summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/iwlwifi/iwl-trans.h
diff options
context:
space:
mode:
authorEmmanuel Grumbach <emmanuel.grumbach@intel.com>2012-02-06 16:41:58 +0200
committerWey-Yi Guy <wey-yi.w.guy@intel.com>2012-02-17 10:55:17 -0800
commit60396183a4e7adce7aa71f801e47b063fe1f70a8 (patch)
tree39ae35c4713376b5df417485b4ec4ca5aaf24eb9 /drivers/net/wireless/iwlwifi/iwl-trans.h
parentedabfa914d52daf8c01511109144fe5af3c4389e (diff)
iwlwifi: document the transport layer
Fix a few typos in the existing comments too. Enforce the comments with might_sleep. Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com> Signed-off-by: Wey-Yi Guy <wey-yi.w.guy@intel.com>
Diffstat (limited to 'drivers/net/wireless/iwlwifi/iwl-trans.h')
-rw-r--r--drivers/net/wireless/iwlwifi/iwl-trans.h120
1 files changed, 107 insertions, 13 deletions
diff --git a/drivers/net/wireless/iwlwifi/iwl-trans.h b/drivers/net/wireless/iwlwifi/iwl-trans.h
index 7ea5f7733d2..2a2941f9fd2 100644
--- a/drivers/net/wireless/iwlwifi/iwl-trans.h
+++ b/drivers/net/wireless/iwlwifi/iwl-trans.h
@@ -70,17 +70,72 @@
#include "iwl-commands.h"
#include "iwl-ucode.h"
- /*This file includes the declaration that are exported from the transport
- * layer */
+/**
+ * DOC: Transport layer - what is it ?
+ *
+ * The tranport layer is the layer that deals with the HW directly. It provides
+ * an abstraction of the underlying HW to the upper layer. The transport layer
+ * doesn't provide any policy, algorithm or anything of this kind, but only
+ * mechanisms to make the HW do something.It is not completely stateless but
+ * close to it.
+ * We will have an implementation for each different supported bus.
+ */
+
+/**
+ * DOC: Life cycle of the transport layer
+ *
+ * The transport layer has a very precise life cycle.
+ *
+ * 1) A helper function is called during the module initialization and
+ * registers the bus driver's ops with the transport's alloc function.
+ * 2) Bus's probe calls to the transport layer's allocation functions.
+ * Of course this function is bus specific.
+ * 3) This allocation functions will spawn the upper layer which will
+ * register mac80211.
+ *
+ * 4) At some point (i.e. mac80211's start call), the op_mode will call
+ * the following sequence:
+ * start_hw
+ * start_fw
+ *
+ * 5) Then when finished (or reset):
+ * stop_fw (a.k.a. stop device for the moment)
+ * stop_hw
+ *
+ * 6) Eventually, the free function will be called.
+ */
+
+/**
+ * DOC: API needed by the transport layer from the op_mode
+ *
+ * TODO
+ */
struct iwl_priv;
struct iwl_shared;
+/**
+ * DOC: Host command section
+ *
+ * A host command is a commaned issued by the upper layer to the fw. There are
+ * several versions of fw that have several APIs. The transport layer is
+ * completely agnostic to these differences.
+ * The transport does provide helper functionnality (i.e. SYNC / ASYNC mode),
+ */
#define SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4)
#define SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ)
#define MAX_SN ((IEEE80211_SCTL_SEQ) >> 4)
-enum {
+/**
+ * enum CMD_MODE - how to send the host commands ?
+ *
+ * @CMD_SYNC: The caller will be stalled until the fw responds to the command
+ * @CMD_ASYNC: Return right away and don't want for the response
+ * @CMD_WANT_SKB: valid only with CMD_SYNC. The caller needs the buffer of the
+ * response.
+ * @CMD_ON_DEMAND: This command is sent by the test mode pipe.
+ */
+enum CMD_MODE {
CMD_SYNC = 0,
CMD_ASYNC = BIT(0),
CMD_WANT_SKB = BIT(1),
@@ -105,20 +160,29 @@ struct iwl_device_cmd {
#define IWL_MAX_CMD_TFDS 2
+/**
+ * struct iwl_hcmd_dataflag - flag for each one of the chunks of the command
+ *
+ * IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
+ * ring. The transport layer doesn't map the command's buffer to DMA, but
+ * rather copies it to an previously allocated DMA buffer. This flag tells
+ * the transport layer not to copy the command, but to map the existing
+ * buffer. This can save memcpy and is worth with very big comamnds.
+ */
enum iwl_hcmd_dataflag {
IWL_HCMD_DFL_NOCOPY = BIT(0),
};
/**
* struct iwl_host_cmd - Host command to the uCode
+ *
* @data: array of chunks that composes the data of the host command
* @reply_page: pointer to the page that holds the response to the host command
* @handler_status: return value of the handler of the command
* (put in setup_rx_handlers) - valid for SYNC mode only
- * @callback:
- * @flags: can be CMD_* note CMD_WANT_SKB is incompatible withe CMD_ASYNC
+ * @flags: can be CMD_*
* @len: array of the lenths of the chunks in data
- * @dataflags:
+ * @dataflags: IWL_HCMD_DFL_*
* @id: id of the host command
*/
struct iwl_host_cmd {
@@ -134,26 +198,43 @@ struct iwl_host_cmd {
/**
* struct iwl_trans_ops - transport specific operations
+ *
+ * All the handlers MUST be implemented
+ *
* @start_hw: starts the HW- from that point on, the HW can send interrupts
+ * May sleep
* @stop_hw: stops the HW- from that point on, the HW will be in low power but
* will still issue interrupt if the HW RF kill is triggered.
+ * May sleep
* @start_fw: allocates and inits all the resources for the transport
- * layer. Also kick a fw image. This handler may sleep.
+ * layer. Also kick a fw image.
+ * May sleep
* @fw_alive: called when the fw sends alive notification
+ * May sleep
* @wake_any_queue: wake all the queues of a specfic context IWL_RXON_CTX_*
* @stop_device:stops the whole device (embedded CPU put to reset)
+ * May sleep
* @send_cmd:send a host command
+ * May sleep only if CMD_SYNC is set
* @tx: send an skb
+ * Must be atomic
* @reclaim: free packet until ssn. Returns a list of freed packets.
+ * Must be atomic
* @tx_agg_alloc: allocate resources for a TX BA session
+ * May sleep
* @tx_agg_setup: setup a tx queue for AMPDU - will be called once the HW is
- * ready and a successful ADDBA response has been received.
+ * ready and a successful ADDBA response has been received.
+ * May sleep
* @tx_agg_disable: de-configure a Tx queue to send AMPDUs
+ * May sleep
* @free: release all the ressource for the transport layer itself such as
- * irq, tasklet etc...
+ * irq, tasklet etc... From this point on, the device may not issue
+ * any interrupt (incl. RFKILL).
+ * May sleep
* @stop_queue: stop a specific queue
* @check_stuck_queue: check if a specific queue is stuck
* @wait_tx_queue_empty: wait until all tx queues are empty
+ * May sleep
* @dbgfs_register: add the dbgfs files under this directory. Files will be
* automatically deleted.
* @suspend: stop the device unless WoWLAN is configured
@@ -217,6 +298,7 @@ struct iwl_calib_result {
/**
* struct iwl_trans - transport common data
+ *
* @ops - pointer to iwl_trans_ops
* @shrd - pointer to iwl_shared which holds shared data from the upper layer
* @hcmd_lock: protects HCMD
@@ -224,7 +306,7 @@ struct iwl_calib_result {
* @dev - pointer to struct device * that represents the device
* @irq - the irq number for the device
* @hw_id: a u32 with the ID of the device / subdevice.
- * Set during transport alloaction.
+ * Set during transport allocation.
* @hw_id_str: a string with info about HW ID. Set during transport allocation.
* @ucode_write_complete: indicates that the ucode has been copied.
* @ucode_rt: run time ucode image
@@ -246,13 +328,11 @@ struct iwl_trans {
u32 hw_id;
char hw_id_str[52];
- u8 ucode_write_complete; /* the image write is complete */
+ u8 ucode_write_complete;
- /* eeprom related variables */
int nvm_device_type;
bool pm_support;
- /* init calibration results */
struct list_head calib_results;
/* pointer to trans specific struct */
@@ -262,16 +342,22 @@ struct iwl_trans {
static inline int iwl_trans_start_hw(struct iwl_trans *trans)
{
+ might_sleep();
+
return trans->ops->start_hw(trans);
}
static inline void iwl_trans_stop_hw(struct iwl_trans *trans)
{
+ might_sleep();
+
trans->ops->stop_hw(trans);
}
static inline void iwl_trans_fw_alive(struct iwl_trans *trans)
{
+ might_sleep();
+
trans->ops->fw_alive(trans);
}
@@ -284,6 +370,8 @@ static inline int iwl_trans_start_fw(struct iwl_trans *trans, struct fw_img *fw)
static inline void iwl_trans_stop_device(struct iwl_trans *trans)
{
+ might_sleep();
+
trans->ops->stop_device(trans);
}
@@ -322,12 +410,16 @@ static inline int iwl_trans_reclaim(struct iwl_trans *trans, int sta_id,
static inline int iwl_trans_tx_agg_disable(struct iwl_trans *trans,
int sta_id, int tid)
{
+ might_sleep();
+
return trans->ops->tx_agg_disable(trans, sta_id, tid);
}
static inline int iwl_trans_tx_agg_alloc(struct iwl_trans *trans,
int sta_id, int tid)
{
+ might_sleep();
+
return trans->ops->tx_agg_alloc(trans, sta_id, tid);
}
@@ -337,6 +429,8 @@ static inline void iwl_trans_tx_agg_setup(struct iwl_trans *trans,
int sta_id, int tid,
int frame_limit, u16 ssn)
{
+ might_sleep();
+
trans->ops->tx_agg_setup(trans, ctx, sta_id, tid, frame_limit, ssn);
}