summaryrefslogtreecommitdiffstats
path: root/include/linux/spi
diff options
context:
space:
mode:
authorDavid Brownell <david-b@pacbell.net>2006-01-08 13:34:19 -0800
committerGreg Kroah-Hartman <gregkh@suse.de>2006-01-13 16:29:54 -0800
commit8ae12a0d85987dc138f8c944cb78a92bf466cea0 (patch)
treeca032f25bb26f88cc35d68c6f8065143ce64a6a8 /include/linux/spi
parent67daf5f11f06b9b15f8320de1d237ccc2e74fe43 (diff)
[PATCH] spi: simple SPI framework
This is the core of a small SPI framework, implementing the model of a queue of messages which complete asynchronously (with thin synchronous wrappers on top). - It's still less than 2KB of ".text" (ARM). If there's got to be a mid-layer for something so simple, that's the right size budget. :) - The guts use board-specific SPI device tables to build the driver model tree. (Hardware probing is rarely an option.) - This version of Kconfig includes no drivers. At this writing there are two known master controller drivers (PXA/SSP, OMAP MicroWire) and three protocol drivers (CS8415a, ADS7846, DataFlash) with LKML mentions of other drivers in development. - No userspace API. There are several implementations to compare. Implement them like any other driver, and bind them with sysfs. The changes from last version posted to LKML (on 11-Nov-2005) are minor, and include: - One bugfix (removes a FIXME), with the visible effect of making device names be "spiB.C" where B is the bus number and C is the chipselect. - The "caller provides DMA mappings" mechanism now has kerneldoc, for DMA drivers that want to be fancy. - Hey, the framework init can be subsys_init. Even though board init logic fires earlier, at arch_init ... since the framework init is for driver support, and the board init support uses static init. - Various additional spec/doc clarifications based on discussions with other folk. It adds a brief "thank you" at the end, for folk who've helped nudge this framework into existence. As I've said before, I think that "protocol tweaking" is the main support that this driver framework will need to evolve. From: Mark Underwood <basicmark@yahoo.com> Update the SPI framework to remove a potential priority inversion case by reverting to kmalloc if the pre-allocated DMA-safe buffer isn't available. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'include/linux/spi')
-rw-r--r--include/linux/spi/spi.h542
1 files changed, 542 insertions, 0 deletions
diff --git a/include/linux/spi/spi.h b/include/linux/spi/spi.h
new file mode 100644
index 00000000000..51a6769114d
--- /dev/null
+++ b/include/linux/spi/spi.h
@@ -0,0 +1,542 @@
+/*
+ * Copyright (C) 2005 David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#ifndef __LINUX_SPI_H
+#define __LINUX_SPI_H
+
+/*
+ * INTERFACES between SPI master drivers and infrastructure
+ * (There's no SPI slave support for Linux yet...)
+ *
+ * A "struct device_driver" for an spi_device uses "spi_bus_type" and
+ * needs no special API wrappers (much like platform_bus). These drivers
+ * are bound to devices based on their names (much like platform_bus),
+ * and are available in dev->driver.
+ */
+extern struct bus_type spi_bus_type;
+
+/**
+ * struct spi_device - Master side proxy for an SPI slave device
+ * @dev: Driver model representation of the device.
+ * @master: SPI controller used with the device.
+ * @max_speed_hz: Maximum clock rate to be used with this chip
+ * (on this board); may be changed by the device's driver.
+ * @chip-select: Chipselect, distinguishing chips handled by "master".
+ * @mode: The spi mode defines how data is clocked out and in.
+ * This may be changed by the device's driver.
+ * @bits_per_word: Data transfers involve one or more words; word sizes
+ * like eight or 12 bits are common. In-memory wordsizes are
+ * powers of two bytes (e.g. 20 bit samples use 32 bits).
+ * This may be changed by the device's driver.
+ * @irq: Negative, or the number passed to request_irq() to receive
+ * interrupts from this device.
+ * @controller_state: Controller's runtime state
+ * @controller_data: Static board-specific definitions for controller, such
+ * as FIFO initialization parameters; from board_info.controller_data
+ *
+ * An spi_device is used to interchange data between an SPI slave
+ * (usually a discrete chip) and CPU memory.
+ *
+ * In "dev", the platform_data is used to hold information about this
+ * device that's meaningful to the device's protocol driver, but not
+ * to its controller. One example might be an identifier for a chip
+ * variant with slightly different functionality.
+ */
+struct spi_device {
+ struct device dev;
+ struct spi_master *master;
+ u32 max_speed_hz;
+ u8 chip_select;
+ u8 mode;
+#define SPI_CPHA 0x01 /* clock phase */
+#define SPI_CPOL 0x02 /* clock polarity */
+#define SPI_MODE_0 (0|0)
+#define SPI_MODE_1 (0|SPI_CPHA)
+#define SPI_MODE_2 (SPI_CPOL|0)
+#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
+#define SPI_CS_HIGH 0x04 /* chipselect active high? */
+ u8 bits_per_word;
+ int irq;
+ void *controller_state;
+ const void *controller_data;
+ const char *modalias;
+
+ // likely need more hooks for more protocol options affecting how
+ // the controller talks to its chips, like:
+ // - bit order (default is wordwise msb-first)
+ // - memory packing (12 bit samples into low bits, others zeroed)
+ // - priority
+ // - chipselect delays
+ // - ...
+};
+
+static inline struct spi_device *to_spi_device(struct device *dev)
+{
+ return container_of(dev, struct spi_device, dev);
+}
+
+/* most drivers won't need to care about device refcounting */
+static inline struct spi_device *spi_dev_get(struct spi_device *spi)
+{
+ return (spi && get_device(&spi->dev)) ? spi : NULL;
+}
+
+static inline void spi_dev_put(struct spi_device *spi)
+{
+ if (spi)
+ put_device(&spi->dev);
+}
+
+/* ctldata is for the bus_master driver's runtime state */
+static inline void *spi_get_ctldata(struct spi_device *spi)
+{
+ return spi->controller_state;
+}
+
+static inline void spi_set_ctldata(struct spi_device *spi, void *state)
+{
+ spi->controller_state = state;
+}
+
+
+struct spi_message;
+
+
+/**
+ * struct spi_master - interface to SPI master controller
+ * @cdev: class interface to this driver
+ * @bus_num: board-specific (and often SOC-specific) identifier for a
+ * given SPI controller.
+ * @num_chipselects: chipselects are used to distinguish individual
+ * SPI slaves, and are numbered from zero to num_chipselects.
+ * each slave has a chipselect signal, but it's common that not
+ * every chipselect is connected to a slave.
+ * @setup: updates the device mode and clocking records used by a
+ * device's SPI controller; protocol code may call this.
+ * @transfer: adds a message to the controller's transfer queue.
+ * @cleanup: frees controller-specific state
+ *
+ * Each SPI master controller can communicate with one or more spi_device
+ * children. These make a small bus, sharing MOSI, MISO and SCK signals
+ * but not chip select signals. Each device may be configured to use a
+ * different clock rate, since those shared signals are ignored unless
+ * the chip is selected.
+ *
+ * The driver for an SPI controller manages access to those devices through
+ * a queue of spi_message transactions, copyin data between CPU memory and
+ * an SPI slave device). For each such message it queues, it calls the
+ * message's completion function when the transaction completes.
+ */
+struct spi_master {
+ struct class_device cdev;
+
+ /* other than zero (== assign one dynamically), bus_num is fully
+ * board-specific. usually that simplifies to being SOC-specific.
+ * example: one SOC has three SPI controllers, numbered 1..3,
+ * and one board's schematics might show it using SPI-2. software
+ * would normally use bus_num=2 for that controller.
+ */
+ u16 bus_num;
+
+ /* chipselects will be integral to many controllers; some others
+ * might use board-specific GPIOs.
+ */
+ u16 num_chipselect;
+
+ /* setup mode and clock, etc (spi driver may call many times) */
+ int (*setup)(struct spi_device *spi);
+
+ /* bidirectional bulk transfers
+ *
+ * + The transfer() method may not sleep; its main role is
+ * just to add the message to the queue.
+ * + For now there's no remove-from-queue operation, or
+ * any other request management
+ * + To a given spi_device, message queueing is pure fifo
+ *
+ * + The master's main job is to process its message queue,
+ * selecting a chip then transferring data
+ * + If there are multiple spi_device children, the i/o queue
+ * arbitration algorithm is unspecified (round robin, fifo,
+ * priority, reservations, preemption, etc)
+ *
+ * + Chipselect stays active during the entire message
+ * (unless modified by spi_transfer.cs_change != 0).
+ * + The message transfers use clock and SPI mode parameters
+ * previously established by setup() for this device
+ */
+ int (*transfer)(struct spi_device *spi,
+ struct spi_message *mesg);
+
+ /* called on release() to free memory provided by spi_master */
+ void (*cleanup)(const struct spi_device *spi);
+};
+
+/* the spi driver core manages memory for the spi_master classdev */
+extern struct spi_master *
+spi_alloc_master(struct device *host, unsigned size);
+
+extern int spi_register_master(struct spi_master *master);
+extern void spi_unregister_master(struct spi_master *master);
+
+extern struct spi_master *spi_busnum_to_master(u16 busnum);
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * I/O INTERFACE between SPI controller and protocol drivers
+ *
+ * Protocol drivers use a queue of spi_messages, each transferring data
+ * between the controller and memory buffers.
+ *
+ * The spi_messages themselves consist of a series of read+write transfer
+ * segments. Those segments always read the same number of bits as they
+ * write; but one or the other is easily ignored by passing a null buffer
+ * pointer. (This is unlike most types of I/O API, because SPI hardware
+ * is full duplex.)
+ *
+ * NOTE: Allocation of spi_transfer and spi_message memory is entirely
+ * up to the protocol driver, which guarantees the integrity of both (as
+ * well as the data buffers) for as long as the message is queued.
+ */
+
+/**
+ * struct spi_transfer - a read/write buffer pair
+ * @tx_buf: data to be written (dma-safe address), or NULL
+ * @rx_buf: data to be read (dma-safe address), or NULL
+ * @tx_dma: DMA address of buffer, if spi_message.is_dma_mapped
+ * @rx_dma: DMA address of buffer, if spi_message.is_dma_mapped
+ * @len: size of rx and tx buffers (in bytes)
+ * @cs_change: affects chipselect after this transfer completes
+ * @delay_usecs: microseconds to delay after this transfer before
+ * (optionally) changing the chipselect status, then starting
+ * the next transfer or completing this spi_message.
+ *
+ * SPI transfers always write the same number of bytes as they read.
+ * Protocol drivers should always provide rx_buf and/or tx_buf.
+ * In some cases, they may also want to provide DMA addresses for
+ * the data being transferred; that may reduce overhead, when the
+ * underlying driver uses dma.
+ *
+ * All SPI transfers start with the relevant chipselect active. Drivers
+ * can change behavior of the chipselect after the transfer finishes
+ * (including any mandatory delay). The normal behavior is to leave it
+ * selected, except for the last transfer in a message. Setting cs_change
+ * allows two additional behavior options:
+ *
+ * (i) If the transfer isn't the last one in the message, this flag is
+ * used to make the chipselect briefly go inactive in the middle of the
+ * message. Toggling chipselect in this way may be needed to terminate
+ * a chip command, letting a single spi_message perform all of group of
+ * chip transactions together.
+ *
+ * (ii) When the transfer is the last one in the message, the chip may
+ * stay selected until the next transfer. This is purely a performance
+ * hint; the controller driver may need to select a different device
+ * for the next message.
+ */
+struct spi_transfer {
+ /* it's ok if tx_buf == rx_buf (right?)
+ * for MicroWire, one buffer must be null
+ * buffers must work with dma_*map_single() calls
+ */
+ const void *tx_buf;
+ void *rx_buf;
+ unsigned len;
+
+ dma_addr_t tx_dma;
+ dma_addr_t rx_dma;
+
+ unsigned cs_change:1;
+ u16 delay_usecs;
+};
+
+/**
+ * struct spi_message - one multi-segment SPI transaction
+ * @transfers: the segements of the transaction
+ * @n_transfer: how many segments
+ * @spi: SPI device to which the transaction is queued
+ * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
+ * addresses for each transfer buffer
+ * @complete: called to report transaction completions
+ * @context: the argument to complete() when it's called
+ * @actual_length: how many bytes were transferd
+ * @status: zero for success, else negative errno
+ * @queue: for use by whichever driver currently owns the message
+ * @state: for use by whichever driver currently owns the message
+ */
+struct spi_message {
+ struct spi_transfer *transfers;
+ unsigned n_transfer;
+
+ struct spi_device *spi;
+
+ unsigned is_dma_mapped:1;
+
+ /* REVISIT: we might want a flag affecting the behavior of the
+ * last transfer ... allowing things like "read 16 bit length L"
+ * immediately followed by "read L bytes". Basically imposing
+ * a specific message scheduling algorithm.
+ *
+ * Some controller drivers (message-at-a-time queue processing)
+ * could provide that as their default scheduling algorithm. But
+ * others (with multi-message pipelines) would need a flag to
+ * tell them about such special cases.
+ */
+
+ /* completion is reported through a callback */
+ void FASTCALL((*complete)(void *context));
+ void *context;
+ unsigned actual_length;
+ int status;
+
+ /* for optional use by whatever driver currently owns the
+ * spi_message ... between calls to spi_async and then later
+ * complete(), that's the spi_master controller driver.
+ */
+ struct list_head queue;
+ void *state;
+};
+
+/**
+ * spi_setup -- setup SPI mode and clock rate
+ * @spi: the device whose settings are being modified
+ *
+ * SPI protocol drivers may need to update the transfer mode if the
+ * device doesn't work with the mode 0 default. They may likewise need
+ * to update clock rates or word sizes from initial values. This function
+ * changes those settings, and must be called from a context that can sleep.
+ */
+static inline int
+spi_setup(struct spi_device *spi)
+{
+ return spi->master->setup(spi);
+}
+
+
+/**
+ * spi_async -- asynchronous SPI transfer
+ * @spi: device with which data will be exchanged
+ * @message: describes the data transfers, including completion callback
+ *
+ * This call may be used in_irq and other contexts which can't sleep,
+ * as well as from task contexts which can sleep.
+ *
+ * The completion callback is invoked in a context which can't sleep.
+ * Before that invocation, the value of message->status is undefined.
+ * When the callback is issued, message->status holds either zero (to
+ * indicate complete success) or a negative error code.
+ *
+ * Note that although all messages to a spi_device are handled in
+ * FIFO order, messages may go to different devices in other orders.
+ * Some device might be higher priority, or have various "hard" access
+ * time requirements, for example.
+ */
+static inline int
+spi_async(struct spi_device *spi, struct spi_message *message)
+{
+ message->spi = spi;
+ return spi->master->transfer(spi, message);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/* All these synchronous SPI transfer routines are utilities layered
+ * over the core async transfer primitive. Here, "synchronous" means
+ * they will sleep uninterruptibly until the async transfer completes.
+ */
+
+extern int spi_sync(struct spi_device *spi, struct spi_message *message);
+
+/**
+ * spi_write - SPI synchronous write
+ * @spi: device to which data will be written
+ * @buf: data buffer
+ * @len: data buffer size
+ *
+ * This writes the buffer and returns zero or a negative error code.
+ * Callable only from contexts that can sleep.
+ */
+static inline int
+spi_write(struct spi_device *spi, const u8 *buf, size_t len)
+{
+ struct spi_transfer t = {
+ .tx_buf = buf,
+ .rx_buf = NULL,
+ .len = len,
+ .cs_change = 0,
+ };
+ struct spi_message m = {
+ .transfers = &t,
+ .n_transfer = 1,
+ };
+
+ return spi_sync(spi, &m);
+}
+
+/**
+ * spi_read - SPI synchronous read
+ * @spi: device from which data will be read
+ * @buf: data buffer
+ * @len: data buffer size
+ *
+ * This writes the buffer and returns zero or a negative error code.
+ * Callable only from contexts that can sleep.
+ */
+static inline int
+spi_read(struct spi_device *spi, u8 *buf, size_t len)
+{
+ struct spi_transfer t = {
+ .tx_buf = NULL,
+ .rx_buf = buf,
+ .len = len,
+ .cs_change = 0,
+ };
+ struct spi_message m = {
+ .transfers = &t,
+ .n_transfer = 1,
+ };
+
+ return spi_sync(spi, &m);
+}
+
+extern int spi_write_then_read(struct spi_device *spi,
+ const u8 *txbuf, unsigned n_tx,
+ u8 *rxbuf, unsigned n_rx);
+
+/**
+ * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
+ * @spi: device with which data will be exchanged
+ * @cmd: command to be written before data is read back
+ *
+ * This returns the (unsigned) eight bit number returned by the
+ * device, or else a negative error code. Callable only from
+ * contexts that can sleep.
+ */
+static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
+{
+ ssize_t status;
+ u8 result;
+
+ status = spi_write_then_read(spi, &cmd, 1, &result, 1);
+
+ /* return negative errno or unsigned value */
+ return (status < 0) ? status : result;
+}
+
+/**
+ * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
+ * @spi: device with which data will be exchanged
+ * @cmd: command to be written before data is read back
+ *
+ * This returns the (unsigned) sixteen bit number returned by the
+ * device, or else a negative error code. Callable only from
+ * contexts that can sleep.
+ *
+ * The number is returned in wire-order, which is at least sometimes
+ * big-endian.
+ */
+static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
+{
+ ssize_t status;
+ u16 result;
+
+ status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
+
+ /* return negative errno or unsigned value */
+ return (status < 0) ? status : result;
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * INTERFACE between board init code and SPI infrastructure.
+ *
+ * No SPI driver ever sees these SPI device table segments, but
+ * it's how the SPI core (or adapters that get hotplugged) grows
+ * the driver model tree.
+ *
+ * As a rule, SPI devices can't be probed. Instead, board init code
+ * provides a table listing the devices which are present, with enough
+ * information to bind and set up the device's driver. There's basic
+ * support for nonstatic configurations too; enough to handle adding
+ * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
+ */
+
+/* board-specific information about each SPI device */
+struct spi_board_info {
+ /* the device name and module name are coupled, like platform_bus;
+ * "modalias" is normally the driver name.
+ *
+ * platform_data goes to spi_device.dev.platform_data,
+ * controller_data goes to spi_device.platform_data,
+ * irq is copied too
+ */
+ char modalias[KOBJ_NAME_LEN];
+ const void *platform_data;
+ const void *controller_data;
+ int irq;
+
+ /* slower signaling on noisy or low voltage boards */
+ u32 max_speed_hz;
+
+
+ /* bus_num is board specific and matches the bus_num of some
+ * spi_master that will probably be registered later.
+ *
+ * chip_select reflects how this chip is wired to that master;
+ * it's less than num_chipselect.
+ */
+ u16 bus_num;
+ u16 chip_select;
+
+ /* ... may need additional spi_device chip config data here.
+ * avoid stuff protocol drivers can set; but include stuff
+ * needed to behave without being bound to a driver:
+ * - chipselect polarity
+ * - quirks like clock rate mattering when not selected
+ */
+};
+
+#ifdef CONFIG_SPI
+extern int
+spi_register_board_info(struct spi_board_info const *info, unsigned n);
+#else
+/* board init code may ignore whether SPI is configured or not */
+static inline int
+spi_register_board_info(struct spi_board_info const *info, unsigned n)
+ { return 0; }
+#endif
+
+
+/* If you're hotplugging an adapter with devices (parport, usb, etc)
+ * use spi_new_device() to describe each device. You can also call
+ * spi_unregister_device() to get start making that device vanish,
+ * but normally that would be handled by spi_unregister_master().
+ */
+extern struct spi_device *
+spi_new_device(struct spi_master *, struct spi_board_info *);
+
+static inline void
+spi_unregister_device(struct spi_device *spi)
+{
+ if (spi)
+ device_unregister(&spi->dev);
+}
+
+#endif /* __LINUX_SPI_H */