diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-generic/iomap.h |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/asm-generic/iomap.h')
-rw-r--r-- | include/asm-generic/iomap.h | 63 |
1 files changed, 63 insertions, 0 deletions
diff --git a/include/asm-generic/iomap.h b/include/asm-generic/iomap.h new file mode 100644 index 00000000000..4991543d44c --- /dev/null +++ b/include/asm-generic/iomap.h @@ -0,0 +1,63 @@ +#ifndef __GENERIC_IO_H +#define __GENERIC_IO_H + +#include <linux/linkage.h> + +/* + * These are the "generic" interfaces for doing new-style + * memory-mapped or PIO accesses. Architectures may do + * their own arch-optimized versions, these just act as + * wrappers around the old-style IO register access functions: + * read[bwl]/write[bwl]/in[bwl]/out[bwl] + * + * Don't include this directly, include it from <asm/io.h>. + */ + +/* + * Read/write from/to an (offsettable) iomem cookie. It might be a PIO + * access or a MMIO access, these functions don't care. The info is + * encoded in the hardware mapping set up by the mapping functions + * (or the cookie itself, depending on implementation and hw). + * + * The generic routines just encode the PIO/MMIO as part of the + * cookie, and coldly assume that the MMIO IO mappings are not + * in the low address range. Architectures for which this is not + * true can't use this generic implementation. + */ +extern unsigned int fastcall ioread8(void __iomem *); +extern unsigned int fastcall ioread16(void __iomem *); +extern unsigned int fastcall ioread32(void __iomem *); + +extern void fastcall iowrite8(u8, void __iomem *); +extern void fastcall iowrite16(u16, void __iomem *); +extern void fastcall iowrite32(u32, void __iomem *); + +/* + * "string" versions of the above. Note that they + * use native byte ordering for the accesses (on + * the assumption that IO and memory agree on a + * byte order, and CPU byteorder is irrelevant). + * + * They do _not_ update the port address. If you + * want MMIO that copies stuff laid out in MMIO + * memory across multiple ports, use "memcpy_toio()" + * and friends. + */ +extern void fastcall ioread8_rep(void __iomem *port, void *buf, unsigned long count); +extern void fastcall ioread16_rep(void __iomem *port, void *buf, unsigned long count); +extern void fastcall ioread32_rep(void __iomem *port, void *buf, unsigned long count); + +extern void fastcall iowrite8_rep(void __iomem *port, const void *buf, unsigned long count); +extern void fastcall iowrite16_rep(void __iomem *port, const void *buf, unsigned long count); +extern void fastcall iowrite32_rep(void __iomem *port, const void *buf, unsigned long count); + +/* Create a virtual mapping cookie for an IO port range */ +extern void __iomem *ioport_map(unsigned long port, unsigned int nr); +extern void ioport_unmap(void __iomem *); + +/* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ +struct pci_dev; +extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); +extern void pci_iounmap(struct pci_dev *dev, void __iomem *); + +#endif |