summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/mtd/ubi/build.c2
-rw-r--r--drivers/mtd/ubi/debug.h6
-rw-r--r--drivers/mtd/ubi/eba.c22
-rw-r--r--drivers/mtd/ubi/io.c22
-rw-r--r--drivers/mtd/ubi/scan.c28
-rw-r--r--drivers/mtd/ubi/scan.h19
-rw-r--r--drivers/mtd/ubi/ubi-media.h23
-rw-r--r--drivers/mtd/ubi/ubi.h37
-rw-r--r--drivers/mtd/ubi/wl.c94
-rw-r--r--include/linux/mtd/ubi.h4
10 files changed, 129 insertions, 128 deletions
diff --git a/drivers/mtd/ubi/build.c b/drivers/mtd/ubi/build.c
index a5b19944eca..27271fe32e0 100644
--- a/drivers/mtd/ubi/build.c
+++ b/drivers/mtd/ubi/build.c
@@ -524,7 +524,7 @@ out_si:
}
/**
- * io_init - initialize I/O unit for a given UBI device.
+ * io_init - initialize I/O sub-system for a given UBI device.
* @ubi: UBI device description object
*
* If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
diff --git a/drivers/mtd/ubi/debug.h b/drivers/mtd/ubi/debug.h
index 8ea99d8c9e1..7d8d77c31df 100644
--- a/drivers/mtd/ubi/debug.h
+++ b/drivers/mtd/ubi/debug.h
@@ -76,21 +76,21 @@ void ubi_dbg_dump_mkvol_req(const struct ubi_mkvol_req *req);
#endif /* CONFIG_MTD_UBI_DEBUG_MSG */
#ifdef CONFIG_MTD_UBI_DEBUG_MSG_EBA
-/* Messages from the eraseblock association unit */
+/* Messages from the eraseblock association sub-system */
#define dbg_eba(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
#else
#define dbg_eba(fmt, ...) ({})
#endif
#ifdef CONFIG_MTD_UBI_DEBUG_MSG_WL
-/* Messages from the wear-leveling unit */
+/* Messages from the wear-leveling sub-system */
#define dbg_wl(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
#else
#define dbg_wl(fmt, ...) ({})
#endif
#ifdef CONFIG_MTD_UBI_DEBUG_MSG_IO
-/* Messages from the input/output unit */
+/* Messages from the input/output sub-system */
#define dbg_io(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
#else
#define dbg_io(fmt, ...) ({})
diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c
index 8dc488fc0cd..613cd1e5164 100644
--- a/drivers/mtd/ubi/eba.c
+++ b/drivers/mtd/ubi/eba.c
@@ -19,20 +19,20 @@
*/
/*
- * The UBI Eraseblock Association (EBA) unit.
+ * The UBI Eraseblock Association (EBA) sub-system.
*
- * This unit is responsible for I/O to/from logical eraseblock.
+ * This sub-system is responsible for I/O to/from logical eraseblock.
*
* Although in this implementation the EBA table is fully kept and managed in
* RAM, which assumes poor scalability, it might be (partially) maintained on
* flash in future implementations.
*
- * The EBA unit implements per-logical eraseblock locking. Before accessing a
- * logical eraseblock it is locked for reading or writing. The per-logical
- * eraseblock locking is implemented by means of the lock tree. The lock tree
- * is an RB-tree which refers all the currently locked logical eraseblocks. The
- * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
- * (@vol_id, @lnum) pairs.
+ * The EBA sub-system implements per-logical eraseblock locking. Before
+ * accessing a logical eraseblock it is locked for reading or writing. The
+ * per-logical eraseblock locking is implemented by means of the lock tree. The
+ * lock tree is an RB-tree which refers all the currently locked logical
+ * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
+ * They are indexed by (@vol_id, @lnum) pairs.
*
* EBA also maintains the global sequence counter which is incremented each
* time a logical eraseblock is mapped to a physical eraseblock and it is
@@ -1128,7 +1128,7 @@ out_unlock_leb:
}
/**
- * ubi_eba_init_scan - initialize the EBA unit using scanning information.
+ * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
* @ubi: UBI device description object
* @si: scanning information
*
@@ -1143,7 +1143,7 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
struct ubi_scan_leb *seb;
struct rb_node *rb;
- dbg_eba("initialize EBA unit");
+ dbg_eba("initialize EBA sub-system");
spin_lock_init(&ubi->ltree_lock);
mutex_init(&ubi->alc_mutex);
@@ -1209,7 +1209,7 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
}
- dbg_eba("EBA unit is initialized");
+ dbg_eba("EBA sub-system is initialized");
return 0;
out_free:
diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c
index 4ac11df7b04..561e7b2f96c 100644
--- a/drivers/mtd/ubi/io.c
+++ b/drivers/mtd/ubi/io.c
@@ -20,15 +20,15 @@
*/
/*
- * UBI input/output unit.
+ * UBI input/output sub-system.
*
- * This unit provides a uniform way to work with all kinds of the underlying
- * MTD devices. It also implements handy functions for reading and writing UBI
- * headers.
+ * This sub-system provides a uniform way to work with all kinds of the
+ * underlying MTD devices. It also implements handy functions for reading and
+ * writing UBI headers.
*
* We are trying to have a paranoid mindset and not to trust to what we read
- * from the flash media in order to be more secure and robust. So this unit
- * validates every single header it reads from the flash media.
+ * from the flash media in order to be more secure and robust. So this
+ * sub-system validates every single header it reads from the flash media.
*
* Some words about how the eraseblock headers are stored.
*
@@ -79,11 +79,11 @@
* 512-byte chunks, we have to allocate one more buffer and copy our VID header
* to offset 448 of this buffer.
*
- * The I/O unit does the following trick in order to avoid this extra copy.
- * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
- * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
- * VID header is being written out, it shifts the VID header pointer back and
- * writes the whole sub-page.
+ * The I/O sub-system does the following trick in order to avoid this extra
+ * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
+ * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
+ * When the VID header is being written out, it shifts the VID header pointer
+ * back and writes the whole sub-page.
*/
#include <linux/crc32.h>
diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c
index 96d410e106a..892c2ba4977 100644
--- a/drivers/mtd/ubi/scan.c
+++ b/drivers/mtd/ubi/scan.c
@@ -19,9 +19,9 @@
*/
/*
- * UBI scanning unit.
+ * UBI scanning sub-system.
*
- * This unit is responsible for scanning the flash media, checking UBI
+ * This sub-system is responsible for scanning the flash media, checking UBI
* headers and providing complete information about the UBI flash image.
*
* The scanning information is represented by a &struct ubi_scan_info' object.
@@ -103,7 +103,7 @@ static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
* non-zero if an inconsistency was found and zero if not.
*
* Note, UBI does sanity check of everything it reads from the flash media.
- * Most of the checks are done in the I/O unit. Here we check that the
+ * Most of the checks are done in the I/O sub-system. Here we check that the
* information in the VID header is consistent to the information in other VID
* headers of the same volume.
*/
@@ -256,8 +256,8 @@ static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
* that versions that are close to %0xFFFFFFFF are less then
* versions that are close to %0.
*
- * The UBI WL unit guarantees that the number of pending tasks
- * is not greater then %0x7FFFFFFF. So, if the difference
+ * The UBI WL sub-system guarantees that the number of pending
+ * tasks is not greater then %0x7FFFFFFF. So, if the difference
* between any two versions is greater or equivalent to
* %0x7FFFFFFF, there was an overflow and the logical
* eraseblock with lower version is actually newer then the one
@@ -645,9 +645,9 @@ void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
*
* This function erases physical eraseblock 'pnum', and writes the erase
* counter header to it. This function should only be used on UBI device
- * initialization stages, when the EBA unit had not been yet initialized. This
- * function returns zero in case of success and a negative error code in case
- * of failure.
+ * initialization stages, when the EBA sub-system had not been yet initialized.
+ * This function returns zero in case of success and a negative error code in
+ * case of failure.
*/
int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
int pnum, int ec)
@@ -687,9 +687,10 @@ out_free:
* @si: scanning information
*
* This function returns a free physical eraseblock. It is supposed to be
- * called on the UBI initialization stages when the wear-leveling unit is not
- * initialized yet. This function picks a physical eraseblocks from one of the
- * lists, writes the EC header if it is needed, and removes it from the list.
+ * called on the UBI initialization stages when the wear-leveling sub-system is
+ * not initialized yet. This function picks a physical eraseblocks from one of
+ * the lists, writes the EC header if it is needed, and removes it from the
+ * list.
*
* This function returns scanning physical eraseblock information in case of
* success and an error code in case of failure.
@@ -764,8 +765,9 @@ static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum
return err;
else if (err) {
/*
- * FIXME: this is actually duty of the I/O unit to initialize
- * this, but MTD does not provide enough information.
+ * FIXME: this is actually duty of the I/O sub-system to
+ * initialize this, but MTD does not provide enough
+ * information.
*/
si->bad_peb_count += 1;
return 0;
diff --git a/drivers/mtd/ubi/scan.h b/drivers/mtd/ubi/scan.h
index 966b9b682a4..4e2e3cc0bec 100644
--- a/drivers/mtd/ubi/scan.h
+++ b/drivers/mtd/ubi/scan.h
@@ -59,16 +59,16 @@ struct ubi_scan_leb {
* @leb_count: number of logical eraseblocks in this volume
* @vol_type: volume type
* @used_ebs: number of used logical eraseblocks in this volume (only for
- * static volumes)
+ * static volumes)
* @last_data_size: amount of data in the last logical eraseblock of this
- * volume (always equivalent to the usable logical eraseblock size in case of
- * dynamic volumes)
+ * volume (always equivalent to the usable logical eraseblock
+ * size in case of dynamic volumes)
* @data_pad: how many bytes at the end of logical eraseblocks of this volume
- * are not used (due to volume alignment)
+ * are not used (due to volume alignment)
* @compat: compatibility flags of this volume
* @rb: link in the volume RB-tree
* @root: root of the RB-tree containing all the eraseblock belonging to this
- * volume (&struct ubi_scan_leb objects)
+ * volume (&struct ubi_scan_leb objects)
*
* One object of this type is allocated for each volume during scanning.
*/
@@ -92,8 +92,8 @@ struct ubi_scan_volume {
* @free: list of free physical eraseblocks
* @erase: list of physical eraseblocks which have to be erased
* @alien: list of physical eraseblocks which should not be used by UBI (e.g.,
+ * those belonging to "preserve"-compatible internal volumes)
* @bad_peb_count: count of bad physical eraseblocks
- * those belonging to "preserve"-compatible internal volumes)
* @vols_found: number of volumes found during scanning
* @highest_vol_id: highest volume ID
* @alien_peb_count: count of physical eraseblocks in the @alien list
@@ -106,8 +106,8 @@ struct ubi_scan_volume {
* @ec_count: a temporary variable used when calculating @mean_ec
*
* This data structure contains the result of scanning and may be used by other
- * UBI units to build final UBI data structures, further error-recovery and so
- * on.
+ * UBI sub-systems to build final UBI data structures, further error-recovery
+ * and so on.
*/
struct ubi_scan_info {
struct rb_root volumes;
@@ -132,8 +132,7 @@ struct ubi_device;
struct ubi_vid_hdr;
/*
- * ubi_scan_move_to_list - move a physical eraseblock from the volume tree to a
- * list.
+ * ubi_scan_move_to_list - move a PEB from the volume tree to a list.
*
* @sv: volume scanning information
* @seb: scanning eraseblock infprmation
diff --git a/drivers/mtd/ubi/ubi-media.h b/drivers/mtd/ubi/ubi-media.h
index c3185d9fd04..26bb7af9787 100644
--- a/drivers/mtd/ubi/ubi-media.h
+++ b/drivers/mtd/ubi/ubi-media.h
@@ -98,10 +98,11 @@ enum {
* Compatibility constants used by internal volumes.
*
* @UBI_COMPAT_DELETE: delete this internal volume before anything is written
- * to the flash
+ * to the flash
* @UBI_COMPAT_RO: attach this device in read-only mode
* @UBI_COMPAT_PRESERVE: preserve this internal volume - do not touch its
- * physical eraseblocks, don't allow the wear-leveling unit to move them
+ * physical eraseblocks, don't allow the wear-leveling
+ * sub-system to move them
* @UBI_COMPAT_REJECT: reject this UBI image
*/
enum {
@@ -123,7 +124,7 @@ enum {
* struct ubi_ec_hdr - UBI erase counter header.
* @magic: erase counter header magic number (%UBI_EC_HDR_MAGIC)
* @version: version of UBI implementation which is supposed to accept this
- * UBI image
+ * UBI image
* @padding1: reserved for future, zeroes
* @ec: the erase counter
* @vid_hdr_offset: where the VID header starts
@@ -159,20 +160,20 @@ struct ubi_ec_hdr {
* struct ubi_vid_hdr - on-flash UBI volume identifier header.
* @magic: volume identifier header magic number (%UBI_VID_HDR_MAGIC)
* @version: UBI implementation version which is supposed to accept this UBI
- * image (%UBI_VERSION)
+ * image (%UBI_VERSION)
* @vol_type: volume type (%UBI_VID_DYNAMIC or %UBI_VID_STATIC)
* @copy_flag: if this logical eraseblock was copied from another physical
- * eraseblock (for wear-leveling reasons)
+ * eraseblock (for wear-leveling reasons)
* @compat: compatibility of this volume (%0, %UBI_COMPAT_DELETE,
- * %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT)
+ * %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT)
* @vol_id: ID of this volume
* @lnum: logical eraseblock number
* @leb_ver: version of this logical eraseblock (IMPORTANT: obsolete, to be
- * removed, kept only for not breaking older UBI users)
+ * removed, kept only for not breaking older UBI users)
* @data_size: how many bytes of data this logical eraseblock contains
* @used_ebs: total number of used logical eraseblocks in this volume
* @data_pad: how many bytes at the end of this physical eraseblock are not
- * used
+ * used
* @data_crc: CRC checksum of the data stored in this logical eraseblock
* @padding1: reserved for future, zeroes
* @sqnum: sequence number
@@ -248,9 +249,9 @@ struct ubi_ec_hdr {
* The @data_crc field contains the CRC checksum of the contents of the logical
* eraseblock if this is a static volume. In case of dynamic volumes, it does
* not contain the CRC checksum as a rule. The only exception is when the
- * data of the physical eraseblock was moved by the wear-leveling unit, then
- * the wear-leveling unit calculates the data CRC and stores it in the
- * @data_crc field. And of course, the @copy_flag is %in this case.
+ * data of the physical eraseblock was moved by the wear-leveling sub-system,
+ * then the wear-leveling sub-system calculates the data CRC and stores it in
+ * the @data_crc field. And of course, the @copy_flag is %in this case.
*
* The @data_size field is used only for static volumes because UBI has to know
* how many bytes of data are stored in this eraseblock. For dynamic volumes,
diff --git a/drivers/mtd/ubi/ubi.h b/drivers/mtd/ubi/ubi.h
index 940f6b7deec..1fc32c863b7 100644
--- a/drivers/mtd/ubi/ubi.h
+++ b/drivers/mtd/ubi/ubi.h
@@ -74,15 +74,15 @@
#define UBI_IO_RETRIES 3
/*
- * Error codes returned by the I/O unit.
+ * Error codes returned by the I/O sub-system.
*
* UBI_IO_PEB_EMPTY: the physical eraseblock is empty, i.e. it contains only
- * 0xFF bytes
+ * %0xFF bytes
* UBI_IO_PEB_FREE: the physical eraseblock is free, i.e. it contains only a
- * valid erase counter header, and the rest are %0xFF bytes
+ * valid erase counter header, and the rest are %0xFF bytes
* UBI_IO_BAD_EC_HDR: the erase counter header is corrupted (bad magic or CRC)
* UBI_IO_BAD_VID_HDR: the volume identifier header is corrupted (bad magic or
- * CRC)
+ * CRC)
* UBI_IO_BITFLIPS: bit-flips were detected and corrected
*/
enum {
@@ -99,9 +99,9 @@ enum {
* @ec: erase counter
* @pnum: physical eraseblock number
*
- * This data structure is used in the WL unit. Each physical eraseblock has a
- * corresponding &struct wl_entry object which may be kept in different
- * RB-trees. See WL unit for details.
+ * This data structure is used in the WL sub-system. Each physical eraseblock
+ * has a corresponding &struct wl_entry object which may be kept in different
+ * RB-trees. See WL sub-system for details.
*/
struct ubi_wl_entry {
struct rb_node rb;
@@ -118,10 +118,10 @@ struct ubi_wl_entry {
* @mutex: read/write mutex to implement read/write access serialization to
* the (@vol_id, @lnum) logical eraseblock
*
- * This data structure is used in the EBA unit to implement per-LEB locking.
- * When a logical eraseblock is being locked - corresponding
+ * This data structure is used in the EBA sub-system to implement per-LEB
+ * locking. When a logical eraseblock is being locked - corresponding
* &struct ubi_ltree_entry object is inserted to the lock tree (@ubi->ltree).
- * See EBA unit for details.
+ * See EBA sub-system for details.
*/
struct ubi_ltree_entry {
struct rb_node rb;
@@ -225,7 +225,7 @@ struct ubi_volume {
#ifdef CONFIG_MTD_UBI_GLUEBI
/*
* Gluebi-related stuff may be compiled out.
- * TODO: this should not be built into UBI but should be a separate
+ * Note: this should not be built into UBI but should be a separate
* ubimtd driver which works on top of UBI and emulates MTD devices.
*/
struct ubi_volume_desc *gluebi_desc;
@@ -235,8 +235,7 @@ struct ubi_volume {
};
/**
- * struct ubi_volume_desc - descriptor of the UBI volume returned when it is
- * opened.
+ * struct ubi_volume_desc - UBI volume descriptor returned when it is opened.
* @vol: reference to the corresponding volume description object
* @mode: open mode (%UBI_READONLY, %UBI_READWRITE, or %UBI_EXCLUSIVE)
*/
@@ -316,11 +315,11 @@ struct ubi_wl_entry;
* @ro_mode: if the UBI device is in read-only mode
* @leb_size: logical eraseblock size
* @leb_start: starting offset of logical eraseblocks within physical
- * eraseblocks
+ * eraseblocks
* @ec_hdr_alsize: size of the EC header aligned to @hdrs_min_io_size
* @vid_hdr_alsize: size of the VID header aligned to @hdrs_min_io_size
* @vid_hdr_offset: starting offset of the volume identifier header (might be
- * unaligned)
+ * unaligned)
* @vid_hdr_aloffset: starting offset of the VID header aligned to
* @hdrs_min_io_size
* @vid_hdr_shift: contains @vid_hdr_offset - @vid_hdr_aloffset
@@ -356,16 +355,16 @@ struct ubi_device {
struct mutex volumes_mutex;
int max_ec;
- /* TODO: mean_ec is not updated run-time, fix */
+ /* Note, mean_ec is not updated run-time - should be fixed */
int mean_ec;
- /* EBA unit's stuff */
+ /* EBA sub-system's stuff */
unsigned long long global_sqnum;
spinlock_t ltree_lock;
struct rb_root ltree;
struct mutex alc_mutex;
- /* Wear-leveling unit's stuff */
+ /* Wear-leveling sub-system's stuff */
struct rb_root used;
struct rb_root free;
struct rb_root scrub;
@@ -388,7 +387,7 @@ struct ubi_device {
int thread_enabled;
char bgt_name[sizeof(UBI_BGT_NAME_PATTERN)+2];
- /* I/O unit's stuff */
+ /* I/O sub-system's stuff */
long long flash_size;
int peb_count;
int peb_size;
diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c
index cc8fe2934d2..761952ba125 100644
--- a/drivers/mtd/ubi/wl.c
+++ b/drivers/mtd/ubi/wl.c
@@ -19,22 +19,22 @@
*/
/*
- * UBI wear-leveling unit.
+ * UBI wear-leveling sub-system.
*
- * This unit is responsible for wear-leveling. It works in terms of physical
- * eraseblocks and erase counters and knows nothing about logical eraseblocks,
- * volumes, etc. From this unit's perspective all physical eraseblocks are of
- * two types - used and free. Used physical eraseblocks are those that were
- * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
- * those that were put by the 'ubi_wl_put_peb()' function.
+ * This sub-system is responsible for wear-leveling. It works in terms of
+ * physical* eraseblocks and erase counters and knows nothing about logical
+ * eraseblocks, volumes, etc. From this sub-system's perspective all physical
+ * eraseblocks are of two types - used and free. Used physical eraseblocks are
+ * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
+ * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
*
* Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
- * header. The rest of the physical eraseblock contains only 0xFF bytes.
+ * header. The rest of the physical eraseblock contains only %0xFF bytes.
*
- * When physical eraseblocks are returned to the WL unit by means of the
+ * When physical eraseblocks are returned to the WL sub-system by means of the
* 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
* done asynchronously in context of the per-UBI device background thread,
- * which is also managed by the WL unit.
+ * which is also managed by the WL sub-system.
*
* The wear-leveling is ensured by means of moving the contents of used
* physical eraseblocks with low erase counter to free physical eraseblocks
@@ -43,34 +43,36 @@
* The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
* an "optimal" physical eraseblock. For example, when it is known that the
* physical eraseblock will be "put" soon because it contains short-term data,
- * the WL unit may pick a free physical eraseblock with low erase counter, and
- * so forth.
+ * the WL sub-system may pick a free physical eraseblock with low erase
+ * counter, and so forth.
*
- * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
+ * If the WL sub-system fails to erase a physical eraseblock, it marks it as
+ * bad.
*
- * This unit is also responsible for scrubbing. If a bit-flip is detected in a
- * physical eraseblock, it has to be moved. Technically this is the same as
- * moving it for wear-leveling reasons.
+ * This sub-system is also responsible for scrubbing. If a bit-flip is detected
+ * in a physical eraseblock, it has to be moved. Technically this is the same
+ * as moving it for wear-leveling reasons.
*
- * As it was said, for the UBI unit all physical eraseblocks are either "free"
- * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
- * eraseblocks are kept in a set of different RB-trees: @wl->used,
+ * As it was said, for the UBI sub-system all physical eraseblocks are either
+ * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
+ * used eraseblocks are kept in a set of different RB-trees: @wl->used,
* @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
*
* Note, in this implementation, we keep a small in-RAM object for each physical
* eraseblock. This is surely not a scalable solution. But it appears to be good
* enough for moderately large flashes and it is simple. In future, one may
- * re-work this unit and make it more scalable.
+ * re-work this sub-system and make it more scalable.
*
- * At the moment this unit does not utilize the sequence number, which was
- * introduced relatively recently. But it would be wise to do this because the
- * sequence number of a logical eraseblock characterizes how old is it. For
+ * At the moment this sub-system does not utilize the sequence number, which
+ * was introduced relatively recently. But it would be wise to do this because
+ * the sequence number of a logical eraseblock characterizes how old is it. For
* example, when we move a PEB with low erase counter, and we need to pick the
* target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
* pick target PEB with an average EC if our PEB is not very "old". This is a
- * room for future re-works of the WL unit.
+ * room for future re-works of the WL sub-system.
*
- * FIXME: looks too complex, should be simplified (later).
+ * Note: the stuff with protection trees looks too complex and is difficult to
+ * understand. Should be fixed.
*/
#include <linux/slab.h>
@@ -92,20 +94,21 @@
/*
* Maximum difference between two erase counters. If this threshold is
- * exceeded, the WL unit starts moving data from used physical eraseblocks with
- * low erase counter to free physical eraseblocks with high erase counter.
+ * exceeded, the WL sub-system starts moving data from used physical
+ * eraseblocks with low erase counter to free physical eraseblocks with high
+ * erase counter.
*/
#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
/*
- * When a physical eraseblock is moved, the WL unit has to pick the target
+ * When a physical eraseblock is moved, the WL sub-system has to pick the target
* physical eraseblock to move to. The simplest way would be just to pick the
* one with the highest erase counter. But in certain workloads this could lead
* to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
* situation when the picked physical eraseblock is constantly erased after the
* data is written to it. So, we have a constant which limits the highest erase
- * counter of the free physical eraseblock to pick. Namely, the WL unit does
- * not pick eraseblocks with erase counter greater then the lowest erase
+ * counter of the free physical eraseblock to pick. Namely, the WL sub-system
+ * does not pick eraseblocks with erase counter greater then the lowest erase
* counter plus %WL_FREE_MAX_DIFF.
*/
#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
@@ -123,11 +126,11 @@
* @abs_ec: the absolute erase counter value when the protection ends
* @e: the wear-leveling entry of the physical eraseblock under protection
*
- * When the WL unit returns a physical eraseblock, the physical eraseblock is
- * protected from being moved for some "time". For this reason, the physical
- * eraseblock is not directly moved from the @wl->free tree to the @wl->used
- * tree. There is one more tree in between where this physical eraseblock is
- * temporarily stored (@wl->prot).
+ * When the WL sub-system returns a physical eraseblock, the physical
+ * eraseblock is protected from being moved for some "time". For this reason,
+ * the physical eraseblock is not directly moved from the @wl->free tree to the
+ * @wl->used tree. There is one more tree in between where this physical
+ * eraseblock is temporarily stored (@wl->prot).
*
* All this protection stuff is needed because:
* o we don't want to move physical eraseblocks just after we have given them
@@ -175,7 +178,6 @@ struct ubi_wl_prot_entry {
* @list: a link in the list of pending works
* @func: worker function
* @priv: private data of the worker function
- *
* @e: physical eraseblock to erase
* @torture: if the physical eraseblock has to be tortured
*
@@ -1136,7 +1138,7 @@ out_ro:
}
/**
- * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
+ * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
* @ubi: UBI device description object
* @pnum: physical eraseblock to return
* @torture: if this physical eraseblock has to be tortured
@@ -1175,11 +1177,11 @@ retry:
/*
* User is putting the physical eraseblock which was selected
* as the target the data is moved to. It may happen if the EBA
- * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
- * the WL unit has not put the PEB to the "used" tree yet, but
- * it is about to do this. So we just set a flag which will
- * tell the WL worker that the PEB is not needed anymore and
- * should be scheduled for erasure.
+ * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
+ * but the WL sub-system has not put the PEB to the "used" tree
+ * yet, but it is about to do this. So we just set a flag which
+ * will tell the WL worker that the PEB is not needed anymore
+ * and should be scheduled for erasure.
*/
dbg_wl("PEB %d is the target of data moving", pnum);
ubi_assert(!ubi->move_to_put);
@@ -1425,8 +1427,7 @@ static void cancel_pending(struct ubi_device *ubi)
}
/**
- * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
- * information.
+ * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
* @ubi: UBI device description object
* @si: scanning information
*
@@ -1583,13 +1584,12 @@ static void protection_trees_destroy(struct ubi_device *ubi)
}
/**
- * ubi_wl_close - close the wear-leveling unit.
+ * ubi_wl_close - close the wear-leveling sub-system.
* @ubi: UBI device description object
*/
void ubi_wl_close(struct ubi_device *ubi)
{
- dbg_wl("close the UBI wear-leveling unit");
-
+ dbg_wl("close the WL sub-system");
cancel_pending(ubi);
protection_trees_destroy(ubi);
tree_destroy(&ubi->used);
diff --git a/include/linux/mtd/ubi.h b/include/linux/mtd/ubi.h
index 83302bbbddb..6316fafe5c2 100644
--- a/include/linux/mtd/ubi.h
+++ b/include/linux/mtd/ubi.h
@@ -45,13 +45,13 @@ enum {
* @size: how many physical eraseblocks are reserved for this volume
* @used_bytes: how many bytes of data this volume contains
* @used_ebs: how many physical eraseblocks of this volume actually contain any
- * data
+ * data
* @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
* @corrupted: non-zero if the volume is corrupted (static volumes only)
* @upd_marker: non-zero if the volume has update marker set
* @alignment: volume alignment
* @usable_leb_size: how many bytes are available in logical eraseblocks of
- * this volume
+ * this volume
* @name_len: volume name length
* @name: volume name
* @cdev: UBI volume character device major and minor numbers