summaryrefslogtreecommitdiffstats
path: root/kernel/sched_rt.c
diff options
context:
space:
mode:
authorPeter Zijlstra <a.p.zijlstra@chello.nl>2011-11-15 17:14:39 +0100
committerIngo Molnar <mingo@elte.hu>2011-11-17 12:20:22 +0100
commit391e43da797a96aeb65410281891f6d0b0e9611c (patch)
tree0ce6784525a5a8f75b377170cf1a7d60abccea29 /kernel/sched_rt.c
parent029632fbb7b7c9d85063cc9eb470de6c54873df3 (diff)
sched: Move all scheduler bits into kernel/sched/
There's too many sched*.[ch] files in kernel/, give them their own directory. (No code changed, other than Makefile glue added.) Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r--kernel/sched_rt.c2045
1 files changed, 0 insertions, 2045 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
deleted file mode 100644
index 023b3550250..00000000000
--- a/kernel/sched_rt.c
+++ /dev/null
@@ -1,2045 +0,0 @@
-/*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
-
-#include "sched.h"
-
-#include <linux/slab.h>
-
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
-
-struct rt_bandwidth def_rt_bandwidth;
-
-static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
-{
- struct rt_bandwidth *rt_b =
- container_of(timer, struct rt_bandwidth, rt_period_timer);
- ktime_t now;
- int overrun;
- int idle = 0;
-
- for (;;) {
- now = hrtimer_cb_get_time(timer);
- overrun = hrtimer_forward(timer, now, rt_b->rt_period);
-
- if (!overrun)
- break;
-
- idle = do_sched_rt_period_timer(rt_b, overrun);
- }
-
- return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
-}
-
-void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
-{
- rt_b->rt_period = ns_to_ktime(period);
- rt_b->rt_runtime = runtime;
-
- raw_spin_lock_init(&rt_b->rt_runtime_lock);
-
- hrtimer_init(&rt_b->rt_period_timer,
- CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- rt_b->rt_period_timer.function = sched_rt_period_timer;
-}
-
-static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
-{
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
- return;
-
- if (hrtimer_active(&rt_b->rt_period_timer))
- return;
-
- raw_spin_lock(&rt_b->rt_runtime_lock);
- start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
- raw_spin_unlock(&rt_b->rt_runtime_lock);
-}
-
-void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
-{
- struct rt_prio_array *array;
- int i;
-
- array = &rt_rq->active;
- for (i = 0; i < MAX_RT_PRIO; i++) {
- INIT_LIST_HEAD(array->queue + i);
- __clear_bit(i, array->bitmap);
- }
- /* delimiter for bitsearch: */
- __set_bit(MAX_RT_PRIO, array->bitmap);
-
-#if defined CONFIG_SMP
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- rt_rq->highest_prio.next = MAX_RT_PRIO;
- rt_rq->rt_nr_migratory = 0;
- rt_rq->overloaded = 0;
- plist_head_init(&rt_rq->pushable_tasks);
-#endif
-
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- rt_rq->rt_runtime = 0;
- raw_spin_lock_init(&rt_rq->rt_runtime_lock);
-}
-
-#ifdef CONFIG_RT_GROUP_SCHED
-static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
-{
- hrtimer_cancel(&rt_b->rt_period_timer);
-}
-
-#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
-
-static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
-{
-#ifdef CONFIG_SCHED_DEBUG
- WARN_ON_ONCE(!rt_entity_is_task(rt_se));
-#endif
- return container_of(rt_se, struct task_struct, rt);
-}
-
-static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
-{
- return rt_rq->rq;
-}
-
-static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
-{
- return rt_se->rt_rq;
-}
-
-void free_rt_sched_group(struct task_group *tg)
-{
- int i;
-
- if (tg->rt_se)
- destroy_rt_bandwidth(&tg->rt_bandwidth);
-
- for_each_possible_cpu(i) {
- if (tg->rt_rq)
- kfree(tg->rt_rq[i]);
- if (tg->rt_se)
- kfree(tg->rt_se[i]);
- }
-
- kfree(tg->rt_rq);
- kfree(tg->rt_se);
-}
-
-void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
- struct sched_rt_entity *rt_se, int cpu,
- struct sched_rt_entity *parent)
-{
- struct rq *rq = cpu_rq(cpu);
-
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
- rt_rq->rt_nr_boosted = 0;
- rt_rq->rq = rq;
- rt_rq->tg = tg;
-
- tg->rt_rq[cpu] = rt_rq;
- tg->rt_se[cpu] = rt_se;
-
- if (!rt_se)
- return;
-
- if (!parent)
- rt_se->rt_rq = &rq->rt;
- else
- rt_se->rt_rq = parent->my_q;
-
- rt_se->my_q = rt_rq;
- rt_se->parent = parent;
- INIT_LIST_HEAD(&rt_se->run_list);
-}
-
-int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
-{
- struct rt_rq *rt_rq;
- struct sched_rt_entity *rt_se;
- int i;
-
- tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_rq)
- goto err;
- tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_se)
- goto err;
-
- init_rt_bandwidth(&tg->rt_bandwidth,
- ktime_to_ns(def_rt_bandwidth.rt_period), 0);
-
- for_each_possible_cpu(i) {
- rt_rq = kzalloc_node(sizeof(struct rt_rq),
- GFP_KERNEL, cpu_to_node(i));
- if (!rt_rq)
- goto err;
-
- rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
- GFP_KERNEL, cpu_to_node(i));
- if (!rt_se)
- goto err_free_rq;
-
- init_rt_rq(rt_rq, cpu_rq(i));
- rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
- init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
- }
-
- return 1;
-
-err_free_rq:
- kfree(rt_rq);
-err:
- return 0;
-}
-
-#else /* CONFIG_RT_GROUP_SCHED */
-
-#define rt_entity_is_task(rt_se) (1)
-
-static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
-{
- return container_of(rt_se, struct task_struct, rt);
-}
-
-static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
-{
- return container_of(rt_rq, struct rq, rt);
-}
-
-static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
-{
- struct task_struct *p = rt_task_of(rt_se);
- struct rq *rq = task_rq(p);
-
- return &rq->rt;
-}
-
-void free_rt_sched_group(struct task_group *tg) { }
-
-int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
-{
- return 1;
-}
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_SMP
-
-static inline int rt_overloaded(struct rq *rq)
-{
- return atomic_read(&rq->rd->rto_count);
-}
-
-static inline void rt_set_overload(struct rq *rq)
-{
- if (!rq->online)
- return;
-
- cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- */
- wmb();
- atomic_inc(&rq->rd->rto_count);
-}
-
-static inline void rt_clear_overload(struct rq *rq)
-{
- if (!rq->online)
- return;
-
- /* the order here really doesn't matter */
- atomic_dec(&rq->rd->rto_count);
- cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
-}
-
-static void update_rt_migration(struct rt_rq *rt_rq)
-{
- if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
- if (!rt_rq->overloaded) {
- rt_set_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 1;
- }
- } else if (rt_rq->overloaded) {
- rt_clear_overload(rq_of_rt_rq(rt_rq));
- rt_rq->overloaded = 0;
- }
-}
-
-static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- if (!rt_entity_is_task(rt_se))
- return;
-
- rt_rq = &rq_of_rt_rq(rt_rq)->rt;
-
- rt_rq->rt_nr_total++;
- if (rt_se->nr_cpus_allowed > 1)
- rt_rq->rt_nr_migratory++;
-
- update_rt_migration(rt_rq);
-}
-
-static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- if (!rt_entity_is_task(rt_se))
- return;
-
- rt_rq = &rq_of_rt_rq(rt_rq)->rt;
-
- rt_rq->rt_nr_total--;
- if (rt_se->nr_cpus_allowed > 1)
- rt_rq->rt_nr_migratory--;
-
- update_rt_migration(rt_rq);
-}
-
-static inline int has_pushable_tasks(struct rq *rq)
-{
- return !plist_head_empty(&rq->rt.pushable_tasks);
-}
-
-static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
-{
- plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
- plist_node_init(&p->pushable_tasks, p->prio);
- plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
-
- /* Update the highest prio pushable task */
- if (p->prio < rq->rt.highest_prio.next)
- rq->rt.highest_prio.next = p->prio;
-}
-
-static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
-{
- plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
-
- /* Update the new highest prio pushable task */
- if (has_pushable_tasks(rq)) {
- p = plist_first_entry(&rq->rt.pushable_tasks,
- struct task_struct, pushable_tasks);
- rq->rt.highest_prio.next = p->prio;
- } else
- rq->rt.highest_prio.next = MAX_RT_PRIO;
-}
-
-#else
-
-static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
-{
-}
-
-static inline
-void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-}
-
-static inline
-void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
-}
-
-#endif /* CONFIG_SMP */
-
-static inline int on_rt_rq(struct sched_rt_entity *rt_se)
-{
- return !list_empty(&rt_se->run_list);
-}
-
-#ifdef CONFIG_RT_GROUP_SCHED
-
-static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
-{
- if (!rt_rq->tg)
- return RUNTIME_INF;
-
- return rt_rq->rt_runtime;
-}
-
-static inline u64 sched_rt_period(struct rt_rq *rt_rq)
-{
- return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
-}
-
-typedef struct task_group *rt_rq_iter_t;
-
-static inline struct task_group *next_task_group(struct task_group *tg)
-{
- do {
- tg = list_entry_rcu(tg->list.next,
- typeof(struct task_group), list);
- } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
-
- if (&tg->list == &task_groups)
- tg = NULL;
-
- return tg;
-}
-
-#define for_each_rt_rq(rt_rq, iter, rq) \
- for (iter = container_of(&task_groups, typeof(*iter), list); \
- (iter = next_task_group(iter)) && \
- (rt_rq = iter->rt_rq[cpu_of(rq)]);)
-
-static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
-{
- list_add_rcu(&rt_rq->leaf_rt_rq_list,
- &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
-}
-
-static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
-{
- list_del_rcu(&rt_rq->leaf_rt_rq_list);
-}
-
-#define for_each_leaf_rt_rq(rt_rq, rq) \
- list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
-
-#define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
- return rt_se->my_q;
-}
-
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
-
-static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
-{
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- struct sched_rt_entity *rt_se;
-
- int cpu = cpu_of(rq_of_rt_rq(rt_rq));
-
- rt_se = rt_rq->tg->rt_se[cpu];
-
- if (rt_rq->rt_nr_running) {
- if (rt_se && !on_rt_rq(rt_se))
- enqueue_rt_entity(rt_se, false);
- if (rt_rq->highest_prio.curr < curr->prio)
- resched_task(curr);
- }
-}
-
-static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
-{
- struct sched_rt_entity *rt_se;
- int cpu = cpu_of(rq_of_rt_rq(rt_rq));
-
- rt_se = rt_rq->tg->rt_se[cpu];
-
- if (rt_se && on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
-}
-
-static inline int rt_rq_throttled(struct rt_rq *rt_rq)
-{
- return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
-}
-
-static int rt_se_boosted(struct sched_rt_entity *rt_se)
-{
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- struct task_struct *p;
-
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
-
- p = rt_task_of(rt_se);
- return p->prio != p->normal_prio;
-}
-
-#ifdef CONFIG_SMP
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
- return cpu_rq(smp_processor_id())->rd->span;
-}
-#else
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
- return cpu_online_mask;
-}
-#endif
-
-static inline
-struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
-{
- return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
-}
-
-static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
-{
- return &rt_rq->tg->rt_bandwidth;
-}
-
-#else /* !CONFIG_RT_GROUP_SCHED */
-
-static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
-{
- return rt_rq->rt_runtime;
-}
-
-static inline u64 sched_rt_period(struct rt_rq *rt_rq)
-{
- return ktime_to_ns(def_rt_bandwidth.rt_period);
-}
-
-typedef struct rt_rq *rt_rq_iter_t;
-
-#define for_each_rt_rq(rt_rq, iter, rq) \
- for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
-
-static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
-{
-}
-
-static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
-{
-}
-
-#define for_each_leaf_rt_rq(rt_rq, rq) \
- for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
-
-#define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
- return NULL;
-}
-
-static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
-{
- if (rt_rq->rt_nr_running)
- resched_task(rq_of_rt_rq(rt_rq)->curr);
-}
-
-static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
-{
-}
-
-static inline int rt_rq_throttled(struct rt_rq *rt_rq)
-{
- return rt_rq->rt_throttled;
-}
-
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
- return cpu_online_mask;
-}
-
-static inline
-struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
-{
- return &cpu_rq(cpu)->rt;
-}
-
-static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
-{
- return &def_rt_bandwidth;
-}
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_SMP
-/*
- * We ran out of runtime, see if we can borrow some from our neighbours.
- */
-static int do_balance_runtime(struct rt_rq *rt_rq)
-{
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
- int i, weight, more = 0;
- u64 rt_period;
-
- weight = cpumask_weight(rd->span);
-
- raw_spin_lock(&rt_b->rt_runtime_lock);
- rt_period = ktime_to_ns(rt_b->rt_period);
- for_each_cpu(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
-
- if (iter == rt_rq)
- continue;
-
- raw_spin_lock(&iter->rt_runtime_lock);
- /*
- * Either all rqs have inf runtime and there's nothing to steal
- * or __disable_runtime() below sets a specific rq to inf to
- * indicate its been disabled and disalow stealing.
- */
- if (iter->rt_runtime == RUNTIME_INF)
- goto next;
-
- /*
- * From runqueues with spare time, take 1/n part of their
- * spare time, but no more than our period.
- */
- diff = iter->rt_runtime - iter->rt_time;
- if (diff > 0) {
- diff = div_u64((u64)diff, weight);
- if (rt_rq->rt_runtime + diff > rt_period)
- diff = rt_period - rt_rq->rt_runtime;
- iter->rt_runtime -= diff;
- rt_rq->rt_runtime += diff;
- more = 1;
- if (rt_rq->rt_runtime == rt_period) {
- raw_spin_unlock(&iter->rt_runtime_lock);
- break;
- }
- }
-next:
- raw_spin_unlock(&iter->rt_runtime_lock);
- }
- raw_spin_unlock(&rt_b->rt_runtime_lock);
-
- return more;
-}
-
-/*
- * Ensure this RQ takes back all the runtime it lend to its neighbours.
- */
-static void __disable_runtime(struct rq *rq)
-{
- struct root_domain *rd = rq->rd;
- rt_rq_iter_t iter;
- struct rt_rq *rt_rq;
-
- if (unlikely(!scheduler_running))
- return;
-
- for_each_rt_rq(rt_rq, iter, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- s64 want;
- int i;
-
- raw_spin_lock(&rt_b->rt_runtime_lock);
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * Either we're all inf and nobody needs to borrow, or we're
- * already disabled and thus have nothing to do, or we have
- * exactly the right amount of runtime to take out.
- */
- if (rt_rq->rt_runtime == RUNTIME_INF ||
- rt_rq->rt_runtime == rt_b->rt_runtime)
- goto balanced;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
-
- /*
- * Calculate the difference between what we started out with
- * and what we current have, that's the amount of runtime
- * we lend and now have to reclaim.
- */
- want = rt_b->rt_runtime - rt_rq->rt_runtime;
-
- /*
- * Greedy reclaim, take back as much as we can.
- */
- for_each_cpu(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
-
- /*
- * Can't reclaim from ourselves or disabled runqueues.
- */
- if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
- continue;
-
- raw_spin_lock(&iter->rt_runtime_lock);
- if (want > 0) {
- diff = min_t(s64, iter->rt_runtime, want);
- iter->rt_runtime -= diff;
- want -= diff;
- } else {
- iter->rt_runtime -= want;
- want -= want;
- }
- raw_spin_unlock(&iter->rt_runtime_lock);
-
- if (!want)
- break;
- }
-
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * We cannot be left wanting - that would mean some runtime
- * leaked out of the system.
- */
- BUG_ON(want);
-balanced:
- /*
- * Disable all the borrow logic by pretending we have inf
- * runtime - in which case borrowing doesn't make sense.
- */
- rt_rq->rt_runtime = RUNTIME_INF;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- }
-}
-
-static void disable_runtime(struct rq *rq)
-{
- unsigned long flags;
-
- raw_spin_lock_irqsave(&rq->lock, flags);
- __disable_runtime(rq);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-static void __enable_runtime(struct rq *rq)
-{
- rt_rq_iter_t iter;
- struct rt_rq *rt_rq;
-
- if (unlikely(!scheduler_running))
- return;
-
- /*
- * Reset each runqueue's bandwidth settings
- */
- for_each_rt_rq(rt_rq, iter, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
-
- raw_spin_lock(&rt_b->rt_runtime_lock);
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_b->rt_runtime;
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- raw_spin_unlock(&rt_b->rt_runtime_lock);
- }
-}
-
-static void enable_runtime(struct rq *rq)
-{
- unsigned long flags;
-
- raw_spin_lock_irqsave(&rq->lock, flags);
- __enable_runtime(rq);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
-}
-
-int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
-{
- int cpu = (int)(long)hcpu;
-
- switch (action) {
- case CPU_DOWN_PREPARE:
- case CPU_DOWN_PREPARE_FROZEN:
- disable_runtime(cpu_rq(cpu));
- return NOTIFY_OK;
-
- case CPU_DOWN_FAILED:
- case CPU_DOWN_FAILED_FROZEN:
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- enable_runtime(cpu_rq(cpu));
- return NOTIFY_OK;
-
- default:
- return NOTIFY_DONE;
- }
-}
-
-static int balance_runtime(struct rt_rq *rt_rq)
-{
- int more = 0;
-
- if (!sched_feat(RT_RUNTIME_SHARE))
- return more;
-
- if (rt_rq->rt_time > rt_rq->rt_runtime) {
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- more = do_balance_runtime(rt_rq);
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- }
-
- return more;
-}
-#else /* !CONFIG_SMP */
-static inline int balance_runtime(struct rt_rq *rt_rq)
-{
- return 0;
-}
-#endif /* CONFIG_SMP */
-
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
-{
- int i, idle = 1;
- const struct cpumask *span;
-
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
- return 1;
-
- span = sched_rt_period_mask();
- for_each_cpu(i, span) {
- int enqueue = 0;
- struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
- struct rq *rq = rq_of_rt_rq(rt_rq);
-
- raw_spin_lock(&rq->lock);
- if (rt_rq->rt_time) {
- u64 runtime;
-
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- if (rt_rq->rt_throttled)
- balance_runtime(rt_rq);
- runtime = rt_rq->rt_runtime;
- rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- enqueue = 1;
-
- /*
- * Force a clock update if the CPU was idle,
- * lest wakeup -> unthrottle time accumulate.
- */
- if (rt_rq->rt_nr_running && rq->curr == rq->idle)
- rq->skip_clock_update = -1;
- }
- if (rt_rq->rt_time || rt_rq->rt_nr_running)
- idle = 0;
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- } else if (rt_rq->rt_nr_running) {
- idle = 0;
- if (!rt_rq_throttled(rt_rq))
- enqueue = 1;
- }
-
- if (enqueue)
- sched_rt_rq_enqueue(rt_rq);
- raw_spin_unlock(&rq->lock);
- }
-
- return idle;
-}
-
-static inline int rt_se_prio(struct sched_rt_entity *rt_se)
-{
-#ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
-
- if (rt_rq)
- return rt_rq->highest_prio.curr;
-#endif
-
- return rt_task_of(rt_se)->prio;
-}
-
-static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
-{
- u64 runtime = sched_rt_runtime(rt_rq);
-
- if (rt_rq->rt_throttled)
- return rt_rq_throttled(rt_rq);
-
- if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
- return 0;
-
- balance_runtime(rt_rq);
- runtime = sched_rt_runtime(rt_rq);
- if (runtime == RUNTIME_INF)
- return 0;
-
- if (rt_rq->rt_time > runtime) {
- rt_rq->rt_throttled = 1;
- printk_once(KERN_WARNING "sched: RT throttling activated\n");
- if (rt_rq_throttled(rt_rq)) {
- sched_rt_rq_dequeue(rt_rq);
- return 1;
- }
- }
-
- return 0;
-}
-
-/*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
-static void update_curr_rt(struct rq *rq)
-{
- struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- u64 delta_exec;
-
- if (curr->sched_class != &rt_sched_class)
- return;
-
- delta_exec = rq->clock_task - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
-
- schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
-
- curr->se.sum_exec_runtime += delta_exec;
- account_group_exec_runtime(curr, delta_exec);
-
- curr->se.exec_start = rq->clock_task;
- cpuacct_charge(curr, delta_exec);
-
- sched_rt_avg_update(rq, delta_exec);
-
- if (!rt_bandwidth_enabled())
- return;
-
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
-
- if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_task(curr);
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
- }
-}
-
-#if defined CONFIG_SMP
-
-static void
-inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
-{
- struct rq *rq = rq_of_rt_rq(rt_rq);
-
- if (rq->online && prio < prev_prio)
- cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
-}
-
-static void
-dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
-{
- struct rq *rq = rq_of_rt_rq(rt_rq);
-
- if (rq->online && rt_rq->highest_prio.curr != prev_prio)
- cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
-}
-
-#else /* CONFIG_SMP */
-
-static inline
-void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-static inline
-void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
-
-#endif /* CONFIG_SMP */
-
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
-static void
-inc_rt_prio(struct rt_rq *rt_rq, int prio)
-{
- int prev_prio = rt_rq->highest_prio.curr;
-
- if (prio < prev_prio)
- rt_rq->highest_prio.curr = prio;
-
- inc_rt_prio_smp(rt_rq, prio, prev_prio);
-}
-
-static void
-dec_rt_prio(struct rt_rq *rt_rq, int prio)
-{
- int prev_prio = rt_rq->highest_prio.curr;
-
- if (rt_rq->rt_nr_running) {
-
- WARN_ON(prio < prev_prio);
-
- /*
- * This may have been our highest task, and therefore
- * we may have some recomputation to do
- */
- if (prio == prev_prio) {
- struct rt_prio_array *array = &rt_rq->active;
-
- rt_rq->highest_prio.curr =
- sched_find_first_bit(array->bitmap);
- }
-
- } else
- rt_rq->highest_prio.curr = MAX_RT_PRIO;
-
- dec_rt_prio_smp(rt_rq, prio, prev_prio);
-}
-
-#else
-
-static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
-static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
-
-#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
-
-#ifdef CONFIG_RT_GROUP_SCHED
-
-static void
-inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted++;
-
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
-}
-
-static void
-dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted--;
-
- WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
-}
-
-#else /* CONFIG_RT_GROUP_SCHED */
-
-static void
-inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- start_rt_bandwidth(&def_rt_bandwidth);
-}
-
-static inline
-void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-
-static inline
-void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- int prio = rt_se_prio(rt_se);
-
- WARN_ON(!rt_prio(prio));
- rt_rq->rt_nr_running++;
-
- inc_rt_prio(rt_rq, prio);
- inc_rt_migration(rt_se, rt_rq);
- inc_rt_group(rt_se, rt_rq);
-}
-
-static inline
-void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
-{
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- WARN_ON(!rt_rq->rt_nr_running);
- rt_rq->rt_nr_running--;
-
- dec_rt_prio(rt_rq, rt_se_prio(rt_se));
- dec_rt_migration(rt_se, rt_rq);
- dec_rt_group(rt_se, rt_rq);
-}
-
-static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
-{
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
-
- /*
- * Don't enqueue the group if its throttled, or when empty.
- * The latter is a consequence of the former when a child group
- * get throttled and the current group doesn't have any other
- * active members.
- */
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
- return;
-
- if (!rt_rq->rt_nr_running)
- list_add_leaf_rt_rq(rt_rq);
-
- if (head)
- list_add(&rt_se->run_list, queue);
- else
- list_add_tail(&rt_se->run_list, queue);
- __set_bit(rt_se_prio(rt_se), array->bitmap);
-
- inc_rt_tasks(rt_se, rt_rq);
-}
-
-static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
-{
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
-
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
-
- dec_rt_tasks(rt_se, rt_rq);
- if (!rt_rq->rt_nr_running)
- list_del_leaf_rt_rq(rt_rq);
-}
-
-/*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
-static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
-{
- struct sched_rt_entity *back = NULL;
-
- for_each_sched_rt_entity(rt_se) {
- rt_se->back = back;
- back = rt_se;
- }
-
- for (rt_se = back; rt_se; rt_se = rt_se->back) {
- if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se);
- }
-}
-
-static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
-{
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se, head);
-}
-
-static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
-{
- dequeue_rt_stack(rt_se);
-
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
-
- if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se, false);
- }
-}
-
-/*
- * Adding/removing a task to/from a priority array:
- */
-static void
-enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
-{
- struct sched_rt_entity *rt_se = &p->rt;
-
- if (flags & ENQUEUE_WAKEUP)
- rt_se->timeout = 0;
-
- enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
-
- if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
- enqueue_pushable_task(rq, p);
-
- inc_nr_running(rq);
-}
-
-static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
-{
- struct sched_rt_entity *rt_se = &p->rt;
-
- update_curr_rt(rq);
- dequeue_rt_entity(rt_se);
-
- dequeue_pushable_task(rq, p);
-
- dec_nr_running(rq);
-}
-
-/*
- * Put task to the head or the end of the run list without the overhead of
- * dequeue followed by enqueue.
- */
-static void
-requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
-{
- if (on_rt_rq(rt_se)) {
- struct rt_prio_array *array = &rt_rq->active;
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
-
- if (head)
- list_move(&rt_se->run_list, queue);
- else
- list_move_tail(&rt_se->run_list, queue);
- }
-}
-
-static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
-{
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
-
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se, head);
- }
-}
-
-static void yield_task_rt(struct rq *rq)
-{
- requeue_task_rt(rq, rq->curr, 0);
-}
-
-#ifdef CONFIG_SMP
-static int find_lowest_rq(struct task_struct *task);
-
-static int
-select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
-{
- struct task_struct *curr;
- struct rq *rq;
- int cpu;
-
- cpu = task_cpu(p);
-
- /* For anything but wake ups, just return the task_cpu */
- if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
- goto out;
-
- rq = cpu_rq(cpu);
-
- rcu_read_lock();
- curr = ACCESS_ONCE(rq->curr); /* unlocked access */
-
- /*
- * If the current task on @p's runqueue is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. If the woken
- * task is a higher priority, then it will stay on this CPU
- * and the lower prio task should be moved to another CPU.
- * Even though this will probably make the lower prio task
- * lose its cache, we do not want to bounce a higher task
- * around just because it gave up its CPU, perhaps for a
- * lock?
- *
- * For equal prio tasks, we just let the scheduler sort it out.
- *
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- *
- * This test is optimistic, if we get it wrong the load-balancer
- * will have to sort it out.
- */
- if (curr && unlikely(rt_task(curr)) &&
- (curr->rt.nr_cpus_allowed < 2 ||
- curr->prio <= p->prio) &&
- (p->rt.nr_cpus_allowed > 1)) {
- int target = find_lowest_rq(p);
-
- if (target != -1)
- cpu = target;
- }
- rcu_read_unlock();
-
-out:
- return cpu;
-}
-
-static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
-{
- if (rq->curr->rt.nr_cpus_allowed == 1)
- return;
-
- if (p->rt.nr_cpus_allowed != 1
- && cpupri_find(&rq->rd->cpupri, p, NULL))
- return;
-
- if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
- return;
-
- /*
- * There appears to be other cpus that can accept
- * current and none to run 'p', so lets reschedule
- * to try and push current away:
- */
- requeue_task_rt(rq, p, 1);
- resched_task(rq->curr);
-}
-
-#endif /* CONFIG_SMP */
-
-/*
- * Preempt the current task with a newly woken task if needed:
- */
-static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
-{
- if (p->prio < rq->curr->prio) {
- resched_task(rq->curr);
- return;
- }
-
-#ifdef CONFIG_SMP
- /*
- * If:
- *
- * - the newly woken task is of equal priority to the current task
- * - the newly woken task is non-migratable while current is migratable
- * - current will be preempted on the next reschedule
- *
- * we should check to see if current can readily move to a different
- * cpu. If so, we will reschedule to allow the push logic to try
- * to move current somewhere else, making room for our non-migratable
- * task.
- */
- if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
- check_preempt_equal_prio(rq, p);
-#endif
-}
-
-static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
-{
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
- struct list_head *queue;
- int idx;
-
- idx = sched_find_first_bit(array->bitmap);
- BUG_ON(idx >= MAX_RT_PRIO);
-
- queue = array->queue + idx;
- next = list_entry(queue->next, struct sched_rt_entity, run_list);
-
- return next;
-}
-
-static struct task_struct *_pick_next_task_rt(struct rq *rq)
-{
- struct sched_rt_entity *rt_se;
- struct task_struct *p;
- struct rt_rq *rt_rq;
-
- rt_rq = &rq->rt;
-
- if (!rt_rq->rt_nr_running)
- return NULL;
-
- if (rt_rq_throttled(rt_rq))
- return NULL;
-
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
-
- p = rt_task_of(rt_se);
- p->se.exec_start = rq->clock_task;
-
- return p;
-}
-
-static struct task_struct *pick_next_task_rt(struct rq *rq)
-{
- struct task_struct *p = _pick_next_task_rt(rq);
-
- /* The running task is never eligible for pushing */
- if (p)
- dequeue_pushable_task(rq, p);
-
-#ifdef CONFIG_SMP
- /*
- * We detect this state here so that we can avoid taking the RQ
- * lock again later if there is no need to push
- */
- rq->post_schedule = has_pushable_tasks(rq);
-#endif
-
- return p;
-}
-
-static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
-{
- update_curr_rt(rq);
-
- /*
- * The previous task needs to be made eligible for pushing
- * if it is still active
- */
- if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
- enqueue_pushable_task(rq, p);
-}
-
-#ifdef CONFIG_SMP
-
-/* Only try algorithms three times */
-#define RT_MAX_TRIES 3
-
-static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
-{
- if (!task_running(rq, p) &&
- (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
- (p->rt.nr_cpus_allowed > 1))
- return 1;
- return 0;
-}
-
-/* Return the second highest RT task, NULL otherwise */
-static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
-{
- struct task_struct *next = NULL;
- struct sched_rt_entity *rt_se;
- struct rt_prio_array *array;
- struct rt_rq *rt_rq;
- int idx;
-
- for_each_leaf_rt_rq(rt_rq, rq) {
- array = &rt_rq->active;
- idx = sched_find_first_bit(array->bitmap);
-next_idx:
- if (idx >= MAX_RT_PRIO)
- continue;
- if (next && next->prio < idx)
- continue;
- list_for_each_entry(rt_se, array->queue + idx, run_list) {
- struct task_struct *p;
-
- if (!rt_entity_is_task(rt_se))
- continue;
-
- p = rt_task_of(rt_se);
- if (pick_rt_task(rq, p, cpu)) {
- next = p;
- break;
- }
- }
- if (!next) {
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- goto next_idx;
- }
- }
-
- return next;
-}
-
-static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
-
-static int find_lowest_rq(struct task_struct *task)
-{
- struct sched_domain *sd;
- struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
-
- /* Make sure the mask is initialized first */
- if (unlikely(!lowest_mask))
- return -1;
-
- if (task->rt.nr_cpus_allowed == 1)
- return -1; /* No other targets possible */
-
- if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
- return -1; /* No targets found */
-
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpumask_test_cpu(cpu, lowest_mask))
- return cpu;
-
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (!cpumask_test_cpu(this_cpu, lowest_mask))
- this_cpu = -1; /* Skip this_cpu opt if not among lowest */
-
- rcu_read_lock();
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- int best_cpu;
-
- /*
- * "this_cpu" is cheaper to preempt than a
- * remote processor.
- */
- if (this_cpu != -1 &&
- cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
- rcu_read_unlock();
- return this_cpu;
- }
-
- best_cpu = cpumask_first_and(lowest_mask,
- sched_domain_span(sd));
- if (best_cpu < nr_cpu_ids) {
- rcu_read_unlock();
- return best_cpu;
- }
- }
- }
- rcu_read_unlock();
-
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- if (this_cpu != -1)
- return this_cpu;
-
- cpu = cpumask_any(lowest_mask);
- if (cpu < nr_cpu_ids)
- return cpu;
- return -1;
-}
-
-/* Will lock the rq it finds */
-static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
-{
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
-
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
-
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
-
- lowest_rq = cpu_rq(cpu);
-
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpumask_test_cpu(lowest_rq->cpu,
- tsk_cpus_allowed(task)) ||
- task_running(rq, task) ||
- !task->on_rq)) {
-
- raw_spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
-
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio.curr > task->prio)
- break;
-
- /* try again */
- double_unlock_balance(rq, lowest_rq);
- lowest_rq = NULL;
- }
-
- return lowest_rq;
-}
-
-static struct task_struct *pick_next_pushable_task(struct rq *rq)
-{
- struct task_struct *p;
-
- if (!has_pushable_tasks(rq))
- return NULL;
-
- p = plist_first_entry(&rq->rt.pushable_tasks,
- struct task_struct, pushable_tasks);
-
- BUG_ON(rq->cpu != task_cpu(p));
- BUG_ON(task_current(rq, p));
- BUG_ON(p->rt.nr_cpus_allowed <= 1);
-
- BUG_ON(!p->on_rq);
- BUG_ON(!rt_task(p));
-
- return p;
-}
-
-/*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
-static int push_rt_task(struct rq *rq)
-{
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
-
- if (!rq->rt.overloaded)
- return 0;
-
- next_task = pick_next_pushable_task(rq);
- if (!next_task)
- return 0;
-
-retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
-
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_task(rq->curr);
- return 0;
- }
-
- /* We might release rq lock */
- get_task_struct(next_task);
-
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find_lock_lowest_rq releases rq->lock
- * so it is possible that next_task has migrated.
- *
- * We need to make sure that the task is still on the same
- * run-queue and is also still the next task eligible for
- * pushing.
- */
- task = pick_next_pushable_task(rq);
- if (task_cpu(next_task) == rq->cpu && task == next_task) {
- /*
- * The task hasn't migrated, and is still the next
- * eligible task, but we failed to find a run-queue
- * to push it to. Do not retry in this case, since
- * other cpus will pull from us when ready.
- */
- goto out;
- }
-
- if (!task)
- /* No more tasks, just exit */
- goto out;
-
- /*
- * Something has shifted, try again.
- */
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
-
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- ret = 1;
-
- resched_task(lowest_rq->curr);
-
- double_unlock_balance(rq, lowest_rq);
-
-out:
- put_task_struct(next_task);
-
- return ret;
-}
-
-static void push_rt_tasks(struct rq *rq)
-{
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
-}
-
-static int pull_rt_task(struct rq *this_rq)
-{
- int this_cpu = this_rq->cpu, ret = 0, cpu;
- struct task_struct *p;
- struct rq *src_rq;
-
- if (likely(!rt_overloaded(this_rq)))
- return 0;
-
- for_each_cpu(cpu, this_rq->rd->rto_mask) {
- if (this_cpu == cpu)
- continue;
-
- src_rq = cpu_rq(cpu);
-
- /*
- * Don't bother taking the src_rq->lock if the next highest
- * task is known to be lower-priority than our current task.
- * This may look racy, but if this value is about to go
- * logically higher, the src_rq will push this task away.
- * And if its going logically lower, we do not care
- */
- if (src_rq->rt.highest_prio.next >=
- this_rq->rt.highest_prio.curr)
- continue;
-
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * alter this_rq
- */
- double_lock_balance(this_rq, src_rq);
-
- /*
- * Are there still pullable RT tasks?
- */
- if (src_rq->rt.rt_nr_running <= 1)
- goto skip;
-
- p = pick_next_highest_task_rt(src_rq, this_cpu);
-
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!p->on_rq);
-
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue
- */
- if (p->prio < src_rq->curr->prio)
- goto skip;
-
- ret = 1;
-
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelihood
- * but possible)
- */
- }
-skip:
- double_unlock_balance(this_rq, src_rq);
- }
-
- return ret;
-}
-
-static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
-{
- /* Try to pull RT tasks here if we lower this rq's prio */
- if (rq->rt.highest_prio.curr > prev->prio)
- pull_rt_task(rq);
-}
-
-static void post_schedule_rt(struct rq *rq)
-{
- push_rt_tasks(rq);
-}
-
-/*
- * If we are not running and we are not going to reschedule soon, we should
- * try to push tasks away now
- */
-static void task_woken_rt(struct rq *rq, struct task_struct *p)
-{
- if (!task_running(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- has_pushable_tasks(rq) &&
- p->rt.nr_cpus_allowed > 1 &&
- rt_task(rq->curr) &&
- (rq->curr->rt.nr_cpus_allowed < 2 ||
- rq->curr->prio <= p->prio))
- push_rt_tasks(rq);
-}
-
-static void set_cpus_allowed_rt(struct task_struct *p,
- const struct cpumask *new_mask)
-{
- int weight = cpumask_weight(new_mask);
-
- BUG_ON(!rt_task(p));
-
- /*
- * Update the migration status of the RQ if we have an RT task
- * which is running AND changing its weight value.
- */
- if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
- struct rq *rq = task_rq(p);
-
- if (!task_current(rq, p)) {
- /*
- * Make sure we dequeue this task from the pushable list
- * before going further. It will either remain off of
- * the list because we are no longer pushable, or it
- * will be requeued.
- */
- if (p->rt.nr_cpus_allowed > 1)
- dequeue_pushable_task(rq, p);
-
- /*
- * Requeue if our weight is changing and still > 1
- */
- if (weight > 1)
- enqueue_pushable_task(rq, p);
-
- }
-
- if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
- rq->rt.rt_nr_migratory++;
- } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- }
-
- update_rt_migration(&rq->rt);
- }
-}
-
-/* Assumes rq->lock is held */
-static void rq_online_rt(struct rq *rq)
-{
- if (rq->rt.overloaded)
- rt_set_overload(rq);
-
- __enable_runtime(rq);
-
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
-}
-
-/* Assumes rq->lock is held */
-static void rq_offline_rt(struct rq *rq)
-{
- if (rq->rt.overloaded)
- rt_clear_overload(rq);
-
- __disable_runtime(rq);
-
- cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
-}
-
-/*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
-static void switched_from_rt(struct rq *rq, struct task_struct *p)
-{
- /*
- * If there are other RT tasks then we will reschedule
- * and the scheduling of the other RT tasks will handle
- * the balancing. But if we are the last RT task
- * we may need to handle the pulling of RT tasks
- * now.
- */
- if (p->on_rq && !rq->rt.rt_nr_running)
- pull_rt_task(rq);
-}
-
-void init_sched_rt_class(void)
-{
- unsigned int i;
-
- for_each_possible_cpu(i) {
- zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
- GFP_KERNEL, cpu_to_node(i));
- }
-}
-#endif /* CONFIG_SMP */
-
-/*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
-static void switched_to_rt(struct rq *rq, struct task_struct *p)
-{
- int check_resched = 1;
-
- /*
- * If we are already running, then there's nothing
- * that needs to be done. But if we are not running
- * we may need to preempt the current running task.
- * If that current running task is also an RT task
- * then see if we can move to another run queue.
- */
- if (p->on_rq && rq->curr != p) {
-#ifdef CONFIG_SMP
- if (rq->rt.overloaded && push_rt_task(rq) &&
- /* Don't resched if we changed runqueues */
- rq != task_rq(p))
- check_resched = 0;
-#endif /* CONFIG_SMP */
- if (check_resched && p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
-}
-
-/*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
-static void
-prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
-{
- if (!p->on_rq)
- return;
-
- if (rq->curr == p) {
-#ifdef CONFIG_SMP
- /*
- * If our priority decreases while running, we
- * may need to pull tasks to this runqueue.
- */
- if (oldprio < p->prio)
- pull_rt_task(rq);
- /*
- * If there's a higher priority task waiting to run
- * then reschedule. Note, the above pull_rt_task
- * can release the rq lock and p could migrate.
- * Only reschedule if p is still on the same runqueue.
- */
- if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
- resched_task(p);
-#else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_task(p);
-#endif /* CONFIG_SMP */
- } else {
- /*
- * This task is not running, but if it is
- * greater than the current running task
- * then reschedule.
- */
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
-}
-
-static void watchdog(struct rq *rq, struct task_struct *p)
-{
- unsigned long soft, hard;
-
- /* max may change after cur was read, this will be fixed next tick */
- soft = task_rlimit(p, RLIMIT_RTTIME);
- hard = task_rlimit_max(p, RLIMIT_RTTIME);
-
- if (soft != RLIM_INFINITY) {
- unsigned long next;
-
- p->rt.timeout++;
- next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
- if (p->rt.timeout > next)
- p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
- }
-}
-
-static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
-{
- update_curr_rt(rq);
-
- watchdog(rq, p);
-
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
-
- if (--p->rt.time_slice)
- return;
-
- p->rt.time_slice = DEF_TIMESLICE;
-
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->rt.run_list.prev != p->rt.run_list.next) {
- requeue_task_rt(rq, p, 0);
- set_tsk_need_resched(p);
- }
-}
-
-static void set_curr_task_rt(struct rq *rq)
-{
- struct task_struct *p = rq->curr;
-
- p->se.exec_start = rq->clock_task;
-
- /* The running task is never eligible for pushing */
- dequeue_pushable_task(rq, p);
-}
-
-static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
-{
- /*
- * Time slice is 0 for SCHED_FIFO tasks
- */
- if (task->policy == SCHED_RR)
- return DEF_TIMESLICE;
- else
- return 0;
-}
-
-const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
-
- .check_preempt_curr = check_preempt_curr_rt,
-
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
-
-#ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
-
- .set_cpus_allowed = set_cpus_allowed_rt,
- .rq_online = rq_online_rt,
- .rq_offline = rq_offline_rt,
- .pre_schedule = pre_schedule_rt,
- .post_schedule = post_schedule_rt,
- .task_woken = task_woken_rt,
- .switched_from = switched_from_rt,
-#endif
-
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
-
- .get_rr_interval = get_rr_interval_rt,
-
- .prio_changed = prio_changed_rt,
- .switched_to = switched_to_rt,
-};
-
-#ifdef CONFIG_SCHED_DEBUG
-extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
-
-void print_rt_stats(struct seq_file *m, int cpu)
-{
- rt_rq_iter_t iter;
- struct rt_rq *rt_rq;
-
- rcu_read_lock();
- for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
- print_rt_rq(m, cpu, rt_rq);
- rcu_read_unlock();
-}
-#endif /* CONFIG_SCHED_DEBUG */