diff options
author | Mel Gorman <mgorman@suse.de> | 2012-07-31 16:44:07 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-07-31 18:42:45 -0700 |
commit | 907aed48f65efeecf91575397e3d79335d93a466 (patch) | |
tree | 8e06d29e71888f65a7217880c55472125d1b88d4 /include/linux | |
parent | b37f1dd0f543d9714f96c2f9b9f74f7bdfdfdf31 (diff) |
mm: allow PF_MEMALLOC from softirq context
This is needed to allow network softirq packet processing to make use of
PF_MEMALLOC.
Currently softirq context cannot use PF_MEMALLOC due to it not being
associated with a task, and therefore not having task flags to fiddle with
- thus the gfp to alloc flag mapping ignores the task flags when in
interrupts (hard or soft) context.
Allowing softirqs to make use of PF_MEMALLOC therefore requires some
trickery. This patch borrows the task flags from whatever process happens
to be preempted by the softirq. It then modifies the gfp to alloc flags
mapping to not exclude task flags in softirq context, and modify the
softirq code to save, clear and restore the PF_MEMALLOC flag.
The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't
leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag
cannot leak back into the preempted process. This should be safe due to
the following reasons
Softirqs can run on multiple CPUs sure but the same task should not be
executing the same softirq code. Neither should the softirq
handler be preempted by any other softirq handler so the flags
should not leak to an unrelated softirq.
Softirqs re-enable hardware interrupts in __do_softirq() so can be
preempted by hardware interrupts so PF_MEMALLOC is inherited
by the hard IRQ. However, this is similar to a process in
reclaim being preempted by a hardirq. While PF_MEMALLOC is
set, gfp_to_alloc_flags() distinguishes between hard and
soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS
flag.
If the softirq is deferred to ksoftirq then its flags may be used
instead of a normal tasks but as the softirq cannot be preempted,
the PF_MEMALLOC flag does not leak to other code by accident.
[davem@davemloft.net: Document why PF_MEMALLOC is safe]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux')
-rw-r--r-- | include/linux/sched.h | 7 |
1 files changed, 7 insertions, 0 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index 865725adb9d..c147e7024f1 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1894,6 +1894,13 @@ static inline void rcu_copy_process(struct task_struct *p) #endif +static inline void tsk_restore_flags(struct task_struct *task, + unsigned long orig_flags, unsigned long flags) +{ + task->flags &= ~flags; + task->flags |= orig_flags & flags; +} + #ifdef CONFIG_SMP extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); |