diff options
-rw-r--r-- | include/linux/mm_types.h | 14 | ||||
-rw-r--r-- | include/linux/slub_def.h | 4 | ||||
-rw-r--r-- | mm/slub.c | 339 |
3 files changed, 309 insertions, 48 deletions
diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h index 774b8952deb..7870e473033 100644 --- a/include/linux/mm_types.h +++ b/include/linux/mm_types.h @@ -79,9 +79,21 @@ struct page { }; /* Third double word block */ - struct list_head lru; /* Pageout list, eg. active_list + union { + struct list_head lru; /* Pageout list, eg. active_list * protected by zone->lru_lock ! */ + struct { /* slub per cpu partial pages */ + struct page *next; /* Next partial slab */ +#ifdef CONFIG_64BIT + int pages; /* Nr of partial slabs left */ + int pobjects; /* Approximate # of objects */ +#else + short int pages; + short int pobjects; +#endif + }; + }; /* Remainder is not double word aligned */ union { diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h index f58d6413d23..4890ef79d75 100644 --- a/include/linux/slub_def.h +++ b/include/linux/slub_def.h @@ -36,12 +36,15 @@ enum stat_item { ORDER_FALLBACK, /* Number of times fallback was necessary */ CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ + CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ + CPU_PARTIAL_FREE, /* USed cpu partial on free */ NR_SLUB_STAT_ITEMS }; struct kmem_cache_cpu { void **freelist; /* Pointer to next available object */ unsigned long tid; /* Globally unique transaction id */ struct page *page; /* The slab from which we are allocating */ + struct page *partial; /* Partially allocated frozen slabs */ int node; /* The node of the page (or -1 for debug) */ #ifdef CONFIG_SLUB_STATS unsigned stat[NR_SLUB_STAT_ITEMS]; @@ -79,6 +82,7 @@ struct kmem_cache { int size; /* The size of an object including meta data */ int objsize; /* The size of an object without meta data */ int offset; /* Free pointer offset. */ + int cpu_partial; /* Number of per cpu partial pages to keep around */ struct kmem_cache_order_objects oo; /* Allocation and freeing of slabs */ diff --git a/mm/slub.c b/mm/slub.c index df381af963b..0e286acef62 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1560,7 +1560,7 @@ static inline void remove_partial(struct kmem_cache_node *n, */ static inline void *acquire_slab(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page, - struct kmem_cache_cpu *c) + int mode) { void *freelist; unsigned long counters; @@ -1575,7 +1575,8 @@ static inline void *acquire_slab(struct kmem_cache *s, freelist = page->freelist; counters = page->counters; new.counters = counters; - new.inuse = page->objects; + if (mode) + new.inuse = page->objects; VM_BUG_ON(new.frozen); new.frozen = 1; @@ -1586,34 +1587,20 @@ static inline void *acquire_slab(struct kmem_cache *s, "lock and freeze")); remove_partial(n, page); - - if (freelist) { - /* Populate the per cpu freelist */ - c->page = page; - c->node = page_to_nid(page); - stat(s, ALLOC_FROM_PARTIAL); - - return freelist; - } else { - /* - * Slab page came from the wrong list. No object to allocate - * from. Put it onto the correct list and continue partial - * scan. - */ - printk(KERN_ERR "SLUB: %s : Page without available objects on" - " partial list\n", s->name); - return NULL; - } + return freelist; } +static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); + /* * Try to allocate a partial slab from a specific node. */ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, struct kmem_cache_cpu *c) { - struct page *page; - void *object; + struct page *page, *page2; + void *object = NULL; + int count = 0; /* * Racy check. If we mistakenly see no partial slabs then we @@ -1625,13 +1612,28 @@ static void *get_partial_node(struct kmem_cache *s, return NULL; spin_lock(&n->list_lock); - list_for_each_entry(page, &n->partial, lru) { - object = acquire_slab(s, n, page, c); - if (object) - goto out; + list_for_each_entry_safe(page, page2, &n->partial, lru) { + void *t = acquire_slab(s, n, page, count == 0); + int available; + + if (!t) + break; + + if (!count) { + c->page = page; + c->node = page_to_nid(page); + stat(s, ALLOC_FROM_PARTIAL); + count++; + object = t; + available = page->objects - page->inuse; + } else { + page->freelist = t; + available = put_cpu_partial(s, page, 0); + } + if (kmem_cache_debug(s) || available > s->cpu_partial / 2) + break; + } - object = NULL; -out: spin_unlock(&n->list_lock); return object; } @@ -1926,6 +1928,123 @@ redo: } } +/* Unfreeze all the cpu partial slabs */ +static void unfreeze_partials(struct kmem_cache *s) +{ + struct kmem_cache_node *n = NULL; + struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); + struct page *page; + + while ((page = c->partial)) { + enum slab_modes { M_PARTIAL, M_FREE }; + enum slab_modes l, m; + struct page new; + struct page old; + + c->partial = page->next; + l = M_FREE; + + do { + + old.freelist = page->freelist; + old.counters = page->counters; + VM_BUG_ON(!old.frozen); + + new.counters = old.counters; + new.freelist = old.freelist; + + new.frozen = 0; + + if (!new.inuse && (!n || n->nr_partial < s->min_partial)) + m = M_FREE; + else { + struct kmem_cache_node *n2 = get_node(s, + page_to_nid(page)); + + m = M_PARTIAL; + if (n != n2) { + if (n) + spin_unlock(&n->list_lock); + + n = n2; + spin_lock(&n->list_lock); + } + } + + if (l != m) { + if (l == M_PARTIAL) + remove_partial(n, page); + else + add_partial(n, page, 1); + + l = m; + } + + } while (!cmpxchg_double_slab(s, page, + old.freelist, old.counters, + new.freelist, new.counters, + "unfreezing slab")); + + if (m == M_FREE) { + stat(s, DEACTIVATE_EMPTY); + discard_slab(s, page); + stat(s, FREE_SLAB); + } + } + + if (n) + spin_unlock(&n->list_lock); +} + +/* + * Put a page that was just frozen (in __slab_free) into a partial page + * slot if available. This is done without interrupts disabled and without + * preemption disabled. The cmpxchg is racy and may put the partial page + * onto a random cpus partial slot. + * + * If we did not find a slot then simply move all the partials to the + * per node partial list. + */ +int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) +{ + struct page *oldpage; + int pages; + int pobjects; + + do { + pages = 0; + pobjects = 0; + oldpage = this_cpu_read(s->cpu_slab->partial); + + if (oldpage) { + pobjects = oldpage->pobjects; + pages = oldpage->pages; + if (drain && pobjects > s->cpu_partial) { + unsigned long flags; + /* + * partial array is full. Move the existing + * set to the per node partial list. + */ + local_irq_save(flags); + unfreeze_partials(s); + local_irq_restore(flags); + pobjects = 0; + pages = 0; + } + } + + pages++; + pobjects += page->objects - page->inuse; + + page->pages = pages; + page->pobjects = pobjects; + page->next = oldpage; + + } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); + stat(s, CPU_PARTIAL_FREE); + return pobjects; +} + static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) { stat(s, CPUSLAB_FLUSH); @@ -1941,8 +2060,12 @@ static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); - if (likely(c && c->page)) - flush_slab(s, c); + if (likely(c)) { + if (c->page) + flush_slab(s, c); + + unfreeze_partials(s); + } } static void flush_cpu_slab(void *d) @@ -2066,8 +2189,6 @@ static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, * Slow path. The lockless freelist is empty or we need to perform * debugging duties. * - * Interrupts are disabled. - * * Processing is still very fast if new objects have been freed to the * regular freelist. In that case we simply take over the regular freelist * as the lockless freelist and zap the regular freelist. @@ -2100,7 +2221,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, if (!c->page) goto new_slab; - +redo: if (unlikely(!node_match(c, node))) { stat(s, ALLOC_NODE_MISMATCH); deactivate_slab(s, c); @@ -2133,7 +2254,7 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, NULL, new.counters, "__slab_alloc")); - if (unlikely(!object)) { + if (!object) { c->page = NULL; stat(s, DEACTIVATE_BYPASS); goto new_slab; @@ -2148,6 +2269,17 @@ load_freelist: return object; new_slab: + + if (c->partial) { + c->page = c->partial; + c->partial = c->page->next; + c->node = page_to_nid(c->page); + stat(s, CPU_PARTIAL_ALLOC); + c->freelist = NULL; + goto redo; + } + + /* Then do expensive stuff like retrieving pages from the partial lists */ object = get_partial(s, gfpflags, node, c); if (unlikely(!object)) { @@ -2341,16 +2473,29 @@ static void __slab_free(struct kmem_cache *s, struct page *page, was_frozen = new.frozen; new.inuse--; if ((!new.inuse || !prior) && !was_frozen && !n) { - n = get_node(s, page_to_nid(page)); - /* - * Speculatively acquire the list_lock. - * If the cmpxchg does not succeed then we may - * drop the list_lock without any processing. - * - * Otherwise the list_lock will synchronize with - * other processors updating the list of slabs. - */ - spin_lock_irqsave(&n->list_lock, flags); + + if (!kmem_cache_debug(s) && !prior) + + /* + * Slab was on no list before and will be partially empty + * We can defer the list move and instead freeze it. + */ + new.frozen = 1; + + else { /* Needs to be taken off a list */ + + n = get_node(s, page_to_nid(page)); + /* + * Speculatively acquire the list_lock. + * If the cmpxchg does not succeed then we may + * drop the list_lock without any processing. + * + * Otherwise the list_lock will synchronize with + * other processors updating the list of slabs. + */ + spin_lock_irqsave(&n->list_lock, flags); + + } } inuse = new.inuse; @@ -2360,7 +2505,15 @@ static void __slab_free(struct kmem_cache *s, struct page *page, "__slab_free")); if (likely(!n)) { - /* + + /* + * If we just froze the page then put it onto the + * per cpu partial list. + */ + if (new.frozen && !was_frozen) + put_cpu_partial(s, page, 1); + + /* * The list lock was not taken therefore no list * activity can be necessary. */ @@ -2429,7 +2582,6 @@ static __always_inline void slab_free(struct kmem_cache *s, slab_free_hook(s, x); redo: - /* * Determine the currently cpus per cpu slab. * The cpu may change afterward. However that does not matter since @@ -2919,7 +3071,34 @@ static int kmem_cache_open(struct kmem_cache *s, * The larger the object size is, the more pages we want on the partial * list to avoid pounding the page allocator excessively. */ - set_min_partial(s, ilog2(s->size)); + set_min_partial(s, ilog2(s->size) / 2); + + /* + * cpu_partial determined the maximum number of objects kept in the + * per cpu partial lists of a processor. + * + * Per cpu partial lists mainly contain slabs that just have one + * object freed. If they are used for allocation then they can be + * filled up again with minimal effort. The slab will never hit the + * per node partial lists and therefore no locking will be required. + * + * This setting also determines + * + * A) The number of objects from per cpu partial slabs dumped to the + * per node list when we reach the limit. + * B) The number of objects in partial partial slabs to extract from the + * per node list when we run out of per cpu objects. We only fetch 50% + * to keep some capacity around for frees. + */ + if (s->size >= PAGE_SIZE) + s->cpu_partial = 2; + else if (s->size >= 1024) + s->cpu_partial = 6; + else if (s->size >= 256) + s->cpu_partial = 13; + else + s->cpu_partial = 30; + s->refcount = 1; #ifdef CONFIG_NUMA s->remote_node_defrag_ratio = 1000; @@ -4327,6 +4506,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s, for_each_possible_cpu(cpu) { struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); + struct page *page; if (!c || c->node < 0) continue; @@ -4342,6 +4522,13 @@ static ssize_t show_slab_objects(struct kmem_cache *s, total += x; nodes[c->node] += x; } + page = c->partial; + + if (page) { + x = page->pobjects; + total += x; + nodes[c->node] += x; + } per_cpu[c->node]++; } } @@ -4493,6 +4680,27 @@ static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, } SLAB_ATTR(min_partial); +static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) +{ + return sprintf(buf, "%u\n", s->cpu_partial); +} + +static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, + size_t length) +{ + unsigned long objects; + int err; + + err = strict_strtoul(buf, 10, &objects); + if (err) + return err; + + s->cpu_partial = objects; + flush_all(s); + return length; +} +SLAB_ATTR(cpu_partial); + static ssize_t ctor_show(struct kmem_cache *s, char *buf) { if (!s->ctor) @@ -4531,6 +4739,37 @@ static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) } SLAB_ATTR_RO(objects_partial); +static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) +{ + int objects = 0; + int pages = 0; + int cpu; + int len; + + for_each_online_cpu(cpu) { + struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; + + if (page) { + pages += page->pages; + objects += page->pobjects; + } + } + + len = sprintf(buf, "%d(%d)", objects, pages); + +#ifdef CONFIG_SMP + for_each_online_cpu(cpu) { + struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; + + if (page && len < PAGE_SIZE - 20) + len += sprintf(buf + len, " C%d=%d(%d)", cpu, + page->pobjects, page->pages); + } +#endif + return len + sprintf(buf + len, "\n"); +} +SLAB_ATTR_RO(slabs_cpu_partial); + static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) { return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); @@ -4853,6 +5092,8 @@ STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); STAT_ATTR(ORDER_FALLBACK, order_fallback); STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); +STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); +STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); #endif static struct attribute *slab_attrs[] = { @@ -4861,6 +5102,7 @@ static struct attribute *slab_attrs[] = { &objs_per_slab_attr.attr, &order_attr.attr, &min_partial_attr.attr, + &cpu_partial_attr.attr, &objects_attr.attr, &objects_partial_attr.attr, &partial_attr.attr, @@ -4873,6 +5115,7 @@ static struct attribute *slab_attrs[] = { &destroy_by_rcu_attr.attr, &shrink_attr.attr, &reserved_attr.attr, + &slabs_cpu_partial_attr.attr, #ifdef CONFIG_SLUB_DEBUG &total_objects_attr.attr, &slabs_attr.attr, @@ -4914,6 +5157,8 @@ static struct attribute *slab_attrs[] = { &order_fallback_attr.attr, &cmpxchg_double_fail_attr.attr, &cmpxchg_double_cpu_fail_attr.attr, + &cpu_partial_alloc_attr.attr, + &cpu_partial_free_attr.attr, #endif #ifdef CONFIG_FAILSLAB &failslab_attr.attr, |