summaryrefslogtreecommitdiffstats
path: root/include/math-emu/extended.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/math-emu/extended.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/math-emu/extended.h')
-rw-r--r--include/math-emu/extended.h396
1 files changed, 396 insertions, 0 deletions
diff --git a/include/math-emu/extended.h b/include/math-emu/extended.h
new file mode 100644
index 00000000000..84770fceb53
--- /dev/null
+++ b/include/math-emu/extended.h
@@ -0,0 +1,396 @@
+/* Software floating-point emulation.
+ Definitions for IEEE Extended Precision.
+ Copyright (C) 1999 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Jakub Jelinek (jj@ultra.linux.cz).
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If
+ not, write to the Free Software Foundation, Inc.,
+ 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+
+#ifndef __MATH_EMU_EXTENDED_H__
+#define __MATH_EMU_EXTENDED_H__
+
+#if _FP_W_TYPE_SIZE < 32
+#error "Here's a nickel, kid. Go buy yourself a real computer."
+#endif
+
+#if _FP_W_TYPE_SIZE < 64
+#define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
+#else
+#define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
+#endif
+
+#define _FP_FRACBITS_E 64
+#define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
+#define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
+#define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
+#define _FP_EXPBITS_E 15
+#define _FP_EXPBIAS_E 16383
+#define _FP_EXPMAX_E 32767
+
+#define _FP_QNANBIT_E \
+ ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
+#define _FP_IMPLBIT_E \
+ ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
+#define _FP_OVERFLOW_E \
+ ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
+
+#if _FP_W_TYPE_SIZE < 64
+
+union _FP_UNION_E
+{
+ long double flt;
+ struct
+ {
+#if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned long pad1 : _FP_W_TYPE_SIZE;
+ unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
+ unsigned long sign : 1;
+ unsigned long exp : _FP_EXPBITS_E;
+ unsigned long frac1 : _FP_W_TYPE_SIZE;
+ unsigned long frac0 : _FP_W_TYPE_SIZE;
+#else
+ unsigned long frac0 : _FP_W_TYPE_SIZE;
+ unsigned long frac1 : _FP_W_TYPE_SIZE;
+ unsigned exp : _FP_EXPBITS_E;
+ unsigned sign : 1;
+#endif /* not bigendian */
+ } bits __attribute__((packed));
+};
+
+
+#define FP_DECL_E(X) _FP_DECL(4,X)
+
+#define FP_UNPACK_RAW_E(X, val) \
+ do { \
+ union _FP_UNION_E _flo; _flo.flt = (val); \
+ \
+ X##_f[2] = 0; X##_f[3] = 0; \
+ X##_f[0] = _flo.bits.frac0; \
+ X##_f[1] = _flo.bits.frac1; \
+ X##_e = _flo.bits.exp; \
+ X##_s = _flo.bits.sign; \
+ if (!X##_e && (X##_f[1] || X##_f[0]) \
+ && !(X##_f[1] & _FP_IMPLBIT_E)) \
+ { \
+ X##_e++; \
+ FP_SET_EXCEPTION(FP_EX_DENORM); \
+ } \
+ } while (0)
+
+#define FP_UNPACK_RAW_EP(X, val) \
+ do { \
+ union _FP_UNION_E *_flo = \
+ (union _FP_UNION_E *)(val); \
+ \
+ X##_f[2] = 0; X##_f[3] = 0; \
+ X##_f[0] = _flo->bits.frac0; \
+ X##_f[1] = _flo->bits.frac1; \
+ X##_e = _flo->bits.exp; \
+ X##_s = _flo->bits.sign; \
+ if (!X##_e && (X##_f[1] || X##_f[0]) \
+ && !(X##_f[1] & _FP_IMPLBIT_E)) \
+ { \
+ X##_e++; \
+ FP_SET_EXCEPTION(FP_EX_DENORM); \
+ } \
+ } while (0)
+
+#define FP_PACK_RAW_E(val, X) \
+ do { \
+ union _FP_UNION_E _flo; \
+ \
+ if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
+ else X##_f[1] &= ~(_FP_IMPLBIT_E); \
+ _flo.bits.frac0 = X##_f[0]; \
+ _flo.bits.frac1 = X##_f[1]; \
+ _flo.bits.exp = X##_e; \
+ _flo.bits.sign = X##_s; \
+ \
+ (val) = _flo.flt; \
+ } while (0)
+
+#define FP_PACK_RAW_EP(val, X) \
+ do { \
+ if (!FP_INHIBIT_RESULTS) \
+ { \
+ union _FP_UNION_E *_flo = \
+ (union _FP_UNION_E *)(val); \
+ \
+ if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
+ else X##_f[1] &= ~(_FP_IMPLBIT_E); \
+ _flo->bits.frac0 = X##_f[0]; \
+ _flo->bits.frac1 = X##_f[1]; \
+ _flo->bits.exp = X##_e; \
+ _flo->bits.sign = X##_s; \
+ } \
+ } while (0)
+
+#define FP_UNPACK_E(X,val) \
+ do { \
+ FP_UNPACK_RAW_E(X,val); \
+ _FP_UNPACK_CANONICAL(E,4,X); \
+ } while (0)
+
+#define FP_UNPACK_EP(X,val) \
+ do { \
+ FP_UNPACK_RAW_2_P(X,val); \
+ _FP_UNPACK_CANONICAL(E,4,X); \
+ } while (0)
+
+#define FP_PACK_E(val,X) \
+ do { \
+ _FP_PACK_CANONICAL(E,4,X); \
+ FP_PACK_RAW_E(val,X); \
+ } while (0)
+
+#define FP_PACK_EP(val,X) \
+ do { \
+ _FP_PACK_CANONICAL(E,4,X); \
+ FP_PACK_RAW_EP(val,X); \
+ } while (0)
+
+#define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,4,X)
+#define FP_NEG_E(R,X) _FP_NEG(E,4,R,X)
+#define FP_ADD_E(R,X,Y) _FP_ADD(E,4,R,X,Y)
+#define FP_SUB_E(R,X,Y) _FP_SUB(E,4,R,X,Y)
+#define FP_MUL_E(R,X,Y) _FP_MUL(E,4,R,X,Y)
+#define FP_DIV_E(R,X,Y) _FP_DIV(E,4,R,X,Y)
+#define FP_SQRT_E(R,X) _FP_SQRT(E,4,R,X)
+
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ * This has special _E version because standard _4 square
+ * root would not work (it has to start normally with the
+ * second word and not the first), but as we have to do it
+ * anyway, we optimize it by doing most of the calculations
+ * in two UWtype registers instead of four.
+ */
+
+#define _FP_SQRT_MEAT_E(R, S, T, X, q) \
+ do { \
+ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
+ _FP_FRAC_SRL_4(X, (_FP_WORKBITS)); \
+ while (q) \
+ { \
+ T##_f[1] = S##_f[1] + q; \
+ if (T##_f[1] <= X##_f[1]) \
+ { \
+ S##_f[1] = T##_f[1] + q; \
+ X##_f[1] -= T##_f[1]; \
+ R##_f[1] += q; \
+ } \
+ _FP_FRAC_SLL_2(X, 1); \
+ q >>= 1; \
+ } \
+ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
+ while (q) \
+ { \
+ T##_f[0] = S##_f[0] + q; \
+ T##_f[1] = S##_f[1]; \
+ if (T##_f[1] < X##_f[1] || \
+ (T##_f[1] == X##_f[1] && \
+ T##_f[0] <= X##_f[0])) \
+ { \
+ S##_f[0] = T##_f[0] + q; \
+ S##_f[1] += (T##_f[0] > S##_f[0]); \
+ _FP_FRAC_DEC_2(X, T); \
+ R##_f[0] += q; \
+ } \
+ _FP_FRAC_SLL_2(X, 1); \
+ q >>= 1; \
+ } \
+ _FP_FRAC_SLL_4(R, (_FP_WORKBITS)); \
+ if (X##_f[0] | X##_f[1]) \
+ { \
+ if (S##_f[1] < X##_f[1] || \
+ (S##_f[1] == X##_f[1] && \
+ S##_f[0] < X##_f[0])) \
+ R##_f[0] |= _FP_WORK_ROUND; \
+ R##_f[0] |= _FP_WORK_STICKY; \
+ } \
+ } while (0)
+
+#define FP_CMP_E(r,X,Y,un) _FP_CMP(E,4,r,X,Y,un)
+#define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,4,r,X,Y)
+
+#define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,4,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_E(r,X,rsz,rsg) _FP_TO_INT_ROUND(E,4,r,X,rsz,rsg)
+#define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,4,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_E(X) (X##_f[2])
+#define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
+
+#else /* not _FP_W_TYPE_SIZE < 64 */
+union _FP_UNION_E
+{
+ long double flt /* __attribute__((mode(TF))) */ ;
+ struct {
+#if __BYTE_ORDER == __BIG_ENDIAN
+ unsigned long pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
+ unsigned sign : 1;
+ unsigned exp : _FP_EXPBITS_E;
+ unsigned long frac : _FP_W_TYPE_SIZE;
+#else
+ unsigned long frac : _FP_W_TYPE_SIZE;
+ unsigned exp : _FP_EXPBITS_E;
+ unsigned sign : 1;
+#endif
+ } bits;
+};
+
+#define FP_DECL_E(X) _FP_DECL(2,X)
+
+#define FP_UNPACK_RAW_E(X, val) \
+ do { \
+ union _FP_UNION_E _flo; _flo.flt = (val); \
+ \
+ X##_f0 = _flo.bits.frac; \
+ X##_f1 = 0; \
+ X##_e = _flo.bits.exp; \
+ X##_s = _flo.bits.sign; \
+ if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E)) \
+ { \
+ X##_e++; \
+ FP_SET_EXCEPTION(FP_EX_DENORM); \
+ } \
+ } while (0)
+
+#define FP_UNPACK_RAW_EP(X, val) \
+ do { \
+ union _FP_UNION_E *_flo = \
+ (union _FP_UNION_E *)(val); \
+ \
+ X##_f0 = _flo->bits.frac; \
+ X##_f1 = 0; \
+ X##_e = _flo->bits.exp; \
+ X##_s = _flo->bits.sign; \
+ if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E)) \
+ { \
+ X##_e++; \
+ FP_SET_EXCEPTION(FP_EX_DENORM); \
+ } \
+ } while (0)
+
+#define FP_PACK_RAW_E(val, X) \
+ do { \
+ union _FP_UNION_E _flo; \
+ \
+ if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
+ else X##_f0 &= ~(_FP_IMPLBIT_E); \
+ _flo.bits.frac = X##_f0; \
+ _flo.bits.exp = X##_e; \
+ _flo.bits.sign = X##_s; \
+ \
+ (val) = _flo.flt; \
+ } while (0)
+
+#define FP_PACK_RAW_EP(fs, val, X) \
+ do { \
+ if (!FP_INHIBIT_RESULTS) \
+ { \
+ union _FP_UNION_E *_flo = \
+ (union _FP_UNION_E *)(val); \
+ \
+ if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
+ else X##_f0 &= ~(_FP_IMPLBIT_E); \
+ _flo->bits.frac = X##_f0; \
+ _flo->bits.exp = X##_e; \
+ _flo->bits.sign = X##_s; \
+ } \
+ } while (0)
+
+
+#define FP_UNPACK_E(X,val) \
+ do { \
+ FP_UNPACK_RAW_E(X,val); \
+ _FP_UNPACK_CANONICAL(E,2,X); \
+ } while (0)
+
+#define FP_UNPACK_EP(X,val) \
+ do { \
+ FP_UNPACK_RAW_EP(X,val); \
+ _FP_UNPACK_CANONICAL(E,2,X); \
+ } while (0)
+
+#define FP_PACK_E(val,X) \
+ do { \
+ _FP_PACK_CANONICAL(E,2,X); \
+ FP_PACK_RAW_E(val,X); \
+ } while (0)
+
+#define FP_PACK_EP(val,X) \
+ do { \
+ _FP_PACK_CANONICAL(E,2,X); \
+ FP_PACK_RAW_EP(val,X); \
+ } while (0)
+
+#define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,2,X)
+#define FP_NEG_E(R,X) _FP_NEG(E,2,R,X)
+#define FP_ADD_E(R,X,Y) _FP_ADD(E,2,R,X,Y)
+#define FP_SUB_E(R,X,Y) _FP_SUB(E,2,R,X,Y)
+#define FP_MUL_E(R,X,Y) _FP_MUL(E,2,R,X,Y)
+#define FP_DIV_E(R,X,Y) _FP_DIV(E,2,R,X,Y)
+#define FP_SQRT_E(R,X) _FP_SQRT(E,2,R,X)
+
+/*
+ * Square root algorithms:
+ * We have just one right now, maybe Newton approximation
+ * should be added for those machines where division is fast.
+ * We optimize it by doing most of the calculations
+ * in one UWtype registers instead of two, although we don't
+ * have to.
+ */
+#define _FP_SQRT_MEAT_E(R, S, T, X, q) \
+ do { \
+ q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
+ _FP_FRAC_SRL_2(X, (_FP_WORKBITS)); \
+ while (q) \
+ { \
+ T##_f0 = S##_f0 + q; \
+ if (T##_f0 <= X##_f0) \
+ { \
+ S##_f0 = T##_f0 + q; \
+ X##_f0 -= T##_f0; \
+ R##_f0 += q; \
+ } \
+ _FP_FRAC_SLL_1(X, 1); \
+ q >>= 1; \
+ } \
+ _FP_FRAC_SLL_2(R, (_FP_WORKBITS)); \
+ if (X##_f0) \
+ { \
+ if (S##_f0 < X##_f0) \
+ R##_f0 |= _FP_WORK_ROUND; \
+ R##_f0 |= _FP_WORK_STICKY; \
+ } \
+ } while (0)
+
+#define FP_CMP_E(r,X,Y,un) _FP_CMP(E,2,r,X,Y,un)
+#define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,2,r,X,Y)
+
+#define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,2,r,X,rsz,rsg)
+#define FP_TO_INT_ROUND_E(r,X,rsz,rsg) _FP_TO_INT_ROUND(E,2,r,X,rsz,rsg)
+#define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,2,X,r,rs,rt)
+
+#define _FP_FRAC_HIGH_E(X) (X##_f1)
+#define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
+
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+
+#endif /* __MATH_EMU_EXTENDED_H__ */