diff options
author | Joonsoo Kim <iamjoonsoo.kim@lge.com> | 2014-08-06 16:04:25 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2014-08-06 18:01:14 -0700 |
commit | 97654dfa20caa5e6c1b0a4af715aabaf5d070d69 (patch) | |
tree | 0b4b16ba910572e9068905cf12d587d888cc5ecb /mm/slab.c | |
parent | 25c063fbd5512eb7190bf5af88351109aededb3f (diff) |
slab: defer slab_destroy in free_block()
In free_block(), if freeing object makes new free slab and number of
free_objects exceeds free_limit, we start to destroy this new free slab
with holding the kmem_cache node lock. Holding the lock is useless and,
generally, holding a lock as least as possible is good thing. I never
measure performance effect of this, but we'd be better not to hold the
lock as much as possible.
Commented by Christoph:
This is also good because kmem_cache_free is no longer called while
holding the node lock. So we avoid one case of recursion.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/slab.c')
-rw-r--r-- | mm/slab.c | 60 |
1 files changed, 41 insertions, 19 deletions
diff --git a/mm/slab.c b/mm/slab.c index 205632c94a6..f6ad8d335be 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -242,7 +242,8 @@ static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; static int drain_freelist(struct kmem_cache *cache, struct kmem_cache_node *n, int tofree); static void free_block(struct kmem_cache *cachep, void **objpp, int len, - int node); + int node, struct list_head *list); +static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); static void cache_reap(struct work_struct *unused); @@ -1030,6 +1031,7 @@ static void __drain_alien_cache(struct kmem_cache *cachep, struct array_cache *ac, int node) { struct kmem_cache_node *n = get_node(cachep, node); + LIST_HEAD(list); if (ac->avail) { spin_lock(&n->list_lock); @@ -1041,9 +1043,10 @@ static void __drain_alien_cache(struct kmem_cache *cachep, if (n->shared) transfer_objects(n->shared, ac, ac->limit); - free_block(cachep, ac->entry, ac->avail, node); + free_block(cachep, ac->entry, ac->avail, node, &list); ac->avail = 0; spin_unlock(&n->list_lock); + slabs_destroy(cachep, &list); } } @@ -1087,6 +1090,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) struct kmem_cache_node *n; struct array_cache *alien = NULL; int node; + LIST_HEAD(list); node = numa_mem_id(); @@ -1111,8 +1115,9 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) } else { n = get_node(cachep, nodeid); spin_lock(&n->list_lock); - free_block(cachep, &objp, 1, nodeid); + free_block(cachep, &objp, 1, nodeid, &list); spin_unlock(&n->list_lock); + slabs_destroy(cachep, &list); } return 1; } @@ -1182,6 +1187,7 @@ static void cpuup_canceled(long cpu) struct array_cache *nc; struct array_cache *shared; struct array_cache **alien; + LIST_HEAD(list); /* cpu is dead; no one can alloc from it. */ nc = cachep->array[cpu]; @@ -1196,7 +1202,7 @@ static void cpuup_canceled(long cpu) /* Free limit for this kmem_cache_node */ n->free_limit -= cachep->batchcount; if (nc) - free_block(cachep, nc->entry, nc->avail, node); + free_block(cachep, nc->entry, nc->avail, node, &list); if (!cpumask_empty(mask)) { spin_unlock_irq(&n->list_lock); @@ -1206,7 +1212,7 @@ static void cpuup_canceled(long cpu) shared = n->shared; if (shared) { free_block(cachep, shared->entry, - shared->avail, node); + shared->avail, node, &list); n->shared = NULL; } @@ -1221,6 +1227,7 @@ static void cpuup_canceled(long cpu) free_alien_cache(alien); } free_array_cache: + slabs_destroy(cachep, &list); kfree(nc); } /* @@ -2056,6 +2063,16 @@ static void slab_destroy(struct kmem_cache *cachep, struct page *page) kmem_cache_free(cachep->freelist_cache, freelist); } +static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) +{ + struct page *page, *n; + + list_for_each_entry_safe(page, n, list, lru) { + list_del(&page->lru); + slab_destroy(cachep, page); + } +} + /** * calculate_slab_order - calculate size (page order) of slabs * @cachep: pointer to the cache that is being created @@ -2459,13 +2476,15 @@ static void do_drain(void *arg) struct array_cache *ac; int node = numa_mem_id(); struct kmem_cache_node *n; + LIST_HEAD(list); check_irq_off(); ac = cpu_cache_get(cachep); n = get_node(cachep, node); spin_lock(&n->list_lock); - free_block(cachep, ac->entry, ac->avail, node); + free_block(cachep, ac->entry, ac->avail, node, &list); spin_unlock(&n->list_lock); + slabs_destroy(cachep, &list); ac->avail = 0; } @@ -3393,9 +3412,10 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) /* * Caller needs to acquire correct kmem_cache_node's list_lock + * @list: List of detached free slabs should be freed by caller */ -static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, - int node) +static void free_block(struct kmem_cache *cachep, void **objpp, + int nr_objects, int node, struct list_head *list) { int i; struct kmem_cache_node *n = get_node(cachep, node); @@ -3418,13 +3438,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, if (page->active == 0) { if (n->free_objects > n->free_limit) { n->free_objects -= cachep->num; - /* No need to drop any previously held - * lock here, even if we have a off-slab slab - * descriptor it is guaranteed to come from - * a different cache, refer to comments before - * alloc_slabmgmt. - */ - slab_destroy(cachep, page); + list_add_tail(&page->lru, list); } else { list_add(&page->lru, &n->slabs_free); } @@ -3443,6 +3457,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) int batchcount; struct kmem_cache_node *n; int node = numa_mem_id(); + LIST_HEAD(list); batchcount = ac->batchcount; #if DEBUG @@ -3464,7 +3479,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) } } - free_block(cachep, ac->entry, batchcount, node); + free_block(cachep, ac->entry, batchcount, node, &list); free_done: #if STATS { @@ -3485,6 +3500,7 @@ free_done: } #endif spin_unlock(&n->list_lock); + slabs_destroy(cachep, &list); ac->avail -= batchcount; memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); } @@ -3765,12 +3781,13 @@ static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) n = get_node(cachep, node); if (n) { struct array_cache *shared = n->shared; + LIST_HEAD(list); spin_lock_irq(&n->list_lock); if (shared) free_block(cachep, shared->entry, - shared->avail, node); + shared->avail, node, &list); n->shared = new_shared; if (!n->alien) { @@ -3780,6 +3797,7 @@ static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; spin_unlock_irq(&n->list_lock); + slabs_destroy(cachep, &list); kfree(shared); free_alien_cache(new_alien); continue; @@ -3869,6 +3887,7 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, cachep->shared = shared; for_each_online_cpu(i) { + LIST_HEAD(list); struct array_cache *ccold = new->new[i]; int node; struct kmem_cache_node *n; @@ -3879,8 +3898,9 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, node = cpu_to_mem(i); n = get_node(cachep, node); spin_lock_irq(&n->list_lock); - free_block(cachep, ccold->entry, ccold->avail, node); + free_block(cachep, ccold->entry, ccold->avail, node, &list); spin_unlock_irq(&n->list_lock); + slabs_destroy(cachep, &list); kfree(ccold); } kfree(new); @@ -3988,6 +4008,7 @@ skip_setup: static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, struct array_cache *ac, int force, int node) { + LIST_HEAD(list); int tofree; if (!ac || !ac->avail) @@ -4000,12 +4021,13 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, tofree = force ? ac->avail : (ac->limit + 4) / 5; if (tofree > ac->avail) tofree = (ac->avail + 1) / 2; - free_block(cachep, ac->entry, tofree, node); + free_block(cachep, ac->entry, tofree, node, &list); ac->avail -= tofree; memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); } spin_unlock_irq(&n->list_lock); + slabs_destroy(cachep, &list); } } |