summaryrefslogtreecommitdiffstats
path: root/drivers/net/qlge
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2008-10-11 09:33:18 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2008-10-11 09:33:18 -0700
commit4dd9ec4946b4651a295d3bc8df9c15ac692a8f4e (patch)
treeafb300c752de7175bb2df4722d5c857e070c75d9 /drivers/net/qlge
parent86ed5a93b8b56e4e0877b914af0e10883a196384 (diff)
parent6861ff35ec5b60fafaf8651754c9a75142bfa9a4 (diff)
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1075 commits) myri10ge: update driver version number to 1.4.3-1.369 r8169: add shutdown handler r8169: preliminary 8168d support r8169: support additional 8168cp chipset r8169: change default behavior for mildly identified 8168c chipsets r8169: add a new 8168cp flavor r8169: add a new 8168c flavor (bis) r8169: add a new 8168c flavor r8169: sync existing 8168 device hardware start sequences with vendor driver r8169: 8168b Tx performance tweak r8169: make room for more specific 8168 hardware start procedure r8169: shuffle some registers handling around (8168 operation only) r8169: new phy init parameters for the 8168b r8169: update phy init parameters r8169: wake up the PHY of the 8168 af_key: fix SADB_X_SPDDELETE response ath9k: Fix return code when ath9k_hw_setpower() fails on reset ath9k: remove nasty FAIL macro from ath9k_hw_reset() gre: minor cleanups in netlink interface gre: fix copy and paste error ...
Diffstat (limited to 'drivers/net/qlge')
-rw-r--r--drivers/net/qlge/Makefile7
-rw-r--r--drivers/net/qlge/qlge.h1593
-rw-r--r--drivers/net/qlge/qlge_dbg.c858
-rw-r--r--drivers/net/qlge/qlge_ethtool.c415
-rw-r--r--drivers/net/qlge/qlge_main.c3956
-rw-r--r--drivers/net/qlge/qlge_mpi.c150
6 files changed, 6979 insertions, 0 deletions
diff --git a/drivers/net/qlge/Makefile b/drivers/net/qlge/Makefile
new file mode 100644
index 00000000000..8a197658d76
--- /dev/null
+++ b/drivers/net/qlge/Makefile
@@ -0,0 +1,7 @@
+#
+# Makefile for the Qlogic 10GbE PCI Express ethernet driver
+#
+
+obj-$(CONFIG_QLGE) += qlge.o
+
+qlge-objs := qlge_main.o qlge_dbg.o qlge_mpi.o qlge_ethtool.o
diff --git a/drivers/net/qlge/qlge.h b/drivers/net/qlge/qlge.h
new file mode 100644
index 00000000000..c37ea436c91
--- /dev/null
+++ b/drivers/net/qlge/qlge.h
@@ -0,0 +1,1593 @@
+/*
+ * QLogic QLA41xx NIC HBA Driver
+ * Copyright (c) 2003-2006 QLogic Corporation
+ *
+ * See LICENSE.qlge for copyright and licensing details.
+ */
+#ifndef _QLGE_H_
+#define _QLGE_H_
+
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+
+/*
+ * General definitions...
+ */
+#define DRV_NAME "qlge"
+#define DRV_STRING "QLogic 10 Gigabit PCI-E Ethernet Driver "
+#define DRV_VERSION "v1.00.00-b3"
+
+#define PFX "qlge: "
+#define QPRINTK(qdev, nlevel, klevel, fmt, args...) \
+ do { \
+ if (!((qdev)->msg_enable & NETIF_MSG_##nlevel)) \
+ ; \
+ else \
+ dev_printk(KERN_##klevel, &((qdev)->pdev->dev), \
+ "%s: " fmt, __func__, ##args); \
+ } while (0)
+
+#define QLGE_VENDOR_ID 0x1077
+#define QLGE_DEVICE_ID1 0x8012
+#define QLGE_DEVICE_ID 0x8000
+
+#define MAX_RX_RINGS 128
+#define MAX_TX_RINGS 128
+
+#define NUM_TX_RING_ENTRIES 256
+#define NUM_RX_RING_ENTRIES 256
+
+#define NUM_SMALL_BUFFERS 512
+#define NUM_LARGE_BUFFERS 512
+
+#define SMALL_BUFFER_SIZE 256
+#define LARGE_BUFFER_SIZE PAGE_SIZE
+#define MAX_SPLIT_SIZE 1023
+#define QLGE_SB_PAD 32
+
+#define DFLT_COALESCE_WAIT 100 /* 100 usec wait for coalescing */
+#define MAX_INTER_FRAME_WAIT 10 /* 10 usec max interframe-wait for coalescing */
+#define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT/2)
+#define UDELAY_COUNT 3
+#define UDELAY_DELAY 10
+
+
+#define TX_DESC_PER_IOCB 8
+/* The maximum number of frags we handle is based
+ * on PAGE_SIZE...
+ */
+#if (PAGE_SHIFT == 12) || (PAGE_SHIFT == 13) /* 4k & 8k pages */
+#define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2)
+#elif (PAGE_SHIFT == 16) /* 64k pages */
+#define TX_DESC_PER_OAL 0
+#endif
+
+#define DB_PAGE_SIZE 4096
+
+/*
+ * Processor Address Register (PROC_ADDR) bit definitions.
+ */
+enum {
+
+ /* Misc. stuff */
+ MAILBOX_COUNT = 16,
+
+ PROC_ADDR_RDY = (1 << 31),
+ PROC_ADDR_R = (1 << 30),
+ PROC_ADDR_ERR = (1 << 29),
+ PROC_ADDR_DA = (1 << 28),
+ PROC_ADDR_FUNC0_MBI = 0x00001180,
+ PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT),
+ PROC_ADDR_FUNC0_CTL = 0x000011a1,
+ PROC_ADDR_FUNC2_MBI = 0x00001280,
+ PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT),
+ PROC_ADDR_FUNC2_CTL = 0x000012a1,
+ PROC_ADDR_MPI_RISC = 0x00000000,
+ PROC_ADDR_MDE = 0x00010000,
+ PROC_ADDR_REGBLOCK = 0x00020000,
+ PROC_ADDR_RISC_REG = 0x00030000,
+};
+
+/*
+ * System Register (SYS) bit definitions.
+ */
+enum {
+ SYS_EFE = (1 << 0),
+ SYS_FAE = (1 << 1),
+ SYS_MDC = (1 << 2),
+ SYS_DST = (1 << 3),
+ SYS_DWC = (1 << 4),
+ SYS_EVW = (1 << 5),
+ SYS_OMP_DLY_MASK = 0x3f000000,
+ /*
+ * There are no values defined as of edit #15.
+ */
+ SYS_ODI = (1 << 14),
+};
+
+/*
+ * Reset/Failover Register (RST_FO) bit definitions.
+ */
+enum {
+ RST_FO_TFO = (1 << 0),
+ RST_FO_RR_MASK = 0x00060000,
+ RST_FO_RR_CQ_CAM = 0x00000000,
+ RST_FO_RR_DROP = 0x00000001,
+ RST_FO_RR_DQ = 0x00000002,
+ RST_FO_RR_RCV_FUNC_CQ = 0x00000003,
+ RST_FO_FRB = (1 << 12),
+ RST_FO_MOP = (1 << 13),
+ RST_FO_REG = (1 << 14),
+ RST_FO_FR = (1 << 15),
+};
+
+/*
+ * Function Specific Control Register (FSC) bit definitions.
+ */
+enum {
+ FSC_DBRST_MASK = 0x00070000,
+ FSC_DBRST_256 = 0x00000000,
+ FSC_DBRST_512 = 0x00000001,
+ FSC_DBRST_768 = 0x00000002,
+ FSC_DBRST_1024 = 0x00000003,
+ FSC_DBL_MASK = 0x00180000,
+ FSC_DBL_DBRST = 0x00000000,
+ FSC_DBL_MAX_PLD = 0x00000008,
+ FSC_DBL_MAX_BRST = 0x00000010,
+ FSC_DBL_128_BYTES = 0x00000018,
+ FSC_EC = (1 << 5),
+ FSC_EPC_MASK = 0x00c00000,
+ FSC_EPC_INBOUND = (1 << 6),
+ FSC_EPC_OUTBOUND = (1 << 7),
+ FSC_VM_PAGESIZE_MASK = 0x07000000,
+ FSC_VM_PAGE_2K = 0x00000100,
+ FSC_VM_PAGE_4K = 0x00000200,
+ FSC_VM_PAGE_8K = 0x00000300,
+ FSC_VM_PAGE_64K = 0x00000600,
+ FSC_SH = (1 << 11),
+ FSC_DSB = (1 << 12),
+ FSC_STE = (1 << 13),
+ FSC_FE = (1 << 15),
+};
+
+/*
+ * Host Command Status Register (CSR) bit definitions.
+ */
+enum {
+ CSR_ERR_STS_MASK = 0x0000003f,
+ /*
+ * There are no valued defined as of edit #15.
+ */
+ CSR_RR = (1 << 8),
+ CSR_HRI = (1 << 9),
+ CSR_RP = (1 << 10),
+ CSR_CMD_PARM_SHIFT = 22,
+ CSR_CMD_NOP = 0x00000000,
+ CSR_CMD_SET_RST = 0x1000000,
+ CSR_CMD_CLR_RST = 0x20000000,
+ CSR_CMD_SET_PAUSE = 0x30000000,
+ CSR_CMD_CLR_PAUSE = 0x40000000,
+ CSR_CMD_SET_H2R_INT = 0x50000000,
+ CSR_CMD_CLR_H2R_INT = 0x60000000,
+ CSR_CMD_PAR_EN = 0x70000000,
+ CSR_CMD_SET_BAD_PAR = 0x80000000,
+ CSR_CMD_CLR_BAD_PAR = 0x90000000,
+ CSR_CMD_CLR_R2PCI_INT = 0xa0000000,
+};
+
+/*
+ * Configuration Register (CFG) bit definitions.
+ */
+enum {
+ CFG_LRQ = (1 << 0),
+ CFG_DRQ = (1 << 1),
+ CFG_LR = (1 << 2),
+ CFG_DR = (1 << 3),
+ CFG_LE = (1 << 5),
+ CFG_LCQ = (1 << 6),
+ CFG_DCQ = (1 << 7),
+ CFG_Q_SHIFT = 8,
+ CFG_Q_MASK = 0x7f000000,
+};
+
+/*
+ * Status Register (STS) bit definitions.
+ */
+enum {
+ STS_FE = (1 << 0),
+ STS_PI = (1 << 1),
+ STS_PL0 = (1 << 2),
+ STS_PL1 = (1 << 3),
+ STS_PI0 = (1 << 4),
+ STS_PI1 = (1 << 5),
+ STS_FUNC_ID_MASK = 0x000000c0,
+ STS_FUNC_ID_SHIFT = 6,
+ STS_F0E = (1 << 8),
+ STS_F1E = (1 << 9),
+ STS_F2E = (1 << 10),
+ STS_F3E = (1 << 11),
+ STS_NFE = (1 << 12),
+};
+
+/*
+ * Interrupt Enable Register (INTR_EN) bit definitions.
+ */
+enum {
+ INTR_EN_INTR_MASK = 0x007f0000,
+ INTR_EN_TYPE_MASK = 0x03000000,
+ INTR_EN_TYPE_ENABLE = 0x00000100,
+ INTR_EN_TYPE_DISABLE = 0x00000200,
+ INTR_EN_TYPE_READ = 0x00000300,
+ INTR_EN_IHD = (1 << 13),
+ INTR_EN_IHD_MASK = (INTR_EN_IHD << 16),
+ INTR_EN_EI = (1 << 14),
+ INTR_EN_EN = (1 << 15),
+};
+
+/*
+ * Interrupt Mask Register (INTR_MASK) bit definitions.
+ */
+enum {
+ INTR_MASK_PI = (1 << 0),
+ INTR_MASK_HL0 = (1 << 1),
+ INTR_MASK_LH0 = (1 << 2),
+ INTR_MASK_HL1 = (1 << 3),
+ INTR_MASK_LH1 = (1 << 4),
+ INTR_MASK_SE = (1 << 5),
+ INTR_MASK_LSC = (1 << 6),
+ INTR_MASK_MC = (1 << 7),
+ INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC,
+};
+
+/*
+ * Register (REV_ID) bit definitions.
+ */
+enum {
+ REV_ID_MASK = 0x0000000f,
+ REV_ID_NICROLL_SHIFT = 0,
+ REV_ID_NICREV_SHIFT = 4,
+ REV_ID_XGROLL_SHIFT = 8,
+ REV_ID_XGREV_SHIFT = 12,
+ REV_ID_CHIPREV_SHIFT = 28,
+};
+
+/*
+ * Force ECC Error Register (FRC_ECC_ERR) bit definitions.
+ */
+enum {
+ FRC_ECC_ERR_VW = (1 << 12),
+ FRC_ECC_ERR_VB = (1 << 13),
+ FRC_ECC_ERR_NI = (1 << 14),
+ FRC_ECC_ERR_NO = (1 << 15),
+ FRC_ECC_PFE_SHIFT = 16,
+ FRC_ECC_ERR_DO = (1 << 18),
+ FRC_ECC_P14 = (1 << 19),
+};
+
+/*
+ * Error Status Register (ERR_STS) bit definitions.
+ */
+enum {
+ ERR_STS_NOF = (1 << 0),
+ ERR_STS_NIF = (1 << 1),
+ ERR_STS_DRP = (1 << 2),
+ ERR_STS_XGP = (1 << 3),
+ ERR_STS_FOU = (1 << 4),
+ ERR_STS_FOC = (1 << 5),
+ ERR_STS_FOF = (1 << 6),
+ ERR_STS_FIU = (1 << 7),
+ ERR_STS_FIC = (1 << 8),
+ ERR_STS_FIF = (1 << 9),
+ ERR_STS_MOF = (1 << 10),
+ ERR_STS_TA = (1 << 11),
+ ERR_STS_MA = (1 << 12),
+ ERR_STS_MPE = (1 << 13),
+ ERR_STS_SCE = (1 << 14),
+ ERR_STS_STE = (1 << 15),
+ ERR_STS_FOW = (1 << 16),
+ ERR_STS_UE = (1 << 17),
+ ERR_STS_MCH = (1 << 26),
+ ERR_STS_LOC_SHIFT = 27,
+};
+
+/*
+ * RAM Debug Address Register (RAM_DBG_ADDR) bit definitions.
+ */
+enum {
+ RAM_DBG_ADDR_FW = (1 << 30),
+ RAM_DBG_ADDR_FR = (1 << 31),
+};
+
+/*
+ * Semaphore Register (SEM) bit definitions.
+ */
+enum {
+ /*
+ * Example:
+ * reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT)
+ */
+ SEM_CLEAR = 0,
+ SEM_SET = 1,
+ SEM_FORCE = 3,
+ SEM_XGMAC0_SHIFT = 0,
+ SEM_XGMAC1_SHIFT = 2,
+ SEM_ICB_SHIFT = 4,
+ SEM_MAC_ADDR_SHIFT = 6,
+ SEM_FLASH_SHIFT = 8,
+ SEM_PROBE_SHIFT = 10,
+ SEM_RT_IDX_SHIFT = 12,
+ SEM_PROC_REG_SHIFT = 14,
+ SEM_XGMAC0_MASK = 0x00030000,
+ SEM_XGMAC1_MASK = 0x000c0000,
+ SEM_ICB_MASK = 0x00300000,
+ SEM_MAC_ADDR_MASK = 0x00c00000,
+ SEM_FLASH_MASK = 0x03000000,
+ SEM_PROBE_MASK = 0x0c000000,
+ SEM_RT_IDX_MASK = 0x30000000,
+ SEM_PROC_REG_MASK = 0xc0000000,
+};
+
+/*
+ * 10G MAC Address Register (XGMAC_ADDR) bit definitions.
+ */
+enum {
+ XGMAC_ADDR_RDY = (1 << 31),
+ XGMAC_ADDR_R = (1 << 30),
+ XGMAC_ADDR_XME = (1 << 29),
+
+ /* XGMAC control registers */
+ PAUSE_SRC_LO = 0x00000100,
+ PAUSE_SRC_HI = 0x00000104,
+ GLOBAL_CFG = 0x00000108,
+ GLOBAL_CFG_RESET = (1 << 0),
+ GLOBAL_CFG_JUMBO = (1 << 6),
+ GLOBAL_CFG_TX_STAT_EN = (1 << 10),
+ GLOBAL_CFG_RX_STAT_EN = (1 << 11),
+ TX_CFG = 0x0000010c,
+ TX_CFG_RESET = (1 << 0),
+ TX_CFG_EN = (1 << 1),
+ TX_CFG_PREAM = (1 << 2),
+ RX_CFG = 0x00000110,
+ RX_CFG_RESET = (1 << 0),
+ RX_CFG_EN = (1 << 1),
+ RX_CFG_PREAM = (1 << 2),
+ FLOW_CTL = 0x0000011c,
+ PAUSE_OPCODE = 0x00000120,
+ PAUSE_TIMER = 0x00000124,
+ PAUSE_FRM_DEST_LO = 0x00000128,
+ PAUSE_FRM_DEST_HI = 0x0000012c,
+ MAC_TX_PARAMS = 0x00000134,
+ MAC_TX_PARAMS_JUMBO = (1 << 31),
+ MAC_TX_PARAMS_SIZE_SHIFT = 16,
+ MAC_RX_PARAMS = 0x00000138,
+ MAC_SYS_INT = 0x00000144,
+ MAC_SYS_INT_MASK = 0x00000148,
+ MAC_MGMT_INT = 0x0000014c,
+ MAC_MGMT_IN_MASK = 0x00000150,
+ EXT_ARB_MODE = 0x000001fc,
+
+ /* XGMAC TX statistics registers */
+ TX_PKTS = 0x00000200,
+ TX_BYTES = 0x00000208,
+ TX_MCAST_PKTS = 0x00000210,
+ TX_BCAST_PKTS = 0x00000218,
+ TX_UCAST_PKTS = 0x00000220,
+ TX_CTL_PKTS = 0x00000228,
+ TX_PAUSE_PKTS = 0x00000230,
+ TX_64_PKT = 0x00000238,
+ TX_65_TO_127_PKT = 0x00000240,
+ TX_128_TO_255_PKT = 0x00000248,
+ TX_256_511_PKT = 0x00000250,
+ TX_512_TO_1023_PKT = 0x00000258,
+ TX_1024_TO_1518_PKT = 0x00000260,
+ TX_1519_TO_MAX_PKT = 0x00000268,
+ TX_UNDERSIZE_PKT = 0x00000270,
+ TX_OVERSIZE_PKT = 0x00000278,
+
+ /* XGMAC statistics control registers */
+ RX_HALF_FULL_DET = 0x000002a0,
+ TX_HALF_FULL_DET = 0x000002a4,
+ RX_OVERFLOW_DET = 0x000002a8,
+ TX_OVERFLOW_DET = 0x000002ac,
+ RX_HALF_FULL_MASK = 0x000002b0,
+ TX_HALF_FULL_MASK = 0x000002b4,
+ RX_OVERFLOW_MASK = 0x000002b8,
+ TX_OVERFLOW_MASK = 0x000002bc,
+ STAT_CNT_CTL = 0x000002c0,
+ STAT_CNT_CTL_CLEAR_TX = (1 << 0),
+ STAT_CNT_CTL_CLEAR_RX = (1 << 1),
+ AUX_RX_HALF_FULL_DET = 0x000002d0,
+ AUX_TX_HALF_FULL_DET = 0x000002d4,
+ AUX_RX_OVERFLOW_DET = 0x000002d8,
+ AUX_TX_OVERFLOW_DET = 0x000002dc,
+ AUX_RX_HALF_FULL_MASK = 0x000002f0,
+ AUX_TX_HALF_FULL_MASK = 0x000002f4,
+ AUX_RX_OVERFLOW_MASK = 0x000002f8,
+ AUX_TX_OVERFLOW_MASK = 0x000002fc,
+
+ /* XGMAC RX statistics registers */
+ RX_BYTES = 0x00000300,
+ RX_BYTES_OK = 0x00000308,
+ RX_PKTS = 0x00000310,
+ RX_PKTS_OK = 0x00000318,
+ RX_BCAST_PKTS = 0x00000320,
+ RX_MCAST_PKTS = 0x00000328,
+ RX_UCAST_PKTS = 0x00000330,
+ RX_UNDERSIZE_PKTS = 0x00000338,
+ RX_OVERSIZE_PKTS = 0x00000340,
+ RX_JABBER_PKTS = 0x00000348,
+ RX_UNDERSIZE_FCERR_PKTS = 0x00000350,
+ RX_DROP_EVENTS = 0x00000358,
+ RX_FCERR_PKTS = 0x00000360,
+ RX_ALIGN_ERR = 0x00000368,
+ RX_SYMBOL_ERR = 0x00000370,
+ RX_MAC_ERR = 0x00000378,
+ RX_CTL_PKTS = 0x00000380,
+ RX_PAUSE_PKTS = 0x00000384,
+ RX_64_PKTS = 0x00000390,
+ RX_65_TO_127_PKTS = 0x00000398,
+ RX_128_255_PKTS = 0x000003a0,
+ RX_256_511_PKTS = 0x000003a8,
+ RX_512_TO_1023_PKTS = 0x000003b0,
+ RX_1024_TO_1518_PKTS = 0x000003b8,
+ RX_1519_TO_MAX_PKTS = 0x000003c0,
+ RX_LEN_ERR_PKTS = 0x000003c8,
+
+ /* XGMAC MDIO control registers */
+ MDIO_TX_DATA = 0x00000400,
+ MDIO_RX_DATA = 0x00000410,
+ MDIO_CMD = 0x00000420,
+ MDIO_PHY_ADDR = 0x00000430,
+ MDIO_PORT = 0x00000440,
+ MDIO_STATUS = 0x00000450,
+
+ /* XGMAC AUX statistics registers */
+};
+
+/*
+ * Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions.
+ */
+enum {
+ ETS_QUEUE_SHIFT = 29,
+ ETS_REF = (1 << 26),
+ ETS_RS = (1 << 27),
+ ETS_P = (1 << 28),
+ ETS_FC_COS_SHIFT = 23,
+};
+
+/*
+ * Flash Address Register (FLASH_ADDR) bit definitions.
+ */
+enum {
+ FLASH_ADDR_RDY = (1 << 31),
+ FLASH_ADDR_R = (1 << 30),
+ FLASH_ADDR_ERR = (1 << 29),
+};
+
+/*
+ * Stop CQ Processing Register (CQ_STOP) bit definitions.
+ */
+enum {
+ CQ_STOP_QUEUE_MASK = (0x007f0000),
+ CQ_STOP_TYPE_MASK = (0x03000000),
+ CQ_STOP_TYPE_START = 0x00000100,
+ CQ_STOP_TYPE_STOP = 0x00000200,
+ CQ_STOP_TYPE_READ = 0x00000300,
+ CQ_STOP_EN = (1 << 15),
+};
+
+/*
+ * MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions.
+ */
+enum {
+ MAC_ADDR_IDX_SHIFT = 4,
+ MAC_ADDR_TYPE_SHIFT = 16,
+ MAC_ADDR_TYPE_MASK = 0x000f0000,
+ MAC_ADDR_TYPE_CAM_MAC = 0x00000000,
+ MAC_ADDR_TYPE_MULTI_MAC = 0x00010000,
+ MAC_ADDR_TYPE_VLAN = 0x00020000,
+ MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000,
+ MAC_ADDR_TYPE_FC_MAC = 0x00040000,
+ MAC_ADDR_TYPE_MGMT_MAC = 0x00050000,
+ MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000,
+ MAC_ADDR_TYPE_MGMT_V4 = 0x00070000,
+ MAC_ADDR_TYPE_MGMT_V6 = 0x00080000,
+ MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000,
+ MAC_ADDR_ADR = (1 << 25),
+ MAC_ADDR_RS = (1 << 26),
+ MAC_ADDR_E = (1 << 27),
+ MAC_ADDR_MR = (1 << 30),
+ MAC_ADDR_MW = (1 << 31),
+ MAX_MULTICAST_ENTRIES = 32,
+};
+
+/*
+ * MAC Protocol Address Index Register (SPLT_HDR) bit definitions.
+ */
+enum {
+ SPLT_HDR_EP = (1 << 31),
+};
+
+/*
+ * FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions.
+ */
+enum {
+ FC_RCV_CFG_ECT = (1 << 15),
+ FC_RCV_CFG_DFH = (1 << 20),
+ FC_RCV_CFG_DVF = (1 << 21),
+ FC_RCV_CFG_RCE = (1 << 27),
+ FC_RCV_CFG_RFE = (1 << 28),
+ FC_RCV_CFG_TEE = (1 << 29),
+ FC_RCV_CFG_TCE = (1 << 30),
+ FC_RCV_CFG_TFE = (1 << 31),
+};
+
+/*
+ * NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions.
+ */
+enum {
+ NIC_RCV_CFG_PPE = (1 << 0),
+ NIC_RCV_CFG_VLAN_MASK = 0x00060000,
+ NIC_RCV_CFG_VLAN_ALL = 0x00000000,
+ NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002,
+ NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004,
+ NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006,
+ NIC_RCV_CFG_RV = (1 << 3),
+ NIC_RCV_CFG_DFQ_MASK = (0x7f000000),
+ NIC_RCV_CFG_DFQ_SHIFT = 8,
+ NIC_RCV_CFG_DFQ = 0, /* HARDCODE default queue to 0. */
+};
+
+/*
+ * Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions.
+ */
+enum {
+ MGMT_RCV_CFG_ARP = (1 << 0),
+ MGMT_RCV_CFG_DHC = (1 << 1),
+ MGMT_RCV_CFG_DHS = (1 << 2),
+ MGMT_RCV_CFG_NP = (1 << 3),
+ MGMT_RCV_CFG_I6N = (1 << 4),
+ MGMT_RCV_CFG_I6R = (1 << 5),
+ MGMT_RCV_CFG_DH6 = (1 << 6),
+ MGMT_RCV_CFG_UD1 = (1 << 7),
+ MGMT_RCV_CFG_UD0 = (1 << 8),
+ MGMT_RCV_CFG_BCT = (1 << 9),
+ MGMT_RCV_CFG_MCT = (1 << 10),
+ MGMT_RCV_CFG_DM = (1 << 11),
+ MGMT_RCV_CFG_RM = (1 << 12),
+ MGMT_RCV_CFG_STL = (1 << 13),
+ MGMT_RCV_CFG_VLAN_MASK = 0xc0000000,
+ MGMT_RCV_CFG_VLAN_ALL = 0x00000000,
+ MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000,
+ MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000,
+ MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000,
+};
+
+/*
+ * Routing Index Register (RT_IDX) bit definitions.
+ */
+enum {
+ RT_IDX_IDX_SHIFT = 8,
+ RT_IDX_TYPE_MASK = 0x000f0000,
+ RT_IDX_TYPE_RT = 0x00000000,
+ RT_IDX_TYPE_RT_INV = 0x00010000,
+ RT_IDX_TYPE_NICQ = 0x00020000,
+ RT_IDX_TYPE_NICQ_INV = 0x00030000,
+ RT_IDX_DST_MASK = 0x00700000,
+ RT_IDX_DST_RSS = 0x00000000,
+ RT_IDX_DST_CAM_Q = 0x00100000,
+ RT_IDX_DST_COS_Q = 0x00200000,
+ RT_IDX_DST_DFLT_Q = 0x00300000,
+ RT_IDX_DST_DEST_Q = 0x00400000,
+ RT_IDX_RS = (1 << 26),
+ RT_IDX_E = (1 << 27),
+ RT_IDX_MR = (1 << 30),
+ RT_IDX_MW = (1 << 31),
+
+ /* Nic Queue format - type 2 bits */
+ RT_IDX_BCAST = (1 << 0),
+ RT_IDX_MCAST = (1 << 1),
+ RT_IDX_MCAST_MATCH = (1 << 2),
+ RT_IDX_MCAST_REG_MATCH = (1 << 3),
+ RT_IDX_MCAST_HASH_MATCH = (1 << 4),
+ RT_IDX_FC_MACH = (1 << 5),
+ RT_IDX_ETH_FCOE = (1 << 6),
+ RT_IDX_CAM_HIT = (1 << 7),
+ RT_IDX_CAM_BIT0 = (1 << 8),
+ RT_IDX_CAM_BIT1 = (1 << 9),
+ RT_IDX_VLAN_TAG = (1 << 10),
+ RT_IDX_VLAN_MATCH = (1 << 11),
+ RT_IDX_VLAN_FILTER = (1 << 12),
+ RT_IDX_ETH_SKIP1 = (1 << 13),
+ RT_IDX_ETH_SKIP2 = (1 << 14),
+ RT_IDX_BCAST_MCAST_MATCH = (1 << 15),
+ RT_IDX_802_3 = (1 << 16),
+ RT_IDX_LLDP = (1 << 17),
+ RT_IDX_UNUSED018 = (1 << 18),
+ RT_IDX_UNUSED019 = (1 << 19),
+ RT_IDX_UNUSED20 = (1 << 20),
+ RT_IDX_UNUSED21 = (1 << 21),
+ RT_IDX_ERR = (1 << 22),
+ RT_IDX_VALID = (1 << 23),
+ RT_IDX_TU_CSUM_ERR = (1 << 24),
+ RT_IDX_IP_CSUM_ERR = (1 << 25),
+ RT_IDX_MAC_ERR = (1 << 26),
+ RT_IDX_RSS_TCP6 = (1 << 27),
+ RT_IDX_RSS_TCP4 = (1 << 28),
+ RT_IDX_RSS_IPV6 = (1 << 29),
+ RT_IDX_RSS_IPV4 = (1 << 30),
+ RT_IDX_RSS_MATCH = (1 << 31),
+
+ /* Hierarchy for the NIC Queue Mask */
+ RT_IDX_ALL_ERR_SLOT = 0,
+ RT_IDX_MAC_ERR_SLOT = 0,
+ RT_IDX_IP_CSUM_ERR_SLOT = 1,
+ RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2,
+ RT_IDX_BCAST_SLOT = 3,
+ RT_IDX_MCAST_MATCH_SLOT = 4,
+ RT_IDX_ALLMULTI_SLOT = 5,
+ RT_IDX_UNUSED6_SLOT = 6,
+ RT_IDX_UNUSED7_SLOT = 7,
+ RT_IDX_RSS_MATCH_SLOT = 8,
+ RT_IDX_RSS_IPV4_SLOT = 8,
+ RT_IDX_RSS_IPV6_SLOT = 9,
+ RT_IDX_RSS_TCP4_SLOT = 10,
+ RT_IDX_RSS_TCP6_SLOT = 11,
+ RT_IDX_CAM_HIT_SLOT = 12,
+ RT_IDX_UNUSED013 = 13,
+ RT_IDX_UNUSED014 = 14,
+ RT_IDX_PROMISCUOUS_SLOT = 15,
+ RT_IDX_MAX_SLOTS = 16,
+};
+
+/*
+ * Control Register Set Map
+ */
+enum {
+ PROC_ADDR = 0, /* Use semaphore */
+ PROC_DATA = 0x04, /* Use semaphore */
+ SYS = 0x08,
+ RST_FO = 0x0c,
+ FSC = 0x10,
+ CSR = 0x14,
+ LED = 0x18,
+ ICB_RID = 0x1c, /* Use semaphore */
+ ICB_L = 0x20, /* Use semaphore */
+ ICB_H = 0x24, /* Use semaphore */
+ CFG = 0x28,
+ BIOS_ADDR = 0x2c,
+ STS = 0x30,
+ INTR_EN = 0x34,
+ INTR_MASK = 0x38,
+ ISR1 = 0x3c,
+ ISR2 = 0x40,
+ ISR3 = 0x44,
+ ISR4 = 0x48,
+ REV_ID = 0x4c,
+ FRC_ECC_ERR = 0x50,
+ ERR_STS = 0x54,
+ RAM_DBG_ADDR = 0x58,
+ RAM_DBG_DATA = 0x5c,
+ ECC_ERR_CNT = 0x60,
+ SEM = 0x64,
+ GPIO_1 = 0x68, /* Use semaphore */
+ GPIO_2 = 0x6c, /* Use semaphore */
+ GPIO_3 = 0x70, /* Use semaphore */
+ RSVD2 = 0x74,
+ XGMAC_ADDR = 0x78, /* Use semaphore */
+ XGMAC_DATA = 0x7c, /* Use semaphore */
+ NIC_ETS = 0x80,
+ CNA_ETS = 0x84,
+ FLASH_ADDR = 0x88, /* Use semaphore */
+ FLASH_DATA = 0x8c, /* Use semaphore */
+ CQ_STOP = 0x90,
+ PAGE_TBL_RID = 0x94,
+ WQ_PAGE_TBL_LO = 0x98,
+ WQ_PAGE_TBL_HI = 0x9c,
+ CQ_PAGE_TBL_LO = 0xa0,
+ CQ_PAGE_TBL_HI = 0xa4,
+ MAC_ADDR_IDX = 0xa8, /* Use semaphore */
+ MAC_ADDR_DATA = 0xac, /* Use semaphore */
+ COS_DFLT_CQ1 = 0xb0,
+ COS_DFLT_CQ2 = 0xb4,
+ ETYPE_SKIP1 = 0xb8,
+ ETYPE_SKIP2 = 0xbc,
+ SPLT_HDR = 0xc0,
+ FC_PAUSE_THRES = 0xc4,
+ NIC_PAUSE_THRES = 0xc8,
+ FC_ETHERTYPE = 0xcc,
+ FC_RCV_CFG = 0xd0,
+ NIC_RCV_CFG = 0xd4,
+ FC_COS_TAGS = 0xd8,
+ NIC_COS_TAGS = 0xdc,
+ MGMT_RCV_CFG = 0xe0,
+ RT_IDX = 0xe4,
+ RT_DATA = 0xe8,
+ RSVD7 = 0xec,
+ XG_SERDES_ADDR = 0xf0,
+ XG_SERDES_DATA = 0xf4,
+ PRB_MX_ADDR = 0xf8, /* Use semaphore */
+ PRB_MX_DATA = 0xfc, /* Use semaphore */
+};
+
+/*
+ * CAM output format.
+ */
+enum {
+ CAM_OUT_ROUTE_FC = 0,
+ CAM_OUT_ROUTE_NIC = 1,
+ CAM_OUT_FUNC_SHIFT = 2,
+ CAM_OUT_RV = (1 << 4),
+ CAM_OUT_SH = (1 << 15),
+ CAM_OUT_CQ_ID_SHIFT = 5,
+};
+
+/*
+ * Mailbox definitions
+ */
+enum {
+ /* Asynchronous Event Notifications */
+ AEN_SYS_ERR = 0x00008002,
+ AEN_LINK_UP = 0x00008011,
+ AEN_LINK_DOWN = 0x00008012,
+ AEN_IDC_CMPLT = 0x00008100,
+ AEN_IDC_REQ = 0x00008101,
+ AEN_FW_INIT_DONE = 0x00008400,
+ AEN_FW_INIT_FAIL = 0x00008401,
+
+ /* Mailbox Command Opcodes. */
+ MB_CMD_NOP = 0x00000000,
+ MB_CMD_EX_FW = 0x00000002,
+ MB_CMD_MB_TEST = 0x00000006,
+ MB_CMD_CSUM_TEST = 0x00000007, /* Verify Checksum */
+ MB_CMD_ABOUT_FW = 0x00000008,
+ MB_CMD_LOAD_RISC_RAM = 0x0000000b,
+ MB_CMD_DUMP_RISC_RAM = 0x0000000c,
+ MB_CMD_WRITE_RAM = 0x0000000d,
+ MB_CMD_READ_RAM = 0x0000000f,
+ MB_CMD_STOP_FW = 0x00000014,
+ MB_CMD_MAKE_SYS_ERR = 0x0000002a,
+ MB_CMD_INIT_FW = 0x00000060,
+ MB_CMD_GET_INIT_CB = 0x00000061,
+ MB_CMD_GET_FW_STATE = 0x00000069,
+ MB_CMD_IDC_REQ = 0x00000100, /* Inter-Driver Communication */
+ MB_CMD_IDC_ACK = 0x00000101, /* Inter-Driver Communication */
+ MB_CMD_SET_WOL_MODE = 0x00000110, /* Wake On Lan */
+ MB_WOL_DISABLE = 0x00000000,
+ MB_WOL_MAGIC_PKT = 0x00000001,
+ MB_WOL_FLTR = 0x00000002,
+ MB_WOL_UCAST = 0x00000004,
+ MB_WOL_MCAST = 0x00000008,
+ MB_WOL_BCAST = 0x00000010,
+ MB_WOL_LINK_UP = 0x00000020,
+ MB_WOL_LINK_DOWN = 0x00000040,
+ MB_CMD_SET_WOL_FLTR = 0x00000111, /* Wake On Lan Filter */
+ MB_CMD_CLEAR_WOL_FLTR = 0x00000112, /* Wake On Lan Filter */
+ MB_CMD_SET_WOL_MAGIC = 0x00000113, /* Wake On Lan Magic Packet */
+ MB_CMD_CLEAR_WOL_MAGIC = 0x00000114, /* Wake On Lan Magic Packet */
+ MB_CMD_PORT_RESET = 0x00000120,
+ MB_CMD_SET_PORT_CFG = 0x00000122,
+ MB_CMD_GET_PORT_CFG = 0x00000123,
+ MB_CMD_SET_ASIC_VOLTS = 0x00000130,
+ MB_CMD_GET_SNS_DATA = 0x00000131, /* Temp and Volt Sense data. */
+
+ /* Mailbox Command Status. */
+ MB_CMD_STS_GOOD = 0x00004000, /* Success. */
+ MB_CMD_STS_INTRMDT = 0x00001000, /* Intermediate Complete. */
+ MB_CMD_STS_ERR = 0x00004005, /* Error. */
+};
+
+struct mbox_params {
+ u32 mbox_in[MAILBOX_COUNT];
+ u32 mbox_out[MAILBOX_COUNT];
+ int in_count;
+ int out_count;
+};
+
+struct flash_params {
+ u8 dev_id_str[4];
+ u16 size;
+ u16 csum;
+ u16 ver;
+ u16 sub_dev_id;
+ u8 mac_addr[6];
+ u16 res;
+};
+
+
+/*
+ * doorbell space for the rx ring context
+ */
+struct rx_doorbell_context {
+ u32 cnsmr_idx; /* 0x00 */
+ u32 valid; /* 0x04 */
+ u32 reserved[4]; /* 0x08-0x14 */
+ u32 lbq_prod_idx; /* 0x18 */
+ u32 sbq_prod_idx; /* 0x1c */
+};
+
+/*
+ * doorbell space for the tx ring context
+ */
+struct tx_doorbell_context {
+ u32 prod_idx; /* 0x00 */
+ u32 valid; /* 0x04 */
+ u32 reserved[4]; /* 0x08-0x14 */
+ u32 lbq_prod_idx; /* 0x18 */
+ u32 sbq_prod_idx; /* 0x1c */
+};
+
+/* DATA STRUCTURES SHARED WITH HARDWARE. */
+
+struct bq_element {
+ u32 addr_lo;
+#define BQ_END 0x00000001
+#define BQ_CONT 0x00000002
+#define BQ_MASK 0x00000003
+ u32 addr_hi;
+} __attribute((packed));
+
+struct tx_buf_desc {
+ __le64 addr;
+ __le32 len;
+#define TX_DESC_LEN_MASK 0x000fffff
+#define TX_DESC_C 0x40000000
+#define TX_DESC_E 0x80000000
+} __attribute((packed));
+
+/*
+ * IOCB Definitions...
+ */
+
+#define OPCODE_OB_MAC_IOCB 0x01
+#define OPCODE_OB_MAC_TSO_IOCB 0x02
+#define OPCODE_IB_MAC_IOCB 0x20
+#define OPCODE_IB_MPI_IOCB 0x21
+#define OPCODE_IB_AE_IOCB 0x3f
+
+struct ob_mac_iocb_req {
+ u8 opcode;
+ u8 flags1;
+#define OB_MAC_IOCB_REQ_OI 0x01
+#define OB_MAC_IOCB_REQ_I 0x02
+#define OB_MAC_IOCB_REQ_D 0x08
+#define OB_MAC_IOCB_REQ_F 0x10
+ u8 flags2;
+ u8 flags3;
+#define OB_MAC_IOCB_DFP 0x02
+#define OB_MAC_IOCB_V 0x04
+ __le32 reserved1[2];
+ __le16 frame_len;
+#define OB_MAC_IOCB_LEN_MASK 0x3ffff
+ __le16 reserved2;
+ __le32 tid;
+ __le32 txq_idx;
+ __le32 reserved3;
+ __le16 vlan_tci;
+ __le16 reserved4;
+ struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
+} __attribute((packed));
+
+struct ob_mac_iocb_rsp {
+ u8 opcode; /* */
+ u8 flags1; /* */
+#define OB_MAC_IOCB_RSP_OI 0x01 /* */
+#define OB_MAC_IOCB_RSP_I 0x02 /* */
+#define OB_MAC_IOCB_RSP_E 0x08 /* */
+#define OB_MAC_IOCB_RSP_S 0x10 /* too Short */
+#define OB_MAC_IOCB_RSP_L 0x20 /* too Large */
+#define OB_MAC_IOCB_RSP_P 0x40 /* Padded */
+ u8 flags2; /* */
+ u8 flags3; /* */
+#define OB_MAC_IOCB_RSP_B 0x80 /* */
+ __le32 tid;
+ __le32 txq_idx;
+ __le32 reserved[13];
+} __attribute((packed));
+
+struct ob_mac_tso_iocb_req {
+ u8 opcode;
+ u8 flags1;
+#define OB_MAC_TSO_IOCB_OI 0x01
+#define OB_MAC_TSO_IOCB_I 0x02
+#define OB_MAC_TSO_IOCB_D 0x08
+#define OB_MAC_TSO_IOCB_IP4 0x40
+#define OB_MAC_TSO_IOCB_IP6 0x80
+ u8 flags2;
+#define OB_MAC_TSO_IOCB_LSO 0x20
+#define OB_MAC_TSO_IOCB_UC 0x40
+#define OB_MAC_TSO_IOCB_TC 0x80
+ u8 flags3;
+#define OB_MAC_TSO_IOCB_IC 0x01
+#define OB_MAC_TSO_IOCB_DFP 0x02
+#define OB_MAC_TSO_IOCB_V 0x04
+ __le32 reserved1[2];
+ __le32 frame_len;
+ __le32 tid;
+ __le32 txq_idx;
+ __le16 total_hdrs_len;
+ __le16 net_trans_offset;
+#define OB_MAC_TRANSPORT_HDR_SHIFT 6
+ __le16 vlan_tci;
+ __le16 mss;
+ struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
+} __attribute((packed));
+
+struct ob_mac_tso_iocb_rsp {
+ u8 opcode;
+ u8 flags1;
+#define OB_MAC_TSO_IOCB_RSP_OI 0x01
+#define OB_MAC_TSO_IOCB_RSP_I 0x02
+#define OB_MAC_TSO_IOCB_RSP_E 0x08
+#define OB_MAC_TSO_IOCB_RSP_S 0x10
+#define OB_MAC_TSO_IOCB_RSP_L 0x20
+#define OB_MAC_TSO_IOCB_RSP_P 0x40
+ u8 flags2; /* */
+ u8 flags3; /* */
+#define OB_MAC_TSO_IOCB_RSP_B 0x8000
+ __le32 tid;
+ __le32 txq_idx;
+ __le32 reserved2[13];
+} __attribute((packed));
+
+struct ib_mac_iocb_rsp {
+ u8 opcode; /* 0x20 */
+ u8 flags1;
+#define IB_MAC_IOCB_RSP_OI 0x01 /* Overide intr delay */
+#define IB_MAC_IOCB_RSP_I 0x02 /* Disble Intr Generation */
+#define IB_MAC_IOCB_RSP_TE 0x04 /* Checksum error */
+#define IB_MAC_IOCB_RSP_NU 0x08 /* No checksum rcvd */
+#define IB_MAC_IOCB_RSP_IE 0x10 /* IPv4 checksum error */
+#define IB_MAC_IOCB_RSP_M_MASK 0x60 /* Multicast info */
+#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* Not mcast frame */
+#define IB_MAC_IOCB_RSP_M_HASH 0x20 /* HASH mcast frame */
+#define IB_MAC_IOCB_RSP_M_REG 0x40 /* Registered mcast frame */
+#define IB_MAC_IOCB_RSP_M_PROM 0x60 /* Promiscuous mcast frame */
+#define IB_MAC_IOCB_RSP_B 0x80 /* Broadcast frame */
+ u8 flags2;
+#define IB_MAC_IOCB_RSP_P 0x01 /* Promiscuous frame */
+#define IB_MAC_IOCB_RSP_V 0x02 /* Vlan tag present */
+#define IB_MAC_IOCB_RSP_ERR_MASK 0x1c /* */
+#define IB_MAC_IOCB_RSP_ERR_CODE_ERR 0x04
+#define IB_MAC_IOCB_RSP_ERR_OVERSIZE 0x08
+#define IB_MAC_IOCB_RSP_ERR_UNDERSIZE 0x10
+#define IB_MAC_IOCB_RSP_ERR_PREAMBLE 0x14
+#define IB_MAC_IOCB_RSP_ERR_FRAME_LEN 0x18
+#define IB_MAC_IOCB_RSP_ERR_CRC 0x1c
+#define IB_MAC_IOCB_RSP_U 0x20 /* UDP packet */
+#define IB_MAC_IOCB_RSP_T 0x40 /* TCP packet */
+#define IB_MAC_IOCB_RSP_FO 0x80 /* Failover port */
+ u8 flags3;
+#define IB_MAC_IOCB_RSP_RSS_MASK 0x07 /* RSS mask */
+#define IB_MAC_IOCB_RSP_M_NONE 0x00 /* No RSS match */
+#define IB_MAC_IOCB_RSP_M_IPV4 0x04 /* IPv4 RSS match */
+#define IB_MAC_IOCB_RSP_M_IPV6 0x02 /* IPv6 RSS match */
+#define IB_MAC_IOCB_RSP_M_TCP_V4 0x05 /* TCP with IPv4 */
+#define IB_MAC_IOCB_RSP_M_TCP_V6 0x03 /* TCP with IPv6 */
+#define IB_MAC_IOCB_RSP_V4 0x08 /* IPV4 */
+#define IB_MAC_IOCB_RSP_V6 0x10 /* IPV6 */
+#define IB_MAC_IOCB_RSP_IH 0x20 /* Split after IP header */
+#define IB_MAC_IOCB_RSP_DS 0x40 /* data is in small buffer */
+#define IB_MAC_IOCB_RSP_DL 0x80 /* data is in large buffer */
+ __le32 data_len; /* */
+ __le32 data_addr_lo; /* */
+ __le32 data_addr_hi; /* */
+ __le32 rss; /* */
+ __le16 vlan_id; /* 12 bits */
+#define IB_MAC_IOCB_RSP_C 0x1000 /* VLAN CFI bit */
+#define IB_MAC_IOCB_RSP_COS_SHIFT 12 /* class of service value */
+
+ __le16 reserved1;
+ __le32 reserved2[6];
+ __le32 flags4;
+#define IB_MAC_IOCB_RSP_HV 0x20000000 /* */
+#define IB_MAC_IOCB_RSP_HS 0x40000000 /* */
+#define IB_MAC_IOCB_RSP_HL 0x80000000 /* */
+ __le32 hdr_len; /* */
+ __le32 hdr_addr_lo; /* */
+ __le32 hdr_addr_hi; /* */
+} __attribute((packed));
+
+struct ib_ae_iocb_rsp {
+ u8 opcode;
+ u8 flags1;
+#define IB_AE_IOCB_RSP_OI 0x01
+#define IB_AE_IOCB_RSP_I 0x02
+ u8 event;
+#define LINK_UP_EVENT 0x00
+#define LINK_DOWN_EVENT 0x01
+#define CAM_LOOKUP_ERR_EVENT 0x06
+#define SOFT_ECC_ERROR_EVENT 0x07
+#define MGMT_ERR_EVENT 0x08
+#define TEN_GIG_MAC_EVENT 0x09
+#define GPI0_H2L_EVENT 0x10
+#define GPI0_L2H_EVENT 0x20
+#define GPI1_H2L_EVENT 0x11
+#define GPI1_L2H_EVENT 0x21
+#define PCI_ERR_ANON_BUF_RD 0x40
+ u8 q_id;
+ __le32 reserved[15];
+} __attribute((packed));
+
+/*
+ * These three structures are for generic
+ * handling of ib and ob iocbs.
+ */
+struct ql_net_rsp_iocb {
+ u8 opcode;
+ u8 flags0;
+ __le16 length;
+ __le32 tid;
+ __le32 reserved[14];
+} __attribute((packed));
+
+struct net_req_iocb {
+ u8 opcode;
+ u8 flags0;
+ __le16 flags1;
+ __le32 tid;
+ __le32 reserved1[30];
+} __attribute((packed));
+
+/*
+ * tx ring initialization control block for chip.
+ * It is defined as:
+ * "Work Queue Initialization Control Block"
+ */
+struct wqicb {
+ __le16 len;
+#define Q_LEN_V (1 << 4)
+#define Q_LEN_CPP_CONT 0x0000
+#define Q_LEN_CPP_16 0x0001
+#define Q_LEN_CPP_32 0x0002
+#define Q_LEN_CPP_64 0x0003
+ __le16 flags;
+#define Q_PRI_SHIFT 1
+#define Q_FLAGS_LC 0x1000
+#define Q_FLAGS_LB 0x2000
+#define Q_FLAGS_LI 0x4000
+#define Q_FLAGS_LO 0x8000
+ __le16 cq_id_rss;
+#define Q_CQ_ID_RSS_RV 0x8000
+ __le16 rid;
+ __le32 addr_lo;
+ __le32 addr_hi;
+ __le32 cnsmr_idx_addr_lo;
+ __le32 cnsmr_idx_addr_hi;
+} __attribute((packed));
+
+/*
+ * rx ring initialization control block for chip.
+ * It is defined as:
+ * "Completion Queue Initialization Control Block"
+ */
+struct cqicb {
+ u8 msix_vect;
+ u8 reserved1;
+ u8 reserved2;
+ u8 flags;
+#define FLAGS_LV 0x08
+#define FLAGS_LS 0x10
+#define FLAGS_LL 0x20
+#define FLAGS_LI 0x40
+#define FLAGS_LC 0x80
+ __le16 len;
+#define LEN_V (1 << 4)
+#define LEN_CPP_CONT 0x0000
+#define LEN_CPP_32 0x0001
+#define LEN_CPP_64 0x0002
+#define LEN_CPP_128 0x0003
+ __le16 rid;
+ __le32 addr_lo;
+ __le32 addr_hi;
+ __le32 prod_idx_addr_lo;
+ __le32 prod_idx_addr_hi;
+ __le16 pkt_delay;
+ __le16 irq_delay;
+ __le32 lbq_addr_lo;
+ __le32 lbq_addr_hi;
+ __le16 lbq_buf_size;
+ __le16 lbq_len; /* entry count */
+ __le32 sbq_addr_lo;
+ __le32 sbq_addr_hi;
+ __le16 sbq_buf_size;
+ __le16 sbq_len; /* entry count */
+} __attribute((packed));
+
+struct ricb {
+ u8 base_cq;
+#define RSS_L4K 0x80
+ u8 flags;
+#define RSS_L6K 0x01
+#define RSS_LI 0x02
+#define RSS_LB 0x04
+#define RSS_LM 0x08
+#define RSS_RI4 0x10
+#define RSS_RT4 0x20
+#define RSS_RI6 0x40
+#define RSS_RT6 0x80
+ __le16 mask;
+ __le32 hash_cq_id[256];
+ __le32 ipv6_hash_key[10];
+ __le32 ipv4_hash_key[4];
+} __attribute((packed));
+
+/* SOFTWARE/DRIVER DATA STRUCTURES. */
+
+struct oal {
+ struct tx_buf_desc oal[TX_DESC_PER_OAL];
+};
+
+struct map_list {
+ DECLARE_PCI_UNMAP_ADDR(mapaddr);
+ DECLARE_PCI_UNMAP_LEN(maplen);
+};
+
+struct tx_ring_desc {
+ struct sk_buff *skb;
+ struct ob_mac_iocb_req *queue_entry;
+ int index;
+ struct oal oal;
+ struct map_list map[MAX_SKB_FRAGS + 1];
+ int map_cnt;
+ struct tx_ring_desc *next;
+};
+
+struct bq_desc {
+ union {
+ struct page *lbq_page;
+ struct sk_buff *skb;
+ } p;
+ struct bq_element *bq;
+ int index;
+ DECLARE_PCI_UNMAP_ADDR(mapaddr);
+ DECLARE_PCI_UNMAP_LEN(maplen);
+};
+
+#define QL_TXQ_IDX(qdev, skb) (smp_processor_id()%(qdev->tx_ring_count))
+
+struct tx_ring {
+ /*
+ * queue info.
+ */
+ struct wqicb wqicb; /* structure used to inform chip of new queue */
+ void *wq_base; /* pci_alloc:virtual addr for tx */
+ dma_addr_t wq_base_dma; /* pci_alloc:dma addr for tx */
+ u32 *cnsmr_idx_sh_reg; /* shadow copy of consumer idx */
+ dma_addr_t cnsmr_idx_sh_reg_dma; /* dma-shadow copy of consumer */
+ u32 wq_size; /* size in bytes of queue area */
+ u32 wq_len; /* number of entries in queue */
+ void __iomem *prod_idx_db_reg; /* doorbell area index reg at offset 0x00 */
+ void __iomem *valid_db_reg; /* doorbell area valid reg at offset 0x04 */
+ u16 prod_idx; /* current value for prod idx */
+ u16 cq_id; /* completion (rx) queue for tx completions */
+ u8 wq_id; /* queue id for this entry */
+ u8 reserved1[3];
+ struct tx_ring_desc *q; /* descriptor list for the queue */
+ spinlock_t lock;
+ atomic_t tx_count; /* counts down for every outstanding IO */
+ atomic_t queue_stopped; /* Turns queue off when full. */
+ struct delayed_work tx_work;
+ struct ql_adapter *qdev;
+};
+
+/*
+ * Type of inbound queue.
+ */
+enum {
+ DEFAULT_Q = 2, /* Handles slow queue and chip/MPI events. */
+ TX_Q = 3, /* Handles outbound completions. */
+ RX_Q = 4, /* Handles inbound completions. */
+};
+
+struct rx_ring {
+ struct cqicb cqicb; /* The chip's completion queue init control block. */
+
+ /* Completion queue elements. */
+ void *cq_base;
+ dma_addr_t cq_base_dma;
+ u32 cq_size;
+ u32 cq_len;
+ u16 cq_id;
+ u32 *prod_idx_sh_reg; /* Shadowed producer register. */
+ dma_addr_t prod_idx_sh_reg_dma;
+ void __iomem *cnsmr_idx_db_reg; /* PCI doorbell mem area + 0 */
+ u32 cnsmr_idx; /* current sw idx */
+ struct ql_net_rsp_iocb *curr_entry; /* next entry on queue */
+ void __iomem *valid_db_reg; /* PCI doorbell mem area + 0x04 */
+
+ /* Large buffer queue elements. */
+ u32 lbq_len; /* entry count */
+ u32 lbq_size; /* size in bytes of queue */
+ u32 lbq_buf_size;
+ void *lbq_base;
+ dma_addr_t lbq_base_dma;
+ void *lbq_base_indirect;
+ dma_addr_t lbq_base_indirect_dma;
+ struct bq_desc *lbq; /* array of control blocks */
+ void __iomem *lbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x18 */
+ u32 lbq_prod_idx; /* current sw prod idx */
+ u32 lbq_curr_idx; /* next entry we expect */
+ u32 lbq_clean_idx; /* beginning of new descs */
+ u32 lbq_free_cnt; /* free buffer desc cnt */
+
+ /* Small buffer queue elements. */
+ u32 sbq_len; /* entry count */
+ u32 sbq_size; /* size in bytes of queue */
+ u32 sbq_buf_size;
+ void *sbq_base;
+ dma_addr_t sbq_base_dma;
+ void *sbq_base_indirect;
+ dma_addr_t sbq_base_indirect_dma;
+ struct bq_desc *sbq; /* array of control blocks */
+ void __iomem *sbq_prod_idx_db_reg; /* PCI doorbell mem area + 0x1c */
+ u32 sbq_prod_idx; /* current sw prod idx */
+ u32 sbq_curr_idx; /* next entry we expect */
+ u32 sbq_clean_idx; /* beginning of new descs */
+ u32 sbq_free_cnt; /* free buffer desc cnt */
+
+ /* Misc. handler elements. */
+ u32 type; /* Type of queue, tx, rx, or default. */
+ u32 irq; /* Which vector this ring is assigned. */
+ u32 cpu; /* Which CPU this should run on. */
+ char name[IFNAMSIZ + 5];
+ struct napi_struct napi;
+ struct delayed_work rx_work;
+ u8 reserved;
+ struct ql_adapter *qdev;
+};
+
+/*
+ * RSS Initialization Control Block
+ */
+struct hash_id {
+ u8 value[4];
+};
+
+struct nic_stats {
+ /*
+ * These stats come from offset 200h to 278h
+ * in the XGMAC register.
+ */
+ u64 tx_pkts;
+ u64 tx_bytes;
+ u64 tx_mcast_pkts;
+ u64 tx_bcast_pkts;
+ u64 tx_ucast_pkts;
+ u64 tx_ctl_pkts;
+ u64 tx_pause_pkts;
+ u64 tx_64_pkt;
+ u64 tx_65_to_127_pkt;
+ u64 tx_128_to_255_pkt;
+ u64 tx_256_511_pkt;
+ u64 tx_512_to_1023_pkt;
+ u64 tx_1024_to_1518_pkt;
+ u64 tx_1519_to_max_pkt;
+ u64 tx_undersize_pkt;
+ u64 tx_oversize_pkt;
+
+ /*
+ * These stats come from offset 300h to 3C8h
+ * in the XGMAC register.
+ */
+ u64 rx_bytes;
+ u64 rx_bytes_ok;
+ u64 rx_pkts;
+ u64 rx_pkts_ok;
+ u64 rx_bcast_pkts;
+ u64 rx_mcast_pkts;
+ u64 rx_ucast_pkts;
+ u64 rx_undersize_pkts;
+ u64 rx_oversize_pkts;
+ u64 rx_jabber_pkts;
+ u64 rx_undersize_fcerr_pkts;
+ u64 rx_drop_events;
+ u64 rx_fcerr_pkts;
+ u64 rx_align_err;
+ u64 rx_symbol_err;
+ u64 rx_mac_err;
+ u64 rx_ctl_pkts;
+ u64 rx_pause_pkts;
+ u64 rx_64_pkts;
+ u64 rx_65_to_127_pkts;
+ u64 rx_128_255_pkts;
+ u64 rx_256_511_pkts;
+ u64 rx_512_to_1023_pkts;
+ u64 rx_1024_to_1518_pkts;
+ u64 rx_1519_to_max_pkts;
+ u64 rx_len_err_pkts;
+};
+
+/*
+ * intr_context structure is used during initialization
+ * to hook the interrupts. It is also used in a single
+ * irq environment as a context to the ISR.
+ */
+struct intr_context {
+ struct ql_adapter *qdev;
+ u32 intr;
+ u32 hooked;
+ u32 intr_en_mask; /* value/mask used to enable this intr */
+ u32 intr_dis_mask; /* value/mask used to disable this intr */
+ u32 intr_read_mask; /* value/mask used to read this intr */
+ char name[IFNAMSIZ * 2];
+ atomic_t irq_cnt; /* irq_cnt is used in single vector
+ * environment. It's incremented for each
+ * irq handler that is scheduled. When each
+ * handler finishes it decrements irq_cnt and
+ * enables interrupts if it's zero. */
+ irq_handler_t handler;
+};
+
+/* adapter flags definitions. */
+enum {
+ QL_ADAPTER_UP = (1 << 0), /* Adapter has been brought up. */
+ QL_LEGACY_ENABLED = (1 << 3),
+ QL_MSI_ENABLED = (1 << 3),
+ QL_MSIX_ENABLED = (1 << 4),
+ QL_DMA64 = (1 << 5),
+ QL_PROMISCUOUS = (1 << 6),
+ QL_ALLMULTI = (1 << 7),
+};
+
+/* link_status bit definitions */
+enum {
+ LOOPBACK_MASK = 0x00000700,
+ LOOPBACK_PCS = 0x00000100,
+ LOOPBACK_HSS = 0x00000200,
+ LOOPBACK_EXT = 0x00000300,
+ PAUSE_MASK = 0x000000c0,
+ PAUSE_STD = 0x00000040,
+ PAUSE_PRI = 0x00000080,
+ SPEED_MASK = 0x00000038,
+ SPEED_100Mb = 0x00000000,
+ SPEED_1Gb = 0x00000008,
+ SPEED_10Gb = 0x00000010,
+ LINK_TYPE_MASK = 0x00000007,
+ LINK_TYPE_XFI = 0x00000001,
+ LINK_TYPE_XAUI = 0x00000002,
+ LINK_TYPE_XFI_BP = 0x00000003,
+ LINK_TYPE_XAUI_BP = 0x00000004,
+ LINK_TYPE_10GBASET = 0x00000005,
+};
+
+/*
+ * The main Adapter structure definition.
+ * This structure has all fields relevant to the hardware.
+ */
+struct ql_adapter {
+ struct ricb ricb;
+ unsigned long flags;
+ u32 wol;
+
+ struct nic_stats nic_stats;
+
+ struct vlan_group *vlgrp;
+
+ /* PCI Configuration information for this device */
+ struct pci_dev *pdev;
+ struct net_device *ndev; /* Parent NET device */
+
+ /* Hardware information */
+ u32 chip_rev_id;
+ u32 func; /* PCI function for this adapter */
+
+ spinlock_t adapter_lock;
+ spinlock_t hw_lock;
+ spinlock_t stats_lock;
+ spinlock_t legacy_lock; /* used for maintaining legacy intr sync */
+
+ /* PCI Bus Relative Register Addresses */
+ void __iomem *reg_base;
+ void __iomem *doorbell_area;
+ u32 doorbell_area_size;
+
+ u32 msg_enable;
+
+ /* Page for Shadow Registers */
+ void *rx_ring_shadow_reg_area;
+ dma_addr_t rx_ring_shadow_reg_dma;
+ void *tx_ring_shadow_reg_area;
+ dma_addr_t tx_ring_shadow_reg_dma;
+
+ u32 mailbox_in;
+ u32 mailbox_out;
+
+ int tx_ring_size;
+ int rx_ring_size;
+ u32 intr_count;
+ struct msix_entry *msi_x_entry;
+ struct intr_context intr_context[MAX_RX_RINGS];
+
+ int (*legacy_check) (struct ql_adapter *);
+
+ int tx_ring_count; /* One per online CPU. */
+ u32 rss_ring_first_cq_id;/* index of first inbound (rss) rx_ring */
+ u32 rss_ring_count; /* One per online CPU. */
+ /*
+ * rx_ring_count =
+ * one default queue +
+ * (CPU count * outbound completion rx_ring) +
+ * (CPU count * inbound (RSS) completion rx_ring)
+ */
+ int rx_ring_count;
+ int ring_mem_size;
+ void *ring_mem;
+ struct rx_ring *rx_ring;
+ int rx_csum;
+ struct tx_ring *tx_ring;
+ u32 default_rx_queue;
+
+ u16 rx_coalesce_usecs; /* cqicb->int_delay */
+ u16 rx_max_coalesced_frames; /* cqicb->pkt_int_delay */
+ u16 tx_coalesce_usecs; /* cqicb->int_delay */
+ u16 tx_max_coalesced_frames; /* cqicb->pkt_int_delay */
+
+ u32 xg_sem_mask;
+ u32 port_link_up;
+ u32 port_init;
+ u32 link_status;
+
+ struct flash_params flash;
+
+ struct net_device_stats stats;
+ struct workqueue_struct *q_workqueue;
+ struct workqueue_struct *workqueue;
+ struct delayed_work asic_reset_work;
+ struct delayed_work mpi_reset_work;
+ struct delayed_work mpi_work;
+};
+
+/*
+ * Typical Register accessor for memory mapped device.
+ */
+static inline u32 ql_read32(const struct ql_adapter *qdev, int reg)
+{
+ return readl(qdev->reg_base + reg);
+}
+
+/*
+ * Typical Register accessor for memory mapped device.
+ */
+static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val)
+{
+ writel(val, qdev->reg_base + reg);
+}
+
+/*
+ * Doorbell Registers:
+ * Doorbell registers are virtual registers in the PCI memory space.
+ * The space is allocated by the chip during PCI initialization. The
+ * device driver finds the doorbell address in BAR 3 in PCI config space.
+ * The registers are used to control outbound and inbound queues. For
+ * example, the producer index for an outbound queue. Each queue uses
+ * 1 4k chunk of memory. The lower half of the space is for outbound
+ * queues. The upper half is for inbound queues.
+ */
+static inline void ql_write_db_reg(u32 val, void __iomem *addr)
+{
+ writel(val, addr);
+ mmiowb();
+}
+
+/*
+ * Shadow Registers:
+ * Outbound queues have a consumer index that is maintained by the chip.
+ * Inbound queues have a producer index that is maintained by the chip.
+ * For lower overhead, these registers are "shadowed" to host memory
+ * which allows the device driver to track the queue progress without
+ * PCI reads. When an entry is placed on an inbound queue, the chip will
+ * update the relevant index register and then copy the value to the
+ * shadow register in host memory.
+ */
+static inline unsigned int ql_read_sh_reg(const volatile void *addr)
+{
+ return *(volatile unsigned int __force *)addr;
+}
+
+extern char qlge_driver_name[];
+extern const char qlge_driver_version[];
+extern const struct ethtool_ops qlge_ethtool_ops;
+
+extern int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask);
+extern void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask);
+extern int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
+extern int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
+ u32 *value);
+extern int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value);
+extern int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
+ u16 q_id);
+void ql_queue_fw_error(struct ql_adapter *qdev);
+void ql_mpi_work(struct work_struct *work);
+void ql_mpi_reset_work(struct work_struct *work);
+int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit);
+void ql_queue_asic_error(struct ql_adapter *qdev);
+void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr);
+void ql_set_ethtool_ops(struct net_device *ndev);
+int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data);
+
+#if 1
+#define QL_ALL_DUMP
+#define QL_REG_DUMP
+#define QL_DEV_DUMP
+#define QL_CB_DUMP
+/* #define QL_IB_DUMP */
+/* #define QL_OB_DUMP */
+#endif
+
+#ifdef QL_REG_DUMP
+extern void ql_dump_xgmac_control_regs(struct ql_adapter *qdev);
+extern void ql_dump_routing_entries(struct ql_adapter *qdev);
+extern void ql_dump_regs(struct ql_adapter *qdev);
+#define QL_DUMP_REGS(qdev) ql_dump_regs(qdev)
+#define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev)
+#define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev)
+#else
+#define QL_DUMP_REGS(qdev)
+#define QL_DUMP_ROUTE(qdev)
+#define QL_DUMP_XGMAC_CONTROL_REGS(qdev)
+#endif
+
+#ifdef QL_STAT_DUMP
+extern void ql_dump_stat(struct ql_adapter *qdev);
+#define QL_DUMP_STAT(qdev) ql_dump_stat(qdev)
+#else
+#define QL_DUMP_STAT(qdev)
+#endif
+
+#ifdef QL_DEV_DUMP
+extern void ql_dump_qdev(struct ql_adapter *qdev);
+#define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev)
+#else
+#define QL_DUMP_QDEV(qdev)
+#endif
+
+#ifdef QL_CB_DUMP
+extern void ql_dump_wqicb(struct wqicb *wqicb);
+extern void ql_dump_tx_ring(struct tx_ring *tx_ring);
+extern void ql_dump_ricb(struct ricb *ricb);
+extern void ql_dump_cqicb(struct cqicb *cqicb);
+extern void ql_dump_rx_ring(struct rx_ring *rx_ring);
+extern void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id);
+#define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb)
+#define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb)
+#define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring)
+#define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb)
+#define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring)
+#define QL_DUMP_HW_CB(qdev, size, bit, q_id) \
+ ql_dump_hw_cb(qdev, size, bit, q_id)
+#else
+#define QL_DUMP_RICB(ricb)
+#define QL_DUMP_WQICB(wqicb)
+#define QL_DUMP_TX_RING(tx_ring)
+#define QL_DUMP_CQICB(cqicb)
+#define QL_DUMP_RX_RING(rx_ring)
+#define QL_DUMP_HW_CB(qdev, size, bit, q_id)
+#endif
+
+#ifdef QL_OB_DUMP
+extern void ql_dump_tx_desc(struct tx_buf_desc *tbd);
+extern void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb);
+extern void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp);
+#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb) ql_dump_ob_mac_iocb(ob_mac_iocb)
+#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp) ql_dump_ob_mac_rsp(ob_mac_rsp)
+#else
+#define QL_DUMP_OB_MAC_IOCB(ob_mac_iocb)
+#define QL_DUMP_OB_MAC_RSP(ob_mac_rsp)
+#endif
+
+#ifdef QL_IB_DUMP
+extern void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp);
+#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp) ql_dump_ib_mac_rsp(ib_mac_rsp)
+#else
+#define QL_DUMP_IB_MAC_RSP(ib_mac_rsp)
+#endif
+
+#ifdef QL_ALL_DUMP
+extern void ql_dump_all(struct ql_adapter *qdev);
+#define QL_DUMP_ALL(qdev) ql_dump_all(qdev)
+#else
+#define QL_DUMP_ALL(qdev)
+#endif
+
+#endif /* _QLGE_H_ */
diff --git a/drivers/net/qlge/qlge_dbg.c b/drivers/net/qlge/qlge_dbg.c
new file mode 100644
index 00000000000..47df304a02c
--- /dev/null
+++ b/drivers/net/qlge/qlge_dbg.c
@@ -0,0 +1,858 @@
+#include "qlge.h"
+
+#ifdef QL_REG_DUMP
+static void ql_dump_intr_states(struct ql_adapter *qdev)
+{
+ int i;
+ u32 value;
+ for (i = 0; i < qdev->intr_count; i++) {
+ ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
+ value = ql_read32(qdev, INTR_EN);
+ printk(KERN_ERR PFX
+ "%s: Interrupt %d is %s.\n",
+ qdev->ndev->name, i,
+ (value & INTR_EN_EN ? "enabled" : "disabled"));
+ }
+}
+
+void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
+{
+ u32 data;
+ if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
+ printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
+ return;
+ }
+ ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
+ printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
+ printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+ printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, TX_CFG, &data);
+ printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
+ ql_read_xgmac_reg(qdev, RX_CFG, &data);
+ printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
+ ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
+ printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
+ printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
+ printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
+ printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
+ qdev->ndev->name, data);
+ ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
+ printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
+ qdev->ndev->name, data);
+ ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
+ printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
+ printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
+ printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
+ printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
+ qdev->ndev->name, data);
+ ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
+ printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
+ printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
+ qdev->ndev->name, data);
+ ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
+ printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
+ data);
+ ql_sem_unlock(qdev, qdev->xg_sem_mask);
+
+}
+
+static void ql_dump_ets_regs(struct ql_adapter *qdev)
+{
+}
+
+static void ql_dump_cam_entries(struct ql_adapter *qdev)
+{
+ int i;
+ u32 value[3];
+ for (i = 0; i < 4; i++) {
+ if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
+ printk(KERN_ERR PFX
+ "%s: Failed read of mac index register.\n",
+ __func__);
+ return;
+ } else {
+ if (value[0])
+ printk(KERN_ERR PFX
+ "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
+ qdev->ndev->name, i, value[1], value[0],
+ value[2]);
+ }
+ }
+ for (i = 0; i < 32; i++) {
+ if (ql_get_mac_addr_reg
+ (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
+ printk(KERN_ERR PFX
+ "%s: Failed read of mac index register.\n",
+ __func__);
+ return;
+ } else {
+ if (value[0])
+ printk(KERN_ERR PFX
+ "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
+ qdev->ndev->name, i, value[1], value[0]);
+ }
+ }
+}
+
+void ql_dump_routing_entries(struct ql_adapter *qdev)
+{
+ int i;
+ u32 value;
+ for (i = 0; i < 16; i++) {
+ value = 0;
+ if (ql_get_routing_reg(qdev, i, &value)) {
+ printk(KERN_ERR PFX
+ "%s: Failed read of routing index register.\n",
+ __func__);
+ return;
+ } else {
+ if (value)
+ printk(KERN_ERR PFX
+ "%s: Routing Mask %d = 0x%.08x.\n",
+ qdev->ndev->name, i, value);
+ }
+ }
+}
+
+void ql_dump_regs(struct ql_adapter *qdev)
+{
+ printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
+ printk(KERN_ERR PFX "SYS = 0x%x.\n",
+ ql_read32(qdev, SYS));
+ printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
+ ql_read32(qdev, RST_FO));
+ printk(KERN_ERR PFX "FSC = 0x%x.\n",
+ ql_read32(qdev, FSC));
+ printk(KERN_ERR PFX "CSR = 0x%x.\n",
+ ql_read32(qdev, CSR));
+ printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
+ ql_read32(qdev, ICB_RID));
+ printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
+ ql_read32(qdev, ICB_L));
+ printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
+ ql_read32(qdev, ICB_H));
+ printk(KERN_ERR PFX "CFG = 0x%x.\n",
+ ql_read32(qdev, CFG));
+ printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
+ ql_read32(qdev, BIOS_ADDR));
+ printk(KERN_ERR PFX "STS = 0x%x.\n",
+ ql_read32(qdev, STS));
+ printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
+ ql_read32(qdev, INTR_EN));
+ printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
+ ql_read32(qdev, INTR_MASK));
+ printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
+ ql_read32(qdev, ISR1));
+ printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
+ ql_read32(qdev, ISR2));
+ printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
+ ql_read32(qdev, ISR3));
+ printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
+ ql_read32(qdev, ISR4));
+ printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
+ ql_read32(qdev, REV_ID));
+ printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
+ ql_read32(qdev, FRC_ECC_ERR));
+ printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
+ ql_read32(qdev, ERR_STS));
+ printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
+ ql_read32(qdev, RAM_DBG_ADDR));
+ printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
+ ql_read32(qdev, RAM_DBG_DATA));
+ printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
+ ql_read32(qdev, ECC_ERR_CNT));
+ printk(KERN_ERR PFX "SEM = 0x%x.\n",
+ ql_read32(qdev, SEM));
+ printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
+ ql_read32(qdev, GPIO_1));
+ printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
+ ql_read32(qdev, GPIO_2));
+ printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
+ ql_read32(qdev, GPIO_3));
+ printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
+ ql_read32(qdev, XGMAC_ADDR));
+ printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
+ ql_read32(qdev, XGMAC_DATA));
+ printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
+ ql_read32(qdev, NIC_ETS));
+ printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
+ ql_read32(qdev, CNA_ETS));
+ printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
+ ql_read32(qdev, FLASH_ADDR));
+ printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
+ ql_read32(qdev, FLASH_DATA));
+ printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
+ ql_read32(qdev, CQ_STOP));
+ printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
+ ql_read32(qdev, PAGE_TBL_RID));
+ printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
+ ql_read32(qdev, WQ_PAGE_TBL_LO));
+ printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
+ ql_read32(qdev, WQ_PAGE_TBL_HI));
+ printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
+ ql_read32(qdev, CQ_PAGE_TBL_LO));
+ printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
+ ql_read32(qdev, CQ_PAGE_TBL_HI));
+ printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
+ ql_read32(qdev, COS_DFLT_CQ1));
+ printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
+ ql_read32(qdev, COS_DFLT_CQ2));
+ printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
+ ql_read32(qdev, SPLT_HDR));
+ printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
+ ql_read32(qdev, FC_PAUSE_THRES));
+ printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
+ ql_read32(qdev, NIC_PAUSE_THRES));
+ printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
+ ql_read32(qdev, FC_ETHERTYPE));
+ printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
+ ql_read32(qdev, FC_RCV_CFG));
+ printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
+ ql_read32(qdev, NIC_RCV_CFG));
+ printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
+ ql_read32(qdev, FC_COS_TAGS));
+ printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
+ ql_read32(qdev, NIC_COS_TAGS));
+ printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
+ ql_read32(qdev, MGMT_RCV_CFG));
+ printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
+ ql_read32(qdev, XG_SERDES_ADDR));
+ printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
+ ql_read32(qdev, XG_SERDES_DATA));
+ printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
+ ql_read32(qdev, PRB_MX_ADDR));
+ printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
+ ql_read32(qdev, PRB_MX_DATA));
+ ql_dump_intr_states(qdev);
+ ql_dump_xgmac_control_regs(qdev);
+ ql_dump_ets_regs(qdev);
+ ql_dump_cam_entries(qdev);
+ ql_dump_routing_entries(qdev);
+}
+#endif
+
+#ifdef QL_STAT_DUMP
+void ql_dump_stat(struct ql_adapter *qdev)
+{
+ printk(KERN_ERR "%s: Enter.\n", __func__);
+ printk(KERN_ERR "tx_pkts = %ld\n",
+ (unsigned long)qdev->nic_stats.tx_pkts);
+ printk(KERN_ERR "tx_bytes = %ld\n",
+ (unsigned long)qdev->nic_stats.tx_bytes);
+ printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_mcast_pkts);
+ printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_bcast_pkts);
+ printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_ucast_pkts);
+ printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_ctl_pkts);
+ printk(KERN_ERR "tx_pause_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_pause_pkts);
+ printk(KERN_ERR "tx_64_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_64_pkt);
+ printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
+ printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
+ printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_256_511_pkt);
+ printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
+ printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
+ printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
+ printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_undersize_pkt);
+ printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
+ (unsigned long)qdev->nic_stats.tx_oversize_pkt);
+ printk(KERN_ERR "rx_bytes = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_bytes);
+ printk(KERN_ERR "rx_bytes_ok = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_bytes_ok);
+ printk(KERN_ERR "rx_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_pkts);
+ printk(KERN_ERR "rx_pkts_ok = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_pkts_ok);
+ printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_bcast_pkts);
+ printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_mcast_pkts);
+ printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_ucast_pkts);
+ printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_undersize_pkts);
+ printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_oversize_pkts);
+ printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_jabber_pkts);
+ printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
+ printk(KERN_ERR "rx_drop_events = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_drop_events);
+ printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
+ printk(KERN_ERR "rx_align_err = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_align_err);
+ printk(KERN_ERR "rx_symbol_err = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_symbol_err);
+ printk(KERN_ERR "rx_mac_err = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_mac_err);
+ printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_ctl_pkts);
+ printk(KERN_ERR "rx_pause_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_pause_pkts);
+ printk(KERN_ERR "rx_64_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_64_pkts);
+ printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
+ printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_128_255_pkts);
+ printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_256_511_pkts);
+ printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
+ printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
+ printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
+ printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
+ (unsigned long)qdev->nic_stats.rx_len_err_pkts);
+};
+#endif
+
+#ifdef QL_DEV_DUMP
+void ql_dump_qdev(struct ql_adapter *qdev)
+{
+ int i;
+ printk(KERN_ERR PFX "qdev->flags = %lx.\n",
+ qdev->flags);
+ printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
+ qdev->vlgrp);
+ printk(KERN_ERR PFX "qdev->pdev = %p.\n",
+ qdev->pdev);
+ printk(KERN_ERR PFX "qdev->ndev = %p.\n",
+ qdev->ndev);
+ printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
+ qdev->chip_rev_id);
+ printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
+ qdev->reg_base);
+ printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
+ qdev->doorbell_area);
+ printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
+ qdev->doorbell_area_size);
+ printk(KERN_ERR PFX "msg_enable = %x.\n",
+ qdev->msg_enable);
+ printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
+ qdev->rx_ring_shadow_reg_area);
+ printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
+ (unsigned long long) qdev->rx_ring_shadow_reg_dma);
+ printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
+ qdev->tx_ring_shadow_reg_area);
+ printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
+ (unsigned long long) qdev->tx_ring_shadow_reg_dma);
+ printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
+ qdev->intr_count);
+ if (qdev->msi_x_entry)
+ for (i = 0; i < qdev->intr_count; i++) {
+ printk(KERN_ERR PFX
+ "msi_x_entry.[%d]vector = %d.\n", i,
+ qdev->msi_x_entry[i].vector);
+ printk(KERN_ERR PFX
+ "msi_x_entry.[%d]entry = %d.\n", i,
+ qdev->msi_x_entry[i].entry);
+ }
+ for (i = 0; i < qdev->intr_count; i++) {
+ printk(KERN_ERR PFX
+ "intr_context[%d].qdev = %p.\n", i,
+ qdev->intr_context[i].qdev);
+ printk(KERN_ERR PFX
+ "intr_context[%d].intr = %d.\n", i,
+ qdev->intr_context[i].intr);
+ printk(KERN_ERR PFX
+ "intr_context[%d].hooked = %d.\n", i,
+ qdev->intr_context[i].hooked);
+ printk(KERN_ERR PFX
+ "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
+ qdev->intr_context[i].intr_en_mask);
+ printk(KERN_ERR PFX
+ "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
+ qdev->intr_context[i].intr_dis_mask);
+ printk(KERN_ERR PFX
+ "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
+ qdev->intr_context[i].intr_read_mask);
+ }
+ printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
+ printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
+ printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
+ printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
+ printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
+ printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
+ qdev->tx_ring);
+ printk(KERN_ERR PFX "qdev->rss_ring_first_cq_id = %d.\n",
+ qdev->rss_ring_first_cq_id);
+ printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
+ qdev->rss_ring_count);
+ printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
+ printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
+ qdev->default_rx_queue);
+ printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
+ qdev->xg_sem_mask);
+ printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
+ qdev->port_link_up);
+ printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
+ qdev->port_init);
+
+}
+#endif
+
+#ifdef QL_CB_DUMP
+void ql_dump_wqicb(struct wqicb *wqicb)
+{
+ printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
+ printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
+ printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
+ printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
+ le16_to_cpu(wqicb->cq_id_rss));
+ printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
+ printk(KERN_ERR PFX "wqicb->wq_addr_lo = 0x%.08x.\n",
+ le32_to_cpu(wqicb->addr_lo));
+ printk(KERN_ERR PFX "wqicb->wq_addr_hi = 0x%.08x.\n",
+ le32_to_cpu(wqicb->addr_hi));
+ printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_lo = 0x%.08x.\n",
+ le32_to_cpu(wqicb->cnsmr_idx_addr_lo));
+ printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr_hi = 0x%.08x.\n",
+ le32_to_cpu(wqicb->cnsmr_idx_addr_hi));
+}
+
+void ql_dump_tx_ring(struct tx_ring *tx_ring)
+{
+ if (tx_ring == NULL)
+ return;
+ printk(KERN_ERR PFX
+ "===================== Dumping tx_ring %d ===============.\n",
+ tx_ring->wq_id);
+ printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
+ printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
+ (unsigned long long) tx_ring->wq_base_dma);
+ printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg = %p.\n",
+ tx_ring->cnsmr_idx_sh_reg);
+ printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg_dma = 0x%llx.\n",
+ (unsigned long long) tx_ring->cnsmr_idx_sh_reg_dma);
+ printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
+ printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
+ printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
+ tx_ring->prod_idx_db_reg);
+ printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
+ tx_ring->valid_db_reg);
+ printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
+ printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
+ printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
+ printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
+ printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
+ atomic_read(&tx_ring->tx_count));
+}
+
+void ql_dump_ricb(struct ricb *ricb)
+{
+ int i;
+ printk(KERN_ERR PFX
+ "===================== Dumping ricb ===============.\n");
+ printk(KERN_ERR PFX "Dumping ricb stuff...\n");
+
+ printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
+ printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
+ ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
+ ricb->flags & RSS_L6K ? "RSS_L6K " : "",
+ ricb->flags & RSS_LI ? "RSS_LI " : "",
+ ricb->flags & RSS_LB ? "RSS_LB " : "",
+ ricb->flags & RSS_LM ? "RSS_LM " : "",
+ ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
+ ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
+ ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
+ ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
+ printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
+ for (i = 0; i < 16; i++)
+ printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
+ le32_to_cpu(ricb->hash_cq_id[i]));
+ for (i = 0; i < 10; i++)
+ printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
+ le32_to_cpu(ricb->ipv6_hash_key[i]));
+ for (i = 0; i < 4; i++)
+ printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
+ le32_to_cpu(ricb->ipv4_hash_key[i]));
+}
+
+void ql_dump_cqicb(struct cqicb *cqicb)
+{
+ printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
+
+ printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
+ printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
+ printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
+ printk(KERN_ERR PFX "cqicb->addr_lo = %x.\n",
+ le32_to_cpu(cqicb->addr_lo));
+ printk(KERN_ERR PFX "cqicb->addr_hi = %x.\n",
+ le32_to_cpu(cqicb->addr_hi));
+ printk(KERN_ERR PFX "cqicb->prod_idx_addr_lo = %x.\n",
+ le32_to_cpu(cqicb->prod_idx_addr_lo));
+ printk(KERN_ERR PFX "cqicb->prod_idx_addr_hi = %x.\n",
+ le32_to_cpu(cqicb->prod_idx_addr_hi));
+ printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
+ le16_to_cpu(cqicb->pkt_delay));
+ printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
+ le16_to_cpu(cqicb->irq_delay));
+ printk(KERN_ERR PFX "cqicb->lbq_addr_lo = %x.\n",
+ le32_to_cpu(cqicb->lbq_addr_lo));
+ printk(KERN_ERR PFX "cqicb->lbq_addr_hi = %x.\n",
+ le32_to_cpu(cqicb->lbq_addr_hi));
+ printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
+ le16_to_cpu(cqicb->lbq_buf_size));
+ printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
+ le16_to_cpu(cqicb->lbq_len));
+ printk(KERN_ERR PFX "cqicb->sbq_addr_lo = %x.\n",
+ le32_to_cpu(cqicb->sbq_addr_lo));
+ printk(KERN_ERR PFX "cqicb->sbq_addr_hi = %x.\n",
+ le32_to_cpu(cqicb->sbq_addr_hi));
+ printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
+ le16_to_cpu(cqicb->sbq_buf_size));
+ printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
+ le16_to_cpu(cqicb->sbq_len));
+}
+
+void ql_dump_rx_ring(struct rx_ring *rx_ring)
+{
+ if (rx_ring == NULL)
+ return;
+ printk(KERN_ERR PFX
+ "===================== Dumping rx_ring %d ===============.\n",
+ rx_ring->cq_id);
+ printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
+ rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
+ rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
+ rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
+ printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
+ printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
+ printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
+ (unsigned long long) rx_ring->cq_base_dma);
+ printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
+ printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
+ printk(KERN_ERR PFX
+ "rx_ring->prod_idx_sh_reg, addr = %p, value = %d.\n",
+ rx_ring->prod_idx_sh_reg,
+ rx_ring->prod_idx_sh_reg ? *(rx_ring->prod_idx_sh_reg) : 0);
+ printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
+ (unsigned long long) rx_ring->prod_idx_sh_reg_dma);
+ printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
+ rx_ring->cnsmr_idx_db_reg);
+ printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
+ printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
+ printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
+ rx_ring->valid_db_reg);
+
+ printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
+ printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
+ (unsigned long long) rx_ring->lbq_base_dma);
+ printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
+ rx_ring->lbq_base_indirect);
+ printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
+ (unsigned long long) rx_ring->lbq_base_indirect_dma);
+ printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
+ printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
+ printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
+ printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
+ rx_ring->lbq_prod_idx_db_reg);
+ printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
+ rx_ring->lbq_prod_idx);
+ printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
+ rx_ring->lbq_curr_idx);
+ printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
+ rx_ring->lbq_clean_idx);
+ printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
+ rx_ring->lbq_free_cnt);
+ printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
+ rx_ring->lbq_buf_size);
+
+ printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
+ printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
+ (unsigned long long) rx_ring->sbq_base_dma);
+ printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
+ rx_ring->sbq_base_indirect);
+ printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
+ (unsigned long long) rx_ring->sbq_base_indirect_dma);
+ printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
+ printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
+ printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
+ printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
+ rx_ring->sbq_prod_idx_db_reg);
+ printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
+ rx_ring->sbq_prod_idx);
+ printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
+ rx_ring->sbq_curr_idx);
+ printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
+ rx_ring->sbq_clean_idx);
+ printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
+ rx_ring->sbq_free_cnt);
+ printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
+ rx_ring->sbq_buf_size);
+ printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
+ printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
+ printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
+ printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
+}
+
+void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
+{
+ void *ptr;
+
+ printk(KERN_ERR PFX "%s: Enter.\n", __func__);
+
+ ptr = kmalloc(size, GFP_ATOMIC);
+ if (ptr == NULL) {
+ printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
+ __func__);
+ return;
+ }
+
+ if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
+ printk(KERN_ERR "%s: Failed to upload control block!\n",
+ __func__);
+ goto fail_it;
+ }
+ switch (bit) {
+ case CFG_DRQ:
+ ql_dump_wqicb((struct wqicb *)ptr);
+ break;
+ case CFG_DCQ:
+ ql_dump_cqicb((struct cqicb *)ptr);
+ break;
+ case CFG_DR:
+ ql_dump_ricb((struct ricb *)ptr);
+ break;
+ default:
+ printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
+ __func__, bit);
+ break;
+ }
+fail_it:
+ kfree(ptr);
+}
+#endif
+
+#ifdef QL_OB_DUMP
+void ql_dump_tx_desc(struct tx_buf_desc *tbd)
+{
+ printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
+ le64_to_cpu((u64) tbd->addr));
+ printk(KERN_ERR PFX "tbd->len = %d\n",
+ le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
+ printk(KERN_ERR PFX "tbd->flags = %s %s\n",
+ tbd->len & TX_DESC_C ? "C" : ".",
+ tbd->len & TX_DESC_E ? "E" : ".");
+ tbd++;
+ printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
+ le64_to_cpu((u64) tbd->addr));
+ printk(KERN_ERR PFX "tbd->len = %d\n",
+ le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
+ printk(KERN_ERR PFX "tbd->flags = %s %s\n",
+ tbd->len & TX_DESC_C ? "C" : ".",
+ tbd->len & TX_DESC_E ? "E" : ".");
+ tbd++;
+ printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
+ le64_to_cpu((u64) tbd->addr));
+ printk(KERN_ERR PFX "tbd->len = %d\n",
+ le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
+ printk(KERN_ERR PFX "tbd->flags = %s %s\n",
+ tbd->len & TX_DESC_C ? "C" : ".",
+ tbd->len & TX_DESC_E ? "E" : ".");
+
+}
+
+void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
+{
+ struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
+ (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
+ struct tx_buf_desc *tbd;
+ u16 frame_len;
+
+ printk(KERN_ERR PFX "%s\n", __func__);
+ printk(KERN_ERR PFX "opcode = %s\n",
+ (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
+ printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
+ ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
+ ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
+ ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
+ ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
+ ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
+ printk(KERN_ERR PFX "flags2 = %s %s %s\n",
+ ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
+ ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
+ ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
+ printk(KERN_ERR PFX "flags3 = %s %s %s \n",
+ ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
+ ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
+ ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
+ printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
+ printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
+ printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
+ if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
+ printk(KERN_ERR PFX "frame_len = %d\n",
+ le32_to_cpu(ob_mac_tso_iocb->frame_len));
+ printk(KERN_ERR PFX "mss = %d\n",
+ le16_to_cpu(ob_mac_tso_iocb->mss));
+ printk(KERN_ERR PFX "prot_hdr_len = %d\n",
+ le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
+ printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
+ le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
+ frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
+ } else {
+ printk(KERN_ERR PFX "frame_len = %d\n",
+ le16_to_cpu(ob_mac_iocb->frame_len));
+ frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
+ }
+ tbd = &ob_mac_iocb->tbd[0];
+ ql_dump_tx_desc(tbd);
+}
+
+void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
+{
+ printk(KERN_ERR PFX "%s\n", __func__);
+ printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
+ printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
+ ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
+ ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
+ ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
+ ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
+ ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
+ ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
+ ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
+ printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
+}
+#endif
+
+#ifdef QL_IB_DUMP
+void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+ printk(KERN_ERR PFX "%s\n", __func__);
+ printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
+ printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
+ ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
+ ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
+ ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
+ ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
+ ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
+ ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
+
+ if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
+ printk(KERN_ERR PFX "%s%s%s Multicast.\n",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+
+ printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
+
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
+ printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+ IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+ IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+ IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+ IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
+ IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
+
+ printk(KERN_ERR PFX "flags3 = %s%s.\n",
+ ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
+ ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
+
+ if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
+ printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
+ ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+ IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
+ ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+ IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
+ ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+ IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
+ ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
+ IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
+
+ printk(KERN_ERR PFX "data_len = %d\n",
+ le32_to_cpu(ib_mac_rsp->data_len));
+ printk(KERN_ERR PFX "data_addr_hi = 0x%x\n",
+ le32_to_cpu(ib_mac_rsp->data_addr_hi));
+ printk(KERN_ERR PFX "data_addr_lo = 0x%x\n",
+ le32_to_cpu(ib_mac_rsp->data_addr_lo));
+ if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
+ printk(KERN_ERR PFX "rss = %x\n",
+ le32_to_cpu(ib_mac_rsp->rss));
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
+ printk(KERN_ERR PFX "vlan_id = %x\n",
+ le16_to_cpu(ib_mac_rsp->vlan_id));
+
+ printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
+ le32_to_cpu(ib_mac_rsp->
+ flags4) & IB_MAC_IOCB_RSP_HV ? "HV " : "",
+ le32_to_cpu(ib_mac_rsp->
+ flags4) & IB_MAC_IOCB_RSP_HS ? "HS " : "",
+ le32_to_cpu(ib_mac_rsp->
+ flags4) & IB_MAC_IOCB_RSP_HL ? "HL " : "");
+
+ if (le32_to_cpu(ib_mac_rsp->flags4) & IB_MAC_IOCB_RSP_HV) {
+ printk(KERN_ERR PFX "hdr length = %d.\n",
+ le32_to_cpu(ib_mac_rsp->hdr_len));
+ printk(KERN_ERR PFX "hdr addr_hi = 0x%x.\n",
+ le32_to_cpu(ib_mac_rsp->hdr_addr_hi));
+ printk(KERN_ERR PFX "hdr addr_lo = 0x%x.\n",
+ le32_to_cpu(ib_mac_rsp->hdr_addr_lo));
+ }
+}
+#endif
+
+#ifdef QL_ALL_DUMP
+void ql_dump_all(struct ql_adapter *qdev)
+{
+ int i;
+
+ QL_DUMP_REGS(qdev);
+ QL_DUMP_QDEV(qdev);
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ QL_DUMP_TX_RING(&qdev->tx_ring[i]);
+ QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
+ }
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ QL_DUMP_RX_RING(&qdev->rx_ring[i]);
+ QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
+ }
+}
+#endif
diff --git a/drivers/net/qlge/qlge_ethtool.c b/drivers/net/qlge/qlge_ethtool.c
new file mode 100644
index 00000000000..6457f8c4fda
--- /dev/null
+++ b/drivers/net/qlge/qlge_ethtool.c
@@ -0,0 +1,415 @@
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <net/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <linux/if_arp.h>
+#include <linux/if_ether.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/skbuff.h>
+#include <linux/rtnetlink.h>
+#include <linux/if_vlan.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+
+#include <linux/version.h>
+
+#include "qlge.h"
+
+static int ql_update_ring_coalescing(struct ql_adapter *qdev)
+{
+ int i, status = 0;
+ struct rx_ring *rx_ring;
+ struct cqicb *cqicb;
+
+ if (!netif_running(qdev->ndev))
+ return status;
+
+ spin_lock(&qdev->hw_lock);
+ /* Skip the default queue, and update the outbound handler
+ * queues if they changed.
+ */
+ cqicb = (struct cqicb *)&qdev->rx_ring[1];
+ if (le16_to_cpu(cqicb->irq_delay) != qdev->tx_coalesce_usecs ||
+ le16_to_cpu(cqicb->pkt_delay) != qdev->tx_max_coalesced_frames) {
+ for (i = 1; i < qdev->rss_ring_first_cq_id; i++, rx_ring++) {
+ rx_ring = &qdev->rx_ring[i];
+ cqicb = (struct cqicb *)rx_ring;
+ cqicb->irq_delay = le16_to_cpu(qdev->tx_coalesce_usecs);
+ cqicb->pkt_delay =
+ le16_to_cpu(qdev->tx_max_coalesced_frames);
+ cqicb->flags = FLAGS_LI;
+ status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
+ CFG_LCQ, rx_ring->cq_id);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to load CQICB.\n");
+ goto exit;
+ }
+ }
+ }
+
+ /* Update the inbound (RSS) handler queues if they changed. */
+ cqicb = (struct cqicb *)&qdev->rx_ring[qdev->rss_ring_first_cq_id];
+ if (le16_to_cpu(cqicb->irq_delay) != qdev->rx_coalesce_usecs ||
+ le16_to_cpu(cqicb->pkt_delay) != qdev->rx_max_coalesced_frames) {
+ for (i = qdev->rss_ring_first_cq_id;
+ i <= qdev->rss_ring_first_cq_id + qdev->rss_ring_count;
+ i++) {
+ rx_ring = &qdev->rx_ring[i];
+ cqicb = (struct cqicb *)rx_ring;
+ cqicb->irq_delay = le16_to_cpu(qdev->rx_coalesce_usecs);
+ cqicb->pkt_delay =
+ le16_to_cpu(qdev->rx_max_coalesced_frames);
+ cqicb->flags = FLAGS_LI;
+ status = ql_write_cfg(qdev, cqicb, sizeof(cqicb),
+ CFG_LCQ, rx_ring->cq_id);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to load CQICB.\n");
+ goto exit;
+ }
+ }
+ }
+exit:
+ spin_unlock(&qdev->hw_lock);
+ return status;
+}
+
+void ql_update_stats(struct ql_adapter *qdev)
+{
+ u32 i;
+ u64 data;
+ u64 *iter = &qdev->nic_stats.tx_pkts;
+
+ spin_lock(&qdev->stats_lock);
+ if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
+ QPRINTK(qdev, DRV, ERR,
+ "Couldn't get xgmac sem.\n");
+ goto quit;
+ }
+ /*
+ * Get TX statistics.
+ */
+ for (i = 0x200; i < 0x280; i += 8) {
+ if (ql_read_xgmac_reg64(qdev, i, &data)) {
+ QPRINTK(qdev, DRV, ERR,
+ "Error reading status register 0x%.04x.\n", i);
+ goto end;
+ } else
+ *iter = data;
+ iter++;
+ }
+
+ /*
+ * Get RX statistics.
+ */
+ for (i = 0x300; i < 0x3d0; i += 8) {
+ if (ql_read_xgmac_reg64(qdev, i, &data)) {
+ QPRINTK(qdev, DRV, ERR,
+ "Error reading status register 0x%.04x.\n", i);
+ goto end;
+ } else
+ *iter = data;
+ iter++;
+ }
+
+end:
+ ql_sem_unlock(qdev, qdev->xg_sem_mask);
+quit:
+ spin_unlock(&qdev->stats_lock);
+
+ QL_DUMP_STAT(qdev);
+
+ return;
+}
+
+static char ql_stats_str_arr[][ETH_GSTRING_LEN] = {
+ {"tx_pkts"},
+ {"tx_bytes"},
+ {"tx_mcast_pkts"},
+ {"tx_bcast_pkts"},
+ {"tx_ucast_pkts"},
+ {"tx_ctl_pkts"},
+ {"tx_pause_pkts"},
+ {"tx_64_pkts"},
+ {"tx_65_to_127_pkts"},
+ {"tx_128_to_255_pkts"},
+ {"tx_256_511_pkts"},
+ {"tx_512_to_1023_pkts"},
+ {"tx_1024_to_1518_pkts"},
+ {"tx_1519_to_max_pkts"},
+ {"tx_undersize_pkts"},
+ {"tx_oversize_pkts"},
+ {"rx_bytes"},
+ {"rx_bytes_ok"},
+ {"rx_pkts"},
+ {"rx_pkts_ok"},
+ {"rx_bcast_pkts"},
+ {"rx_mcast_pkts"},
+ {"rx_ucast_pkts"},
+ {"rx_undersize_pkts"},
+ {"rx_oversize_pkts"},
+ {"rx_jabber_pkts"},
+ {"rx_undersize_fcerr_pkts"},
+ {"rx_drop_events"},
+ {"rx_fcerr_pkts"},
+ {"rx_align_err"},
+ {"rx_symbol_err"},
+ {"rx_mac_err"},
+ {"rx_ctl_pkts"},
+ {"rx_pause_pkts"},
+ {"rx_64_pkts"},
+ {"rx_65_to_127_pkts"},
+ {"rx_128_255_pkts"},
+ {"rx_256_511_pkts"},
+ {"rx_512_to_1023_pkts"},
+ {"rx_1024_to_1518_pkts"},
+ {"rx_1519_to_max_pkts"},
+ {"rx_len_err_pkts"},
+};
+
+static void ql_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
+{
+ switch (stringset) {
+ case ETH_SS_STATS:
+ memcpy(buf, ql_stats_str_arr, sizeof(ql_stats_str_arr));
+ break;
+ }
+}
+
+static int ql_get_sset_count(struct net_device *dev, int sset)
+{
+ switch (sset) {
+ case ETH_SS_STATS:
+ return ARRAY_SIZE(ql_stats_str_arr);
+ default:
+ return -EOPNOTSUPP;
+ }
+}
+
+static void
+ql_get_ethtool_stats(struct net_device *ndev,
+ struct ethtool_stats *stats, u64 *data)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ struct nic_stats *s = &qdev->nic_stats;
+
+ ql_update_stats(qdev);
+
+ *data++ = s->tx_pkts;
+ *data++ = s->tx_bytes;
+ *data++ = s->tx_mcast_pkts;
+ *data++ = s->tx_bcast_pkts;
+ *data++ = s->tx_ucast_pkts;
+ *data++ = s->tx_ctl_pkts;
+ *data++ = s->tx_pause_pkts;
+ *data++ = s->tx_64_pkt;
+ *data++ = s->tx_65_to_127_pkt;
+ *data++ = s->tx_128_to_255_pkt;
+ *data++ = s->tx_256_511_pkt;
+ *data++ = s->tx_512_to_1023_pkt;
+ *data++ = s->tx_1024_to_1518_pkt;
+ *data++ = s->tx_1519_to_max_pkt;
+ *data++ = s->tx_undersize_pkt;
+ *data++ = s->tx_oversize_pkt;
+ *data++ = s->rx_bytes;
+ *data++ = s->rx_bytes_ok;
+ *data++ = s->rx_pkts;
+ *data++ = s->rx_pkts_ok;
+ *data++ = s->rx_bcast_pkts;
+ *data++ = s->rx_mcast_pkts;
+ *data++ = s->rx_ucast_pkts;
+ *data++ = s->rx_undersize_pkts;
+ *data++ = s->rx_oversize_pkts;
+ *data++ = s->rx_jabber_pkts;
+ *data++ = s->rx_undersize_fcerr_pkts;
+ *data++ = s->rx_drop_events;
+ *data++ = s->rx_fcerr_pkts;
+ *data++ = s->rx_align_err;
+ *data++ = s->rx_symbol_err;
+ *data++ = s->rx_mac_err;
+ *data++ = s->rx_ctl_pkts;
+ *data++ = s->rx_pause_pkts;
+ *data++ = s->rx_64_pkts;
+ *data++ = s->rx_65_to_127_pkts;
+ *data++ = s->rx_128_255_pkts;
+ *data++ = s->rx_256_511_pkts;
+ *data++ = s->rx_512_to_1023_pkts;
+ *data++ = s->rx_1024_to_1518_pkts;
+ *data++ = s->rx_1519_to_max_pkts;
+ *data++ = s->rx_len_err_pkts;
+}
+
+static int ql_get_settings(struct net_device *ndev,
+ struct ethtool_cmd *ecmd)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ ecmd->supported = SUPPORTED_10000baseT_Full;
+ ecmd->advertising = ADVERTISED_10000baseT_Full;
+ ecmd->autoneg = AUTONEG_ENABLE;
+ ecmd->transceiver = XCVR_EXTERNAL;
+ if ((qdev->link_status & LINK_TYPE_MASK) == LINK_TYPE_10GBASET) {
+ ecmd->supported |= (SUPPORTED_TP | SUPPORTED_Autoneg);
+ ecmd->advertising |= (ADVERTISED_TP | ADVERTISED_Autoneg);
+ ecmd->port = PORT_TP;
+ } else {
+ ecmd->supported |= SUPPORTED_FIBRE;
+ ecmd->advertising |= ADVERTISED_FIBRE;
+ ecmd->port = PORT_FIBRE;
+ }
+
+ ecmd->speed = SPEED_10000;
+ ecmd->duplex = DUPLEX_FULL;
+
+ return 0;
+}
+
+static void ql_get_drvinfo(struct net_device *ndev,
+ struct ethtool_drvinfo *drvinfo)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ strncpy(drvinfo->driver, qlge_driver_name, 32);
+ strncpy(drvinfo->version, qlge_driver_version, 32);
+ strncpy(drvinfo->fw_version, "N/A", 32);
+ strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
+ drvinfo->n_stats = 0;
+ drvinfo->testinfo_len = 0;
+ drvinfo->regdump_len = 0;
+ drvinfo->eedump_len = 0;
+}
+
+static int ql_get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
+{
+ struct ql_adapter *qdev = netdev_priv(dev);
+
+ c->rx_coalesce_usecs = qdev->rx_coalesce_usecs;
+ c->tx_coalesce_usecs = qdev->tx_coalesce_usecs;
+
+ /* This chip coalesces as follows:
+ * If a packet arrives, hold off interrupts until
+ * cqicb->int_delay expires, but if no other packets arrive don't
+ * wait longer than cqicb->pkt_int_delay. But ethtool doesn't use a
+ * timer to coalesce on a frame basis. So, we have to take ethtool's
+ * max_coalesced_frames value and convert it to a delay in microseconds.
+ * We do this by using a basic thoughput of 1,000,000 frames per
+ * second @ (1024 bytes). This means one frame per usec. So it's a
+ * simple one to one ratio.
+ */
+ c->rx_max_coalesced_frames = qdev->rx_max_coalesced_frames;
+ c->tx_max_coalesced_frames = qdev->tx_max_coalesced_frames;
+
+ return 0;
+}
+
+static int ql_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *c)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ /* Validate user parameters. */
+ if (c->rx_coalesce_usecs > qdev->rx_ring_size / 2)
+ return -EINVAL;
+ /* Don't wait more than 10 usec. */
+ if (c->rx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
+ return -EINVAL;
+ if (c->tx_coalesce_usecs > qdev->tx_ring_size / 2)
+ return -EINVAL;
+ if (c->tx_max_coalesced_frames > MAX_INTER_FRAME_WAIT)
+ return -EINVAL;
+
+ /* Verify a change took place before updating the hardware. */
+ if (qdev->rx_coalesce_usecs == c->rx_coalesce_usecs &&
+ qdev->tx_coalesce_usecs == c->tx_coalesce_usecs &&
+ qdev->rx_max_coalesced_frames == c->rx_max_coalesced_frames &&
+ qdev->tx_max_coalesced_frames == c->tx_max_coalesced_frames)
+ return 0;
+
+ qdev->rx_coalesce_usecs = c->rx_coalesce_usecs;
+ qdev->tx_coalesce_usecs = c->tx_coalesce_usecs;
+ qdev->rx_max_coalesced_frames = c->rx_max_coalesced_frames;
+ qdev->tx_max_coalesced_frames = c->tx_max_coalesced_frames;
+
+ return ql_update_ring_coalescing(qdev);
+}
+
+static u32 ql_get_rx_csum(struct net_device *netdev)
+{
+ struct ql_adapter *qdev = netdev_priv(netdev);
+ return qdev->rx_csum;
+}
+
+static int ql_set_rx_csum(struct net_device *netdev, uint32_t data)
+{
+ struct ql_adapter *qdev = netdev_priv(netdev);
+ qdev->rx_csum = data;
+ return 0;
+}
+
+static int ql_set_tso(struct net_device *ndev, uint32_t data)
+{
+
+ if (data) {
+ ndev->features |= NETIF_F_TSO;
+ ndev->features |= NETIF_F_TSO6;
+ } else {
+ ndev->features &= ~NETIF_F_TSO;
+ ndev->features &= ~NETIF_F_TSO6;
+ }
+ return 0;
+}
+
+static u32 ql_get_msglevel(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ return qdev->msg_enable;
+}
+
+static void ql_set_msglevel(struct net_device *ndev, u32 value)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ qdev->msg_enable = value;
+}
+
+const struct ethtool_ops qlge_ethtool_ops = {
+ .get_settings = ql_get_settings,
+ .get_drvinfo = ql_get_drvinfo,
+ .get_msglevel = ql_get_msglevel,
+ .set_msglevel = ql_set_msglevel,
+ .get_link = ethtool_op_get_link,
+ .get_rx_csum = ql_get_rx_csum,
+ .set_rx_csum = ql_set_rx_csum,
+ .get_tx_csum = ethtool_op_get_tx_csum,
+ .get_sg = ethtool_op_get_sg,
+ .set_sg = ethtool_op_set_sg,
+ .get_tso = ethtool_op_get_tso,
+ .set_tso = ql_set_tso,
+ .get_coalesce = ql_get_coalesce,
+ .set_coalesce = ql_set_coalesce,
+ .get_sset_count = ql_get_sset_count,
+ .get_strings = ql_get_strings,
+ .get_ethtool_stats = ql_get_ethtool_stats,
+};
+
diff --git a/drivers/net/qlge/qlge_main.c b/drivers/net/qlge/qlge_main.c
new file mode 100644
index 00000000000..3af822b6226
--- /dev/null
+++ b/drivers/net/qlge/qlge_main.c
@@ -0,0 +1,3956 @@
+/*
+ * QLogic qlge NIC HBA Driver
+ * Copyright (c) 2003-2008 QLogic Corporation
+ * See LICENSE.qlge for copyright and licensing details.
+ * Author: Linux qlge network device driver by
+ * Ron Mercer <ron.mercer@qlogic.com>
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <net/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <linux/if_arp.h>
+#include <linux/if_ether.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/skbuff.h>
+#include <linux/rtnetlink.h>
+#include <linux/if_vlan.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+
+#include "qlge.h"
+
+char qlge_driver_name[] = DRV_NAME;
+const char qlge_driver_version[] = DRV_VERSION;
+
+MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
+MODULE_DESCRIPTION(DRV_STRING " ");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static const u32 default_msg =
+ NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
+/* NETIF_MSG_TIMER | */
+ NETIF_MSG_IFDOWN |
+ NETIF_MSG_IFUP |
+ NETIF_MSG_RX_ERR |
+ NETIF_MSG_TX_ERR |
+ NETIF_MSG_TX_QUEUED |
+ NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
+/* NETIF_MSG_PKTDATA | */
+ NETIF_MSG_HW | NETIF_MSG_WOL | 0;
+
+static int debug = 0x00007fff; /* defaults above */
+module_param(debug, int, 0);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+#define MSIX_IRQ 0
+#define MSI_IRQ 1
+#define LEG_IRQ 2
+static int irq_type = MSIX_IRQ;
+module_param(irq_type, int, MSIX_IRQ);
+MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
+
+static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
+ {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
+ {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
+ /* required last entry */
+ {0,}
+};
+
+MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
+
+/* This hardware semaphore causes exclusive access to
+ * resources shared between the NIC driver, MPI firmware,
+ * FCOE firmware and the FC driver.
+ */
+static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
+{
+ u32 sem_bits = 0;
+
+ switch (sem_mask) {
+ case SEM_XGMAC0_MASK:
+ sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
+ break;
+ case SEM_XGMAC1_MASK:
+ sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
+ break;
+ case SEM_ICB_MASK:
+ sem_bits = SEM_SET << SEM_ICB_SHIFT;
+ break;
+ case SEM_MAC_ADDR_MASK:
+ sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
+ break;
+ case SEM_FLASH_MASK:
+ sem_bits = SEM_SET << SEM_FLASH_SHIFT;
+ break;
+ case SEM_PROBE_MASK:
+ sem_bits = SEM_SET << SEM_PROBE_SHIFT;
+ break;
+ case SEM_RT_IDX_MASK:
+ sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
+ break;
+ case SEM_PROC_REG_MASK:
+ sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
+ break;
+ default:
+ QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
+ return -EINVAL;
+ }
+
+ ql_write32(qdev, SEM, sem_bits | sem_mask);
+ return !(ql_read32(qdev, SEM) & sem_bits);
+}
+
+int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+ unsigned int seconds = 3;
+ do {
+ if (!ql_sem_trylock(qdev, sem_mask))
+ return 0;
+ ssleep(1);
+ } while (--seconds);
+ return -ETIMEDOUT;
+}
+
+void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+ ql_write32(qdev, SEM, sem_mask);
+ ql_read32(qdev, SEM); /* flush */
+}
+
+/* This function waits for a specific bit to come ready
+ * in a given register. It is used mostly by the initialize
+ * process, but is also used in kernel thread API such as
+ * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
+ */
+int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
+{
+ u32 temp;
+ int count = UDELAY_COUNT;
+
+ while (count) {
+ temp = ql_read32(qdev, reg);
+
+ /* check for errors */
+ if (temp & err_bit) {
+ QPRINTK(qdev, PROBE, ALERT,
+ "register 0x%.08x access error, value = 0x%.08x!.\n",
+ reg, temp);
+ return -EIO;
+ } else if (temp & bit)
+ return 0;
+ udelay(UDELAY_DELAY);
+ count--;
+ }
+ QPRINTK(qdev, PROBE, ALERT,
+ "Timed out waiting for reg %x to come ready.\n", reg);
+ return -ETIMEDOUT;
+}
+
+/* The CFG register is used to download TX and RX control blocks
+ * to the chip. This function waits for an operation to complete.
+ */
+static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
+{
+ int count = UDELAY_COUNT;
+ u32 temp;
+
+ while (count) {
+ temp = ql_read32(qdev, CFG);
+ if (temp & CFG_LE)
+ return -EIO;
+ if (!(temp & bit))
+ return 0;
+ udelay(UDELAY_DELAY);
+ count--;
+ }
+ return -ETIMEDOUT;
+}
+
+
+/* Used to issue init control blocks to hw. Maps control block,
+ * sets address, triggers download, waits for completion.
+ */
+int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
+ u16 q_id)
+{
+ u64 map;
+ int status = 0;
+ int direction;
+ u32 mask;
+ u32 value;
+
+ direction =
+ (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
+ PCI_DMA_FROMDEVICE;
+
+ map = pci_map_single(qdev->pdev, ptr, size, direction);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
+ return -ENOMEM;
+ }
+
+ status = ql_wait_cfg(qdev, bit);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Timed out waiting for CFG to come ready.\n");
+ goto exit;
+ }
+
+ status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
+ if (status)
+ goto exit;
+ ql_write32(qdev, ICB_L, (u32) map);
+ ql_write32(qdev, ICB_H, (u32) (map >> 32));
+ ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
+
+ mask = CFG_Q_MASK | (bit << 16);
+ value = bit | (q_id << CFG_Q_SHIFT);
+ ql_write32(qdev, CFG, (mask | value));
+
+ /*
+ * Wait for the bit to clear after signaling hw.
+ */
+ status = ql_wait_cfg(qdev, bit);
+exit:
+ pci_unmap_single(qdev->pdev, map, size, direction);
+ return status;
+}
+
+/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
+int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
+ u32 *value)
+{
+ u32 offset = 0;
+ int status;
+
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return status;
+ switch (type) {
+ case MAC_ADDR_TYPE_MULTI_MAC:
+ case MAC_ADDR_TYPE_CAM_MAC:
+ {
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ *value++ = ql_read32(qdev, MAC_ADDR_DATA);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ *value++ = ql_read32(qdev, MAC_ADDR_DATA);
+ if (type == MAC_ADDR_TYPE_CAM_MAC) {
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+ status =
+ ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
+ MAC_ADDR_MR, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ *value++ = ql_read32(qdev, MAC_ADDR_DATA);
+ }
+ break;
+ }
+ case MAC_ADDR_TYPE_VLAN:
+ case MAC_ADDR_TYPE_MULTI_FLTR:
+ default:
+ QPRINTK(qdev, IFUP, CRIT,
+ "Address type %d not yet supported.\n", type);
+ status = -EPERM;
+ }
+exit:
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+ return status;
+}
+
+/* Set up a MAC, multicast or VLAN address for the
+ * inbound frame matching.
+ */
+static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
+ u16 index)
+{
+ u32 offset = 0;
+ int status = 0;
+
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return status;
+ switch (type) {
+ case MAC_ADDR_TYPE_MULTI_MAC:
+ case MAC_ADDR_TYPE_CAM_MAC:
+ {
+ u32 cam_output;
+ u32 upper = (addr[0] << 8) | addr[1];
+ u32 lower =
+ (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
+ (addr[5]);
+
+ QPRINTK(qdev, IFUP, INFO,
+ "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
+ " at index %d in the CAM.\n",
+ ((type ==
+ MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
+ "UNICAST"), addr[0], addr[1], addr[2], addr[3],
+ addr[4], addr[5], index);
+
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type); /* type */
+ ql_write32(qdev, MAC_ADDR_DATA, lower);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type); /* type */
+ ql_write32(qdev, MAC_ADDR_DATA, upper);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type); /* type */
+ /* This field should also include the queue id
+ and possibly the function id. Right now we hardcode
+ the route field to NIC core.
+ */
+ if (type == MAC_ADDR_TYPE_CAM_MAC) {
+ cam_output = (CAM_OUT_ROUTE_NIC |
+ (qdev->
+ func << CAM_OUT_FUNC_SHIFT) |
+ (qdev->
+ rss_ring_first_cq_id <<
+ CAM_OUT_CQ_ID_SHIFT));
+ if (qdev->vlgrp)
+ cam_output |= CAM_OUT_RV;
+ /* route to NIC core */
+ ql_write32(qdev, MAC_ADDR_DATA, cam_output);
+ }
+ break;
+ }
+ case MAC_ADDR_TYPE_VLAN:
+ {
+ u32 enable_bit = *((u32 *) &addr[0]);
+ /* For VLAN, the addr actually holds a bit that
+ * either enables or disables the vlan id we are
+ * addressing. It's either MAC_ADDR_E on or off.
+ * That's bit-27 we're talking about.
+ */
+ QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
+ (enable_bit ? "Adding" : "Removing"),
+ index, (enable_bit ? "to" : "from"));
+
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type | /* type */
+ enable_bit); /* enable/disable */
+ break;
+ }
+ case MAC_ADDR_TYPE_MULTI_FLTR:
+ default:
+ QPRINTK(qdev, IFUP, CRIT,
+ "Address type %d not yet supported.\n", type);
+ status = -EPERM;
+ }
+exit:
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+ return status;
+}
+
+/* Get a specific frame routing value from the CAM.
+ * Used for debug and reg dump.
+ */
+int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
+{
+ int status = 0;
+
+ status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+ if (status)
+ goto exit;
+
+ status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
+ if (status)
+ goto exit;
+
+ ql_write32(qdev, RT_IDX,
+ RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
+ status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
+ if (status)
+ goto exit;
+ *value = ql_read32(qdev, RT_DATA);
+exit:
+ ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+ return status;
+}
+
+/* The NIC function for this chip has 16 routing indexes. Each one can be used
+ * to route different frame types to various inbound queues. We send broadcast/
+ * multicast/error frames to the default queue for slow handling,
+ * and CAM hit/RSS frames to the fast handling queues.
+ */
+static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
+ int enable)
+{
+ int status;
+ u32 value = 0;
+
+ status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+ if (status)
+ return status;
+
+ QPRINTK(qdev, IFUP, DEBUG,
+ "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
+ (enable ? "Adding" : "Removing"),
+ ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
+ ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
+ ((index ==
+ RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
+ ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
+ ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
+ ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
+ ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
+ ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
+ ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
+ ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
+ ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
+ ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
+ ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
+ ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
+ ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
+ ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
+ (enable ? "to" : "from"));
+
+ switch (mask) {
+ case RT_IDX_CAM_HIT:
+ {
+ value = RT_IDX_DST_CAM_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_VALID: /* Promiscuous Mode frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_MCAST: /* Pass up All Multicast frames. */
+ {
+ value = RT_IDX_DST_CAM_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
+ {
+ value = RT_IDX_DST_CAM_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
+ {
+ value = RT_IDX_DST_RSS | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case 0: /* Clear the E-bit on an entry. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (index << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ default:
+ QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
+ mask);
+ status = -EPERM;
+ goto exit;
+ }
+
+ if (value) {
+ status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
+ if (status)
+ goto exit;
+ value |= (enable ? RT_IDX_E : 0);
+ ql_write32(qdev, RT_IDX, value);
+ ql_write32(qdev, RT_DATA, enable ? mask : 0);
+ }
+exit:
+ ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+ return status;
+}
+
+static void ql_enable_interrupts(struct ql_adapter *qdev)
+{
+ ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
+}
+
+static void ql_disable_interrupts(struct ql_adapter *qdev)
+{
+ ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
+}
+
+/* If we're running with multiple MSI-X vectors then we enable on the fly.
+ * Otherwise, we may have multiple outstanding workers and don't want to
+ * enable until the last one finishes. In this case, the irq_cnt gets
+ * incremented everytime we queue a worker and decremented everytime
+ * a worker finishes. Once it hits zero we enable the interrupt.
+ */
+void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
+ ql_write32(qdev, INTR_EN,
+ qdev->intr_context[intr].intr_en_mask);
+ else {
+ if (qdev->legacy_check)
+ spin_lock(&qdev->legacy_lock);
+ if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
+ QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
+ intr);
+ ql_write32(qdev, INTR_EN,
+ qdev->intr_context[intr].intr_en_mask);
+ } else {
+ QPRINTK(qdev, INTR, ERR,
+ "Skip enable, other queue(s) are active.\n");
+ }
+ if (qdev->legacy_check)
+ spin_unlock(&qdev->legacy_lock);
+ }
+}
+
+static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+ u32 var = 0;
+
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
+ goto exit;
+ else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
+ ql_write32(qdev, INTR_EN,
+ qdev->intr_context[intr].intr_dis_mask);
+ var = ql_read32(qdev, STS);
+ }
+ atomic_inc(&qdev->intr_context[intr].irq_cnt);
+exit:
+ return var;
+}
+
+static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
+{
+ int i;
+ for (i = 0; i < qdev->intr_count; i++) {
+ /* The enable call does a atomic_dec_and_test
+ * and enables only if the result is zero.
+ * So we precharge it here.
+ */
+ atomic_set(&qdev->intr_context[i].irq_cnt, 1);
+ ql_enable_completion_interrupt(qdev, i);
+ }
+
+}
+
+int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
+{
+ int status = 0;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
+ if (status)
+ goto exit;
+ /* set up for reg read */
+ ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
+ if (status)
+ goto exit;
+ /* get the data */
+ *data = ql_read32(qdev, FLASH_DATA);
+exit:
+ return status;
+}
+
+static int ql_get_flash_params(struct ql_adapter *qdev)
+{
+ int i;
+ int status;
+ u32 *p = (u32 *)&qdev->flash;
+
+ if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
+ return -ETIMEDOUT;
+
+ for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
+ status = ql_read_flash_word(qdev, i, p);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
+ goto exit;
+ }
+
+ }
+exit:
+ ql_sem_unlock(qdev, SEM_FLASH_MASK);
+ return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair. Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
+{
+ int status;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+ if (status)
+ return status;
+ /* write the data to the data reg */
+ ql_write32(qdev, XGMAC_DATA, data);
+ /* trigger the write */
+ ql_write32(qdev, XGMAC_ADDR, reg);
+ return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair. Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
+{
+ int status = 0;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+ if (status)
+ goto exit;
+ /* set up for reg read */
+ ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+ if (status)
+ goto exit;
+ /* get the data */
+ *data = ql_read32(qdev, XGMAC_DATA);
+exit:
+ return status;
+}
+
+/* This is used for reading the 64-bit statistics regs. */
+int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
+{
+ int status = 0;
+ u32 hi = 0;
+ u32 lo = 0;
+
+ status = ql_read_xgmac_reg(qdev, reg, &lo);
+ if (status)
+ goto exit;
+
+ status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
+ if (status)
+ goto exit;
+
+ *data = (u64) lo | ((u64) hi << 32);
+
+exit:
+ return status;
+}
+
+/* Take the MAC Core out of reset.
+ * Enable statistics counting.
+ * Take the transmitter/receiver out of reset.
+ * This functionality may be done in the MPI firmware at a
+ * later date.
+ */
+static int ql_port_initialize(struct ql_adapter *qdev)
+{
+ int status = 0;
+ u32 data;
+
+ if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
+ /* Another function has the semaphore, so
+ * wait for the port init bit to come ready.
+ */
+ QPRINTK(qdev, LINK, INFO,
+ "Another function has the semaphore, so wait for the port init bit to come ready.\n");
+ status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
+ if (status) {
+ QPRINTK(qdev, LINK, CRIT,
+ "Port initialize timed out.\n");
+ }
+ return status;
+ }
+
+ QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
+ /* Set the core reset. */
+ status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+ if (status)
+ goto end;
+ data |= GLOBAL_CFG_RESET;
+ status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+ if (status)
+ goto end;
+
+ /* Clear the core reset and turn on jumbo for receiver. */
+ data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
+ data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
+ data |= GLOBAL_CFG_TX_STAT_EN;
+ data |= GLOBAL_CFG_RX_STAT_EN;
+ status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+ if (status)
+ goto end;
+
+ /* Enable transmitter, and clear it's reset. */
+ status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
+ if (status)
+ goto end;
+ data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
+ data |= TX_CFG_EN; /* Enable the transmitter. */
+ status = ql_write_xgmac_reg(qdev, TX_CFG, data);
+ if (status)
+ goto end;
+
+ /* Enable receiver and clear it's reset. */
+ status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
+ if (status)
+ goto end;
+ data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
+ data |= RX_CFG_EN; /* Enable the receiver. */
+ status = ql_write_xgmac_reg(qdev, RX_CFG, data);
+ if (status)
+ goto end;
+
+ /* Turn on jumbo. */
+ status =
+ ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
+ if (status)
+ goto end;
+ status =
+ ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
+ if (status)
+ goto end;
+
+ /* Signal to the world that the port is enabled. */
+ ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
+end:
+ ql_sem_unlock(qdev, qdev->xg_sem_mask);
+ return status;
+}
+
+/* Get the next large buffer. */
+struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
+{
+ struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
+ rx_ring->lbq_curr_idx++;
+ if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
+ rx_ring->lbq_curr_idx = 0;
+ rx_ring->lbq_free_cnt++;
+ return lbq_desc;
+}
+
+/* Get the next small buffer. */
+struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
+{
+ struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
+ rx_ring->sbq_curr_idx++;
+ if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
+ rx_ring->sbq_curr_idx = 0;
+ rx_ring->sbq_free_cnt++;
+ return sbq_desc;
+}
+
+/* Update an rx ring index. */
+static void ql_update_cq(struct rx_ring *rx_ring)
+{
+ rx_ring->cnsmr_idx++;
+ rx_ring->curr_entry++;
+ if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
+ rx_ring->cnsmr_idx = 0;
+ rx_ring->curr_entry = rx_ring->cq_base;
+ }
+}
+
+static void ql_write_cq_idx(struct rx_ring *rx_ring)
+{
+ ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
+}
+
+/* Process (refill) a large buffer queue. */
+static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ int clean_idx = rx_ring->lbq_clean_idx;
+ struct bq_desc *lbq_desc;
+ struct bq_element *bq;
+ u64 map;
+ int i;
+
+ while (rx_ring->lbq_free_cnt > 16) {
+ for (i = 0; i < 16; i++) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "lbq: try cleaning clean_idx = %d.\n",
+ clean_idx);
+ lbq_desc = &rx_ring->lbq[clean_idx];
+ bq = lbq_desc->bq;
+ if (lbq_desc->p.lbq_page == NULL) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "lbq: getting new page for index %d.\n",
+ lbq_desc->index);
+ lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
+ if (lbq_desc->p.lbq_page == NULL) {
+ QPRINTK(qdev, RX_STATUS, ERR,
+ "Couldn't get a page.\n");
+ return;
+ }
+ map = pci_map_page(qdev->pdev,
+ lbq_desc->p.lbq_page,
+ 0, PAGE_SIZE,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ QPRINTK(qdev, RX_STATUS, ERR,
+ "PCI mapping failed.\n");
+ return;
+ }
+ pci_unmap_addr_set(lbq_desc, mapaddr, map);
+ pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
+ bq->addr_lo = /*lbq_desc->addr_lo = */
+ cpu_to_le32(map);
+ bq->addr_hi = /*lbq_desc->addr_hi = */
+ cpu_to_le32(map >> 32);
+ }
+ clean_idx++;
+ if (clean_idx == rx_ring->lbq_len)
+ clean_idx = 0;
+ }
+
+ rx_ring->lbq_clean_idx = clean_idx;
+ rx_ring->lbq_prod_idx += 16;
+ if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
+ rx_ring->lbq_prod_idx = 0;
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "lbq: updating prod idx = %d.\n",
+ rx_ring->lbq_prod_idx);
+ ql_write_db_reg(rx_ring->lbq_prod_idx,
+ rx_ring->lbq_prod_idx_db_reg);
+ rx_ring->lbq_free_cnt -= 16;
+ }
+}
+
+/* Process (refill) a small buffer queue. */
+static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ int clean_idx = rx_ring->sbq_clean_idx;
+ struct bq_desc *sbq_desc;
+ struct bq_element *bq;
+ u64 map;
+ int i;
+
+ while (rx_ring->sbq_free_cnt > 16) {
+ for (i = 0; i < 16; i++) {
+ sbq_desc = &rx_ring->sbq[clean_idx];
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "sbq: try cleaning clean_idx = %d.\n",
+ clean_idx);
+ bq = sbq_desc->bq;
+ if (sbq_desc->p.skb == NULL) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "sbq: getting new skb for index %d.\n",
+ sbq_desc->index);
+ sbq_desc->p.skb =
+ netdev_alloc_skb(qdev->ndev,
+ rx_ring->sbq_buf_size);
+ if (sbq_desc->p.skb == NULL) {
+ QPRINTK(qdev, PROBE, ERR,
+ "Couldn't get an skb.\n");
+ rx_ring->sbq_clean_idx = clean_idx;
+ return;
+ }
+ skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
+ map = pci_map_single(qdev->pdev,
+ sbq_desc->p.skb->data,
+ rx_ring->sbq_buf_size /
+ 2, PCI_DMA_FROMDEVICE);
+ pci_unmap_addr_set(sbq_desc, mapaddr, map);
+ pci_unmap_len_set(sbq_desc, maplen,
+ rx_ring->sbq_buf_size / 2);
+ bq->addr_lo = cpu_to_le32(map);
+ bq->addr_hi = cpu_to_le32(map >> 32);
+ }
+
+ clean_idx++;
+ if (clean_idx == rx_ring->sbq_len)
+ clean_idx = 0;
+ }
+ rx_ring->sbq_clean_idx = clean_idx;
+ rx_ring->sbq_prod_idx += 16;
+ if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
+ rx_ring->sbq_prod_idx = 0;
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "sbq: updating prod idx = %d.\n",
+ rx_ring->sbq_prod_idx);
+ ql_write_db_reg(rx_ring->sbq_prod_idx,
+ rx_ring->sbq_prod_idx_db_reg);
+
+ rx_ring->sbq_free_cnt -= 16;
+ }
+}
+
+static void ql_update_buffer_queues(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ ql_update_sbq(qdev, rx_ring);
+ ql_update_lbq(qdev, rx_ring);
+}
+
+/* Unmaps tx buffers. Can be called from send() if a pci mapping
+ * fails at some stage, or from the interrupt when a tx completes.
+ */
+static void ql_unmap_send(struct ql_adapter *qdev,
+ struct tx_ring_desc *tx_ring_desc, int mapped)
+{
+ int i;
+ for (i = 0; i < mapped; i++) {
+ if (i == 0 || (i == 7 && mapped > 7)) {
+ /*
+ * Unmap the skb->data area, or the
+ * external sglist (AKA the Outbound
+ * Address List (OAL)).
+ * If its the zeroeth element, then it's
+ * the skb->data area. If it's the 7th
+ * element and there is more than 6 frags,
+ * then its an OAL.
+ */
+ if (i == 7) {
+ QPRINTK(qdev, TX_DONE, DEBUG,
+ "unmapping OAL area.\n");
+ }
+ pci_unmap_single(qdev->pdev,
+ pci_unmap_addr(&tx_ring_desc->map[i],
+ mapaddr),
+ pci_unmap_len(&tx_ring_desc->map[i],
+ maplen),
+ PCI_DMA_TODEVICE);
+ } else {
+ QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
+ i);
+ pci_unmap_page(qdev->pdev,
+ pci_unmap_addr(&tx_ring_desc->map[i],
+ mapaddr),
+ pci_unmap_len(&tx_ring_desc->map[i],
+ maplen), PCI_DMA_TODEVICE);
+ }
+ }
+
+}
+
+/* Map the buffers for this transmit. This will return
+ * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
+ */
+static int ql_map_send(struct ql_adapter *qdev,
+ struct ob_mac_iocb_req *mac_iocb_ptr,
+ struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
+{
+ int len = skb_headlen(skb);
+ dma_addr_t map;
+ int frag_idx, err, map_idx = 0;
+ struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
+ int frag_cnt = skb_shinfo(skb)->nr_frags;
+
+ if (frag_cnt) {
+ QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
+ }
+ /*
+ * Map the skb buffer first.
+ */
+ map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
+
+ err = pci_dma_mapping_error(qdev->pdev, map);
+ if (err) {
+ QPRINTK(qdev, TX_QUEUED, ERR,
+ "PCI mapping failed with error: %d\n", err);
+
+ return NETDEV_TX_BUSY;
+ }
+
+ tbd->len = cpu_to_le32(len);
+ tbd->addr = cpu_to_le64(map);
+ pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+ pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
+ map_idx++;
+
+ /*
+ * This loop fills the remainder of the 8 address descriptors
+ * in the IOCB. If there are more than 7 fragments, then the
+ * eighth address desc will point to an external list (OAL).
+ * When this happens, the remainder of the frags will be stored
+ * in this list.
+ */
+ for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
+ tbd++;
+ if (frag_idx == 6 && frag_cnt > 7) {
+ /* Let's tack on an sglist.
+ * Our control block will now
+ * look like this:
+ * iocb->seg[0] = skb->data
+ * iocb->seg[1] = frag[0]
+ * iocb->seg[2] = frag[1]
+ * iocb->seg[3] = frag[2]
+ * iocb->seg[4] = frag[3]
+ * iocb->seg[5] = frag[4]
+ * iocb->seg[6] = frag[5]
+ * iocb->seg[7] = ptr to OAL (external sglist)
+ * oal->seg[0] = frag[6]
+ * oal->seg[1] = frag[7]
+ * oal->seg[2] = frag[8]
+ * oal->seg[3] = frag[9]
+ * oal->seg[4] = frag[10]
+ * etc...
+ */
+ /* Tack on the OAL in the eighth segment of IOCB. */
+ map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
+ sizeof(struct oal),
+ PCI_DMA_TODEVICE);
+ err = pci_dma_mapping_error(qdev->pdev, map);
+ if (err) {
+ QPRINTK(qdev, TX_QUEUED, ERR,
+ "PCI mapping outbound address list with error: %d\n",
+ err);
+ goto map_error;
+ }
+
+ tbd->addr = cpu_to_le64(map);
+ /*
+ * The length is the number of fragments
+ * that remain to be mapped times the length
+ * of our sglist (OAL).
+ */
+ tbd->len =
+ cpu_to_le32((sizeof(struct tx_buf_desc) *
+ (frag_cnt - frag_idx)) | TX_DESC_C);
+ pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
+ map);
+ pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+ sizeof(struct oal));
+ tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
+ map_idx++;
+ }
+
+ map =
+ pci_map_page(qdev->pdev, frag->page,
+ frag->page_offset, frag->size,
+ PCI_DMA_TODEVICE);
+
+ err = pci_dma_mapping_error(qdev->pdev, map);
+ if (err) {
+ QPRINTK(qdev, TX_QUEUED, ERR,
+ "PCI mapping frags failed with error: %d.\n",
+ err);
+ goto map_error;
+ }
+
+ tbd->addr = cpu_to_le64(map);
+ tbd->len = cpu_to_le32(frag->size);
+ pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+ pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+ frag->size);
+
+ }
+ /* Save the number of segments we've mapped. */
+ tx_ring_desc->map_cnt = map_idx;
+ /* Terminate the last segment. */
+ tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
+ return NETDEV_TX_OK;
+
+map_error:
+ /*
+ * If the first frag mapping failed, then i will be zero.
+ * This causes the unmap of the skb->data area. Otherwise
+ * we pass in the number of frags that mapped successfully
+ * so they can be umapped.
+ */
+ ql_unmap_send(qdev, tx_ring_desc, map_idx);
+ return NETDEV_TX_BUSY;
+}
+
+void ql_realign_skb(struct sk_buff *skb, int len)
+{
+ void *temp_addr = skb->data;
+
+ /* Undo the skb_reserve(skb,32) we did before
+ * giving to hardware, and realign data on
+ * a 2-byte boundary.
+ */
+ skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
+ skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
+ skb_copy_to_linear_data(skb, temp_addr,
+ (unsigned int)len);
+}
+
+/*
+ * This function builds an skb for the given inbound
+ * completion. It will be rewritten for readability in the near
+ * future, but for not it works well.
+ */
+static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+ struct bq_desc *lbq_desc;
+ struct bq_desc *sbq_desc;
+ struct sk_buff *skb = NULL;
+ u32 length = le32_to_cpu(ib_mac_rsp->data_len);
+ u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
+
+ /*
+ * Handle the header buffer if present.
+ */
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
+ ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+ QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
+ /*
+ * Headers fit nicely into a small buffer.
+ */
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ pci_unmap_single(qdev->pdev,
+ pci_unmap_addr(sbq_desc, mapaddr),
+ pci_unmap_len(sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ skb = sbq_desc->p.skb;
+ ql_realign_skb(skb, hdr_len);
+ skb_put(skb, hdr_len);
+ sbq_desc->p.skb = NULL;
+ }
+
+ /*
+ * Handle the data buffer(s).
+ */
+ if (unlikely(!length)) { /* Is there data too? */
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "No Data buffer in this packet.\n");
+ return skb;
+ }
+
+ if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Headers in small, data of %d bytes in small, combine them.\n", length);
+ /*
+ * Data is less than small buffer size so it's
+ * stuffed in a small buffer.
+ * For this case we append the data
+ * from the "data" small buffer to the "header" small
+ * buffer.
+ */
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ pci_dma_sync_single_for_cpu(qdev->pdev,
+ pci_unmap_addr
+ (sbq_desc, mapaddr),
+ pci_unmap_len
+ (sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ memcpy(skb_put(skb, length),
+ sbq_desc->p.skb->data, length);
+ pci_dma_sync_single_for_device(qdev->pdev,
+ pci_unmap_addr
+ (sbq_desc,
+ mapaddr),
+ pci_unmap_len
+ (sbq_desc,
+ maplen),
+ PCI_DMA_FROMDEVICE);
+ } else {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "%d bytes in a single small buffer.\n", length);
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ skb = sbq_desc->p.skb;
+ ql_realign_skb(skb, length);
+ skb_put(skb, length);
+ pci_unmap_single(qdev->pdev,
+ pci_unmap_addr(sbq_desc,
+ mapaddr),
+ pci_unmap_len(sbq_desc,
+ maplen),
+ PCI_DMA_FROMDEVICE);
+ sbq_desc->p.skb = NULL;
+ }
+ } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Header in small, %d bytes in large. Chain large to small!\n", length);
+ /*
+ * The data is in a single large buffer. We
+ * chain it to the header buffer's skb and let
+ * it rip.
+ */
+ lbq_desc = ql_get_curr_lbuf(rx_ring);
+ pci_unmap_page(qdev->pdev,
+ pci_unmap_addr(lbq_desc,
+ mapaddr),
+ pci_unmap_len(lbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Chaining page to skb.\n");
+ skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
+ 0, length);
+ skb->len += length;
+ skb->data_len += length;
+ skb->truesize += length;
+ lbq_desc->p.lbq_page = NULL;
+ } else {
+ /*
+ * The headers and data are in a single large buffer. We
+ * copy it to a new skb and let it go. This can happen with
+ * jumbo mtu on a non-TCP/UDP frame.
+ */
+ lbq_desc = ql_get_curr_lbuf(rx_ring);
+ skb = netdev_alloc_skb(qdev->ndev, length);
+ if (skb == NULL) {
+ QPRINTK(qdev, PROBE, DEBUG,
+ "No skb available, drop the packet.\n");
+ return NULL;
+ }
+ skb_reserve(skb, NET_IP_ALIGN);
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
+ skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
+ 0, length);
+ skb->len += length;
+ skb->data_len += length;
+ skb->truesize += length;
+ length -= length;
+ lbq_desc->p.lbq_page = NULL;
+ __pskb_pull_tail(skb,
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+ VLAN_ETH_HLEN : ETH_HLEN);
+ }
+ } else {
+ /*
+ * The data is in a chain of large buffers
+ * pointed to by a small buffer. We loop
+ * thru and chain them to the our small header
+ * buffer's skb.
+ * frags: There are 18 max frags and our small
+ * buffer will hold 32 of them. The thing is,
+ * we'll use 3 max for our 9000 byte jumbo
+ * frames. If the MTU goes up we could
+ * eventually be in trouble.
+ */
+ int size, offset, i = 0;
+ struct bq_element *bq, bq_array[8];
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ pci_unmap_single(qdev->pdev,
+ pci_unmap_addr(sbq_desc, mapaddr),
+ pci_unmap_len(sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
+ /*
+ * This is an non TCP/UDP IP frame, so
+ * the headers aren't split into a small
+ * buffer. We have to use the small buffer
+ * that contains our sg list as our skb to
+ * send upstairs. Copy the sg list here to
+ * a local buffer and use it to find the
+ * pages to chain.
+ */
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "%d bytes of headers & data in chain of large.\n", length);
+ skb = sbq_desc->p.skb;
+ bq = &bq_array[0];
+ memcpy(bq, skb->data, sizeof(bq_array));
+ sbq_desc->p.skb = NULL;
+ skb_reserve(skb, NET_IP_ALIGN);
+ } else {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Headers in small, %d bytes of data in chain of large.\n", length);
+ bq = (struct bq_element *)sbq_desc->p.skb->data;
+ }
+ while (length > 0) {
+ lbq_desc = ql_get_curr_lbuf(rx_ring);
+ if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
+ QPRINTK(qdev, RX_STATUS, ERR,
+ "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
+ lbq_desc->bq->addr_lo, bq->addr_lo);
+ return NULL;
+ }
+ pci_unmap_page(qdev->pdev,
+ pci_unmap_addr(lbq_desc,
+ mapaddr),
+ pci_unmap_len(lbq_desc,
+ maplen),
+ PCI_DMA_FROMDEVICE);
+ size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
+ offset = 0;
+
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Adding page %d to skb for %d bytes.\n",
+ i, size);
+ skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
+ offset, size);
+ skb->len += size;
+ skb->data_len += size;
+ skb->truesize += size;
+ length -= size;
+ lbq_desc->p.lbq_page = NULL;
+ bq++;
+ i++;
+ }
+ __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+ VLAN_ETH_HLEN : ETH_HLEN);
+ }
+ return skb;
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+ struct net_device *ndev = qdev->ndev;
+ struct sk_buff *skb = NULL;
+
+ QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
+
+ skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
+ if (unlikely(!skb)) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "No skb available, drop packet.\n");
+ return;
+ }
+
+ prefetch(skb->data);
+ skb->dev = ndev;
+ if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
+ QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+ }
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
+ QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
+ }
+ if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
+ QPRINTK(qdev, RX_STATUS, ERR,
+ "Bad checksum for this %s packet.\n",
+ ((ib_mac_rsp->
+ flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
+ skb->ip_summed = CHECKSUM_NONE;
+ } else if (qdev->rx_csum &&
+ ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
+ ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
+ !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
+ QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ }
+ qdev->stats.rx_packets++;
+ qdev->stats.rx_bytes += skb->len;
+ skb->protocol = eth_type_trans(skb, ndev);
+ if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Passing a VLAN packet upstream.\n");
+ vlan_hwaccel_rx(skb, qdev->vlgrp,
+ le16_to_cpu(ib_mac_rsp->vlan_id));
+ } else {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Passing a normal packet upstream.\n");
+ netif_rx(skb);
+ }
+ ndev->last_rx = jiffies;
+}
+
+/* Process an outbound completion from an rx ring. */
+static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
+ struct ob_mac_iocb_rsp *mac_rsp)
+{
+ struct tx_ring *tx_ring;
+ struct tx_ring_desc *tx_ring_desc;
+
+ QL_DUMP_OB_MAC_RSP(mac_rsp);
+ tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
+ tx_ring_desc = &tx_ring->q[mac_rsp->tid];
+ ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
+ qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
+ qdev->stats.tx_packets++;
+ dev_kfree_skb(tx_ring_desc->skb);
+ tx_ring_desc->skb = NULL;
+
+ if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
+ OB_MAC_IOCB_RSP_S |
+ OB_MAC_IOCB_RSP_L |
+ OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
+ QPRINTK(qdev, TX_DONE, WARNING,
+ "Total descriptor length did not match transfer length.\n");
+ }
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
+ QPRINTK(qdev, TX_DONE, WARNING,
+ "Frame too short to be legal, not sent.\n");
+ }
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
+ QPRINTK(qdev, TX_DONE, WARNING,
+ "Frame too long, but sent anyway.\n");
+ }
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
+ QPRINTK(qdev, TX_DONE, WARNING,
+ "PCI backplane error. Frame not sent.\n");
+ }
+ }
+ atomic_inc(&tx_ring->tx_count);
+}
+
+/* Fire up a handler to reset the MPI processor. */
+void ql_queue_fw_error(struct ql_adapter *qdev)
+{
+ netif_stop_queue(qdev->ndev);
+ netif_carrier_off(qdev->ndev);
+ queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
+}
+
+void ql_queue_asic_error(struct ql_adapter *qdev)
+{
+ netif_stop_queue(qdev->ndev);
+ netif_carrier_off(qdev->ndev);
+ ql_disable_interrupts(qdev);
+ queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
+ struct ib_ae_iocb_rsp *ib_ae_rsp)
+{
+ switch (ib_ae_rsp->event) {
+ case MGMT_ERR_EVENT:
+ QPRINTK(qdev, RX_ERR, ERR,
+ "Management Processor Fatal Error.\n");
+ ql_queue_fw_error(qdev);
+ return;
+
+ case CAM_LOOKUP_ERR_EVENT:
+ QPRINTK(qdev, LINK, ERR,
+ "Multiple CAM hits lookup occurred.\n");
+ QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
+ ql_queue_asic_error(qdev);
+ return;
+
+ case SOFT_ECC_ERROR_EVENT:
+ QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
+ ql_queue_asic_error(qdev);
+ break;
+
+ case PCI_ERR_ANON_BUF_RD:
+ QPRINTK(qdev, RX_ERR, ERR,
+ "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
+ ib_ae_rsp->q_id);
+ ql_queue_asic_error(qdev);
+ break;
+
+ default:
+ QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
+ ib_ae_rsp->event);
+ ql_queue_asic_error(qdev);
+ break;
+ }
+}
+
+static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
+{
+ struct ql_adapter *qdev = rx_ring->qdev;
+ u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ struct ob_mac_iocb_rsp *net_rsp = NULL;
+ int count = 0;
+
+ /* While there are entries in the completion queue. */
+ while (prod != rx_ring->cnsmr_idx) {
+
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
+ prod, rx_ring->cnsmr_idx);
+
+ net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
+ rmb();
+ switch (net_rsp->opcode) {
+
+ case OPCODE_OB_MAC_TSO_IOCB:
+ case OPCODE_OB_MAC_IOCB:
+ ql_process_mac_tx_intr(qdev, net_rsp);
+ break;
+ default:
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Hit default case, not handled! dropping the packet, opcode = %x.\n",
+ net_rsp->opcode);
+ }
+ count++;
+ ql_update_cq(rx_ring);
+ prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ }
+ ql_write_cq_idx(rx_ring);
+ if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
+ struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
+ if (atomic_read(&tx_ring->queue_stopped) &&
+ (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
+ /*
+ * The queue got stopped because the tx_ring was full.
+ * Wake it up, because it's now at least 25% empty.
+ */
+ netif_wake_queue(qdev->ndev);
+ }
+
+ return count;
+}
+
+static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
+{
+ struct ql_adapter *qdev = rx_ring->qdev;
+ u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ struct ql_net_rsp_iocb *net_rsp;
+ int count = 0;
+
+ /* While there are entries in the completion queue. */
+ while (prod != rx_ring->cnsmr_idx) {
+
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
+ prod, rx_ring->cnsmr_idx);
+
+ net_rsp = rx_ring->curr_entry;
+ rmb();
+ switch (net_rsp->opcode) {
+ case OPCODE_IB_MAC_IOCB:
+ ql_process_mac_rx_intr(qdev, rx_ring,
+ (struct ib_mac_iocb_rsp *)
+ net_rsp);
+ break;
+
+ case OPCODE_IB_AE_IOCB:
+ ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
+ net_rsp);
+ break;
+ default:
+ {
+ QPRINTK(qdev, RX_STATUS, DEBUG,
+ "Hit default case, not handled! dropping the packet, opcode = %x.\n",
+ net_rsp->opcode);
+ }
+ }
+ count++;
+ ql_update_cq(rx_ring);
+ prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ if (count == budget)
+ break;
+ }
+ ql_update_buffer_queues(qdev, rx_ring);
+ ql_write_cq_idx(rx_ring);
+ return count;
+}
+
+static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
+{
+ struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
+ struct ql_adapter *qdev = rx_ring->qdev;
+ int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
+
+ QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
+ rx_ring->cq_id);
+
+ if (work_done < budget) {
+ __netif_rx_complete(qdev->ndev, napi);
+ ql_enable_completion_interrupt(qdev, rx_ring->irq);
+ }
+ return work_done;
+}
+
+static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ qdev->vlgrp = grp;
+ if (grp) {
+ QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
+ ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
+ NIC_RCV_CFG_VLAN_MATCH_AND_NON);
+ } else {
+ QPRINTK(qdev, IFUP, DEBUG,
+ "Turning off VLAN in NIC_RCV_CFG.\n");
+ ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
+ }
+}
+
+static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ u32 enable_bit = MAC_ADDR_E;
+
+ spin_lock(&qdev->hw_lock);
+ if (ql_set_mac_addr_reg
+ (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
+ }
+ spin_unlock(&qdev->hw_lock);
+}
+
+static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ u32 enable_bit = 0;
+
+ spin_lock(&qdev->hw_lock);
+ if (ql_set_mac_addr_reg
+ (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
+ }
+ spin_unlock(&qdev->hw_lock);
+
+}
+
+/* Worker thread to process a given rx_ring that is dedicated
+ * to outbound completions.
+ */
+static void ql_tx_clean(struct work_struct *work)
+{
+ struct rx_ring *rx_ring =
+ container_of(work, struct rx_ring, rx_work.work);
+ ql_clean_outbound_rx_ring(rx_ring);
+ ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+
+}
+
+/* Worker thread to process a given rx_ring that is dedicated
+ * to inbound completions.
+ */
+static void ql_rx_clean(struct work_struct *work)
+{
+ struct rx_ring *rx_ring =
+ container_of(work, struct rx_ring, rx_work.work);
+ ql_clean_inbound_rx_ring(rx_ring, 64);
+ ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
+static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
+{
+ struct rx_ring *rx_ring = dev_id;
+ queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
+ &rx_ring->rx_work, 0);
+ return IRQ_HANDLED;
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
+static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
+{
+ struct rx_ring *rx_ring = dev_id;
+ struct ql_adapter *qdev = rx_ring->qdev;
+ netif_rx_schedule(qdev->ndev, &rx_ring->napi);
+ return IRQ_HANDLED;
+}
+
+/* We check here to see if we're already handling a legacy
+ * interrupt. If we are, then it must belong to another
+ * chip with which we're sharing the interrupt line.
+ */
+int ql_legacy_check(struct ql_adapter *qdev)
+{
+ int err;
+ spin_lock(&qdev->legacy_lock);
+ err = atomic_read(&qdev->intr_context[0].irq_cnt);
+ spin_unlock(&qdev->legacy_lock);
+ return err;
+}
+
+/* This handles a fatal error, MPI activity, and the default
+ * rx_ring in an MSI-X multiple vector environment.
+ * In MSI/Legacy environment it also process the rest of
+ * the rx_rings.
+ */
+static irqreturn_t qlge_isr(int irq, void *dev_id)
+{
+ struct rx_ring *rx_ring = dev_id;
+ struct ql_adapter *qdev = rx_ring->qdev;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+ u32 var;
+ int i;
+ int work_done = 0;
+
+ if (qdev->legacy_check && qdev->legacy_check(qdev)) {
+ QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
+ return IRQ_NONE; /* Not our interrupt */
+ }
+
+ var = ql_read32(qdev, STS);
+
+ /*
+ * Check for fatal error.
+ */
+ if (var & STS_FE) {
+ ql_queue_asic_error(qdev);
+ QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
+ var = ql_read32(qdev, ERR_STS);
+ QPRINTK(qdev, INTR, ERR,
+ "Resetting chip. Error Status Register = 0x%x\n", var);
+ return IRQ_HANDLED;
+ }
+
+ /*
+ * Check MPI processor activity.
+ */
+ if (var & STS_PI) {
+ /*
+ * We've got an async event or mailbox completion.
+ * Handle it and clear the source of the interrupt.
+ */
+ QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
+ ql_disable_completion_interrupt(qdev, intr_context->intr);
+ queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
+ &qdev->mpi_work, 0);
+ work_done++;
+ }
+
+ /*
+ * Check the default queue and wake handler if active.
+ */
+ rx_ring = &qdev->rx_ring[0];
+ if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
+ QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
+ ql_disable_completion_interrupt(qdev, intr_context->intr);
+ queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
+ &rx_ring->rx_work, 0);
+ work_done++;
+ }
+
+ if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ /*
+ * Start the DPC for each active queue.
+ */
+ for (i = 1; i < qdev->rx_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
+ rx_ring->cnsmr_idx) {
+ QPRINTK(qdev, INTR, INFO,
+ "Waking handler for rx_ring[%d].\n", i);
+ ql_disable_completion_interrupt(qdev,
+ intr_context->
+ intr);
+ if (i < qdev->rss_ring_first_cq_id)
+ queue_delayed_work_on(rx_ring->cpu,
+ qdev->q_workqueue,
+ &rx_ring->rx_work,
+ 0);
+ else
+ netif_rx_schedule(qdev->ndev,
+ &rx_ring->napi);
+ work_done++;
+ }
+ }
+ }
+ return work_done ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+
+ if (skb_is_gso(skb)) {
+ int err;
+ if (skb_header_cloned(skb)) {
+ err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+ if (err)
+ return err;
+ }
+
+ mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+ mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
+ mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+ mac_iocb_ptr->total_hdrs_len =
+ cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
+ mac_iocb_ptr->net_trans_offset =
+ cpu_to_le16(skb_network_offset(skb) |
+ skb_transport_offset(skb)
+ << OB_MAC_TRANSPORT_HDR_SHIFT);
+ mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
+ mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
+ if (likely(skb->protocol == htons(ETH_P_IP))) {
+ struct iphdr *iph = ip_hdr(skb);
+ iph->check = 0;
+ mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+ tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+ iph->daddr, 0,
+ IPPROTO_TCP,
+ 0);
+ } else if (skb->protocol == htons(ETH_P_IPV6)) {
+ mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
+ tcp_hdr(skb)->check =
+ ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+ &ipv6_hdr(skb)->daddr,
+ 0, IPPROTO_TCP, 0);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static void ql_hw_csum_setup(struct sk_buff *skb,
+ struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+ int len;
+ struct iphdr *iph = ip_hdr(skb);
+ u16 *check;
+ mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+ mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+ mac_iocb_ptr->net_trans_offset =
+ cpu_to_le16(skb_network_offset(skb) |
+ skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
+
+ mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+ len = (ntohs(iph->tot_len) - (iph->ihl << 2));
+ if (likely(iph->protocol == IPPROTO_TCP)) {
+ check = &(tcp_hdr(skb)->check);
+ mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
+ mac_iocb_ptr->total_hdrs_len =
+ cpu_to_le16(skb_transport_offset(skb) +
+ (tcp_hdr(skb)->doff << 2));
+ } else {
+ check = &(udp_hdr(skb)->check);
+ mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
+ mac_iocb_ptr->total_hdrs_len =
+ cpu_to_le16(skb_transport_offset(skb) +
+ sizeof(struct udphdr));
+ }
+ *check = ~csum_tcpudp_magic(iph->saddr,
+ iph->daddr, len, iph->protocol, 0);
+}
+
+static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
+{
+ struct tx_ring_desc *tx_ring_desc;
+ struct ob_mac_iocb_req *mac_iocb_ptr;
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int tso;
+ struct tx_ring *tx_ring;
+ u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
+
+ tx_ring = &qdev->tx_ring[tx_ring_idx];
+
+ if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
+ QPRINTK(qdev, TX_QUEUED, INFO,
+ "%s: shutting down tx queue %d du to lack of resources.\n",
+ __func__, tx_ring_idx);
+ netif_stop_queue(ndev);
+ atomic_inc(&tx_ring->queue_stopped);
+ return NETDEV_TX_BUSY;
+ }
+ tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
+ mac_iocb_ptr = tx_ring_desc->queue_entry;
+ memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
+ if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
+ QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
+ return NETDEV_TX_BUSY;
+ }
+
+ mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
+ mac_iocb_ptr->tid = tx_ring_desc->index;
+ /* We use the upper 32-bits to store the tx queue for this IO.
+ * When we get the completion we can use it to establish the context.
+ */
+ mac_iocb_ptr->txq_idx = tx_ring_idx;
+ tx_ring_desc->skb = skb;
+
+ mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
+
+ if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
+ QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
+ vlan_tx_tag_get(skb));
+ mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
+ mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
+ }
+ tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+ if (tso < 0) {
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+ } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
+ ql_hw_csum_setup(skb,
+ (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+ }
+ QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
+ tx_ring->prod_idx++;
+ if (tx_ring->prod_idx == tx_ring->wq_len)
+ tx_ring->prod_idx = 0;
+ wmb();
+
+ ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
+ ndev->trans_start = jiffies;
+ QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
+ tx_ring->prod_idx, skb->len);
+
+ atomic_dec(&tx_ring->tx_count);
+ return NETDEV_TX_OK;
+}
+
+static void ql_free_shadow_space(struct ql_adapter *qdev)
+{
+ if (qdev->rx_ring_shadow_reg_area) {
+ pci_free_consistent(qdev->pdev,
+ PAGE_SIZE,
+ qdev->rx_ring_shadow_reg_area,
+ qdev->rx_ring_shadow_reg_dma);
+ qdev->rx_ring_shadow_reg_area = NULL;
+ }
+ if (qdev->tx_ring_shadow_reg_area) {
+ pci_free_consistent(qdev->pdev,
+ PAGE_SIZE,
+ qdev->tx_ring_shadow_reg_area,
+ qdev->tx_ring_shadow_reg_dma);
+ qdev->tx_ring_shadow_reg_area = NULL;
+ }
+}
+
+static int ql_alloc_shadow_space(struct ql_adapter *qdev)
+{
+ qdev->rx_ring_shadow_reg_area =
+ pci_alloc_consistent(qdev->pdev,
+ PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
+ if (qdev->rx_ring_shadow_reg_area == NULL) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Allocation of RX shadow space failed.\n");
+ return -ENOMEM;
+ }
+ qdev->tx_ring_shadow_reg_area =
+ pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
+ &qdev->tx_ring_shadow_reg_dma);
+ if (qdev->tx_ring_shadow_reg_area == NULL) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Allocation of TX shadow space failed.\n");
+ goto err_wqp_sh_area;
+ }
+ return 0;
+
+err_wqp_sh_area:
+ pci_free_consistent(qdev->pdev,
+ PAGE_SIZE,
+ qdev->rx_ring_shadow_reg_area,
+ qdev->rx_ring_shadow_reg_dma);
+ return -ENOMEM;
+}
+
+static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+ struct tx_ring_desc *tx_ring_desc;
+ int i;
+ struct ob_mac_iocb_req *mac_iocb_ptr;
+
+ mac_iocb_ptr = tx_ring->wq_base;
+ tx_ring_desc = tx_ring->q;
+ for (i = 0; i < tx_ring->wq_len; i++) {
+ tx_ring_desc->index = i;
+ tx_ring_desc->skb = NULL;
+ tx_ring_desc->queue_entry = mac_iocb_ptr;
+ mac_iocb_ptr++;
+ tx_ring_desc++;
+ }
+ atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
+ atomic_set(&tx_ring->queue_stopped, 0);
+}
+
+static void ql_free_tx_resources(struct ql_adapter *qdev,
+ struct tx_ring *tx_ring)
+{
+ if (tx_ring->wq_base) {
+ pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+ tx_ring->wq_base, tx_ring->wq_base_dma);
+ tx_ring->wq_base = NULL;
+ }
+ kfree(tx_ring->q);
+ tx_ring->q = NULL;
+}
+
+static int ql_alloc_tx_resources(struct ql_adapter *qdev,
+ struct tx_ring *tx_ring)
+{
+ tx_ring->wq_base =
+ pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
+ &tx_ring->wq_base_dma);
+
+ if ((tx_ring->wq_base == NULL)
+ || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
+ QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
+ return -ENOMEM;
+ }
+ tx_ring->q =
+ kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
+ if (tx_ring->q == NULL)
+ goto err;
+
+ return 0;
+err:
+ pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+ tx_ring->wq_base, tx_ring->wq_base_dma);
+ return -ENOMEM;
+}
+
+void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *lbq_desc;
+
+ for (i = 0; i < rx_ring->lbq_len; i++) {
+ lbq_desc = &rx_ring->lbq[i];
+ if (lbq_desc->p.lbq_page) {
+ pci_unmap_page(qdev->pdev,
+ pci_unmap_addr(lbq_desc, mapaddr),
+ pci_unmap_len(lbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+
+ put_page(lbq_desc->p.lbq_page);
+ lbq_desc->p.lbq_page = NULL;
+ }
+ lbq_desc->bq->addr_lo = 0;
+ lbq_desc->bq->addr_hi = 0;
+ }
+}
+
+/*
+ * Allocate and map a page for each element of the lbq.
+ */
+static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *lbq_desc;
+ u64 map;
+ struct bq_element *bq = rx_ring->lbq_base;
+
+ for (i = 0; i < rx_ring->lbq_len; i++) {
+ lbq_desc = &rx_ring->lbq[i];
+ memset(lbq_desc, 0, sizeof(lbq_desc));
+ lbq_desc->bq = bq;
+ lbq_desc->index = i;
+ lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
+ if (unlikely(!lbq_desc->p.lbq_page)) {
+ QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
+ goto mem_error;
+ } else {
+ map = pci_map_page(qdev->pdev,
+ lbq_desc->p.lbq_page,
+ 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ QPRINTK(qdev, IFUP, ERR,
+ "PCI mapping failed.\n");
+ goto mem_error;
+ }
+ pci_unmap_addr_set(lbq_desc, mapaddr, map);
+ pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
+ bq->addr_lo = cpu_to_le32(map);
+ bq->addr_hi = cpu_to_le32(map >> 32);
+ }
+ bq++;
+ }
+ return 0;
+mem_error:
+ ql_free_lbq_buffers(qdev, rx_ring);
+ return -ENOMEM;
+}
+
+void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *sbq_desc;
+
+ for (i = 0; i < rx_ring->sbq_len; i++) {
+ sbq_desc = &rx_ring->sbq[i];
+ if (sbq_desc == NULL) {
+ QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
+ return;
+ }
+ if (sbq_desc->p.skb) {
+ pci_unmap_single(qdev->pdev,
+ pci_unmap_addr(sbq_desc, mapaddr),
+ pci_unmap_len(sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ dev_kfree_skb(sbq_desc->p.skb);
+ sbq_desc->p.skb = NULL;
+ }
+ if (sbq_desc->bq == NULL) {
+ QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
+ i);
+ return;
+ }
+ sbq_desc->bq->addr_lo = 0;
+ sbq_desc->bq->addr_hi = 0;
+ }
+}
+
+/* Allocate and map an skb for each element of the sbq. */
+static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *sbq_desc;
+ struct sk_buff *skb;
+ u64 map;
+ struct bq_element *bq = rx_ring->sbq_base;
+
+ for (i = 0; i < rx_ring->sbq_len; i++) {
+ sbq_desc = &rx_ring->sbq[i];
+ memset(sbq_desc, 0, sizeof(sbq_desc));
+ sbq_desc->index = i;
+ sbq_desc->bq = bq;
+ skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
+ if (unlikely(!skb)) {
+ /* Better luck next round */
+ QPRINTK(qdev, IFUP, ERR,
+ "small buff alloc failed for %d bytes at index %d.\n",
+ rx_ring->sbq_buf_size, i);
+ goto mem_err;
+ }
+ skb_reserve(skb, QLGE_SB_PAD);
+ sbq_desc->p.skb = skb;
+ /*
+ * Map only half the buffer. Because the
+ * other half may get some data copied to it
+ * when the completion arrives.
+ */
+ map = pci_map_single(qdev->pdev,
+ skb->data,
+ rx_ring->sbq_buf_size / 2,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
+ goto mem_err;
+ }
+ pci_unmap_addr_set(sbq_desc, mapaddr, map);
+ pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
+ bq->addr_lo = /*sbq_desc->addr_lo = */
+ cpu_to_le32(map);
+ bq->addr_hi = /*sbq_desc->addr_hi = */
+ cpu_to_le32(map >> 32);
+ bq++;
+ }
+ return 0;
+mem_err:
+ ql_free_sbq_buffers(qdev, rx_ring);
+ return -ENOMEM;
+}
+
+static void ql_free_rx_resources(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ if (rx_ring->sbq_len)
+ ql_free_sbq_buffers(qdev, rx_ring);
+ if (rx_ring->lbq_len)
+ ql_free_lbq_buffers(qdev, rx_ring);
+
+ /* Free the small buffer queue. */
+ if (rx_ring->sbq_base) {
+ pci_free_consistent(qdev->pdev,
+ rx_ring->sbq_size,
+ rx_ring->sbq_base, rx_ring->sbq_base_dma);
+ rx_ring->sbq_base = NULL;
+ }
+
+ /* Free the small buffer queue control blocks. */
+ kfree(rx_ring->sbq);
+ rx_ring->sbq = NULL;
+
+ /* Free the large buffer queue. */
+ if (rx_ring->lbq_base) {
+ pci_free_consistent(qdev->pdev,
+ rx_ring->lbq_size,
+ rx_ring->lbq_base, rx_ring->lbq_base_dma);
+ rx_ring->lbq_base = NULL;
+ }
+
+ /* Free the large buffer queue control blocks. */
+ kfree(rx_ring->lbq);
+ rx_ring->lbq = NULL;
+
+ /* Free the rx queue. */
+ if (rx_ring->cq_base) {
+ pci_free_consistent(qdev->pdev,
+ rx_ring->cq_size,
+ rx_ring->cq_base, rx_ring->cq_base_dma);
+ rx_ring->cq_base = NULL;
+ }
+}
+
+/* Allocate queues and buffers for this completions queue based
+ * on the values in the parameter structure. */
+static int ql_alloc_rx_resources(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+
+ /*
+ * Allocate the completion queue for this rx_ring.
+ */
+ rx_ring->cq_base =
+ pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
+ &rx_ring->cq_base_dma);
+
+ if (rx_ring->cq_base == NULL) {
+ QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
+ return -ENOMEM;
+ }
+
+ if (rx_ring->sbq_len) {
+ /*
+ * Allocate small buffer queue.
+ */
+ rx_ring->sbq_base =
+ pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
+ &rx_ring->sbq_base_dma);
+
+ if (rx_ring->sbq_base == NULL) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Small buffer queue allocation failed.\n");
+ goto err_mem;
+ }
+
+ /*
+ * Allocate small buffer queue control blocks.
+ */
+ rx_ring->sbq =
+ kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
+ GFP_KERNEL);
+ if (rx_ring->sbq == NULL) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Small buffer queue control block allocation failed.\n");
+ goto err_mem;
+ }
+
+ if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Small buffer allocation failed.\n");
+ goto err_mem;
+ }
+ }
+
+ if (rx_ring->lbq_len) {
+ /*
+ * Allocate large buffer queue.
+ */
+ rx_ring->lbq_base =
+ pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
+ &rx_ring->lbq_base_dma);
+
+ if (rx_ring->lbq_base == NULL) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Large buffer queue allocation failed.\n");
+ goto err_mem;
+ }
+ /*
+ * Allocate large buffer queue control blocks.
+ */
+ rx_ring->lbq =
+ kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
+ GFP_KERNEL);
+ if (rx_ring->lbq == NULL) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Large buffer queue control block allocation failed.\n");
+ goto err_mem;
+ }
+
+ /*
+ * Allocate the buffers.
+ */
+ if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Large buffer allocation failed.\n");
+ goto err_mem;
+ }
+ }
+
+ return 0;
+
+err_mem:
+ ql_free_rx_resources(qdev, rx_ring);
+ return -ENOMEM;
+}
+
+static void ql_tx_ring_clean(struct ql_adapter *qdev)
+{
+ struct tx_ring *tx_ring;
+ struct tx_ring_desc *tx_ring_desc;
+ int i, j;
+
+ /*
+ * Loop through all queues and free
+ * any resources.
+ */
+ for (j = 0; j < qdev->tx_ring_count; j++) {
+ tx_ring = &qdev->tx_ring[j];
+ for (i = 0; i < tx_ring->wq_len; i++) {
+ tx_ring_desc = &tx_ring->q[i];
+ if (tx_ring_desc && tx_ring_desc->skb) {
+ QPRINTK(qdev, IFDOWN, ERR,
+ "Freeing lost SKB %p, from queue %d, index %d.\n",
+ tx_ring_desc->skb, j,
+ tx_ring_desc->index);
+ ql_unmap_send(qdev, tx_ring_desc,
+ tx_ring_desc->map_cnt);
+ dev_kfree_skb(tx_ring_desc->skb);
+ tx_ring_desc->skb = NULL;
+ }
+ }
+ }
+}
+
+static void ql_free_ring_cb(struct ql_adapter *qdev)
+{
+ kfree(qdev->ring_mem);
+}
+
+static int ql_alloc_ring_cb(struct ql_adapter *qdev)
+{
+ /* Allocate space for tx/rx ring control blocks. */
+ qdev->ring_mem_size =
+ (qdev->tx_ring_count * sizeof(struct tx_ring)) +
+ (qdev->rx_ring_count * sizeof(struct rx_ring));
+ qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
+ if (qdev->ring_mem == NULL) {
+ return -ENOMEM;
+ } else {
+ qdev->rx_ring = qdev->ring_mem;
+ qdev->tx_ring = qdev->ring_mem +
+ (qdev->rx_ring_count * sizeof(struct rx_ring));
+ }
+ return 0;
+}
+
+static void ql_free_mem_resources(struct ql_adapter *qdev)
+{
+ int i;
+
+ for (i = 0; i < qdev->tx_ring_count; i++)
+ ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
+ for (i = 0; i < qdev->rx_ring_count; i++)
+ ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
+ ql_free_shadow_space(qdev);
+}
+
+static int ql_alloc_mem_resources(struct ql_adapter *qdev)
+{
+ int i;
+
+ /* Allocate space for our shadow registers and such. */
+ if (ql_alloc_shadow_space(qdev))
+ return -ENOMEM;
+
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
+ QPRINTK(qdev, IFUP, ERR,
+ "RX resource allocation failed.\n");
+ goto err_mem;
+ }
+ }
+ /* Allocate tx queue resources */
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
+ QPRINTK(qdev, IFUP, ERR,
+ "TX resource allocation failed.\n");
+ goto err_mem;
+ }
+ }
+ return 0;
+
+err_mem:
+ ql_free_mem_resources(qdev);
+ return -ENOMEM;
+}
+
+/* Set up the rx ring control block and pass it to the chip.
+ * The control block is defined as
+ * "Completion Queue Initialization Control Block", or cqicb.
+ */
+static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ struct cqicb *cqicb = &rx_ring->cqicb;
+ void *shadow_reg = qdev->rx_ring_shadow_reg_area +
+ (rx_ring->cq_id * sizeof(u64) * 4);
+ u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
+ (rx_ring->cq_id * sizeof(u64) * 4);
+ void __iomem *doorbell_area =
+ qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
+ int err = 0;
+ u16 bq_len;
+
+ /* Set up the shadow registers for this ring. */
+ rx_ring->prod_idx_sh_reg = shadow_reg;
+ rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
+ shadow_reg += sizeof(u64);
+ shadow_reg_dma += sizeof(u64);
+ rx_ring->lbq_base_indirect = shadow_reg;
+ rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
+ shadow_reg += sizeof(u64);
+ shadow_reg_dma += sizeof(u64);
+ rx_ring->sbq_base_indirect = shadow_reg;
+ rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
+
+ /* PCI doorbell mem area + 0x00 for consumer index register */
+ rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
+ rx_ring->cnsmr_idx = 0;
+ rx_ring->curr_entry = rx_ring->cq_base;
+
+ /* PCI doorbell mem area + 0x04 for valid register */
+ rx_ring->valid_db_reg = doorbell_area + 0x04;
+
+ /* PCI doorbell mem area + 0x18 for large buffer consumer */
+ rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
+
+ /* PCI doorbell mem area + 0x1c */
+ rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
+
+ memset((void *)cqicb, 0, sizeof(struct cqicb));
+ cqicb->msix_vect = rx_ring->irq;
+
+ cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
+
+ cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
+ cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
+
+ cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
+ cqicb->prod_idx_addr_hi =
+ cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
+
+ /*
+ * Set up the control block load flags.
+ */
+ cqicb->flags = FLAGS_LC | /* Load queue base address */
+ FLAGS_LV | /* Load MSI-X vector */
+ FLAGS_LI; /* Load irq delay values */
+ if (rx_ring->lbq_len) {
+ cqicb->flags |= FLAGS_LL; /* Load lbq values */
+ *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
+ cqicb->lbq_addr_lo =
+ cpu_to_le32(rx_ring->lbq_base_indirect_dma);
+ cqicb->lbq_addr_hi =
+ cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
+ cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
+ bq_len = (u16) rx_ring->lbq_len;
+ cqicb->lbq_len = cpu_to_le16(bq_len);
+ rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
+ rx_ring->lbq_curr_idx = 0;
+ rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
+ rx_ring->lbq_free_cnt = 16;
+ }
+ if (rx_ring->sbq_len) {
+ cqicb->flags |= FLAGS_LS; /* Load sbq values */
+ *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
+ cqicb->sbq_addr_lo =
+ cpu_to_le32(rx_ring->sbq_base_indirect_dma);
+ cqicb->sbq_addr_hi =
+ cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
+ cqicb->sbq_buf_size =
+ cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
+ bq_len = (u16) rx_ring->sbq_len;
+ cqicb->sbq_len = cpu_to_le16(bq_len);
+ rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
+ rx_ring->sbq_curr_idx = 0;
+ rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
+ rx_ring->sbq_free_cnt = 16;
+ }
+ switch (rx_ring->type) {
+ case TX_Q:
+ /* If there's only one interrupt, then we use
+ * worker threads to process the outbound
+ * completion handling rx_rings. We do this so
+ * they can be run on multiple CPUs. There is
+ * room to play with this more where we would only
+ * run in a worker if there are more than x number
+ * of outbound completions on the queue and more
+ * than one queue active. Some threshold that
+ * would indicate a benefit in spite of the cost
+ * of a context switch.
+ * If there's more than one interrupt, then the
+ * outbound completions are processed in the ISR.
+ */
+ if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
+ INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
+ else {
+ /* With all debug warnings on we see a WARN_ON message
+ * when we free the skb in the interrupt context.
+ */
+ INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
+ }
+ cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
+ cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
+ break;
+ case DEFAULT_Q:
+ INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
+ cqicb->irq_delay = 0;
+ cqicb->pkt_delay = 0;
+ break;
+ case RX_Q:
+ /* Inbound completion handling rx_rings run in
+ * separate NAPI contexts.
+ */
+ netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
+ 64);
+ cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
+ cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
+ break;
+ default:
+ QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
+ rx_ring->type);
+ }
+ QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
+ err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
+ CFG_LCQ, rx_ring->cq_id);
+ if (err) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
+ return err;
+ }
+ QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
+ /*
+ * Advance the producer index for the buffer queues.
+ */
+ wmb();
+ if (rx_ring->lbq_len)
+ ql_write_db_reg(rx_ring->lbq_prod_idx,
+ rx_ring->lbq_prod_idx_db_reg);
+ if (rx_ring->sbq_len)
+ ql_write_db_reg(rx_ring->sbq_prod_idx,
+ rx_ring->sbq_prod_idx_db_reg);
+ return err;
+}
+
+static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+ struct wqicb *wqicb = (struct wqicb *)tx_ring;
+ void __iomem *doorbell_area =
+ qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
+ void *shadow_reg = qdev->tx_ring_shadow_reg_area +
+ (tx_ring->wq_id * sizeof(u64));
+ u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
+ (tx_ring->wq_id * sizeof(u64));
+ int err = 0;
+
+ /*
+ * Assign doorbell registers for this tx_ring.
+ */
+ /* TX PCI doorbell mem area for tx producer index */
+ tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
+ tx_ring->prod_idx = 0;
+ /* TX PCI doorbell mem area + 0x04 */
+ tx_ring->valid_db_reg = doorbell_area + 0x04;
+
+ /*
+ * Assign shadow registers for this tx_ring.
+ */
+ tx_ring->cnsmr_idx_sh_reg = shadow_reg;
+ tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
+
+ wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
+ wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
+ Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
+ wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
+ wqicb->rid = 0;
+ wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
+ wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
+
+ wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
+ wqicb->cnsmr_idx_addr_hi =
+ cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
+
+ ql_init_tx_ring(qdev, tx_ring);
+
+ err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
+ (u16) tx_ring->wq_id);
+ if (err) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
+ return err;
+ }
+ QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
+ return err;
+}
+
+static void ql_disable_msix(struct ql_adapter *qdev)
+{
+ if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ pci_disable_msix(qdev->pdev);
+ clear_bit(QL_MSIX_ENABLED, &qdev->flags);
+ kfree(qdev->msi_x_entry);
+ qdev->msi_x_entry = NULL;
+ } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
+ pci_disable_msi(qdev->pdev);
+ clear_bit(QL_MSI_ENABLED, &qdev->flags);
+ }
+}
+
+static void ql_enable_msix(struct ql_adapter *qdev)
+{
+ int i;
+
+ qdev->intr_count = 1;
+ /* Get the MSIX vectors. */
+ if (irq_type == MSIX_IRQ) {
+ /* Try to alloc space for the msix struct,
+ * if it fails then go to MSI/legacy.
+ */
+ qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
+ sizeof(struct msix_entry),
+ GFP_KERNEL);
+ if (!qdev->msi_x_entry) {
+ irq_type = MSI_IRQ;
+ goto msi;
+ }
+
+ for (i = 0; i < qdev->rx_ring_count; i++)
+ qdev->msi_x_entry[i].entry = i;
+
+ if (!pci_enable_msix
+ (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
+ set_bit(QL_MSIX_ENABLED, &qdev->flags);
+ qdev->intr_count = qdev->rx_ring_count;
+ QPRINTK(qdev, IFUP, INFO,
+ "MSI-X Enabled, got %d vectors.\n",
+ qdev->intr_count);
+ return;
+ } else {
+ kfree(qdev->msi_x_entry);
+ qdev->msi_x_entry = NULL;
+ QPRINTK(qdev, IFUP, WARNING,
+ "MSI-X Enable failed, trying MSI.\n");
+ irq_type = MSI_IRQ;
+ }
+ }
+msi:
+ if (irq_type == MSI_IRQ) {
+ if (!pci_enable_msi(qdev->pdev)) {
+ set_bit(QL_MSI_ENABLED, &qdev->flags);
+ QPRINTK(qdev, IFUP, INFO,
+ "Running with MSI interrupts.\n");
+ return;
+ }
+ }
+ irq_type = LEG_IRQ;
+ spin_lock_init(&qdev->legacy_lock);
+ qdev->legacy_check = ql_legacy_check;
+ QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
+}
+
+/*
+ * Here we build the intr_context structures based on
+ * our rx_ring count and intr vector count.
+ * The intr_context structure is used to hook each vector
+ * to possibly different handlers.
+ */
+static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
+{
+ int i = 0;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+
+ ql_enable_msix(qdev);
+
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
+ /* Each rx_ring has it's
+ * own intr_context since we have separate
+ * vectors for each queue.
+ * This only true when MSI-X is enabled.
+ */
+ for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+ qdev->rx_ring[i].irq = i;
+ intr_context->intr = i;
+ intr_context->qdev = qdev;
+ /*
+ * We set up each vectors enable/disable/read bits so
+ * there's no bit/mask calculations in the critical path.
+ */
+ intr_context->intr_en_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
+ | i;
+ intr_context->intr_dis_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
+ INTR_EN_IHD | i;
+ intr_context->intr_read_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
+ i;
+
+ if (i == 0) {
+ /*
+ * Default queue handles bcast/mcast plus
+ * async events. Needs buffers.
+ */
+ intr_context->handler = qlge_isr;
+ sprintf(intr_context->name, "%s-default-queue",
+ qdev->ndev->name);
+ } else if (i < qdev->rss_ring_first_cq_id) {
+ /*
+ * Outbound queue is for outbound completions only.
+ */
+ intr_context->handler = qlge_msix_tx_isr;
+ sprintf(intr_context->name, "%s-txq-%d",
+ qdev->ndev->name, i);
+ } else {
+ /*
+ * Inbound queues handle unicast frames only.
+ */
+ intr_context->handler = qlge_msix_rx_isr;
+ sprintf(intr_context->name, "%s-rxq-%d",
+ qdev->ndev->name, i);
+ }
+ }
+ } else {
+ /*
+ * All rx_rings use the same intr_context since
+ * there is only one vector.
+ */
+ intr_context->intr = 0;
+ intr_context->qdev = qdev;
+ /*
+ * We set up each vectors enable/disable/read bits so
+ * there's no bit/mask calculations in the critical path.
+ */
+ intr_context->intr_en_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
+ intr_context->intr_dis_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_DISABLE;
+ intr_context->intr_read_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
+ /*
+ * Single interrupt means one handler for all rings.
+ */
+ intr_context->handler = qlge_isr;
+ sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
+ for (i = 0; i < qdev->rx_ring_count; i++)
+ qdev->rx_ring[i].irq = 0;
+ }
+}
+
+static void ql_free_irq(struct ql_adapter *qdev)
+{
+ int i;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+
+ for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+ if (intr_context->hooked) {
+ if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ free_irq(qdev->msi_x_entry[i].vector,
+ &qdev->rx_ring[i]);
+ QPRINTK(qdev, IFDOWN, ERR,
+ "freeing msix interrupt %d.\n", i);
+ } else {
+ free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
+ QPRINTK(qdev, IFDOWN, ERR,
+ "freeing msi interrupt %d.\n", i);
+ }
+ }
+ }
+ ql_disable_msix(qdev);
+}
+
+static int ql_request_irq(struct ql_adapter *qdev)
+{
+ int i;
+ int status = 0;
+ struct pci_dev *pdev = qdev->pdev;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+
+ ql_resolve_queues_to_irqs(qdev);
+
+ for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+ atomic_set(&intr_context->irq_cnt, 0);
+ if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ status = request_irq(qdev->msi_x_entry[i].vector,
+ intr_context->handler,
+ 0,
+ intr_context->name,
+ &qdev->rx_ring[i]);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed request for MSIX interrupt %d.\n",
+ i);
+ goto err_irq;
+ } else {
+ QPRINTK(qdev, IFUP, INFO,
+ "Hooked intr %d, queue type %s%s%s, with name %s.\n",
+ i,
+ qdev->rx_ring[i].type ==
+ DEFAULT_Q ? "DEFAULT_Q" : "",
+ qdev->rx_ring[i].type ==
+ TX_Q ? "TX_Q" : "",
+ qdev->rx_ring[i].type ==
+ RX_Q ? "RX_Q" : "", intr_context->name);
+ }
+ } else {
+ QPRINTK(qdev, IFUP, DEBUG,
+ "trying msi or legacy interrupts.\n");
+ QPRINTK(qdev, IFUP, DEBUG,
+ "%s: irq = %d.\n", __func__, pdev->irq);
+ QPRINTK(qdev, IFUP, DEBUG,
+ "%s: context->name = %s.\n", __func__,
+ intr_context->name);
+ QPRINTK(qdev, IFUP, DEBUG,
+ "%s: dev_id = 0x%p.\n", __func__,
+ &qdev->rx_ring[0]);
+ status =
+ request_irq(pdev->irq, qlge_isr,
+ test_bit(QL_MSI_ENABLED,
+ &qdev->
+ flags) ? 0 : IRQF_SHARED,
+ intr_context->name, &qdev->rx_ring[0]);
+ if (status)
+ goto err_irq;
+
+ QPRINTK(qdev, IFUP, ERR,
+ "Hooked intr %d, queue type %s%s%s, with name %s.\n",
+ i,
+ qdev->rx_ring[0].type ==
+ DEFAULT_Q ? "DEFAULT_Q" : "",
+ qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
+ qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
+ intr_context->name);
+ }
+ intr_context->hooked = 1;
+ }
+ return status;
+err_irq:
+ QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
+ ql_free_irq(qdev);
+ return status;
+}
+
+static int ql_start_rss(struct ql_adapter *qdev)
+{
+ struct ricb *ricb = &qdev->ricb;
+ int status = 0;
+ int i;
+ u8 *hash_id = (u8 *) ricb->hash_cq_id;
+
+ memset((void *)ricb, 0, sizeof(ricb));
+
+ ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
+ ricb->flags =
+ (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
+ RSS_RT6);
+ ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
+
+ /*
+ * Fill out the Indirection Table.
+ */
+ for (i = 0; i < 32; i++)
+ hash_id[i] = i & 1;
+
+ /*
+ * Random values for the IPv6 and IPv4 Hash Keys.
+ */
+ get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
+ get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
+
+ QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
+
+ status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
+ return status;
+ }
+ QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
+ return status;
+}
+
+/* Initialize the frame-to-queue routing. */
+static int ql_route_initialize(struct ql_adapter *qdev)
+{
+ int status = 0;
+ int i;
+
+ /* Clear all the entries in the routing table. */
+ for (i = 0; i < 16; i++) {
+ status = ql_set_routing_reg(qdev, i, 0, 0);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to init routing register for CAM packets.\n");
+ return status;
+ }
+ }
+
+ status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to init routing register for error packets.\n");
+ return status;
+ }
+ status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to init routing register for broadcast packets.\n");
+ return status;
+ }
+ /* If we have more than one inbound queue, then turn on RSS in the
+ * routing block.
+ */
+ if (qdev->rss_ring_count > 1) {
+ status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
+ RT_IDX_RSS_MATCH, 1);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to init routing register for MATCH RSS packets.\n");
+ return status;
+ }
+ }
+
+ status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
+ RT_IDX_CAM_HIT, 1);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to init routing register for CAM packets.\n");
+ return status;
+ }
+ return status;
+}
+
+static int ql_adapter_initialize(struct ql_adapter *qdev)
+{
+ u32 value, mask;
+ int i;
+ int status = 0;
+
+ /*
+ * Set up the System register to halt on errors.
+ */
+ value = SYS_EFE | SYS_FAE;
+ mask = value << 16;
+ ql_write32(qdev, SYS, mask | value);
+
+ /* Set the default queue. */
+ value = NIC_RCV_CFG_DFQ;
+ mask = NIC_RCV_CFG_DFQ_MASK;
+ ql_write32(qdev, NIC_RCV_CFG, (mask | value));
+
+ /* Set the MPI interrupt to enabled. */
+ ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
+
+ /* Enable the function, set pagesize, enable error checking. */
+ value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
+ FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
+
+ /* Set/clear header splitting. */
+ mask = FSC_VM_PAGESIZE_MASK |
+ FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
+ ql_write32(qdev, FSC, mask | value);
+
+ ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
+ min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
+
+ /* Start up the rx queues. */
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to start rx ring[%d].\n", i);
+ return status;
+ }
+ }
+
+ /* If there is more than one inbound completion queue
+ * then download a RICB to configure RSS.
+ */
+ if (qdev->rss_ring_count > 1) {
+ status = ql_start_rss(qdev);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
+ return status;
+ }
+ }
+
+ /* Start up the tx queues. */
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Failed to start tx ring[%d].\n", i);
+ return status;
+ }
+ }
+
+ status = ql_port_initialize(qdev);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
+ return status;
+ }
+
+ status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
+ MAC_ADDR_TYPE_CAM_MAC, qdev->func);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
+ return status;
+ }
+
+ status = ql_route_initialize(qdev);
+ if (status) {
+ QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
+ return status;
+ }
+
+ /* Start NAPI for the RSS queues. */
+ for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
+ QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
+ i);
+ napi_enable(&qdev->rx_ring[i].napi);
+ }
+
+ return status;
+}
+
+/* Issue soft reset to chip. */
+static int ql_adapter_reset(struct ql_adapter *qdev)
+{
+ u32 value;
+ int max_wait_time;
+ int status = 0;
+ int resetCnt = 0;
+
+#define MAX_RESET_CNT 1
+issueReset:
+ resetCnt++;
+ QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
+ ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
+ /* Wait for reset to complete. */
+ max_wait_time = 3;
+ QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
+ max_wait_time);
+ do {
+ value = ql_read32(qdev, RST_FO);
+ if ((value & RST_FO_FR) == 0)
+ break;
+
+ ssleep(1);
+ } while ((--max_wait_time));
+ if (value & RST_FO_FR) {
+ QPRINTK(qdev, IFDOWN, ERR,
+ "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
+ if (resetCnt < MAX_RESET_CNT)
+ goto issueReset;
+ }
+ if (max_wait_time == 0) {
+ status = -ETIMEDOUT;
+ QPRINTK(qdev, IFDOWN, ERR,
+ "ETIMEOUT!!! errored out of resetting the chip!\n");
+ }
+
+ return status;
+}
+
+static void ql_display_dev_info(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+
+ QPRINTK(qdev, PROBE, INFO,
+ "Function #%d, NIC Roll %d, NIC Rev = %d, "
+ "XG Roll = %d, XG Rev = %d.\n",
+ qdev->func,
+ qdev->chip_rev_id & 0x0000000f,
+ qdev->chip_rev_id >> 4 & 0x0000000f,
+ qdev->chip_rev_id >> 8 & 0x0000000f,
+ qdev->chip_rev_id >> 12 & 0x0000000f);
+ QPRINTK(qdev, PROBE, INFO,
+ "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
+ ndev->dev_addr[0], ndev->dev_addr[1],
+ ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
+ ndev->dev_addr[5]);
+}
+
+static int ql_adapter_down(struct ql_adapter *qdev)
+{
+ struct net_device *ndev = qdev->ndev;
+ int i, status = 0;
+ struct rx_ring *rx_ring;
+
+ netif_stop_queue(ndev);
+ netif_carrier_off(ndev);
+
+ cancel_delayed_work_sync(&qdev->asic_reset_work);
+ cancel_delayed_work_sync(&qdev->mpi_reset_work);
+ cancel_delayed_work_sync(&qdev->mpi_work);
+
+ /* The default queue at index 0 is always processed in
+ * a workqueue.
+ */
+ cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
+
+ /* The rest of the rx_rings are processed in
+ * a workqueue only if it's a single interrupt
+ * environment (MSI/Legacy).
+ */
+ for (i = 1; i > qdev->rx_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ /* Only the RSS rings use NAPI on multi irq
+ * environment. Outbound completion processing
+ * is done in interrupt context.
+ */
+ if (i >= qdev->rss_ring_first_cq_id) {
+ napi_disable(&rx_ring->napi);
+ } else {
+ cancel_delayed_work_sync(&rx_ring->rx_work);
+ }
+ }
+
+ clear_bit(QL_ADAPTER_UP, &qdev->flags);
+
+ ql_disable_interrupts(qdev);
+
+ ql_tx_ring_clean(qdev);
+
+ spin_lock(&qdev->hw_lock);
+ status = ql_adapter_reset(qdev);
+ if (status)
+ QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
+ qdev->func);
+ spin_unlock(&qdev->hw_lock);
+ return status;
+}
+
+static int ql_adapter_up(struct ql_adapter *qdev)
+{
+ int err = 0;
+
+ spin_lock(&qdev->hw_lock);
+ err = ql_adapter_initialize(qdev);
+ if (err) {
+ QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
+ spin_unlock(&qdev->hw_lock);
+ goto err_init;
+ }
+ spin_unlock(&qdev->hw_lock);
+ set_bit(QL_ADAPTER_UP, &qdev->flags);
+ ql_enable_interrupts(qdev);
+ ql_enable_all_completion_interrupts(qdev);
+ if ((ql_read32(qdev, STS) & qdev->port_init)) {
+ netif_carrier_on(qdev->ndev);
+ netif_start_queue(qdev->ndev);
+ }
+
+ return 0;
+err_init:
+ ql_adapter_reset(qdev);
+ return err;
+}
+
+static int ql_cycle_adapter(struct ql_adapter *qdev)
+{
+ int status;
+
+ status = ql_adapter_down(qdev);
+ if (status)
+ goto error;
+
+ status = ql_adapter_up(qdev);
+ if (status)
+ goto error;
+
+ return status;
+error:
+ QPRINTK(qdev, IFUP, ALERT,
+ "Driver up/down cycle failed, closing device\n");
+ rtnl_lock();
+ dev_close(qdev->ndev);
+ rtnl_unlock();
+ return status;
+}
+
+static void ql_release_adapter_resources(struct ql_adapter *qdev)
+{
+ ql_free_mem_resources(qdev);
+ ql_free_irq(qdev);
+}
+
+static int ql_get_adapter_resources(struct ql_adapter *qdev)
+{
+ int status = 0;
+
+ if (ql_alloc_mem_resources(qdev)) {
+ QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
+ return -ENOMEM;
+ }
+ status = ql_request_irq(qdev);
+ if (status)
+ goto err_irq;
+ return status;
+err_irq:
+ ql_free_mem_resources(qdev);
+ return status;
+}
+
+static int qlge_close(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ /*
+ * Wait for device to recover from a reset.
+ * (Rarely happens, but possible.)
+ */
+ while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
+ msleep(1);
+ ql_adapter_down(qdev);
+ ql_release_adapter_resources(qdev);
+ ql_free_ring_cb(qdev);
+ return 0;
+}
+
+static int ql_configure_rings(struct ql_adapter *qdev)
+{
+ int i;
+ struct rx_ring *rx_ring;
+ struct tx_ring *tx_ring;
+ int cpu_cnt = num_online_cpus();
+
+ /*
+ * For each processor present we allocate one
+ * rx_ring for outbound completions, and one
+ * rx_ring for inbound completions. Plus there is
+ * always the one default queue. For the CPU
+ * counts we end up with the following rx_rings:
+ * rx_ring count =
+ * one default queue +
+ * (CPU count * outbound completion rx_ring) +
+ * (CPU count * inbound (RSS) completion rx_ring)
+ * To keep it simple we limit the total number of
+ * queues to < 32, so we truncate CPU to 8.
+ * This limitation can be removed when requested.
+ */
+
+ if (cpu_cnt > 8)
+ cpu_cnt = 8;
+
+ /*
+ * rx_ring[0] is always the default queue.
+ */
+ /* Allocate outbound completion ring for each CPU. */
+ qdev->tx_ring_count = cpu_cnt;
+ /* Allocate inbound completion (RSS) ring for each CPU. */
+ qdev->rss_ring_count = cpu_cnt;
+ /* cq_id for the first inbound ring handler. */
+ qdev->rss_ring_first_cq_id = cpu_cnt + 1;
+ /*
+ * qdev->rx_ring_count:
+ * Total number of rx_rings. This includes the one
+ * default queue, a number of outbound completion
+ * handler rx_rings, and the number of inbound
+ * completion handler rx_rings.
+ */
+ qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
+
+ if (ql_alloc_ring_cb(qdev))
+ return -ENOMEM;
+
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ tx_ring = &qdev->tx_ring[i];
+ memset((void *)tx_ring, 0, sizeof(tx_ring));
+ tx_ring->qdev = qdev;
+ tx_ring->wq_id = i;
+ tx_ring->wq_len = qdev->tx_ring_size;
+ tx_ring->wq_size =
+ tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
+
+ /*
+ * The completion queue ID for the tx rings start
+ * immediately after the default Q ID, which is zero.
+ */
+ tx_ring->cq_id = i + 1;
+ }
+
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ memset((void *)rx_ring, 0, sizeof(rx_ring));
+ rx_ring->qdev = qdev;
+ rx_ring->cq_id = i;
+ rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
+ if (i == 0) { /* Default queue at index 0. */
+ /*
+ * Default queue handles bcast/mcast plus
+ * async events. Needs buffers.
+ */
+ rx_ring->cq_len = qdev->rx_ring_size;
+ rx_ring->cq_size =
+ rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+ rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+ rx_ring->lbq_size =
+ rx_ring->lbq_len * sizeof(struct bq_element);
+ rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
+ rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+ rx_ring->sbq_size =
+ rx_ring->sbq_len * sizeof(struct bq_element);
+ rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
+ rx_ring->type = DEFAULT_Q;
+ } else if (i < qdev->rss_ring_first_cq_id) {
+ /*
+ * Outbound queue handles outbound completions only.
+ */
+ /* outbound cq is same size as tx_ring it services. */
+ rx_ring->cq_len = qdev->tx_ring_size;
+ rx_ring->cq_size =
+ rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+ rx_ring->lbq_len = 0;
+ rx_ring->lbq_size = 0;
+ rx_ring->lbq_buf_size = 0;
+ rx_ring->sbq_len = 0;
+ rx_ring->sbq_size = 0;
+ rx_ring->sbq_buf_size = 0;
+ rx_ring->type = TX_Q;
+ } else { /* Inbound completions (RSS) queues */
+ /*
+ * Inbound queues handle unicast frames only.
+ */
+ rx_ring->cq_len = qdev->rx_ring_size;
+ rx_ring->cq_size =
+ rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+ rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+ rx_ring->lbq_size =
+ rx_ring->lbq_len * sizeof(struct bq_element);
+ rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
+ rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+ rx_ring->sbq_size =
+ rx_ring->sbq_len * sizeof(struct bq_element);
+ rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
+ rx_ring->type = RX_Q;
+ }
+ }
+ return 0;
+}
+
+static int qlge_open(struct net_device *ndev)
+{
+ int err = 0;
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ err = ql_configure_rings(qdev);
+ if (err)
+ return err;
+
+ err = ql_get_adapter_resources(qdev);
+ if (err)
+ goto error_up;
+
+ err = ql_adapter_up(qdev);
+ if (err)
+ goto error_up;
+
+ return err;
+
+error_up:
+ ql_release_adapter_resources(qdev);
+ ql_free_ring_cb(qdev);
+ return err;
+}
+
+static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (ndev->mtu == 1500 && new_mtu == 9000) {
+ QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
+ } else if (ndev->mtu == 9000 && new_mtu == 1500) {
+ QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
+ } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
+ (ndev->mtu == 9000 && new_mtu == 9000)) {
+ return 0;
+ } else
+ return -EINVAL;
+ ndev->mtu = new_mtu;
+ return 0;
+}
+
+static struct net_device_stats *qlge_get_stats(struct net_device
+ *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ return &qdev->stats;
+}
+
+static void qlge_set_multicast_list(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+ struct dev_mc_list *mc_ptr;
+ int i;
+
+ spin_lock(&qdev->hw_lock);
+ /*
+ * Set or clear promiscuous mode if a
+ * transition is taking place.
+ */
+ if (ndev->flags & IFF_PROMISC) {
+ if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
+ QPRINTK(qdev, HW, ERR,
+ "Failed to set promiscous mode.\n");
+ } else {
+ set_bit(QL_PROMISCUOUS, &qdev->flags);
+ }
+ }
+ } else {
+ if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
+ QPRINTK(qdev, HW, ERR,
+ "Failed to clear promiscous mode.\n");
+ } else {
+ clear_bit(QL_PROMISCUOUS, &qdev->flags);
+ }
+ }
+ }
+
+ /*
+ * Set or clear all multicast mode if a
+ * transition is taking place.
+ */
+ if ((ndev->flags & IFF_ALLMULTI) ||
+ (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
+ if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
+ QPRINTK(qdev, HW, ERR,
+ "Failed to set all-multi mode.\n");
+ } else {
+ set_bit(QL_ALLMULTI, &qdev->flags);
+ }
+ }
+ } else {
+ if (test_bit(QL_ALLMULTI, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
+ QPRINTK(qdev, HW, ERR,
+ "Failed to clear all-multi mode.\n");
+ } else {
+ clear_bit(QL_ALLMULTI, &qdev->flags);
+ }
+ }
+ }
+
+ if (ndev->mc_count) {
+ for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
+ i++, mc_ptr = mc_ptr->next)
+ if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
+ MAC_ADDR_TYPE_MULTI_MAC, i)) {
+ QPRINTK(qdev, HW, ERR,
+ "Failed to loadmulticast address.\n");
+ goto exit;
+ }
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
+ QPRINTK(qdev, HW, ERR,
+ "Failed to set multicast match mode.\n");
+ } else {
+ set_bit(QL_ALLMULTI, &qdev->flags);
+ }
+ }
+exit:
+ spin_unlock(&qdev->hw_lock);
+}
+
+static int qlge_set_mac_address(struct net_device *ndev, void *p)
+{
+ struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+ struct sockaddr *addr = p;
+
+ if (netif_running(ndev))
+ return -EBUSY;
+
+ if (!is_valid_ether_addr(addr->sa_data))
+ return -EADDRNOTAVAIL;
+ memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
+
+ spin_lock(&qdev->hw_lock);
+ if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
+ MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
+ QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
+ return -1;
+ }
+ spin_unlock(&qdev->hw_lock);
+
+ return 0;
+}
+
+static void qlge_tx_timeout(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
+ queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_asic_reset_work(struct work_struct *work)
+{
+ struct ql_adapter *qdev =
+ container_of(work, struct ql_adapter, asic_reset_work.work);
+ ql_cycle_adapter(qdev);
+}
+
+static void ql_get_board_info(struct ql_adapter *qdev)
+{
+ qdev->func =
+ (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
+ if (qdev->func) {
+ qdev->xg_sem_mask = SEM_XGMAC1_MASK;
+ qdev->port_link_up = STS_PL1;
+ qdev->port_init = STS_PI1;
+ qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
+ qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
+ } else {
+ qdev->xg_sem_mask = SEM_XGMAC0_MASK;
+ qdev->port_link_up = STS_PL0;
+ qdev->port_init = STS_PI0;
+ qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
+ qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
+ }
+ qdev->chip_rev_id = ql_read32(qdev, REV_ID);
+}
+
+static void ql_release_all(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (qdev->workqueue) {
+ destroy_workqueue(qdev->workqueue);
+ qdev->workqueue = NULL;
+ }
+ if (qdev->q_workqueue) {
+ destroy_workqueue(qdev->q_workqueue);
+ qdev->q_workqueue = NULL;
+ }
+ if (qdev->reg_base)
+ iounmap((void *)qdev->reg_base);
+ if (qdev->doorbell_area)
+ iounmap(qdev->doorbell_area);
+ pci_release_regions(pdev);
+ pci_set_drvdata(pdev, NULL);
+}
+
+static int __devinit ql_init_device(struct pci_dev *pdev,
+ struct net_device *ndev, int cards_found)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int pos, err = 0;
+ u16 val16;
+
+ memset((void *)qdev, 0, sizeof(qdev));
+ err = pci_enable_device(pdev);
+ if (err) {
+ dev_err(&pdev->dev, "PCI device enable failed.\n");
+ return err;
+ }
+
+ pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
+ if (pos <= 0) {
+ dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
+ "aborting.\n");
+ goto err_out;
+ } else {
+ pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
+ val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
+ val16 |= (PCI_EXP_DEVCTL_CERE |
+ PCI_EXP_DEVCTL_NFERE |
+ PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
+ pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
+ }
+
+ err = pci_request_regions(pdev, DRV_NAME);
+ if (err) {
+ dev_err(&pdev->dev, "PCI region request failed.\n");
+ goto err_out;
+ }
+
+ pci_set_master(pdev);
+ if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
+ set_bit(QL_DMA64, &qdev->flags);
+ err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
+ } else {
+ err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
+ if (!err)
+ err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
+ }
+
+ if (err) {
+ dev_err(&pdev->dev, "No usable DMA configuration.\n");
+ goto err_out;
+ }
+
+ pci_set_drvdata(pdev, ndev);
+ qdev->reg_base =
+ ioremap_nocache(pci_resource_start(pdev, 1),
+ pci_resource_len(pdev, 1));
+ if (!qdev->reg_base) {
+ dev_err(&pdev->dev, "Register mapping failed.\n");
+ err = -ENOMEM;
+ goto err_out;
+ }
+
+ qdev->doorbell_area_size = pci_resource_len(pdev, 3);
+ qdev->doorbell_area =
+ ioremap_nocache(pci_resource_start(pdev, 3),
+ pci_resource_len(pdev, 3));
+ if (!qdev->doorbell_area) {
+ dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
+ err = -ENOMEM;
+ goto err_out;
+ }
+
+ ql_get_board_info(qdev);
+ qdev->ndev = ndev;
+ qdev->pdev = pdev;
+ qdev->msg_enable = netif_msg_init(debug, default_msg);
+ spin_lock_init(&qdev->hw_lock);
+ spin_lock_init(&qdev->stats_lock);
+
+ /* make sure the EEPROM is good */
+ err = ql_get_flash_params(qdev);
+ if (err) {
+ dev_err(&pdev->dev, "Invalid FLASH.\n");
+ goto err_out;
+ }
+
+ if (!is_valid_ether_addr(qdev->flash.mac_addr))
+ goto err_out;
+
+ memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
+ memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+
+ /* Set up the default ring sizes. */
+ qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
+ qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
+
+ /* Set up the coalescing parameters. */
+ qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
+ qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
+ qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+ qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+
+ /*
+ * Set up the operating parameters.
+ */
+ qdev->rx_csum = 1;
+
+ qdev->q_workqueue = create_workqueue(ndev->name);
+ qdev->workqueue = create_singlethread_workqueue(ndev->name);
+ INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
+ INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
+ INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
+
+ if (!cards_found) {
+ dev_info(&pdev->dev, "%s\n", DRV_STRING);
+ dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
+ DRV_NAME, DRV_VERSION);
+ }
+ return 0;
+err_out:
+ ql_release_all(pdev);
+ pci_disable_device(pdev);
+ return err;
+}
+
+static int __devinit qlge_probe(struct pci_dev *pdev,
+ const struct pci_device_id *pci_entry)
+{
+ struct net_device *ndev = NULL;
+ struct ql_adapter *qdev = NULL;
+ static int cards_found = 0;
+ int err = 0;
+
+ ndev = alloc_etherdev(sizeof(struct ql_adapter));
+ if (!ndev)
+ return -ENOMEM;
+
+ err = ql_init_device(pdev, ndev, cards_found);
+ if (err < 0) {
+ free_netdev(ndev);
+ return err;
+ }
+
+ qdev = netdev_priv(ndev);
+ SET_NETDEV_DEV(ndev, &pdev->dev);
+ ndev->features = (0
+ | NETIF_F_IP_CSUM
+ | NETIF_F_SG
+ | NETIF_F_TSO
+ | NETIF_F_TSO6
+ | NETIF_F_TSO_ECN
+ | NETIF_F_HW_VLAN_TX
+ | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
+
+ if (test_bit(QL_DMA64, &qdev->flags))
+ ndev->features |= NETIF_F_HIGHDMA;
+
+ /*
+ * Set up net_device structure.
+ */
+ ndev->tx_queue_len = qdev->tx_ring_size;
+ ndev->irq = pdev->irq;
+ ndev->open = qlge_open;
+ ndev->stop = qlge_close;
+ ndev->hard_start_xmit = qlge_send;
+ SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
+ ndev->change_mtu = qlge_change_mtu;
+ ndev->get_stats = qlge_get_stats;
+ ndev->set_multicast_list = qlge_set_multicast_list;
+ ndev->set_mac_address = qlge_set_mac_address;
+ ndev->tx_timeout = qlge_tx_timeout;
+ ndev->watchdog_timeo = 10 * HZ;
+ ndev->vlan_rx_register = ql_vlan_rx_register;
+ ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
+ ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
+ err = register_netdev(ndev);
+ if (err) {
+ dev_err(&pdev->dev, "net device registration failed.\n");
+ ql_release_all(pdev);
+ pci_disable_device(pdev);
+ return err;
+ }
+ netif_carrier_off(ndev);
+ netif_stop_queue(ndev);
+ ql_display_dev_info(ndev);
+ cards_found++;
+ return 0;
+}
+
+static void __devexit qlge_remove(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ unregister_netdev(ndev);
+ ql_release_all(pdev);
+ pci_disable_device(pdev);
+ free_netdev(ndev);
+}
+
+/*
+ * This callback is called by the PCI subsystem whenever
+ * a PCI bus error is detected.
+ */
+static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
+ enum pci_channel_state state)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (netif_running(ndev))
+ ql_adapter_down(qdev);
+
+ pci_disable_device(pdev);
+
+ /* Request a slot reset. */
+ return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/*
+ * This callback is called after the PCI buss has been reset.
+ * Basically, this tries to restart the card from scratch.
+ * This is a shortened version of the device probe/discovery code,
+ * it resembles the first-half of the () routine.
+ */
+static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (pci_enable_device(pdev)) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Cannot re-enable PCI device after reset.\n");
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+
+ pci_set_master(pdev);
+
+ netif_carrier_off(ndev);
+ netif_stop_queue(ndev);
+ ql_adapter_reset(qdev);
+
+ /* Make sure the EEPROM is good */
+ memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+
+ if (!is_valid_ether_addr(ndev->perm_addr)) {
+ QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+
+ return PCI_ERS_RESULT_RECOVERED;
+}
+
+static void qlge_io_resume(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ pci_set_master(pdev);
+
+ if (netif_running(ndev)) {
+ if (ql_adapter_up(qdev)) {
+ QPRINTK(qdev, IFUP, ERR,
+ "Device initialization failed after reset.\n");
+ return;
+ }
+ }
+
+ netif_device_attach(ndev);
+}
+
+static struct pci_error_handlers qlge_err_handler = {
+ .error_detected = qlge_io_error_detected,
+ .slot_reset = qlge_io_slot_reset,
+ .resume = qlge_io_resume,
+};
+
+static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int err;
+
+ netif_device_detach(ndev);
+
+ if (netif_running(ndev)) {
+ err = ql_adapter_down(qdev);
+ if (!err)
+ return err;
+ }
+
+ err = pci_save_state(pdev);
+ if (err)
+ return err;
+
+ pci_disable_device(pdev);
+
+ pci_set_power_state(pdev, pci_choose_state(pdev, state));
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int qlge_resume(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int err;
+
+ pci_set_power_state(pdev, PCI_D0);
+ pci_restore_state(pdev);
+ err = pci_enable_device(pdev);
+ if (err) {
+ QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
+ return err;
+ }
+ pci_set_master(pdev);
+
+ pci_enable_wake(pdev, PCI_D3hot, 0);
+ pci_enable_wake(pdev, PCI_D3cold, 0);
+
+ if (netif_running(ndev)) {
+ err = ql_adapter_up(qdev);
+ if (err)
+ return err;
+ }
+
+ netif_device_attach(ndev);
+
+ return 0;
+}
+#endif /* CONFIG_PM */
+
+static void qlge_shutdown(struct pci_dev *pdev)
+{
+ qlge_suspend(pdev, PMSG_SUSPEND);
+}
+
+static struct pci_driver qlge_driver = {
+ .name = DRV_NAME,
+ .id_table = qlge_pci_tbl,
+ .probe = qlge_probe,
+ .remove = __devexit_p(qlge_remove),
+#ifdef CONFIG_PM
+ .suspend = qlge_suspend,
+ .resume = qlge_resume,
+#endif
+ .shutdown = qlge_shutdown,
+ .err_handler = &qlge_err_handler
+};
+
+static int __init qlge_init_module(void)
+{
+ return pci_register_driver(&qlge_driver);
+}
+
+static void __exit qlge_exit(void)
+{
+ pci_unregister_driver(&qlge_driver);
+}
+
+module_init(qlge_init_module);
+module_exit(qlge_exit);
diff --git a/drivers/net/qlge/qlge_mpi.c b/drivers/net/qlge/qlge_mpi.c
new file mode 100644
index 00000000000..24fe344bcf1
--- /dev/null
+++ b/drivers/net/qlge/qlge_mpi.c
@@ -0,0 +1,150 @@
+#include "qlge.h"
+
+static int ql_read_mbox_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
+{
+ int status;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
+ if (status)
+ goto exit;
+ /* set up for reg read */
+ ql_write32(qdev, PROC_ADDR, reg | PROC_ADDR_R);
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev, PROC_ADDR, PROC_ADDR_RDY, PROC_ADDR_ERR);
+ if (status)
+ goto exit;
+ /* get the data */
+ *data = ql_read32(qdev, PROC_DATA);
+exit:
+ return status;
+}
+
+int ql_get_mb_sts(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+ int i, status;
+
+ status = ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
+ if (status)
+ return -EBUSY;
+ for (i = 0; i < mbcp->out_count; i++) {
+ status =
+ ql_read_mbox_reg(qdev, qdev->mailbox_out + i,
+ &mbcp->mbox_out[i]);
+ if (status) {
+ QPRINTK(qdev, DRV, ERR, "Failed mailbox read.\n");
+ break;
+ }
+ }
+ ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
+ return status;
+}
+
+static void ql_link_up(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+ mbcp->out_count = 2;
+
+ if (ql_get_mb_sts(qdev, mbcp))
+ goto exit;
+
+ qdev->link_status = mbcp->mbox_out[1];
+ QPRINTK(qdev, DRV, ERR, "Link Up.\n");
+ QPRINTK(qdev, DRV, INFO, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
+ if (!netif_carrier_ok(qdev->ndev)) {
+ QPRINTK(qdev, LINK, INFO, "Link is Up.\n");
+ netif_carrier_on(qdev->ndev);
+ netif_wake_queue(qdev->ndev);
+ }
+exit:
+ /* Clear the MPI firmware status. */
+ ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+}
+
+static void ql_link_down(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+ mbcp->out_count = 3;
+
+ if (ql_get_mb_sts(qdev, mbcp)) {
+ QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
+ goto exit;
+ }
+
+ if (netif_carrier_ok(qdev->ndev)) {
+ QPRINTK(qdev, LINK, INFO, "Link is Down.\n");
+ netif_carrier_off(qdev->ndev);
+ netif_stop_queue(qdev->ndev);
+ }
+ QPRINTK(qdev, DRV, ERR, "Link Down.\n");
+ QPRINTK(qdev, DRV, ERR, "Link Status = 0x%.08x.\n", mbcp->mbox_out[1]);
+exit:
+ /* Clear the MPI firmware status. */
+ ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+}
+
+static void ql_init_fw_done(struct ql_adapter *qdev, struct mbox_params *mbcp)
+{
+ mbcp->out_count = 2;
+
+ if (ql_get_mb_sts(qdev, mbcp)) {
+ QPRINTK(qdev, DRV, ERR, "Firmware did not initialize!\n");
+ goto exit;
+ }
+ QPRINTK(qdev, DRV, ERR, "Firmware initialized!\n");
+ QPRINTK(qdev, DRV, ERR, "Firmware status = 0x%.08x.\n",
+ mbcp->mbox_out[0]);
+ QPRINTK(qdev, DRV, ERR, "Firmware Revision = 0x%.08x.\n",
+ mbcp->mbox_out[1]);
+exit:
+ /* Clear the MPI firmware status. */
+ ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+}
+
+void ql_mpi_work(struct work_struct *work)
+{
+ struct ql_adapter *qdev =
+ container_of(work, struct ql_adapter, mpi_work.work);
+ struct mbox_params mbc;
+ struct mbox_params *mbcp = &mbc;
+ mbcp->out_count = 1;
+
+ while (ql_read32(qdev, STS) & STS_PI) {
+ if (ql_get_mb_sts(qdev, mbcp)) {
+ QPRINTK(qdev, DRV, ERR,
+ "Could not read MPI, resetting ASIC!\n");
+ ql_queue_asic_error(qdev);
+ }
+
+ switch (mbcp->mbox_out[0]) {
+ case AEN_LINK_UP:
+ ql_link_up(qdev, mbcp);
+ break;
+ case AEN_LINK_DOWN:
+ ql_link_down(qdev, mbcp);
+ break;
+ case AEN_FW_INIT_DONE:
+ ql_init_fw_done(qdev, mbcp);
+ break;
+ case MB_CMD_STS_GOOD:
+ break;
+ case AEN_FW_INIT_FAIL:
+ case AEN_SYS_ERR:
+ case MB_CMD_STS_ERR:
+ ql_queue_fw_error(qdev);
+ default:
+ /* Clear the MPI firmware status. */
+ ql_write32(qdev, CSR, CSR_CMD_CLR_R2PCI_INT);
+ break;
+ }
+ }
+ ql_enable_completion_interrupt(qdev, 0);
+}
+
+void ql_mpi_reset_work(struct work_struct *work)
+{
+ struct ql_adapter *qdev =
+ container_of(work, struct ql_adapter, mpi_reset_work.work);
+ QPRINTK(qdev, DRV, ERR,
+ "Enter, qdev = %p..\n", qdev);
+ ql_write32(qdev, CSR, CSR_CMD_SET_RST);
+ msleep(50);
+ ql_write32(qdev, CSR, CSR_CMD_CLR_RST);
+}