summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/iwlegacy/iwl-4965-hw.h
diff options
context:
space:
mode:
authorPaul Mundt <lethal@linux-sh.org>2012-01-09 09:56:37 +0900
committerPaul Mundt <lethal@linux-sh.org>2012-01-09 09:56:37 +0900
commit04cf399640b7acfa9abe2eb7900cd934db8af697 (patch)
treef9a055f2f0170550f5f0b0507b06ffce8d98945d /drivers/net/wireless/iwlegacy/iwl-4965-hw.h
parent17f0056e6a2f3d1818801705f5e12b71217bf4ef (diff)
parenta0e86bd4252519321b0d102dc4ed90557aa7bee9 (diff)
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux into rmobile-latest
Conflicts: arch/arm/mach-shmobile/Makefile Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Diffstat (limited to 'drivers/net/wireless/iwlegacy/iwl-4965-hw.h')
-rw-r--r--drivers/net/wireless/iwlegacy/iwl-4965-hw.h811
1 files changed, 0 insertions, 811 deletions
diff --git a/drivers/net/wireless/iwlegacy/iwl-4965-hw.h b/drivers/net/wireless/iwlegacy/iwl-4965-hw.h
deleted file mode 100644
index fc6fa2886d9..00000000000
--- a/drivers/net/wireless/iwlegacy/iwl-4965-hw.h
+++ /dev/null
@@ -1,811 +0,0 @@
-/******************************************************************************
- *
- * This file is provided under a dual BSD/GPLv2 license. When using or
- * redistributing this file, you may do so under either license.
- *
- * GPL LICENSE SUMMARY
- *
- * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of version 2 of the GNU General Public License as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
- * USA
- *
- * The full GNU General Public License is included in this distribution
- * in the file called LICENSE.GPL.
- *
- * Contact Information:
- * Intel Linux Wireless <ilw@linux.intel.com>
- * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
- *
- * BSD LICENSE
- *
- * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *****************************************************************************/
-/*
- * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
- * Use iwl-commands.h for uCode API definitions.
- * Use iwl-dev.h for driver implementation definitions.
- */
-
-#ifndef __iwl_4965_hw_h__
-#define __iwl_4965_hw_h__
-
-#include "iwl-fh.h"
-
-/* EEPROM */
-#define IWL4965_EEPROM_IMG_SIZE 1024
-
-/*
- * uCode queue management definitions ...
- * The first queue used for block-ack aggregation is #7 (4965 only).
- * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
- */
-#define IWL49_FIRST_AMPDU_QUEUE 7
-
-/* Sizes and addresses for instruction and data memory (SRAM) in
- * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
-#define IWL49_RTC_INST_LOWER_BOUND (0x000000)
-#define IWL49_RTC_INST_UPPER_BOUND (0x018000)
-
-#define IWL49_RTC_DATA_LOWER_BOUND (0x800000)
-#define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
-
-#define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - \
- IWL49_RTC_INST_LOWER_BOUND)
-#define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - \
- IWL49_RTC_DATA_LOWER_BOUND)
-
-#define IWL49_MAX_INST_SIZE IWL49_RTC_INST_SIZE
-#define IWL49_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
-
-/* Size of uCode instruction memory in bootstrap state machine */
-#define IWL49_MAX_BSM_SIZE BSM_SRAM_SIZE
-
-static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
-{
- return (addr >= IWL49_RTC_DATA_LOWER_BOUND) &&
- (addr < IWL49_RTC_DATA_UPPER_BOUND);
-}
-
-/********************* START TEMPERATURE *************************************/
-
-/**
- * 4965 temperature calculation.
- *
- * The driver must calculate the device temperature before calculating
- * a txpower setting (amplifier gain is temperature dependent). The
- * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
- * values used for the life of the driver, and one of which (R4) is the
- * real-time temperature indicator.
- *
- * uCode provides all 4 values to the driver via the "initialize alive"
- * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
- * image loads, uCode updates the R4 value via statistics notifications
- * (see STATISTICS_NOTIFICATION), which occur after each received beacon
- * when associated, or can be requested via REPLY_STATISTICS_CMD.
- *
- * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
- * must sign-extend to 32 bits before applying formula below.
- *
- * Formula:
- *
- * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
- *
- * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
- * an additional correction, which should be centered around 0 degrees
- * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
- * centering the 97/100 correction around 0 degrees K.
- *
- * Add 273 to Kelvin value to find degrees Celsius, for comparing current
- * temperature with factory-measured temperatures when calculating txpower
- * settings.
- */
-#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
-#define TEMPERATURE_CALIB_A_VAL 259
-
-/* Limit range of calculated temperature to be between these Kelvin values */
-#define IWL_TX_POWER_TEMPERATURE_MIN (263)
-#define IWL_TX_POWER_TEMPERATURE_MAX (410)
-
-#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
- (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
- ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
-
-/********************* END TEMPERATURE ***************************************/
-
-/********************* START TXPOWER *****************************************/
-
-/**
- * 4965 txpower calculations rely on information from three sources:
- *
- * 1) EEPROM
- * 2) "initialize" alive notification
- * 3) statistics notifications
- *
- * EEPROM data consists of:
- *
- * 1) Regulatory information (max txpower and channel usage flags) is provided
- * separately for each channel that can possibly supported by 4965.
- * 40 MHz wide (.11n HT40) channels are listed separately from 20 MHz
- * (legacy) channels.
- *
- * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
- * for locations in EEPROM.
- *
- * 2) Factory txpower calibration information is provided separately for
- * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
- * but 5 GHz has several sub-bands.
- *
- * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
- *
- * See struct iwl4965_eeprom_calib_info (and the tree of structures
- * contained within it) for format, and struct iwl4965_eeprom for
- * locations in EEPROM.
- *
- * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
- * consists of:
- *
- * 1) Temperature calculation parameters.
- *
- * 2) Power supply voltage measurement.
- *
- * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
- *
- * Statistics notifications deliver:
- *
- * 1) Current values for temperature param R4.
- */
-
-/**
- * To calculate a txpower setting for a given desired target txpower, channel,
- * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
- * support MIMO and transmit diversity), driver must do the following:
- *
- * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
- * Do not exceed regulatory limit; reduce target txpower if necessary.
- *
- * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
- * 2 transmitters will be used simultaneously; driver must reduce the
- * regulatory limit by 3 dB (half-power) for each transmitter, so the
- * combined total output of the 2 transmitters is within regulatory limits.
- *
- *
- * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
- * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
- * reduce target txpower if necessary.
- *
- * Backoff values below are in 1/2 dB units (equivalent to steps in
- * txpower gain tables):
- *
- * OFDM 6 - 36 MBit: 10 steps (5 dB)
- * OFDM 48 MBit: 15 steps (7.5 dB)
- * OFDM 54 MBit: 17 steps (8.5 dB)
- * OFDM 60 MBit: 20 steps (10 dB)
- * CCK all rates: 10 steps (5 dB)
- *
- * Backoff values apply to saturation txpower on a per-transmitter basis;
- * when using MIMO (2 transmitters), each transmitter uses the same
- * saturation level provided in EEPROM, and the same backoff values;
- * no reduction (such as with regulatory txpower limits) is required.
- *
- * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
- * widths and 40 Mhz (.11n HT40) channel widths; there is no separate
- * factory measurement for ht40 channels.
- *
- * The result of this step is the final target txpower. The rest of
- * the steps figure out the proper settings for the device to achieve
- * that target txpower.
- *
- *
- * 3) Determine (EEPROM) calibration sub band for the target channel, by
- * comparing against first and last channels in each sub band
- * (see struct iwl4965_eeprom_calib_subband_info).
- *
- *
- * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
- * referencing the 2 factory-measured (sample) channels within the sub band.
- *
- * Interpolation is based on difference between target channel's frequency
- * and the sample channels' frequencies. Since channel numbers are based
- * on frequency (5 MHz between each channel number), this is equivalent
- * to interpolating based on channel number differences.
- *
- * Note that the sample channels may or may not be the channels at the
- * edges of the sub band. The target channel may be "outside" of the
- * span of the sampled channels.
- *
- * Driver may choose the pair (for 2 Tx chains) of measurements (see
- * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
- * txpower comes closest to the desired txpower. Usually, though,
- * the middle set of measurements is closest to the regulatory limits,
- * and is therefore a good choice for all txpower calculations (this
- * assumes that high accuracy is needed for maximizing legal txpower,
- * while lower txpower configurations do not need as much accuracy).
- *
- * Driver should interpolate both members of the chosen measurement pair,
- * i.e. for both Tx chains (radio transmitters), unless the driver knows
- * that only one of the chains will be used (e.g. only one tx antenna
- * connected, but this should be unusual). The rate scaling algorithm
- * switches antennas to find best performance, so both Tx chains will
- * be used (although only one at a time) even for non-MIMO transmissions.
- *
- * Driver should interpolate factory values for temperature, gain table
- * index, and actual power. The power amplifier detector values are
- * not used by the driver.
- *
- * Sanity check: If the target channel happens to be one of the sample
- * channels, the results should agree with the sample channel's
- * measurements!
- *
- *
- * 5) Find difference between desired txpower and (interpolated)
- * factory-measured txpower. Using (interpolated) factory gain table index
- * (shown elsewhere) as a starting point, adjust this index lower to
- * increase txpower, or higher to decrease txpower, until the target
- * txpower is reached. Each step in the gain table is 1/2 dB.
- *
- * For example, if factory measured txpower is 16 dBm, and target txpower
- * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
- * by 3 dB.
- *
- *
- * 6) Find difference between current device temperature and (interpolated)
- * factory-measured temperature for sub-band. Factory values are in
- * degrees Celsius. To calculate current temperature, see comments for
- * "4965 temperature calculation".
- *
- * If current temperature is higher than factory temperature, driver must
- * increase gain (lower gain table index), and vice verse.
- *
- * Temperature affects gain differently for different channels:
- *
- * 2.4 GHz all channels: 3.5 degrees per half-dB step
- * 5 GHz channels 34-43: 4.5 degrees per half-dB step
- * 5 GHz channels >= 44: 4.0 degrees per half-dB step
- *
- * NOTE: Temperature can increase rapidly when transmitting, especially
- * with heavy traffic at high txpowers. Driver should update
- * temperature calculations often under these conditions to
- * maintain strong txpower in the face of rising temperature.
- *
- *
- * 7) Find difference between current power supply voltage indicator
- * (from "initialize alive") and factory-measured power supply voltage
- * indicator (EEPROM).
- *
- * If the current voltage is higher (indicator is lower) than factory
- * voltage, gain should be reduced (gain table index increased) by:
- *
- * (eeprom - current) / 7
- *
- * If the current voltage is lower (indicator is higher) than factory
- * voltage, gain should be increased (gain table index decreased) by:
- *
- * 2 * (current - eeprom) / 7
- *
- * If number of index steps in either direction turns out to be > 2,
- * something is wrong ... just use 0.
- *
- * NOTE: Voltage compensation is independent of band/channel.
- *
- * NOTE: "Initialize" uCode measures current voltage, which is assumed
- * to be constant after this initial measurement. Voltage
- * compensation for txpower (number of steps in gain table)
- * may be calculated once and used until the next uCode bootload.
- *
- *
- * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
- * adjust txpower for each transmitter chain, so txpower is balanced
- * between the two chains. There are 5 pairs of tx_atten[group][chain]
- * values in "initialize alive", one pair for each of 5 channel ranges:
- *
- * Group 0: 5 GHz channel 34-43
- * Group 1: 5 GHz channel 44-70
- * Group 2: 5 GHz channel 71-124
- * Group 3: 5 GHz channel 125-200
- * Group 4: 2.4 GHz all channels
- *
- * Add the tx_atten[group][chain] value to the index for the target chain.
- * The values are signed, but are in pairs of 0 and a non-negative number,
- * so as to reduce gain (if necessary) of the "hotter" channel. This
- * avoids any need to double-check for regulatory compliance after
- * this step.
- *
- *
- * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
- * value to the index:
- *
- * Hardware rev B: 9 steps (4.5 dB)
- * Hardware rev C: 5 steps (2.5 dB)
- *
- * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
- * bits [3:2], 1 = B, 2 = C.
- *
- * NOTE: This compensation is in addition to any saturation backoff that
- * might have been applied in an earlier step.
- *
- *
- * 10) Select the gain table, based on band (2.4 vs 5 GHz).
- *
- * Limit the adjusted index to stay within the table!
- *
- *
- * 11) Read gain table entries for DSP and radio gain, place into appropriate
- * location(s) in command (struct iwl4965_txpowertable_cmd).
- */
-
-/**
- * When MIMO is used (2 transmitters operating simultaneously), driver should
- * limit each transmitter to deliver a max of 3 dB below the regulatory limit
- * for the device. That is, use half power for each transmitter, so total
- * txpower is within regulatory limits.
- *
- * The value "6" represents number of steps in gain table to reduce power 3 dB.
- * Each step is 1/2 dB.
- */
-#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
-
-/**
- * CCK gain compensation.
- *
- * When calculating txpowers for CCK, after making sure that the target power
- * is within regulatory and saturation limits, driver must additionally
- * back off gain by adding these values to the gain table index.
- *
- * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
- * bits [3:2], 1 = B, 2 = C.
- */
-#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
-#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
-
-/*
- * 4965 power supply voltage compensation for txpower
- */
-#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
-
-/**
- * Gain tables.
- *
- * The following tables contain pair of values for setting txpower, i.e.
- * gain settings for the output of the device's digital signal processor (DSP),
- * and for the analog gain structure of the transmitter.
- *
- * Each entry in the gain tables represents a step of 1/2 dB. Note that these
- * are *relative* steps, not indications of absolute output power. Output
- * power varies with temperature, voltage, and channel frequency, and also
- * requires consideration of average power (to satisfy regulatory constraints),
- * and peak power (to avoid distortion of the output signal).
- *
- * Each entry contains two values:
- * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
- * linear value that multiplies the output of the digital signal processor,
- * before being sent to the analog radio.
- * 2) Radio gain. This sets the analog gain of the radio Tx path.
- * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
- *
- * EEPROM contains factory calibration data for txpower. This maps actual
- * measured txpower levels to gain settings in the "well known" tables
- * below ("well-known" means here that both factory calibration *and* the
- * driver work with the same table).
- *
- * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
- * has an extension (into negative indexes), in case the driver needs to
- * boost power setting for high device temperatures (higher than would be
- * present during factory calibration). A 5 Ghz EEPROM index of "40"
- * corresponds to the 49th entry in the table used by the driver.
- */
-#define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
-#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
-
-/**
- * 2.4 GHz gain table
- *
- * Index Dsp gain Radio gain
- * 0 110 0x3f (highest gain)
- * 1 104 0x3f
- * 2 98 0x3f
- * 3 110 0x3e
- * 4 104 0x3e
- * 5 98 0x3e
- * 6 110 0x3d
- * 7 104 0x3d
- * 8 98 0x3d
- * 9 110 0x3c
- * 10 104 0x3c
- * 11 98 0x3c
- * 12 110 0x3b
- * 13 104 0x3b
- * 14 98 0x3b
- * 15 110 0x3a
- * 16 104 0x3a
- * 17 98 0x3a
- * 18 110 0x39
- * 19 104 0x39
- * 20 98 0x39
- * 21 110 0x38
- * 22 104 0x38
- * 23 98 0x38
- * 24 110 0x37
- * 25 104 0x37
- * 26 98 0x37
- * 27 110 0x36
- * 28 104 0x36
- * 29 98 0x36
- * 30 110 0x35
- * 31 104 0x35
- * 32 98 0x35
- * 33 110 0x34
- * 34 104 0x34
- * 35 98 0x34
- * 36 110 0x33
- * 37 104 0x33
- * 38 98 0x33
- * 39 110 0x32
- * 40 104 0x32
- * 41 98 0x32
- * 42 110 0x31
- * 43 104 0x31
- * 44 98 0x31
- * 45 110 0x30
- * 46 104 0x30
- * 47 98 0x30
- * 48 110 0x6
- * 49 104 0x6
- * 50 98 0x6
- * 51 110 0x5
- * 52 104 0x5
- * 53 98 0x5
- * 54 110 0x4
- * 55 104 0x4
- * 56 98 0x4
- * 57 110 0x3
- * 58 104 0x3
- * 59 98 0x3
- * 60 110 0x2
- * 61 104 0x2
- * 62 98 0x2
- * 63 110 0x1
- * 64 104 0x1
- * 65 98 0x1
- * 66 110 0x0
- * 67 104 0x0
- * 68 98 0x0
- * 69 97 0
- * 70 96 0
- * 71 95 0
- * 72 94 0
- * 73 93 0
- * 74 92 0
- * 75 91 0
- * 76 90 0
- * 77 89 0
- * 78 88 0
- * 79 87 0
- * 80 86 0
- * 81 85 0
- * 82 84 0
- * 83 83 0
- * 84 82 0
- * 85 81 0
- * 86 80 0
- * 87 79 0
- * 88 78 0
- * 89 77 0
- * 90 76 0
- * 91 75 0
- * 92 74 0
- * 93 73 0
- * 94 72 0
- * 95 71 0
- * 96 70 0
- * 97 69 0
- * 98 68 0
- */
-
-/**
- * 5 GHz gain table
- *
- * Index Dsp gain Radio gain
- * -9 123 0x3F (highest gain)
- * -8 117 0x3F
- * -7 110 0x3F
- * -6 104 0x3F
- * -5 98 0x3F
- * -4 110 0x3E
- * -3 104 0x3E
- * -2 98 0x3E
- * -1 110 0x3D
- * 0 104 0x3D
- * 1 98 0x3D
- * 2 110 0x3C
- * 3 104 0x3C
- * 4 98 0x3C
- * 5 110 0x3B
- * 6 104 0x3B
- * 7 98 0x3B
- * 8 110 0x3A
- * 9 104 0x3A
- * 10 98 0x3A
- * 11 110 0x39
- * 12 104 0x39
- * 13 98 0x39
- * 14 110 0x38
- * 15 104 0x38
- * 16 98 0x38
- * 17 110 0x37
- * 18 104 0x37
- * 19 98 0x37
- * 20 110 0x36
- * 21 104 0x36
- * 22 98 0x36
- * 23 110 0x35
- * 24 104 0x35
- * 25 98 0x35
- * 26 110 0x34
- * 27 104 0x34
- * 28 98 0x34
- * 29 110 0x33
- * 30 104 0x33
- * 31 98 0x33
- * 32 110 0x32
- * 33 104 0x32
- * 34 98 0x32
- * 35 110 0x31
- * 36 104 0x31
- * 37 98 0x31
- * 38 110 0x30
- * 39 104 0x30
- * 40 98 0x30
- * 41 110 0x25
- * 42 104 0x25
- * 43 98 0x25
- * 44 110 0x24
- * 45 104 0x24
- * 46 98 0x24
- * 47 110 0x23
- * 48 104 0x23
- * 49 98 0x23
- * 50 110 0x22
- * 51 104 0x18
- * 52 98 0x18
- * 53 110 0x17
- * 54 104 0x17
- * 55 98 0x17
- * 56 110 0x16
- * 57 104 0x16
- * 58 98 0x16
- * 59 110 0x15
- * 60 104 0x15
- * 61 98 0x15
- * 62 110 0x14
- * 63 104 0x14
- * 64 98 0x14
- * 65 110 0x13
- * 66 104 0x13
- * 67 98 0x13
- * 68 110 0x12
- * 69 104 0x08
- * 70 98 0x08
- * 71 110 0x07
- * 72 104 0x07
- * 73 98 0x07
- * 74 110 0x06
- * 75 104 0x06
- * 76 98 0x06
- * 77 110 0x05
- * 78 104 0x05
- * 79 98 0x05
- * 80 110 0x04
- * 81 104 0x04
- * 82 98 0x04
- * 83 110 0x03
- * 84 104 0x03
- * 85 98 0x03
- * 86 110 0x02
- * 87 104 0x02
- * 88 98 0x02
- * 89 110 0x01
- * 90 104 0x01
- * 91 98 0x01
- * 92 110 0x00
- * 93 104 0x00
- * 94 98 0x00
- * 95 93 0x00
- * 96 88 0x00
- * 97 83 0x00
- * 98 78 0x00
- */
-
-
-/**
- * Sanity checks and default values for EEPROM regulatory levels.
- * If EEPROM values fall outside MIN/MAX range, use default values.
- *
- * Regulatory limits refer to the maximum average txpower allowed by
- * regulatory agencies in the geographies in which the device is meant
- * to be operated. These limits are SKU-specific (i.e. geography-specific),
- * and channel-specific; each channel has an individual regulatory limit
- * listed in the EEPROM.
- *
- * Units are in half-dBm (i.e. "34" means 17 dBm).
- */
-#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
-#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
-#define IWL_TX_POWER_REGULATORY_MIN (0)
-#define IWL_TX_POWER_REGULATORY_MAX (34)
-
-/**
- * Sanity checks and default values for EEPROM saturation levels.
- * If EEPROM values fall outside MIN/MAX range, use default values.
- *
- * Saturation is the highest level that the output power amplifier can produce
- * without significant clipping distortion. This is a "peak" power level.
- * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
- * require differing amounts of backoff, relative to their average power output,
- * in order to avoid clipping distortion.
- *
- * Driver must make sure that it is violating neither the saturation limit,
- * nor the regulatory limit, when calculating Tx power settings for various
- * rates.
- *
- * Units are in half-dBm (i.e. "38" means 19 dBm).
- */
-#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
-#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
-#define IWL_TX_POWER_SATURATION_MIN (20)
-#define IWL_TX_POWER_SATURATION_MAX (50)
-
-/**
- * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
- * and thermal Txpower calibration.
- *
- * When calculating txpower, driver must compensate for current device
- * temperature; higher temperature requires higher gain. Driver must calculate
- * current temperature (see "4965 temperature calculation"), then compare vs.
- * factory calibration temperature in EEPROM; if current temperature is higher
- * than factory temperature, driver must *increase* gain by proportions shown
- * in table below. If current temperature is lower than factory, driver must
- * *decrease* gain.
- *
- * Different frequency ranges require different compensation, as shown below.
- */
-/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
-#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
-#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
-
-/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
-#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
-#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
-
-/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
-#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
-#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
-
-/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
-#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
-#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
-
-/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
-#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
-#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
-
-enum {
- CALIB_CH_GROUP_1 = 0,
- CALIB_CH_GROUP_2 = 1,
- CALIB_CH_GROUP_3 = 2,
- CALIB_CH_GROUP_4 = 3,
- CALIB_CH_GROUP_5 = 4,
- CALIB_CH_GROUP_MAX
-};
-
-/********************* END TXPOWER *****************************************/
-
-
-/**
- * Tx/Rx Queues
- *
- * Most communication between driver and 4965 is via queues of data buffers.
- * For example, all commands that the driver issues to device's embedded
- * controller (uCode) are via the command queue (one of the Tx queues). All
- * uCode command responses/replies/notifications, including Rx frames, are
- * conveyed from uCode to driver via the Rx queue.
- *
- * Most support for these queues, including handshake support, resides in
- * structures in host DRAM, shared between the driver and the device. When
- * allocating this memory, the driver must make sure that data written by
- * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
- * cache memory), so DRAM and cache are consistent, and the device can
- * immediately see changes made by the driver.
- *
- * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
- * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
- * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
- */
-#define IWL49_NUM_FIFOS 7
-#define IWL49_CMD_FIFO_NUM 4
-#define IWL49_NUM_QUEUES 16
-#define IWL49_NUM_AMPDU_QUEUES 8
-
-
-/**
- * struct iwl4965_schedq_bc_tbl
- *
- * Byte Count table
- *
- * Each Tx queue uses a byte-count table containing 320 entries:
- * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
- * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
- * max Tx window is 64 TFDs).
- *
- * When driver sets up a new TFD, it must also enter the total byte count
- * of the frame to be transmitted into the corresponding entry in the byte
- * count table for the chosen Tx queue. If the TFD index is 0-63, the driver
- * must duplicate the byte count entry in corresponding index 256-319.
- *
- * padding puts each byte count table on a 1024-byte boundary;
- * 4965 assumes tables are separated by 1024 bytes.
- */
-struct iwl4965_scd_bc_tbl {
- __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
- u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
-} __packed;
-
-
-#define IWL4965_RTC_INST_LOWER_BOUND (0x000000)
-
-/* RSSI to dBm */
-#define IWL4965_RSSI_OFFSET 44
-
-/* PCI registers */
-#define PCI_CFG_RETRY_TIMEOUT 0x041
-
-/* PCI register values */
-#define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
-#define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
-
-#define IWL4965_DEFAULT_TX_RETRY 15
-
-/* EEPROM */
-#define IWL4965_FIRST_AMPDU_QUEUE 10
-
-
-#endif /* !__iwl_4965_hw_h__ */