summaryrefslogtreecommitdiffstats
path: root/include/asm-x86/uaccess_32.h
diff options
context:
space:
mode:
authorGlauber Costa <gcosta@redhat.com>2008-06-13 14:39:25 -0300
committerIngo Molnar <mingo@elte.hu>2008-07-09 09:14:18 +0200
commitca23386216b9d4fc3bb211101205077d2b2916ae (patch)
tree258a4239a07f42da5c6b7d468b75eedcd962cba2 /include/asm-x86/uaccess_32.h
parentbe9d06bfd48934fbd56ccb7476eabccfa31b4afe (diff)
x86: merge common parts of uaccess.
Common parts of uaccess_32.h and uaccess_64.h are put in uaccess.h. Bits in uaccess_32.h and uaccess_64.h that come to this file are equal except for comments and whitespaces differences. Signed-off-by: Glauber Costa <gcosta@redhat.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'include/asm-x86/uaccess_32.h')
-rw-r--r--include/asm-x86/uaccess_32.h110
1 files changed, 0 insertions, 110 deletions
diff --git a/include/asm-x86/uaccess_32.h b/include/asm-x86/uaccess_32.h
index 2676b48ac0f..92ad19e7098 100644
--- a/include/asm-x86/uaccess_32.h
+++ b/include/asm-x86/uaccess_32.h
@@ -11,29 +11,6 @@
#include <asm/asm.h>
#include <asm/page.h>
-#define VERIFY_READ 0
-#define VERIFY_WRITE 1
-
-/*
- * The fs value determines whether argument validity checking should be
- * performed or not. If get_fs() == USER_DS, checking is performed, with
- * get_fs() == KERNEL_DS, checking is bypassed.
- *
- * For historical reasons, these macros are grossly misnamed.
- */
-
-#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
-
-
-#define KERNEL_DS MAKE_MM_SEG(-1UL)
-#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
-
-#define get_ds() (KERNEL_DS)
-#define get_fs() (current_thread_info()->addr_limit)
-#define set_fs(x) (current_thread_info()->addr_limit = (x))
-
-#define segment_eq(a, b) ((a).seg == (b).seg)
-
/*
* movsl can be slow when source and dest are not both 8-byte aligned
*/
@@ -47,91 +24,6 @@ extern struct movsl_mask {
((unsigned long __force)(addr) < \
(current_thread_info()->addr_limit.seg))
-/*
- * Test whether a block of memory is a valid user space address.
- * Returns 0 if the range is valid, nonzero otherwise.
- *
- * This is equivalent to the following test:
- * (u33)addr + (u33)size >= (u33)current->addr_limit.seg
- *
- * This needs 33-bit arithmetic. We have a carry...
- */
-#define __range_not_ok(addr, size) \
-({ \
- unsigned long flag, roksum; \
- __chk_user_ptr(addr); \
- asm("add %3,%1 ; sbb %0,%0; cmp %1,%4; sbb $0,%0" \
- :"=&r" (flag), "=r" (roksum) \
- :"1" (addr), "g" ((long)(size)), \
- "rm" (current_thread_info()->addr_limit.seg)); \
- flag; \
-})
-
-/**
- * access_ok: - Checks if a user space pointer is valid
- * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
- * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
- * to write to a block, it is always safe to read from it.
- * @addr: User space pointer to start of block to check
- * @size: Size of block to check
- *
- * Context: User context only. This function may sleep.
- *
- * Checks if a pointer to a block of memory in user space is valid.
- *
- * Returns true (nonzero) if the memory block may be valid, false (zero)
- * if it is definitely invalid.
- *
- * Note that, depending on architecture, this function probably just
- * checks that the pointer is in the user space range - after calling
- * this function, memory access functions may still return -EFAULT.
- */
-#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))
-
-/*
- * The exception table consists of pairs of addresses: the first is the
- * address of an instruction that is allowed to fault, and the second is
- * the address at which the program should continue. No registers are
- * modified, so it is entirely up to the continuation code to figure out
- * what to do.
- *
- * All the routines below use bits of fixup code that are out of line
- * with the main instruction path. This means when everything is well,
- * we don't even have to jump over them. Further, they do not intrude
- * on our cache or tlb entries.
- */
-
-struct exception_table_entry {
- unsigned long insn, fixup;
-};
-
-extern int fixup_exception(struct pt_regs *regs);
-
-/*
- * These are the main single-value transfer routines. They automatically
- * use the right size if we just have the right pointer type.
- *
- * This gets kind of ugly. We want to return _two_ values in "get_user()"
- * and yet we don't want to do any pointers, because that is too much
- * of a performance impact. Thus we have a few rather ugly macros here,
- * and hide all the ugliness from the user.
- *
- * The "__xxx" versions of the user access functions are versions that
- * do not verify the address space, that must have been done previously
- * with a separate "access_ok()" call (this is used when we do multiple
- * accesses to the same area of user memory).
- */
-
-extern void __get_user_1(void);
-extern void __get_user_2(void);
-extern void __get_user_4(void);
-
-#define __get_user_x(size, ret, x, ptr) \
- asm volatile("call __get_user_" #size \
- :"=a" (ret),"=d" (x) \
- :"0" (ptr))
-
-
/* Careful: we have to cast the result to the type of the pointer
* for sign reasons */
@@ -386,8 +278,6 @@ struct __large_struct { unsigned long buf[100]; };
__gu_err; \
})
-extern long __get_user_bad(void);
-
#define __get_user_size(x, ptr, size, retval, errret) \
do { \
retval = 0; \