diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/sk98lin/ski2c.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/sk98lin/ski2c.c')
-rw-r--r-- | drivers/net/sk98lin/ski2c.c | 1296 |
1 files changed, 1296 insertions, 0 deletions
diff --git a/drivers/net/sk98lin/ski2c.c b/drivers/net/sk98lin/ski2c.c new file mode 100644 index 00000000000..075a0464e56 --- /dev/null +++ b/drivers/net/sk98lin/ski2c.c @@ -0,0 +1,1296 @@ +/****************************************************************************** + * + * Name: ski2c.c + * Project: Gigabit Ethernet Adapters, TWSI-Module + * Version: $Revision: 1.59 $ + * Date: $Date: 2003/10/20 09:07:25 $ + * Purpose: Functions to access Voltage and Temperature Sensor + * + ******************************************************************************/ + +/****************************************************************************** + * + * (C)Copyright 1998-2002 SysKonnect. + * (C)Copyright 2002-2003 Marvell. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * The information in this file is provided "AS IS" without warranty. + * + ******************************************************************************/ + +/* + * I2C Protocol + */ +#if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) +static const char SysKonnectFileId[] = + "@(#) $Id: ski2c.c,v 1.59 2003/10/20 09:07:25 rschmidt Exp $ (C) Marvell. "; +#endif + +#include "h/skdrv1st.h" /* Driver Specific Definitions */ +#include "h/lm80.h" +#include "h/skdrv2nd.h" /* Adapter Control- and Driver specific Def. */ + +#ifdef __C2MAN__ +/* + I2C protocol implementation. + + General Description: + + The I2C protocol is used for the temperature sensors and for + the serial EEPROM which hold the configuration. + + This file covers functions that allow to read write and do + some bulk requests a specified I2C address. + + The Genesis has 2 I2C buses. One for the EEPROM which holds + the VPD Data and one for temperature and voltage sensor. + The following picture shows the I2C buses, I2C devices and + their control registers. + + Note: The VPD functions are in skvpd.c +. +. PCI Config I2C Bus for VPD Data: +. +. +------------+ +. | VPD EEPROM | +. +------------+ +. | +. | <-- I2C +. | +. +-----------+-----------+ +. | | +. +-----------------+ +-----------------+ +. | PCI_VPD_ADR_REG | | PCI_VPD_DAT_REG | +. +-----------------+ +-----------------+ +. +. +. I2C Bus for LM80 sensor: +. +. +-----------------+ +. | Temperature and | +. | Voltage Sensor | +. | LM80 | +. +-----------------+ +. | +. | +. I2C --> | +. | +. +----+ +. +-------------->| OR |<--+ +. | +----+ | +. +------+------+ | +. | | | +. +--------+ +--------+ +----------+ +. | B2_I2C | | B2_I2C | | B2_I2C | +. | _CTRL | | _DATA | | _SW | +. +--------+ +--------+ +----------+ +. + The I2C bus may be driven by the B2_I2C_SW or by the B2_I2C_CTRL + and B2_I2C_DATA registers. + For driver software it is recommended to use the I2C control and + data register, because I2C bus timing is done by the ASIC and + an interrupt may be received when the I2C request is completed. + + Clock Rate Timing: MIN MAX generated by + VPD EEPROM: 50 kHz 100 kHz HW + LM80 over I2C Ctrl/Data reg. 50 kHz 100 kHz HW + LM80 over B2_I2C_SW register 0 400 kHz SW + + Note: The clock generated by the hardware is dependend on the + PCI clock. If the PCI bus clock is 33 MHz, the I2C/VPD + clock is 50 kHz. + */ +intro() +{} +#endif + +#ifdef SK_DIAG +/* + * I2C Fast Mode timing values used by the LM80. + * If new devices are added to the I2C bus the timing values have to be checked. + */ +#ifndef I2C_SLOW_TIMING +#define T_CLK_LOW 1300L /* clock low time in ns */ +#define T_CLK_HIGH 600L /* clock high time in ns */ +#define T_DATA_IN_SETUP 100L /* data in Set-up Time */ +#define T_START_HOLD 600L /* start condition hold time */ +#define T_START_SETUP 600L /* start condition Set-up time */ +#define T_STOP_SETUP 600L /* stop condition Set-up time */ +#define T_BUS_IDLE 1300L /* time the bus must free after Tx */ +#define T_CLK_2_DATA_OUT 900L /* max. clock low to data output valid */ +#else /* I2C_SLOW_TIMING */ +/* I2C Standard Mode Timing */ +#define T_CLK_LOW 4700L /* clock low time in ns */ +#define T_CLK_HIGH 4000L /* clock high time in ns */ +#define T_DATA_IN_SETUP 250L /* data in Set-up Time */ +#define T_START_HOLD 4000L /* start condition hold time */ +#define T_START_SETUP 4700L /* start condition Set-up time */ +#define T_STOP_SETUP 4000L /* stop condition Set-up time */ +#define T_BUS_IDLE 4700L /* time the bus must free after Tx */ +#endif /* !I2C_SLOW_TIMING */ + +#define NS2BCLK(x) (((x)*125)/10000) + +/* + * I2C Wire Operations + * + * About I2C_CLK_LOW(): + * + * The Data Direction bit (I2C_DATA_DIR) has to be set to input when setting + * clock to low, to prevent the ASIC and the I2C data client from driving the + * serial data line simultaneously (ASIC: last bit of a byte = '1', I2C client + * send an 'ACK'). See also Concentrator Bugreport No. 10192. + */ +#define I2C_DATA_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA) +#define I2C_DATA_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA) +#define I2C_DATA_OUT(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA_DIR) +#define I2C_DATA_IN(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA) +#define I2C_CLK_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_CLK) +#define I2C_CLK_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK | I2C_DATA_DIR) +#define I2C_START_COND(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK) + +#define NS2CLKT(x) ((x*125L)/10000) + +/*--------------- I2C Interface Register Functions --------------- */ + +/* + * sending one bit + */ +void SkI2cSndBit( +SK_IOC IoC, /* I/O Context */ +SK_U8 Bit) /* Bit to send */ +{ + I2C_DATA_OUT(IoC); + if (Bit) { + I2C_DATA_HIGH(IoC); + } + else { + I2C_DATA_LOW(IoC); + } + SkDgWaitTime(IoC, NS2BCLK(T_DATA_IN_SETUP)); + I2C_CLK_HIGH(IoC); + SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); + I2C_CLK_LOW(IoC); +} /* SkI2cSndBit*/ + + +/* + * Signal a start to the I2C Bus. + * + * A start is signaled when data goes to low in a high clock cycle. + * + * Ends with Clock Low. + * + * Status: not tested + */ +void SkI2cStart( +SK_IOC IoC) /* I/O Context */ +{ + /* Init data and Clock to output lines */ + /* Set Data high */ + I2C_DATA_OUT(IoC); + I2C_DATA_HIGH(IoC); + /* Set Clock high */ + I2C_CLK_HIGH(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_START_SETUP)); + + /* Set Data Low */ + I2C_DATA_LOW(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_START_HOLD)); + + /* Clock low without Data to Input */ + I2C_START_COND(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW)); +} /* SkI2cStart */ + + +void SkI2cStop( +SK_IOC IoC) /* I/O Context */ +{ + /* Init data and Clock to output lines */ + /* Set Data low */ + I2C_DATA_OUT(IoC); + I2C_DATA_LOW(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); + + /* Set Clock high */ + I2C_CLK_HIGH(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_STOP_SETUP)); + + /* + * Set Data High: Do it by setting the Data Line to Input. + * Because of a pull up resistor the Data Line + * floods to high. + */ + I2C_DATA_IN(IoC); + + /* + * When I2C activity is stopped + * o DATA should be set to input and + * o CLOCK should be set to high! + */ + SkDgWaitTime(IoC, NS2BCLK(T_BUS_IDLE)); +} /* SkI2cStop */ + + +/* + * Receive just one bit via the I2C bus. + * + * Note: Clock must be set to LOW before calling this function. + * + * Returns The received bit. + */ +int SkI2cRcvBit( +SK_IOC IoC) /* I/O Context */ +{ + int Bit; + SK_U8 I2cSwCtrl; + + /* Init data as input line */ + I2C_DATA_IN(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); + + I2C_CLK_HIGH(IoC); + + SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); + + SK_I2C_GET_SW(IoC, &I2cSwCtrl); + + Bit = (I2cSwCtrl & I2C_DATA) ? 1 : 0; + + I2C_CLK_LOW(IoC); + SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW-T_CLK_2_DATA_OUT)); + + return(Bit); +} /* SkI2cRcvBit */ + + +/* + * Receive an ACK. + * + * returns 0 If acknowledged + * 1 in case of an error + */ +int SkI2cRcvAck( +SK_IOC IoC) /* I/O Context */ +{ + /* + * Received bit must be zero. + */ + return(SkI2cRcvBit(IoC) != 0); +} /* SkI2cRcvAck */ + + +/* + * Send an NACK. + */ +void SkI2cSndNAck( +SK_IOC IoC) /* I/O Context */ +{ + /* + * Received bit must be zero. + */ + SkI2cSndBit(IoC, 1); +} /* SkI2cSndNAck */ + + +/* + * Send an ACK. + */ +void SkI2cSndAck( +SK_IOC IoC) /* I/O Context */ +{ + /* + * Received bit must be zero. + */ + SkI2cSndBit(IoC, 0); +} /* SkI2cSndAck */ + + +/* + * Send one byte to the I2C device and wait for ACK. + * + * Return acknowleged status. + */ +int SkI2cSndByte( +SK_IOC IoC, /* I/O Context */ +int Byte) /* byte to send */ +{ + int i; + + for (i = 0; i < 8; i++) { + if (Byte & (1<<(7-i))) { + SkI2cSndBit(IoC, 1); + } + else { + SkI2cSndBit(IoC, 0); + } + } + + return(SkI2cRcvAck(IoC)); +} /* SkI2cSndByte */ + + +/* + * Receive one byte and ack it. + * + * Return byte. + */ +int SkI2cRcvByte( +SK_IOC IoC, /* I/O Context */ +int Last) /* Last Byte Flag */ +{ + int i; + int Byte = 0; + + for (i = 0; i < 8; i++) { + Byte <<= 1; + Byte |= SkI2cRcvBit(IoC); + } + + if (Last) { + SkI2cSndNAck(IoC); + } + else { + SkI2cSndAck(IoC); + } + + return(Byte); +} /* SkI2cRcvByte */ + + +/* + * Start dialog and send device address + * + * Return 0 if acknowleged, 1 in case of an error + */ +int SkI2cSndDev( +SK_IOC IoC, /* I/O Context */ +int Addr, /* Device Address */ +int Rw) /* Read / Write Flag */ +{ + SkI2cStart(IoC); + Rw = ~Rw; + Rw &= I2C_WRITE; + return(SkI2cSndByte(IoC, (Addr<<1) | Rw)); +} /* SkI2cSndDev */ + +#endif /* SK_DIAG */ + +/*----------------- I2C CTRL Register Functions ----------*/ + +/* + * waits for a completion of an I2C transfer + * + * returns 0: success, transfer completes + * 1: error, transfer does not complete, I2C transfer + * killed, wait loop terminated. + */ +int SkI2cWait( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC, /* I/O Context */ +int Event) /* complete event to wait for (I2C_READ or I2C_WRITE) */ +{ + SK_U64 StartTime; + SK_U64 CurrentTime; + SK_U32 I2cCtrl; + + StartTime = SkOsGetTime(pAC); + + do { + CurrentTime = SkOsGetTime(pAC); + + if (CurrentTime - StartTime > SK_TICKS_PER_SEC / 8) { + + SK_I2C_STOP(IoC); +#ifndef SK_DIAG + SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E002, SKERR_I2C_E002MSG); +#endif /* !SK_DIAG */ + return(1); + } + + SK_I2C_GET_CTL(IoC, &I2cCtrl); + +#ifdef xYUKON_DBG + printf("StartTime=%lu, CurrentTime=%lu\n", + StartTime, CurrentTime); + if (kbhit()) { + return(1); + } +#endif /* YUKON_DBG */ + + } while ((I2cCtrl & I2C_FLAG) == (SK_U32)Event << 31); + + return(0); +} /* SkI2cWait */ + + +/* + * waits for a completion of an I2C transfer + * + * Returns + * Nothing + */ +void SkI2cWaitIrq( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC) /* I/O Context */ +{ + SK_SENSOR *pSen; + SK_U64 StartTime; + SK_U32 IrqSrc; + + pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; + + if (pSen->SenState == SK_SEN_IDLE) { + return; + } + + StartTime = SkOsGetTime(pAC); + + do { + if (SkOsGetTime(pAC) - StartTime > SK_TICKS_PER_SEC / 8) { + + SK_I2C_STOP(IoC); +#ifndef SK_DIAG + SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E016, SKERR_I2C_E016MSG); +#endif /* !SK_DIAG */ + return; + } + + SK_IN32(IoC, B0_ISRC, &IrqSrc); + + } while ((IrqSrc & IS_I2C_READY) == 0); + + pSen->SenState = SK_SEN_IDLE; + return; +} /* SkI2cWaitIrq */ + +/* + * writes a single byte or 4 bytes into the I2C device + * + * returns 0: success + * 1: error + */ +int SkI2cWrite( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC, /* I/O Context */ +SK_U32 I2cData, /* I2C Data to write */ +int I2cDev, /* I2C Device Address */ +int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ +int I2cReg, /* I2C Device Register Address */ +int I2cBurst) /* I2C Burst Flag */ +{ + SK_OUT32(IoC, B2_I2C_DATA, I2cData); + + SK_I2C_CTL(IoC, I2C_WRITE, I2cDev, I2cDevSize, I2cReg, I2cBurst); + + return(SkI2cWait(pAC, IoC, I2C_WRITE)); +} /* SkI2cWrite*/ + + +#ifdef SK_DIAG +/* + * reads a single byte or 4 bytes from the I2C device + * + * returns the word read + */ +SK_U32 SkI2cRead( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC, /* I/O Context */ +int I2cDev, /* I2C Device Address */ +int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ +int I2cReg, /* I2C Device Register Address */ +int I2cBurst) /* I2C Burst Flag */ +{ + SK_U32 Data; + + SK_OUT32(IoC, B2_I2C_DATA, 0); + SK_I2C_CTL(IoC, I2C_READ, I2cDev, I2cDevSize, I2cReg, I2cBurst); + + if (SkI2cWait(pAC, IoC, I2C_READ) != 0) { + w_print("%s\n", SKERR_I2C_E002MSG); + } + + SK_IN32(IoC, B2_I2C_DATA, &Data); + + return(Data); +} /* SkI2cRead */ +#endif /* SK_DIAG */ + + +/* + * read a sensor's value + * + * This function reads a sensor's value from the I2C sensor chip. The sensor + * is defined by its index into the sensors database in the struct pAC points + * to. + * Returns + * 1 if the read is completed + * 0 if the read must be continued (I2C Bus still allocated) + */ +int SkI2cReadSensor( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC, /* I/O Context */ +SK_SENSOR *pSen) /* Sensor to be read */ +{ + if (pSen->SenRead != NULL) { + return((*pSen->SenRead)(pAC, IoC, pSen)); + } + else { + return(0); /* no success */ + } +} /* SkI2cReadSensor */ + +/* + * Do the Init state 0 initialization + */ +static int SkI2cInit0( +SK_AC *pAC) /* Adapter Context */ +{ + int i; + + /* Begin with first sensor */ + pAC->I2c.CurrSens = 0; + + /* Begin with timeout control for state machine */ + pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; + + /* Set sensor number to zero */ + pAC->I2c.MaxSens = 0; + +#ifndef SK_DIAG + /* Initialize Number of Dummy Reads */ + pAC->I2c.DummyReads = SK_MAX_SENSORS; +#endif + + for (i = 0; i < SK_MAX_SENSORS; i++) { + pAC->I2c.SenTable[i].SenDesc = "unknown"; + pAC->I2c.SenTable[i].SenType = SK_SEN_UNKNOWN; + pAC->I2c.SenTable[i].SenThreErrHigh = 0; + pAC->I2c.SenTable[i].SenThreErrLow = 0; + pAC->I2c.SenTable[i].SenThreWarnHigh = 0; + pAC->I2c.SenTable[i].SenThreWarnLow = 0; + pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; + pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_NONE; + pAC->I2c.SenTable[i].SenValue = 0; + pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_NOT_PRESENT; + pAC->I2c.SenTable[i].SenErrCts = 0; + pAC->I2c.SenTable[i].SenBegErrTS = 0; + pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; + pAC->I2c.SenTable[i].SenRead = NULL; + pAC->I2c.SenTable[i].SenDev = 0; + } + + /* Now we are "INIT data"ed */ + pAC->I2c.InitLevel = SK_INIT_DATA; + return(0); +} /* SkI2cInit0*/ + + +/* + * Do the init state 1 initialization + * + * initialize the following register of the LM80: + * Configuration register: + * - START, noINT, activeLOW, noINT#Clear, noRESET, noCI, noGPO#, noINIT + * + * Interrupt Mask Register 1: + * - all interrupts are Disabled (0xff) + * + * Interrupt Mask Register 2: + * - all interrupts are Disabled (0xff) Interrupt modi doesn't matter. + * + * Fan Divisor/RST_OUT register: + * - Divisors set to 1 (bits 00), all others 0s. + * + * OS# Configuration/Temperature resolution Register: + * - all 0s + * + */ +static int SkI2cInit1( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC) /* I/O Context */ +{ + int i; + SK_U8 I2cSwCtrl; + SK_GEPORT *pPrt; /* GIni Port struct pointer */ + + if (pAC->I2c.InitLevel != SK_INIT_DATA) { + /* ReInit not needed in I2C module */ + return(0); + } + + /* Set the Direction of I2C-Data Pin to IN */ + SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA); + /* Check for 32-Bit Yukon with Low at I2C-Data Pin */ + SK_I2C_GET_SW(IoC, &I2cSwCtrl); + + if ((I2cSwCtrl & I2C_DATA) == 0) { + /* this is a 32-Bit board */ + pAC->GIni.GIYukon32Bit = SK_TRUE; + return(0); + } + + /* Check for 64 Bit Yukon without sensors */ + if (SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_CFG, 0) != 0) { + return(0); + } + + (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_1, 0); + + (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_2, 0); + + (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_FAN_CTRL, 0); + + (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_TEMP_CTRL, 0); + + (void)SkI2cWrite(pAC, IoC, (SK_U32)LM80_CFG_START, LM80_ADDR, I2C_025K_DEV, + LM80_CFG, 0); + + /* + * MaxSens has to be updated here, because PhyType is not + * set when performing Init Level 0 + */ + pAC->I2c.MaxSens = 5; + + pPrt = &pAC->GIni.GP[0]; + + if (pAC->GIni.GIGenesis) { + if (pPrt->PhyType == SK_PHY_BCOM) { + if (pAC->GIni.GIMacsFound == 1) { + pAC->I2c.MaxSens += 1; + } + else { + pAC->I2c.MaxSens += 3; + } + } + } + else { + pAC->I2c.MaxSens += 3; + } + + for (i = 0; i < pAC->I2c.MaxSens; i++) { + switch (i) { + case 0: + pAC->I2c.SenTable[i].SenDesc = "Temperature"; + pAC->I2c.SenTable[i].SenType = SK_SEN_TEMP; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_TEMP_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_TEMP_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_TEMP_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_TEMP_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_TEMP_IN; + break; + case 1: + pAC->I2c.SenTable[i].SenDesc = "Voltage PCI"; + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_5V_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_5V_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_5V_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_5V_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_VT0_IN; + break; + case 2: + pAC->I2c.SenTable[i].SenDesc = "Voltage PCI-IO"; + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_IO_5V_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_IO_5V_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_IO_3V3_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_IO_3V3_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_VT1_IN; + pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_PCI_IO; + break; + case 3: + pAC->I2c.SenTable[i].SenDesc = "Voltage ASIC"; + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VDD_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VDD_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VDD_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VDD_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_VT2_IN; + break; + case 4: + if (pAC->GIni.GIGenesis) { + if (pPrt->PhyType == SK_PHY_BCOM) { + pAC->I2c.SenTable[i].SenDesc = "Voltage PHY A PLL"; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; + } + else { + pAC->I2c.SenTable[i].SenDesc = "Voltage PMA"; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; + } + } + else { + pAC->I2c.SenTable[i].SenDesc = "Voltage VAUX"; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VAUX_3V3_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VAUX_3V3_HIGH_WARN; + if (pAC->GIni.GIVauxAvail) { + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; + } + else { + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_0V_WARN_ERR; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_0V_WARN_ERR; + } + } + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenReg = LM80_VT3_IN; + break; + case 5: + if (pAC->GIni.GIGenesis) { + pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; + } + else { + pAC->I2c.SenTable[i].SenDesc = "Voltage Core 1V5"; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_CORE_1V5_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_CORE_1V5_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_CORE_1V5_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_CORE_1V5_LOW_ERR; + } + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenReg = LM80_VT4_IN; + break; + case 6: + if (pAC->GIni.GIGenesis) { + pAC->I2c.SenTable[i].SenDesc = "Voltage PHY B PLL"; + } + else { + pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 3V3"; + } + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_VT5_IN; + break; + case 7: + if (pAC->GIni.GIGenesis) { + pAC->I2c.SenTable[i].SenDesc = "Speed Fan"; + pAC->I2c.SenTable[i].SenType = SK_SEN_FAN; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_FAN_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_FAN_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_FAN_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_FAN_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; + } + else { + pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; + pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; + pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; + pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; + pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; + pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; + pAC->I2c.SenTable[i].SenReg = LM80_VT6_IN; + } + break; + default: + SK_ERR_LOG(pAC, SK_ERRCL_INIT | SK_ERRCL_SW, + SKERR_I2C_E001, SKERR_I2C_E001MSG); + break; + } + + pAC->I2c.SenTable[i].SenValue = 0; + pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; + pAC->I2c.SenTable[i].SenErrCts = 0; + pAC->I2c.SenTable[i].SenBegErrTS = 0; + pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; + pAC->I2c.SenTable[i].SenRead = SkLm80ReadSensor; + pAC->I2c.SenTable[i].SenDev = LM80_ADDR; + } + +#ifndef SK_DIAG + pAC->I2c.DummyReads = pAC->I2c.MaxSens; +#endif /* !SK_DIAG */ + + /* Clear I2C IRQ */ + SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); + + /* Now we are I/O initialized */ + pAC->I2c.InitLevel = SK_INIT_IO; + return(0); +} /* SkI2cInit1 */ + + +/* + * Init level 2: Start first sensor read. + */ +static int SkI2cInit2( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC) /* I/O Context */ +{ + int ReadComplete; + SK_SENSOR *pSen; + + if (pAC->I2c.InitLevel != SK_INIT_IO) { + /* ReInit not needed in I2C module */ + /* Init0 and Init2 not permitted */ + return(0); + } + + pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; + ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); + + if (ReadComplete) { + SK_ERR_LOG(pAC, SK_ERRCL_INIT, SKERR_I2C_E008, SKERR_I2C_E008MSG); + } + + /* Now we are correctly initialized */ + pAC->I2c.InitLevel = SK_INIT_RUN; + + return(0); +} /* SkI2cInit2*/ + + +/* + * Initialize I2C devices + * + * Get the first voltage value and discard it. + * Go into temperature read mode. A default pointer is not set. + * + * The things to be done depend on the init level in the parameter list: + * Level 0: + * Initialize only the data structures. Do NOT access hardware. + * Level 1: + * Initialize hardware through SK_IN / SK_OUT commands. Do NOT use interrupts. + * Level 2: + * Everything is possible. Interrupts may be used from now on. + * + * return: + * 0 = success + * other = error. + */ +int SkI2cInit( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC, /* I/O Context needed in levels 1 and 2 */ +int Level) /* Init Level */ +{ + + switch (Level) { + case SK_INIT_DATA: + return(SkI2cInit0(pAC)); + case SK_INIT_IO: + return(SkI2cInit1(pAC, IoC)); + case SK_INIT_RUN: + return(SkI2cInit2(pAC, IoC)); + default: + break; + } + + return(0); +} /* SkI2cInit */ + + +#ifndef SK_DIAG + +/* + * Interrupt service function for the I2C Interface + * + * Clears the Interrupt source + * + * Reads the register and check it for sending a trap. + * + * Starts the timer if necessary. + */ +void SkI2cIsr( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC) /* I/O Context */ +{ + SK_EVPARA Para; + + /* Clear I2C IRQ */ + SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); + + Para.Para64 = 0; + SkEventQueue(pAC, SKGE_I2C, SK_I2CEV_IRQ, Para); +} /* SkI2cIsr */ + + +/* + * Check this sensors Value against the threshold and send events. + */ +static void SkI2cCheckSensor( +SK_AC *pAC, /* Adapter Context */ +SK_SENSOR *pSen) +{ + SK_EVPARA ParaLocal; + SK_BOOL TooHigh; /* Is sensor too high? */ + SK_BOOL TooLow; /* Is sensor too low? */ + SK_U64 CurrTime; /* Current Time */ + SK_BOOL DoTrapSend; /* We need to send a trap */ + SK_BOOL DoErrLog; /* We need to log the error */ + SK_BOOL IsError; /* We need to log the error */ + + /* Check Dummy Reads first */ + if (pAC->I2c.DummyReads > 0) { + pAC->I2c.DummyReads--; + return; + } + + /* Get the current time */ + CurrTime = SkOsGetTime(pAC); + + /* Set para to the most useful setting: The current sensor. */ + ParaLocal.Para64 = (SK_U64)pAC->I2c.CurrSens; + + /* Check the Value against the thresholds. First: Error Thresholds */ + TooHigh = (pSen->SenValue > pSen->SenThreErrHigh); + TooLow = (pSen->SenValue < pSen->SenThreErrLow); + + IsError = SK_FALSE; + if (TooHigh || TooLow) { + /* Error condition is satisfied */ + DoTrapSend = SK_TRUE; + DoErrLog = SK_TRUE; + + /* Now error condition is satisfied */ + IsError = SK_TRUE; + + if (pSen->SenErrFlag == SK_SEN_ERR_ERR) { + /* This state is the former one */ + + /* So check first whether we have to send a trap */ + if (pSen->SenLastErrTrapTS + SK_SEN_ERR_TR_HOLD > + CurrTime) { + /* + * Do NOT send the Trap. The hold back time + * has to run out first. + */ + DoTrapSend = SK_FALSE; + } + + /* Check now whether we have to log an Error */ + if (pSen->SenLastErrLogTS + SK_SEN_ERR_LOG_HOLD > + CurrTime) { + /* + * Do NOT log the error. The hold back time + * has to run out first. + */ + DoErrLog = SK_FALSE; + } + } + else { + /* We came from a different state -> Set Begin Time Stamp */ + pSen->SenBegErrTS = CurrTime; + pSen->SenErrFlag = SK_SEN_ERR_ERR; + } + + if (DoTrapSend) { + /* Set current Time */ + pSen->SenLastErrTrapTS = CurrTime; + pSen->SenErrCts++; + + /* Queue PNMI Event */ + SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? + SK_PNMI_EVT_SEN_ERR_UPP : + SK_PNMI_EVT_SEN_ERR_LOW), + ParaLocal); + } + + if (DoErrLog) { + /* Set current Time */ + pSen->SenLastErrLogTS = CurrTime; + + if (pSen->SenType == SK_SEN_TEMP) { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E011, SKERR_I2C_E011MSG); + } + else if (pSen->SenType == SK_SEN_VOLT) { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E012, SKERR_I2C_E012MSG); + } + else { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E015, SKERR_I2C_E015MSG); + } + } + } + + /* Check the Value against the thresholds */ + /* 2nd: Warning thresholds */ + TooHigh = (pSen->SenValue > pSen->SenThreWarnHigh); + TooLow = (pSen->SenValue < pSen->SenThreWarnLow); + + if (!IsError && (TooHigh || TooLow)) { + /* Error condition is satisfied */ + DoTrapSend = SK_TRUE; + DoErrLog = SK_TRUE; + + if (pSen->SenErrFlag == SK_SEN_ERR_WARN) { + /* This state is the former one */ + + /* So check first whether we have to send a trap */ + if (pSen->SenLastWarnTrapTS + SK_SEN_WARN_TR_HOLD > CurrTime) { + /* + * Do NOT send the Trap. The hold back time + * has to run out first. + */ + DoTrapSend = SK_FALSE; + } + + /* Check now whether we have to log an Error */ + if (pSen->SenLastWarnLogTS + SK_SEN_WARN_LOG_HOLD > CurrTime) { + /* + * Do NOT log the error. The hold back time + * has to run out first. + */ + DoErrLog = SK_FALSE; + } + } + else { + /* We came from a different state -> Set Begin Time Stamp */ + pSen->SenBegWarnTS = CurrTime; + pSen->SenErrFlag = SK_SEN_ERR_WARN; + } + + if (DoTrapSend) { + /* Set current Time */ + pSen->SenLastWarnTrapTS = CurrTime; + pSen->SenWarnCts++; + + /* Queue PNMI Event */ + SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? + SK_PNMI_EVT_SEN_WAR_UPP : + SK_PNMI_EVT_SEN_WAR_LOW), + ParaLocal); + } + + if (DoErrLog) { + /* Set current Time */ + pSen->SenLastWarnLogTS = CurrTime; + + if (pSen->SenType == SK_SEN_TEMP) { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E009, SKERR_I2C_E009MSG); + } + else if (pSen->SenType == SK_SEN_VOLT) { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E010, SKERR_I2C_E010MSG); + } + else { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E014, SKERR_I2C_E014MSG); + } + } + } + + /* Check for NO error at all */ + if (!IsError && !TooHigh && !TooLow) { + /* Set o.k. Status if no error and no warning condition */ + pSen->SenErrFlag = SK_SEN_ERR_OK; + } + + /* End of check against the thresholds */ + + /* Bug fix AF: 16.Aug.2001: Correct the init base + * of LM80 sensor. + */ + if (pSen->SenInit == SK_SEN_DYN_INIT_PCI_IO) { + + pSen->SenInit = SK_SEN_DYN_INIT_NONE; + + if (pSen->SenValue > SK_SEN_PCI_IO_RANGE_LIMITER) { + /* 5V PCI-IO Voltage */ + pSen->SenThreWarnLow = SK_SEN_PCI_IO_5V_LOW_WARN; + pSen->SenThreErrLow = SK_SEN_PCI_IO_5V_LOW_ERR; + } + else { + /* 3.3V PCI-IO Voltage */ + pSen->SenThreWarnHigh = SK_SEN_PCI_IO_3V3_HIGH_WARN; + pSen->SenThreErrHigh = SK_SEN_PCI_IO_3V3_HIGH_ERR; + } + } + +#ifdef TEST_ONLY + /* Dynamic thresholds also for VAUX of LM80 sensor */ + if (pSen->SenInit == SK_SEN_DYN_INIT_VAUX) { + + pSen->SenInit = SK_SEN_DYN_INIT_NONE; + + /* 3.3V VAUX Voltage */ + if (pSen->SenValue > SK_SEN_VAUX_RANGE_LIMITER) { + pSen->SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; + pSen->SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; + } + /* 0V VAUX Voltage */ + else { + pSen->SenThreWarnHigh = SK_SEN_VAUX_0V_WARN_ERR; + pSen->SenThreErrHigh = SK_SEN_VAUX_0V_WARN_ERR; + } + } + + /* + * Check initialization state: + * The VIO Thresholds need adaption + */ + if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && + pSen->SenValue > SK_SEN_WARNLOW2C && + pSen->SenValue < SK_SEN_WARNHIGH2) { + pSen->SenThreErrLow = SK_SEN_ERRLOW2C; + pSen->SenThreWarnLow = SK_SEN_WARNLOW2C; + pSen->SenInit = SK_TRUE; + } + + if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && + pSen->SenValue > SK_SEN_WARNLOW2 && + pSen->SenValue < SK_SEN_WARNHIGH2C) { + pSen->SenThreErrHigh = SK_SEN_ERRHIGH2C; + pSen->SenThreWarnHigh = SK_SEN_WARNHIGH2C; + pSen->SenInit = SK_TRUE; + } +#endif + + if (pSen->SenInit != SK_SEN_DYN_INIT_NONE) { + SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E013, SKERR_I2C_E013MSG); + } +} /* SkI2cCheckSensor */ + + +/* + * The only Event to be served is the timeout event + * + */ +int SkI2cEvent( +SK_AC *pAC, /* Adapter Context */ +SK_IOC IoC, /* I/O Context */ +SK_U32 Event, /* Module specific Event */ +SK_EVPARA Para) /* Event specific Parameter */ +{ + int ReadComplete; + SK_SENSOR *pSen; + SK_U32 Time; + SK_EVPARA ParaLocal; + int i; + + /* New case: no sensors */ + if (pAC->I2c.MaxSens == 0) { + return(0); + } + + switch (Event) { + case SK_I2CEV_IRQ: + pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; + ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); + + if (ReadComplete) { + /* Check sensor against defined thresholds */ + SkI2cCheckSensor(pAC, pSen); + + /* Increment Current sensor and set appropriate Timeout */ + pAC->I2c.CurrSens++; + if (pAC->I2c.CurrSens >= pAC->I2c.MaxSens) { + pAC->I2c.CurrSens = 0; + Time = SK_I2C_TIM_LONG; + } + else { + Time = SK_I2C_TIM_SHORT; + } + + /* Start Timer */ + ParaLocal.Para64 = (SK_U64)0; + + pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; + + SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, + SKGE_I2C, SK_I2CEV_TIM, ParaLocal); + } + else { + /* Start Timer */ + ParaLocal.Para64 = (SK_U64)0; + + pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; + + SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, SK_I2C_TIM_WATCH, + SKGE_I2C, SK_I2CEV_TIM, ParaLocal); + } + break; + case SK_I2CEV_TIM: + if (pAC->I2c.TimerMode == SK_TIMER_NEW_GAUGING) { + + ParaLocal.Para64 = (SK_U64)0; + SkTimerStop(pAC, IoC, &pAC->I2c.SenTimer); + + pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; + ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); + + if (ReadComplete) { + /* Check sensor against defined thresholds */ + SkI2cCheckSensor(pAC, pSen); + + /* Increment Current sensor and set appropriate Timeout */ + pAC->I2c.CurrSens++; + if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { + pAC->I2c.CurrSens = 0; + Time = SK_I2C_TIM_LONG; + } + else { + Time = SK_I2C_TIM_SHORT; + } + + /* Start Timer */ + ParaLocal.Para64 = (SK_U64)0; + + pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; + + SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, + SKGE_I2C, SK_I2CEV_TIM, ParaLocal); + } + } + else { + pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; + pSen->SenErrFlag = SK_SEN_ERR_FAULTY; + SK_I2C_STOP(IoC); + + /* Increment Current sensor and set appropriate Timeout */ + pAC->I2c.CurrSens++; + if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { + pAC->I2c.CurrSens = 0; + Time = SK_I2C_TIM_LONG; + } + else { + Time = SK_I2C_TIM_SHORT; + } + + /* Start Timer */ + ParaLocal.Para64 = (SK_U64)0; + + pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; + + SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, + SKGE_I2C, SK_I2CEV_TIM, ParaLocal); + } + break; + case SK_I2CEV_CLEAR: + for (i = 0; i < SK_MAX_SENSORS; i++) { + pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; + pAC->I2c.SenTable[i].SenErrCts = 0; + pAC->I2c.SenTable[i].SenWarnCts = 0; + pAC->I2c.SenTable[i].SenBegErrTS = 0; + pAC->I2c.SenTable[i].SenBegWarnTS = 0; + pAC->I2c.SenTable[i].SenLastErrTrapTS = (SK_U64)0; + pAC->I2c.SenTable[i].SenLastErrLogTS = (SK_U64)0; + pAC->I2c.SenTable[i].SenLastWarnTrapTS = (SK_U64)0; + pAC->I2c.SenTable[i].SenLastWarnLogTS = (SK_U64)0; + } + break; + default: + SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E006, SKERR_I2C_E006MSG); + } + + return(0); +} /* SkI2cEvent*/ + +#endif /* !SK_DIAG */ |