summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/memory-barriers.txt129
-rw-r--r--kernel/sched.c23
2 files changed, 151 insertions, 1 deletions
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index f5b7127f54a..7f5809eddee 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -31,6 +31,7 @@ Contents:
- Locking functions.
- Interrupt disabling functions.
+ - Sleep and wake-up functions.
- Miscellaneous functions.
(*) Inter-CPU locking barrier effects.
@@ -1217,6 +1218,132 @@ barriers are required in such a situation, they must be provided from some
other means.
+SLEEP AND WAKE-UP FUNCTIONS
+---------------------------
+
+Sleeping and waking on an event flagged in global data can be viewed as an
+interaction between two pieces of data: the task state of the task waiting for
+the event and the global data used to indicate the event. To make sure that
+these appear to happen in the right order, the primitives to begin the process
+of going to sleep, and the primitives to initiate a wake up imply certain
+barriers.
+
+Firstly, the sleeper normally follows something like this sequence of events:
+
+ for (;;) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ if (event_indicated)
+ break;
+ schedule();
+ }
+
+A general memory barrier is interpolated automatically by set_current_state()
+after it has altered the task state:
+
+ CPU 1
+ ===============================
+ set_current_state();
+ set_mb();
+ STORE current->state
+ <general barrier>
+ LOAD event_indicated
+
+set_current_state() may be wrapped by:
+
+ prepare_to_wait();
+ prepare_to_wait_exclusive();
+
+which therefore also imply a general memory barrier after setting the state.
+The whole sequence above is available in various canned forms, all of which
+interpolate the memory barrier in the right place:
+
+ wait_event();
+ wait_event_interruptible();
+ wait_event_interruptible_exclusive();
+ wait_event_interruptible_timeout();
+ wait_event_killable();
+ wait_event_timeout();
+ wait_on_bit();
+ wait_on_bit_lock();
+
+
+Secondly, code that performs a wake up normally follows something like this:
+
+ event_indicated = 1;
+ wake_up(&event_wait_queue);
+
+or:
+
+ event_indicated = 1;
+ wake_up_process(event_daemon);
+
+A write memory barrier is implied by wake_up() and co. if and only if they wake
+something up. The barrier occurs before the task state is cleared, and so sits
+between the STORE to indicate the event and the STORE to set TASK_RUNNING:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ set_current_state(); STORE event_indicated
+ set_mb(); wake_up();
+ STORE current->state <write barrier>
+ <general barrier> STORE current->state
+ LOAD event_indicated
+
+The available waker functions include:
+
+ complete();
+ wake_up();
+ wake_up_all();
+ wake_up_bit();
+ wake_up_interruptible();
+ wake_up_interruptible_all();
+ wake_up_interruptible_nr();
+ wake_up_interruptible_poll();
+ wake_up_interruptible_sync();
+ wake_up_interruptible_sync_poll();
+ wake_up_locked();
+ wake_up_locked_poll();
+ wake_up_nr();
+ wake_up_poll();
+ wake_up_process();
+
+
+[!] Note that the memory barriers implied by the sleeper and the waker do _not_
+order multiple stores before the wake-up with respect to loads of those stored
+values after the sleeper has called set_current_state(). For instance, if the
+sleeper does:
+
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (event_indicated)
+ break;
+ __set_current_state(TASK_RUNNING);
+ do_something(my_data);
+
+and the waker does:
+
+ my_data = value;
+ event_indicated = 1;
+ wake_up(&event_wait_queue);
+
+there's no guarantee that the change to event_indicated will be perceived by
+the sleeper as coming after the change to my_data. In such a circumstance, the
+code on both sides must interpolate its own memory barriers between the
+separate data accesses. Thus the above sleeper ought to do:
+
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (event_indicated) {
+ smp_rmb();
+ do_something(my_data);
+ }
+
+and the waker should do:
+
+ my_data = value;
+ smp_wmb();
+ event_indicated = 1;
+ wake_up(&event_wait_queue);
+
+
MISCELLANEOUS FUNCTIONS
-----------------------
@@ -1366,7 +1493,7 @@ WHERE ARE MEMORY BARRIERS NEEDED?
Under normal operation, memory operation reordering is generally not going to
be a problem as a single-threaded linear piece of code will still appear to
-work correctly, even if it's in an SMP kernel. There are, however, three
+work correctly, even if it's in an SMP kernel. There are, however, four
circumstances in which reordering definitely _could_ be a problem:
(*) Interprocessor interaction.
diff --git a/kernel/sched.c b/kernel/sched.c
index b902e587a3a..fd0c2cee3f3 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -2458,6 +2458,17 @@ out:
return success;
}
+/**
+ * wake_up_process - Wake up a specific process
+ * @p: The process to be woken up.
+ *
+ * Attempt to wake up the nominated process and move it to the set of runnable
+ * processes. Returns 1 if the process was woken up, 0 if it was already
+ * running.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
+ */
int wake_up_process(struct task_struct *p)
{
return try_to_wake_up(p, TASK_ALL, 0);
@@ -5241,6 +5252,9 @@ void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
*/
void __wake_up(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
@@ -5279,6 +5293,9 @@ void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
* with each other. This can prevent needless bouncing between CPUs.
*
* On UP it can prevent extra preemption.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
*/
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
@@ -5315,6 +5332,9 @@ EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
* awakened in the same order in which they were queued.
*
* See also complete_all(), wait_for_completion() and related routines.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
*/
void complete(struct completion *x)
{
@@ -5332,6 +5352,9 @@ EXPORT_SYMBOL(complete);
* @x: holds the state of this particular completion
*
* This will wake up all threads waiting on this particular completion event.
+ *
+ * It may be assumed that this function implies a write memory barrier before
+ * changing the task state if and only if any tasks are woken up.
*/
void complete_all(struct completion *x)
{