
+ * function does. This function is called to stop the device.
+ * Return Value:
+ * void.
+ */
+
+static void stop_nic(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0;
+ u16 interruptible;
+
+ /* Disable all interrupts */
+ en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
+ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
+ interruptible |= TX_PIC_INTR;
+ en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
+
+ /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
+ val64 = readq(&bar0->adapter_control);
+ val64 &= ~(ADAPTER_CNTL_EN);
+ writeq(val64, &bar0->adapter_control);
+}
+
+/**
+ * fill_rx_buffers - Allocates the Rx side skbs
+ * @ring_info: per ring structure
+ * @from_card_up: If this is true, we will map the buffer to get
+ * the dma address for buf0 and buf1 to give it to the card.
+ * Else we will sync the already mapped buffer to give it to the card.
+ * Description:
+ * The function allocates Rx side skbs and puts the physical
+ * address of these buffers into the RxD buffer pointers, so that the NIC
+ * can DMA the received frame into these locations.
+ * The NIC supports 3 receive modes, viz
+ * 1. single buffer,
+ * 2. three buffer and
+ * 3. Five buffer modes.
+ * Each mode defines how many fragments the received frame will be split
+ * up into by the NIC. The frame is split into L3 header, L4 Header,
+ * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
+ * is split into 3 fragments. As of now only single buffer mode is
+ * supported.
+ * Return Value:
+ * SUCCESS on success or an appropriate -ve value on failure.
+ */
+static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
+ int from_card_up)
+{
+ struct sk_buff *skb;
+ struct RxD_t *rxdp;
+ int off, size, block_no, block_no1;
+ u32 alloc_tab = 0;
+ u32 alloc_cnt;
+ u64 tmp;
+ struct buffAdd *ba;
+ struct RxD_t *first_rxdp = NULL;
+ u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
+ int rxd_index = 0;
+ struct RxD1 *rxdp1;
+ struct RxD3 *rxdp3;
+ struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
+
+ alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
+
+ block_no1 = ring->rx_curr_get_info.block_index;
+ while (alloc_tab < alloc_cnt) {
+ block_no = ring->rx_curr_put_info.block_index;
+
+ off = ring->rx_curr_put_info.offset;
+
+ rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
+
+ rxd_index = off + 1;
+ if (block_no)
+ rxd_index += (block_no * ring->rxd_count);
+
+ if ((block_no == block_no1) &&
+ (off == ring->rx_curr_get_info.offset) &&
+ (rxdp->Host_Control)) {
+ DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
+ ring->dev->name);
+ goto end;
+ }
+ if (off && (off == ring->rxd_count)) {
+ ring->rx_curr_put_info.block_index++;
+ if (ring->rx_curr_put_info.block_index ==
+ ring->block_count)
+ ring->rx_curr_put_info.block_index = 0;
+ block_no = ring->rx_curr_put_info.block_index;
+ off = 0;
+ ring->rx_curr_put_info.offset = off;
+ rxdp = ring->rx_blocks[block_no].block_virt_addr;
+ DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
+ ring->dev->name, rxdp);
+
+ }
+
+ if ((rxdp->Control_1 & RXD_OWN_XENA) &&
+ ((ring->rxd_mode == RXD_MODE_3B) &&
+ (rxdp->Control_2 & s2BIT(0)))) {
+ ring->rx_curr_put_info.offset = off;
+ goto end;
+ }
+ /* calculate size of skb based on ring mode */
+ size = ring->mtu +
+ HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
+ if (ring->rxd_mode == RXD_MODE_1)
+ size += NET_IP_ALIGN;
+ else
+ size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
+
+ /* allocate skb */
+ skb = dev_alloc_skb(size);
+ if (!skb) {
+ DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
+ ring->dev->name);
+ if (first_rxdp) {
+ wmb();
+ first_rxdp->Control_1 |= RXD_OWN_XENA;
+ }
+ swstats->mem_alloc_fail_cnt++;
+
+ return -ENOMEM ;
+ }
+ swstats->mem_allocated += skb->truesize;
+
+ if (ring->rxd_mode == RXD_MODE_1) {
+ /* 1 buffer mode - normal operation mode */
+ rxdp1 = (struct RxD1 *)rxdp;
+ memset(rxdp, 0, sizeof(struct RxD1));
+ skb_reserve(skb, NET_IP_ALIGN);
+ rxdp1->Buffer0_ptr =
+ pci_map_single(ring->pdev, skb->data,
+ size - NET_IP_ALIGN,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(nic->pdev,
+ rxdp1->Buffer0_ptr))
+ goto pci_map_failed;
+
+ rxdp->Control_2 =
+ SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
+ rxdp->Host_Control = (unsigned long)skb;
+ } else if (ring->rxd_mode == RXD_MODE_3B) {
+ /*
+ * 2 buffer mode -
+ * 2 buffer mode provides 128
+ * byte aligned receive buffers.
+ */
+
+ rxdp3 = (struct RxD3 *)rxdp;
+ /* save buffer pointers to avoid frequent dma mapping */
+ Buffer0_ptr = rxdp3->Buffer0_ptr;
+ Buffer1_ptr = rxdp3->Buffer1_ptr;
+ memset(rxdp, 0, sizeof(struct RxD3));
+ /* restore the buffer pointers for dma sync*/
+ rxdp3->Buffer0_ptr = Buffer0_ptr;
+ rxdp3->Buffer1_ptr = Buffer1_ptr;
+
+ ba = &ring->ba[block_no][off];
+ skb_reserve(skb, BUF0_LEN);
+ tmp = (u64)(unsigned long)skb->data;
+ tmp += ALIGN_SIZE;
+ tmp &= ~ALIGN_SIZE;
+ skb->data = (void *) (unsigned long)tmp;
+ skb_reset_tail_pointer(skb);
+
+ if (from_card_up) {
+ rxdp3->Buffer0_ptr =
+ pci_map_single(ring->pdev, ba->ba_0,
+ BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(nic->pdev,
+ rxdp3->Buffer0_ptr))
+ goto pci_map_failed;
+ } else
+ pci_dma_sync_single_for_device(ring->pdev,
+ (dma_addr_t)rxdp3->Buffer0_ptr,
+ BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+
+ rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
+ if (ring->rxd_mode == RXD_MODE_3B) {
+ /* Two buffer mode */
+
+ /*
+ * Buffer2 will have L3/L4 header plus
+ * L4 payload
+ */
+ rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
+ skb->data,
+ ring->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+
+ if (pci_dma_mapping_error(nic->pdev,
+ rxdp3->Buffer2_ptr))
+ goto pci_map_failed;
+
+ if (from_card_up) {
+ rxdp3->Buffer1_ptr =
+ pci_map_single(ring->pdev,
+ ba->ba_1,
+ BUF1_LEN,
+ PCI_DMA_FROMDEVICE);
+
+ if (pci_dma_mapping_error(nic->pdev,
+ rxdp3->Buffer1_ptr)) {
+ pci_unmap_single(ring->pdev,
+ (dma_addr_t)(unsigned long)
+ skb->data,
+ ring->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+ goto pci_map_failed;
+ }
+ }
+ rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
+ rxdp->Control_2 |= SET_BUFFER2_SIZE_3
+ (ring->mtu + 4);
+ }
+ rxdp->Control_2 |= s2BIT(0);
+ rxdp->Host_Control = (unsigned long) (skb);
+ }
+ if (alloc_tab & ((1 << rxsync_frequency) - 1))
+ rxdp->Control_1 |= RXD_OWN_XENA;
+ off++;
+ if (off == (ring->rxd_count + 1))
+ off = 0;
+ ring->rx_curr_put_info.offset = off;
+
+ rxdp->Control_2 |= SET_RXD_MARKER;
+ if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
+ if (first_rxdp) {
+ wmb();
+ first_rxdp->Control_1 |= RXD_OWN_XENA;
+ }
+ first_rxdp = rxdp;
+ }
+ ring->rx_bufs_left += 1;
+ alloc_tab++;
+ }
+
+end:
+ /* Transfer ownership of first descriptor to adapter just before
+ * exiting. Before that, use memory barrier so that ownership
+ * and other fields are seen by adapter correctly.
+ */
+ if (first_rxdp) {
+ wmb();
+ first_rxdp->Control_1 |= RXD_OWN_XENA;
+ }
+
+ return SUCCESS;
+
+pci_map_failed:
+ swstats->pci_map_fail_cnt++;
+ swstats->mem_freed += skb->truesize;
+ dev_kfree_skb_irq(skb);
+ return -ENOMEM;
+}
+
+static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
+{
+ struct net_device *dev = sp->dev;
+ int j;
+ struct sk_buff *skb;
+ struct RxD_t *rxdp;
+ struct RxD1 *rxdp1;
+ struct RxD3 *rxdp3;
+ struct mac_info *mac_control = &sp->mac_control;
+ struct stat_block *stats = mac_control->stats_info;
+ struct swStat *swstats = &stats->sw_stat;
+
+ for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
+ rxdp = mac_control->rings[ring_no].
+ rx_blocks[blk].rxds[j].virt_addr;
+ skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
+ if (!skb)
+ continue;
+ if (sp->rxd_mode == RXD_MODE_1) {
+ rxdp1 = (struct RxD1 *)rxdp;
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp1->Buffer0_ptr,
+ dev->mtu +
+ HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
+ PCI_DMA_FROMDEVICE);
+ memset(rxdp, 0, sizeof(struct RxD1));
+ } else if (sp->rxd_mode == RXD_MODE_3B) {
+ rxdp3 = (struct RxD3 *)rxdp;
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp3->Buffer0_ptr,
+ BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp3->Buffer1_ptr,
+ BUF1_LEN,
+ PCI_DMA_FROMDEVICE);
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp3->Buffer2_ptr,
+ dev->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+ memset(rxdp, 0, sizeof(struct RxD3));
+ }
+ swstats->mem_freed += skb->truesize;
+ dev_kfree_skb(skb);
+ mac_control->rings[ring_no].rx_bufs_left -= 1;
+ }
+}
+
+/**
+ * free_rx_buffers - Frees all Rx buffers
+ * @sp: device private variable.
+ * Description:
+ * This function will free all Rx buffers allocated by host.
+ * Return Value:
+ * NONE.
+ */
+
+static void free_rx_buffers(struct s2io_nic *sp)
+{
+ struct net_device *dev = sp->dev;
+ int i, blk = 0, buf_cnt = 0;
+ struct config_param *config = &sp->config;
+ struct mac_info *mac_control = &sp->mac_control;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ for (blk = 0; blk < rx_ring_sz[i]; blk++)
+ free_rxd_blk(sp, i, blk);
+
+ ring->rx_curr_put_info.block_index = 0;
+ ring->rx_curr_get_info.block_index = 0;
+ ring->rx_curr_put_info.offset = 0;
+ ring->rx_curr_get_info.offset = 0;
+ ring->rx_bufs_left = 0;
+ DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
+ dev->name, buf_cnt, i);
+ }
+}
+
+static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
+{
+ if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
+ DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
+ ring->dev->name);
+ }
+ return 0;
+}
+
+/**
+ * s2io_poll - Rx interrupt handler for NAPI support
+ * @napi : pointer to the napi structure.
+ * @budget : The number of packets that were budgeted to be processed
+ * during one pass through the 'Poll" function.
+ * Description:
+ * Comes into picture only if NAPI support has been incorporated. It does
+ * the same thing that rx_intr_handler does, but not in a interrupt context
+ * also It will process only a given number of packets.
+ * Return value:
+ * 0 on success and 1 if there are No Rx packets to be processed.
+ */
+
+static int s2io_poll_msix(struct napi_struct *napi, int budget)
+{
+ struct ring_info *ring = container_of(napi, struct ring_info, napi);
+ struct net_device *dev = ring->dev;
+ int pkts_processed = 0;
+ u8 __iomem *addr = NULL;
+ u8 val8 = 0;
+ struct s2io_nic *nic = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ int budget_org = budget;
+
+ if (unlikely(!is_s2io_card_up(nic)))
+ return 0;
+
+ pkts_processed = rx_intr_handler(ring, budget);
+ s2io_chk_rx_buffers(nic, ring);
+
+ if (pkts_processed < budget_org) {
+ napi_complete(napi);
+ /*Re Enable MSI-Rx Vector*/
+ addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
+ addr += 7 - ring->ring_no;
+ val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
+ writeb(val8, addr);
+ val8 = readb(addr);
+ }
+ return pkts_processed;
+}
+
+static int s2io_poll_inta(struct napi_struct *napi, int budget)
+{
+ struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
+ int pkts_processed = 0;
+ int ring_pkts_processed, i;
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ int budget_org = budget;
+ struct config_param *config = &nic->config;
+ struct mac_info *mac_control = &nic->mac_control;
+
+ if (unlikely(!is_s2io_card_up(nic)))
+ return 0;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+ ring_pkts_processed = rx_intr_handler(ring, budget);
+ s2io_chk_rx_buffers(nic, ring);
+ pkts_processed += ring_pkts_processed;
+ budget -= ring_pkts_processed;
+ if (budget <= 0)
+ break;
+ }
+ if (pkts_processed < budget_org) {
+ napi_complete(napi);
+ /* Re enable the Rx interrupts for the ring */
+ writeq(0, &bar0->rx_traffic_mask);
+ readl(&bar0->rx_traffic_mask);
+ }
+ return pkts_processed;
+}
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+/**
+ * s2io_netpoll - netpoll event handler entry point
+ * @dev : pointer to the device structure.
+ * Description:
+ * This function will be called by upper layer to check for events on the
+ * interface in situations where interrupts are disabled. It is used for
+ * specific in-kernel networking tasks, such as remote consoles and kernel
+ * debugging over the network (example netdump in RedHat).
+ */
+static void s2io_netpoll(struct net_device *dev)
+{
+ struct s2io_nic *nic = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
+ int i;
+ struct config_param *config = &nic->config;
+ struct mac_info *mac_control = &nic->mac_control;
+
+ if (pci_channel_offline(nic->pdev))
+ return;
+
+ disable_irq(dev->irq);
+
+ writeq(val64, &bar0->rx_traffic_int);
+ writeq(val64, &bar0->tx_traffic_int);
+
+ /* we need to free up the transmitted skbufs or else netpoll will
+ * run out of skbs and will fail and eventually netpoll application such
+ * as netdump will fail.
+ */
+ for (i = 0; i < config->tx_fifo_num; i++)
+ tx_intr_handler(&mac_control->fifos[i]);
+
+ /* check for received packet and indicate up to network */
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ rx_intr_handler(ring, 0);
+ }
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
+ DBG_PRINT(INFO_DBG,
+ "%s: Out of memory in Rx Netpoll!!\n",
+ dev->name);
+ break;
+ }
+ }
+ enable_irq(dev->irq);
+}
+#endif
+
+/**
+ * rx_intr_handler - Rx interrupt handler
+ * @ring_info: per ring structure.
+ * @budget: budget for napi processing.
+ * Description:
+ * If the interrupt is because of a received frame or if the
+ * receive ring contains fresh as yet un-processed frames,this function is
+ * called. It picks out the RxD at which place the last Rx processing had
+ * stopped and sends the skb to the OSM's Rx handler and then increments
+ * the offset.
+ * Return Value:
+ * No. of napi packets processed.
+ */
+static int rx_intr_handler(struct ring_info *ring_data, int budget)
+{
+ int get_block, put_block;
+ struct rx_curr_get_info get_info, put_info;
+ struct RxD_t *rxdp;
+ struct sk_buff *skb;
+ int pkt_cnt = 0, napi_pkts = 0;
+ int i;
+ struct RxD1 *rxdp1;
+ struct RxD3 *rxdp3;
+
+ get_info = ring_data->rx_curr_get_info;
+ get_block = get_info.block_index;
+ memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
+ put_block = put_info.block_index;
+ rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
+
+ while (RXD_IS_UP2DT(rxdp)) {
+ /*
+ * If your are next to put index then it's
+ * FIFO full condition
+ */
+ if ((get_block == put_block) &&
+ (get_info.offset + 1) == put_info.offset) {
+ DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
+ ring_data->dev->name);
+ break;
+ }
+ skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
+ if (skb == NULL) {
+ DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
+ ring_data->dev->name);
+ return 0;
+ }
+ if (ring_data->rxd_mode == RXD_MODE_1) {
+ rxdp1 = (struct RxD1 *)rxdp;
+ pci_unmap_single(ring_data->pdev, (dma_addr_t)
+ rxdp1->Buffer0_ptr,
+ ring_data->mtu +
+ HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE +
+ HEADER_SNAP_SIZE,
+ PCI_DMA_FROMDEVICE);
+ } else if (ring_data->rxd_mode == RXD_MODE_3B) {
+ rxdp3 = (struct RxD3 *)rxdp;
+ pci_dma_sync_single_for_cpu(ring_data->pdev,
+ (dma_addr_t)rxdp3->Buffer0_ptr,
+ BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+ pci_unmap_single(ring_data->pdev,
+ (dma_addr_t)rxdp3->Buffer2_ptr,
+ ring_data->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+ }
+ prefetch(skb->data);
+ rx_osm_handler(ring_data, rxdp);
+ get_info.offset++;
+ ring_data->rx_curr_get_info.offset = get_info.offset;
+ rxdp = ring_data->rx_blocks[get_block].
+ rxds[get_info.offset].virt_addr;
+ if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
+ get_info.offset = 0;
+ ring_data->rx_curr_get_info.offset = get_info.offset;
+ get_block++;
+ if (get_block == ring_data->block_count)
+ get_block = 0;
+ ring_data->rx_curr_get_info.block_index = get_block;
+ rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
+ }
+
+ if (ring_data->nic->config.napi) {
+ budget--;
+ napi_pkts++;
+ if (!budget)
+ break;
+ }
+ pkt_cnt++;
+ if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
+ break;
+ }
+ if (ring_data->lro) {
+ /* Clear all LRO sessions before exiting */
+ for (i = 0; i < MAX_LRO_SESSIONS; i++) {
+ struct lro *lro = &ring_data->lro0_n[i];
+ if (lro->in_use) {
+ update_L3L4_header(ring_data->nic, lro);
+ queue_rx_frame(lro->parent, lro->vlan_tag);
+ clear_lro_session(lro);
+ }
+ }
+ }
+ return napi_pkts;
+}
+
+/**
+ * tx_intr_handler - Transmit interrupt handler
+ * @nic : device private variable
+ * Description:
+ * If an interrupt was raised to indicate DMA complete of the
+ * Tx packet, this function is called. It identifies the last TxD
+ * whose buffer was freed and frees all skbs whose data have already
+ * DMA'ed into the NICs internal memory.
+ * Return Value:
+ * NONE
+ */
+
+static void tx_intr_handler(struct fifo_info *fifo_data)
+{
+ struct s2io_nic *nic = fifo_data->nic;
+ struct tx_curr_get_info get_info, put_info;
+ struct sk_buff *skb = NULL;
+ struct TxD *txdlp;
+ int pkt_cnt = 0;
+ unsigned long flags = 0;
+ u8 err_mask;
+ struct stat_block *stats = nic->mac_control.stats_info;
+ struct swStat *swstats = &stats->sw_stat;
+
+ if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
+ return;
+
+ get_info = fifo_data->tx_curr_get_info;
+ memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
+ txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
+ while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
+ (get_info.offset != put_info.offset) &&
+ (txdlp->Host_Control)) {
+ /* Check for TxD errors */
+ if (txdlp->Control_1 & TXD_T_CODE) {
+ unsigned long long err;
+ err = txdlp->Control_1 & TXD_T_CODE;
+ if (err & 0x1) {
+ swstats->parity_err_cnt++;
+ }
+
+ /* update t_code statistics */
+ err_mask = err >> 48;
+ switch (err_mask) {
+ case 2:
+ swstats->tx_buf_abort_cnt++;
+ break;
+
+ case 3:
+ swstats->tx_desc_abort_cnt++;
+ break;
+
+ case 7:
+ swstats->tx_parity_err_cnt++;
+ break;
+
+ case 10:
+ swstats->tx_link_loss_cnt++;
+ break;
+
+ case 15:
+ swstats->tx_list_proc_err_cnt++;
+ break;
+ }
+ }
+
+ skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
+ if (skb == NULL) {
+ spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
+ DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
+ __func__);
+ return;
+ }
+ pkt_cnt++;
+
+ /* Updating the statistics block */
+ swstats->mem_freed += skb->truesize;
+ dev_kfree_skb_irq(skb);
+
+ get_info.offset++;
+ if (get_info.offset == get_info.fifo_len + 1)
+ get_info.offset = 0;
+ txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
+ fifo_data->tx_curr_get_info.offset = get_info.offset;
+ }
+
+ s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
+
+ spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
+}
+
+/**
+ * s2io_mdio_write - Function to write in to MDIO registers
+ * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
+ * @addr : address value
+ * @value : data value
+ * @dev : pointer to net_device structure
+ * Description:
+ * This function is used to write values to the MDIO registers
+ * NONE
+ */
+static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
+ struct net_device *dev)
+{
+ u64 val64;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ /* address transaction */
+ val64 = MDIO_MMD_INDX_ADDR(addr) |
+ MDIO_MMD_DEV_ADDR(mmd_type) |
+ MDIO_MMS_PRT_ADDR(0x0);
+ writeq(val64, &bar0->mdio_control);
+ val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
+ writeq(val64, &bar0->mdio_control);
+ udelay(100);
+
+ /* Data transaction */
+ val64 = MDIO_MMD_INDX_ADDR(addr) |
+ MDIO_MMD_DEV_ADDR(mmd_type) |
+ MDIO_MMS_PRT_ADDR(0x0) |
+ MDIO_MDIO_DATA(value) |
+ MDIO_OP(MDIO_OP_WRITE_TRANS);
+ writeq(val64, &bar0->mdio_control);
+ val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
+ writeq(val64, &bar0->mdio_control);
+ udelay(100);
+
+ val64 = MDIO_MMD_INDX_ADDR(addr) |
+ MDIO_MMD_DEV_ADDR(mmd_type) |
+ MDIO_MMS_PRT_ADDR(0x0) |
+ MDIO_OP(MDIO_OP_READ_TRANS);
+ writeq(val64, &bar0->mdio_control);
+ val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
+ writeq(val64, &bar0->mdio_control);
+ udelay(100);
+}
+
+/**
+ * s2io_mdio_read - Function to write in to MDIO registers
+ * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
+ * @addr : address value
+ * @dev : pointer to net_device structure
+ * Description:
+ * This function is used to read values to the MDIO registers
+ * NONE
+ */
+static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
+{
+ u64 val64 = 0x0;
+ u64 rval64 = 0x0;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ /* address transaction */
+ val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
+ | MDIO_MMD_DEV_ADDR(mmd_type)
+ | MDIO_MMS_PRT_ADDR(0x0));
+ writeq(val64, &bar0->mdio_control);
+ val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
+ writeq(val64, &bar0->mdio_control);
+ udelay(100);
+
+ /* Data transaction */
+ val64 = MDIO_MMD_INDX_ADDR(addr) |
+ MDIO_MMD_DEV_ADDR(mmd_type) |
+ MDIO_MMS_PRT_ADDR(0x0) |
+ MDIO_OP(MDIO_OP_READ_TRANS);
+ writeq(val64, &bar0->mdio_control);
+ val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
+ writeq(val64, &bar0->mdio_control);
+ udelay(100);
+
+ /* Read the value from regs */
+ rval64 = readq(&bar0->mdio_control);
+ rval64 = rval64 & 0xFFFF0000;
+ rval64 = rval64 >> 16;
+ return rval64;
+}
+
+/**
+ * s2io_chk_xpak_counter - Function to check the status of the xpak counters
+ * @counter : counter value to be updated
+ * @flag : flag to indicate the status
+ * @type : counter type
+ * Description:
+ * This function is to check the status of the xpak counters value
+ * NONE
+ */
+
+static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
+ u16 flag, u16 type)
+{
+ u64 mask = 0x3;
+ u64 val64;
+ int i;
+ for (i = 0; i < index; i++)
+ mask = mask << 0x2;
+
+ if (flag > 0) {
+ *counter = *counter + 1;
+ val64 = *regs_stat & mask;
+ val64 = val64 >> (index * 0x2);
+ val64 = val64 + 1;
+ if (val64 == 3) {
+ switch (type) {
+ case 1:
+ DBG_PRINT(ERR_DBG,
+ "Take Xframe NIC out of service.\n");
+ DBG_PRINT(ERR_DBG,
+"Excessive temperatures may result in premature transceiver failure.\n");
+ break;
+ case 2:
+ DBG_PRINT(ERR_DBG,
+ "Take Xframe NIC out of service.\n");
+ DBG_PRINT(ERR_DBG,
+"Excessive bias currents may indicate imminent laser diode failure.\n");
+ break;
+ case 3:
+ DBG_PRINT(ERR_DBG,
+ "Take Xframe NIC out of service.\n");
+ DBG_PRINT(ERR_DBG,
+"Excessive laser output power may saturate far-end receiver.\n");
+ break;
+ default:
+ DBG_PRINT(ERR_DBG,
+ "Incorrect XPAK Alarm type\n");
+ }
+ val64 = 0x0;
+ }
+ val64 = val64 << (index * 0x2);
+ *regs_stat = (*regs_stat & (~mask)) | (val64);
+
+ } else {
+ *regs_stat = *regs_stat & (~mask);
+ }
+}
+
+/**
+ * s2io_updt_xpak_counter - Function to update the xpak counters
+ * @dev : pointer to net_device struct
+ * Description:
+ * This function is to upate the status of the xpak counters value
+ * NONE
+ */
+static void s2io_updt_xpak_counter(struct net_device *dev)
+{
+ u16 flag = 0x0;
+ u16 type = 0x0;
+ u16 val16 = 0x0;
+ u64 val64 = 0x0;
+ u64 addr = 0x0;
+
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct stat_block *stats = sp->mac_control.stats_info;
+ struct xpakStat *xstats = &stats->xpak_stat;
+
+ /* Check the communication with the MDIO slave */
+ addr = MDIO_CTRL1;
+ val64 = 0x0;
+ val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
+ if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
+ DBG_PRINT(ERR_DBG,
+ "ERR: MDIO slave access failed - Returned %llx\n",
+ (unsigned long long)val64);
+ return;
+ }
+
+ /* Check for the expected value of control reg 1 */
+ if (val64 != MDIO_CTRL1_SPEED10G) {
+ DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
+ "Returned: %llx- Expected: 0x%x\n",
+ (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
+ return;
+ }
+
+ /* Loading the DOM register to MDIO register */
+ addr = 0xA100;
+ s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
+ val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
+
+ /* Reading the Alarm flags */
+ addr = 0xA070;
+ val64 = 0x0;
+ val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
+
+ flag = CHECKBIT(val64, 0x7);
+ type = 1;
+ s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
+ &xstats->xpak_regs_stat,
+ 0x0, flag, type);
+
+ if (CHECKBIT(val64, 0x6))
+ xstats->alarm_transceiver_temp_low++;
+
+ flag = CHECKBIT(val64, 0x3);
+ type = 2;
+ s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
+ &xstats->xpak_regs_stat,
+ 0x2, flag, type);
+
+ if (CHECKBIT(val64, 0x2))
+ xstats->alarm_laser_bias_current_low++;
+
+ flag = CHECKBIT(val64, 0x1);
+ type = 3;
+ s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
+ &xstats->xpak_regs_stat,
+ 0x4, flag, type);
+
+ if (CHECKBIT(val64, 0x0))
+ xstats->alarm_laser_output_power_low++;
+
+ /* Reading the Warning flags */
+ addr = 0xA074;
+ val64 = 0x0;
+ val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
+
+ if (CHECKBIT(val64, 0x7))
+ xstats->warn_transceiver_temp_high++;
+
+ if (CHECKBIT(val64, 0x6))
+ xstats->warn_transceiver_temp_low++;
+
+ if (CHECKBIT(val64, 0x3))
+ xstats->warn_laser_bias_current_high++;
+
+ if (CHECKBIT(val64, 0x2))
+ xstats->warn_laser_bias_current_low++;
+
+ if (CHECKBIT(val64, 0x1))
+ xstats->warn_laser_output_power_high++;
+
+ if (CHECKBIT(val64, 0x0))
+ xstats->warn_laser_output_power_low++;
+}
+
+/**
+ * wait_for_cmd_complete - waits for a command to complete.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * Description: Function that waits for a command to Write into RMAC
+ * ADDR DATA registers to be completed and returns either success or
+ * error depending on whether the command was complete or not.
+ * Return value:
+ * SUCCESS on success and FAILURE on failure.
+ */
+
+static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
+ int bit_state)
+{
+ int ret = FAILURE, cnt = 0, delay = 1;
+ u64 val64;
+
+ if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
+ return FAILURE;
+
+ do {
+ val64 = readq(addr);
+ if (bit_state == S2IO_BIT_RESET) {
+ if (!(val64 & busy_bit)) {
+ ret = SUCCESS;
+ break;
+ }
+ } else {
+ if (val64 & busy_bit) {
+ ret = SUCCESS;
+ break;
+ }
+ }
+
+ if (in_interrupt())
+ mdelay(delay);
+ else
+ msleep(delay);
+
+ if (++cnt >= 10)
+ delay = 50;
+ } while (cnt < 20);
+ return ret;
+}
+/*
+ * check_pci_device_id - Checks if the device id is supported
+ * @id : device id
+ * Description: Function to check if the pci device id is supported by driver.
+ * Return value: Actual device id if supported else PCI_ANY_ID
+ */
+static u16 check_pci_device_id(u16 id)
+{
+ switch (id) {
+ case PCI_DEVICE_ID_HERC_WIN:
+ case PCI_DEVICE_ID_HERC_UNI:
+ return XFRAME_II_DEVICE;
+ case PCI_DEVICE_ID_S2IO_UNI:
+ case PCI_DEVICE_ID_S2IO_WIN:
+ return XFRAME_I_DEVICE;
+ default:
+ return PCI_ANY_ID;
+ }
+}
+
+/**
+ * s2io_reset - Resets the card.
+ * @sp : private member of the device structure.
+ * Description: Function to Reset the card. This function then also
+ * restores the previously saved PCI configuration space registers as
+ * the card reset also resets the configuration space.
+ * Return value:
+ * void.
+ */
+
+static void s2io_reset(struct s2io_nic *sp)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64;
+ u16 subid, pci_cmd;
+ int i;
+ u16 val16;
+ unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
+ unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
+ struct stat_block *stats;
+ struct swStat *swstats;
+
+ DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
+ __func__, pci_name(sp->pdev));
+
+ /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
+
+ val64 = SW_RESET_ALL;
+ writeq(val64, &bar0->sw_reset);
+ if (strstr(sp->product_name, "CX4"))
+ msleep(750);
+ msleep(250);
+ for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
+
+ /* Restore the PCI state saved during initialization. */
+ pci_restore_state(sp->pdev);
+ pci_save_state(sp->pdev);
+ pci_read_config_word(sp->pdev, 0x2, &val16);
+ if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
+ break;
+ msleep(200);
+ }
+
+ if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
+ DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
+
+ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
+
+ s2io_init_pci(sp);
+
+ /* Set swapper to enable I/O register access */
+ s2io_set_swapper(sp);
+
+ /* restore mac_addr entries */
+ do_s2io_restore_unicast_mc(sp);
+
+ /* Restore the MSIX table entries from local variables */
+ restore_xmsi_data(sp);
+
+ /* Clear certain PCI/PCI-X fields after reset */
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ /* Clear "detected parity error" bit */
+ pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
+
+ /* Clearing PCIX Ecc status register */
+ pci_write_config_dword(sp->pdev, 0x68, 0x7C);
+
+ /* Clearing PCI_STATUS error reflected here */
+ writeq(s2BIT(62), &bar0->txpic_int_reg);
+ }
+
+ /* Reset device statistics maintained by OS */
+ memset(&sp->stats, 0, sizeof(struct net_device_stats));
+
+ stats = sp->mac_control.stats_info;
+ swstats = &stats->sw_stat;
+
+ /* save link up/down time/cnt, reset/memory/watchdog cnt */
+ up_cnt = swstats->link_up_cnt;
+ down_cnt = swstats->link_down_cnt;
+ up_time = swstats->link_up_time;
+ down_time = swstats->link_down_time;
+ reset_cnt = swstats->soft_reset_cnt;
+ mem_alloc_cnt = swstats->mem_allocated;
+ mem_free_cnt = swstats->mem_freed;
+ watchdog_cnt = swstats->watchdog_timer_cnt;
+
+ memset(stats, 0, sizeof(struct stat_block));
+
+ /* restore link up/down time/cnt, reset/memory/watchdog cnt */
+ swstats->link_up_cnt = up_cnt;
+ swstats->link_down_cnt = down_cnt;
+ swstats->link_up_time = up_time;
+ swstats->link_down_time = down_time;
+ swstats->soft_reset_cnt = reset_cnt;
+ swstats->mem_allocated = mem_alloc_cnt;
+ swstats->mem_freed = mem_free_cnt;
+ swstats->watchdog_timer_cnt = watchdog_cnt;
+
+ /* SXE-002: Configure link and activity LED to turn it off */
+ subid = sp->pdev->subsystem_device;
+ if (((subid & 0xFF) >= 0x07) &&
+ (sp->device_type == XFRAME_I_DEVICE)) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= 0x0000800000000000ULL;
+ writeq(val64, &bar0->gpio_control);
+ val64 = 0x0411040400000000ULL;
+ writeq(val64, (void __iomem *)bar0 + 0x2700);
+ }
+
+ /*
+ * Clear spurious ECC interrupts that would have occurred on
+ * XFRAME II cards after reset.
+ */
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ val64 = readq(&bar0->pcc_err_reg);
+ writeq(val64, &bar0->pcc_err_reg);
+ }
+
+ sp->device_enabled_once = false;
+}
+
+/**
+ * s2io_set_swapper - to set the swapper controle on the card
+ * @sp : private member of the device structure,
+ * pointer to the s2io_nic structure.
+ * Description: Function to set the swapper control on the card
+ * correctly depending on the 'endianness' of the system.
+ * Return value:
+ * SUCCESS on success and FAILURE on failure.
+ */
+
+static int s2io_set_swapper(struct s2io_nic *sp)
+{
+ struct net_device *dev = sp->dev;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64, valt, valr;
+
+ /*
+ * Set proper endian settings and verify the same by reading
+ * the PIF Feed-back register.
+ */
+
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 != 0x0123456789ABCDEFULL) {
+ int i = 0;
+ static const u64 value[] = {
+ 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
+ 0x8100008181000081ULL, /* FE=1, SE=0 */
+ 0x4200004242000042ULL, /* FE=0, SE=1 */
+ 0 /* FE=0, SE=0 */
+ };
+
+ while (i < 4) {
+ writeq(value[i], &bar0->swapper_ctrl);
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 == 0x0123456789ABCDEFULL)
+ break;
+ i++;
+ }
+ if (i == 4) {
+ DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
+ "feedback read %llx\n",
+ dev->name, (unsigned long long)val64);
+ return FAILURE;
+ }
+ valr = value[i];
+ } else {
+ valr = readq(&bar0->swapper_ctrl);
+ }
+
+ valt = 0x0123456789ABCDEFULL;
+ writeq(valt, &bar0->xmsi_address);
+ val64 = readq(&bar0->xmsi_address);
+
+ if (val64 != valt) {
+ int i = 0;
+ static const u64 value[] = {
+ 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
+ 0x0081810000818100ULL, /* FE=1, SE=0 */
+ 0x0042420000424200ULL, /* FE=0, SE=1 */
+ 0 /* FE=0, SE=0 */
+ };
+
+ while (i < 4) {
+ writeq((value[i] | valr), &bar0->swapper_ctrl);
+ writeq(valt, &bar0->xmsi_address);
+ val64 = readq(&bar0->xmsi_address);
+ if (val64 == valt)
+ break;
+ i++;
+ }
+ if (i == 4) {
+ unsigned long long x = val64;
+ DBG_PRINT(ERR_DBG,
+ "Write failed, Xmsi_addr reads:0x%llx\n", x);
+ return FAILURE;
+ }
+ }
+ val64 = readq(&bar0->swapper_ctrl);
+ val64 &= 0xFFFF000000000000ULL;
+
+#ifdef __BIG_ENDIAN
+ /*
+ * The device by default set to a big endian format, so a
+ * big endian driver need not set anything.
+ */
+ val64 |= (SWAPPER_CTRL_TXP_FE |
+ SWAPPER_CTRL_TXP_SE |
+ SWAPPER_CTRL_TXD_R_FE |
+ SWAPPER_CTRL_TXD_W_FE |
+ SWAPPER_CTRL_TXF_R_FE |
+ SWAPPER_CTRL_RXD_R_FE |
+ SWAPPER_CTRL_RXD_W_FE |
+ SWAPPER_CTRL_RXF_W_FE |
+ SWAPPER_CTRL_XMSI_FE |
+ SWAPPER_CTRL_STATS_FE |
+ SWAPPER_CTRL_STATS_SE);
+ if (sp->config.intr_type == INTA)
+ val64 |= SWAPPER_CTRL_XMSI_SE;
+ writeq(val64, &bar0->swapper_ctrl);
+#else
+ /*
+ * Initially we enable all bits to make it accessible by the
+ * driver, then we selectively enable only those bits that
+ * we want to set.
+ */
+ val64 |= (SWAPPER_CTRL_TXP_FE |
+ SWAPPER_CTRL_TXP_SE |
+ SWAPPER_CTRL_TXD_R_FE |
+ SWAPPER_CTRL_TXD_R_SE |
+ SWAPPER_CTRL_TXD_W_FE |
+ SWAPPER_CTRL_TXD_W_SE |
+ SWAPPER_CTRL_TXF_R_FE |
+ SWAPPER_CTRL_RXD_R_FE |
+ SWAPPER_CTRL_RXD_R_SE |
+ SWAPPER_CTRL_RXD_W_FE |
+ SWAPPER_CTRL_RXD_W_SE |
+ SWAPPER_CTRL_RXF_W_FE |
+ SWAPPER_CTRL_XMSI_FE |
+ SWAPPER_CTRL_STATS_FE |
+ SWAPPER_CTRL_STATS_SE);
+ if (sp->config.intr_type == INTA)
+ val64 |= SWAPPER_CTRL_XMSI_SE;
+ writeq(val64, &bar0->swapper_ctrl);
+#endif
+ val64 = readq(&bar0->swapper_ctrl);
+
+ /*
+ * Verifying if endian settings are accurate by reading a
+ * feedback register.
+ */
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 != 0x0123456789ABCDEFULL) {
+ /* Endian settings are incorrect, calls for another dekko. */
+ DBG_PRINT(ERR_DBG,
+ "%s: Endian settings are wrong, feedback read %llx\n",
+ dev->name, (unsigned long long)val64);
+ return FAILURE;
+ }
+
+ return SUCCESS;
+}
+
+static int wait_for_msix_trans(struct s2io_nic *nic, int i)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ u64 val64;
+ int ret = 0, cnt = 0;
+
+ do {
+ val64 = readq(&bar0->xmsi_access);
+ if (!(val64 & s2BIT(15)))
+ break;
+ mdelay(1);
+ cnt++;
+ } while (cnt < 5);
+ if (cnt == 5) {
+ DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
+ ret = 1;
+ }
+
+ return ret;
+}
+
+static void restore_xmsi_data(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ u64 val64;
+ int i, msix_index;
+
+ if (nic->device_type == XFRAME_I_DEVICE)
+ return;
+
+ for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
+ msix_index = (i) ? ((i-1) * 8 + 1) : 0;
+ writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
+ writeq(nic->msix_info[i].data, &bar0->xmsi_data);
+ val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
+ writeq(val64, &bar0->xmsi_access);
+ if (wait_for_msix_trans(nic, msix_index)) {
+ DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
+ __func__, msix_index);
+ continue;
+ }
+ }
+}
+
+static void store_xmsi_data(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ u64 val64, addr, data;
+ int i, msix_index;
+
+ if (nic->device_type == XFRAME_I_DEVICE)
+ return;
+
+ /* Store and display */
+ for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
+ msix_index = (i) ? ((i-1) * 8 + 1) : 0;
+ val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
+ writeq(val64, &bar0->xmsi_access);
+ if (wait_for_msix_trans(nic, msix_index)) {
+ DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
+ __func__, msix_index);
+ continue;
+ }
+ addr = readq(&bar0->xmsi_address);
+ data = readq(&bar0->xmsi_data);
+ if (addr && data) {
+ nic->msix_info[i].addr = addr;
+ nic->msix_info[i].data = data;
+ }
+ }
+}
+
+static int s2io_enable_msi_x(struct s2io_nic *nic)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ u64 rx_mat;
+ u16 msi_control; /* Temp variable */
+ int ret, i, j, msix_indx = 1;
+ int size;
+ struct stat_block *stats = nic->mac_control.stats_info;
+ struct swStat *swstats = &stats->sw_stat;
+
+ size = nic->num_entries * sizeof(struct msix_entry);
+ nic->entries = kzalloc(size, GFP_KERNEL);
+ if (!nic->entries) {
+ DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
+ __func__);
+ swstats->mem_alloc_fail_cnt++;
+ return -ENOMEM;
+ }
+ swstats->mem_allocated += size;
+
+ size = nic->num_entries * sizeof(struct s2io_msix_entry);
+ nic->s2io_entries = kzalloc(size, GFP_KERNEL);
+ if (!nic->s2io_entries) {
+ DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
+ __func__);
+ swstats->mem_alloc_fail_cnt++;
+ kfree(nic->entries);
+ swstats->mem_freed
+ += (nic->num_entries * sizeof(struct msix_entry));
+ return -ENOMEM;
+ }
+ swstats->mem_allocated += size;
+
+ nic->entries[0].entry = 0;
+ nic->s2io_entries[0].entry = 0;
+ nic->s2io_entries[0].in_use = MSIX_FLG;
+ nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
+ nic->s2io_entries[0].arg = &nic->mac_control.fifos;
+
+ for (i = 1; i < nic->num_entries; i++) {
+ nic->entries[i].entry = ((i - 1) * 8) + 1;
+ nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
+ nic->s2io_entries[i].arg = NULL;
+ nic->s2io_entries[i].in_use = 0;
+ }
+
+ rx_mat = readq(&bar0->rx_mat);
+ for (j = 0; j < nic->config.rx_ring_num; j++) {
+ rx_mat |= RX_MAT_SET(j, msix_indx);
+ nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
+ nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
+ nic->s2io_entries[j+1].in_use = MSIX_FLG;
+ msix_indx += 8;
+ }
+ writeq(rx_mat, &bar0->rx_mat);
+ readq(&bar0->rx_mat);
+
+ ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
+ /* We fail init if error or we get less vectors than min required */
+ if (ret) {
+ DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
+ kfree(nic->entries);
+ swstats->mem_freed += nic->num_entries *
+ sizeof(struct msix_entry);
+ kfree(nic->s2io_entries);
+ swstats->mem_freed += nic->num_entries *
+ sizeof(struct s2io_msix_entry);
+ nic->entries = NULL;
+ nic->s2io_entries = NULL;
+ return -ENOMEM;
+ }
+
+ /*
+ * To enable MSI-X, MSI also needs to be enabled, due to a bug
+ * in the herc NIC. (Temp change, needs to be removed later)
+ */
+ pci_read_config_word(nic->pdev, 0x42, &msi_control);
+ msi_control |= 0x1; /* Enable MSI */
+ pci_write_config_word(nic->pdev, 0x42, msi_control);
+
+ return 0;
+}
+
+/* Handle software interrupt used during MSI(X) test */
+static irqreturn_t s2io_test_intr(int irq, void *dev_id)
+{
+ struct s2io_nic *sp = dev_id;
+
+ sp->msi_detected = 1;
+ wake_up(&sp->msi_wait);
+
+ return IRQ_HANDLED;
+}
+
+/* Test interrupt path by forcing a a software IRQ */
+static int s2io_test_msi(struct s2io_nic *sp)
+{
+ struct pci_dev *pdev = sp->pdev;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ int err;
+ u64 val64, saved64;
+
+ err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
+ sp->name, sp);
+ if (err) {
+ DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
+ sp->dev->name, pci_name(pdev), pdev->irq);
+ return err;
+ }
+
+ init_waitqueue_head(&sp->msi_wait);
+ sp->msi_detected = 0;
+
+ saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
+ val64 |= SCHED_INT_CTRL_ONE_SHOT;
+ val64 |= SCHED_INT_CTRL_TIMER_EN;
+ val64 |= SCHED_INT_CTRL_INT2MSI(1);
+ writeq(val64, &bar0->scheduled_int_ctrl);
+
+ wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
+
+ if (!sp->msi_detected) {
+ /* MSI(X) test failed, go back to INTx mode */
+ DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
+ "using MSI(X) during test\n",
+ sp->dev->name, pci_name(pdev));
+
+ err = -EOPNOTSUPP;
+ }
+
+ free_irq(sp->entries[1].vector, sp);
+
+ writeq(saved64, &bar0->scheduled_int_ctrl);
+
+ return err;
+}
+
+static void remove_msix_isr(struct s2io_nic *sp)
+{
+ int i;
+ u16 msi_control;
+
+ for (i = 0; i < sp->num_entries; i++) {
+ if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
+ int vector = sp->entries[i].vector;
+ void *arg = sp->s2io_entries[i].arg;
+ free_irq(vector, arg);
+ }
+ }
+
+ kfree(sp->entries);
+ kfree(sp->s2io_entries);
+ sp->entries = NULL;
+ sp->s2io_entries = NULL;
+
+ pci_read_config_word(sp->pdev, 0x42, &msi_control);
+ msi_control &= 0xFFFE; /* Disable MSI */
+ pci_write_config_word(sp->pdev, 0x42, msi_control);
+
+ pci_disable_msix(sp->pdev);
+}
+
+static void remove_inta_isr(struct s2io_nic *sp)
+{
+ struct net_device *dev = sp->dev;
+
+ free_irq(sp->pdev->irq, dev);
+}
+
+/* ********************************************************* *
+ * Functions defined below concern the OS part of the driver *
+ * ********************************************************* */
+
+/**
+ * s2io_open - open entry point of the driver
+ * @dev : pointer to the device structure.
+ * Description:
+ * This function is the open entry point of the driver. It mainly calls a
+ * function to allocate Rx buffers and inserts them into the buffer
+ * descriptors and then enables the Rx part of the NIC.
+ * Return value:
+ * 0 on success and an appropriate (-)ve integer as defined in errno.h
+ * file on failure.
+ */
+
+static int s2io_open(struct net_device *dev)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+ int err = 0;
+
+ /*
+ * Make sure you have link off by default every time
+ * Nic is initialized
+ */
+ netif_carrier_off(dev);
+ sp->last_link_state = 0;
+
+ /* Initialize H/W and enable interrupts */
+ err = s2io_card_up(sp);
+ if (err) {
+ DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
+ dev->name);
+ goto hw_init_failed;
+ }
+
+ if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
+ DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
+ s2io_card_down(sp);
+ err = -ENODEV;
+ goto hw_init_failed;
+ }
+ s2io_start_all_tx_queue(sp);
+ return 0;
+
+hw_init_failed:
+ if (sp->config.intr_type == MSI_X) {
+ if (sp->entries) {
+ kfree(sp->entries);
+ swstats->mem_freed += sp->num_entries *
+ sizeof(struct msix_entry);
+ }
+ if (sp->s2io_entries) {
+ kfree(sp->s2io_entries);
+ swstats->mem_freed += sp->num_entries *
+ sizeof(struct s2io_msix_entry);
+ }
+ }
+ return err;
+}
+
+/**
+ * s2io_close -close entry point of the driver
+ * @dev : device pointer.
+ * Description:
+ * This is the stop entry point of the driver. It needs to undo exactly
+ * whatever was done by the open entry point,thus it's usually referred to
+ * as the close function.Among other things this function mainly stops the
+ * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
+ * Return value:
+ * 0 on success and an appropriate (-)ve integer as defined in errno.h
+ * file on failure.
+ */
+
+static int s2io_close(struct net_device *dev)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct config_param *config = &sp->config;
+ u64 tmp64;
+ int offset;
+
+ /* Return if the device is already closed *
+ * Can happen when s2io_card_up failed in change_mtu *
+ */
+ if (!is_s2io_card_up(sp))
+ return 0;
+
+ s2io_stop_all_tx_queue(sp);
+ /* delete all populated mac entries */
+ for (offset = 1; offset < config->max_mc_addr; offset++) {
+ tmp64 = do_s2io_read_unicast_mc(sp, offset);
+ if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
+ do_s2io_delete_unicast_mc(sp, tmp64);
+ }
+
+ s2io_card_down(sp);
+
+ return 0;
+}
+
+/**
+ * s2io_xmit - Tx entry point of te driver
+ * @skb : the socket buffer containing the Tx data.
+ * @dev : device pointer.
+ * Description :
+ * This function is the Tx entry point of the driver. S2IO NIC supports
+ * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
+ * NOTE: when device can't queue the pkt,just the trans_start variable will
+ * not be upadted.
+ * Return value:
+ * 0 on success & 1 on failure.
+ */
+
+static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
+ register u64 val64;
+ struct TxD *txdp;
+ struct TxFIFO_element __iomem *tx_fifo;
+ unsigned long flags = 0;
+ u16 vlan_tag = 0;
+ struct fifo_info *fifo = NULL;
+ int do_spin_lock = 1;
+ int offload_type;
+ int enable_per_list_interrupt = 0;
+ struct config_param *config = &sp->config;
+ struct mac_info *mac_control = &sp->mac_control;
+ struct stat_block *stats = mac_control->stats_info;
+ struct swStat *swstats = &stats->sw_stat;
+
+ DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
+
+ if (unlikely(skb->len <= 0)) {
+ DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+ }
+
+ if (!is_s2io_card_up(sp)) {
+ DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
+ dev->name);
+ dev_kfree_skb(skb);
+ return NETDEV_TX_OK;
+ }
+
+ queue = 0;
+ if (vlan_tx_tag_present(skb))
+ vlan_tag = vlan_tx_tag_get(skb);
+ if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
+ if (skb->protocol == htons(ETH_P_IP)) {
+ struct iphdr *ip;
+ struct tcphdr *th;
+ ip = ip_hdr(skb);
+
+ if (!ip_is_fragment(ip)) {
+ th = (struct tcphdr *)(((unsigned char *)ip) +
+ ip->ihl*4);
+
+ if (ip->protocol == IPPROTO_TCP) {
+ queue_len = sp->total_tcp_fifos;
+ queue = (ntohs(th->source) +
+ ntohs(th->dest)) &
+ sp->fifo_selector[queue_len - 1];
+ if (queue >= queue_len)
+ queue = queue_len - 1;
+ } else if (ip->protocol == IPPROTO_UDP) {
+ queue_len = sp->total_udp_fifos;
+ queue = (ntohs(th->source) +
+ ntohs(th->dest)) &
+ sp->fifo_selector[queue_len - 1];
+ if (queue >= queue_len)
+ queue = queue_len - 1;
+ queue += sp->udp_fifo_idx;
+ if (skb->len > 1024)
+ enable_per_list_interrupt = 1;
+ do_spin_lock = 0;
+ }
+ }
+ }
+ } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
+ /* get fifo number based on skb->priority value */
+ queue = config->fifo_mapping
+ [skb->priority & (MAX_TX_FIFOS - 1)];
+ fifo = &mac_control->fifos[queue];
+
+ if (do_spin_lock)
+ spin_lock_irqsave(&fifo->tx_lock, flags);
+ else {
+ if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
+ return NETDEV_TX_LOCKED;
+ }
+
+ if (sp->config.multiq) {
+ if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
+ spin_unlock_irqrestore(&fifo->tx_lock, flags);
+ return NETDEV_TX_BUSY;
+ }
+ } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
+ if (netif_queue_stopped(dev)) {
+ spin_unlock_irqrestore(&fifo->tx_lock, flags);
+ return NETDEV_TX_BUSY;
+ }
+ }
+
+ put_off = (u16)fifo->tx_curr_put_info.offset;
+ get_off = (u16)fifo->tx_curr_get_info.offset;
+ txdp = fifo->list_info[put_off].list_virt_addr;
+
+ queue_len = fifo->tx_curr_put_info.fifo_len + 1;
+ /* Avoid "put" pointer going beyond "get" pointer */
+ if (txdp->Host_Control ||
+ ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
+ DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
+ s2io_stop_tx_queue(sp, fifo->fifo_no);
+ dev_kfree_skb(skb);
+ spin_unlock_irqrestore(&fifo->tx_lock, flags);
+ return NETDEV_TX_OK;
+ }
+
+ offload_type = s2io_offload_type(skb);
+ if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
+ txdp->Control_1 |= TXD_TCP_LSO_EN;
+ txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
+ }
+ if (skb->ip_summed == CHECKSUM_PARTIAL) {
+ txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
+ TXD_TX_CKO_TCP_EN |
+ TXD_TX_CKO_UDP_EN);
+ }
+ txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
+ txdp->Control_1 |= TXD_LIST_OWN_XENA;
+ txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
+ if (enable_per_list_interrupt)
+ if (put_off & (queue_len >> 5))
+ txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
+ if (vlan_tag) {
+ txdp->Control_2 |= TXD_VLAN_ENABLE;
+ txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
+ }
+
+ frg_len = skb_headlen(skb);
+ if (offload_type == SKB_GSO_UDP) {
+ int ufo_size;
+
+ ufo_size = s2io_udp_mss(skb);
+ ufo_size &= ~7;
+ txdp->Control_1 |= TXD_UFO_EN;
+ txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
+ txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
+#ifdef __BIG_ENDIAN
+ /* both variants do cpu_to_be64(be32_to_cpu(...)) */
+ fifo->ufo_in_band_v[put_off] =
+ (__force u64)skb_shinfo(skb)->ip6_frag_id;
+#else
+ fifo->ufo_in_band_v[put_off] =
+ (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
+#endif
+ txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
+ txdp->Buffer_Pointer = pci_map_single(sp->pdev,
+ fifo->ufo_in_band_v,
+ sizeof(u64),
+ PCI_DMA_TODEVICE);
+ if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
+ goto pci_map_failed;
+ txdp++;
+ }
+
+ txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
+ frg_len, PCI_DMA_TODEVICE);
+ if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
+ goto pci_map_failed;
+
+ txdp->Host_Control = (unsigned long)skb;
+ txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
+ if (offload_type == SKB_GSO_UDP)
+ txdp->Control_1 |= TXD_UFO_EN;
+
+ frg_cnt = skb_shinfo(skb)->nr_frags;
+ /* For fragmented SKB. */
+ for (i = 0; i < frg_cnt; i++) {
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+ /* A '0' length fragment will be ignored */
+ if (!frag->size)
+ continue;
+ txdp++;
+ txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
+ frag->page_offset,
+ frag->size,
+ PCI_DMA_TODEVICE);
+ txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
+ if (offload_type == SKB_GSO_UDP)
+ txdp->Control_1 |= TXD_UFO_EN;
+ }
+ txdp->Control_1 |= TXD_GATHER_CODE_LAST;
+
+ if (offload_type == SKB_GSO_UDP)
+ frg_cnt++; /* as Txd0 was used for inband header */
+
+ tx_fifo = mac_control->tx_FIFO_start[queue];
+ val64 = fifo->list_info[put_off].list_phy_addr;
+ writeq(val64, &tx_fifo->TxDL_Pointer);
+
+ val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
+ TX_FIFO_LAST_LIST);
+ if (offload_type)
+ val64 |= TX_FIFO_SPECIAL_FUNC;
+
+ writeq(val64, &tx_fifo->List_Control);
+
+ mmiowb();
+
+ put_off++;
+ if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
+ put_off = 0;
+ fifo->tx_curr_put_info.offset = put_off;
+
+ /* Avoid "put" pointer going beyond "get" pointer */
+ if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
+ swstats->fifo_full_cnt++;
+ DBG_PRINT(TX_DBG,
+ "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
+ put_off, get_off);
+ s2io_stop_tx_queue(sp, fifo->fifo_no);
+ }
+ swstats->mem_allocated += skb->truesize;
+ spin_unlock_irqrestore(&fifo->tx_lock, flags);
+
+ if (sp->config.intr_type == MSI_X)
+ tx_intr_handler(fifo);
+
+ return NETDEV_TX_OK;
+
+pci_map_failed:
+ swstats->pci_map_fail_cnt++;
+ s2io_stop_tx_queue(sp, fifo->fifo_no);
+ swstats->mem_freed += skb->truesize;
+ dev_kfree_skb(skb);
+ spin_unlock_irqrestore(&fifo->tx_lock, flags);
+ return NETDEV_TX_OK;
+}
+
+static void
+s2io_alarm_handle(unsigned long data)
+{
+ struct s2io_nic *sp = (struct s2io_nic *)data;
+ struct net_device *dev = sp->dev;
+
+ s2io_handle_errors(dev);
+ mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
+}
+
+static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
+{
+ struct ring_info *ring = (struct ring_info *)dev_id;
+ struct s2io_nic *sp = ring->nic;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ if (unlikely(!is_s2io_card_up(sp)))
+ return IRQ_HANDLED;
+
+ if (sp->config.napi) {
+ u8 __iomem *addr = NULL;
+ u8 val8 = 0;
+
+ addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
+ addr += (7 - ring->ring_no);
+ val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
+ writeb(val8, addr);
+ val8 = readb(addr);
+ napi_schedule(&ring->napi);
+ } else {
+ rx_intr_handler(ring, 0);
+ s2io_chk_rx_buffers(sp, ring);
+ }
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
+{
+ int i;
+ struct fifo_info *fifos = (struct fifo_info *)dev_id;
+ struct s2io_nic *sp = fifos->nic;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ struct config_param *config = &sp->config;
+ u64 reason;
+
+ if (unlikely(!is_s2io_card_up(sp)))
+ return IRQ_NONE;
+
+ reason = readq(&bar0->general_int_status);
+ if (unlikely(reason == S2IO_MINUS_ONE))
+ /* Nothing much can be done. Get out */
+ return IRQ_HANDLED;
+
+ if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
+ writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
+
+ if (reason & GEN_INTR_TXPIC)
+ s2io_txpic_intr_handle(sp);
+
+ if (reason & GEN_INTR_TXTRAFFIC)
+ writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
+
+ for (i = 0; i < config->tx_fifo_num; i++)
+ tx_intr_handler(&fifos[i]);
+
+ writeq(sp->general_int_mask, &bar0->general_int_mask);
+ readl(&bar0->general_int_status);
+ return IRQ_HANDLED;
+ }
+ /* The interrupt was not raised by us */
+ return IRQ_NONE;
+}
+
+static void s2io_txpic_intr_handle(struct s2io_nic *sp)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64;
+
+ val64 = readq(&bar0->pic_int_status);
+ if (val64 & PIC_INT_GPIO) {
+ val64 = readq(&bar0->gpio_int_reg);
+ if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
+ (val64 & GPIO_INT_REG_LINK_UP)) {
+ /*
+ * This is unstable state so clear both up/down
+ * interrupt and adapter to re-evaluate the link state.
+ */
+ val64 |= GPIO_INT_REG_LINK_DOWN;
+ val64 |= GPIO_INT_REG_LINK_UP;
+ writeq(val64, &bar0->gpio_int_reg);
+ val64 = readq(&bar0->gpio_int_mask);
+ val64 &= ~(GPIO_INT_MASK_LINK_UP |
+ GPIO_INT_MASK_LINK_DOWN);
+ writeq(val64, &bar0->gpio_int_mask);
+ } else if (val64 & GPIO_INT_REG_LINK_UP) {
+ val64 = readq(&bar0->adapter_status);
+ /* Enable Adapter */
+ val64 = readq(&bar0->adapter_control);
+ val64 |= ADAPTER_CNTL_EN;
+ writeq(val64, &bar0->adapter_control);
+ val64 |= ADAPTER_LED_ON;
+ writeq(val64, &bar0->adapter_control);
+ if (!sp->device_enabled_once)
+ sp->device_enabled_once = 1;
+
+ s2io_link(sp, LINK_UP);
+ /*
+ * unmask link down interrupt and mask link-up
+ * intr
+ */
+ val64 = readq(&bar0->gpio_int_mask);
+ val64 &= ~GPIO_INT_MASK_LINK_DOWN;
+ val64 |= GPIO_INT_MASK_LINK_UP;
+ writeq(val64, &bar0->gpio_int_mask);
+
+ } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
+ val64 = readq(&bar0->adapter_status);
+ s2io_link(sp, LINK_DOWN);
+ /* Link is down so unmaks link up interrupt */
+ val64 = readq(&bar0->gpio_int_mask);
+ val64 &= ~GPIO_INT_MASK_LINK_UP;
+ val64 |= GPIO_INT_MASK_LINK_DOWN;
+ writeq(val64, &bar0->gpio_int_mask);
+
+ /* turn off LED */
+ val64 = readq(&bar0->adapter_control);
+ val64 = val64 & (~ADAPTER_LED_ON);
+ writeq(val64, &bar0->adapter_control);
+ }
+ }
+ val64 = readq(&bar0->gpio_int_mask);
+}
+
+/**
+ * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
+ * @value: alarm bits
+ * @addr: address value
+ * @cnt: counter variable
+ * Description: Check for alarm and increment the counter
+ * Return Value:
+ * 1 - if alarm bit set
+ * 0 - if alarm bit is not set
+ */
+static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
+ unsigned long long *cnt)
+{
+ u64 val64;
+ val64 = readq(addr);
+ if (val64 & value) {
+ writeq(val64, addr);
+ (*cnt)++;
+ return 1;
+ }
+ return 0;
+
+}
+
+/**
+ * s2io_handle_errors - Xframe error indication handler
+ * @nic: device private variable
+ * Description: Handle alarms such as loss of link, single or
+ * double ECC errors, critical and serious errors.
+ * Return Value:
+ * NONE
+ */
+static void s2io_handle_errors(void *dev_id)
+{
+ struct net_device *dev = (struct net_device *)dev_id;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 temp64 = 0, val64 = 0;
+ int i = 0;
+
+ struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
+ struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
+
+ if (!is_s2io_card_up(sp))
+ return;
+
+ if (pci_channel_offline(sp->pdev))
+ return;
+
+ memset(&sw_stat->ring_full_cnt, 0,
+ sizeof(sw_stat->ring_full_cnt));
+
+ /* Handling the XPAK counters update */
+ if (stats->xpak_timer_count < 72000) {
+ /* waiting for an hour */
+ stats->xpak_timer_count++;
+ } else {
+ s2io_updt_xpak_counter(dev);
+ /* reset the count to zero */
+ stats->xpak_timer_count = 0;
+ }
+
+ /* Handling link status change error Intr */
+ if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
+ val64 = readq(&bar0->mac_rmac_err_reg);
+ writeq(val64, &bar0->mac_rmac_err_reg);
+ if (val64 & RMAC_LINK_STATE_CHANGE_INT)
+ schedule_work(&sp->set_link_task);
+ }
+
+ /* In case of a serious error, the device will be Reset. */
+ if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
+ &sw_stat->serious_err_cnt))
+ goto reset;
+
+ /* Check for data parity error */
+ if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
+ &sw_stat->parity_err_cnt))
+ goto reset;
+
+ /* Check for ring full counter */
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ val64 = readq(&bar0->ring_bump_counter1);
+ for (i = 0; i < 4; i++) {
+ temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
+ temp64 >>= 64 - ((i+1)*16);
+ sw_stat->ring_full_cnt[i] += temp64;
+ }
+
+ val64 = readq(&bar0->ring_bump_counter2);
+ for (i = 0; i < 4; i++) {
+ temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
+ temp64 >>= 64 - ((i+1)*16);
+ sw_stat->ring_full_cnt[i+4] += temp64;
+ }
+ }
+
+ val64 = readq(&bar0->txdma_int_status);
+ /*check for pfc_err*/
+ if (val64 & TXDMA_PFC_INT) {
+ if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
+ PFC_MISC_0_ERR | PFC_MISC_1_ERR |
+ PFC_PCIX_ERR,
+ &bar0->pfc_err_reg,
+ &sw_stat->pfc_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
+ &bar0->pfc_err_reg,
+ &sw_stat->pfc_err_cnt);
+ }
+
+ /*check for tda_err*/
+ if (val64 & TXDMA_TDA_INT) {
+ if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
+ TDA_SM0_ERR_ALARM |
+ TDA_SM1_ERR_ALARM,
+ &bar0->tda_err_reg,
+ &sw_stat->tda_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
+ &bar0->tda_err_reg,
+ &sw_stat->tda_err_cnt);
+ }
+ /*check for pcc_err*/
+ if (val64 & TXDMA_PCC_INT) {
+ if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
+ PCC_N_SERR | PCC_6_COF_OV_ERR |
+ PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
+ PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
+ PCC_TXB_ECC_DB_ERR,
+ &bar0->pcc_err_reg,
+ &sw_stat->pcc_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
+ &bar0->pcc_err_reg,
+ &sw_stat->pcc_err_cnt);
+ }
+
+ /*check for tti_err*/
+ if (val64 & TXDMA_TTI_INT) {
+ if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
+ &bar0->tti_err_reg,
+ &sw_stat->tti_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
+ &bar0->tti_err_reg,
+ &sw_stat->tti_err_cnt);
+ }
+
+ /*check for lso_err*/
+ if (val64 & TXDMA_LSO_INT) {
+ if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
+ LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
+ &bar0->lso_err_reg,
+ &sw_stat->lso_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
+ &bar0->lso_err_reg,
+ &sw_stat->lso_err_cnt);
+ }
+
+ /*check for tpa_err*/
+ if (val64 & TXDMA_TPA_INT) {
+ if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
+ &bar0->tpa_err_reg,
+ &sw_stat->tpa_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
+ &bar0->tpa_err_reg,
+ &sw_stat->tpa_err_cnt);
+ }
+
+ /*check for sm_err*/
+ if (val64 & TXDMA_SM_INT) {
+ if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
+ &bar0->sm_err_reg,
+ &sw_stat->sm_err_cnt))
+ goto reset;
+ }
+
+ val64 = readq(&bar0->mac_int_status);
+ if (val64 & MAC_INT_STATUS_TMAC_INT) {
+ if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
+ &bar0->mac_tmac_err_reg,
+ &sw_stat->mac_tmac_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
+ TMAC_DESC_ECC_SG_ERR |
+ TMAC_DESC_ECC_DB_ERR,
+ &bar0->mac_tmac_err_reg,
+ &sw_stat->mac_tmac_err_cnt);
+ }
+
+ val64 = readq(&bar0->xgxs_int_status);
+ if (val64 & XGXS_INT_STATUS_TXGXS) {
+ if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
+ &bar0->xgxs_txgxs_err_reg,
+ &sw_stat->xgxs_txgxs_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
+ &bar0->xgxs_txgxs_err_reg,
+ &sw_stat->xgxs_txgxs_err_cnt);
+ }
+
+ val64 = readq(&bar0->rxdma_int_status);
+ if (val64 & RXDMA_INT_RC_INT_M) {
+ if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
+ RC_FTC_ECC_DB_ERR |
+ RC_PRCn_SM_ERR_ALARM |
+ RC_FTC_SM_ERR_ALARM,
+ &bar0->rc_err_reg,
+ &sw_stat->rc_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
+ RC_FTC_ECC_SG_ERR |
+ RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
+ &sw_stat->rc_err_cnt);
+ if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
+ PRC_PCI_AB_WR_Rn |
+ PRC_PCI_AB_F_WR_Rn,
+ &bar0->prc_pcix_err_reg,
+ &sw_stat->prc_pcix_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
+ PRC_PCI_DP_WR_Rn |
+ PRC_PCI_DP_F_WR_Rn,
+ &bar0->prc_pcix_err_reg,
+ &sw_stat->prc_pcix_err_cnt);
+ }
+
+ if (val64 & RXDMA_INT_RPA_INT_M) {
+ if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
+ &bar0->rpa_err_reg,
+ &sw_stat->rpa_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
+ &bar0->rpa_err_reg,
+ &sw_stat->rpa_err_cnt);
+ }
+
+ if (val64 & RXDMA_INT_RDA_INT_M) {
+ if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
+ RDA_FRM_ECC_DB_N_AERR |
+ RDA_SM1_ERR_ALARM |
+ RDA_SM0_ERR_ALARM |
+ RDA_RXD_ECC_DB_SERR,
+ &bar0->rda_err_reg,
+ &sw_stat->rda_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
+ RDA_FRM_ECC_SG_ERR |
+ RDA_MISC_ERR |
+ RDA_PCIX_ERR,
+ &bar0->rda_err_reg,
+ &sw_stat->rda_err_cnt);
+ }
+
+ if (val64 & RXDMA_INT_RTI_INT_M) {
+ if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
+ &bar0->rti_err_reg,
+ &sw_stat->rti_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
+ &bar0->rti_err_reg,
+ &sw_stat->rti_err_cnt);
+ }
+
+ val64 = readq(&bar0->mac_int_status);
+ if (val64 & MAC_INT_STATUS_RMAC_INT) {
+ if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
+ &bar0->mac_rmac_err_reg,
+ &sw_stat->mac_rmac_err_cnt))
+ goto reset;
+ do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
+ RMAC_SINGLE_ECC_ERR |
+ RMAC_DOUBLE_ECC_ERR,
+ &bar0->mac_rmac_err_reg,
+ &sw_stat->mac_rmac_err_cnt);
+ }
+
+ val64 = readq(&bar0->xgxs_int_status);
+ if (val64 & XGXS_INT_STATUS_RXGXS) {
+ if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
+ &bar0->xgxs_rxgxs_err_reg,
+ &sw_stat->xgxs_rxgxs_err_cnt))
+ goto reset;
+ }
+
+ val64 = readq(&bar0->mc_int_status);
+ if (val64 & MC_INT_STATUS_MC_INT) {
+ if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
+ &bar0->mc_err_reg,
+ &sw_stat->mc_err_cnt))
+ goto reset;
+
+ /* Handling Ecc errors */
+ if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
+ writeq(val64, &bar0->mc_err_reg);
+ if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
+ sw_stat->double_ecc_errs++;
+ if (sp->device_type != XFRAME_II_DEVICE) {
+ /*
+ * Reset XframeI only if critical error
+ */
+ if (val64 &
+ (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
+ MC_ERR_REG_MIRI_ECC_DB_ERR_1))
+ goto reset;
+ }
+ } else
+ sw_stat->single_ecc_errs++;
+ }
+ }
+ return;
+
+reset:
+ s2io_stop_all_tx_queue(sp);
+ schedule_work(&sp->rst_timer_task);
+ sw_stat->soft_reset_cnt++;
+}
+
+/**
+ * s2io_isr - ISR handler of the device .
+ * @irq: the irq of the device.
+ * @dev_id: a void pointer to the dev structure of the NIC.
+ * Description: This function is the ISR handler of the device. It
+ * identifies the reason for the interrupt and calls the relevant
+ * service routines. As a contongency measure, this ISR allocates the
+ * recv buffers, if their numbers are below the panic value which is
+ * presently set to 25% of the original number of rcv buffers allocated.
+ * Return value:
+ * IRQ_HANDLED: will be returned if IRQ was handled by this routine
+ * IRQ_NONE: will be returned if interrupt is not from our device
+ */
+static irqreturn_t s2io_isr(int irq, void *dev_id)
+{
+ struct net_device *dev = (struct net_device *)dev_id;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ int i;
+ u64 reason = 0;
+ struct mac_info *mac_control;
+ struct config_param *config;
+
+ /* Pretend we handled any irq's from a disconnected card */
+ if (pci_channel_offline(sp->pdev))
+ return IRQ_NONE;
+
+ if (!is_s2io_card_up(sp))
+ return IRQ_NONE;
+
+ config = &sp->config;
+ mac_control = &sp->mac_control;
+
+ /*
+ * Identify the cause for interrupt and call the appropriate
+ * interrupt handler. Causes for the interrupt could be;
+ * 1. Rx of packet.
+ * 2. Tx complete.
+ * 3. Link down.
+ */
+ reason = readq(&bar0->general_int_status);
+
+ if (unlikely(reason == S2IO_MINUS_ONE))
+ return IRQ_HANDLED; /* Nothing much can be done. Get out */
+
+ if (reason &
+ (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
+ writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
+
+ if (config->napi) {
+ if (reason & GEN_INTR_RXTRAFFIC) {
+ napi_schedule(&sp->napi);
+ writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
+ writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
+ readl(&bar0->rx_traffic_int);
+ }
+ } else {
+ /*
+ * rx_traffic_int reg is an R1 register, writing all 1's
+ * will ensure that the actual interrupt causing bit
+ * get's cleared and hence a read can be avoided.
+ */
+ if (reason & GEN_INTR_RXTRAFFIC)
+ writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ rx_intr_handler(ring, 0);
+ }
+ }
+
+ /*
+ * tx_traffic_int reg is an R1 register, writing all 1's
+ * will ensure that the actual interrupt causing bit get's
+ * cleared and hence a read can be avoided.
+ */
+ if (reason & GEN_INTR_TXTRAFFIC)
+ writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
+
+ for (i = 0; i < config->tx_fifo_num; i++)
+ tx_intr_handler(&mac_control->fifos[i]);
+
+ if (reason & GEN_INTR_TXPIC)
+ s2io_txpic_intr_handle(sp);
+
+ /*
+ * Reallocate the buffers from the interrupt handler itself.
+ */
+ if (!config->napi) {
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ s2io_chk_rx_buffers(sp, ring);
+ }
+ }
+ writeq(sp->general_int_mask, &bar0->general_int_mask);
+ readl(&bar0->general_int_status);
+
+ return IRQ_HANDLED;
+
+ } else if (!reason) {
+ /* The interrupt was not raised by us */
+ return IRQ_NONE;
+ }
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * s2io_updt_stats -
+ */
+static void s2io_updt_stats(struct s2io_nic *sp)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64;
+ int cnt = 0;
+
+ if (is_s2io_card_up(sp)) {
+ /* Apprx 30us on a 133 MHz bus */
+ val64 = SET_UPDT_CLICKS(10) |
+ STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
+ writeq(val64, &bar0->stat_cfg);
+ do {
+ udelay(100);
+ val64 = readq(&bar0->stat_cfg);
+ if (!(val64 & s2BIT(0)))
+ break;
+ cnt++;
+ if (cnt == 5)
+ break; /* Updt failed */
+ } while (1);
+ }
+}
+
+/**
+ * s2io_get_stats - Updates the device statistics structure.
+ * @dev : pointer to the device structure.
+ * Description:
+ * This function updates the device statistics structure in the s2io_nic
+ * structure and returns a pointer to the same.
+ * Return value:
+ * pointer to the updated net_device_stats structure.
+ */
+static struct net_device_stats *s2io_get_stats(struct net_device *dev)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct mac_info *mac_control = &sp->mac_control;
+ struct stat_block *stats = mac_control->stats_info;
+ u64 delta;
+
+ /* Configure Stats for immediate updt */
+ s2io_updt_stats(sp);
+
+ /* A device reset will cause the on-adapter statistics to be zero'ed.
+ * This can be done while running by changing the MTU. To prevent the
+ * system from having the stats zero'ed, the driver keeps a copy of the
+ * last update to the system (which is also zero'ed on reset). This
+ * enables the driver to accurately know the delta between the last
+ * update and the current update.
+ */
+ delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
+ sp->stats.rx_packets += delta;
+ dev->stats.rx_packets += delta;
+
+ delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
+ sp->stats.tx_packets += delta;
+ dev->stats.tx_packets += delta;
+
+ delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
+ le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
+ sp->stats.rx_bytes += delta;
+ dev->stats.rx_bytes += delta;
+
+ delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
+ le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
+ sp->stats.tx_bytes += delta;
+ dev->stats.tx_bytes += delta;
+
+ delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
+ sp->stats.rx_errors += delta;
+ dev->stats.rx_errors += delta;
+
+ delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
+ sp->stats.tx_errors += delta;
+ dev->stats.tx_errors += delta;
+
+ delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
+ sp->stats.rx_dropped += delta;
+ dev->stats.rx_dropped += delta;
+
+ delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
+ sp->stats.tx_dropped += delta;
+ dev->stats.tx_dropped += delta;
+
+ /* The adapter MAC interprets pause frames as multicast packets, but
+ * does not pass them up. This erroneously increases the multicast
+ * packet count and needs to be deducted when the multicast frame count
+ * is queried.
+ */
+ delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_vld_mcst_frms);
+ delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
+ delta -= sp->stats.multicast;
+ sp->stats.multicast += delta;
+ dev->stats.multicast += delta;
+
+ delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_usized_frms)) +
+ le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
+ sp->stats.rx_length_errors += delta;
+ dev->stats.rx_length_errors += delta;
+
+ delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
+ sp->stats.rx_crc_errors += delta;
+ dev->stats.rx_crc_errors += delta;
+
+ return &dev->stats;
+}
+
+/**
+ * s2io_set_multicast - entry point for multicast address enable/disable.
+ * @dev : pointer to the device structure
+ * Description:
+ * This function is a driver entry point which gets called by the kernel
+ * whenever multicast addresses must be enabled/disabled. This also gets
+ * called to set/reset promiscuous mode. Depending on the deivce flag, we
+ * determine, if multicast address must be enabled or if promiscuous mode
+ * is to be disabled etc.
+ * Return value:
+ * void.
+ */
+
+static void s2io_set_multicast(struct net_device *dev)
+{
+ int i, j, prev_cnt;
+ struct netdev_hw_addr *ha;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
+ 0xfeffffffffffULL;
+ u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
+ void __iomem *add;
+ struct config_param *config = &sp->config;
+
+ if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
+ /* Enable all Multicast addresses */
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
+ &bar0->rmac_addr_data1_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ /* Wait till command completes */
+ wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET);
+
+ sp->m_cast_flg = 1;
+ sp->all_multi_pos = config->max_mc_addr - 1;
+ } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
+ /* Disable all Multicast addresses */
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
+ &bar0->rmac_addr_data1_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ /* Wait till command completes */
+ wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET);
+
+ sp->m_cast_flg = 0;
+ sp->all_multi_pos = 0;
+ }
+
+ if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
+ /* Put the NIC into promiscuous mode */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 |= MAC_CFG_RMAC_PROM_ENABLE;
+
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32)val64, add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+
+ if (vlan_tag_strip != 1) {
+ val64 = readq(&bar0->rx_pa_cfg);
+ val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
+ writeq(val64, &bar0->rx_pa_cfg);
+ sp->vlan_strip_flag = 0;
+ }
+
+ val64 = readq(&bar0->mac_cfg);
+ sp->promisc_flg = 1;
+ DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
+ dev->name);
+ } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
+ /* Remove the NIC from promiscuous mode */
+ add = &bar0->mac_cfg;
+ val64 = readq(&bar0->mac_cfg);
+ val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
+
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32)val64, add);
+ writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
+ writel((u32) (val64 >> 32), (add + 4));
+
+ if (vlan_tag_strip != 0) {
+ val64 = readq(&bar0->rx_pa_cfg);
+ val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
+ writeq(val64, &bar0->rx_pa_cfg);
+ sp->vlan_strip_flag = 1;
+ }
+
+ val64 = readq(&bar0->mac_cfg);
+ sp->promisc_flg = 0;
+ DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
+ }
+
+ /* Update individual M_CAST address list */
+ if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
+ if (netdev_mc_count(dev) >
+ (config->max_mc_addr - config->max_mac_addr)) {
+ DBG_PRINT(ERR_DBG,
+ "%s: No more Rx filters can be added - "
+ "please enable ALL_MULTI instead\n",
+ dev->name);
+ return;
+ }
+
+ prev_cnt = sp->mc_addr_count;
+ sp->mc_addr_count = netdev_mc_count(dev);
+
+ /* Clear out the previous list of Mc in the H/W. */
+ for (i = 0; i < prev_cnt; i++) {
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
+ &bar0->rmac_addr_data1_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET
+ (config->mc_start_offset + i);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+ /* Wait for command completes */
+ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET)) {
+ DBG_PRINT(ERR_DBG,
+ "%s: Adding Multicasts failed\n",
+ dev->name);
+ return;
+ }
+ }
+
+ /* Create the new Rx filter list and update the same in H/W. */
+ i = 0;
+ netdev_for_each_mc_addr(ha, dev) {
+ mac_addr = 0;
+ for (j = 0; j < ETH_ALEN; j++) {
+ mac_addr |= ha->addr[j];
+ mac_addr <<= 8;
+ }
+ mac_addr >>= 8;
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
+ &bar0->rmac_addr_data0_mem);
+ writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
+ &bar0->rmac_addr_data1_mem);
+ val64 = RMAC_ADDR_CMD_MEM_WE |
+ RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET
+ (i + config->mc_start_offset);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+ /* Wait for command completes */
+ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET)) {
+ DBG_PRINT(ERR_DBG,
+ "%s: Adding Multicasts failed\n",
+ dev->name);
+ return;
+ }
+ i++;
+ }
+ }
+}
+
+/* read from CAM unicast & multicast addresses and store it in
+ * def_mac_addr structure
+ */
+static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
+{
+ int offset;
+ u64 mac_addr = 0x0;
+ struct config_param *config = &sp->config;
+
+ /* store unicast & multicast mac addresses */
+ for (offset = 0; offset < config->max_mc_addr; offset++) {
+ mac_addr = do_s2io_read_unicast_mc(sp, offset);
+ /* if read fails disable the entry */
+ if (mac_addr == FAILURE)
+ mac_addr = S2IO_DISABLE_MAC_ENTRY;
+ do_s2io_copy_mac_addr(sp, offset, mac_addr);
+ }
+}
+
+/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
+static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
+{
+ int offset;
+ struct config_param *config = &sp->config;
+ /* restore unicast mac address */
+ for (offset = 0; offset < config->max_mac_addr; offset++)
+ do_s2io_prog_unicast(sp->dev,
+ sp->def_mac_addr[offset].mac_addr);
+
+ /* restore multicast mac address */
+ for (offset = config->mc_start_offset;
+ offset < config->max_mc_addr; offset++)
+ do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
+}
+
+/* add a multicast MAC address to CAM */
+static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
+{
+ int i;
+ u64 mac_addr = 0;
+ struct config_param *config = &sp->config;
+
+ for (i = 0; i < ETH_ALEN; i++) {
+ mac_addr <<= 8;
+ mac_addr |= addr[i];
+ }
+ if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
+ return SUCCESS;
+
+ /* check if the multicast mac already preset in CAM */
+ for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
+ u64 tmp64;
+ tmp64 = do_s2io_read_unicast_mc(sp, i);
+ if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
+ break;
+
+ if (tmp64 == mac_addr)
+ return SUCCESS;
+ }
+ if (i == config->max_mc_addr) {
+ DBG_PRINT(ERR_DBG,
+ "CAM full no space left for multicast MAC\n");
+ return FAILURE;
+ }
+ /* Update the internal structure with this new mac address */
+ do_s2io_copy_mac_addr(sp, i, mac_addr);
+
+ return do_s2io_add_mac(sp, mac_addr, i);
+}
+
+/* add MAC address to CAM */
+static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
+{
+ u64 val64;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
+ &bar0->rmac_addr_data0_mem);
+
+ val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(off);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+ /* Wait till command completes */
+ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET)) {
+ DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
+ return FAILURE;
+ }
+ return SUCCESS;
+}
+/* deletes a specified unicast/multicast mac entry from CAM */
+static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
+{
+ int offset;
+ u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
+ struct config_param *config = &sp->config;
+
+ for (offset = 1;
+ offset < config->max_mc_addr; offset++) {
+ tmp64 = do_s2io_read_unicast_mc(sp, offset);
+ if (tmp64 == addr) {
+ /* disable the entry by writing 0xffffffffffffULL */
+ if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
+ return FAILURE;
+ /* store the new mac list from CAM */
+ do_s2io_store_unicast_mc(sp);
+ return SUCCESS;
+ }
+ }
+ DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
+ (unsigned long long)addr);
+ return FAILURE;
+}
+
+/* read mac entries from CAM */
+static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
+{
+ u64 tmp64 = 0xffffffffffff0000ULL, val64;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ /* read mac addr */
+ val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(offset);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+
+ /* Wait till command completes */
+ if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET)) {
+ DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
+ return FAILURE;
+ }
+ tmp64 = readq(&bar0->rmac_addr_data0_mem);
+
+ return tmp64 >> 16;
+}
+
+/**
+ * s2io_set_mac_addr driver entry point
+ */
+
+static int s2io_set_mac_addr(struct net_device *dev, void *p)
+{
+ struct sockaddr *addr = p;
+
+ if (!is_valid_ether_addr(addr->sa_data))
+ return -EINVAL;
+
+ memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
+
+ /* store the MAC address in CAM */
+ return do_s2io_prog_unicast(dev, dev->dev_addr);
+}
+/**
+ * do_s2io_prog_unicast - Programs the Xframe mac address
+ * @dev : pointer to the device structure.
+ * @addr: a uchar pointer to the new mac address which is to be set.
+ * Description : This procedure will program the Xframe to receive
+ * frames with new Mac Address
+ * Return value: SUCCESS on success and an appropriate (-)ve integer
+ * as defined in errno.h file on failure.
+ */
+
+static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ register u64 mac_addr = 0, perm_addr = 0;
+ int i;
+ u64 tmp64;
+ struct config_param *config = &sp->config;
+
+ /*
+ * Set the new MAC address as the new unicast filter and reflect this
+ * change on the device address registered with the OS. It will be
+ * at offset 0.
+ */
+ for (i = 0; i < ETH_ALEN; i++) {
+ mac_addr <<= 8;
+ mac_addr |= addr[i];
+ perm_addr <<= 8;
+ perm_addr |= sp->def_mac_addr[0].mac_addr[i];
+ }
+
+ /* check if the dev_addr is different than perm_addr */
+ if (mac_addr == perm_addr)
+ return SUCCESS;
+
+ /* check if the mac already preset in CAM */
+ for (i = 1; i < config->max_mac_addr; i++) {
+ tmp64 = do_s2io_read_unicast_mc(sp, i);
+ if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
+ break;
+
+ if (tmp64 == mac_addr) {
+ DBG_PRINT(INFO_DBG,
+ "MAC addr:0x%llx already present in CAM\n",
+ (unsigned long long)mac_addr);
+ return SUCCESS;
+ }
+ }
+ if (i == config->max_mac_addr) {
+ DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
+ return FAILURE;
+ }
+ /* Update the internal structure with this new mac address */
+ do_s2io_copy_mac_addr(sp, i, mac_addr);
+
+ return do_s2io_add_mac(sp, mac_addr, i);
+}
+
+/**
+ * s2io_ethtool_sset - Sets different link parameters.
+ * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
+ * @info: pointer to the structure with parameters given by ethtool to set
+ * link information.
+ * Description:
+ * The function sets different link parameters provided by the user onto
+ * the NIC.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_ethtool_sset(struct net_device *dev,
+ struct ethtool_cmd *info)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ if ((info->autoneg == AUTONEG_ENABLE) ||
+ (ethtool_cmd_speed(info) != SPEED_10000) ||
+ (info->duplex != DUPLEX_FULL))
+ return -EINVAL;
+ else {
+ s2io_close(sp->dev);
+ s2io_open(sp->dev);
+ }
+
+ return 0;
+}
+
+/**
+ * s2io_ethtol_gset - Return link specific information.
+ * @sp : private member of the device structure, pointer to the
+ * s2io_nic structure.
+ * @info : pointer to the structure with parameters given by ethtool
+ * to return link information.
+ * Description:
+ * Returns link specific information like speed, duplex etc.. to ethtool.
+ * Return value :
+ * return 0 on success.
+ */
+
+static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
+ info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
+ info->port = PORT_FIBRE;
+
+ /* info->transceiver */
+ info->transceiver = XCVR_EXTERNAL;
+
+ if (netif_carrier_ok(sp->dev)) {
+ ethtool_cmd_speed_set(info, SPEED_10000);
+ info->duplex = DUPLEX_FULL;
+ } else {
+ ethtool_cmd_speed_set(info, -1);
+ info->duplex = -1;
+ }
+
+ info->autoneg = AUTONEG_DISABLE;
+ return 0;
+}
+
+/**
+ * s2io_ethtool_gdrvinfo - Returns driver specific information.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @info : pointer to the structure with parameters given by ethtool to
+ * return driver information.
+ * Description:
+ * Returns driver specefic information like name, version etc.. to ethtool.
+ * Return value:
+ * void
+ */
+
+static void s2io_ethtool_gdrvinfo(struct net_device *dev,
+ struct ethtool_drvinfo *info)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
+ strncpy(info->version, s2io_driver_version, sizeof(info->version));
+ strncpy(info->fw_version, "", sizeof(info->fw_version));
+ strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
+ info->regdump_len = XENA_REG_SPACE;
+ info->eedump_len = XENA_EEPROM_SPACE;
+}
+
+/**
+ * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
+ * @sp: private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @regs : pointer to the structure with parameters given by ethtool for
+ * dumping the registers.
+ * @reg_space: The input argumnet into which all the registers are dumped.
+ * Description:
+ * Dumps the entire register space of xFrame NIC into the user given
+ * buffer area.
+ * Return value :
+ * void .
+ */
+
+static void s2io_ethtool_gregs(struct net_device *dev,
+ struct ethtool_regs *regs, void *space)
+{
+ int i;
+ u64 reg;
+ u8 *reg_space = (u8 *)space;
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ regs->len = XENA_REG_SPACE;
+ regs->version = sp->pdev->subsystem_device;
+
+ for (i = 0; i < regs->len; i += 8) {
+ reg = readq(sp->bar0 + i);
+ memcpy((reg_space + i), &reg, 8);
+ }
+}
+
+/*
+ * s2io_set_led - control NIC led
+ */
+static void s2io_set_led(struct s2io_nic *sp, bool on)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u16 subid = sp->pdev->subsystem_device;
+ u64 val64;
+
+ if ((sp->device_type == XFRAME_II_DEVICE) ||
+ ((subid & 0xFF) >= 0x07)) {
+ val64 = readq(&bar0->gpio_control);
+ if (on)
+ val64 |= GPIO_CTRL_GPIO_0;
+ else
+ val64 &= ~GPIO_CTRL_GPIO_0;
+
+ writeq(val64, &bar0->gpio_control);
+ } else {
+ val64 = readq(&bar0->adapter_control);
+ if (on)
+ val64 |= ADAPTER_LED_ON;
+ else
+ val64 &= ~ADAPTER_LED_ON;
+
+ writeq(val64, &bar0->adapter_control);
+ }
+
+}
+
+/**
+ * s2io_ethtool_set_led - To physically identify the nic on the system.
+ * @dev : network device
+ * @state: led setting
+ *
+ * Description: Used to physically identify the NIC on the system.
+ * The Link LED will blink for a time specified by the user for
+ * identification.
+ * NOTE: The Link has to be Up to be able to blink the LED. Hence
+ * identification is possible only if it's link is up.
+ */
+
+static int s2io_ethtool_set_led(struct net_device *dev,
+ enum ethtool_phys_id_state state)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u16 subid = sp->pdev->subsystem_device;
+
+ if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
+ u64 val64 = readq(&bar0->adapter_control);
+ if (!(val64 & ADAPTER_CNTL_EN)) {
+ pr_err("Adapter Link down, cannot blink LED\n");
+ return -EAGAIN;
+ }
+ }
+
+ switch (state) {
+ case ETHTOOL_ID_ACTIVE:
+ sp->adapt_ctrl_org = readq(&bar0->gpio_control);
+ return 1; /* cycle on/off once per second */
+
+ case ETHTOOL_ID_ON:
+ s2io_set_led(sp, true);
+ break;
+
+ case ETHTOOL_ID_OFF:
+ s2io_set_led(sp, false);
+ break;
+
+ case ETHTOOL_ID_INACTIVE:
+ if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
+ writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
+ }
+
+ return 0;
+}
+
+static void s2io_ethtool_gringparam(struct net_device *dev,
+ struct ethtool_ringparam *ering)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ int i, tx_desc_count = 0, rx_desc_count = 0;
+
+ if (sp->rxd_mode == RXD_MODE_1) {
+ ering->rx_max_pending = MAX_RX_DESC_1;
+ ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
+ } else {
+ ering->rx_max_pending = MAX_RX_DESC_2;
+ ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
+ }
+
+ ering->rx_mini_max_pending = 0;
+ ering->tx_max_pending = MAX_TX_DESC;
+
+ for (i = 0; i < sp->config.rx_ring_num; i++)
+ rx_desc_count += sp->config.rx_cfg[i].num_rxd;
+ ering->rx_pending = rx_desc_count;
+ ering->rx_jumbo_pending = rx_desc_count;
+ ering->rx_mini_pending = 0;
+
+ for (i = 0; i < sp->config.tx_fifo_num; i++)
+ tx_desc_count += sp->config.tx_cfg[i].fifo_len;
+ ering->tx_pending = tx_desc_count;
+ DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
+}
+
+/**
+ * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @ep : pointer to the structure with pause parameters given by ethtool.
+ * Description:
+ * Returns the Pause frame generation and reception capability of the NIC.
+ * Return value:
+ * void
+ */
+static void s2io_ethtool_getpause_data(struct net_device *dev,
+ struct ethtool_pauseparam *ep)
+{
+ u64 val64;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ val64 = readq(&bar0->rmac_pause_cfg);
+ if (val64 & RMAC_PAUSE_GEN_ENABLE)
+ ep->tx_pause = true;
+ if (val64 & RMAC_PAUSE_RX_ENABLE)
+ ep->rx_pause = true;
+ ep->autoneg = false;
+}
+
+/**
+ * s2io_ethtool_setpause_data - set/reset pause frame generation.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @ep : pointer to the structure with pause parameters given by ethtool.
+ * Description:
+ * It can be used to set or reset Pause frame generation or reception
+ * support of the NIC.
+ * Return value:
+ * int, returns 0 on Success
+ */
+
+static int s2io_ethtool_setpause_data(struct net_device *dev,
+ struct ethtool_pauseparam *ep)
+{
+ u64 val64;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ val64 = readq(&bar0->rmac_pause_cfg);
+ if (ep->tx_pause)
+ val64 |= RMAC_PAUSE_GEN_ENABLE;
+ else
+ val64 &= ~RMAC_PAUSE_GEN_ENABLE;
+ if (ep->rx_pause)
+ val64 |= RMAC_PAUSE_RX_ENABLE;
+ else
+ val64 &= ~RMAC_PAUSE_RX_ENABLE;
+ writeq(val64, &bar0->rmac_pause_cfg);
+ return 0;
+}
+
+/**
+ * read_eeprom - reads 4 bytes of data from user given offset.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @off : offset at which the data must be written
+ * @data : Its an output parameter where the data read at the given
+ * offset is stored.
+ * Description:
+ * Will read 4 bytes of data from the user given offset and return the
+ * read data.
+ * NOTE: Will allow to read only part of the EEPROM visible through the
+ * I2C bus.
+ * Return value:
+ * -1 on failure and 0 on success.
+ */
+
+#define S2IO_DEV_ID 5
+static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
+{
+ int ret = -1;
+ u32 exit_cnt = 0;
+ u64 val64;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ if (sp->device_type == XFRAME_I_DEVICE) {
+ val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
+ I2C_CONTROL_ADDR(off) |
+ I2C_CONTROL_BYTE_CNT(0x3) |
+ I2C_CONTROL_READ |
+ I2C_CONTROL_CNTL_START;
+ SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
+
+ while (exit_cnt < 5) {
+ val64 = readq(&bar0->i2c_control);
+ if (I2C_CONTROL_CNTL_END(val64)) {
+ *data = I2C_CONTROL_GET_DATA(val64);
+ ret = 0;
+ break;
+ }
+ msleep(50);
+ exit_cnt++;
+ }
+ }
+
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
+ SPI_CONTROL_BYTECNT(0x3) |
+ SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
+ SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
+ val64 |= SPI_CONTROL_REQ;
+ SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
+ while (exit_cnt < 5) {
+ val64 = readq(&bar0->spi_control);
+ if (val64 & SPI_CONTROL_NACK) {
+ ret = 1;
+ break;
+ } else if (val64 & SPI_CONTROL_DONE) {
+ *data = readq(&bar0->spi_data);
+ *data &= 0xffffff;
+ ret = 0;
+ break;
+ }
+ msleep(50);
+ exit_cnt++;
+ }
+ }
+ return ret;
+}
+
+/**
+ * write_eeprom - actually writes the relevant part of the data value.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @off : offset at which the data must be written
+ * @data : The data that is to be written
+ * @cnt : Number of bytes of the data that are actually to be written into
+ * the Eeprom. (max of 3)
+ * Description:
+ * Actually writes the relevant part of the data value into the Eeprom
+ * through the I2C bus.
+ * Return value:
+ * 0 on success, -1 on failure.
+ */
+
+static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
+{
+ int exit_cnt = 0, ret = -1;
+ u64 val64;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+
+ if (sp->device_type == XFRAME_I_DEVICE) {
+ val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
+ I2C_CONTROL_ADDR(off) |
+ I2C_CONTROL_BYTE_CNT(cnt) |
+ I2C_CONTROL_SET_DATA((u32)data) |
+ I2C_CONTROL_CNTL_START;
+ SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
+
+ while (exit_cnt < 5) {
+ val64 = readq(&bar0->i2c_control);
+ if (I2C_CONTROL_CNTL_END(val64)) {
+ if (!(val64 & I2C_CONTROL_NACK))
+ ret = 0;
+ break;
+ }
+ msleep(50);
+ exit_cnt++;
+ }
+ }
+
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ int write_cnt = (cnt == 8) ? 0 : cnt;
+ writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
+
+ val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
+ SPI_CONTROL_BYTECNT(write_cnt) |
+ SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
+ SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
+ val64 |= SPI_CONTROL_REQ;
+ SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
+ while (exit_cnt < 5) {
+ val64 = readq(&bar0->spi_control);
+ if (val64 & SPI_CONTROL_NACK) {
+ ret = 1;
+ break;
+ } else if (val64 & SPI_CONTROL_DONE) {
+ ret = 0;
+ break;
+ }
+ msleep(50);
+ exit_cnt++;
+ }
+ }
+ return ret;
+}
+static void s2io_vpd_read(struct s2io_nic *nic)
+{
+ u8 *vpd_data;
+ u8 data;
+ int i = 0, cnt, len, fail = 0;
+ int vpd_addr = 0x80;
+ struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
+
+ if (nic->device_type == XFRAME_II_DEVICE) {
+ strcpy(nic->product_name, "Xframe II 10GbE network adapter");
+ vpd_addr = 0x80;
+ } else {
+ strcpy(nic->product_name, "Xframe I 10GbE network adapter");
+ vpd_addr = 0x50;
+ }
+ strcpy(nic->serial_num, "NOT AVAILABLE");
+
+ vpd_data = kmalloc(256, GFP_KERNEL);
+ if (!vpd_data) {
+ swstats->mem_alloc_fail_cnt++;
+ return;
+ }
+ swstats->mem_allocated += 256;
+
+ for (i = 0; i < 256; i += 4) {
+ pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
+ pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
+ pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
+ for (cnt = 0; cnt < 5; cnt++) {
+ msleep(2);
+ pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
+ if (data == 0x80)
+ break;
+ }
+ if (cnt >= 5) {
+ DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
+ fail = 1;
+ break;
+ }
+ pci_read_config_dword(nic->pdev, (vpd_addr + 4),
+ (u32 *)&vpd_data[i]);
+ }
+
+ if (!fail) {
+ /* read serial number of adapter */
+ for (cnt = 0; cnt < 252; cnt++) {
+ if ((vpd_data[cnt] == 'S') &&
+ (vpd_data[cnt+1] == 'N')) {
+ len = vpd_data[cnt+2];
+ if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
+ memcpy(nic->serial_num,
+ &vpd_data[cnt + 3],
+ len);
+ memset(nic->serial_num+len,
+ 0,
+ VPD_STRING_LEN-len);
+ break;
+ }
+ }
+ }
+ }
+
+ if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
+ len = vpd_data[1];
+ memcpy(nic->product_name, &vpd_data[3], len);
+ nic->product_name[len] = 0;
+ }
+ kfree(vpd_data);
+ swstats->mem_freed += 256;
+}
+
+/**
+ * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
+ * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
+ * @eeprom : pointer to the user level structure provided by ethtool,
+ * containing all relevant information.
+ * @data_buf : user defined value to be written into Eeprom.
+ * Description: Reads the values stored in the Eeprom at given offset
+ * for a given length. Stores these values int the input argument data
+ * buffer 'data_buf' and returns these to the caller (ethtool.)
+ * Return value:
+ * int 0 on success
+ */
+
+static int s2io_ethtool_geeprom(struct net_device *dev,
+ struct ethtool_eeprom *eeprom, u8 * data_buf)
+{
+ u32 i, valid;
+ u64 data;
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
+
+ if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
+ eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
+
+ for (i = 0; i < eeprom->len; i += 4) {
+ if (read_eeprom(sp, (eeprom->offset + i), &data)) {
+ DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
+ return -EFAULT;
+ }
+ valid = INV(data);
+ memcpy((data_buf + i), &valid, 4);
+ }
+ return 0;
+}
+
+/**
+ * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @eeprom : pointer to the user level structure provided by ethtool,
+ * containing all relevant information.
+ * @data_buf ; user defined value to be written into Eeprom.
+ * Description:
+ * Tries to write the user provided value in the Eeprom, at the offset
+ * given by the user.
+ * Return value:
+ * 0 on success, -EFAULT on failure.
+ */
+
+static int s2io_ethtool_seeprom(struct net_device *dev,
+ struct ethtool_eeprom *eeprom,
+ u8 *data_buf)
+{
+ int len = eeprom->len, cnt = 0;
+ u64 valid = 0, data;
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
+ DBG_PRINT(ERR_DBG,
+ "ETHTOOL_WRITE_EEPROM Err: "
+ "Magic value is wrong, it is 0x%x should be 0x%x\n",
+ (sp->pdev->vendor | (sp->pdev->device << 16)),
+ eeprom->magic);
+ return -EFAULT;
+ }
+
+ while (len) {
+ data = (u32)data_buf[cnt] & 0x000000FF;
+ if (data)
+ valid = (u32)(data << 24);
+ else
+ valid = data;
+
+ if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
+ DBG_PRINT(ERR_DBG,
+ "ETHTOOL_WRITE_EEPROM Err: "
+ "Cannot write into the specified offset\n");
+ return -EFAULT;
+ }
+ cnt++;
+ len--;
+ }
+
+ return 0;
+}
+
+/**
+ * s2io_register_test - reads and writes into all clock domains.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data : variable that returns the result of each of the test conducted b
+ * by the driver.
+ * Description:
+ * Read and write into all clock domains. The NIC has 3 clock domains,
+ * see that registers in all the three regions are accessible.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64 = 0, exp_val;
+ int fail = 0;
+
+ val64 = readq(&bar0->pif_rd_swapper_fb);
+ if (val64 != 0x123456789abcdefULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
+ }
+
+ val64 = readq(&bar0->rmac_pause_cfg);
+ if (val64 != 0xc000ffff00000000ULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
+ }
+
+ val64 = readq(&bar0->rx_queue_cfg);
+ if (sp->device_type == XFRAME_II_DEVICE)
+ exp_val = 0x0404040404040404ULL;
+ else
+ exp_val = 0x0808080808080808ULL;
+ if (val64 != exp_val) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
+ }
+
+ val64 = readq(&bar0->xgxs_efifo_cfg);
+ if (val64 != 0x000000001923141EULL) {
+ fail = 1;
+ DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
+ }
+
+ val64 = 0x5A5A5A5A5A5A5A5AULL;
+ writeq(val64, &bar0->xmsi_data);
+ val64 = readq(&bar0->xmsi_data);
+ if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
+ fail = 1;
+ DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
+ }
+
+ val64 = 0xA5A5A5A5A5A5A5A5ULL;
+ writeq(val64, &bar0->xmsi_data);
+ val64 = readq(&bar0->xmsi_data);
+ if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
+ fail = 1;
+ DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
+ }
+
+ *data = fail;
+ return fail;
+}
+
+/**
+ * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data:variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
+ * register.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
+{
+ int fail = 0;
+ u64 ret_data, org_4F0, org_7F0;
+ u8 saved_4F0 = 0, saved_7F0 = 0;
+ struct net_device *dev = sp->dev;
+
+ /* Test Write Error at offset 0 */
+ /* Note that SPI interface allows write access to all areas
+ * of EEPROM. Hence doing all negative testing only for Xframe I.
+ */
+ if (sp->device_type == XFRAME_I_DEVICE)
+ if (!write_eeprom(sp, 0, 0, 3))
+ fail = 1;
+
+ /* Save current values at offsets 0x4F0 and 0x7F0 */
+ if (!read_eeprom(sp, 0x4F0, &org_4F0))
+ saved_4F0 = 1;
+ if (!read_eeprom(sp, 0x7F0, &org_7F0))
+ saved_7F0 = 1;
+
+ /* Test Write at offset 4f0 */
+ if (write_eeprom(sp, 0x4F0, 0x012345, 3))
+ fail = 1;
+ if (read_eeprom(sp, 0x4F0, &ret_data))
+ fail = 1;
+
+ if (ret_data != 0x012345) {
+ DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
+ "Data written %llx Data read %llx\n",
+ dev->name, (unsigned long long)0x12345,
+ (unsigned long long)ret_data);
+ fail = 1;
+ }
+
+ /* Reset the EEPROM data go FFFF */
+ write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
+
+ /* Test Write Request Error at offset 0x7c */
+ if (sp->device_type == XFRAME_I_DEVICE)
+ if (!write_eeprom(sp, 0x07C, 0, 3))
+ fail = 1;
+
+ /* Test Write Request at offset 0x7f0 */
+ if (write_eeprom(sp, 0x7F0, 0x012345, 3))
+ fail = 1;
+ if (read_eeprom(sp, 0x7F0, &ret_data))
+ fail = 1;
+
+ if (ret_data != 0x012345) {
+ DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
+ "Data written %llx Data read %llx\n",
+ dev->name, (unsigned long long)0x12345,
+ (unsigned long long)ret_data);
+ fail = 1;
+ }
+
+ /* Reset the EEPROM data go FFFF */
+ write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
+
+ if (sp->device_type == XFRAME_I_DEVICE) {
+ /* Test Write Error at offset 0x80 */
+ if (!write_eeprom(sp, 0x080, 0, 3))
+ fail = 1;
+
+ /* Test Write Error at offset 0xfc */
+ if (!write_eeprom(sp, 0x0FC, 0, 3))
+ fail = 1;
+
+ /* Test Write Error at offset 0x100 */
+ if (!write_eeprom(sp, 0x100, 0, 3))
+ fail = 1;
+
+ /* Test Write Error at offset 4ec */
+ if (!write_eeprom(sp, 0x4EC, 0, 3))
+ fail = 1;
+ }
+
+ /* Restore values at offsets 0x4F0 and 0x7F0 */
+ if (saved_4F0)
+ write_eeprom(sp, 0x4F0, org_4F0, 3);
+ if (saved_7F0)
+ write_eeprom(sp, 0x7F0, org_7F0, 3);
+
+ *data = fail;
+ return fail;
+}
+
+/**
+ * s2io_bist_test - invokes the MemBist test of the card .
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data:variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * This invokes the MemBist test of the card. We give around
+ * 2 secs time for the Test to complete. If it's still not complete
+ * within this peiod, we consider that the test failed.
+ * Return value:
+ * 0 on success and -1 on failure.
+ */
+
+static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
+{
+ u8 bist = 0;
+ int cnt = 0, ret = -1;
+
+ pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
+ bist |= PCI_BIST_START;
+ pci_write_config_word(sp->pdev, PCI_BIST, bist);
+
+ while (cnt < 20) {
+ pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
+ if (!(bist & PCI_BIST_START)) {
+ *data = (bist & PCI_BIST_CODE_MASK);
+ ret = 0;
+ break;
+ }
+ msleep(100);
+ cnt++;
+ }
+
+ return ret;
+}
+
+/**
+ * s2io-link_test - verifies the link state of the nic
+ * @sp ; private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data: variable that returns the result of each of the test conducted by
+ * the driver.
+ * Description:
+ * The function verifies the link state of the NIC and updates the input
+ * argument 'data' appropriately.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64;
+
+ val64 = readq(&bar0->adapter_status);
+ if (!(LINK_IS_UP(val64)))
+ *data = 1;
+ else
+ *data = 0;
+
+ return *data;
+}
+
+/**
+ * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
+ * @sp - private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @data - variable that returns the result of each of the test
+ * conducted by the driver.
+ * Description:
+ * This is one of the offline test that tests the read and write
+ * access to the RldRam chip on the NIC.
+ * Return value:
+ * 0 on success.
+ */
+
+static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
+{
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64;
+ int cnt, iteration = 0, test_fail = 0;
+
+ val64 = readq(&bar0->adapter_control);
+ val64 &= ~ADAPTER_ECC_EN;
+ writeq(val64, &bar0->adapter_control);
+
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ val64 |= MC_RLDRAM_TEST_MODE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
+
+ val64 = readq(&bar0->mc_rldram_mrs);
+ val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+
+ val64 |= MC_RLDRAM_MRS_ENABLE;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
+
+ while (iteration < 2) {
+ val64 = 0x55555555aaaa0000ULL;
+ if (iteration == 1)
+ val64 ^= 0xFFFFFFFFFFFF0000ULL;
+ writeq(val64, &bar0->mc_rldram_test_d0);
+
+ val64 = 0xaaaa5a5555550000ULL;
+ if (iteration == 1)
+ val64 ^= 0xFFFFFFFFFFFF0000ULL;
+ writeq(val64, &bar0->mc_rldram_test_d1);
+
+ val64 = 0x55aaaaaaaa5a0000ULL;
+ if (iteration == 1)
+ val64 ^= 0xFFFFFFFFFFFF0000ULL;
+ writeq(val64, &bar0->mc_rldram_test_d2);
+
+ val64 = (u64) (0x0000003ffffe0100ULL);
+ writeq(val64, &bar0->mc_rldram_test_add);
+
+ val64 = MC_RLDRAM_TEST_MODE |
+ MC_RLDRAM_TEST_WRITE |
+ MC_RLDRAM_TEST_GO;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
+
+ for (cnt = 0; cnt < 5; cnt++) {
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ if (val64 & MC_RLDRAM_TEST_DONE)
+ break;
+ msleep(200);
+ }
+
+ if (cnt == 5)
+ break;
+
+ val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
+ SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
+
+ for (cnt = 0; cnt < 5; cnt++) {
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ if (val64 & MC_RLDRAM_TEST_DONE)
+ break;
+ msleep(500);
+ }
+
+ if (cnt == 5)
+ break;
+
+ val64 = readq(&bar0->mc_rldram_test_ctrl);
+ if (!(val64 & MC_RLDRAM_TEST_PASS))
+ test_fail = 1;
+
+ iteration++;
+ }
+
+ *data = test_fail;
+
+ /* Bring the adapter out of test mode */
+ SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
+
+ return test_fail;
+}
+
+/**
+ * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @ethtest : pointer to a ethtool command specific structure that will be
+ * returned to the user.
+ * @data : variable that returns the result of each of the test
+ * conducted by the driver.
+ * Description:
+ * This function conducts 6 tests ( 4 offline and 2 online) to determine
+ * the health of the card.
+ * Return value:
+ * void
+ */
+
+static void s2io_ethtool_test(struct net_device *dev,
+ struct ethtool_test *ethtest,
+ uint64_t *data)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ int orig_state = netif_running(sp->dev);
+
+ if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
+ /* Offline Tests. */
+ if (orig_state)
+ s2io_close(sp->dev);
+
+ if (s2io_register_test(sp, &data[0]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ s2io_reset(sp);
+
+ if (s2io_rldram_test(sp, &data[3]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ s2io_reset(sp);
+
+ if (s2io_eeprom_test(sp, &data[1]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ if (s2io_bist_test(sp, &data[4]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ if (orig_state)
+ s2io_open(sp->dev);
+
+ data[2] = 0;
+ } else {
+ /* Online Tests. */
+ if (!orig_state) {
+ DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
+ dev->name);
+ data[0] = -1;
+ data[1] = -1;
+ data[2] = -1;
+ data[3] = -1;
+ data[4] = -1;
+ }
+
+ if (s2io_link_test(sp, &data[2]))
+ ethtest->flags |= ETH_TEST_FL_FAILED;
+
+ data[0] = 0;
+ data[1] = 0;
+ data[3] = 0;
+ data[4] = 0;
+ }
+}
+
+static void s2io_get_ethtool_stats(struct net_device *dev,
+ struct ethtool_stats *estats,
+ u64 *tmp_stats)
+{
+ int i = 0, k;
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct stat_block *stats = sp->mac_control.stats_info;
+ struct swStat *swstats = &stats->sw_stat;
+ struct xpakStat *xstats = &stats->xpak_stat;
+
+ s2io_updt_stats(sp);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
+ le32_to_cpu(stats->tmac_data_octets);
+ tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_mcst_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_bcst_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
+ le32_to_cpu(stats->tmac_ttl_octets);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_ucst_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_nucst_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
+ le32_to_cpu(stats->tmac_any_err_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
+ tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
+ le32_to_cpu(stats->tmac_vld_ip);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
+ le32_to_cpu(stats->tmac_drop_ip);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
+ le32_to_cpu(stats->tmac_icmp);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
+ le32_to_cpu(stats->tmac_rst_tcp);
+ tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
+ tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
+ le32_to_cpu(stats->tmac_udp);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_vld_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
+ le32_to_cpu(stats->rmac_data_octets);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_vld_mcst_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_vld_bcst_frms);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
+ le32_to_cpu(stats->rmac_ttl_octets);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
+ | le32_to_cpu(stats->rmac_accepted_ucst_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
+ << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_discarded_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
+ << 32 | le32_to_cpu(stats->rmac_drop_events);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_usized_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_osized_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_frag_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
+ le32_to_cpu(stats->rmac_jabber_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
+ le32_to_cpu(stats->rmac_ip);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
+ le32_to_cpu(stats->rmac_drop_ip);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
+ le32_to_cpu(stats->rmac_icmp);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
+ le32_to_cpu(stats->rmac_udp);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
+ le32_to_cpu(stats->rmac_err_drp_udp);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
+ tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
+ le32_to_cpu(stats->rmac_pause_cnt);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
+ tmp_stats[i++] =
+ (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
+ le32_to_cpu(stats->rmac_accepted_ip);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
+ tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
+ tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
+
+ /* Enhanced statistics exist only for Hercules */
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ tmp_stats[i++] =
+ le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
+ tmp_stats[i++] =
+ le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
+ tmp_stats[i++] =
+ le64_to_cpu(stats->rmac_ttl_8192_max_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
+ tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
+ tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
+ }
+
+ tmp_stats[i++] = 0;
+ tmp_stats[i++] = swstats->single_ecc_errs;
+ tmp_stats[i++] = swstats->double_ecc_errs;
+ tmp_stats[i++] = swstats->parity_err_cnt;
+ tmp_stats[i++] = swstats->serious_err_cnt;
+ tmp_stats[i++] = swstats->soft_reset_cnt;
+ tmp_stats[i++] = swstats->fifo_full_cnt;
+ for (k = 0; k < MAX_RX_RINGS; k++)
+ tmp_stats[i++] = swstats->ring_full_cnt[k];
+ tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
+ tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
+ tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
+ tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
+ tmp_stats[i++] = xstats->alarm_laser_output_power_high;
+ tmp_stats[i++] = xstats->alarm_laser_output_power_low;
+ tmp_stats[i++] = xstats->warn_transceiver_temp_high;
+ tmp_stats[i++] = xstats->warn_transceiver_temp_low;
+ tmp_stats[i++] = xstats->warn_laser_bias_current_high;
+ tmp_stats[i++] = xstats->warn_laser_bias_current_low;
+ tmp_stats[i++] = xstats->warn_laser_output_power_high;
+ tmp_stats[i++] = xstats->warn_laser_output_power_low;
+ tmp_stats[i++] = swstats->clubbed_frms_cnt;
+ tmp_stats[i++] = swstats->sending_both;
+ tmp_stats[i++] = swstats->outof_sequence_pkts;
+ tmp_stats[i++] = swstats->flush_max_pkts;
+ if (swstats->num_aggregations) {
+ u64 tmp = swstats->sum_avg_pkts_aggregated;
+ int count = 0;
+ /*
+ * Since 64-bit divide does not work on all platforms,
+ * do repeated subtraction.
+ */
+ while (tmp >= swstats->num_aggregations) {
+ tmp -= swstats->num_aggregations;
+ count++;
+ }
+ tmp_stats[i++] = count;
+ } else
+ tmp_stats[i++] = 0;
+ tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
+ tmp_stats[i++] = swstats->pci_map_fail_cnt;
+ tmp_stats[i++] = swstats->watchdog_timer_cnt;
+ tmp_stats[i++] = swstats->mem_allocated;
+ tmp_stats[i++] = swstats->mem_freed;
+ tmp_stats[i++] = swstats->link_up_cnt;
+ tmp_stats[i++] = swstats->link_down_cnt;
+ tmp_stats[i++] = swstats->link_up_time;
+ tmp_stats[i++] = swstats->link_down_time;
+
+ tmp_stats[i++] = swstats->tx_buf_abort_cnt;
+ tmp_stats[i++] = swstats->tx_desc_abort_cnt;
+ tmp_stats[i++] = swstats->tx_parity_err_cnt;
+ tmp_stats[i++] = swstats->tx_link_loss_cnt;
+ tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
+
+ tmp_stats[i++] = swstats->rx_parity_err_cnt;
+ tmp_stats[i++] = swstats->rx_abort_cnt;
+ tmp_stats[i++] = swstats->rx_parity_abort_cnt;
+ tmp_stats[i++] = swstats->rx_rda_fail_cnt;
+ tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
+ tmp_stats[i++] = swstats->rx_fcs_err_cnt;
+ tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
+ tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
+ tmp_stats[i++] = swstats->rx_unkn_err_cnt;
+ tmp_stats[i++] = swstats->tda_err_cnt;
+ tmp_stats[i++] = swstats->pfc_err_cnt;
+ tmp_stats[i++] = swstats->pcc_err_cnt;
+ tmp_stats[i++] = swstats->tti_err_cnt;
+ tmp_stats[i++] = swstats->tpa_err_cnt;
+ tmp_stats[i++] = swstats->sm_err_cnt;
+ tmp_stats[i++] = swstats->lso_err_cnt;
+ tmp_stats[i++] = swstats->mac_tmac_err_cnt;
+ tmp_stats[i++] = swstats->mac_rmac_err_cnt;
+ tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
+ tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
+ tmp_stats[i++] = swstats->rc_err_cnt;
+ tmp_stats[i++] = swstats->prc_pcix_err_cnt;
+ tmp_stats[i++] = swstats->rpa_err_cnt;
+ tmp_stats[i++] = swstats->rda_err_cnt;
+ tmp_stats[i++] = swstats->rti_err_cnt;
+ tmp_stats[i++] = swstats->mc_err_cnt;
+}
+
+static int s2io_ethtool_get_regs_len(struct net_device *dev)
+{
+ return XENA_REG_SPACE;
+}
+
+
+static int s2io_get_eeprom_len(struct net_device *dev)
+{
+ return XENA_EEPROM_SPACE;
+}
+
+static int s2io_get_sset_count(struct net_device *dev, int sset)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ switch (sset) {
+ case ETH_SS_TEST:
+ return S2IO_TEST_LEN;
+ case ETH_SS_STATS:
+ switch (sp->device_type) {
+ case XFRAME_I_DEVICE:
+ return XFRAME_I_STAT_LEN;
+ case XFRAME_II_DEVICE:
+ return XFRAME_II_STAT_LEN;
+ default:
+ return 0;
+ }
+ default:
+ return -EOPNOTSUPP;
+ }
+}
+
+static void s2io_ethtool_get_strings(struct net_device *dev,
+ u32 stringset, u8 *data)
+{
+ int stat_size = 0;
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ switch (stringset) {
+ case ETH_SS_TEST:
+ memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
+ break;
+ case ETH_SS_STATS:
+ stat_size = sizeof(ethtool_xena_stats_keys);
+ memcpy(data, &ethtool_xena_stats_keys, stat_size);
+ if (sp->device_type == XFRAME_II_DEVICE) {
+ memcpy(data + stat_size,
+ &ethtool_enhanced_stats_keys,
+ sizeof(ethtool_enhanced_stats_keys));
+ stat_size += sizeof(ethtool_enhanced_stats_keys);
+ }
+
+ memcpy(data + stat_size, &ethtool_driver_stats_keys,
+ sizeof(ethtool_driver_stats_keys));
+ }
+}
+
+static int s2io_set_features(struct net_device *dev, u32 features)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ u32 changed = (features ^ dev->features) & NETIF_F_LRO;
+
+ if (changed && netif_running(dev)) {
+ int rc;
+
+ s2io_stop_all_tx_queue(sp);
+ s2io_card_down(sp);
+ dev->features = features;
+ rc = s2io_card_up(sp);
+ if (rc)
+ s2io_reset(sp);
+ else
+ s2io_start_all_tx_queue(sp);
+
+ return rc ? rc : 1;
+ }
+
+ return 0;
+}
+
+static const struct ethtool_ops netdev_ethtool_ops = {
+ .get_settings = s2io_ethtool_gset,
+ .set_settings = s2io_ethtool_sset,
+ .get_drvinfo = s2io_ethtool_gdrvinfo,
+ .get_regs_len = s2io_ethtool_get_regs_len,
+ .get_regs = s2io_ethtool_gregs,
+ .get_link = ethtool_op_get_link,
+ .get_eeprom_len = s2io_get_eeprom_len,
+ .get_eeprom = s2io_ethtool_geeprom,
+ .set_eeprom = s2io_ethtool_seeprom,
+ .get_ringparam = s2io_ethtool_gringparam,
+ .get_pauseparam = s2io_ethtool_getpause_data,
+ .set_pauseparam = s2io_ethtool_setpause_data,
+ .self_test = s2io_ethtool_test,
+ .get_strings = s2io_ethtool_get_strings,
+ .set_phys_id = s2io_ethtool_set_led,
+ .get_ethtool_stats = s2io_get_ethtool_stats,
+ .get_sset_count = s2io_get_sset_count,
+};
+
+/**
+ * s2io_ioctl - Entry point for the Ioctl
+ * @dev : Device pointer.
+ * @ifr : An IOCTL specefic structure, that can contain a pointer to
+ * a proprietary structure used to pass information to the driver.
+ * @cmd : This is used to distinguish between the different commands that
+ * can be passed to the IOCTL functions.
+ * Description:
+ * Currently there are no special functionality supported in IOCTL, hence
+ * function always return EOPNOTSUPPORTED
+ */
+
+static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
+{
+ return -EOPNOTSUPP;
+}
+
+/**
+ * s2io_change_mtu - entry point to change MTU size for the device.
+ * @dev : device pointer.
+ * @new_mtu : the new MTU size for the device.
+ * Description: A driver entry point to change MTU size for the device.
+ * Before changing the MTU the device must be stopped.
+ * Return value:
+ * 0 on success and an appropriate (-)ve integer as defined in errno.h
+ * file on failure.
+ */
+
+static int s2io_change_mtu(struct net_device *dev, int new_mtu)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ int ret = 0;
+
+ if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
+ DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
+ return -EPERM;
+ }
+
+ dev->mtu = new_mtu;
+ if (netif_running(dev)) {
+ s2io_stop_all_tx_queue(sp);
+ s2io_card_down(sp);
+ ret = s2io_card_up(sp);
+ if (ret) {
+ DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
+ __func__);
+ return ret;
+ }
+ s2io_wake_all_tx_queue(sp);
+ } else { /* Device is down */
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ u64 val64 = new_mtu;
+
+ writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
+ }
+
+ return ret;
+}
+
+/**
+ * s2io_set_link - Set the LInk status
+ * @data: long pointer to device private structue
+ * Description: Sets the link status for the adapter
+ */
+
+static void s2io_set_link(struct work_struct *work)
+{
+ struct s2io_nic *nic = container_of(work, struct s2io_nic,
+ set_link_task);
+ struct net_device *dev = nic->dev;
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 val64;
+ u16 subid;
+
+ rtnl_lock();
+
+ if (!netif_running(dev))
+ goto out_unlock;
+
+ if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
+ /* The card is being reset, no point doing anything */
+ goto out_unlock;
+ }
+
+ subid = nic->pdev->subsystem_device;
+ if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
+ /*
+ * Allow a small delay for the NICs self initiated
+ * cleanup to complete.
+ */
+ msleep(100);
+ }
+
+ val64 = readq(&bar0->adapter_status);
+ if (LINK_IS_UP(val64)) {
+ if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
+ if (verify_xena_quiescence(nic)) {
+ val64 = readq(&bar0->adapter_control);
+ val64 |= ADAPTER_CNTL_EN;
+ writeq(val64, &bar0->adapter_control);
+ if (CARDS_WITH_FAULTY_LINK_INDICATORS(
+ nic->device_type, subid)) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= GPIO_CTRL_GPIO_0;
+ writeq(val64, &bar0->gpio_control);
+ val64 = readq(&bar0->gpio_control);
+ } else {
+ val64 |= ADAPTER_LED_ON;
+ writeq(val64, &bar0->adapter_control);
+ }
+ nic->device_enabled_once = true;
+ } else {
+ DBG_PRINT(ERR_DBG,
+ "%s: Error: device is not Quiescent\n",
+ dev->name);
+ s2io_stop_all_tx_queue(nic);
+ }
+ }
+ val64 = readq(&bar0->adapter_control);
+ val64 |= ADAPTER_LED_ON;
+ writeq(val64, &bar0->adapter_control);
+ s2io_link(nic, LINK_UP);
+ } else {
+ if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
+ subid)) {
+ val64 = readq(&bar0->gpio_control);
+ val64 &= ~GPIO_CTRL_GPIO_0;
+ writeq(val64, &bar0->gpio_control);
+ val64 = readq(&bar0->gpio_control);
+ }
+ /* turn off LED */
+ val64 = readq(&bar0->adapter_control);
+ val64 = val64 & (~ADAPTER_LED_ON);
+ writeq(val64, &bar0->adapter_control);
+ s2io_link(nic, LINK_DOWN);
+ }
+ clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
+
+out_unlock:
+ rtnl_unlock();
+}
+
+static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
+ struct buffAdd *ba,
+ struct sk_buff **skb, u64 *temp0, u64 *temp1,
+ u64 *temp2, int size)
+{
+ struct net_device *dev = sp->dev;
+ struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
+
+ if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
+ struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
+ /* allocate skb */
+ if (*skb) {
+ DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
+ /*
+ * As Rx frame are not going to be processed,
+ * using same mapped address for the Rxd
+ * buffer pointer
+ */
+ rxdp1->Buffer0_ptr = *temp0;
+ } else {
+ *skb = dev_alloc_skb(size);
+ if (!(*skb)) {
+ DBG_PRINT(INFO_DBG,
+ "%s: Out of memory to allocate %s\n",
+ dev->name, "1 buf mode SKBs");
+ stats->mem_alloc_fail_cnt++;
+ return -ENOMEM ;
+ }
+ stats->mem_allocated += (*skb)->truesize;
+ /* storing the mapped addr in a temp variable
+ * such it will be used for next rxd whose
+ * Host Control is NULL
+ */
+ rxdp1->Buffer0_ptr = *temp0 =
+ pci_map_single(sp->pdev, (*skb)->data,
+ size - NET_IP_ALIGN,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
+ goto memalloc_failed;
+ rxdp->Host_Control = (unsigned long) (*skb);
+ }
+ } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
+ struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
+ /* Two buffer Mode */
+ if (*skb) {
+ rxdp3->Buffer2_ptr = *temp2;
+ rxdp3->Buffer0_ptr = *temp0;
+ rxdp3->Buffer1_ptr = *temp1;
+ } else {
+ *skb = dev_alloc_skb(size);
+ if (!(*skb)) {
+ DBG_PRINT(INFO_DBG,
+ "%s: Out of memory to allocate %s\n",
+ dev->name,
+ "2 buf mode SKBs");
+ stats->mem_alloc_fail_cnt++;
+ return -ENOMEM;
+ }
+ stats->mem_allocated += (*skb)->truesize;
+ rxdp3->Buffer2_ptr = *temp2 =
+ pci_map_single(sp->pdev, (*skb)->data,
+ dev->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
+ goto memalloc_failed;
+ rxdp3->Buffer0_ptr = *temp0 =
+ pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(sp->pdev,
+ rxdp3->Buffer0_ptr)) {
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp3->Buffer2_ptr,
+ dev->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+ goto memalloc_failed;
+ }
+ rxdp->Host_Control = (unsigned long) (*skb);
+
+ /* Buffer-1 will be dummy buffer not used */
+ rxdp3->Buffer1_ptr = *temp1 =
+ pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(sp->pdev,
+ rxdp3->Buffer1_ptr)) {
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp3->Buffer0_ptr,
+ BUF0_LEN, PCI_DMA_FROMDEVICE);
+ pci_unmap_single(sp->pdev,
+ (dma_addr_t)rxdp3->Buffer2_ptr,
+ dev->mtu + 4,
+ PCI_DMA_FROMDEVICE);
+ goto memalloc_failed;
+ }
+ }
+ }
+ return 0;
+
+memalloc_failed:
+ stats->pci_map_fail_cnt++;
+ stats->mem_freed += (*skb)->truesize;
+ dev_kfree_skb(*skb);
+ return -ENOMEM;
+}
+
+static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
+ int size)
+{
+ struct net_device *dev = sp->dev;
+ if (sp->rxd_mode == RXD_MODE_1) {
+ rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
+ } else if (sp->rxd_mode == RXD_MODE_3B) {
+ rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
+ rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
+ rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
+ }
+}
+
+static int rxd_owner_bit_reset(struct s2io_nic *sp)
+{
+ int i, j, k, blk_cnt = 0, size;
+ struct config_param *config = &sp->config;
+ struct mac_info *mac_control = &sp->mac_control;
+ struct net_device *dev = sp->dev;
+ struct RxD_t *rxdp = NULL;
+ struct sk_buff *skb = NULL;
+ struct buffAdd *ba = NULL;
+ u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
+
+ /* Calculate the size based on ring mode */
+ size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
+ HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
+ if (sp->rxd_mode == RXD_MODE_1)
+ size += NET_IP_ALIGN;
+ else if (sp->rxd_mode == RXD_MODE_3B)
+ size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+ struct ring_info *ring = &mac_control->rings[i];
+
+ blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
+
+ for (j = 0; j < blk_cnt; j++) {
+ for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
+ rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
+ if (sp->rxd_mode == RXD_MODE_3B)
+ ba = &ring->ba[j][k];
+ if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
+ (u64 *)&temp0_64,
+ (u64 *)&temp1_64,
+ (u64 *)&temp2_64,
+ size) == -ENOMEM) {
+ return 0;
+ }
+
+ set_rxd_buffer_size(sp, rxdp, size);
+ wmb();
+ /* flip the Ownership bit to Hardware */
+ rxdp->Control_1 |= RXD_OWN_XENA;
+ }
+ }
+ }
+ return 0;
+
+}
+
+static int s2io_add_isr(struct s2io_nic *sp)
+{
+ int ret = 0;
+ struct net_device *dev = sp->dev;
+ int err = 0;
+
+ if (sp->config.intr_type == MSI_X)
+ ret = s2io_enable_msi_x(sp);
+ if (ret) {
+ DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
+ sp->config.intr_type = INTA;
+ }
+
+ /*
+ * Store the values of the MSIX table in
+ * the struct s2io_nic structure
+ */
+ store_xmsi_data(sp);
+
+ /* After proper initialization of H/W, register ISR */
+ if (sp->config.intr_type == MSI_X) {
+ int i, msix_rx_cnt = 0;
+
+ for (i = 0; i < sp->num_entries; i++) {
+ if (sp->s2io_entries[i].in_use == MSIX_FLG) {
+ if (sp->s2io_entries[i].type ==
+ MSIX_RING_TYPE) {
+ sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
+ dev->name, i);
+ err = request_irq(sp->entries[i].vector,
+ s2io_msix_ring_handle,
+ 0,
+ sp->desc[i],
+ sp->s2io_entries[i].arg);
+ } else if (sp->s2io_entries[i].type ==
+ MSIX_ALARM_TYPE) {
+ sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
+ dev->name, i);
+ err = request_irq(sp->entries[i].vector,
+ s2io_msix_fifo_handle,
+ 0,
+ sp->desc[i],
+ sp->s2io_entries[i].arg);
+
+ }
+ /* if either data or addr is zero print it. */
+ if (!(sp->msix_info[i].addr &&
+ sp->msix_info[i].data)) {
+ DBG_PRINT(ERR_DBG,
+ "%s @Addr:0x%llx Data:0x%llx\n",
+ sp->desc[i],
+ (unsigned long long)
+ sp->msix_info[i].addr,
+ (unsigned long long)
+ ntohl(sp->msix_info[i].data));
+ } else
+ msix_rx_cnt++;
+ if (err) {
+ remove_msix_isr(sp);
+
+ DBG_PRINT(ERR_DBG,
+ "%s:MSI-X-%d registration "
+ "failed\n", dev->name, i);
+
+ DBG_PRINT(ERR_DBG,
+ "%s: Defaulting to INTA\n",
+ dev->name);
+ sp->config.intr_type = INTA;
+ break;
+ }
+ sp->s2io_entries[i].in_use =
+ MSIX_REGISTERED_SUCCESS;
+ }
+ }
+ if (!err) {
+ pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
+ DBG_PRINT(INFO_DBG,
+ "MSI-X-TX entries enabled through alarm vector\n");
+ }
+ }
+ if (sp->config.intr_type == INTA) {
+ err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
+ sp->name, dev);
+ if (err) {
+ DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
+ dev->name);
+ return -1;
+ }
+ }
+ return 0;
+}
+
+static void s2io_rem_isr(struct s2io_nic *sp)
+{
+ if (sp->config.intr_type == MSI_X)
+ remove_msix_isr(sp);
+ else
+ remove_inta_isr(sp);
+}
+
+static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
+{
+ int cnt = 0;
+ struct XENA_dev_config __iomem *bar0 = sp->bar0;
+ register u64 val64 = 0;
+ struct config_param *config;
+ config = &sp->config;
+
+ if (!is_s2io_card_up(sp))
+ return;
+
+ del_timer_sync(&sp->alarm_timer);
+ /* If s2io_set_link task is executing, wait till it completes. */
+ while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
+ msleep(50);
+ clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
+
+ /* Disable napi */
+ if (sp->config.napi) {
+ int off = 0;
+ if (config->intr_type == MSI_X) {
+ for (; off < sp->config.rx_ring_num; off++)
+ napi_disable(&sp->mac_control.rings[off].napi);
+ }
+ else
+ napi_disable(&sp->napi);
+ }
+
+ /* disable Tx and Rx traffic on the NIC */
+ if (do_io)
+ stop_nic(sp);
+
+ s2io_rem_isr(sp);
+
+ /* stop the tx queue, indicate link down */
+ s2io_link(sp, LINK_DOWN);
+
+ /* Check if the device is Quiescent and then Reset the NIC */
+ while (do_io) {
+ /* As per the HW requirement we need to replenish the
+ * receive buffer to avoid the ring bump. Since there is
+ * no intention of processing the Rx frame at this pointwe are
+ * just setting the ownership bit of rxd in Each Rx
+ * ring to HW and set the appropriate buffer size
+ * based on the ring mode
+ */
+ rxd_owner_bit_reset(sp);
+
+ val64 = readq(&bar0->adapter_status);
+ if (verify_xena_quiescence(sp)) {
+ if (verify_pcc_quiescent(sp, sp->device_enabled_once))
+ break;
+ }
+
+ msleep(50);
+ cnt++;
+ if (cnt == 10) {
+ DBG_PRINT(ERR_DBG, "Device not Quiescent - "
+ "adapter status reads 0x%llx\n",
+ (unsigned long long)val64);
+ break;
+ }
+ }
+ if (do_io)
+ s2io_reset(sp);
+
+ /* Free all Tx buffers */
+ free_tx_buffers(sp);
+
+ /* Free all Rx buffers */
+ free_rx_buffers(sp);
+
+ clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
+}
+
+static void s2io_card_down(struct s2io_nic *sp)
+{
+ do_s2io_card_down(sp, 1);
+}
+
+static int s2io_card_up(struct s2io_nic *sp)
+{
+ int i, ret = 0;
+ struct config_param *config;
+ struct mac_info *mac_control;
+ struct net_device *dev = (struct net_device *)sp->dev;
+ u16 interruptible;
+
+ /* Initialize the H/W I/O registers */
+ ret = init_nic(sp);
+ if (ret != 0) {
+ DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
+ dev->name);
+ if (ret != -EIO)
+ s2io_reset(sp);
+ return ret;
+ }
+
+ /*
+ * Initializing the Rx buffers. For now we are considering only 1
+ * Rx ring and initializing buffers into 30 Rx blocks
+ */
+ config = &sp->config;
+ mac_control = &sp->mac_control;
+
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ ring->mtu = dev->mtu;
+ ring->lro = !!(dev->features & NETIF_F_LRO);
+ ret = fill_rx_buffers(sp, ring, 1);
+ if (ret) {
+ DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
+ dev->name);
+ s2io_reset(sp);
+ free_rx_buffers(sp);
+ return -ENOMEM;
+ }
+ DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
+ ring->rx_bufs_left);
+ }
+
+ /* Initialise napi */
+ if (config->napi) {
+ if (config->intr_type == MSI_X) {
+ for (i = 0; i < sp->config.rx_ring_num; i++)
+ napi_enable(&sp->mac_control.rings[i].napi);
+ } else {
+ napi_enable(&sp->napi);
+ }
+ }
+
+ /* Maintain the state prior to the open */
+ if (sp->promisc_flg)
+ sp->promisc_flg = 0;
+ if (sp->m_cast_flg) {
+ sp->m_cast_flg = 0;
+ sp->all_multi_pos = 0;
+ }
+
+ /* Setting its receive mode */
+ s2io_set_multicast(dev);
+
+ if (dev->features & NETIF_F_LRO) {
+ /* Initialize max aggregatable pkts per session based on MTU */
+ sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
+ /* Check if we can use (if specified) user provided value */
+ if (lro_max_pkts < sp->lro_max_aggr_per_sess)
+ sp->lro_max_aggr_per_sess = lro_max_pkts;
+ }
+
+ /* Enable Rx Traffic and interrupts on the NIC */
+ if (start_nic(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
+ s2io_reset(sp);
+ free_rx_buffers(sp);
+ return -ENODEV;
+ }
+
+ /* Add interrupt service routine */
+ if (s2io_add_isr(sp) != 0) {
+ if (sp->config.intr_type == MSI_X)
+ s2io_rem_isr(sp);
+ s2io_reset(sp);
+ free_rx_buffers(sp);
+ return -ENODEV;
+ }
+
+ S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
+
+ set_bit(__S2IO_STATE_CARD_UP, &sp->state);
+
+ /* Enable select interrupts */
+ en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
+ if (sp->config.intr_type != INTA) {
+ interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
+ en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
+ } else {
+ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
+ interruptible |= TX_PIC_INTR;
+ en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
+ }
+
+ return 0;
+}
+
+/**
+ * s2io_restart_nic - Resets the NIC.
+ * @data : long pointer to the device private structure
+ * Description:
+ * This function is scheduled to be run by the s2io_tx_watchdog
+ * function after 0.5 secs to reset the NIC. The idea is to reduce
+ * the run time of the watch dog routine which is run holding a
+ * spin lock.
+ */
+
+static void s2io_restart_nic(struct work_struct *work)
+{
+ struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
+ struct net_device *dev = sp->dev;
+
+ rtnl_lock();
+
+ if (!netif_running(dev))
+ goto out_unlock;
+
+ s2io_card_down(sp);
+ if (s2io_card_up(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
+ }
+ s2io_wake_all_tx_queue(sp);
+ DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
+out_unlock:
+ rtnl_unlock();
+}
+
+/**
+ * s2io_tx_watchdog - Watchdog for transmit side.
+ * @dev : Pointer to net device structure
+ * Description:
+ * This function is triggered if the Tx Queue is stopped
+ * for a pre-defined amount of time when the Interface is still up.
+ * If the Interface is jammed in such a situation, the hardware is
+ * reset (by s2io_close) and restarted again (by s2io_open) to
+ * overcome any problem that might have been caused in the hardware.
+ * Return value:
+ * void
+ */
+
+static void s2io_tx_watchdog(struct net_device *dev)
+{
+ struct s2io_nic *sp = netdev_priv(dev);
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+
+ if (netif_carrier_ok(dev)) {
+ swstats->watchdog_timer_cnt++;
+ schedule_work(&sp->rst_timer_task);
+ swstats->soft_reset_cnt++;
+ }
+}
+
+/**
+ * rx_osm_handler - To perform some OS related operations on SKB.
+ * @sp: private member of the device structure,pointer to s2io_nic structure.
+ * @skb : the socket buffer pointer.
+ * @len : length of the packet
+ * @cksum : FCS checksum of the frame.
+ * @ring_no : the ring from which this RxD was extracted.
+ * Description:
+ * This function is called by the Rx interrupt serivce routine to perform
+ * some OS related operations on the SKB before passing it to the upper
+ * layers. It mainly checks if the checksum is OK, if so adds it to the
+ * SKBs cksum variable, increments the Rx packet count and passes the SKB
+ * to the upper layer. If the checksum is wrong, it increments the Rx
+ * packet error count, frees the SKB and returns error.
+ * Return value:
+ * SUCCESS on success and -1 on failure.
+ */
+static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
+{
+ struct s2io_nic *sp = ring_data->nic;
+ struct net_device *dev = (struct net_device *)ring_data->dev;
+ struct sk_buff *skb = (struct sk_buff *)
+ ((unsigned long)rxdp->Host_Control);
+ int ring_no = ring_data->ring_no;
+ u16 l3_csum, l4_csum;
+ unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
+ struct lro *uninitialized_var(lro);
+ u8 err_mask;
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+
+ skb->dev = dev;
+
+ if (err) {
+ /* Check for parity error */
+ if (err & 0x1)
+ swstats->parity_err_cnt++;
+
+ err_mask = err >> 48;
+ switch (err_mask) {
+ case 1:
+ swstats->rx_parity_err_cnt++;
+ break;
+
+ case 2:
+ swstats->rx_abort_cnt++;
+ break;
+
+ case 3:
+ swstats->rx_parity_abort_cnt++;
+ break;
+
+ case 4:
+ swstats->rx_rda_fail_cnt++;
+ break;
+
+ case 5:
+ swstats->rx_unkn_prot_cnt++;
+ break;
+
+ case 6:
+ swstats->rx_fcs_err_cnt++;
+ break;
+
+ case 7:
+ swstats->rx_buf_size_err_cnt++;
+ break;
+
+ case 8:
+ swstats->rx_rxd_corrupt_cnt++;
+ break;
+
+ case 15:
+ swstats->rx_unkn_err_cnt++;
+ break;
+ }
+ /*
+ * Drop the packet if bad transfer code. Exception being
+ * 0x5, which could be due to unsupported IPv6 extension header.
+ * In this case, we let stack handle the packet.
+ * Note that in this case, since checksum will be incorrect,
+ * stack will validate the same.
+ */
+ if (err_mask != 0x5) {
+ DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
+ dev->name, err_mask);
+ dev->stats.rx_crc_errors++;
+ swstats->mem_freed
+ += skb->truesize;
+ dev_kfree_skb(skb);
+ ring_data->rx_bufs_left -= 1;
+ rxdp->Host_Control = 0;
+ return 0;
+ }
+ }
+
+ rxdp->Host_Control = 0;
+ if (sp->rxd_mode == RXD_MODE_1) {
+ int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
+
+ skb_put(skb, len);
+ } else if (sp->rxd_mode == RXD_MODE_3B) {
+ int get_block = ring_data->rx_curr_get_info.block_index;
+ int get_off = ring_data->rx_curr_get_info.offset;
+ int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
+ int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
+ unsigned char *buff = skb_push(skb, buf0_len);
+
+ struct buffAdd *ba = &ring_data->ba[get_block][get_off];
+ memcpy(buff, ba->ba_0, buf0_len);
+ skb_put(skb, buf2_len);
+ }
+
+ if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
+ ((!ring_data->lro) ||
+ (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
+ (dev->features & NETIF_F_RXCSUM)) {
+ l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
+ l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
+ if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
+ /*
+ * NIC verifies if the Checksum of the received
+ * frame is Ok or not and accordingly returns
+ * a flag in the RxD.
+ */
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ if (ring_data->lro) {
+ u32 tcp_len = 0;
+ u8 *tcp;
+ int ret = 0;
+
+ ret = s2io_club_tcp_session(ring_data,
+ skb->data, &tcp,
+ &tcp_len, &lro,
+ rxdp, sp);
+ switch (ret) {
+ case 3: /* Begin anew */
+ lro->parent = skb;
+ goto aggregate;
+ case 1: /* Aggregate */
+ lro_append_pkt(sp, lro, skb, tcp_len);
+ goto aggregate;
+ case 4: /* Flush session */
+ lro_append_pkt(sp, lro, skb, tcp_len);
+ queue_rx_frame(lro->parent,
+ lro->vlan_tag);
+ clear_lro_session(lro);
+ swstats->flush_max_pkts++;
+ goto aggregate;
+ case 2: /* Flush both */
+ lro->parent->data_len = lro->frags_len;
+ swstats->sending_both++;
+ queue_rx_frame(lro->parent,
+ lro->vlan_tag);
+ clear_lro_session(lro);
+ goto send_up;
+ case 0: /* sessions exceeded */
+ case -1: /* non-TCP or not L2 aggregatable */
+ case 5: /*
+ * First pkt in session not
+ * L3/L4 aggregatable
+ */
+ break;
+ default:
+ DBG_PRINT(ERR_DBG,
+ "%s: Samadhana!!\n",
+ __func__);
+ BUG();
+ }
+ }
+ } else {
+ /*
+ * Packet with erroneous checksum, let the
+ * upper layers deal with it.
+ */
+ skb_checksum_none_assert(skb);
+ }
+ } else
+ skb_checksum_none_assert(skb);
+
+ swstats->mem_freed += skb->truesize;
+send_up:
+ skb_record_rx_queue(skb, ring_no);
+ queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
+aggregate:
+ sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
+ return SUCCESS;
+}
+
+/**
+ * s2io_link - stops/starts the Tx queue.
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * @link : inidicates whether link is UP/DOWN.
+ * Description:
+ * This function stops/starts the Tx queue depending on whether the link
+ * status of the NIC is is down or up. This is called by the Alarm
+ * interrupt handler whenever a link change interrupt comes up.
+ * Return value:
+ * void.
+ */
+
+static void s2io_link(struct s2io_nic *sp, int link)
+{
+ struct net_device *dev = (struct net_device *)sp->dev;
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+
+ if (link != sp->last_link_state) {
+ init_tti(sp, link);
+ if (link == LINK_DOWN) {
+ DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
+ s2io_stop_all_tx_queue(sp);
+ netif_carrier_off(dev);
+ if (swstats->link_up_cnt)
+ swstats->link_up_time =
+ jiffies - sp->start_time;
+ swstats->link_down_cnt++;
+ } else {
+ DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
+ if (swstats->link_down_cnt)
+ swstats->link_down_time =
+ jiffies - sp->start_time;
+ swstats->link_up_cnt++;
+ netif_carrier_on(dev);
+ s2io_wake_all_tx_queue(sp);
+ }
+ }
+ sp->last_link_state = link;
+ sp->start_time = jiffies;
+}
+
+/**
+ * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
+ * @sp : private member of the device structure, which is a pointer to the
+ * s2io_nic structure.
+ * Description:
+ * This function initializes a few of the PCI and PCI-X configuration registers
+ * with recommended values.
+ * Return value:
+ * void
+ */
+
+static void s2io_init_pci(struct s2io_nic *sp)
+{
+ u16 pci_cmd = 0, pcix_cmd = 0;
+
+ /* Enable Data Parity Error Recovery in PCI-X command register. */
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(pcix_cmd));
+ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ (pcix_cmd | 1));
+ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
+ &(pcix_cmd));
+
+ /* Set the PErr Response bit in PCI command register. */
+ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
+ pci_write_config_word(sp->pdev, PCI_COMMAND,
+ (pci_cmd | PCI_COMMAND_PARITY));
+ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
+}
+
+static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
+ u8 *dev_multiq)
+{
+ int i;
+
+ if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
+ DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
+ "(%d) not supported\n", tx_fifo_num);
+
+ if (tx_fifo_num < 1)
+ tx_fifo_num = 1;
+ else
+ tx_fifo_num = MAX_TX_FIFOS;
+
+ DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
+ }
+
+ if (multiq)
+ *dev_multiq = multiq;
+
+ if (tx_steering_type && (1 == tx_fifo_num)) {
+ if (tx_steering_type != TX_DEFAULT_STEERING)
+ DBG_PRINT(ERR_DBG,
+ "Tx steering is not supported with "
+ "one fifo. Disabling Tx steering.\n");
+ tx_steering_type = NO_STEERING;
+ }
+
+ if ((tx_steering_type < NO_STEERING) ||
+ (tx_steering_type > TX_DEFAULT_STEERING)) {
+ DBG_PRINT(ERR_DBG,
+ "Requested transmit steering not supported\n");
+ DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
+ tx_steering_type = NO_STEERING;
+ }
+
+ if (rx_ring_num > MAX_RX_RINGS) {
+ DBG_PRINT(ERR_DBG,
+ "Requested number of rx rings not supported\n");
+ DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
+ MAX_RX_RINGS);
+ rx_ring_num = MAX_RX_RINGS;
+ }
+
+ if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
+ DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
+ "Defaulting to INTA\n");
+ *dev_intr_type = INTA;
+ }
+
+ if ((*dev_intr_type == MSI_X) &&
+ ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
+ (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
+ DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
+ "Defaulting to INTA\n");
+ *dev_intr_type = INTA;
+ }
+
+ if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
+ DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
+ DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
+ rx_ring_mode = 1;
+ }
+
+ for (i = 0; i < MAX_RX_RINGS; i++)
+ if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
+ DBG_PRINT(ERR_DBG, "Requested rx ring size not "
+ "supported\nDefaulting to %d\n",
+ MAX_RX_BLOCKS_PER_RING);
+ rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
+ }
+
+ return SUCCESS;
+}
+
+/**
+ * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
+ * or Traffic class respectively.
+ * @nic: device private variable
+ * Description: The function configures the receive steering to
+ * desired receive ring.
+ * Return Value: SUCCESS on success and
+ * '-1' on failure (endian settings incorrect).
+ */
+static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
+{
+ struct XENA_dev_config __iomem *bar0 = nic->bar0;
+ register u64 val64 = 0;
+
+ if (ds_codepoint > 63)
+ return FAILURE;
+
+ val64 = RTS_DS_MEM_DATA(ring);
+ writeq(val64, &bar0->rts_ds_mem_data);
+
+ val64 = RTS_DS_MEM_CTRL_WE |
+ RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
+ RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
+
+ writeq(val64, &bar0->rts_ds_mem_ctrl);
+
+ return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
+ RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
+ S2IO_BIT_RESET);
+}
+
+static const struct net_device_ops s2io_netdev_ops = {
+ .ndo_open = s2io_open,
+ .ndo_stop = s2io_close,
+ .ndo_get_stats = s2io_get_stats,
+ .ndo_start_xmit = s2io_xmit,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_set_multicast_list = s2io_set_multicast,
+ .ndo_do_ioctl = s2io_ioctl,
+ .ndo_set_mac_address = s2io_set_mac_addr,
+ .ndo_change_mtu = s2io_change_mtu,
+ .ndo_set_features = s2io_set_features,
+ .ndo_tx_timeout = s2io_tx_watchdog,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+ .ndo_poll_controller = s2io_netpoll,
+#endif
+};
+
+/**
+ * s2io_init_nic - Initialization of the adapter .
+ * @pdev : structure containing the PCI related information of the device.
+ * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
+ * Description:
+ * The function initializes an adapter identified by the pci_dec structure.
+ * All OS related initialization including memory and device structure and
+ * initlaization of the device private variable is done. Also the swapper
+ * control register is initialized to enable read and write into the I/O
+ * registers of the device.
+ * Return value:
+ * returns 0 on success and negative on failure.
+ */
+
+static int __devinit
+s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
+{
+ struct s2io_nic *sp;
+ struct net_device *dev;
+ int i, j, ret;
+ int dma_flag = false;
+ u32 mac_up, mac_down;
+ u64 val64 = 0, tmp64 = 0;
+ struct XENA_dev_config __iomem *bar0 = NULL;
+ u16 subid;
+ struct config_param *config;
+ struct mac_info *mac_control;
+ int mode;
+ u8 dev_intr_type = intr_type;
+ u8 dev_multiq = 0;
+
+ ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
+ if (ret)
+ return ret;
+
+ ret = pci_enable_device(pdev);
+ if (ret) {
+ DBG_PRINT(ERR_DBG,
+ "%s: pci_enable_device failed\n", __func__);
+ return ret;
+ }
+
+ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
+ DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
+ dma_flag = true;
+ if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
+ DBG_PRINT(ERR_DBG,
+ "Unable to obtain 64bit DMA "
+ "for consistent allocations\n");
+ pci_disable_device(pdev);
+ return -ENOMEM;
+ }
+ } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
+ DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
+ } else {
+ pci_disable_device(pdev);
+ return -ENOMEM;
+ }
+ ret = pci_request_regions(pdev, s2io_driver_name);
+ if (ret) {
+ DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
+ __func__, ret);
+ pci_disable_device(pdev);
+ return -ENODEV;
+ }
+ if (dev_multiq)
+ dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
+ else
+ dev = alloc_etherdev(sizeof(struct s2io_nic));
+ if (dev == NULL) {
+ DBG_PRINT(ERR_DBG, "Device allocation failed\n");
+ pci_disable_device(pdev);
+ pci_release_regions(pdev);
+ return -ENODEV;
+ }
+
+ pci_set_master(pdev);
+ pci_set_drvdata(pdev, dev);
+ SET_NETDEV_DEV(dev, &pdev->dev);
+
+ /* Private member variable initialized to s2io NIC structure */
+ sp = netdev_priv(dev);
+ sp->dev = dev;
+ sp->pdev = pdev;
+ sp->high_dma_flag = dma_flag;
+ sp->device_enabled_once = false;
+ if (rx_ring_mode == 1)
+ sp->rxd_mode = RXD_MODE_1;
+ if (rx_ring_mode == 2)
+ sp->rxd_mode = RXD_MODE_3B;
+
+ sp->config.intr_type = dev_intr_type;
+
+ if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
+ (pdev->device == PCI_DEVICE_ID_HERC_UNI))
+ sp->device_type = XFRAME_II_DEVICE;
+ else
+ sp->device_type = XFRAME_I_DEVICE;
+
+
+ /* Initialize some PCI/PCI-X fields of the NIC. */
+ s2io_init_pci(sp);
+
+ /*
+ * Setting the device configuration parameters.
+ * Most of these parameters can be specified by the user during
+ * module insertion as they are module loadable parameters. If
+ * these parameters are not not specified during load time, they
+ * are initialized with default values.
+ */
+ config = &sp->config;
+ mac_control = &sp->mac_control;
+
+ config->napi = napi;
+ config->tx_steering_type = tx_steering_type;
+
+ /* Tx side parameters. */
+ if (config->tx_steering_type == TX_PRIORITY_STEERING)
+ config->tx_fifo_num = MAX_TX_FIFOS;
+ else
+ config->tx_fifo_num = tx_fifo_num;
+
+ /* Initialize the fifos used for tx steering */
+ if (config->tx_fifo_num < 5) {
+ if (config->tx_fifo_num == 1)
+ sp->total_tcp_fifos = 1;
+ else
+ sp->total_tcp_fifos = config->tx_fifo_num - 1;
+ sp->udp_fifo_idx = config->tx_fifo_num - 1;
+ sp->total_udp_fifos = 1;
+ sp->other_fifo_idx = sp->total_tcp_fifos - 1;
+ } else {
+ sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
+ FIFO_OTHER_MAX_NUM);
+ sp->udp_fifo_idx = sp->total_tcp_fifos;
+ sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
+ sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
+ }
+
+ config->multiq = dev_multiq;
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ tx_cfg->fifo_len = tx_fifo_len[i];
+ tx_cfg->fifo_priority = i;
+ }
+
+ /* mapping the QoS priority to the configured fifos */
+ for (i = 0; i < MAX_TX_FIFOS; i++)
+ config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
+
+ /* map the hashing selector table to the configured fifos */
+ for (i = 0; i < config->tx_fifo_num; i++)
+ sp->fifo_selector[i] = fifo_selector[i];
+
+
+ config->tx_intr_type = TXD_INT_TYPE_UTILZ;
+ for (i = 0; i < config->tx_fifo_num; i++) {
+ struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
+
+ tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
+ if (tx_cfg->fifo_len < 65) {
+ config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
+ break;
+ }
+ }
+ /* + 2 because one Txd for skb->data and one Txd for UFO */
+ config->max_txds = MAX_SKB_FRAGS + 2;
+
+ /* Rx side parameters. */
+ config->rx_ring_num = rx_ring_num;
+ for (i = 0; i < config->rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+ struct ring_info *ring = &mac_control->rings[i];
+
+ rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
+ rx_cfg->ring_priority = i;
+ ring->rx_bufs_left = 0;
+ ring->rxd_mode = sp->rxd_mode;
+ ring->rxd_count = rxd_count[sp->rxd_mode];
+ ring->pdev = sp->pdev;
+ ring->dev = sp->dev;
+ }
+
+ for (i = 0; i < rx_ring_num; i++) {
+ struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
+
+ rx_cfg->ring_org = RING_ORG_BUFF1;
+ rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
+ }
+
+ /* Setting Mac Control parameters */
+ mac_control->rmac_pause_time = rmac_pause_time;
+ mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
+ mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
+
+
+ /* initialize the shared memory used by the NIC and the host */
+ if (init_shared_mem(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
+ ret = -ENOMEM;
+ goto mem_alloc_failed;
+ }
+
+ sp->bar0 = pci_ioremap_bar(pdev, 0);
+ if (!sp->bar0) {
+ DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
+ dev->name);
+ ret = -ENOMEM;
+ goto bar0_remap_failed;
+ }
+
+ sp->bar1 = pci_ioremap_bar(pdev, 2);
+ if (!sp->bar1) {
+ DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
+ dev->name);
+ ret = -ENOMEM;
+ goto bar1_remap_failed;
+ }
+
+ dev->irq = pdev->irq;
+ dev->base_addr = (unsigned long)sp->bar0;
+
+ /* Initializing the BAR1 address as the start of the FIFO pointer. */
+ for (j = 0; j < MAX_TX_FIFOS; j++) {
+ mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
+ }
+
+ /* Driver entry points */
+ dev->netdev_ops = &s2io_netdev_ops;
+ SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
+ dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
+ NETIF_F_TSO | NETIF_F_TSO6 |
+ NETIF_F_RXCSUM | NETIF_F_LRO;
+ dev->features |= dev->hw_features |
+ NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
+ if (sp->device_type & XFRAME_II_DEVICE) {
+ dev->hw_features |= NETIF_F_UFO;
+ if (ufo)
+ dev->features |= NETIF_F_UFO;
+ }
+ if (sp->high_dma_flag == true)
+ dev->features |= NETIF_F_HIGHDMA;
+ dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
+ INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
+ INIT_WORK(&sp->set_link_task, s2io_set_link);
+
+ pci_save_state(sp->pdev);
+
+ /* Setting swapper control on the NIC, for proper reset operation */
+ if (s2io_set_swapper(sp)) {
+ DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
+ dev->name);
+ ret = -EAGAIN;
+ goto set_swap_failed;
+ }
+
+ /* Verify if the Herc works on the slot its placed into */
+ if (sp->device_type & XFRAME_II_DEVICE) {
+ mode = s2io_verify_pci_mode(sp);
+ if (mode < 0) {
+ DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
+ __func__);
+ ret = -EBADSLT;
+ goto set_swap_failed;
+ }
+ }
+
+ if (sp->config.intr_type == MSI_X) {
+ sp->num_entries = config->rx_ring_num + 1;
+ ret = s2io_enable_msi_x(sp);
+
+ if (!ret) {
+ ret = s2io_test_msi(sp);
+ /* rollback MSI-X, will re-enable during add_isr() */
+ remove_msix_isr(sp);
+ }
+ if (ret) {
+
+ DBG_PRINT(ERR_DBG,
+ "MSI-X requested but failed to enable\n");
+ sp->config.intr_type = INTA;
+ }
+ }
+
+ if (config->intr_type == MSI_X) {
+ for (i = 0; i < config->rx_ring_num ; i++) {
+ struct ring_info *ring = &mac_control->rings[i];
+
+ netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
+ }
+ } else {
+ netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
+ }
+
+ /* Not needed for Herc */
+ if (sp->device_type & XFRAME_I_DEVICE) {
+ /*
+ * Fix for all "FFs" MAC address problems observed on
+ * Alpha platforms
+ */
+ fix_mac_address(sp);
+ s2io_reset(sp);
+ }
+
+ /*
+ * MAC address initialization.
+ * For now only one mac address will be read and used.
+ */
+ bar0 = sp->bar0;
+ val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
+ RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
+ writeq(val64, &bar0->rmac_addr_cmd_mem);
+ wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
+ RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
+ S2IO_BIT_RESET);
+ tmp64 = readq(&bar0->rmac_addr_data0_mem);
+ mac_down = (u32)tmp64;
+ mac_up = (u32) (tmp64 >> 32);
+
+ sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
+ sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
+ sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
+ sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
+ sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
+ sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
+
+ /* Set the factory defined MAC address initially */
+ dev->addr_len = ETH_ALEN;
+ memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
+ memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
+
+ /* initialize number of multicast & unicast MAC entries variables */
+ if (sp->device_type == XFRAME_I_DEVICE) {
+ config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
+ config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
+ config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
+ } else if (sp->device_type == XFRAME_II_DEVICE) {
+ config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
+ config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
+ config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
+ }
+
+ /* store mac addresses from CAM to s2io_nic structure */
+ do_s2io_store_unicast_mc(sp);
+
+ /* Configure MSIX vector for number of rings configured plus one */
+ if ((sp->device_type == XFRAME_II_DEVICE) &&
+ (config->intr_type == MSI_X))
+ sp->num_entries = config->rx_ring_num + 1;
+
+ /* Store the values of the MSIX table in the s2io_nic structure */
+ store_xmsi_data(sp);
+ /* reset Nic and bring it to known state */
+ s2io_reset(sp);
+
+ /*
+ * Initialize link state flags
+ * and the card state parameter
+ */
+ sp->state = 0;
+
+ /* Initialize spinlocks */
+ for (i = 0; i < sp->config.tx_fifo_num; i++) {
+ struct fifo_info *fifo = &mac_control->fifos[i];
+
+ spin_lock_init(&fifo->tx_lock);
+ }
+
+ /*
+ * SXE-002: Configure link and activity LED to init state
+ * on driver load.
+ */
+ subid = sp->pdev->subsystem_device;
+ if ((subid & 0xFF) >= 0x07) {
+ val64 = readq(&bar0->gpio_control);
+ val64 |= 0x0000800000000000ULL;
+ writeq(val64, &bar0->gpio_control);
+ val64 = 0x0411040400000000ULL;
+ writeq(val64, (void __iomem *)bar0 + 0x2700);
+ val64 = readq(&bar0->gpio_control);
+ }
+
+ sp->rx_csum = 1; /* Rx chksum verify enabled by default */
+
+ if (register_netdev(dev)) {
+ DBG_PRINT(ERR_DBG, "Device registration failed\n");
+ ret = -ENODEV;
+ goto register_failed;
+ }
+ s2io_vpd_read(sp);
+ DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
+ DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
+ sp->product_name, pdev->revision);
+ DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
+ s2io_driver_version);
+ DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
+ DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
+ if (sp->device_type & XFRAME_II_DEVICE) {
+ mode = s2io_print_pci_mode(sp);
+ if (mode < 0) {
+ ret = -EBADSLT;
+ unregister_netdev(dev);
+ goto set_swap_failed;
+ }
+ }
+ switch (sp->rxd_mode) {
+ case RXD_MODE_1:
+ DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
+ dev->name);
+ break;
+ case RXD_MODE_3B:
+ DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
+ dev->name);
+ break;
+ }
+
+ switch (sp->config.napi) {
+ case 0:
+ DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
+ break;
+ case 1:
+ DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
+ break;
+ }
+
+ DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
+ sp->config.tx_fifo_num);
+
+ DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
+ sp->config.rx_ring_num);
+
+ switch (sp->config.intr_type) {
+ case INTA:
+ DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
+ break;
+ case MSI_X:
+ DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
+ break;
+ }
+ if (sp->config.multiq) {
+ for (i = 0; i < sp->config.tx_fifo_num; i++) {
+ struct fifo_info *fifo = &mac_control->fifos[i];
+
+ fifo->multiq = config->multiq;
+ }
+ DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
+ dev->name);
+ } else
+ DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
+ dev->name);
+
+ switch (sp->config.tx_steering_type) {
+ case NO_STEERING:
+ DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
+ dev->name);
+ break;
+ case TX_PRIORITY_STEERING:
+ DBG_PRINT(ERR_DBG,
+ "%s: Priority steering enabled for transmit\n",
+ dev->name);
+ break;
+ case TX_DEFAULT_STEERING:
+ DBG_PRINT(ERR_DBG,
+ "%s: Default steering enabled for transmit\n",
+ dev->name);
+ }
+
+ DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
+ dev->name);
+ if (ufo)
+ DBG_PRINT(ERR_DBG,
+ "%s: UDP Fragmentation Offload(UFO) enabled\n",
+ dev->name);
+ /* Initialize device name */
+ sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
+
+ if (vlan_tag_strip)
+ sp->vlan_strip_flag = 1;
+ else
+ sp->vlan_strip_flag = 0;
+
+ /*
+ * Make Link state as off at this point, when the Link change
+ * interrupt comes the state will be automatically changed to
+ * the right state.
+ */
+ netif_carrier_off(dev);
+
+ return 0;
+
+register_failed:
+set_swap_failed:
+ iounmap(sp->bar1);
+bar1_remap_failed:
+ iounmap(sp->bar0);
+bar0_remap_failed:
+mem_alloc_failed:
+ free_shared_mem(sp);
+ pci_disable_device(pdev);
+ pci_release_regions(pdev);
+ pci_set_drvdata(pdev, NULL);
+ free_netdev(dev);
+
+ return ret;
+}
+
+/**
+ * s2io_rem_nic - Free the PCI device
+ * @pdev: structure containing the PCI related information of the device.
+ * Description: This function is called by the Pci subsystem to release a
+ * PCI device and free up all resource held up by the device. This could
+ * be in response to a Hot plug event or when the driver is to be removed
+ * from memory.
+ */
+
+static void __devexit s2io_rem_nic(struct pci_dev *pdev)
+{
+ struct net_device *dev = pci_get_drvdata(pdev);
+ struct s2io_nic *sp;
+
+ if (dev == NULL) {
+ DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
+ return;
+ }
+
+ sp = netdev_priv(dev);
+
+ cancel_work_sync(&sp->rst_timer_task);
+ cancel_work_sync(&sp->set_link_task);
+
+ unregister_netdev(dev);
+
+ free_shared_mem(sp);
+ iounmap(sp->bar0);
+ iounmap(sp->bar1);
+ pci_release_regions(pdev);
+ pci_set_drvdata(pdev, NULL);
+ free_netdev(dev);
+ pci_disable_device(pdev);
+}
+
+/**
+ * s2io_starter - Entry point for the driver
+ * Description: This function is the entry point for the driver. It verifies
+ * the module loadable parameters and initializes PCI configuration space.
+ */
+
+static int __init s2io_starter(void)
+{
+ return pci_register_driver(&s2io_driver);
+}
+
+/**
+ * s2io_closer - Cleanup routine for the driver
+ * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
+ */
+
+static __exit void s2io_closer(void)
+{
+ pci_unregister_driver(&s2io_driver);
+ DBG_PRINT(INIT_DBG, "cleanup done\n");
+}
+
+module_init(s2io_starter);
+module_exit(s2io_closer);
+
+static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
+ struct tcphdr **tcp, struct RxD_t *rxdp,
+ struct s2io_nic *sp)
+{
+ int ip_off;
+ u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
+
+ if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
+ DBG_PRINT(INIT_DBG,
+ "%s: Non-TCP frames not supported for LRO\n",
+ __func__);
+ return -1;
+ }
+
+ /* Checking for DIX type or DIX type with VLAN */
+ if ((l2_type == 0) || (l2_type == 4)) {
+ ip_off = HEADER_ETHERNET_II_802_3_SIZE;
+ /*
+ * If vlan stripping is disabled and the frame is VLAN tagged,
+ * shift the offset by the VLAN header size bytes.
+ */
+ if ((!sp->vlan_strip_flag) &&
+ (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
+ ip_off += HEADER_VLAN_SIZE;
+ } else {
+ /* LLC, SNAP etc are considered non-mergeable */
+ return -1;
+ }
+
+ *ip = (struct iphdr *)((u8 *)buffer + ip_off);
+ ip_len = (u8)((*ip)->ihl);
+ ip_len <<= 2;
+ *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
+
+ return 0;
+}
+
+static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
+ struct tcphdr *tcp)
+{
+ DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
+ if ((lro->iph->saddr != ip->saddr) ||
+ (lro->iph->daddr != ip->daddr) ||
+ (lro->tcph->source != tcp->source) ||
+ (lro->tcph->dest != tcp->dest))
+ return -1;
+ return 0;
+}
+
+static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
+{
+ return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
+}
+
+static void initiate_new_session(struct lro *lro, u8 *l2h,
+ struct iphdr *ip, struct tcphdr *tcp,
+ u32 tcp_pyld_len, u16 vlan_tag)
+{
+ DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
+ lro->l2h = l2h;
+ lro->iph = ip;
+ lro->tcph = tcp;
+ lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
+ lro->tcp_ack = tcp->ack_seq;
+ lro->sg_num = 1;
+ lro->total_len = ntohs(ip->tot_len);
+ lro->frags_len = 0;
+ lro->vlan_tag = vlan_tag;
+ /*
+ * Check if we saw TCP timestamp.
+ * Other consistency checks have already been done.
+ */
+ if (tcp->doff == 8) {
+ __be32 *ptr;
+ ptr = (__be32 *)(tcp+1);
+ lro->saw_ts = 1;
+ lro->cur_tsval = ntohl(*(ptr+1));
+ lro->cur_tsecr = *(ptr+2);
+ }
+ lro->in_use = 1;
+}
+
+static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
+{
+ struct iphdr *ip = lro->iph;
+ struct tcphdr *tcp = lro->tcph;
+ __sum16 nchk;
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+
+ DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
+
+ /* Update L3 header */
+ ip->tot_len = htons(lro->total_len);
+ ip->check = 0;
+ nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
+ ip->check = nchk;
+
+ /* Update L4 header */
+ tcp->ack_seq = lro->tcp_ack;
+ tcp->window = lro->window;
+
+ /* Update tsecr field if this session has timestamps enabled */
+ if (lro->saw_ts) {
+ __be32 *ptr = (__be32 *)(tcp + 1);
+ *(ptr+2) = lro->cur_tsecr;
+ }
+
+ /* Update counters required for calculation of
+ * average no. of packets aggregated.
+ */
+ swstats->sum_avg_pkts_aggregated += lro->sg_num;
+ swstats->num_aggregations++;
+}
+
+static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
+ struct tcphdr *tcp, u32 l4_pyld)
+{
+ DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
+ lro->total_len += l4_pyld;
+ lro->frags_len += l4_pyld;
+ lro->tcp_next_seq += l4_pyld;
+ lro->sg_num++;
+
+ /* Update ack seq no. and window ad(from this pkt) in LRO object */
+ lro->tcp_ack = tcp->ack_seq;
+ lro->window = tcp->window;
+
+ if (lro->saw_ts) {
+ __be32 *ptr;
+ /* Update tsecr and tsval from this packet */
+ ptr = (__be32 *)(tcp+1);
+ lro->cur_tsval = ntohl(*(ptr+1));
+ lro->cur_tsecr = *(ptr + 2);
+ }
+}
+
+static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
+ struct tcphdr *tcp, u32 tcp_pyld_len)
+{
+ u8 *ptr;
+
+ DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
+
+ if (!tcp_pyld_len) {
+ /* Runt frame or a pure ack */
+ return -1;
+ }
+
+ if (ip->ihl != 5) /* IP has options */
+ return -1;
+
+ /* If we see CE codepoint in IP header, packet is not mergeable */
+ if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
+ return -1;
+
+ /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
+ if (tcp->urg || tcp->psh || tcp->rst ||
+ tcp->syn || tcp->fin ||
+ tcp->ece || tcp->cwr || !tcp->ack) {
+ /*
+ * Currently recognize only the ack control word and
+ * any other control field being set would result in
+ * flushing the LRO session
+ */
+ return -1;
+ }
+
+ /*
+ * Allow only one TCP timestamp option. Don't aggregate if
+ * any other options are detected.
+ */
+ if (tcp->doff != 5 && tcp->doff != 8)
+ return -1;
+
+ if (tcp->doff == 8) {
+ ptr = (u8 *)(tcp + 1);
+ while (*ptr == TCPOPT_NOP)
+ ptr++;
+ if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
+ return -1;
+
+ /* Ensure timestamp value increases monotonically */
+ if (l_lro)
+ if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
+ return -1;
+
+ /* timestamp echo reply should be non-zero */
+ if (*((__be32 *)(ptr+6)) == 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
+ u8 **tcp, u32 *tcp_len, struct lro **lro,
+ struct RxD_t *rxdp, struct s2io_nic *sp)
+{
+ struct iphdr *ip;
+ struct tcphdr *tcph;
+ int ret = 0, i;
+ u16 vlan_tag = 0;
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+
+ ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
+ rxdp, sp);
+ if (ret)
+ return ret;
+
+ DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
+
+ vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
+ tcph = (struct tcphdr *)*tcp;
+ *tcp_len = get_l4_pyld_length(ip, tcph);
+ for (i = 0; i < MAX_LRO_SESSIONS; i++) {
+ struct lro *l_lro = &ring_data->lro0_n[i];
+ if (l_lro->in_use) {
+ if (check_for_socket_match(l_lro, ip, tcph))
+ continue;
+ /* Sock pair matched */
+ *lro = l_lro;
+
+ if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
+ DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
+ "expected 0x%x, actual 0x%x\n",
+ __func__,
+ (*lro)->tcp_next_seq,
+ ntohl(tcph->seq));
+
+ swstats->outof_sequence_pkts++;
+ ret = 2;
+ break;
+ }
+
+ if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
+ *tcp_len))
+ ret = 1; /* Aggregate */
+ else
+ ret = 2; /* Flush both */
+ break;
+ }
+ }
+
+ if (ret == 0) {
+ /* Before searching for available LRO objects,
+ * check if the pkt is L3/L4 aggregatable. If not
+ * don't create new LRO session. Just send this
+ * packet up.
+ */
+ if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
+ return 5;
+
+ for (i = 0; i < MAX_LRO_SESSIONS; i++) {
+ struct lro *l_lro = &ring_data->lro0_n[i];
+ if (!(l_lro->in_use)) {
+ *lro = l_lro;
+ ret = 3; /* Begin anew */
+ break;
+ }
+ }
+ }
+
+ if (ret == 0) { /* sessions exceeded */
+ DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
+ __func__);
+ *lro = NULL;
+ return ret;
+ }
+
+ switch (ret) {
+ case 3:
+ initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
+ vlan_tag);
+ break;
+ case 2:
+ update_L3L4_header(sp, *lro);
+ break;
+ case 1:
+ aggregate_new_rx(*lro, ip, tcph, *tcp_len);
+ if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
+ update_L3L4_header(sp, *lro);
+ ret = 4; /* Flush the LRO */
+ }
+ break;
+ default:
+ DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
+ break;
+ }
+
+ return ret;
+}
+
+static void clear_lro_session(struct lro *lro)
+{
+ static u16 lro_struct_size = sizeof(struct lro);
+
+ memset(lro, 0, lro_struct_size);
+}
+
+static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
+{
+ struct net_device *dev = skb->dev;
+ struct s2io_nic *sp = netdev_priv(dev);
+
+ skb->protocol = eth_type_trans(skb, dev);
+ if (vlan_tag && sp->vlan_strip_flag)
+ __vlan_hwaccel_put_tag(skb, vlan_tag);
+ if (sp->config.napi)
+ netif_receive_skb(skb);
+ else
+ netif_rx(skb);
+}
+
+static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
+ struct sk_buff *skb, u32 tcp_len)
+{
+ struct sk_buff *first = lro->parent;
+ struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
+
+ first->len += tcp_len;
+ first->data_len = lro->frags_len;
+ skb_pull(skb, (skb->len - tcp_len));
+ if (skb_shinfo(first)->frag_list)
+ lro->last_frag->next = skb;
+ else
+ skb_shinfo(first)->frag_list = skb;
+ first->truesize += skb->truesize;
+ lro->last_frag = skb;
+ swstats->clubbed_frms_cnt++;
+}
+
+/**
+ * s2io_io_error_detected - called when PCI error is detected
+ * @pdev: Pointer to PCI device
+ * @state: The current pci connection state
+ *
+ * This function is called after a PCI bus error affecting
+ * this device has been detected.
+ */
+static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
+ pci_channel_state_t state)
+{
+ struct net_device *netdev = pci_get_drvdata(pdev);
+ struct s2io_nic *sp = netdev_priv(netdev);
+
+ netif_device_detach(netdev);
+
+ if (state == pci_channel_io_perm_failure)
+ return PCI_ERS_RESULT_DISCONNECT;
+
+ if (netif_running(netdev)) {
+ /* Bring down the card, while avoiding PCI I/O */
+ do_s2io_card_down(sp, 0);
+ }
+ pci_disable_device(pdev);
+
+ return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/**
+ * s2io_io_slot_reset - called after the pci bus has been reset.
+ * @pdev: Pointer to PCI device
+ *
+ * Restart the card from scratch, as if from a cold-boot.
+ * At this point, the card has exprienced a hard reset,
+ * followed by fixups by BIOS, and has its config space
+ * set up identically to what it was at cold boot.
+ */
+static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
+{
+ struct net_device *netdev = pci_get_drvdata(pdev);
+ struct s2io_nic *sp = netdev_priv(netdev);
+
+ if (pci_enable_device(pdev)) {
+ pr_err("Cannot re-enable PCI device after reset.\n");
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+
+ pci_set_master(pdev);
+ s2io_reset(sp);
+
+ return PCI_ERS_RESULT_RECOVERED;
+}
+
+/**
+ * s2io_io_resume - called when traffic can start flowing again.
+ * @pdev: Pointer to PCI device
+ *
+ * This callback is called when the error recovery driver tells
+ * us that its OK to resume normal operation.
+ */
+static void s2io_io_resume(struct pci_dev *pdev)
+{
+ struct net_device *netdev = pci_get_drvdata(pdev);
+ struct s2io_nic *sp = netdev_priv(netdev);
+
+ if (netif_running(netdev)) {
+ if (s2io_card_up(sp)) {
+ pr_err("Can't bring device back up after reset.\n");
+ return;
+ }
+
+ if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
+ s2io_card_down(sp);
+ pr_err("Can't restore mac addr after reset.\n");
+ return;
+ }
+ }
+
+ netif_device_attach(netdev);
+ netif_tx_wake_all_queues(netdev);
+}