summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--MAINTAINERS10
-rw-r--r--arch/x86/include/asm/msr.h23
-rw-r--r--arch/x86/lib/Makefile2
-rw-r--r--arch/x86/lib/msr-on-cpu.c97
-rw-r--r--arch/x86/lib/msr.c183
-rw-r--r--drivers/edac/Kconfig26
-rw-r--r--drivers/edac/Makefile7
-rw-r--r--drivers/edac/amd64_edac.c3354
-rw-r--r--drivers/edac/amd64_edac.h644
-rw-r--r--drivers/edac/amd64_edac_dbg.c255
-rw-r--r--drivers/edac/amd64_edac_err_types.c161
-rw-r--r--drivers/edac/amd64_edac_inj.c185
-rw-r--r--drivers/edac/edac_core.h9
13 files changed, 4853 insertions, 103 deletions
diff --git a/MAINTAINERS b/MAINTAINERS
index 84285b5ba35..ccdb57524e3 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -1979,6 +1979,16 @@ F: Documentation/edac.txt
F: drivers/edac/edac_*
F: include/linux/edac.h
+EDAC-AMD64
+P: Doug Thompson
+M: dougthompson@xmission.com
+P: Borislav Petkov
+M: borislav.petkov@amd.com
+L: bluesmoke-devel@lists.sourceforge.net (moderated for non-subscribers)
+W: bluesmoke.sourceforge.net
+S: Supported
+F: drivers/edac/amd64_edac*
+
EDAC-E752X
P: Mark Gross
M: mark.gross@intel.com
diff --git a/arch/x86/include/asm/msr.h b/arch/x86/include/asm/msr.h
index 638bf624180..22603764e7d 100644
--- a/arch/x86/include/asm/msr.h
+++ b/arch/x86/include/asm/msr.h
@@ -12,6 +12,17 @@
#include <asm/asm.h>
#include <asm/errno.h>
+#include <asm/cpumask.h>
+
+struct msr {
+ union {
+ struct {
+ u32 l;
+ u32 h;
+ };
+ u64 q;
+ };
+};
static inline unsigned long long native_read_tscp(unsigned int *aux)
{
@@ -216,6 +227,8 @@ do { \
#ifdef CONFIG_SMP
int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
+void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs);
+void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs);
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
#else /* CONFIG_SMP */
@@ -229,6 +242,16 @@ static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
wrmsr(msr_no, l, h);
return 0;
}
+static inline void rdmsr_on_cpus(const cpumask_t *m, u32 msr_no,
+ struct msr *msrs)
+{
+ rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h));
+}
+static inline void wrmsr_on_cpus(const cpumask_t *m, u32 msr_no,
+ struct msr *msrs)
+{
+ wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h);
+}
static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,
u32 *l, u32 *h)
{
diff --git a/arch/x86/lib/Makefile b/arch/x86/lib/Makefile
index 55e11aa6d66..f9d35632666 100644
--- a/arch/x86/lib/Makefile
+++ b/arch/x86/lib/Makefile
@@ -2,7 +2,7 @@
# Makefile for x86 specific library files.
#
-obj-$(CONFIG_SMP) := msr-on-cpu.o
+obj-$(CONFIG_SMP) := msr.o
lib-y := delay.o
lib-y += thunk_$(BITS).o
diff --git a/arch/x86/lib/msr-on-cpu.c b/arch/x86/lib/msr-on-cpu.c
deleted file mode 100644
index 321cf720dbb..00000000000
--- a/arch/x86/lib/msr-on-cpu.c
+++ /dev/null
@@ -1,97 +0,0 @@
-#include <linux/module.h>
-#include <linux/preempt.h>
-#include <linux/smp.h>
-#include <asm/msr.h>
-
-struct msr_info {
- u32 msr_no;
- u32 l, h;
- int err;
-};
-
-static void __rdmsr_on_cpu(void *info)
-{
- struct msr_info *rv = info;
-
- rdmsr(rv->msr_no, rv->l, rv->h);
-}
-
-static void __wrmsr_on_cpu(void *info)
-{
- struct msr_info *rv = info;
-
- wrmsr(rv->msr_no, rv->l, rv->h);
-}
-
-int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
-{
- int err;
- struct msr_info rv;
-
- rv.msr_no = msr_no;
- err = smp_call_function_single(cpu, __rdmsr_on_cpu, &rv, 1);
- *l = rv.l;
- *h = rv.h;
-
- return err;
-}
-
-int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
-{
- int err;
- struct msr_info rv;
-
- rv.msr_no = msr_no;
- rv.l = l;
- rv.h = h;
- err = smp_call_function_single(cpu, __wrmsr_on_cpu, &rv, 1);
-
- return err;
-}
-
-/* These "safe" variants are slower and should be used when the target MSR
- may not actually exist. */
-static void __rdmsr_safe_on_cpu(void *info)
-{
- struct msr_info *rv = info;
-
- rv->err = rdmsr_safe(rv->msr_no, &rv->l, &rv->h);
-}
-
-static void __wrmsr_safe_on_cpu(void *info)
-{
- struct msr_info *rv = info;
-
- rv->err = wrmsr_safe(rv->msr_no, rv->l, rv->h);
-}
-
-int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
-{
- int err;
- struct msr_info rv;
-
- rv.msr_no = msr_no;
- err = smp_call_function_single(cpu, __rdmsr_safe_on_cpu, &rv, 1);
- *l = rv.l;
- *h = rv.h;
-
- return err ? err : rv.err;
-}
-
-int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
-{
- int err;
- struct msr_info rv;
-
- rv.msr_no = msr_no;
- rv.l = l;
- rv.h = h;
- err = smp_call_function_single(cpu, __wrmsr_safe_on_cpu, &rv, 1);
-
- return err ? err : rv.err;
-}
-
-EXPORT_SYMBOL(rdmsr_on_cpu);
-EXPORT_SYMBOL(wrmsr_on_cpu);
-EXPORT_SYMBOL(rdmsr_safe_on_cpu);
-EXPORT_SYMBOL(wrmsr_safe_on_cpu);
diff --git a/arch/x86/lib/msr.c b/arch/x86/lib/msr.c
new file mode 100644
index 00000000000..1440b9c0547
--- /dev/null
+++ b/arch/x86/lib/msr.c
@@ -0,0 +1,183 @@
+#include <linux/module.h>
+#include <linux/preempt.h>
+#include <linux/smp.h>
+#include <asm/msr.h>
+
+struct msr_info {
+ u32 msr_no;
+ struct msr reg;
+ struct msr *msrs;
+ int off;
+ int err;
+};
+
+static void __rdmsr_on_cpu(void *info)
+{
+ struct msr_info *rv = info;
+ struct msr *reg;
+ int this_cpu = raw_smp_processor_id();
+
+ if (rv->msrs)
+ reg = &rv->msrs[this_cpu - rv->off];
+ else
+ reg = &rv->reg;
+
+ rdmsr(rv->msr_no, reg->l, reg->h);
+}
+
+static void __wrmsr_on_cpu(void *info)
+{
+ struct msr_info *rv = info;
+ struct msr *reg;
+ int this_cpu = raw_smp_processor_id();
+
+ if (rv->msrs)
+ reg = &rv->msrs[this_cpu - rv->off];
+ else
+ reg = &rv->reg;
+
+ wrmsr(rv->msr_no, reg->l, reg->h);
+}
+
+int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
+{
+ int err;
+ struct msr_info rv;
+
+ memset(&rv, 0, sizeof(rv));
+
+ rv.msr_no = msr_no;
+ err = smp_call_function_single(cpu, __rdmsr_on_cpu, &rv, 1);
+ *l = rv.reg.l;
+ *h = rv.reg.h;
+
+ return err;
+}
+EXPORT_SYMBOL(rdmsr_on_cpu);
+
+int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
+{
+ int err;
+ struct msr_info rv;
+
+ memset(&rv, 0, sizeof(rv));
+
+ rv.msr_no = msr_no;
+ rv.reg.l = l;
+ rv.reg.h = h;
+ err = smp_call_function_single(cpu, __wrmsr_on_cpu, &rv, 1);
+
+ return err;
+}
+EXPORT_SYMBOL(wrmsr_on_cpu);
+
+/* rdmsr on a bunch of CPUs
+ *
+ * @mask: which CPUs
+ * @msr_no: which MSR
+ * @msrs: array of MSR values
+ *
+ */
+void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs)
+{
+ struct msr_info rv;
+ int this_cpu;
+
+ memset(&rv, 0, sizeof(rv));
+
+ rv.off = cpumask_first(mask);
+ rv.msrs = msrs;
+ rv.msr_no = msr_no;
+
+ preempt_disable();
+ /*
+ * FIXME: handle the CPU we're executing on separately for now until
+ * smp_call_function_many has been fixed to not skip it.
+ */
+ this_cpu = raw_smp_processor_id();
+ smp_call_function_single(this_cpu, __rdmsr_on_cpu, &rv, 1);
+
+ smp_call_function_many(mask, __rdmsr_on_cpu, &rv, 1);
+ preempt_enable();
+}
+EXPORT_SYMBOL(rdmsr_on_cpus);
+
+/*
+ * wrmsr on a bunch of CPUs
+ *
+ * @mask: which CPUs
+ * @msr_no: which MSR
+ * @msrs: array of MSR values
+ *
+ */
+void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs)
+{
+ struct msr_info rv;
+ int this_cpu;
+
+ memset(&rv, 0, sizeof(rv));
+
+ rv.off = cpumask_first(mask);
+ rv.msrs = msrs;
+ rv.msr_no = msr_no;
+
+ preempt_disable();
+ /*
+ * FIXME: handle the CPU we're executing on separately for now until
+ * smp_call_function_many has been fixed to not skip it.
+ */
+ this_cpu = raw_smp_processor_id();
+ smp_call_function_single(this_cpu, __wrmsr_on_cpu, &rv, 1);
+
+ smp_call_function_many(mask, __wrmsr_on_cpu, &rv, 1);
+ preempt_enable();
+}
+EXPORT_SYMBOL(wrmsr_on_cpus);
+
+/* These "safe" variants are slower and should be used when the target MSR
+ may not actually exist. */
+static void __rdmsr_safe_on_cpu(void *info)
+{
+ struct msr_info *rv = info;
+
+ rv->err = rdmsr_safe(rv->msr_no, &rv->reg.l, &rv->reg.h);
+}
+
+static void __wrmsr_safe_on_cpu(void *info)
+{
+ struct msr_info *rv = info;
+
+ rv->err = wrmsr_safe(rv->msr_no, rv->reg.l, rv->reg.h);
+}
+
+int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
+{
+ int err;
+ struct msr_info rv;
+
+ memset(&rv, 0, sizeof(rv));
+
+ rv.msr_no = msr_no;
+ err = smp_call_function_single(cpu, __rdmsr_safe_on_cpu, &rv, 1);
+ *l = rv.reg.l;
+ *h = rv.reg.h;
+
+ return err ? err : rv.err;
+}
+EXPORT_SYMBOL(rdmsr_safe_on_cpu);
+
+int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
+{
+ int err;
+ struct msr_info rv;
+
+ memset(&rv, 0, sizeof(rv));
+
+ rv.msr_no = msr_no;
+ rv.reg.l = l;
+ rv.reg.h = h;
+ err = smp_call_function_single(cpu, __wrmsr_safe_on_cpu, &rv, 1);
+
+ return err ? err : rv.err;
+}
+EXPORT_SYMBOL(wrmsr_safe_on_cpu);
diff --git a/drivers/edac/Kconfig b/drivers/edac/Kconfig
index 956982f8739..ab4f3592a11 100644
--- a/drivers/edac/Kconfig
+++ b/drivers/edac/Kconfig
@@ -49,7 +49,6 @@ config EDAC_DEBUG_VERBOSE
config EDAC_MM_EDAC
tristate "Main Memory EDAC (Error Detection And Correction) reporting"
- default y
help
Some systems are able to detect and correct errors in main
memory. EDAC can report statistics on memory error
@@ -58,6 +57,31 @@ config EDAC_MM_EDAC
occurred so that a particular failing memory module can be
replaced. If unsure, select 'Y'.
+config EDAC_AMD64
+ tristate "AMD64 (Opteron, Athlon64) K8, F10h, F11h"
+ depends on EDAC_MM_EDAC && K8_NB && X86_64 && PCI
+ help
+ Support for error detection and correction on the AMD 64
+ Families of Memory Controllers (K8, F10h and F11h)
+
+config EDAC_AMD64_ERROR_INJECTION
+ bool "Sysfs Error Injection facilities"
+ depends on EDAC_AMD64
+ help
+ Recent Opterons (Family 10h and later) provide for Memory Error
+ Injection into the ECC detection circuits. The amd64_edac module
+ allows the operator/user to inject Uncorrectable and Correctable
+ errors into DRAM.
+
+ When enabled, in each of the respective memory controller directories
+ (/sys/devices/system/edac/mc/mcX), there are 3 input files:
+
+ - inject_section (0..3, 16-byte section of 64-byte cacheline),
+ - inject_word (0..8, 16-bit word of 16-byte section),
+ - inject_ecc_vector (hex ecc vector: select bits of inject word)
+
+ In addition, there are two control files, inject_read and inject_write,
+ which trigger the DRAM ECC Read and Write respectively.
config EDAC_AMD76X
tristate "AMD 76x (760, 762, 768)"
diff --git a/drivers/edac/Makefile b/drivers/edac/Makefile
index 59076819135..633dc5604ee 100644
--- a/drivers/edac/Makefile
+++ b/drivers/edac/Makefile
@@ -30,6 +30,13 @@ obj-$(CONFIG_EDAC_I3000) += i3000_edac.o
obj-$(CONFIG_EDAC_X38) += x38_edac.o
obj-$(CONFIG_EDAC_I82860) += i82860_edac.o
obj-$(CONFIG_EDAC_R82600) += r82600_edac.o
+
+amd64_edac_mod-y := amd64_edac_err_types.o amd64_edac.o
+amd64_edac_mod-$(CONFIG_EDAC_DEBUG) += amd64_edac_dbg.o
+amd64_edac_mod-$(CONFIG_EDAC_AMD64_ERROR_INJECTION) += amd64_edac_inj.o
+
+obj-$(CONFIG_EDAC_AMD64) += amd64_edac_mod.o
+
obj-$(CONFIG_EDAC_PASEMI) += pasemi_edac.o
obj-$(CONFIG_EDAC_MPC85XX) += mpc85xx_edac.o
obj-$(CONFIG_EDAC_MV64X60) += mv64x60_edac.o
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
new file mode 100644
index 00000000000..c36bf40568c
--- /dev/null
+++ b/drivers/edac/amd64_edac.c
@@ -0,0 +1,3354 @@
+#include "amd64_edac.h"
+#include <asm/k8.h>
+
+static struct edac_pci_ctl_info *amd64_ctl_pci;
+
+static int report_gart_errors;
+module_param(report_gart_errors, int, 0644);
+
+/*
+ * Set by command line parameter. If BIOS has enabled the ECC, this override is
+ * cleared to prevent re-enabling the hardware by this driver.
+ */
+static int ecc_enable_override;
+module_param(ecc_enable_override, int, 0644);
+
+/* Lookup table for all possible MC control instances */
+struct amd64_pvt;
+static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
+static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
+
+/*
+ * Memory scrubber control interface. For K8, memory scrubbing is handled by
+ * hardware and can involve L2 cache, dcache as well as the main memory. With
+ * F10, this is extended to L3 cache scrubbing on CPU models sporting that
+ * functionality.
+ *
+ * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
+ * (dram) over to cache lines. This is nasty, so we will use bandwidth in
+ * bytes/sec for the setting.
+ *
+ * Currently, we only do dram scrubbing. If the scrubbing is done in software on
+ * other archs, we might not have access to the caches directly.
+ */
+
+/*
+ * scan the scrub rate mapping table for a close or matching bandwidth value to
+ * issue. If requested is too big, then use last maximum value found.
+ */
+static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
+ u32 min_scrubrate)
+{
+ u32 scrubval;
+ int i;
+
+ /*
+ * map the configured rate (new_bw) to a value specific to the AMD64
+ * memory controller and apply to register. Search for the first
+ * bandwidth entry that is greater or equal than the setting requested
+ * and program that. If at last entry, turn off DRAM scrubbing.
+ */
+ for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
+ /*
+ * skip scrub rates which aren't recommended
+ * (see F10 BKDG, F3x58)
+ */
+ if (scrubrates[i].scrubval < min_scrubrate)
+ continue;
+
+ if (scrubrates[i].bandwidth <= new_bw)
+ break;
+
+ /*
+ * if no suitable bandwidth found, turn off DRAM scrubbing
+ * entirely by falling back to the last element in the
+ * scrubrates array.
+ */
+ }
+
+ scrubval = scrubrates[i].scrubval;
+ if (scrubval)
+ edac_printk(KERN_DEBUG, EDAC_MC,
+ "Setting scrub rate bandwidth: %u\n",
+ scrubrates[i].bandwidth);
+ else
+ edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
+
+ pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
+
+ return 0;
+}
+
+static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 min_scrubrate = 0x0;
+
+ switch (boot_cpu_data.x86) {
+ case 0xf:
+ min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
+ break;
+ case 0x10:
+ min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
+ break;
+ case 0x11:
+ min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
+ break;
+
+ default:
+ amd64_printk(KERN_ERR, "Unsupported family!\n");
+ break;
+ }
+ return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
+ min_scrubrate);
+}
+
+static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 scrubval = 0;
+ int status = -1, i, ret = 0;
+
+ ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
+ if (ret)
+ debugf0("Reading K8_SCRCTRL failed\n");
+
+ scrubval = scrubval & 0x001F;
+
+ edac_printk(KERN_DEBUG, EDAC_MC,
+ "pci-read, sdram scrub control value: %d \n", scrubval);
+
+ for (i = 0; ARRAY_SIZE(scrubrates); i++) {
+ if (scrubrates[i].scrubval == scrubval) {
+ *bw = scrubrates[i].bandwidth;
+ status = 0;
+ break;
+ }
+ }
+
+ return status;
+}
+
+/* Map from a CSROW entry to the mask entry that operates on it */
+static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
+{
+ return csrow >> (pvt->num_dcsm >> 3);
+}
+
+/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
+static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
+{
+ if (dct == 0)
+ return pvt->dcsb0[csrow];
+ else
+ return pvt->dcsb1[csrow];
+}
+
+/*
+ * Return the 'mask' address the i'th CS entry. This function is needed because
+ * there number of DCSM registers on Rev E and prior vs Rev F and later is
+ * different.
+ */
+static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
+{
+ if (dct == 0)
+ return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
+ else
+ return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
+}
+
+
+/*
+ * In *base and *limit, pass back the full 40-bit base and limit physical
+ * addresses for the node given by node_id. This information is obtained from
+ * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
+ * base and limit addresses are of type SysAddr, as defined at the start of
+ * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
+ * in the address range they represent.
+ */
+static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
+ u64 *base, u64 *limit)
+{
+ *base = pvt->dram_base[node_id];
+ *limit = pvt->dram_limit[node_id];
+}
+
+/*
+ * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
+ * with node_id
+ */
+static int amd64_base_limit_match(struct amd64_pvt *pvt,
+ u64 sys_addr, int node_id)
+{
+ u64 base, limit, addr;
+
+ amd64_get_base_and_limit(pvt, node_id, &base, &limit);
+
+ /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
+ * all ones if the most significant implemented address bit is 1.
+ * Here we discard bits 63-40. See section 3.4.2 of AMD publication
+ * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
+ * Application Programming.
+ */
+ addr = sys_addr & 0x000000ffffffffffull;
+
+ return (addr >= base) && (addr <= limit);
+}
+
+/*
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
+ * mem_ctl_info structure for the node that the SysAddr maps to.
+ *
+ * On failure, return NULL.
+ */
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
+ u64 sys_addr)
+{
+ struct amd64_pvt *pvt;
+ int node_id;
+ u32 intlv_en, bits;
+
+ /*
+ * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
+ * 3.4.4.2) registers to map the SysAddr to a node ID.
+ */
+ pvt = mci->pvt_info;
+
+ /*
+ * The value of this field should be the same for all DRAM Base
+ * registers. Therefore we arbitrarily choose to read it from the
+ * register for node 0.
+ */
+ intlv_en = pvt->dram_IntlvEn[0];
+
+ if (intlv_en == 0) {
+ for (node_id = 0; ; ) {
+ if (amd64_base_limit_match(pvt, sys_addr, node_id))
+ break;
+
+ if (++node_id >= DRAM_REG_COUNT)
+ goto err_no_match;
+ }
+ goto found;
+ }
+
+ if (unlikely((intlv_en != (0x01 << 8)) &&
+ (intlv_en != (0x03 << 8)) &&
+ (intlv_en != (0x07 << 8)))) {
+ amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
+ "IntlvEn field of DRAM Base Register for node 0: "
+ "This probably indicates a BIOS bug.\n", intlv_en);
+ return NULL;
+ }
+
+ bits = (((u32) sys_addr) >> 12) & intlv_en;
+
+ for (node_id = 0; ; ) {
+ if ((pvt->dram_limit[node_id] & intlv_en) == bits)
+ break; /* intlv_sel field matches */
+
+ if (++node_id >= DRAM_REG_COUNT)
+ goto err_no_match;
+ }
+
+ /* sanity test for sys_addr */
+ if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
+ amd64_printk(KERN_WARNING,
+ "%s(): sys_addr 0x%lx falls outside base/limit "
+ "address range for node %d with node interleaving "
+ "enabled.\n", __func__, (unsigned long)sys_addr,
+ node_id);
+ return NULL;
+ }
+
+found:
+ return edac_mc_find(node_id);
+
+err_no_match:
+ debugf2("sys_addr 0x%lx doesn't match any node\n",
+ (unsigned long)sys_addr);
+
+ return NULL;
+}
+
+/*
+ * Extract the DRAM CS base address from selected csrow register.
+ */
+static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
+{
+ return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
+ pvt->dcs_shift;
+}
+
+/*
+ * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
+ */
+static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
+{
+ u64 dcsm_bits, other_bits;
+ u64 mask;
+
+ /* Extract bits from DRAM CS Mask. */
+ dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
+
+ other_bits = pvt->dcsm_mask;
+ other_bits = ~(other_bits << pvt->dcs_shift);
+
+ /*
+ * The extracted bits from DCSM belong in the spaces represented by
+ * the cleared bits in other_bits.
+ */
+ mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
+
+ return mask;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Return the
+ * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
+ */
+static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
+{
+ struct amd64_pvt *pvt;
+ int csrow;
+ u64 base, mask;
+
+ pvt = mci->pvt_info;
+
+ /*
+ * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
+ * base/mask register pair, test the condition shown near the start of
+ * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
+ */
+ for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+
+ /* This DRAM chip select is disabled on this node */
+ if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
+ continue;
+
+ base = base_from_dct_base(pvt, csrow);
+ mask = ~mask_from_dct_mask(pvt, csrow);
+
+ if ((input_addr & mask) == (base & mask)) {
+ debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
+ (unsigned long)input_addr, csrow,
+ pvt->mc_node_id);
+
+ return csrow;
+ }
+ }
+
+ debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
+ (unsigned long)input_addr, pvt->mc_node_id);
+
+ return -1;
+}
+
+/*
+ * Return the base value defined by the DRAM Base register for the node
+ * represented by mci. This function returns the full 40-bit value despite the
+ * fact that the register only stores bits 39-24 of the value. See section
+ * 3.4.4.1 (BKDG #26094, K8, revA-E)
+ */
+static inline u64 get_dram_base(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return pvt->dram_base[pvt->mc_node_id];
+}
+
+/*
+ * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
+ * for the node represented by mci. Info is passed back in *hole_base,
+ * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
+ * info is invalid. Info may be invalid for either of the following reasons:
+ *
+ * - The revision of the node is not E or greater. In this case, the DRAM Hole
+ * Address Register does not exist.
+ *
+ * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
+ * indicating that its contents are not valid.
+ *
+ * The values passed back in *hole_base, *hole_offset, and *hole_size are
+ * complete 32-bit values despite the fact that the bitfields in the DHAR
+ * only represent bits 31-24 of the base and offset values.
+ */
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+ u64 *hole_offset, u64 *hole_size)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 base;
+
+ /* only revE and later have the DRAM Hole Address Register */
+ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
+ debugf1(" revision %d for node %d does not support DHAR\n",
+ pvt->ext_model, pvt->mc_node_id);
+ return 1;
+ }
+
+ /* only valid for Fam10h */
+ if (boot_cpu_data.x86 == 0x10 &&
+ (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
+ debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
+ return 1;
+ }
+
+ if ((pvt->dhar & DHAR_VALID) == 0) {
+ debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
+ pvt->mc_node_id);
+ return 1;
+ }
+
+ /* This node has Memory Hoisting */
+
+ /* +------------------+--------------------+--------------------+-----
+ * | memory | DRAM hole | relocated |
+ * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
+ * | | | DRAM hole |
+ * | | | [0x100000000, |
+ * | | | (0x100000000+ |
+ * | | | (0xffffffff-x))] |
+ * +------------------+--------------------+--------------------+-----
+ *
+ * Above is a diagram of physical memory showing the DRAM hole and the
+ * relocated addresses from the DRAM hole. As shown, the DRAM hole
+ * starts at address x (the base address) and extends through address
+ * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
+ * addresses in the hole so that they start at 0x100000000.
+ */
+
+ base = dhar_base(pvt->dhar);
+
+ *hole_base = base;
+ *hole_size = (0x1ull << 32) - base;
+
+ if (boot_cpu_data.x86 > 0xf)
+ *hole_offset = f10_dhar_offset(pvt->dhar);
+ else
+ *hole_offset = k8_dhar_offset(pvt->dhar);
+
+ debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
+ pvt->mc_node_id, (unsigned long)*hole_base,
+ (unsigned long)*hole_offset, (unsigned long)*hole_size);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
+
+/*
+ * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
+ * assumed that sys_addr maps to the node given by mci.
+ *
+ * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
+ * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
+ * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
+ * then it is also involved in translating a SysAddr to a DramAddr. Sections
+ * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
+ * These parts of the documentation are unclear. I interpret them as follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
+ * Limit registers for node n. If the SysAddr is not within the range
+ * specified by the base and limit values, then node n ignores the Sysaddr
+ * (since it does not map to node n). Otherwise continue to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
+ * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
+ * the range of relocated addresses (starting at 0x100000000) from the DRAM
+ * hole. If not, skip to step 3 below. Else get the value of the
+ * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
+ * offset defined by this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
+ * Base register for node n. To obtain the DramAddr, subtract the base
+ * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+ int ret = 0;
+
+ dram_base = get_dram_base(mci);
+
+ ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+ &hole_size);
+ if (!ret) {
+ if ((sys_addr >= (1ull << 32)) &&
+ (sys_addr < ((1ull << 32) + hole_size))) {
+ /* use DHAR to translate SysAddr to DramAddr */
+ dram_addr = sys_addr - hole_offset;
+
+ debugf2("using DHAR to translate SysAddr 0x%lx to "
+ "DramAddr 0x%lx\n",
+ (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+
+ return dram_addr;
+ }
+ }
+
+ /*
+ * Translate the SysAddr to a DramAddr as shown near the start of
+ * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
+ * only deals with 40-bit values. Therefore we discard bits 63-40 of
+ * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
+ * discard are all 1s. Otherwise the bits we discard are all 0s. See
+ * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+ * Programmer's Manual Volume 1 Application Programming.
+ */
+ dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
+
+ debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
+ "DramAddr 0x%lx\n", (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+ return dram_addr;
+}
+
+/*
+ * @intlv_en is the value of the IntlvEn field from a DRAM Base register
+ * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
+ * for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+ static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+ int n;
+
+ BUG_ON(intlv_en > 7);
+ n = intlv_shift_table[intlv_en];
+ return n;
+}
+
+/* Translate the DramAddr given by @dram_addr to an InputAddr. */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt;
+ int intlv_shift;
+ u64 input_addr;
+
+ pvt = mci->pvt_info;
+
+ /*
+ * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+ * concerning translating a DramAddr to an InputAddr.
+ */
+ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+ input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
+ (dram_addr & 0xfff);
+
+ debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+ intlv_shift, (unsigned long)dram_addr,
+ (unsigned long)input_addr);
+
+ return input_addr;
+}
+
+/*
+ * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
+ * assumed that @sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 input_addr;
+
+ input_addr =
+ dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+
+ debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
+ (unsigned long)sys_addr, (unsigned long)input_addr);
+
+ return input_addr;
+}
+
+
+/*
+ * @input_addr is an InputAddr associated with the node represented by mci.
+ * Translate @input_addr to a DramAddr and return the result.
+ */
+static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
+{
+ struct amd64_pvt *pvt;
+ int node_id, intlv_shift;
+ u64 bits, dram_addr;
+ u32 intlv_sel;
+
+ /*
+ * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+ * shows how to translate a DramAddr to an InputAddr. Here we reverse
+ * this procedure. When translating from a DramAddr to an InputAddr, the
+ * bits used for node interleaving are discarded. Here we recover these
+ * bits from the IntlvSel field of the DRAM Limit register (section
+ * 3.4.4.2) for the node that input_addr is associated with.
+ */
+ pvt = mci->pvt_info;
+ node_id = pvt->mc_node_id;
+ BUG_ON((node_id < 0) || (node_id > 7));
+
+ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+
+ if (intlv_shift == 0) {
+ debugf1(" InputAddr 0x%lx translates to DramAddr of "
+ "same value\n", (unsigned long)input_addr);
+
+ return input_addr;
+ }
+
+ bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
+ (input_addr & 0xfff);
+
+ intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
+ dram_addr = bits + (intlv_sel << 12);
+
+ debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
+ "(%d node interleave bits)\n", (unsigned long)input_addr,
+ (unsigned long)dram_addr, intlv_shift);
+
+ return dram_addr;
+}
+
+/*
+ * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
+ * @dram_addr to a SysAddr.
+ */
+static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
+ int ret = 0;
+
+ ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+ &hole_size);
+ if (!ret) {
+ if ((dram_addr >= hole_base) &&
+ (dram_addr < (hole_base + hole_size))) {
+ sys_addr = dram_addr + hole_offset;
+
+ debugf1("using DHAR to translate DramAddr 0x%lx to "
+ "SysAddr 0x%lx\n", (unsigned long)dram_addr,
+ (unsigned long)sys_addr);
+
+ return sys_addr;
+ }
+ }
+
+ amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
+ sys_addr = dram_addr + base;
+
+ /*
+ * The sys_addr we have computed up to this point is a 40-bit value
+ * because the k8 deals with 40-bit values. However, the value we are
+ * supposed to return is a full 64-bit physical address. The AMD
+ * x86-64 architecture specifies that the most significant implemented
+ * address bit through bit 63 of a physical address must be either all
+ * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
+ * 64-bit value below. See section 3.4.2 of AMD publication 24592:
+ * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
+ * Programming.
+ */
+ sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
+
+ debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
+ pvt->mc_node_id, (unsigned long)dram_addr,
+ (unsigned long)sys_addr);
+
+ return sys_addr;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Translate
+ * @input_addr to a SysAddr.
+ */
+static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
+ u64 input_addr)
+{
+ return dram_addr_to_sys_addr(mci,
+ input_addr_to_dram_addr(mci, input_addr));
+}
+
+/*
+ * Find the minimum and maximum InputAddr values that map to the given @csrow.
+ * Pass back these values in *input_addr_min and *input_addr_max.
+ */
+static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
+ u64 *input_addr_min, u64 *input_addr_max)
+{
+ struct amd64_pvt *pvt;
+ u64 base, mask;
+
+ pvt = mci->pvt_info;
+ BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
+
+ base = base_from_dct_base(pvt, csrow);
+ mask = mask_from_dct_mask(pvt, csrow);
+
+ *input_addr_min = base & ~mask;
+ *input_addr_max = base | mask | pvt->dcs_mask_notused;
+}
+
+/*
+ * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
+ * Address High (section 3.6.4.6) register values and return the result. Address
+ * is located in the info structure (nbeah and nbeal), the encoding is device
+ * specific.
+ */
+static u64 extract_error_address(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return pvt->ops->get_error_address(mci, info);
+}
+
+
+/* Map the Error address to a PAGE and PAGE OFFSET. */
+static inline void error_address_to_page_and_offset(u64 error_address,
+ u32 *page, u32 *offset)
+{
+ *page = (u32) (error_address >> PAGE_SHIFT);
+ *offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error. mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error). Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ int csrow;
+
+ csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+ if (csrow == -1)
+ amd64_mc_printk(mci, KERN_ERR,
+ "Failed to translate InputAddr to csrow for "
+ "address 0x%lx\n", (unsigned long)sys_addr);
+ return csrow;
+}
+
+static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+
+static void amd64_cpu_display_info(struct amd64_pvt *pvt)
+{
+ if (boot_cpu_data.x86 == 0x11)
+ edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
+ else if (boot_cpu_data.x86 == 0x10)
+ edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
+ else if (boot_cpu_data.x86 == 0xf)
+ edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
+ (pvt->ext_model >= OPTERON_CPU_REV_F) ?
+ "Rev F or later" : "Rev E or earlier");
+ else
+ /* we'll hardly ever ever get here */
+ edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
+}
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
+{
+ int bit;
+ enum dev_type edac_cap = EDAC_NONE;
+
+ bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
+ ? 19
+ : 17;
+
+ if (pvt->dclr0 >> BIT(bit))
+ edac_cap = EDAC_FLAG_SECDED;
+
+ return edac_cap;
+}
+
+
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
+ int ganged);
+
+/* Display and decode various NB registers for debug purposes. */
+static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
+{
+ int ganged;
+
+ debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
+ pvt->nbcap,
+ (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
+ (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
+ (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
+ debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
+ (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
+ (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
+ debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
+ pvt->dclr0,
+ (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
+ (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
+ (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
+ debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
+ (pvt->dclr0 & BIT(12)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(13)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(14)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(15)) ? "Y" : "N",
+ (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
+
+
+ debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
+
+ if (boot_cpu_data.x86 == 0xf) {
+ debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
+ pvt->dhar, dhar_base(pvt->dhar),
+ k8_dhar_offset(pvt->dhar));
+ debugf1(" DramHoleValid=%s\n",
+ (pvt->dhar & DHAR_VALID) ? "True" : "False");
+
+ debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
+
+ /* everything below this point is Fam10h and above */
+ return;
+
+ } else {
+ debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
+ pvt->dhar, dhar_base(pvt->dhar),
+ f10_dhar_offset(pvt->dhar));
+ debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
+ (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
+ "True" : "False",
+ (pvt->dhar & DHAR_VALID) ?
+ "True" : "False");
+ }
+
+ /* Only if NOT ganged does dcl1 have valid info */
+ if (!dct_ganging_enabled(pvt)) {
+ debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
+ "Width=%s\n", pvt->dclr1,
+ (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
+ (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
+ (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
+ debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
+ "DIMM Type=%s\n",
+ (pvt->dclr1 & BIT(12)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(13)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(14)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(15)) ? "Y" : "N",
+ (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
+ }
+
+ /*
+ * Determine if ganged and then dump memory sizes for first controller,
+ * and if NOT ganged dump info for 2nd controller.
+ */
+ ganged = dct_ganging_enabled(pvt);
+
+ f10_debug_display_dimm_sizes(0, pvt, ganged);
+
+ if (!ganged)
+ f10_debug_display_dimm_sizes(1, pvt, ganged);
+}
+
+/* Read in both of DBAM registers */
+static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
+{
+ int err = 0;
+ unsigned int reg;
+
+ reg = DBAM0;
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
+ if (err)
+ goto err_reg;
+
+ if (boot_cpu_data.x86 >= 0x10) {
+ reg = DBAM1;
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
+
+ if (err)
+ goto err_reg;
+ }
+
+err_reg:
+ debugf0("Error reading F2x%03x.\n", reg);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code: Rev E and Rev F
+ *
+ * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
+ * set the shift factor for the DCSB and DCSM values.
+ *
+ * ->dcs_mask_notused, RevE:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of section
+ * 3.5.4 (p. 84).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
+ * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
+ * gaps.
+ *
+ * ->dcs_mask_notused, RevF and later:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of NPT section
+ * 4.5.4 (p. 87).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [36:27] and [21:13].
+ *
+ * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
+ * which are all bits in the above-mentioned gaps.
+ */
+static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
+{
+ if (pvt->ext_model >= OPTERON_CPU_REV_F) {
+ pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
+ pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
+ pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
+ pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
+
+ switch (boot_cpu_data.x86) {
+ case 0xf:
+ pvt->num_dcsm = REV_F_DCSM_COUNT;
+ break;
+
+ case 0x10:
+ pvt->num_dcsm = F10_DCSM_COUNT;
+ break;
+
+ case 0x11:
+ pvt->num_dcsm = F11_DCSM_COUNT;
+ break;
+
+ default:
+ amd64_printk(KERN_ERR, "Unsupported family!\n");
+ break;
+ }
+ } else {
+ pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
+ pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
+ pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
+ pvt->dcs_shift = REV_E_DCS_SHIFT;
+ pvt->num_dcsm = REV_E_DCSM_COUNT;
+ }
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
+ */
+static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
+{
+ int cs, reg, err = 0;
+
+ amd64_set_dct_base_and_mask(pvt);
+
+ for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
+ reg = K8_DCSB0 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsb0[cs]);
+ if (unlikely(err))
+ debugf0("Reading K8_DCSB0[%d] failed\n", cs);
+ else
+ debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsb0[cs], reg);
+
+ /* If DCT are NOT ganged, then read in DCT1's base */
+ if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+ reg = F10_DCSB1 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsb1[cs]);
+ if (unlikely(err))
+ debugf0("Reading F10_DCSB1[%d] failed\n", cs);
+ else
+ debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsb1[cs], reg);
+ } else {
+ pvt->dcsb1[cs] = 0;
+ }
+ }
+
+ for (cs = 0; cs < pvt->num_dcsm; cs++) {
+ reg = K8_DCSB0 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsm0[cs]);
+ if (unlikely(err))
+ debugf0("Reading K8_DCSM0 failed\n");
+ else
+ debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsm0[cs], reg);
+
+ /* If DCT are NOT ganged, then read in DCT1's mask */
+ if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+ reg = F10_DCSM1 + (cs * 4);
+ err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+ &pvt->dcsm1[cs]);
+ if (unlikely(err))
+ debugf0("Reading F10_DCSM1[%d] failed\n", cs);
+ else
+ debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
+ cs, pvt->dcsm1[cs], reg);
+ } else
+ pvt->dcsm1[cs] = 0;
+ }
+}
+
+static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
+{
+ enum mem_type type;
+
+ if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
+ /* Rev F and later */
+ type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+ } else {
+ /* Rev E and earlier */
+ type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+ }
+
+ debugf1(" Memory type is: %s\n",
+ (type == MEM_DDR2) ? "MEM_DDR2" :
+ (type == MEM_RDDR2) ? "MEM_RDDR2" :
+ (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
+
+ return type;
+}
+
+/*
+ * Read the DRAM Configuration Low register. It differs between CG, D & E revs
+ * and the later RevF memory controllers (DDR vs DDR2)
+ *
+ * Return:
+ * number of memory channels in operation
+ * Pass back:
+ * contents of the DCL0_LOW register
+ */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+ int flag, err = 0;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+ if (err)
+ return err;
+
+ if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
+ /* RevF (NPT) and later */
+ flag = pvt->dclr0 & F10_WIDTH_128;
+ } else {
+ /* RevE and earlier */
+ flag = pvt->dclr0 & REVE_WIDTH_128;
+ }
+
+ /* not used */
+ pvt->dclr1 = 0;
+
+ return (flag) ? 2 : 1;
+}
+
+/* extract the ERROR ADDRESS for the K8 CPUs */
+static u64 k8_get_error_address(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ return (((u64) (info->nbeah & 0xff)) << 32) +
+ (info->nbeal & ~0x03);
+}
+
+/*
+ * Read the Base and Limit registers for K8 based Memory controllers; extract
+ * fields from the 'raw' reg into separate data fields
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
+ */
+static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+ u32 low;
+ u32 off = dram << 3; /* 8 bytes between DRAM entries */
+ int err;
+
+ err = pci_read_config_dword(pvt->addr_f1_ctl,
+ K8_DRAM_BASE_LOW + off, &low);
+ if (err)
+ debugf0("Reading K8_DRAM_BASE_LOW failed\n");
+
+ /* Extract parts into separate data entries */
+ pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
+ pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
+ pvt->dram_rw_en[dram] = (low & 0x3);
+
+ err = pci_read_config_dword(pvt->addr_f1_ctl,
+ K8_DRAM_LIMIT_LOW + off, &low);
+ if (err)
+ debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
+
+ /*
+ * Extract parts into separate data entries. Limit is the HIGHEST memory
+ * location of the region, so lower 24 bits need to be all ones
+ */
+ pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
+ pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
+ pvt->dram_DstNode[dram] = (low & 0x7);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info,
+ u64 SystemAddress)
+{
+ struct mem_ctl_info *src_mci;
+ unsigned short syndrome;
+ int channel, csrow;
+ u32 page, offset;
+
+ /* Extract the syndrome parts and form a 16-bit syndrome */
+ syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+ syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+ /* CHIPKILL enabled */
+ if (info->nbcfg & K8_NBCFG_CHIPKILL) {
+ channel = get_channel_from_ecc_syndrome(syndrome);
+ if (channel < 0) {
+ /*
+ * Syndrome didn't map, so we don't know which of the
+ * 2 DIMMs is in error. So we need to ID 'both' of them
+ * as suspect.
+ */
+ amd64_mc_printk(mci, KERN_WARNING,
+ "unknown syndrome 0x%x - possible error "
+ "reporting race\n", syndrome);
+ edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+ return;
+ }
+ } else {
+ /*
+ * non-chipkill ecc mode
+ *
+ * The k8 documentation is unclear about how to determine the
+ * channel number when using non-chipkill memory. This method
+ * was obtained from email communication with someone at AMD.
+ * (Wish the email was placed in this comment - norsk)
+ */
+ channel = ((SystemAddress & BIT(3)) != 0);
+ }
+
+ /*
+ * Find out which node the error address belongs to. This may be
+ * different from the node that detected the error.
+ */
+ src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+ if (src_mci) {
+ amd64_mc_printk(mci, KERN_ERR,
+ "failed to map error address 0x%lx to a node\n",
+ (unsigned long)SystemAddress);
+ edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+ return;
+ }
+
+ /* Now map the SystemAddress to a CSROW */
+ csrow = sys_addr_to_csrow(src_mci, SystemAddress);
+ if (csrow < 0) {
+ edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
+ } else {
+ error_address_to_page_and_offset(SystemAddress, &page, &offset);
+
+ edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
+ channel, EDAC_MOD_STR);
+ }
+}
+
+/*
+ * determrine the number of PAGES in for this DIMM's size based on its DRAM
+ * Address Mapping.
+ *
+ * First step is to calc the number of bits to shift a value of 1 left to
+ * indicate show many pages. Start with the DBAM value as the starting bits,
+ * then proceed to adjust those shift bits, based on CPU rev and the table.
+ * See BKDG on the DBAM
+ */
+static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+{
+ int nr_pages;
+
+ if (pvt->ext_model >= OPTERON_CPU_REV_F) {
+ nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+ } else {
+ /*
+ * RevE and less section; this line is tricky. It collapses the
+ * table used by RevD and later to one that matches revisions CG
+ * and earlier.
+ */
+ dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
+ (dram_map > 8 ? 4 : (dram_map > 5 ?
+ 3 : (dram_map > 2 ? 1 : 0))) : 0;
+
+ /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
+ nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
+ }
+
+ return nr_pages;
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ * number of Memory Channels in operation
+ * Pass back:
+ * contents of the DCL0_LOW register
+ */
+static int f10_early_channel_count(struct amd64_pvt *pvt)
+{
+ int err = 0, channels = 0;
+ u32 dbam;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
+ if (err)
+ goto err_reg;
+
+ /* If we are in 128 bit mode, then we are using 2 channels */
+ if (pvt->dclr0 & F10_WIDTH_128) {
+ debugf0("Data WIDTH is 128 bits - 2 channels\n");
+ channels = 2;
+ return channels;
+ }
+
+ /*
+ * Need to check if in UN-ganged mode: In such, there are 2 channels,
+ * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
+ * will be OFF.
+ *
+ * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+ * their CSEnable bit on. If so, then SINGLE DIMM case.
+ */
+ debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
+
+ /*
+ * Check DRAM Bank Address Mapping values for each DIMM to see if there
+ * is more than just one DIMM present in unganged mode. Need to check
+ * both controllers since DIMMs can be placed in either one.
+ */
+ channels = 0;
+ err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
+ if (err)
+ goto err_reg;
+
+ if (DBAM_DIMM(0, dbam) > 0)
+ channels++;
+ if (DBAM_DIMM(1, dbam) > 0)
+ channels++;
+ if (DBAM_DIMM(2, dbam) > 0)
+ channels++;
+ if (DBAM_DIMM(3, dbam) > 0)
+ channels++;
+
+ /* If more than 2 DIMMs are present, then we have 2 channels */
+ if (channels > 2)
+ channels = 2;
+ else if (channels == 0) {
+ /* No DIMMs on DCT0, so look at DCT1 */
+ err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
+ if (err)
+ goto err_reg;
+
+ if (DBAM_DIMM(0, dbam) > 0)
+ channels++;
+ if (DBAM_DIMM(1, dbam) > 0)
+ channels++;
+ if (DBAM_DIMM(2, dbam) > 0)
+ channels++;
+ if (DBAM_DIMM(3, dbam) > 0)
+ channels++;
+
+ if (channels > 2)
+ channels = 2;
+ }
+
+ /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
+ if (channels == 0)
+ channels = 1;
+
+ debugf0("DIMM count= %d\n", channels);
+
+ return channels;
+
+err_reg:
+ return -1;
+
+}
+
+static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+{
+ return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+}
+
+/* Enable extended configuration access via 0xCF8 feature */
+static void amd64_setup(struct amd64_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+ pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
+ reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+ pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+/* Restore the extended configuration access via 0xCF8 feature */
+static void amd64_teardown(struct amd64_pvt *pvt)
+{
+ u32 reg;
+
+ pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+ reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+ if (pvt->flags.cf8_extcfg)
+ reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+ pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+static u64 f10_get_error_address(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ return (((u64) (info->nbeah & 0xffff)) << 32) +
+ (info->nbeal & ~0x01);
+}
+
+/*
+ * Read the Base and Limit registers for F10 based Memory controllers. Extract
+ * fields from the 'raw' reg into separate data fields.
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
+ */
+static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+ u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
+
+ low_offset = K8_DRAM_BASE_LOW + (dram << 3);
+ high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
+
+ /* read the 'raw' DRAM BASE Address register */
+ pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
+
+ /* Read from the ECS data register */
+ pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
+
+ /* Extract parts into separate data entries */
+ pvt->dram_rw_en[dram] = (low_base & 0x3);
+
+ if (pvt->dram_rw_en[dram] == 0)
+ return;
+
+ pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
+
+ pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
+ ((u64) low_base & 0xFFFF0000))) << 8;
+
+ low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
+ high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
+
+ /* read the 'raw' LIMIT registers */
+ pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
+
+ /* Read from the ECS data register for the HIGH portion */
+ pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
+
+ debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
+ high_base, low_base, high_limit, low_limit);
+
+ pvt->dram_DstNode[dram] = (low_limit & 0x7);
+ pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
+
+ /*
+ * Extract address values and form a LIMIT address. Limit is the HIGHEST
+ * memory location of the region, so low 24 bits need to be all ones.
+ */
+ low_limit |= 0x0000FFFF;
+ pvt->dram_limit[dram] =
+ ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
+}
+
+static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+ int err = 0;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
+ &pvt->dram_ctl_select_low);
+ if (err) {
+ debugf0("Reading F10_DCTL_SEL_LOW failed\n");
+ } else {
+ debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
+ pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
+
+ debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
+ "sel-hi-range=%s\n",
+ (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
+ (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
+ (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
+
+ debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
+ (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
+ (dct_memory_cleared(pvt) ? "True " : "False "),
+ dct_sel_interleave_addr(pvt));
+ }
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
+ &pvt->dram_ctl_select_high);
+ if (err)
+ debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
+}
+
+/*
+ * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+ int hi_range_sel, u32 intlv_en)
+{
+ u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
+
+ if (dct_ganging_enabled(pvt))
+ cs = 0;
+ else if (hi_range_sel)
+ cs = dct_sel_high;
+ else if (dct_interleave_enabled(pvt)) {
+ /*
+ * see F2x110[DctSelIntLvAddr] - channel interleave mode
+ */
+ if (dct_sel_interleave_addr(pvt) == 0)
+ cs = sys_addr >> 6 & 1;
+ else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
+ temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
+
+ if (dct_sel_interleave_addr(pvt) & 1)
+ cs = (sys_addr >> 9 & 1) ^ temp;
+ else
+ cs = (sys_addr >> 6 & 1) ^ temp;
+ } else if (intlv_en & 4)
+ cs = sys_addr >> 15 & 1;
+ else if (intlv_en & 2)
+ cs = sys_addr >> 14 & 1;
+ else if (intlv_en & 1)
+ cs = sys_addr >> 13 & 1;
+ else
+ cs = sys_addr >> 12 & 1;
+ } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
+ cs = ~dct_sel_high & 1;
+ else
+ cs = 0;
+
+ return cs;
+}
+
+static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
+{
+ if (intlv_en == 1)
+ return 1;
+ else if (intlv_en == 3)
+ return 2;
+ else if (intlv_en == 7)
+ return 3;
+
+ return 0;
+}
+
+/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
+static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
+ u32 dct_sel_base_addr,
+ u64 dct_sel_base_off,
+ u32 hole_valid, u32 hole_off,
+ u64 dram_base)
+{
+ u64 chan_off;
+
+ if (hi_range_sel) {
+ if (!(dct_sel_base_addr & 0xFFFFF800) &&
+ hole_valid && (sys_addr >= 0x100000000ULL))
+ chan_off = hole_off << 16;
+ else
+ chan_off = dct_sel_base_off;
+ } else {
+ if (hole_valid && (sys_addr >= 0x100000000ULL))
+ chan_off = hole_off << 16;
+ else
+ chan_off = dram_base & 0xFFFFF8000000ULL;
+ }
+
+ return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
+ (chan_off & 0x0000FFFFFF800000ULL);
+}
+
+/* Hack for the time being - Can we get this from BIOS?? */
+#define CH0SPARE_RANK 0
+#define CH1SPARE_RANK 1
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static inline int f10_process_possible_spare(int csrow,
+ u32 cs, struct amd64_pvt *pvt)
+{
+ u32 swap_done;
+ u32 bad_dram_cs;
+
+ /* Depending on channel, isolate respective SPARING info */
+ if (cs) {
+ swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
+ bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
+ if (swap_done && (csrow == bad_dram_cs))
+ csrow = CH1SPARE_RANK;
+ } else {
+ swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
+ bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
+ if (swap_done && (csrow == bad_dram_cs))
+ csrow = CH0SPARE_RANK;
+ }
+ return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ * -EINVAL: NOT FOUND
+ * 0..csrow = Chip-Select Row
+ */
+static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
+{
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+ u32 cs_base, cs_mask;
+ int cs_found = -EINVAL;
+ int csrow;
+
+ mci = mci_lookup[nid];
+ if (!mci)
+ return cs_found;
+
+ pvt = mci->pvt_info;
+
+ debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
+
+ for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+
+ cs_base = amd64_get_dct_base(pvt, cs, csrow);
+ if (!(cs_base & K8_DCSB_CS_ENABLE))
+ continue;
+
+ /*
+ * We have an ENABLED CSROW, Isolate just the MASK bits of the
+ * target: [28:19] and [13:5], which map to [36:27] and [21:13]
+ * of the actual address.
+ */
+ cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
+
+ /*
+ * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
+ * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
+ */
+ cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
+
+ debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
+ csrow, cs_base, cs_mask);
+
+ cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
+
+ debugf1(" Final CSMask=0x%x\n", cs_mask);
+ debugf1(" (InputAddr & ~CSMask)=0x%x "
+ "(CSBase & ~CSMask)=0x%x\n",
+ (in_addr & ~cs_mask), (cs_base & ~cs_mask));
+
+ if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
+ cs_found = f10_process_possible_spare(csrow, cs, pvt);
+
+ debugf1(" MATCH csrow=%d\n", cs_found);
+ break;
+ }
+ }
+ return cs_found;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
+ u64 sys_addr, int *nid, int *chan_sel)
+{
+ int node_id, cs_found = -EINVAL, high_range = 0;
+ u32 intlv_en, intlv_sel, intlv_shift, hole_off;
+ u32 hole_valid, tmp, dct_sel_base, channel;
+ u64 dram_base, chan_addr, dct_sel_base_off;
+
+ dram_base = pvt->dram_base[dram_range];
+ intlv_en = pvt->dram_IntlvEn[dram_range];
+
+ node_id = pvt->dram_DstNode[dram_range];
+ intlv_sel = pvt->dram_IntlvSel[dram_range];
+
+ debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
+ dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
+
+ /*
+ * This assumes that one node's DHAR is the same as all the other
+ * nodes' DHAR.
+ */
+ hole_off = (pvt->dhar & 0x0000FF80);
+ hole_valid = (pvt->dhar & 0x1);
+ dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
+
+ debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
+ hole_off, hole_valid, intlv_sel);
+
+ if (intlv_en ||
+ (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+ return -EINVAL;
+
+ dct_sel_base = dct_sel_baseaddr(pvt);
+
+ /*
+ * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+ * select between DCT0 and DCT1.
+ */
+ if (dct_high_range_enabled(pvt) &&
+ !dct_ganging_enabled(pvt) &&
+ ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+ high_range = 1;
+
+ channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+ chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
+ dct_sel_base_off, hole_valid,
+ hole_off, dram_base);
+
+ intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
+
+ /* remove Node ID (in case of memory interleaving) */
+ tmp = chan_addr & 0xFC0;
+
+ chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
+
+ /* remove channel interleave and hash */
+ if (dct_interleave_enabled(pvt) &&
+ !dct_high_range_enabled(pvt) &&
+ !dct_ganging_enabled(pvt)) {
+ if (dct_sel_interleave_addr(pvt) != 1)
+ chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
+ else {
+ tmp = chan_addr & 0xFC0;
+ chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
+ | tmp;
+ }
+ }
+
+ debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
+ chan_addr, (u32)(chan_addr >> 8));
+
+ cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
+
+ if (cs_found >= 0) {
+ *nid = node_id;
+ *chan_sel = channel;
+ }
+ return cs_found;
+}
+
+static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
+ int *node, int *chan_sel)
+{
+ int dram_range, cs_found = -EINVAL;
+ u64 dram_base, dram_limit;
+
+ for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
+
+ if (!pvt->dram_rw_en[dram_range])
+ continue;
+
+ dram_base = pvt->dram_base[dram_range];
+ dram_limit = pvt->dram_limit[dram_range];
+
+ if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
+
+ cs_found = f10_match_to_this_node(pvt, dram_range,
+ sys_addr, node,
+ chan_sel);
+ if (cs_found >= 0)
+ break;
+ }
+ }
+ return cs_found;
+}
+
+/*
+ * This the F10h reference code from AMD to map a @sys_addr to NodeID,
+ * CSROW, Channel.
+ *
+ * The @sys_addr is usually an error address received from the hardware.
+ */
+static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info,
+ u64 sys_addr)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 page, offset;
+ unsigned short syndrome;
+ int nid, csrow, chan = 0;
+
+ csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
+
+ if (csrow >= 0) {
+ error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+ syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+ syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+ /*
+ * Is CHIPKILL on? If so, then we can attempt to use the
+ * syndrome to isolate which channel the error was on.
+ */
+ if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
+ chan = get_channel_from_ecc_syndrome(syndrome);
+
+ if (chan >= 0) {
+ edac_mc_handle_ce(mci, page, offset, syndrome,
+ csrow, chan, EDAC_MOD_STR);
+ } else {
+ /*
+ * Channel unknown, report all channels on this
+ * CSROW as failed.
+ */
+ for (chan = 0; chan < mci->csrows[csrow].nr_channels;
+ chan++) {
+ edac_mc_handle_ce(mci, page, offset,
+ syndrome,
+ csrow, chan,
+ EDAC_MOD_STR);
+ }
+ }
+
+ } else {
+ edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+ }
+}
+
+/*
+ * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
+ * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
+ * indicates an empty DIMM slot, as reported by Hardware on empty slots.
+ *
+ * Normalize to 128MB by subracting 27 bit shift.
+ */
+static int map_dbam_to_csrow_size(int index)
+{
+ int mega_bytes = 0;
+
+ if (index > 0 && index <= DBAM_MAX_VALUE)
+ mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
+
+ return mega_bytes;
+}
+
+/*
+ * debug routine to display the memory sizes of a DIMM (ganged or not) and it
+ * CSROWs as well
+ */
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
+ int ganged)
+{
+ int dimm, size0, size1;
+ u32 dbam;
+ u32 *dcsb;
+
+ debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
+ ctrl ? pvt->dbam1 : pvt->dbam0,
+ ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
+
+ dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
+ dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
+
+ /* Dump memory sizes for DIMM and its CSROWs */
+ for (dimm = 0; dimm < 4; dimm++) {
+
+ size0 = 0;
+ if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
+ size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+
+ size1 = 0;
+ if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
+ size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+
+ debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
+ "CSROW-%d=%5dMB\n",
+ ctrl,
+ dimm,
+ size0 + size1,
+ dimm * 2,
+ size0,
+ dimm * 2 + 1,
+ size1);
+ }
+}
+
+/*
+ * Very early hardware probe on pci_probe thread to determine if this module
+ * supports the hardware.
+ *
+ * Return:
+ * 0 for OK
+ * 1 for error
+ */
+static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
+{
+ int ret = 0;
+
+ /*
+ * If we are on a DDR3 machine, we don't know yet if
+ * we support that properly at this time
+ */
+ if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
+ (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
+
+ amd64_printk(KERN_WARNING,
+ "%s() This machine is running with DDR3 memory. "
+ "This is not currently supported. "
+ "DCHR0=0x%x DCHR1=0x%x\n",
+ __func__, pvt->dchr0, pvt->dchr1);
+
+ amd64_printk(KERN_WARNING,
+ " Contact '%s' module MAINTAINER to help add"
+ " support.\n",
+ EDAC_MOD_STR);
+
+ ret = 1;
+
+ }
+ return ret;
+}
+
+/*
+ * There currently are 3 types type of MC devices for AMD Athlon/Opterons
+ * (as per PCI DEVICE_IDs):
+ *
+ * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
+ * DEVICE ID, even though there is differences between the different Revisions
+ * (CG,D,E,F).
+ *
+ * Family F10h and F11h.
+ *
+ */
+static struct amd64_family_type amd64_family_types[] = {
+ [K8_CPUS] = {
+ .ctl_name = "RevF",
+ .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+ .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
+ .ops = {
+ .early_channel_count = k8_early_channel_count,
+ .get_error_address = k8_get_error_address,
+ .read_dram_base_limit = k8_read_dram_base_limit,
+ .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
+ .dbam_map_to_pages = k8_dbam_map_to_pages,
+ }
+ },
+ [F10_CPUS] = {
+ .ctl_name = "Family 10h",
+ .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+ .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
+ .ops = {
+ .probe_valid_hardware = f10_probe_valid_hardware,
+ .early_channel_count = f10_early_channel_count,
+ .get_error_address = f10_get_error_address,
+ .read_dram_base_limit = f10_read_dram_base_limit,
+ .read_dram_ctl_register = f10_read_dram_ctl_register,
+ .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+ .dbam_map_to_pages = f10_dbam_map_to_pages,
+ }
+ },
+ [F11_CPUS] = {
+ .ctl_name = "Family 11h",
+ .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
+ .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
+ .ops = {
+ .probe_valid_hardware = f10_probe_valid_hardware,
+ .early_channel_count = f10_early_channel_count,
+ .get_error_address = f10_get_error_address,
+ .read_dram_base_limit = f10_read_dram_base_limit,
+ .read_dram_ctl_register = f10_read_dram_ctl_register,
+ .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+ .dbam_map_to_pages = f10_dbam_map_to_pages,
+ }
+ },
+};
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+ unsigned int device,
+ struct pci_dev *related)
+{
+ struct pci_dev *dev = NULL;
+
+ dev = pci_get_device(vendor, device, dev);
+ while (dev) {
+ if ((dev->bus->number == related->bus->number) &&
+ (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+ break;
+ dev = pci_get_device(vendor, device, dev);
+ }
+
+ return dev;
+}
+
+/*
+ * syndrome mapping table for ECC ChipKill devices
+ *
+ * The comment in each row is the token (nibble) number that is in error.
+ * The least significant nibble of the syndrome is the mask for the bits
+ * that are in error (need to be toggled) for the particular nibble.
+ *
+ * Each row contains 16 entries.
+ * The first entry (0th) is the channel number for that row of syndromes.
+ * The remaining 15 entries are the syndromes for the respective Error
+ * bit mask index.
+ *
+ * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
+ * bit in error.
+ * The 2nd index entry is 0x0010 that the second bit is damaged.
+ * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
+ * are damaged.
+ * Thus so on until index 15, 0x1111, whose entry has the syndrome
+ * indicating that all 4 bits are damaged.
+ *
+ * A search is performed on this table looking for a given syndrome.
+ *
+ * See the AMD documentation for ECC syndromes. This ECC table is valid
+ * across all the versions of the AMD64 processors.
+ *
+ * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
+ * COLUMN index, then search all ROWS of that column, looking for a match
+ * with the input syndrome. The ROW value will be the token number.
+ *
+ * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
+ * error.
+ */
+#define NUMBER_ECC_ROWS 36
+static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
+ /* Channel 0 syndromes */
+ {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
+ 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
+ {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
+ 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
+ {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
+ 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
+ {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
+ 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
+ {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
+ 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
+ {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
+ 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
+ {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
+ 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
+ {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
+ 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
+ {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
+ 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
+ {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
+ 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
+ {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
+ 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
+ {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
+ 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
+ {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
+ 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
+ {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
+ 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
+ {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
+ 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
+ {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
+ 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
+
+ /* Channel 1 syndromes */
+ {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
+ 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
+ {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
+ 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
+ {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
+ 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
+ {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
+ 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
+ {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
+ 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
+ {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
+ 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
+ {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
+ 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
+ {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
+ 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
+ {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
+ 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
+ {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
+ 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
+ {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
+ 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
+ {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
+ 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
+ {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
+ 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
+ {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
+ 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
+ {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
+ 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
+ {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
+ 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
+
+ /* ECC bits are also in the set of tokens and they too can go bad
+ * first 2 cover channel 0, while the second 2 cover channel 1
+ */
+ {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
+ 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
+ {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
+ 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
+ {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
+ 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
+ {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
+ 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+};
+
+/*
+ * Given the syndrome argument, scan each of the channel tables for a syndrome
+ * match. Depending on which table it is found, return the channel number.
+ */
+static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+{
+ int row;
+ int column;
+
+ /* Determine column to scan */
+ column = syndrome & 0xF;
+
+ /* Scan all rows, looking for syndrome, or end of table */
+ for (row = 0; row < NUMBER_ECC_ROWS; row++) {
+ if (ecc_chipkill_syndromes[row][column] == syndrome)
+ return ecc_chipkill_syndromes[row][0];
+ }
+
+ debugf0("syndrome(%x) not found\n", syndrome);
+ return -1;
+}
+
+/*
+ * Check for valid error in the NB Status High register. If so, proceed to read
+ * NB Status Low, NB Address Low and NB Address High registers and store data
+ * into error structure.
+ *
+ * Returns:
+ * - 1: if hardware regs contains valid error info
+ * - 0: if no valid error is indicated
+ */
+static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *regs)
+{
+ struct amd64_pvt *pvt;
+ struct pci_dev *misc_f3_ctl;
+ int err = 0;
+
+ pvt = mci->pvt_info;
+ misc_f3_ctl = pvt->misc_f3_ctl;
+
+ err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
+ if (err)
+ goto err_reg;
+
+ if (!(regs->nbsh & K8_NBSH_VALID_BIT))
+ return 0;
+
+ /* valid error, read remaining error information registers */
+ err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
+ if (err)
+ goto err_reg;
+
+ return 1;
+
+err_reg:
+ debugf0("Reading error info register failed\n");
+ return 0;
+}
+
+/*
+ * This function is called to retrieve the error data from hardware and store it
+ * in the info structure.
+ *
+ * Returns:
+ * - 1: if a valid error is found
+ * - 0: if no error is found
+ */
+static int amd64_get_error_info(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ struct amd64_pvt *pvt;
+ struct amd64_error_info_regs regs;
+
+ pvt = mci->pvt_info;
+
+ if (!amd64_get_error_info_regs(mci, info))
+ return 0;
+
+ /*
+ * Here's the problem with the K8's EDAC reporting: There are four
+ * registers which report pieces of error information. They are shared
+ * between CEs and UEs. Furthermore, contrary to what is stated in the
+ * BKDG, the overflow bit is never used! Every error always updates the
+ * reporting registers.
+ *
+ * Can you see the race condition? All four error reporting registers
+ * must be read before a new error updates them! There is no way to read
+ * all four registers atomically. The best than can be done is to detect
+ * that a race has occured and then report the error without any kind of
+ * precision.
+ *
+ * What is still positive is that errors are still reported and thus
+ * problems can still be detected - just not localized because the
+ * syndrome and address are spread out across registers.
+ *
+ * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
+ * UEs and CEs should have separate register sets with proper overflow
+ * bits that are used! At very least the problem can be fixed by
+ * honoring the ErrValid bit in 'nbsh' and not updating registers - just
+ * set the overflow bit - unless the current error is CE and the new
+ * error is UE which would be the only situation for overwriting the
+ * current values.
+ */
+
+ regs = *info;
+
+ /* Use info from the second read - most current */
+ if (unlikely(!amd64_get_error_info_regs(mci, info)))
+ return 0;
+
+ /* clear the error bits in hardware */
+ pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
+
+ /* Check for the possible race condition */
+ if ((regs.nbsh != info->nbsh) ||
+ (regs.nbsl != info->nbsl) ||
+ (regs.nbeah != info->nbeah) ||
+ (regs.nbeal != info->nbeal)) {
+ amd64_mc_printk(mci, KERN_WARNING,
+ "hardware STATUS read access race condition "
+ "detected!\n");
+ return 0;
+ }
+ return 1;
+}
+
+static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ u32 err_code;
+ u32 ec_tt; /* error code transaction type (2b) */
+ u32 ec_ll; /* error code cache level (2b) */
+
+ err_code = EXTRACT_ERROR_CODE(info->nbsl);
+ ec_ll = EXTRACT_LL_CODE(err_code);
+ ec_tt = EXTRACT_TT_CODE(err_code);
+
+ amd64_mc_printk(mci, KERN_ERR,
+ "GART TLB event: transaction type(%s), "
+ "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
+}
+
+static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ u32 err_code;
+ u32 ec_rrrr; /* error code memory transaction (4b) */
+ u32 ec_tt; /* error code transaction type (2b) */
+ u32 ec_ll; /* error code cache level (2b) */
+
+ err_code = EXTRACT_ERROR_CODE(info->nbsl);
+ ec_ll = EXTRACT_LL_CODE(err_code);
+ ec_tt = EXTRACT_TT_CODE(err_code);
+ ec_rrrr = EXTRACT_RRRR_CODE(err_code);
+
+ amd64_mc_printk(mci, KERN_ERR,
+ "cache hierarchy error: memory transaction type(%s), "
+ "transaction type(%s), cache level(%s)\n",
+ rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
+}
+
+
+/*
+ * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
+ * ADDRESS and process.
+ */
+static void amd64_handle_ce(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 SystemAddress;
+
+ /* Ensure that the Error Address is VALID */
+ if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+ amd64_mc_printk(mci, KERN_ERR,
+ "HW has no ERROR_ADDRESS available\n");
+ edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+ return;
+ }
+
+ SystemAddress = extract_error_address(mci, info);
+
+ amd64_mc_printk(mci, KERN_ERR,
+ "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
+
+ pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
+}
+
+/* Handle any Un-correctable Errors (UEs) */
+static void amd64_handle_ue(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ int csrow;
+ u64 SystemAddress;
+ u32 page, offset;
+ struct mem_ctl_info *log_mci, *src_mci = NULL;
+
+ log_mci = mci;
+
+ if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+ amd64_mc_printk(mci, KERN_CRIT,
+ "HW has no ERROR_ADDRESS available\n");
+ edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+ return;
+ }
+
+ SystemAddress = extract_error_address(mci, info);
+
+ /*
+ * Find out which node the error address belongs to. This may be
+ * different from the node that detected the error.
+ */
+ src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+ if (!src_mci) {
+ amd64_mc_printk(mci, KERN_CRIT,
+ "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
+ (unsigned long)SystemAddress);
+ edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+ return;
+ }
+
+ log_mci = src_mci;
+
+ csrow = sys_addr_to_csrow(log_mci, SystemAddress);
+ if (csrow < 0) {
+ amd64_mc_printk(mci, KERN_CRIT,
+ "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
+ (unsigned long)SystemAddress);
+ edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+ } else {
+ error_address_to_page_and_offset(SystemAddress, &page, &offset);
+ edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
+ }
+}
+
+static void amd64_decode_bus_error(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info)
+{
+ u32 err_code, ext_ec;
+ u32 ec_pp; /* error code participating processor (2p) */
+ u32 ec_to; /* error code timed out (1b) */
+ u32 ec_rrrr; /* error code memory transaction (4b) */
+ u32 ec_ii; /* error code memory or I/O (2b) */
+ u32 ec_ll; /* error code cache level (2b) */
+
+ ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
+ err_code = EXTRACT_ERROR_CODE(info->nbsl);
+
+ ec_ll = EXTRACT_LL_CODE(err_code);
+ ec_ii = EXTRACT_II_CODE(err_code);
+ ec_rrrr = EXTRACT_RRRR_CODE(err_code);
+ ec_to = EXTRACT_TO_CODE(err_code);
+ ec_pp = EXTRACT_PP_CODE(err_code);
+
+ amd64_mc_printk(mci, KERN_ERR,
+ "BUS ERROR:\n"
+ " time-out(%s) mem or i/o(%s)\n"
+ " participating processor(%s)\n"
+ " memory transaction type(%s)\n"
+ " cache level(%s) Error Found by: %s\n",
+ to_msgs[ec_to],
+ ii_msgs[ec_ii],
+ pp_msgs[ec_pp],
+ rrrr_msgs[ec_rrrr],
+ ll_msgs[ec_ll],
+ (info->nbsh & K8_NBSH_ERR_SCRUBER) ?
+ "Scrubber" : "Normal Operation");
+
+ /* If this was an 'observed' error, early out */
+ if (ec_pp == K8_NBSL_PP_OBS)
+ return; /* We aren't the node involved */
+
+ /* Parse out the extended error code for ECC events */
+ switch (ext_ec) {
+ /* F10 changed to one Extended ECC error code */
+ case F10_NBSL_EXT_ERR_RES: /* Reserved field */
+ case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */
+ break;
+
+ default:
+ amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
+ "handling for this error\n");
+ return;
+ }
+
+ if (info->nbsh & K8_NBSH_CECC)
+ amd64_handle_ce(mci, info);
+ else if (info->nbsh & K8_NBSH_UECC)
+ amd64_handle_ue(mci, info);
+
+ /*
+ * If main error is CE then overflow must be CE. If main error is UE
+ * then overflow is unknown. We'll call the overflow a CE - if
+ * panic_on_ue is set then we're already panic'ed and won't arrive
+ * here. Else, then apparently someone doesn't think that UE's are
+ * catastrophic.
+ */
+ if (info->nbsh & K8_NBSH_OVERFLOW)
+ edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
+ "Error Overflow set");
+}
+
+int amd64_process_error_info(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info,
+ int handle_errors)
+{
+ struct amd64_pvt *pvt;
+ struct amd64_error_info_regs *regs;
+ u32 err_code, ext_ec;
+ int gart_tlb_error = 0;
+
+ pvt = mci->pvt_info;
+
+ /* If caller doesn't want us to process the error, return */
+ if (!handle_errors)
+ return 1;
+
+ regs = info;
+
+ debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
+ debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n",
+ pvt->mc_node_id, regs->nbeah, regs->nbeal);
+ debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n",
+ regs->nbsh, regs->nbsl);
+ debugf1(" Valid Error=%s Overflow=%s\n",
+ (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
+ (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
+ debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n",
+ (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
+ "True" : "False",
+ (regs->nbsh & K8_NBSH_ERR_ENABLE) ?
+ "True" : "False");
+ debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
+ (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
+ "True" : "False",
+ (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
+ "True" : "False",
+ (regs->nbsh & K8_NBSH_PCC) ?
+ "True" : "False");
+ debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n",
+ (regs->nbsh & K8_NBSH_CECC) ?
+ "True" : "False",
+ (regs->nbsh & K8_NBSH_UECC) ?
+ "True" : "False",
+ (regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
+ "True" : "False");
+ debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
+ (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
+ (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
+ (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
+ (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
+
+
+ err_code = EXTRACT_ERROR_CODE(regs->nbsl);
+
+ /* Determine which error type:
+ * 1) GART errors - non-fatal, developmental events
+ * 2) MEMORY errors
+ * 3) BUS errors
+ * 4) Unknown error
+ */
+ if (TEST_TLB_ERROR(err_code)) {
+ /*
+ * GART errors are intended to help graphics driver developers
+ * to detect bad GART PTEs. It is recommended by AMD to disable
+ * GART table walk error reporting by default[1] (currently
+ * being disabled in mce_cpu_quirks()) and according to the
+ * comment in mce_cpu_quirks(), such GART errors can be
+ * incorrectly triggered. We may see these errors anyway and
+ * unless requested by the user, they won't be reported.
+ *
+ * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
+ * AMD NPT family 0Fh processors
+ */
+ if (report_gart_errors == 0)
+ return 1;
+
+ /*
+ * Only if GART error reporting is requested should we generate
+ * any logs.
+ */
+ gart_tlb_error = 1;
+
+ debugf1("GART TLB error\n");
+ amd64_decode_gart_tlb_error(mci, info);
+ } else if (TEST_MEM_ERROR(err_code)) {
+ debugf1("Memory/Cache error\n");
+ amd64_decode_mem_cache_error(mci, info);
+ } else if (TEST_BUS_ERROR(err_code)) {
+ debugf1("Bus (Link/DRAM) error\n");
+ amd64_decode_bus_error(mci, info);
+ } else {
+ /* shouldn't reach here! */
+ amd64_mc_printk(mci, KERN_WARNING,
+ "%s(): unknown MCE error 0x%x\n", __func__,
+ err_code);
+ }
+
+ ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
+ amd64_mc_printk(mci, KERN_ERR,
+ "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
+
+ if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
+ ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
+ (ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
+ EXTRACT_LDT_LINK(info->nbsh)) {
+
+ amd64_mc_printk(mci, KERN_ERR,
+ "Error on hypertransport link: %s\n",
+ htlink_msgs[
+ EXTRACT_LDT_LINK(info->nbsh)]);
+ }
+
+ /*
+ * Check the UE bit of the NB status high register, if set generate some
+ * logs. If NOT a GART error, then process the event as a NO-INFO event.
+ * If it was a GART error, skip that process.
+ */
+ if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
+ amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
+ if (!gart_tlb_error)
+ edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
+ }
+
+ if (regs->nbsh & K8_NBSH_PCC)
+ amd64_mc_printk(mci, KERN_CRIT,
+ "PCC (processor context corrupt) set\n");
+
+ return 1;
+}
+EXPORT_SYMBOL_GPL(amd64_process_error_info);
+
+/*
+ * The main polling 'check' function, called FROM the edac core to perform the
+ * error checking and if an error is encountered, error processing.
+ */
+static void amd64_check(struct mem_ctl_info *mci)
+{
+ struct amd64_error_info_regs info;
+
+ if (amd64_get_error_info(mci, &info))
+ amd64_process_error_info(mci, &info, 1);
+}
+
+/*
+ * Input:
+ * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
+ * 2) AMD Family index value
+ *
+ * Ouput:
+ * Upon return of 0, the following filled in:
+ *
+ * struct pvt->addr_f1_ctl
+ * struct pvt->misc_f3_ctl
+ *
+ * Filled in with related device funcitions of 'dram_f2_ctl'
+ * These devices are "reserved" via the pci_get_device()
+ *
+ * Upon return of 1 (error status):
+ *
+ * Nothing reserved
+ */
+static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
+{
+ const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
+
+ /* Reserve the ADDRESS MAP Device */
+ pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+ amd64_dev->addr_f1_ctl,
+ pvt->dram_f2_ctl);
+
+ if (!pvt->addr_f1_ctl) {
+ amd64_printk(KERN_ERR, "error address map device not found: "
+ "vendor %x device 0x%x (broken BIOS?)\n",
+ PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
+ return 1;
+ }
+
+ /* Reserve the MISC Device */
+ pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+ amd64_dev->misc_f3_ctl,
+ pvt->dram_f2_ctl);
+
+ if (!pvt->misc_f3_ctl) {
+ pci_dev_put(pvt->addr_f1_ctl);
+ pvt->addr_f1_ctl = NULL;
+
+ amd64_printk(KERN_ERR, "error miscellaneous device not found: "
+ "vendor %x device 0x%x (broken BIOS?)\n",
+ PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
+ return 1;
+ }
+
+ debugf1(" Addr Map device PCI Bus ID:\t%s\n",
+ pci_name(pvt->addr_f1_ctl));
+ debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
+ pci_name(pvt->dram_f2_ctl));
+ debugf1(" Misc device PCI Bus ID:\t%s\n",
+ pci_name(pvt->misc_f3_ctl));
+
+ return 0;
+}
+
+static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
+{
+ pci_dev_put(pvt->addr_f1_ctl);
+ pci_dev_put(pvt->misc_f3_ctl);
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void amd64_read_mc_registers(struct amd64_pvt *pvt)
+{
+ u64 msr_val;
+ int dram, err = 0;
+
+ /*
+ * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+ * those are Read-As-Zero
+ */
+ rdmsrl(MSR_K8_TOP_MEM1, msr_val);
+ pvt->top_mem = msr_val >> 23;
+ debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
+
+ /* check first whether TOP_MEM2 is enabled */
+ rdmsrl(MSR_K8_SYSCFG, msr_val);
+ if (msr_val & (1U << 21)) {
+ rdmsrl(MSR_K8_TOP_MEM2, msr_val);
+ pvt->top_mem2 = msr_val >> 23;
+ debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
+ } else
+ debugf0(" TOP_MEM2 disabled.\n");
+
+ amd64_cpu_display_info(pvt);
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
+ if (err)
+ goto err_reg;
+
+ if (pvt->ops->read_dram_ctl_register)
+ pvt->ops->read_dram_ctl_register(pvt);
+
+ for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
+ /*
+ * Call CPU specific READ function to get the DRAM Base and
+ * Limit values from the DCT.
+ */
+ pvt->ops->read_dram_base_limit(pvt, dram);
+
+ /*
+ * Only print out debug info on rows with both R and W Enabled.
+ * Normal processing, compiler should optimize this whole 'if'
+ * debug output block away.
+ */
+ if (pvt->dram_rw_en[dram] != 0) {
+ debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
+ "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
+ dram,
+ (u32)(pvt->dram_base[dram] >> 32),
+ (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
+ (u32)(pvt->dram_limit[dram] >> 32),
+ (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
+ debugf1(" IntlvEn=%s %s %s "
+ "IntlvSel=%d DstNode=%d\n",
+ pvt->dram_IntlvEn[dram] ?
+ "Enabled" : "Disabled",
+ (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
+ (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
+ pvt->dram_IntlvSel[dram],
+ pvt->dram_DstNode[dram]);
+ }
+ }
+
+ amd64_read_dct_base_mask(pvt);
+
+ err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
+ if (err)
+ goto err_reg;
+
+ amd64_read_dbam_reg(pvt);
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl,
+ F10_ONLINE_SPARE, &pvt->online_spare);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
+ if (err)
+ goto err_reg;
+
+ if (!dct_ganging_enabled(pvt)) {
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
+ &pvt->dclr1);
+ if (err)
+ goto err_reg;
+
+ err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
+ &pvt->dchr1);
+ if (err)
+ goto err_reg;
+ }
+
+ amd64_dump_misc_regs(pvt);
+
+err_reg:
+ debugf0("Reading an MC register failed\n");
+
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
+ * k8 private pointer to -->
+ * DRAM Bank Address mapping register
+ * node_id
+ * DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits: CSROWs
+ * 0-3 CSROWs 0 and 1
+ * 4-7 CSROWs 2 and 3
+ * 8-11 CSROWs 4 and 5
+ * 12-15 CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ * The number of PAGE_SIZE pages on the specified CSROW number it
+ * encompasses
+ *
+ */
+static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
+{
+ u32 dram_map, nr_pages;
+
+ /*
+ * The math on this doesn't look right on the surface because x/2*4 can
+ * be simplified to x*2 but this expression makes use of the fact that
+ * it is integral math where 1/2=0. This intermediate value becomes the
+ * number of bits to shift the DBAM register to extract the proper CSROW
+ * field.
+ */
+ dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
+
+ nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
+
+ /*
+ * If dual channel then double the memory size of single channel.
+ * Channel count is 1 or 2
+ */
+ nr_pages <<= (pvt->channel_count - 1);
+
+ debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
+ debugf0(" nr_pages= %u channel-count = %d\n",
+ nr_pages, pvt->channel_count);
+
+ return nr_pages;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int amd64_init_csrows(struct mem_ctl_info *mci)
+{
+ struct csrow_info *csrow;
+ struct amd64_pvt *pvt;
+ u64 input_addr_min, input_addr_max, sys_addr;
+ int i, err = 0, empty = 1;
+
+ pvt = mci->pvt_info;
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
+ if (err)
+ debugf0("Reading K8_NBCFG failed\n");
+
+ debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
+ (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+ (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
+ );
+
+ for (i = 0; i < CHIPSELECT_COUNT; i++) {
+ csrow = &mci->csrows[i];
+
+ if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
+ debugf1("----CSROW %d EMPTY for node %d\n", i,
+ pvt->mc_node_id);
+ continue;
+ }
+
+ debugf1("----CSROW %d VALID for MC node %d\n",
+ i, pvt->mc_node_id);
+
+ empty = 0;
+ csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
+ find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
+ sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
+ csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
+ sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
+ csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
+ csrow->page_mask = ~mask_from_dct_mask(pvt, i);
+ /* 8 bytes of resolution */
+
+ csrow->mtype = amd64_determine_memory_type(pvt);
+
+ debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
+ debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
+ (unsigned long)input_addr_min,
+ (unsigned long)input_addr_max);
+ debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
+ (unsigned long)sys_addr, csrow->page_mask);
+ debugf1(" nr_pages: %u first_page: 0x%lx "
+ "last_page: 0x%lx\n",
+ (unsigned)csrow->nr_pages,
+ csrow->first_page, csrow->last_page);
+
+ /*
+ * determine whether CHIPKILL or JUST ECC or NO ECC is operating
+ */
+ if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
+ csrow->edac_mode =
+ (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
+ EDAC_S4ECD4ED : EDAC_SECDED;
+ else
+ csrow->edac_mode = EDAC_NONE;
+ }
+
+ return empty;
+}
+
+/*
+ * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
+ * enable it.
+ */
+static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
+ int cpu, idx = 0, err = 0;
+ struct msr msrs[cpumask_weight(cpumask)];
+ u32 value;
+ u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+ if (!ecc_enable_override)
+ return;
+
+ memset(msrs, 0, sizeof(msrs));
+
+ amd64_printk(KERN_WARNING,
+ "'ecc_enable_override' parameter is active, "
+ "Enabling AMD ECC hardware now: CAUTION\n");
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
+ if (err)
+ debugf0("Reading K8_NBCTL failed\n");
+
+ /* turn on UECCn and CECCEn bits */
+ pvt->old_nbctl = value & mask;
+ pvt->nbctl_mcgctl_saved = 1;
+
+ value |= mask;
+ pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+ rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+ for_each_cpu(cpu, cpumask) {
+ if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
+ set_bit(idx, &pvt->old_mcgctl);
+
+ msrs[idx].l |= K8_MSR_MCGCTL_NBE;
+ idx++;
+ }
+ wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+ if (err)
+ debugf0("Reading K8_NBCFG failed\n");
+
+ debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
+ (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+ (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+ if (!(value & K8_NBCFG_ECC_ENABLE)) {
+ amd64_printk(KERN_WARNING,
+ "This node reports that DRAM ECC is "
+ "currently Disabled; ENABLING now\n");
+
+ /* Attempt to turn on DRAM ECC Enable */
+ value |= K8_NBCFG_ECC_ENABLE;
+ pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+ if (err)
+ debugf0("Reading K8_NBCFG failed\n");
+
+ if (!(value & K8_NBCFG_ECC_ENABLE)) {
+ amd64_printk(KERN_WARNING,
+ "Hardware rejects Enabling DRAM ECC checking\n"
+ "Check memory DIMM configuration\n");
+ } else {
+ amd64_printk(KERN_DEBUG,
+ "Hardware accepted DRAM ECC Enable\n");
+ }
+ }
+ debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
+ (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+ (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+ pvt->ctl_error_info.nbcfg = value;
+}
+
+static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
+{
+ const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
+ int cpu, idx = 0, err = 0;
+ struct msr msrs[cpumask_weight(cpumask)];
+ u32 value;
+ u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+ if (!pvt->nbctl_mcgctl_saved)
+ return;
+
+ memset(msrs, 0, sizeof(msrs));
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
+ if (err)
+ debugf0("Reading K8_NBCTL failed\n");
+ value &= ~mask;
+ value |= pvt->old_nbctl;
+
+ /* restore the NB Enable MCGCTL bit */
+ pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+ rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+ for_each_cpu(cpu, cpumask) {
+ msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
+ msrs[idx].l |=
+ test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
+ idx++;
+ }
+
+ wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+}
+
+static void check_mcg_ctl(void *ret)
+{
+ u64 msr_val = 0;
+ u8 nbe;
+
+ rdmsrl(MSR_IA32_MCG_CTL, msr_val);
+ nbe = msr_val & K8_MSR_MCGCTL_NBE;
+
+ debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+ raw_smp_processor_id(), msr_val,
+ (nbe ? "enabled" : "disabled"));
+
+ if (!nbe)
+ *(int *)ret = 0;
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
+{
+ int ret = 1;
+ preempt_disable();
+ smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
+ preempt_enable();
+
+ return ret;
+}
+
+/*
+ * EDAC requires that the BIOS have ECC enabled before taking over the
+ * processing of ECC errors. This is because the BIOS can properly initialize
+ * the memory system completely. A command line option allows to force-enable
+ * hardware ECC later in amd64_enable_ecc_error_reporting().
+ */
+static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
+{
+ u32 value;
+ int err = 0, ret = 0;
+ u8 ecc_enabled = 0;
+
+ err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+ if (err)
+ debugf0("Reading K8_NBCTL failed\n");
+
+ ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
+
+ ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
+
+ debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value,
+ (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
+
+ if (!ecc_enabled || !ret) {
+ if (!ecc_enabled) {
+ amd64_printk(KERN_WARNING, "This node reports that "
+ "Memory ECC is currently "
+ "disabled.\n");
+
+ amd64_printk(KERN_WARNING, "bit 0x%lx in register "
+ "F3x%x of the MISC_CONTROL device (%s) "
+ "should be enabled\n", K8_NBCFG_ECC_ENABLE,
+ K8_NBCFG, pci_name(pvt->misc_f3_ctl));
+ }
+ if (!ret) {
+ amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
+ "of node %d should be enabled\n",
+ K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
+ pvt->mc_node_id);
+ }
+ if (!ecc_enable_override) {
+ amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
+ "currently enabled by the BIOS. Module "
+ "will NOT be loaded.\n"
+ " Either Enable ECC in the BIOS, "
+ "or use the 'ecc_enable_override' "
+ "parameter.\n"
+ " Might be a BIOS bug, if BIOS says "
+ "ECC is enabled\n"
+ " Use of the override can cause "
+ "unknown side effects.\n");
+ ret = -ENODEV;
+ }
+ } else {
+ amd64_printk(KERN_INFO,
+ "ECC is enabled by BIOS, Proceeding "
+ "with EDAC module initialization\n");
+
+ /* CLEAR the override, since BIOS controlled it */
+ ecc_enable_override = 0;
+ }
+
+ return ret;
+}
+
+struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
+ ARRAY_SIZE(amd64_inj_attrs) +
+ 1];
+
+struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
+
+static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
+{
+ unsigned int i = 0, j = 0;
+
+ for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
+ sysfs_attrs[i] = amd64_dbg_attrs[i];
+
+ for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
+ sysfs_attrs[i] = amd64_inj_attrs[j];
+
+ sysfs_attrs[i] = terminator;
+
+ mci->mc_driver_sysfs_attributes = sysfs_attrs;
+}
+
+static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+ mci->edac_ctl_cap = EDAC_FLAG_NONE;
+ mci->edac_cap = EDAC_FLAG_NONE;
+
+ if (pvt->nbcap & K8_NBCAP_SECDED)
+ mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+ if (pvt->nbcap & K8_NBCAP_CHIPKILL)
+ mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+
+ mci->edac_cap = amd64_determine_edac_cap(pvt);
+ mci->mod_name = EDAC_MOD_STR;
+ mci->mod_ver = EDAC_AMD64_VERSION;
+ mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
+ mci->dev_name = pci_name(pvt->dram_f2_ctl);
+ mci->ctl_page_to_phys = NULL;
+
+ /* IMPORTANT: Set the polling 'check' function in this module */
+ mci->edac_check = amd64_check;
+
+ /* memory scrubber interface */
+ mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
+ mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
+}
+
+/*
+ * Init stuff for this DRAM Controller device.
+ *
+ * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
+ * Space feature MUST be enabled on ALL Processors prior to actually reading
+ * from the ECS registers. Since the loading of the module can occur on any
+ * 'core', and cores don't 'see' all the other processors ECS data when the
+ * others are NOT enabled. Our solution is to first enable ECS access in this
+ * routine on all processors, gather some data in a amd64_pvt structure and
+ * later come back in a finish-setup function to perform that final
+ * initialization. See also amd64_init_2nd_stage() for that.
+ */
+static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
+ int mc_type_index)
+{
+ struct amd64_pvt *pvt = NULL;
+ int err = 0, ret;
+
+ ret = -ENOMEM;
+ pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+ if (!pvt)
+ goto err_exit;
+
+ pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl);
+
+ pvt->dram_f2_ctl = dram_f2_ctl;
+ pvt->ext_model = boot_cpu_data.x86_model >> 4;
+ pvt->mc_type_index = mc_type_index;
+ pvt->ops = family_ops(mc_type_index);
+ pvt->old_mcgctl = 0;
+
+ /*
+ * We have the dram_f2_ctl device as an argument, now go reserve its
+ * sibling devices from the PCI system.
+ */
+ ret = -ENODEV;
+ err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
+ if (err)
+ goto err_free;
+
+ ret = -EINVAL;
+ err = amd64_check_ecc_enabled(pvt);
+ if (err)
+ goto err_put;
+
+ /*
+ * Key operation here: setup of HW prior to performing ops on it. Some
+ * setup is required to access ECS data. After this is performed, the
+ * 'teardown' function must be called upon error and normal exit paths.
+ */
+ if (boot_cpu_data.x86 >= 0x10)
+ amd64_setup(pvt);
+
+ /*
+ * Save the pointer to the private data for use in 2nd initialization
+ * stage
+ */
+ pvt_lookup[pvt->mc_node_id] = pvt;
+
+ return 0;
+
+err_put:
+ amd64_free_mc_sibling_devices(pvt);
+
+err_free:
+ kfree(pvt);
+
+err_exit:
+ return ret;
+}
+
+/*
+ * This is the finishing stage of the init code. Needs to be performed after all
+ * MCs' hardware have been prepped for accessing extended config space.
+ */
+static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
+{
+ int node_id = pvt->mc_node_id;
+ struct mem_ctl_info *mci;
+ int ret, err = 0;
+
+ amd64_read_mc_registers(pvt);
+
+ ret = -ENODEV;
+ if (pvt->ops->probe_valid_hardware) {
+ err = pvt->ops->probe_valid_hardware(pvt);
+ if (err)
+ goto err_exit;
+ }
+
+ /*
+ * We need to determine how many memory channels there are. Then use
+ * that information for calculating the size of the dynamic instance
+ * tables in the 'mci' structure
+ */
+ pvt->channel_count = pvt->ops->early_channel_count(pvt);
+ if (pvt->channel_count < 0)
+ goto err_exit;
+
+ ret = -ENOMEM;
+ mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
+ if (!mci)
+ goto err_exit;
+
+ mci->pvt_info = pvt;
+
+ mci->dev = &pvt->dram_f2_ctl->dev;
+ amd64_setup_mci_misc_attributes(mci);
+
+ if (amd64_init_csrows(mci))
+ mci->edac_cap = EDAC_FLAG_NONE;
+
+ amd64_enable_ecc_error_reporting(mci);
+ amd64_set_mc_sysfs_attributes(mci);
+
+ ret = -ENODEV;
+ if (edac_mc_add_mc(mci)) {
+ debugf1("failed edac_mc_add_mc()\n");
+ goto err_add_mc;
+ }
+
+ mci_lookup[node_id] = mci;
+ pvt_lookup[node_id] = NULL;
+ return 0;
+
+err_add_mc:
+ edac_mc_free(mci);
+
+err_exit:
+ debugf0("failure to init 2nd stage: ret=%d\n", ret);
+
+ amd64_restore_ecc_error_reporting(pvt);
+
+ if (boot_cpu_data.x86 > 0xf)
+ amd64_teardown(pvt);
+
+ amd64_free_mc_sibling_devices(pvt);
+
+ kfree(pvt_lookup[pvt->mc_node_id]);
+ pvt_lookup[node_id] = NULL;
+
+ return ret;
+}
+
+
+static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
+ const struct pci_device_id *mc_type)
+{
+ int ret = 0;
+
+ debugf0("(MC node=%d,mc_type='%s')\n",
+ get_mc_node_id_from_pdev(pdev),
+ get_amd_family_name(mc_type->driver_data));
+
+ ret = pci_enable_device(pdev);
+ if (ret < 0)
+ ret = -EIO;
+ else
+ ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
+
+ if (ret < 0)
+ debugf0("ret=%d\n", ret);
+
+ return ret;
+}
+
+static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
+{
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+
+ /* Remove from EDAC CORE tracking list */
+ mci = edac_mc_del_mc(&pdev->dev);
+ if (!mci)
+ return;
+
+ pvt = mci->pvt_info;
+
+ amd64_restore_ecc_error_reporting(pvt);
+
+ if (boot_cpu_data.x86 > 0xf)
+ amd64_teardown(pvt);
+
+ amd64_free_mc_sibling_devices(pvt);
+
+ kfree(pvt);
+ mci->pvt_info = NULL;
+
+ mci_lookup[pvt->mc_node_id] = NULL;
+
+ /* Free the EDAC CORE resources */
+ edac_mc_free(mci);
+}
+
+/*
+ * This table is part of the interface for loading drivers for PCI devices. The
+ * PCI core identifies what devices are on a system during boot, and then
+ * inquiry this table to see if this driver is for a given device found.
+ */
+static const struct pci_device_id amd64_pci_table[] __devinitdata = {
+ {
+ .vendor = PCI_VENDOR_ID_AMD,
+ .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
+ .subvendor = PCI_ANY_ID,
+ .subdevice = PCI_ANY_ID,
+ .class = 0,
+ .class_mask = 0,
+ .driver_data = K8_CPUS
+ },
+ {
+ .vendor = PCI_VENDOR_ID_AMD,
+ .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
+ .subvendor = PCI_ANY_ID,
+ .subdevice = PCI_ANY_ID,
+ .class = 0,
+ .class_mask = 0,
+ .driver_data = F10_CPUS
+ },
+ {
+ .vendor = PCI_VENDOR_ID_AMD,
+ .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
+ .subvendor = PCI_ANY_ID,
+ .subdevice = PCI_ANY_ID,
+ .class = 0,
+ .class_mask = 0,
+ .driver_data = F11_CPUS
+ },
+ {0, }
+};
+MODULE_DEVICE_TABLE(pci, amd64_pci_table);
+
+static struct pci_driver amd64_pci_driver = {
+ .name = EDAC_MOD_STR,
+ .probe = amd64_init_one_instance,
+ .remove = __devexit_p(amd64_remove_one_instance),
+ .id_table = amd64_pci_table,
+};
+
+static void amd64_setup_pci_device(void)
+{
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+
+ if (amd64_ctl_pci)
+ return;
+
+ mci = mci_lookup[0];
+ if (mci) {
+
+ pvt = mci->pvt_info;
+ amd64_ctl_pci =
+ edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
+ EDAC_MOD_STR);
+
+ if (!amd64_ctl_pci) {
+ pr_warning("%s(): Unable to create PCI control\n",
+ __func__);
+
+ pr_warning("%s(): PCI error report via EDAC not set\n",
+ __func__);
+ }
+ }
+}
+
+static int __init amd64_edac_init(void)
+{
+ int nb, err = -ENODEV;
+
+ edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
+
+ opstate_init();
+
+ if (cache_k8_northbridges() < 0)
+ goto err_exit;
+
+ err = pci_register_driver(&amd64_pci_driver);
+ if (err)
+ return err;
+
+ /*
+ * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
+ * amd64_pvt structs. These will be used in the 2nd stage init function
+ * to finish initialization of the MC instances.
+ */
+ for (nb = 0; nb < num_k8_northbridges; nb++) {
+ if (!pvt_lookup[nb])
+ continue;
+
+ err = amd64_init_2nd_stage(pvt_lookup[nb]);
+ if (err)
+ goto err_exit;
+ }
+
+ amd64_setup_pci_device();
+
+ return 0;
+
+err_exit:
+ debugf0("'finish_setup' stage failed\n");
+ pci_unregister_driver(&amd64_pci_driver);
+
+ return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+ if (amd64_ctl_pci)
+ edac_pci_release_generic_ctl(amd64_ctl_pci);
+
+ pci_unregister_driver(&amd64_pci_driver);
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+ "Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+ EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
diff --git a/drivers/edac/amd64_edac.h b/drivers/edac/amd64_edac.h
new file mode 100644
index 00000000000..a159957e167
--- /dev/null
+++ b/drivers/edac/amd64_edac.h
@@ -0,0 +1,644 @@
+/*
+ * AMD64 class Memory Controller kernel module
+ *
+ * Copyright (c) 2009 SoftwareBitMaker.
+ * Copyright (c) 2009 Advanced Micro Devices, Inc.
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License.
+ *
+ * Originally Written by Thayne Harbaugh
+ *
+ * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
+ * - K8 CPU Revision D and greater support
+ *
+ * Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
+ * - Module largely rewritten, with new (and hopefully correct)
+ * code for dealing with node and chip select interleaving,
+ * various code cleanup, and bug fixes
+ * - Added support for memory hoisting using DRAM hole address
+ * register
+ *
+ * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
+ * -K8 Rev (1207) revision support added, required Revision
+ * specific mini-driver code to support Rev F as well as
+ * prior revisions
+ *
+ * Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
+ * -Family 10h revision support added. New PCI Device IDs,
+ * indicating new changes. Actual registers modified
+ * were slight, less than the Rev E to Rev F transition
+ * but changing the PCI Device ID was the proper thing to
+ * do, as it provides for almost automactic family
+ * detection. The mods to Rev F required more family
+ * information detection.
+ *
+ * Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
+ * - misc fixes and code cleanups
+ *
+ * This module is based on the following documents
+ * (available from http://www.amd.com/):
+ *
+ * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
+ * Opteron Processors
+ * AMD publication #: 26094
+ *` Revision: 3.26
+ *
+ * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
+ * Processors
+ * AMD publication #: 32559
+ * Revision: 3.00
+ * Issue Date: May 2006
+ *
+ * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
+ * Processors
+ * AMD publication #: 31116
+ * Revision: 3.00
+ * Issue Date: September 07, 2007
+ *
+ * Sections in the first 2 documents are no longer in sync with each other.
+ * The Family 10h BKDG was totally re-written from scratch with a new
+ * presentation model.
+ * Therefore, comments that refer to a Document section might be off.
+ */
+
+#include <linux/module.h>
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/mmzone.h>
+#include <linux/edac.h>
+#include <asm/msr.h>
+#include "edac_core.h"
+
+#define amd64_printk(level, fmt, arg...) \
+ edac_printk(level, "amd64", fmt, ##arg)
+
+#define amd64_mc_printk(mci, level, fmt, arg...) \
+ edac_mc_chipset_printk(mci, level, "amd64", fmt, ##arg)
+
+/*
+ * Throughout the comments in this code, the following terms are used:
+ *
+ * SysAddr, DramAddr, and InputAddr
+ *
+ * These terms come directly from the amd64 documentation
+ * (AMD publication #26094). They are defined as follows:
+ *
+ * SysAddr:
+ * This is a physical address generated by a CPU core or a device
+ * doing DMA. If generated by a CPU core, a SysAddr is the result of
+ * a virtual to physical address translation by the CPU core's address
+ * translation mechanism (MMU).
+ *
+ * DramAddr:
+ * A DramAddr is derived from a SysAddr by subtracting an offset that
+ * depends on which node the SysAddr maps to and whether the SysAddr
+ * is within a range affected by memory hoisting. The DRAM Base
+ * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
+ * determine which node a SysAddr maps to.
+ *
+ * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
+ * is within the range of addresses specified by this register, then
+ * a value x from the DHAR is subtracted from the SysAddr to produce a
+ * DramAddr. Here, x represents the base address for the node that
+ * the SysAddr maps to plus an offset due to memory hoisting. See
+ * section 3.4.8 and the comments in amd64_get_dram_hole_info() and
+ * sys_addr_to_dram_addr() below for more information.
+ *
+ * If the SysAddr is not affected by the DHAR then a value y is
+ * subtracted from the SysAddr to produce a DramAddr. Here, y is the
+ * base address for the node that the SysAddr maps to. See section
+ * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more
+ * information.
+ *
+ * InputAddr:
+ * A DramAddr is translated to an InputAddr before being passed to the
+ * memory controller for the node that the DramAddr is associated
+ * with. The memory controller then maps the InputAddr to a csrow.
+ * If node interleaving is not in use, then the InputAddr has the same
+ * value as the DramAddr. Otherwise, the InputAddr is produced by
+ * discarding the bits used for node interleaving from the DramAddr.
+ * See section 3.4.4 for more information.
+ *
+ * The memory controller for a given node uses its DRAM CS Base and
+ * DRAM CS Mask registers to map an InputAddr to a csrow. See
+ * sections 3.5.4 and 3.5.5 for more information.
+ */
+
+#define EDAC_AMD64_VERSION " Ver: 3.2.0 " __DATE__
+#define EDAC_MOD_STR "amd64_edac"
+
+/* Extended Model from CPUID, for CPU Revision numbers */
+#define OPTERON_CPU_LE_REV_C 0
+#define OPTERON_CPU_REV_D 1
+#define OPTERON_CPU_REV_E 2
+
+/* NPT processors have the following Extended Models */
+#define OPTERON_CPU_REV_F 4
+#define OPTERON_CPU_REV_FA 5
+
+/* Hardware limit on ChipSelect rows per MC and processors per system */
+#define CHIPSELECT_COUNT 8
+#define DRAM_REG_COUNT 8
+
+
+/*
+ * PCI-defined configuration space registers
+ */
+
+
+/*
+ * Function 1 - Address Map
+ */
+#define K8_DRAM_BASE_LOW 0x40
+#define K8_DRAM_LIMIT_LOW 0x44
+#define K8_DHAR 0xf0
+
+#define DHAR_VALID BIT(0)
+#define F10_DRAM_MEM_HOIST_VALID BIT(1)
+
+#define DHAR_BASE_MASK 0xff000000
+#define dhar_base(dhar) (dhar & DHAR_BASE_MASK)
+
+#define K8_DHAR_OFFSET_MASK 0x0000ff00
+#define k8_dhar_offset(dhar) ((dhar & K8_DHAR_OFFSET_MASK) << 16)
+
+#define F10_DHAR_OFFSET_MASK 0x0000ff80
+ /* NOTE: Extra mask bit vs K8 */
+#define f10_dhar_offset(dhar) ((dhar & F10_DHAR_OFFSET_MASK) << 16)
+
+
+/* F10 High BASE/LIMIT registers */
+#define F10_DRAM_BASE_HIGH 0x140
+#define F10_DRAM_LIMIT_HIGH 0x144
+
+
+/*
+ * Function 2 - DRAM controller
+ */
+#define K8_DCSB0 0x40
+#define F10_DCSB1 0x140
+
+#define K8_DCSB_CS_ENABLE BIT(0)
+#define K8_DCSB_NPT_SPARE BIT(1)
+#define K8_DCSB_NPT_TESTFAIL BIT(2)
+
+/*
+ * REV E: select [31:21] and [15:9] from DCSB and the shift amount to form
+ * the address
+ */
+#define REV_E_DCSB_BASE_BITS (0xFFE0FE00ULL)
+#define REV_E_DCS_SHIFT 4
+#define REV_E_DCSM_COUNT 8
+
+#define REV_F_F1Xh_DCSB_BASE_BITS (0x1FF83FE0ULL)
+#define REV_F_F1Xh_DCS_SHIFT 8
+
+/*
+ * REV F and later: selects [28:19] and [13:5] from DCSB and the shift amount
+ * to form the address
+ */
+#define REV_F_DCSB_BASE_BITS (0x1FF83FE0ULL)
+#define REV_F_DCS_SHIFT 8
+#define REV_F_DCSM_COUNT 4
+#define F10_DCSM_COUNT 4
+#define F11_DCSM_COUNT 2
+
+/* DRAM CS Mask Registers */
+#define K8_DCSM0 0x60
+#define F10_DCSM1 0x160
+
+/* REV E: select [29:21] and [15:9] from DCSM */
+#define REV_E_DCSM_MASK_BITS 0x3FE0FE00
+
+/* unused bits [24:20] and [12:0] */
+#define REV_E_DCS_NOTUSED_BITS 0x01F01FFF
+
+/* REV F and later: select [28:19] and [13:5] from DCSM */
+#define REV_F_F1Xh_DCSM_MASK_BITS 0x1FF83FE0
+
+/* unused bits [26:22] and [12:0] */
+#define REV_F_F1Xh_DCS_NOTUSED_BITS 0x07C01FFF
+
+#define DBAM0 0x80
+#define DBAM1 0x180
+
+/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
+#define DBAM_DIMM(i, reg) ((((reg) >> (4*i))) & 0xF)
+
+#define DBAM_MAX_VALUE 11
+
+
+#define F10_DCLR_0 0x90
+#define F10_DCLR_1 0x190
+#define REVE_WIDTH_128 BIT(16)
+#define F10_WIDTH_128 BIT(11)
+
+
+#define F10_DCHR_0 0x94
+#define F10_DCHR_1 0x194
+
+#define F10_DCHR_FOUR_RANK_DIMM BIT(18)
+#define F10_DCHR_Ddr3Mode BIT(8)
+#define F10_DCHR_MblMode BIT(6)
+
+
+#define F10_DCTL_SEL_LOW 0x110
+
+#define dct_sel_baseaddr(pvt) \
+ ((pvt->dram_ctl_select_low) & 0xFFFFF800)
+
+#define dct_sel_interleave_addr(pvt) \
+ (((pvt->dram_ctl_select_low) >> 6) & 0x3)
+
+enum {
+ F10_DCTL_SEL_LOW_DctSelHiRngEn = BIT(0),
+ F10_DCTL_SEL_LOW_DctSelIntLvEn = BIT(2),
+ F10_DCTL_SEL_LOW_DctGangEn = BIT(4),
+ F10_DCTL_SEL_LOW_DctDatIntLv = BIT(5),
+ F10_DCTL_SEL_LOW_DramEnable = BIT(8),
+ F10_DCTL_SEL_LOW_MemCleared = BIT(10),
+};
+
+#define dct_high_range_enabled(pvt) \
+ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelHiRngEn)
+
+#define dct_interleave_enabled(pvt) \
+ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelIntLvEn)
+
+#define dct_ganging_enabled(pvt) \
+ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctGangEn)
+
+#define dct_data_intlv_enabled(pvt) \
+ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctDatIntLv)
+
+#define dct_dram_enabled(pvt) \
+ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DramEnable)
+
+#define dct_memory_cleared(pvt) \
+ (pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_MemCleared)
+
+
+#define F10_DCTL_SEL_HIGH 0x114
+
+
+/*
+ * Function 3 - Misc Control
+ */
+#define K8_NBCTL 0x40
+
+/* Correctable ECC error reporting enable */
+#define K8_NBCTL_CECCEn BIT(0)
+
+/* UnCorrectable ECC error reporting enable */
+#define K8_NBCTL_UECCEn BIT(1)
+
+#define K8_NBCFG 0x44
+#define K8_NBCFG_CHIPKILL BIT(23)
+#define K8_NBCFG_ECC_ENABLE BIT(22)
+
+#define K8_NBSL 0x48
+
+
+#define EXTRACT_HIGH_SYNDROME(x) (((x) >> 24) & 0xff)
+#define EXTRACT_EXT_ERROR_CODE(x) (((x) >> 16) & 0x1f)
+
+/* Family F10h: Normalized Extended Error Codes */
+#define F10_NBSL_EXT_ERR_RES 0x0
+#define F10_NBSL_EXT_ERR_CRC 0x1
+#define F10_NBSL_EXT_ERR_SYNC 0x2
+#define F10_NBSL_EXT_ERR_MST 0x3
+#define F10_NBSL_EXT_ERR_TGT 0x4
+#define F10_NBSL_EXT_ERR_GART 0x5
+#define F10_NBSL_EXT_ERR_RMW 0x6
+#define F10_NBSL_EXT_ERR_WDT 0x7
+#define F10_NBSL_EXT_ERR_ECC 0x8
+#define F10_NBSL_EXT_ERR_DEV 0x9
+#define F10_NBSL_EXT_ERR_LINK_DATA 0xA
+
+/* Next two are overloaded values */
+#define F10_NBSL_EXT_ERR_LINK_PROTO 0xB
+#define F10_NBSL_EXT_ERR_L3_PROTO 0xB
+
+#define F10_NBSL_EXT_ERR_NB_ARRAY 0xC
+#define F10_NBSL_EXT_ERR_DRAM_PARITY 0xD
+#define F10_NBSL_EXT_ERR_LINK_RETRY 0xE
+
+/* Next two are overloaded values */
+#define F10_NBSL_EXT_ERR_GART_WALK 0xF
+#define F10_NBSL_EXT_ERR_DEV_WALK 0xF
+
+/* 0x10 to 0x1B: Reserved */
+#define F10_NBSL_EXT_ERR_L3_DATA 0x1C
+#define F10_NBSL_EXT_ERR_L3_TAG 0x1D
+#define F10_NBSL_EXT_ERR_L3_LRU 0x1E
+
+/* K8: Normalized Extended Error Codes */
+#define K8_NBSL_EXT_ERR_ECC 0x0
+#define K8_NBSL_EXT_ERR_CRC 0x1
+#define K8_NBSL_EXT_ERR_SYNC 0x2
+#define K8_NBSL_EXT_ERR_MST 0x3
+#define K8_NBSL_EXT_ERR_TGT 0x4
+#define K8_NBSL_EXT_ERR_GART 0x5
+#define K8_NBSL_EXT_ERR_RMW 0x6
+#define K8_NBSL_EXT_ERR_WDT 0x7
+#define K8_NBSL_EXT_ERR_CHIPKILL_ECC 0x8
+#define K8_NBSL_EXT_ERR_DRAM_PARITY 0xD
+
+#define EXTRACT_ERROR_CODE(x) ((x) & 0xffff)
+#define TEST_TLB_ERROR(x) (((x) & 0xFFF0) == 0x0010)
+#define TEST_MEM_ERROR(x) (((x) & 0xFF00) == 0x0100)
+#define TEST_BUS_ERROR(x) (((x) & 0xF800) == 0x0800)
+#define EXTRACT_TT_CODE(x) (((x) >> 2) & 0x3)
+#define EXTRACT_II_CODE(x) (((x) >> 2) & 0x3)
+#define EXTRACT_LL_CODE(x) (((x) >> 0) & 0x3)
+#define EXTRACT_RRRR_CODE(x) (((x) >> 4) & 0xf)
+#define EXTRACT_TO_CODE(x) (((x) >> 8) & 0x1)
+#define EXTRACT_PP_CODE(x) (((x) >> 9) & 0x3)
+
+/*
+ * The following are for BUS type errors AFTER values have been normalized by
+ * shifting right
+ */
+#define K8_NBSL_PP_SRC 0x0
+#define K8_NBSL_PP_RES 0x1
+#define K8_NBSL_PP_OBS 0x2
+#define K8_NBSL_PP_GENERIC 0x3
+
+
+#define K8_NBSH 0x4C
+
+#define K8_NBSH_VALID_BIT BIT(31)
+#define K8_NBSH_OVERFLOW BIT(30)
+#define K8_NBSH_UNCORRECTED_ERR BIT(29)
+#define K8_NBSH_ERR_ENABLE BIT(28)
+#define K8_NBSH_MISC_ERR_VALID BIT(27)
+#define K8_NBSH_VALID_ERROR_ADDR BIT(26)
+#define K8_NBSH_PCC BIT(25)
+#define K8_NBSH_CECC BIT(14)
+#define K8_NBSH_UECC BIT(13)
+#define K8_NBSH_ERR_SCRUBER BIT(8)
+#define K8_NBSH_CORE3 BIT(3)
+#define K8_NBSH_CORE2 BIT(2)
+#define K8_NBSH_CORE1 BIT(1)
+#define K8_NBSH_CORE0 BIT(0)
+
+#define EXTRACT_LDT_LINK(x) (((x) >> 4) & 0x7)
+#define EXTRACT_ERR_CPU_MAP(x) ((x) & 0xF)
+#define EXTRACT_LOW_SYNDROME(x) (((x) >> 15) & 0xff)
+
+
+#define K8_NBEAL 0x50
+#define K8_NBEAH 0x54
+#define K8_SCRCTRL 0x58
+
+#define F10_NB_CFG_LOW 0x88
+#define F10_NB_CFG_LOW_ENABLE_EXT_CFG BIT(14)
+
+#define F10_NB_CFG_HIGH 0x8C
+
+#define F10_ONLINE_SPARE 0xB0
+#define F10_ONLINE_SPARE_SWAPDONE0(x) ((x) & BIT(1))
+#define F10_ONLINE_SPARE_SWAPDONE1(x) ((x) & BIT(3))
+#define F10_ONLINE_SPARE_BADDRAM_CS0(x) (((x) >> 4) & 0x00000007)
+#define F10_ONLINE_SPARE_BADDRAM_CS1(x) (((x) >> 8) & 0x00000007)
+
+#define F10_NB_ARRAY_ADDR 0xB8
+
+#define F10_NB_ARRAY_DRAM_ECC 0x80000000
+
+/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */
+#define SET_NB_ARRAY_ADDRESS(section) (((section) & 0x3) << 1)
+
+#define F10_NB_ARRAY_DATA 0xBC
+
+#define SET_NB_DRAM_INJECTION_WRITE(word, bits) \
+ (BIT(((word) & 0xF) + 20) | \
+ BIT(17) | \
+ ((bits) & 0xF))
+
+#define SET_NB_DRAM_INJECTION_READ(word, bits) \
+ (BIT(((word) & 0xF) + 20) | \
+ BIT(16) | \
+ ((bits) & 0xF))
+
+#define K8_NBCAP 0xE8
+#define K8_NBCAP_CORES (BIT(12)|BIT(13))
+#define K8_NBCAP_CHIPKILL BIT(4)
+#define K8_NBCAP_SECDED BIT(3)
+#define K8_NBCAP_8_NODE BIT(2)
+#define K8_NBCAP_DUAL_NODE BIT(1)
+#define K8_NBCAP_DCT_DUAL BIT(0)
+
+/*
+ * MSR Regs
+ */
+#define K8_MSR_MCGCTL 0x017b
+#define K8_MSR_MCGCTL_NBE BIT(4)
+
+#define K8_MSR_MC4CTL 0x0410
+#define K8_MSR_MC4STAT 0x0411
+#define K8_MSR_MC4ADDR 0x0412
+
+/* AMD sets the first MC device at device ID 0x18. */
+static inline int get_mc_node_id_from_pdev(struct pci_dev *pdev)
+{
+ return PCI_SLOT(pdev->devfn) - 0x18;
+}
+
+enum amd64_chipset_families {
+ K8_CPUS = 0,
+ F10_CPUS,
+ F11_CPUS,
+};
+
+/*
+ * Structure to hold:
+ *
+ * 1) dynamically read status and error address HW registers
+ * 2) sysfs entered values
+ * 3) MCE values
+ *
+ * Depends on entry into the modules
+ */
+struct amd64_error_info_regs {
+ u32 nbcfg;
+ u32 nbsh;
+ u32 nbsl;
+ u32 nbeah;
+ u32 nbeal;
+};
+
+/* Error injection control structure */
+struct error_injection {
+ u32 section;
+ u32 word;
+ u32 bit_map;
+};
+
+struct amd64_pvt {
+ /* pci_device handles which we utilize */
+ struct pci_dev *addr_f1_ctl;
+ struct pci_dev *dram_f2_ctl;
+ struct pci_dev *misc_f3_ctl;
+
+ int mc_node_id; /* MC index of this MC node */
+ int ext_model; /* extended model value of this node */
+
+ struct low_ops *ops; /* pointer to per PCI Device ID func table */
+
+ int channel_count;
+
+ /* Raw registers */
+ u32 dclr0; /* DRAM Configuration Low DCT0 reg */
+ u32 dclr1; /* DRAM Configuration Low DCT1 reg */
+ u32 dchr0; /* DRAM Configuration High DCT0 reg */
+ u32 dchr1; /* DRAM Configuration High DCT1 reg */
+ u32 nbcap; /* North Bridge Capabilities */
+ u32 nbcfg; /* F10 North Bridge Configuration */
+ u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */
+ u32 dhar; /* DRAM Hoist reg */
+ u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */
+ u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */
+
+ /* DRAM CS Base Address Registers F2x[1,0][5C:40] */
+ u32 dcsb0[CHIPSELECT_COUNT];
+ u32 dcsb1[CHIPSELECT_COUNT];
+
+ /* DRAM CS Mask Registers F2x[1,0][6C:60] */
+ u32 dcsm0[CHIPSELECT_COUNT];
+ u32 dcsm1[CHIPSELECT_COUNT];
+
+ /*
+ * Decoded parts of DRAM BASE and LIMIT Registers
+ * F1x[78,70,68,60,58,50,48,40]
+ */
+ u64 dram_base[DRAM_REG_COUNT];
+ u64 dram_limit[DRAM_REG_COUNT];
+ u8 dram_IntlvSel[DRAM_REG_COUNT];
+ u8 dram_IntlvEn[DRAM_REG_COUNT];
+ u8 dram_DstNode[DRAM_REG_COUNT];
+ u8 dram_rw_en[DRAM_REG_COUNT];
+
+ /*
+ * The following fields are set at (load) run time, after CPU revision
+ * has been determined, since the dct_base and dct_mask registers vary
+ * based on revision
+ */
+ u32 dcsb_base; /* DCSB base bits */
+ u32 dcsm_mask; /* DCSM mask bits */
+ u32 num_dcsm; /* Number of DCSM registers */
+ u32 dcs_mask_notused; /* DCSM notused mask bits */
+ u32 dcs_shift; /* DCSB and DCSM shift value */
+
+ u64 top_mem; /* top of memory below 4GB */
+ u64 top_mem2; /* top of memory above 4GB */
+
+ u32 dram_ctl_select_low; /* DRAM Controller Select Low Reg */
+ u32 dram_ctl_select_high; /* DRAM Controller Select High Reg */
+ u32 online_spare; /* On-Line spare Reg */
+
+ /* temp storage for when input is received from sysfs */
+ struct amd64_error_info_regs ctl_error_info;
+
+ /* place to store error injection parameters prior to issue */
+ struct error_injection injection;
+
+ /* Save old hw registers' values before we modified them */
+ u32 nbctl_mcgctl_saved; /* When true, following 2 are valid */
+ u32 old_nbctl;
+ unsigned long old_mcgctl; /* per core on this node */
+
+ /* MC Type Index value: socket F vs Family 10h */
+ u32 mc_type_index;
+
+ /* misc settings */
+ struct flags {
+ unsigned long cf8_extcfg:1;
+ } flags;
+};
+
+struct scrubrate {
+ u32 scrubval; /* bit pattern for scrub rate */
+ u32 bandwidth; /* bandwidth consumed (bytes/sec) */
+};
+
+extern struct scrubrate scrubrates[23];
+extern u32 revf_quad_ddr2_shift[16];
+extern const char *tt_msgs[4];
+extern const char *ll_msgs[4];
+extern const char *rrrr_msgs[16];
+extern const char *to_msgs[2];
+extern const char *pp_msgs[4];
+extern const char *ii_msgs[4];
+extern const char *ext_msgs[32];
+extern const char *htlink_msgs[8];
+
+#ifdef CONFIG_EDAC_DEBUG
+#define NUM_DBG_ATTRS 9
+#else
+#define NUM_DBG_ATTRS 0
+#endif
+
+#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
+#define NUM_INJ_ATTRS 5
+#else
+#define NUM_INJ_ATTRS 0
+#endif
+
+extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
+ amd64_inj_attrs[NUM_INJ_ATTRS];
+
+/*
+ * Each of the PCI Device IDs types have their own set of hardware accessor
+ * functions and per device encoding/decoding logic.
+ */
+struct low_ops {
+ int (*probe_valid_hardware)(struct amd64_pvt *pvt);
+ int (*early_channel_count)(struct amd64_pvt *pvt);
+
+ u64 (*get_error_address)(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info);
+ void (*read_dram_base_limit)(struct amd64_pvt *pvt, int dram);
+ void (*read_dram_ctl_register)(struct amd64_pvt *pvt);
+ void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info,
+ u64 SystemAddr);
+ int (*dbam_map_to_pages)(struct amd64_pvt *pvt, int dram_map);
+};
+
+struct amd64_family_type {
+ const char *ctl_name;
+ u16 addr_f1_ctl;
+ u16 misc_f3_ctl;
+ struct low_ops ops;
+};
+
+static struct amd64_family_type amd64_family_types[];
+
+static inline const char *get_amd_family_name(int index)
+{
+ return amd64_family_types[index].ctl_name;
+}
+
+static inline struct low_ops *family_ops(int index)
+{
+ return &amd64_family_types[index].ops;
+}
+
+/*
+ * For future CPU versions, verify the following as new 'slow' rates appear and
+ * modify the necessary skip values for the supported CPU.
+ */
+#define K8_MIN_SCRUB_RATE_BITS 0x0
+#define F10_MIN_SCRUB_RATE_BITS 0x5
+#define F11_MIN_SCRUB_RATE_BITS 0x6
+
+int amd64_process_error_info(struct mem_ctl_info *mci,
+ struct amd64_error_info_regs *info,
+ int handle_errors);
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+ u64 *hole_offset, u64 *hole_size);
diff --git a/drivers/edac/amd64_edac_dbg.c b/drivers/edac/amd64_edac_dbg.c
new file mode 100644
index 00000000000..0a41b248a4a
--- /dev/null
+++ b/drivers/edac/amd64_edac_dbg.c
@@ -0,0 +1,255 @@
+#include "amd64_edac.h"
+
+/*
+ * accept a hex value and store it into the virtual error register file, field:
+ * nbeal and nbeah. Assume virtual error values have already been set for: NBSL,
+ * NBSH and NBCFG. Then proceed to map the error values to a MC, CSROW and
+ * CHANNEL
+ */
+static ssize_t amd64_nbea_store(struct mem_ctl_info *mci, const char *data,
+ size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long long value;
+ int ret = 0;
+
+ ret = strict_strtoull(data, 16, &value);
+ if (ret != -EINVAL) {
+ debugf0("received NBEA= 0x%llx\n", value);
+
+ /* place the value into the virtual error packet */
+ pvt->ctl_error_info.nbeal = (u32) value;
+ value >>= 32;
+ pvt->ctl_error_info.nbeah = (u32) value;
+
+ /* Process the Mapping request */
+ /* TODO: Add race prevention */
+ amd64_process_error_info(mci, &pvt->ctl_error_info, 1);
+
+ return count;
+ }
+ return ret;
+}
+
+/* display back what the last NBEA (MCA NB Address (MC4_ADDR)) was written */
+static ssize_t amd64_nbea_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 value;
+
+ value = pvt->ctl_error_info.nbeah;
+ value <<= 32;
+ value |= pvt->ctl_error_info.nbeal;
+
+ return sprintf(data, "%llx\n", value);
+}
+
+/* store the NBSL (MCA NB Status Low (MC4_STATUS)) value user desires */
+static ssize_t amd64_nbsl_store(struct mem_ctl_info *mci, const char *data,
+ size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 16, &value);
+ if (ret != -EINVAL) {
+ debugf0("received NBSL= 0x%lx\n", value);
+
+ pvt->ctl_error_info.nbsl = (u32) value;
+
+ return count;
+ }
+ return ret;
+}
+
+/* display back what the last NBSL value written */
+static ssize_t amd64_nbsl_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 value;
+
+ value = pvt->ctl_error_info.nbsl;
+
+ return sprintf(data, "%x\n", value);
+}
+
+/* store the NBSH (MCA NB Status High) value user desires */
+static ssize_t amd64_nbsh_store(struct mem_ctl_info *mci, const char *data,
+ size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 16, &value);
+ if (ret != -EINVAL) {
+ debugf0("received NBSH= 0x%lx\n", value);
+
+ pvt->ctl_error_info.nbsh = (u32) value;
+
+ return count;
+ }
+ return ret;
+}
+
+/* display back what the last NBSH value written */
+static ssize_t amd64_nbsh_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 value;
+
+ value = pvt->ctl_error_info.nbsh;
+
+ return sprintf(data, "%x\n", value);
+}
+
+/* accept and store the NBCFG (MCA NB Configuration) value user desires */
+static ssize_t amd64_nbcfg_store(struct mem_ctl_info *mci,
+ const char *data, size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 16, &value);
+ if (ret != -EINVAL) {
+ debugf0("received NBCFG= 0x%lx\n", value);
+
+ pvt->ctl_error_info.nbcfg = (u32) value;
+
+ return count;
+ }
+ return ret;
+}
+
+/* various show routines for the controls of a MCI */
+static ssize_t amd64_nbcfg_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return sprintf(data, "%x\n", pvt->ctl_error_info.nbcfg);
+}
+
+
+static ssize_t amd64_dhar_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return sprintf(data, "%x\n", pvt->dhar);
+}
+
+
+static ssize_t amd64_dbam_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return sprintf(data, "%x\n", pvt->dbam0);
+}
+
+
+static ssize_t amd64_topmem_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return sprintf(data, "%llx\n", pvt->top_mem);
+}
+
+
+static ssize_t amd64_topmem2_show(struct mem_ctl_info *mci, char *data)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ return sprintf(data, "%llx\n", pvt->top_mem2);
+}
+
+static ssize_t amd64_hole_show(struct mem_ctl_info *mci, char *data)
+{
+ u64 hole_base = 0;
+ u64 hole_offset = 0;
+ u64 hole_size = 0;
+
+ amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
+
+ return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
+ hole_size);
+}
+
+/*
+ * update NUM_DBG_ATTRS in case you add new members
+ */
+struct mcidev_sysfs_attribute amd64_dbg_attrs[] = {
+
+ {
+ .attr = {
+ .name = "nbea_ctl",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = amd64_nbea_show,
+ .store = amd64_nbea_store,
+ },
+ {
+ .attr = {
+ .name = "nbsl_ctl",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = amd64_nbsl_show,
+ .store = amd64_nbsl_store,
+ },
+ {
+ .attr = {
+ .name = "nbsh_ctl",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = amd64_nbsh_show,
+ .store = amd64_nbsh_store,
+ },
+ {
+ .attr = {
+ .name = "nbcfg_ctl",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = amd64_nbcfg_show,
+ .store = amd64_nbcfg_store,
+ },
+ {
+ .attr = {
+ .name = "dhar",
+ .mode = (S_IRUGO)
+ },
+ .show = amd64_dhar_show,
+ .store = NULL,
+ },
+ {
+ .attr = {
+ .name = "dbam",
+ .mode = (S_IRUGO)
+ },
+ .show = amd64_dbam_show,
+ .store = NULL,
+ },
+ {
+ .attr = {
+ .name = "topmem",
+ .mode = (S_IRUGO)
+ },
+ .show = amd64_topmem_show,
+ .store = NULL,
+ },
+ {
+ .attr = {
+ .name = "topmem2",
+ .mode = (S_IRUGO)
+ },
+ .show = amd64_topmem2_show,
+ .store = NULL,
+ },
+ {
+ .attr = {
+ .name = "dram_hole",
+ .mode = (S_IRUGO)
+ },
+ .show = amd64_hole_show,
+ .store = NULL,
+ },
+};
diff --git a/drivers/edac/amd64_edac_err_types.c b/drivers/edac/amd64_edac_err_types.c
new file mode 100644
index 00000000000..f212ff12a9d
--- /dev/null
+++ b/drivers/edac/amd64_edac_err_types.c
@@ -0,0 +1,161 @@
+#include "amd64_edac.h"
+
+/*
+ * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
+ * for DDR2 DRAM mapping.
+ */
+u32 revf_quad_ddr2_shift[] = {
+ 0, /* 0000b NULL DIMM (128mb) */
+ 28, /* 0001b 256mb */
+ 29, /* 0010b 512mb */
+ 29, /* 0011b 512mb */
+ 29, /* 0100b 512mb */
+ 30, /* 0101b 1gb */
+ 30, /* 0110b 1gb */
+ 31, /* 0111b 2gb */
+ 31, /* 1000b 2gb */
+ 32, /* 1001b 4gb */
+ 32, /* 1010b 4gb */
+ 33, /* 1011b 8gb */
+ 0, /* 1100b future */
+ 0, /* 1101b future */
+ 0, /* 1110b future */
+ 0 /* 1111b future */
+};
+
+/*
+ * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
+ * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
+ * or higher value'.
+ *
+ *FIXME: Produce a better mapping/linearisation.
+ */
+
+struct scrubrate scrubrates[] = {
+ { 0x01, 1600000000UL},
+ { 0x02, 800000000UL},
+ { 0x03, 400000000UL},
+ { 0x04, 200000000UL},
+ { 0x05, 100000000UL},
+ { 0x06, 50000000UL},
+ { 0x07, 25000000UL},
+ { 0x08, 12284069UL},
+ { 0x09, 6274509UL},
+ { 0x0A, 3121951UL},
+ { 0x0B, 1560975UL},
+ { 0x0C, 781440UL},
+ { 0x0D, 390720UL},
+ { 0x0E, 195300UL},
+ { 0x0F, 97650UL},
+ { 0x10, 48854UL},
+ { 0x11, 24427UL},
+ { 0x12, 12213UL},
+ { 0x13, 6101UL},
+ { 0x14, 3051UL},
+ { 0x15, 1523UL},
+ { 0x16, 761UL},
+ { 0x00, 0UL}, /* scrubbing off */
+};
+
+/*
+ * string representation for the different MCA reported error types, see F3x48
+ * or MSR0000_0411.
+ */
+const char *tt_msgs[] = { /* transaction type */
+ "instruction",
+ "data",
+ "generic",
+ "reserved"
+};
+
+const char *ll_msgs[] = { /* cache level */
+ "L0",
+ "L1",
+ "L2",
+ "L3/generic"
+};
+
+const char *rrrr_msgs[] = {
+ "generic",
+ "generic read",
+ "generic write",
+ "data read",
+ "data write",
+ "inst fetch",
+ "prefetch",
+ "evict",
+ "snoop",
+ "reserved RRRR= 9",
+ "reserved RRRR= 10",
+ "reserved RRRR= 11",
+ "reserved RRRR= 12",
+ "reserved RRRR= 13",
+ "reserved RRRR= 14",
+ "reserved RRRR= 15"
+};
+
+const char *pp_msgs[] = { /* participating processor */
+ "local node originated (SRC)",
+ "local node responded to request (RES)",
+ "local node observed as 3rd party (OBS)",
+ "generic"
+};
+
+const char *to_msgs[] = {
+ "no timeout",
+ "timed out"
+};
+
+const char *ii_msgs[] = { /* memory or i/o */
+ "mem access",
+ "reserved",
+ "i/o access",
+ "generic"
+};
+
+/* Map the 5 bits of Extended Error code to the string table. */
+const char *ext_msgs[] = { /* extended error */
+ "K8 ECC error/F10 reserved", /* 0_0000b */
+ "CRC error", /* 0_0001b */
+ "sync error", /* 0_0010b */
+ "mst abort", /* 0_0011b */
+ "tgt abort", /* 0_0100b */
+ "GART error", /* 0_0101b */
+ "RMW error", /* 0_0110b */
+ "Wdog timer error", /* 0_0111b */
+ "F10-ECC/K8-Chipkill error", /* 0_1000b */
+ "DEV Error", /* 0_1001b */
+ "Link Data error", /* 0_1010b */
+ "Link or L3 Protocol error", /* 0_1011b */
+ "NB Array error", /* 0_1100b */
+ "DRAM Parity error", /* 0_1101b */
+ "Link Retry/GART Table Walk/DEV Table Walk error", /* 0_1110b */
+ "Res 0x0ff error", /* 0_1111b */
+ "Res 0x100 error", /* 1_0000b */
+ "Res 0x101 error", /* 1_0001b */
+ "Res 0x102 error", /* 1_0010b */
+ "Res 0x103 error", /* 1_0011b */
+ "Res 0x104 error", /* 1_0100b */
+ "Res 0x105 error", /* 1_0101b */
+ "Res 0x106 error", /* 1_0110b */
+ "Res 0x107 error", /* 1_0111b */
+ "Res 0x108 error", /* 1_1000b */
+ "Res 0x109 error", /* 1_1001b */
+ "Res 0x10A error", /* 1_1010b */
+ "Res 0x10B error", /* 1_1011b */
+ "L3 Cache Data error", /* 1_1100b */
+ "L3 CacheTag error", /* 1_1101b */
+ "L3 Cache LRU error", /* 1_1110b */
+ "Res 0x1FF error" /* 1_1111b */
+};
+
+const char *htlink_msgs[] = {
+ "none",
+ "1",
+ "2",
+ "1 2",
+ "3",
+ "1 3",
+ "2 3",
+ "1 2 3"
+};
diff --git a/drivers/edac/amd64_edac_inj.c b/drivers/edac/amd64_edac_inj.c
new file mode 100644
index 00000000000..d3675b76b3a
--- /dev/null
+++ b/drivers/edac/amd64_edac_inj.c
@@ -0,0 +1,185 @@
+#include "amd64_edac.h"
+
+/*
+ * store error injection section value which refers to one of 4 16-byte sections
+ * within a 64-byte cacheline
+ *
+ * range: 0..3
+ */
+static ssize_t amd64_inject_section_store(struct mem_ctl_info *mci,
+ const char *data, size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 10, &value);
+ if (ret != -EINVAL) {
+ pvt->injection.section = (u32) value;
+ return count;
+ }
+ return ret;
+}
+
+/*
+ * store error injection word value which refers to one of 9 16-bit word of the
+ * 16-byte (128-bit + ECC bits) section
+ *
+ * range: 0..8
+ */
+static ssize_t amd64_inject_word_store(struct mem_ctl_info *mci,
+ const char *data, size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 10, &value);
+ if (ret != -EINVAL) {
+
+ value = (value <= 8) ? value : 0;
+ pvt->injection.word = (u32) value;
+
+ return count;
+ }
+ return ret;
+}
+
+/*
+ * store 16 bit error injection vector which enables injecting errors to the
+ * corresponding bit within the error injection word above. When used during a
+ * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
+ */
+static ssize_t amd64_inject_ecc_vector_store(struct mem_ctl_info *mci,
+ const char *data, size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 16, &value);
+ if (ret != -EINVAL) {
+
+ pvt->injection.bit_map = (u32) value & 0xFFFF;
+
+ return count;
+ }
+ return ret;
+}
+
+/*
+ * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
+ * fields needed by the injection registers and read the NB Array Data Port.
+ */
+static ssize_t amd64_inject_read_store(struct mem_ctl_info *mci,
+ const char *data, size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ u32 section, word_bits;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 10, &value);
+ if (ret != -EINVAL) {
+
+ /* Form value to choose 16-byte section of cacheline */
+ section = F10_NB_ARRAY_DRAM_ECC |
+ SET_NB_ARRAY_ADDRESS(pvt->injection.section);
+ pci_write_config_dword(pvt->misc_f3_ctl,
+ F10_NB_ARRAY_ADDR, section);
+
+ word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection.word,
+ pvt->injection.bit_map);
+
+ /* Issue 'word' and 'bit' along with the READ request */
+ pci_write_config_dword(pvt->misc_f3_ctl,
+ F10_NB_ARRAY_DATA, word_bits);
+
+ debugf0("section=0x%x word_bits=0x%x\n", section, word_bits);
+
+ return count;
+ }
+ return ret;
+}
+
+/*
+ * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
+ * fields needed by the injection registers.
+ */
+static ssize_t amd64_inject_write_store(struct mem_ctl_info *mci,
+ const char *data, size_t count)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ u32 section, word_bits;
+ int ret = 0;
+
+ ret = strict_strtoul(data, 10, &value);
+ if (ret != -EINVAL) {
+
+ /* Form value to choose 16-byte section of cacheline */
+ section = F10_NB_ARRAY_DRAM_ECC |
+ SET_NB_ARRAY_ADDRESS(pvt->injection.section);
+ pci_write_config_dword(pvt->misc_f3_ctl,
+ F10_NB_ARRAY_ADDR, section);
+
+ word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection.word,
+ pvt->injection.bit_map);
+
+ /* Issue 'word' and 'bit' along with the READ request */
+ pci_write_config_dword(pvt->misc_f3_ctl,
+ F10_NB_ARRAY_DATA, word_bits);
+
+ debugf0("section=0x%x word_bits=0x%x\n", section, word_bits);
+
+ return count;
+ }
+ return ret;
+}
+
+/*
+ * update NUM_INJ_ATTRS in case you add new members
+ */
+struct mcidev_sysfs_attribute amd64_inj_attrs[] = {
+
+ {
+ .attr = {
+ .name = "inject_section",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = NULL,
+ .store = amd64_inject_section_store,
+ },
+ {
+ .attr = {
+ .name = "inject_word",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = NULL,
+ .store = amd64_inject_word_store,
+ },
+ {
+ .attr = {
+ .name = "inject_ecc_vector",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = NULL,
+ .store = amd64_inject_ecc_vector_store,
+ },
+ {
+ .attr = {
+ .name = "inject_write",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = NULL,
+ .store = amd64_inject_write_store,
+ },
+ {
+ .attr = {
+ .name = "inject_read",
+ .mode = (S_IRUGO | S_IWUSR)
+ },
+ .show = NULL,
+ .store = amd64_inject_read_store,
+ },
+};
diff --git a/drivers/edac/edac_core.h b/drivers/edac/edac_core.h
index 6ad95c8d636..48d3b140983 100644
--- a/drivers/edac/edac_core.h
+++ b/drivers/edac/edac_core.h
@@ -76,10 +76,11 @@
extern int edac_debug_level;
#ifndef CONFIG_EDAC_DEBUG_VERBOSE
-#define edac_debug_printk(level, fmt, arg...) \
- do { \
- if (level <= edac_debug_level) \
- edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
+#define edac_debug_printk(level, fmt, arg...) \
+ do { \
+ if (level <= edac_debug_level) \
+ edac_printk(KERN_DEBUG, EDAC_DEBUG, \
+ "%s: " fmt, __func__, ##arg); \
} while (0)
#else /* CONFIG_EDAC_DEBUG_VERBOSE */
#define edac_debug_printk(level, fmt, arg...) \