summaryrefslogtreecommitdiffstats
path: root/include/linux/spi
diff options
context:
space:
mode:
authorBryan Wu <bryan.wu@analog.com>2007-05-06 14:50:22 -0700
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-05-07 12:12:58 -0700
commit1394f03221790a988afc3e4b3cb79f2e477246a9 (patch)
tree2c1963c9a4f2d84a5e021307fde240c5d567cf70 /include/linux/spi
parent73243284463a761e04d69d22c7516b2be7de096c (diff)
blackfin architecture
This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/spi')
-rw-r--r--include/linux/spi/ad7877.h24
1 files changed, 24 insertions, 0 deletions
diff --git a/include/linux/spi/ad7877.h b/include/linux/spi/ad7877.h
new file mode 100644
index 00000000000..cdbed816f25
--- /dev/null
+++ b/include/linux/spi/ad7877.h
@@ -0,0 +1,24 @@
+/* linux/spi/ad7877.h */
+
+/* Touchscreen characteristics vary between boards and models. The
+ * platform_data for the device's "struct device" holds this information.
+ *
+ * It's OK if the min/max values are zero.
+ */
+struct ad7877_platform_data {
+ u16 model; /* 7877 */
+ u16 vref_delay_usecs; /* 0 for external vref; etc */
+ u16 x_plate_ohms;
+ u16 y_plate_ohms;
+
+ u16 x_min, x_max;
+ u16 y_min, y_max;
+ u16 pressure_min, pressure_max;
+
+ u8 stopacq_polarity; /* 1 = Active HIGH, 0 = Active LOW */
+ u8 first_conversion_delay; /* 0 = 0.5us, 1 = 128us, 2 = 1ms, 3 = 8ms */
+ u8 acquisition_time; /* 0 = 2us, 1 = 4us, 2 = 8us, 3 = 16us */
+ u8 averaging; /* 0 = 1, 1 = 4, 2 = 8, 3 = 16 */
+ u8 pen_down_acc_interval; /* 0 = covert once, 1 = every 0.5 ms,
+ 2 = ever 1 ms, 3 = every 8 ms,*/
+};