diff options
-rw-r--r-- | include/asm-generic/bitsperlong.h | 4 | ||||
-rw-r--r-- | lib/vsprintf.c | 281 |
2 files changed, 194 insertions, 91 deletions
diff --git a/include/asm-generic/bitsperlong.h b/include/asm-generic/bitsperlong.h index 4ae54e07de8..a7b0914348f 100644 --- a/include/asm-generic/bitsperlong.h +++ b/include/asm-generic/bitsperlong.h @@ -28,5 +28,9 @@ #error Inconsistent word size. Check asm/bitsperlong.h #endif +#ifndef BITS_PER_LONG_LONG +#define BITS_PER_LONG_LONG 64 +#endif + #endif /* __KERNEL__ */ #endif /* __ASM_GENERIC_BITS_PER_LONG */ diff --git a/lib/vsprintf.c b/lib/vsprintf.c index b8fbd275bc4..c3f36d415bd 100644 --- a/lib/vsprintf.c +++ b/lib/vsprintf.c @@ -112,106 +112,199 @@ int skip_atoi(const char **s) /* Decimal conversion is by far the most typical, and is used * for /proc and /sys data. This directly impacts e.g. top performance * with many processes running. We optimize it for speed - * using code from - * http://www.cs.uiowa.edu/~jones/bcd/decimal.html - * (with permission from the author, Douglas W. Jones). */ + * using ideas described at <http://www.cs.uiowa.edu/~jones/bcd/divide.html> + * (with permission from the author, Douglas W. Jones). + */ -/* Formats correctly any integer in [0,99999]. - * Outputs from one to five digits depending on input. - * On i386 gcc 4.1.2 -O2: ~250 bytes of code. */ +#if BITS_PER_LONG != 32 || BITS_PER_LONG_LONG != 64 +/* Formats correctly any integer in [0, 999999999] */ static noinline_for_stack -char *put_dec_trunc(char *buf, unsigned q) +char *put_dec_full9(char *buf, unsigned q) { - unsigned d3, d2, d1, d0; - d1 = (q>>4) & 0xf; - d2 = (q>>8) & 0xf; - d3 = (q>>12); - - d0 = 6*(d3 + d2 + d1) + (q & 0xf); - q = (d0 * 0xcd) >> 11; - d0 = d0 - 10*q; - *buf++ = d0 + '0'; /* least significant digit */ - d1 = q + 9*d3 + 5*d2 + d1; - if (d1 != 0) { - q = (d1 * 0xcd) >> 11; - d1 = d1 - 10*q; - *buf++ = d1 + '0'; /* next digit */ - - d2 = q + 2*d2; - if ((d2 != 0) || (d3 != 0)) { - q = (d2 * 0xd) >> 7; - d2 = d2 - 10*q; - *buf++ = d2 + '0'; /* next digit */ - - d3 = q + 4*d3; - if (d3 != 0) { - q = (d3 * 0xcd) >> 11; - d3 = d3 - 10*q; - *buf++ = d3 + '0'; /* next digit */ - if (q != 0) - *buf++ = q + '0'; /* most sign. digit */ - } - } - } + unsigned r; + /* + * Possible ways to approx. divide by 10 + * (x * 0x1999999a) >> 32 x < 1073741829 (multiply must be 64-bit) + * (x * 0xcccd) >> 19 x < 81920 (x < 262149 when 64-bit mul) + * (x * 0x6667) >> 18 x < 43699 + * (x * 0x3334) >> 17 x < 16389 + * (x * 0x199a) >> 16 x < 16389 + * (x * 0x0ccd) >> 15 x < 16389 + * (x * 0x0667) >> 14 x < 2739 + * (x * 0x0334) >> 13 x < 1029 + * (x * 0x019a) >> 12 x < 1029 + * (x * 0x00cd) >> 11 x < 1029 shorter code than * 0x67 (on i386) + * (x * 0x0067) >> 10 x < 179 + * (x * 0x0034) >> 9 x < 69 same + * (x * 0x001a) >> 8 x < 69 same + * (x * 0x000d) >> 7 x < 69 same, shortest code (on i386) + * (x * 0x0007) >> 6 x < 19 + * See <http://www.cs.uiowa.edu/~jones/bcd/divide.html> + */ + r = (q * (uint64_t)0x1999999a) >> 32; + *buf++ = (q - 10 * r) + '0'; /* 1 */ + q = (r * (uint64_t)0x1999999a) >> 32; + *buf++ = (r - 10 * q) + '0'; /* 2 */ + r = (q * (uint64_t)0x1999999a) >> 32; + *buf++ = (q - 10 * r) + '0'; /* 3 */ + q = (r * (uint64_t)0x1999999a) >> 32; + *buf++ = (r - 10 * q) + '0'; /* 4 */ + r = (q * (uint64_t)0x1999999a) >> 32; + *buf++ = (q - 10 * r) + '0'; /* 5 */ + /* Now value is under 10000, can avoid 64-bit multiply */ + q = (r * 0x199a) >> 16; + *buf++ = (r - 10 * q) + '0'; /* 6 */ + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; /* 7 */ + q = (r * 0xcd) >> 11; + *buf++ = (r - 10 * q) + '0'; /* 8 */ + *buf++ = q + '0'; /* 9 */ return buf; } -/* Same with if's removed. Always emits five digits */ +#endif + +/* Similar to above but do not pad with zeros. + * Code can be easily arranged to print 9 digits too, but our callers + * always call put_dec_full9() instead when the number has 9 decimal digits. + */ static noinline_for_stack -char *put_dec_full(char *buf, unsigned q) +char *put_dec_trunc8(char *buf, unsigned r) { - /* BTW, if q is in [0,9999], 8-bit ints will be enough, */ - /* but anyway, gcc produces better code with full-sized ints */ - unsigned d3, d2, d1, d0; - d1 = (q>>4) & 0xf; - d2 = (q>>8) & 0xf; - d3 = (q>>12); + unsigned q; + + /* Copy of previous function's body with added early returns */ + q = (r * (uint64_t)0x1999999a) >> 32; + *buf++ = (r - 10 * q) + '0'; /* 2 */ + if (q == 0) + return buf; + r = (q * (uint64_t)0x1999999a) >> 32; + *buf++ = (q - 10 * r) + '0'; /* 3 */ + if (r == 0) + return buf; + q = (r * (uint64_t)0x1999999a) >> 32; + *buf++ = (r - 10 * q) + '0'; /* 4 */ + if (q == 0) + return buf; + r = (q * (uint64_t)0x1999999a) >> 32; + *buf++ = (q - 10 * r) + '0'; /* 5 */ + if (r == 0) + return buf; + q = (r * 0x199a) >> 16; + *buf++ = (r - 10 * q) + '0'; /* 6 */ + if (q == 0) + return buf; + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; /* 7 */ + if (r == 0) + return buf; + q = (r * 0xcd) >> 11; + *buf++ = (r - 10 * q) + '0'; /* 8 */ + if (q == 0) + return buf; + *buf++ = q + '0'; /* 9 */ + return buf; +} - /* - * Possible ways to approx. divide by 10 - * gcc -O2 replaces multiply with shifts and adds - * (x * 0xcd) >> 11: 11001101 - shorter code than * 0x67 (on i386) - * (x * 0x67) >> 10: 1100111 - * (x * 0x34) >> 9: 110100 - same - * (x * 0x1a) >> 8: 11010 - same - * (x * 0x0d) >> 7: 1101 - same, shortest code (on i386) - */ - d0 = 6*(d3 + d2 + d1) + (q & 0xf); - q = (d0 * 0xcd) >> 11; - d0 = d0 - 10*q; - *buf++ = d0 + '0'; - d1 = q + 9*d3 + 5*d2 + d1; - q = (d1 * 0xcd) >> 11; - d1 = d1 - 10*q; - *buf++ = d1 + '0'; - - d2 = q + 2*d2; - q = (d2 * 0xd) >> 7; - d2 = d2 - 10*q; - *buf++ = d2 + '0'; - - d3 = q + 4*d3; - q = (d3 * 0xcd) >> 11; /* - shorter code */ - /* q = (d3 * 0x67) >> 10; - would also work */ - d3 = d3 - 10*q; - *buf++ = d3 + '0'; - *buf++ = q + '0'; +/* There are two algorithms to print larger numbers. + * One is generic: divide by 1000000000 and repeatedly print + * groups of (up to) 9 digits. It's conceptually simple, + * but requires a (unsigned long long) / 1000000000 division. + * + * Second algorithm splits 64-bit unsigned long long into 16-bit chunks, + * manipulates them cleverly and generates groups of 4 decimal digits. + * It so happens that it does NOT require long long division. + * + * If long is > 32 bits, division of 64-bit values is relatively easy, + * and we will use the first algorithm. + * If long long is > 64 bits (strange architecture with VERY large long long), + * second algorithm can't be used, and we again use the first one. + * + * Else (if long is 32 bits and long long is 64 bits) we use second one. + */ - return buf; +#if BITS_PER_LONG != 32 || BITS_PER_LONG_LONG != 64 + +/* First algorithm: generic */ + +static +char *put_dec(char *buf, unsigned long long n) +{ + if (n >= 100*1000*1000) { + while (n >= 1000*1000*1000) + buf = put_dec_full9(buf, do_div(n, 1000*1000*1000)); + if (n >= 100*1000*1000) + return put_dec_full9(buf, n); + } + return put_dec_trunc8(buf, n); } -/* No inlining helps gcc to use registers better */ + +#else + +/* Second algorithm: valid only for 64-bit long longs */ + static noinline_for_stack -char *put_dec(char *buf, unsigned long long num) +char *put_dec_full4(char *buf, unsigned q) { - while (1) { - unsigned rem; - if (num < 100000) - return put_dec_trunc(buf, num); - rem = do_div(num, 100000); - buf = put_dec_full(buf, rem); - } + unsigned r; + r = (q * 0xcccd) >> 19; + *buf++ = (q - 10 * r) + '0'; + q = (r * 0x199a) >> 16; + *buf++ = (r - 10 * q) + '0'; + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; + *buf++ = r + '0'; + return buf; +} + +/* Based on code by Douglas W. Jones found at + * <http://www.cs.uiowa.edu/~jones/bcd/decimal.html#sixtyfour> + * (with permission from the author). + * Performs no 64-bit division and hence should be fast on 32-bit machines. + */ +static +char *put_dec(char *buf, unsigned long long n) +{ + uint32_t d3, d2, d1, q, h; + + if (n < 100*1000*1000) + return put_dec_trunc8(buf, n); + + d1 = ((uint32_t)n >> 16); /* implicit "& 0xffff" */ + h = (n >> 32); + d2 = (h ) & 0xffff; + d3 = (h >> 16); /* implicit "& 0xffff" */ + + q = 656 * d3 + 7296 * d2 + 5536 * d1 + ((uint32_t)n & 0xffff); + + buf = put_dec_full4(buf, q % 10000); + q = q / 10000; + + d1 = q + 7671 * d3 + 9496 * d2 + 6 * d1; + buf = put_dec_full4(buf, d1 % 10000); + q = d1 / 10000; + + d2 = q + 4749 * d3 + 42 * d2; + buf = put_dec_full4(buf, d2 % 10000); + q = d2 / 10000; + + d3 = q + 281 * d3; + if (!d3) + goto done; + buf = put_dec_full4(buf, d3 % 10000); + q = d3 / 10000; + if (!q) + goto done; + buf = put_dec_full4(buf, q); + done: + while (buf[-1] == '0') + --buf; + + return buf; } +#endif + /* * Convert passed number to decimal string. * Returns the length of string. On buffer overflow, returns 0. @@ -220,16 +313,22 @@ char *put_dec(char *buf, unsigned long long num) */ int num_to_str(char *buf, int size, unsigned long long num) { - char tmp[21]; /* Enough for 2^64 in decimal */ + char tmp[sizeof(num) * 3]; int idx, len; - len = put_dec(tmp, num) - tmp; + /* put_dec() may work incorrectly for num = 0 (generate "", not "0") */ + if (num <= 9) { + tmp[0] = '0' + num; + len = 1; + } else { + len = put_dec(tmp, num) - tmp; + } if (len > size) return 0; for (idx = 0; idx < len; ++idx) buf[idx] = tmp[len - idx - 1]; - return len; + return len; } #define ZEROPAD 1 /* pad with zero */ @@ -314,8 +413,8 @@ char *number(char *buf, char *end, unsigned long long num, /* generate full string in tmp[], in reverse order */ i = 0; - if (num == 0) - tmp[i++] = '0'; + if (num < spec.base) + tmp[i++] = digits[num] | locase; /* Generic code, for any base: else do { tmp[i++] = (digits[do_div(num,base)] | locase); @@ -611,7 +710,7 @@ char *ip4_string(char *p, const u8 *addr, const char *fmt) } for (i = 0; i < 4; i++) { char temp[3]; /* hold each IP quad in reverse order */ - int digits = put_dec_trunc(temp, addr[index]) - temp; + int digits = put_dec_trunc8(temp, addr[index]) - temp; if (leading_zeros) { if (digits < 3) *p++ = '0'; |