diff options
author | Chris Mason <chris.mason@oracle.com> | 2008-09-29 15:18:18 -0400 |
---|---|---|
committer | Chris Mason <chris.mason@oracle.com> | 2008-09-29 15:18:18 -0400 |
commit | d352ac68148b69937d39ca5d48bcc4478e118dbf (patch) | |
tree | 7951dd7311999d9e77766acdc7f8e93de97874d8 /fs/btrfs/disk-io.c | |
parent | 9a5e1ea1e1e539e244a54afffc330fc368376ab9 (diff) |
Btrfs: add and improve comments
This improves the comments at the top of many functions. It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.
extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Diffstat (limited to 'fs/btrfs/disk-io.c')
-rw-r--r-- | fs/btrfs/disk-io.c | 33 |
1 files changed, 32 insertions, 1 deletions
diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c index 45b4f728527..5ee10d3136f 100644 --- a/fs/btrfs/disk-io.c +++ b/fs/btrfs/disk-io.c @@ -55,6 +55,11 @@ static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf) static struct extent_io_ops btree_extent_io_ops; static void end_workqueue_fn(struct btrfs_work *work); +/* + * end_io_wq structs are used to do processing in task context when an IO is + * complete. This is used during reads to verify checksums, and it is used + * by writes to insert metadata for new file extents after IO is complete. + */ struct end_io_wq { struct bio *bio; bio_end_io_t *end_io; @@ -66,6 +71,11 @@ struct end_io_wq { struct btrfs_work work; }; +/* + * async submit bios are used to offload expensive checksumming + * onto the worker threads. They checksum file and metadata bios + * just before they are sent down the IO stack. + */ struct async_submit_bio { struct inode *inode; struct bio *bio; @@ -76,6 +86,10 @@ struct async_submit_bio { struct btrfs_work work; }; +/* + * extents on the btree inode are pretty simple, there's one extent + * that covers the entire device + */ struct extent_map *btree_get_extent(struct inode *inode, struct page *page, size_t page_offset, u64 start, u64 len, int create) @@ -151,6 +165,10 @@ void btrfs_csum_final(u32 crc, char *result) *(__le32 *)result = ~cpu_to_le32(crc); } +/* + * compute the csum for a btree block, and either verify it or write it + * into the csum field of the block. + */ static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, int verify) { @@ -204,6 +222,12 @@ static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, return 0; } +/* + * we can't consider a given block up to date unless the transid of the + * block matches the transid in the parent node's pointer. This is how we + * detect blocks that either didn't get written at all or got written + * in the wrong place. + */ static int verify_parent_transid(struct extent_io_tree *io_tree, struct extent_buffer *eb, u64 parent_transid) { @@ -228,9 +252,12 @@ out: unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); return ret; - } +/* + * helper to read a given tree block, doing retries as required when + * the checksums don't match and we have alternate mirrors to try. + */ static int btree_read_extent_buffer_pages(struct btrfs_root *root, struct extent_buffer *eb, u64 start, u64 parent_transid) @@ -260,6 +287,10 @@ printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror return -EIO; } +/* + * checksum a dirty tree block before IO. This has extra checks to make + * sure we only fill in the checksum field in the first page of a multi-page block + */ int csum_dirty_buffer(struct btrfs_root *root, struct page *page) { struct extent_io_tree *tree; |