summaryrefslogtreecommitdiffstats
path: root/include/linux/dnotify.h
diff options
context:
space:
mode:
authorSteve Wise <swise@opengridcomputing.com>2011-05-20 16:25:05 +0000
committerRoland Dreier <roland@purestorage.com>2011-05-24 09:47:38 -0700
commitc337374bf23b88620bcc66a7a09f141cc640f548 (patch)
tree5867078d9b9f7e8eb44df4e94b08e460aede1616 /include/linux/dnotify.h
parent257313b2a87795e07a0bdf58d0fffbdba8b31051 (diff)
RDMA/cxgb4: Use completion objects for event blocking
There exists a race condition when using wait_queue_head_t objects that are declared on the stack. This was being done in a few places where we are sending work requests to the FW and awaiting replies, but we don't have an endpoint structure with an embedded c4iw_wr_wait struct. So the code was allocating it locally on the stack. Bad design. The race is: 1) thread on cpuX declares the wait_queue_head_t on the stack, then posts a firmware WR with that wait object ptr as the cookie to be returned in the WR reply. This thread will proceed to block in wait_event_timeout() but before it does: 2) An interrupt runs on cpuY with the WR reply. fw6_msg() handles this and calls c4iw_wake_up(). c4iw_wake_up() sets the condition variable in the c4iw_wr_wait object to TRUE and will call wake_up(), but before it calls wake_up(): 3) The thread on cpuX calls c4iw_wait_for_reply(), which calls wait_event_timeout(). The wait_event_timeout() macro checks the condition variable and returns immediately since it is TRUE. So this thread never blocks/sleeps. The function then returns effectively deallocating the c4iw_wr_wait object that was on the stack. 4) So at this point cpuY has a pointer to the c4iw_wr_wait object that is no longer valid. Further its pointing to a stack frame that might now be in use by some other context/thread. So cpuY continues execution and calls wake_up() on a ptr to a wait object that as been effectively deallocated. This race, when it hits, can cause a crash in wake_up(), which I've seen under heavy stress. It can also corrupt the referenced stack which can cause any number of failures. The fix: Use struct completion, which supports on-stack declarations. Completions use a spinlock around setting the condition to true and the wake up so that steps 2 and 4 above are atomic and step 3 can never happen in-between. Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Diffstat (limited to 'include/linux/dnotify.h')
0 files changed, 0 insertions, 0 deletions