diff options
-rw-r--r-- | Documentation/ABI/testing/sysfs-devices-power | 18 | ||||
-rw-r--r-- | Documentation/power/runtime_pm.txt | 190 | ||||
-rw-r--r-- | drivers/base/power/runtime.c | 186 | ||||
-rw-r--r-- | drivers/base/power/sysfs.c | 40 | ||||
-rw-r--r-- | include/linux/pm.h | 8 | ||||
-rw-r--r-- | include/linux/pm_runtime.h | 45 |
6 files changed, 473 insertions, 14 deletions
diff --git a/Documentation/ABI/testing/sysfs-devices-power b/Documentation/ABI/testing/sysfs-devices-power index 6bb2dd3c3a7..7628cd1bc36 100644 --- a/Documentation/ABI/testing/sysfs-devices-power +++ b/Documentation/ABI/testing/sysfs-devices-power @@ -147,3 +147,21 @@ Description: milliseconds. This attribute is read-only. If the device is not enabled to wake up the system from sleep states, this attribute is empty. + +What: /sys/devices/.../power/autosuspend_delay_ms +Date: September 2010 +Contact: Alan Stern <stern@rowland.harvard.edu> +Description: + The /sys/devices/.../power/autosuspend_delay_ms attribute + contains the autosuspend delay value (in milliseconds). Some + drivers do not want their device to suspend as soon as it + becomes idle at run time; they want the device to remain + inactive for a certain minimum period of time first. That + period is called the autosuspend delay. Negative values will + prevent the device from being suspended at run time (similar + to writing "on" to the power/control attribute). Values >= + 1000 will cause the autosuspend timer expiration to be rounded + up to the nearest second. + + Not all drivers support this attribute. If it isn't supported, + attempts to read or write it will yield I/O errors. diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt index 9ba49b21ac8..489e9bacd16 100644 --- a/Documentation/power/runtime_pm.txt +++ b/Documentation/power/runtime_pm.txt @@ -158,7 +158,8 @@ rules: to execute it, the other callbacks will not be executed for the same device. * A request to execute ->runtime_resume() will cancel any pending or - scheduled requests to execute the other callbacks for the same device. + scheduled requests to execute the other callbacks for the same device, + except for scheduled autosuspends. 3. Run-time PM Device Fields @@ -166,7 +167,7 @@ The following device run-time PM fields are present in 'struct dev_pm_info', as defined in include/linux/pm.h: struct timer_list suspend_timer; - - timer used for scheduling (delayed) suspend request + - timer used for scheduling (delayed) suspend and autosuspend requests unsigned long timer_expires; - timer expiration time, in jiffies (if this is different from zero, the @@ -236,6 +237,23 @@ defined in include/linux/pm.h: Section 8); it may be modified only by the pm_runtime_no_callbacks() helper function + unsigned int use_autosuspend; + - indicates that the device's driver supports delayed autosuspend (see + Section 9); it may be modified only by the + pm_runtime{_dont}_use_autosuspend() helper functions + + unsigned int timer_autosuspends; + - indicates that the PM core should attempt to carry out an autosuspend + when the timer expires rather than a normal suspend + + int autosuspend_delay; + - the delay time (in milliseconds) to be used for autosuspend + + unsigned long last_busy; + - the time (in jiffies) when the pm_runtime_mark_last_busy() helper + function was last called for this device; used in calculating inactivity + periods for autosuspend + All of the above fields are members of the 'power' member of 'struct device'. 4. Run-time PM Device Helper Functions @@ -261,6 +279,12 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h: error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt to suspend the device again in future + int pm_runtime_autosuspend(struct device *dev); + - same as pm_runtime_suspend() except that the autosuspend delay is taken + into account; if pm_runtime_autosuspend_expiration() says the delay has + not yet expired then an autosuspend is scheduled for the appropriate time + and 0 is returned + int pm_runtime_resume(struct device *dev); - execute the subsystem-level resume callback for the device; returns 0 on success, 1 if the device's run-time PM status was already 'active' or @@ -273,6 +297,11 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h: device (the request is represented by a work item in pm_wq); returns 0 on success or error code if the request has not been queued up + int pm_request_autosuspend(struct device *dev); + - schedule the execution of the subsystem-level suspend callback for the + device when the autosuspend delay has expired; if the delay has already + expired then the work item is queued up immediately + int pm_schedule_suspend(struct device *dev, unsigned int delay); - schedule the execution of the subsystem-level suspend callback for the device in future, where 'delay' is the time to wait before queuing up a @@ -304,12 +333,20 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h: - decrement the device's usage counter int pm_runtime_put(struct device *dev); - - decrement the device's usage counter, run pm_request_idle(dev) and return - its result + - decrement the device's usage counter; if the result is 0 then run + pm_request_idle(dev) and return its result + + int pm_runtime_put_autosuspend(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_request_autosuspend(dev) and return its result int pm_runtime_put_sync(struct device *dev); - - decrement the device's usage counter, run pm_runtime_idle(dev) and return - its result + - decrement the device's usage counter; if the result is 0 then run + pm_runtime_idle(dev) and return its result + + int pm_runtime_put_sync_autosuspend(struct device *dev); + - decrement the device's usage counter; if the result is 0 then run + pm_runtime_autosuspend(dev) and return its result void pm_runtime_enable(struct device *dev); - enable the run-time PM helper functions to run the device bus type's @@ -360,19 +397,46 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h: PM attributes from /sys/devices/.../power (or prevent them from being added when the device is registered) + void pm_runtime_mark_last_busy(struct device *dev); + - set the power.last_busy field to the current time + + void pm_runtime_use_autosuspend(struct device *dev); + - set the power.use_autosuspend flag, enabling autosuspend delays + + void pm_runtime_dont_use_autosuspend(struct device *dev); + - clear the power.use_autosuspend flag, disabling autosuspend delays + + void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); + - set the power.autosuspend_delay value to 'delay' (expressed in + milliseconds); if 'delay' is negative then run-time suspends are + prevented + + unsigned long pm_runtime_autosuspend_expiration(struct device *dev); + - calculate the time when the current autosuspend delay period will expire, + based on power.last_busy and power.autosuspend_delay; if the delay time + is 1000 ms or larger then the expiration time is rounded up to the + nearest second; returns 0 if the delay period has already expired or + power.use_autosuspend isn't set, otherwise returns the expiration time + in jiffies + It is safe to execute the following helper functions from interrupt context: pm_request_idle() +pm_request_autosuspend() pm_schedule_suspend() pm_request_resume() pm_runtime_get_noresume() pm_runtime_get() pm_runtime_put_noidle() pm_runtime_put() +pm_runtime_put_autosuspend() +pm_runtime_enable() pm_suspend_ignore_children() pm_runtime_set_active() pm_runtime_set_suspended() -pm_runtime_enable() +pm_runtime_suspended() +pm_runtime_mark_last_busy() +pm_runtime_autosuspend_expiration() 5. Run-time PM Initialization, Device Probing and Removal @@ -561,3 +625,115 @@ As a consequence, the PM core will never directly inform the device's subsystem or driver about run-time power changes. Instead, the driver for the device's parent must take responsibility for telling the device's driver when the parent's power state changes. + +9. Autosuspend, or automatically-delayed suspends + +Changing a device's power state isn't free; it requires both time and energy. +A device should be put in a low-power state only when there's some reason to +think it will remain in that state for a substantial time. A common heuristic +says that a device which hasn't been used for a while is liable to remain +unused; following this advice, drivers should not allow devices to be suspended +at run-time until they have been inactive for some minimum period. Even when +the heuristic ends up being non-optimal, it will still prevent devices from +"bouncing" too rapidly between low-power and full-power states. + +The term "autosuspend" is an historical remnant. It doesn't mean that the +device is automatically suspended (the subsystem or driver still has to call +the appropriate PM routines); rather it means that run-time suspends will +automatically be delayed until the desired period of inactivity has elapsed. + +Inactivity is determined based on the power.last_busy field. Drivers should +call pm_runtime_mark_last_busy() to update this field after carrying out I/O, +typically just before calling pm_runtime_put_autosuspend(). The desired length +of the inactivity period is a matter of policy. Subsystems can set this length +initially by calling pm_runtime_set_autosuspend_delay(), but after device +registration the length should be controlled by user space, using the +/sys/devices/.../power/autosuspend_delay_ms attribute. + +In order to use autosuspend, subsystems or drivers must call +pm_runtime_use_autosuspend() (preferably before registering the device), and +thereafter they should use the various *_autosuspend() helper functions instead +of the non-autosuspend counterparts: + + Instead of: pm_runtime_suspend use: pm_runtime_autosuspend; + Instead of: pm_schedule_suspend use: pm_request_autosuspend; + Instead of: pm_runtime_put use: pm_runtime_put_autosuspend; + Instead of: pm_runtime_put_sync use: pm_runtime_put_sync_autosuspend. + +Drivers may also continue to use the non-autosuspend helper functions; they +will behave normally, not taking the autosuspend delay into account. +Similarly, if the power.use_autosuspend field isn't set then the autosuspend +helper functions will behave just like the non-autosuspend counterparts. + +The implementation is well suited for asynchronous use in interrupt contexts. +However such use inevitably involves races, because the PM core can't +synchronize ->runtime_suspend() callbacks with the arrival of I/O requests. +This synchronization must be handled by the driver, using its private lock. +Here is a schematic pseudo-code example: + + foo_read_or_write(struct foo_priv *foo, void *data) + { + lock(&foo->private_lock); + add_request_to_io_queue(foo, data); + if (foo->num_pending_requests++ == 0) + pm_runtime_get(&foo->dev); + if (!foo->is_suspended) + foo_process_next_request(foo); + unlock(&foo->private_lock); + } + + foo_io_completion(struct foo_priv *foo, void *req) + { + lock(&foo->private_lock); + if (--foo->num_pending_requests == 0) { + pm_runtime_mark_last_busy(&foo->dev); + pm_runtime_put_autosuspend(&foo->dev); + } else { + foo_process_next_request(foo); + } + unlock(&foo->private_lock); + /* Send req result back to the user ... */ + } + + int foo_runtime_suspend(struct device *dev) + { + struct foo_priv foo = container_of(dev, ...); + int ret = 0; + + lock(&foo->private_lock); + if (foo->num_pending_requests > 0) { + ret = -EBUSY; + } else { + /* ... suspend the device ... */ + foo->is_suspended = 1; + } + unlock(&foo->private_lock); + return ret; + } + + int foo_runtime_resume(struct device *dev) + { + struct foo_priv foo = container_of(dev, ...); + + lock(&foo->private_lock); + /* ... resume the device ... */ + foo->is_suspended = 0; + pm_runtime_mark_last_busy(&foo->dev); + if (foo->num_pending_requests > 0) + foo_process_requests(foo); + unlock(&foo->private_lock); + return 0; + } + +The important point is that after foo_io_completion() asks for an autosuspend, +the foo_runtime_suspend() callback may race with foo_read_or_write(). +Therefore foo_runtime_suspend() has to check whether there are any pending I/O +requests (while holding the private lock) before allowing the suspend to +proceed. + +In addition, the power.autosuspend_delay field can be changed by user space at +any time. If a driver cares about this, it can call +pm_runtime_autosuspend_expiration() from within the ->runtime_suspend() +callback while holding its private lock. If the function returns a nonzero +value then the delay has not yet expired and the callback should return +-EAGAIN. diff --git a/drivers/base/power/runtime.c b/drivers/base/power/runtime.c index 5bd4daa93ef..cd4e100a136 100644 --- a/drivers/base/power/runtime.c +++ b/drivers/base/power/runtime.c @@ -9,7 +9,6 @@ #include <linux/sched.h> #include <linux/pm_runtime.h> -#include <linux/jiffies.h> #include "power.h" static int rpm_resume(struct device *dev, int rpmflags); @@ -79,6 +78,53 @@ static void pm_runtime_cancel_pending(struct device *dev) dev->power.request = RPM_REQ_NONE; } +/* + * pm_runtime_autosuspend_expiration - Get a device's autosuspend-delay expiration time. + * @dev: Device to handle. + * + * Compute the autosuspend-delay expiration time based on the device's + * power.last_busy time. If the delay has already expired or is disabled + * (negative) or the power.use_autosuspend flag isn't set, return 0. + * Otherwise return the expiration time in jiffies (adjusted to be nonzero). + * + * This function may be called either with or without dev->power.lock held. + * Either way it can be racy, since power.last_busy may be updated at any time. + */ +unsigned long pm_runtime_autosuspend_expiration(struct device *dev) +{ + int autosuspend_delay; + long elapsed; + unsigned long last_busy; + unsigned long expires = 0; + + if (!dev->power.use_autosuspend) + goto out; + + autosuspend_delay = ACCESS_ONCE(dev->power.autosuspend_delay); + if (autosuspend_delay < 0) + goto out; + + last_busy = ACCESS_ONCE(dev->power.last_busy); + elapsed = jiffies - last_busy; + if (elapsed < 0) + goto out; /* jiffies has wrapped around. */ + + /* + * If the autosuspend_delay is >= 1 second, align the timer by rounding + * up to the nearest second. + */ + expires = last_busy + msecs_to_jiffies(autosuspend_delay); + if (autosuspend_delay >= 1000) + expires = round_jiffies(expires); + expires += !expires; + if (elapsed >= expires - last_busy) + expires = 0; /* Already expired. */ + + out: + return expires; +} +EXPORT_SYMBOL_GPL(pm_runtime_autosuspend_expiration); + /** * rpm_check_suspend_allowed - Test whether a device may be suspended. * @dev: Device to test. @@ -234,6 +280,32 @@ static int rpm_suspend(struct device *dev, int rpmflags) if (retval) goto out; + /* If the autosuspend_delay time hasn't expired yet, reschedule. */ + if ((rpmflags & RPM_AUTO) + && dev->power.runtime_status != RPM_SUSPENDING) { + unsigned long expires = pm_runtime_autosuspend_expiration(dev); + + if (expires != 0) { + /* Pending requests need to be canceled. */ + dev->power.request = RPM_REQ_NONE; + + /* + * Optimization: If the timer is already running and is + * set to expire at or before the autosuspend delay, + * avoid the overhead of resetting it. Just let it + * expire; pm_suspend_timer_fn() will take care of the + * rest. + */ + if (!(dev->power.timer_expires && time_before_eq( + dev->power.timer_expires, expires))) { + dev->power.timer_expires = expires; + mod_timer(&dev->power.suspend_timer, expires); + } + dev->power.timer_autosuspends = 1; + goto out; + } + } + /* Other scheduled or pending requests need to be canceled. */ pm_runtime_cancel_pending(dev); @@ -268,7 +340,8 @@ static int rpm_suspend(struct device *dev, int rpmflags) /* Carry out an asynchronous or a synchronous suspend. */ if (rpmflags & RPM_ASYNC) { - dev->power.request = RPM_REQ_SUSPEND; + dev->power.request = (rpmflags & RPM_AUTO) ? + RPM_REQ_AUTOSUSPEND : RPM_REQ_SUSPEND; if (!dev->power.request_pending) { dev->power.request_pending = true; queue_work(pm_wq, &dev->power.work); @@ -383,8 +456,15 @@ static int rpm_resume(struct device *dev, int rpmflags) if (retval) goto out; - /* Other scheduled or pending requests need to be canceled. */ - pm_runtime_cancel_pending(dev); + /* + * Other scheduled or pending requests need to be canceled. Small + * optimization: If an autosuspend timer is running, leave it running + * rather than cancelling it now only to restart it again in the near + * future. + */ + dev->power.request = RPM_REQ_NONE; + if (!dev->power.timer_autosuspends) + pm_runtime_deactivate_timer(dev); if (dev->power.runtime_status == RPM_ACTIVE) { retval = 1; @@ -568,6 +648,9 @@ static void pm_runtime_work(struct work_struct *work) case RPM_REQ_SUSPEND: rpm_suspend(dev, RPM_NOWAIT); break; + case RPM_REQ_AUTOSUSPEND: + rpm_suspend(dev, RPM_NOWAIT | RPM_AUTO); + break; case RPM_REQ_RESUME: rpm_resume(dev, RPM_NOWAIT); break; @@ -595,7 +678,8 @@ static void pm_suspend_timer_fn(unsigned long data) /* If 'expire' is after 'jiffies' we've been called too early. */ if (expires > 0 && !time_after(expires, jiffies)) { dev->power.timer_expires = 0; - rpm_suspend(dev, RPM_ASYNC); + rpm_suspend(dev, dev->power.timer_autosuspends ? + (RPM_ASYNC | RPM_AUTO) : RPM_ASYNC); } spin_unlock_irqrestore(&dev->power.lock, flags); @@ -627,6 +711,7 @@ int pm_schedule_suspend(struct device *dev, unsigned int delay) dev->power.timer_expires = jiffies + msecs_to_jiffies(delay); dev->power.timer_expires += !dev->power.timer_expires; + dev->power.timer_autosuspends = 0; mod_timer(&dev->power.suspend_timer, dev->power.timer_expires); out: @@ -670,7 +755,9 @@ EXPORT_SYMBOL_GPL(__pm_runtime_idle); * @dev: Device to suspend. * @rpmflags: Flag bits. * - * Carry out a suspend, either synchronous or asynchronous. + * If the RPM_GET_PUT flag is set, decrement the device's usage count and + * return immediately if it is larger than zero. Then carry out a suspend, + * either synchronous or asynchronous. * * This routine may be called in atomic context if the RPM_ASYNC flag is set. */ @@ -679,6 +766,11 @@ int __pm_runtime_suspend(struct device *dev, int rpmflags) unsigned long flags; int retval; + if (rpmflags & RPM_GET_PUT) { + if (!atomic_dec_and_test(&dev->power.usage_count)) + return 0; + } + spin_lock_irqsave(&dev->power.lock, flags); retval = rpm_suspend(dev, rpmflags); spin_unlock_irqrestore(&dev->power.lock, flags); @@ -980,7 +1072,7 @@ void pm_runtime_allow(struct device *dev) dev->power.runtime_auto = true; if (atomic_dec_and_test(&dev->power.usage_count)) - rpm_idle(dev, 0); + rpm_idle(dev, RPM_AUTO); out: spin_unlock_irq(&dev->power.lock); @@ -1007,6 +1099,86 @@ void pm_runtime_no_callbacks(struct device *dev) EXPORT_SYMBOL_GPL(pm_runtime_no_callbacks); /** + * update_autosuspend - Handle a change to a device's autosuspend settings. + * @dev: Device to handle. + * @old_delay: The former autosuspend_delay value. + * @old_use: The former use_autosuspend value. + * + * Prevent runtime suspend if the new delay is negative and use_autosuspend is + * set; otherwise allow it. Send an idle notification if suspends are allowed. + * + * This function must be called under dev->power.lock with interrupts disabled. + */ +static void update_autosuspend(struct device *dev, int old_delay, int old_use) +{ + int delay = dev->power.autosuspend_delay; + + /* Should runtime suspend be prevented now? */ + if (dev->power.use_autosuspend && delay < 0) { + + /* If it used to be allowed then prevent it. */ + if (!old_use || old_delay >= 0) { + atomic_inc(&dev->power.usage_count); + rpm_resume(dev, 0); + } + } + + /* Runtime suspend should be allowed now. */ + else { + + /* If it used to be prevented then allow it. */ + if (old_use && old_delay < 0) + atomic_dec(&dev->power.usage_count); + + /* Maybe we can autosuspend now. */ + rpm_idle(dev, RPM_AUTO); + } +} + +/** + * pm_runtime_set_autosuspend_delay - Set a device's autosuspend_delay value. + * @dev: Device to handle. + * @delay: Value of the new delay in milliseconds. + * + * Set the device's power.autosuspend_delay value. If it changes to negative + * and the power.use_autosuspend flag is set, prevent run-time suspends. If it + * changes the other way, allow run-time suspends. + */ +void pm_runtime_set_autosuspend_delay(struct device *dev, int delay) +{ + int old_delay, old_use; + + spin_lock_irq(&dev->power.lock); + old_delay = dev->power.autosuspend_delay; + old_use = dev->power.use_autosuspend; + dev->power.autosuspend_delay = delay; + update_autosuspend(dev, old_delay, old_use); + spin_unlock_irq(&dev->power.lock); +} +EXPORT_SYMBOL_GPL(pm_runtime_set_autosuspend_delay); + +/** + * __pm_runtime_use_autosuspend - Set a device's use_autosuspend flag. + * @dev: Device to handle. + * @use: New value for use_autosuspend. + * + * Set the device's power.use_autosuspend flag, and allow or prevent run-time + * suspends as needed. + */ +void __pm_runtime_use_autosuspend(struct device *dev, bool use) +{ + int old_delay, old_use; + + spin_lock_irq(&dev->power.lock); + old_delay = dev->power.autosuspend_delay; + old_use = dev->power.use_autosuspend; + dev->power.use_autosuspend = use; + update_autosuspend(dev, old_delay, old_use); + spin_unlock_irq(&dev->power.lock); +} +EXPORT_SYMBOL_GPL(__pm_runtime_use_autosuspend); + +/** * pm_runtime_init - Initialize run-time PM fields in given device object. * @dev: Device object to initialize. */ diff --git a/drivers/base/power/sysfs.c b/drivers/base/power/sysfs.c index b5708c47ce2..0b1e46bf3e5 100644 --- a/drivers/base/power/sysfs.c +++ b/drivers/base/power/sysfs.c @@ -75,6 +75,18 @@ * attribute is set to "enabled" by bus type code or device drivers and in * that cases it should be safe to leave the default value. * + * autosuspend_delay_ms - Report/change a device's autosuspend_delay value + * + * Some drivers don't want to carry out a runtime suspend as soon as a + * device becomes idle; they want it always to remain idle for some period + * of time before suspending it. This period is the autosuspend_delay + * value (expressed in milliseconds) and it can be controlled by the user. + * If the value is negative then the device will never be runtime + * suspended. + * + * NOTE: The autosuspend_delay_ms attribute and the autosuspend_delay + * value are used only if the driver calls pm_runtime_use_autosuspend(). + * * wakeup_count - Report the number of wakeup events related to the device */ @@ -173,6 +185,33 @@ static ssize_t rtpm_status_show(struct device *dev, } static DEVICE_ATTR(runtime_status, 0444, rtpm_status_show, NULL); + +static ssize_t autosuspend_delay_ms_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + if (!dev->power.use_autosuspend) + return -EIO; + return sprintf(buf, "%d\n", dev->power.autosuspend_delay); +} + +static ssize_t autosuspend_delay_ms_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t n) +{ + long delay; + + if (!dev->power.use_autosuspend) + return -EIO; + + if (strict_strtol(buf, 10, &delay) != 0 || delay != (int) delay) + return -EINVAL; + + pm_runtime_set_autosuspend_delay(dev, delay); + return n; +} + +static DEVICE_ATTR(autosuspend_delay_ms, 0644, autosuspend_delay_ms_show, + autosuspend_delay_ms_store); + #endif static ssize_t @@ -428,6 +467,7 @@ static struct attribute *runtime_attrs[] = { &dev_attr_control.attr, &dev_attr_runtime_suspended_time.attr, &dev_attr_runtime_active_time.attr, + &dev_attr_autosuspend_delay_ms.attr, NULL, }; static struct attribute_group pm_runtime_attr_group = { diff --git a/include/linux/pm.h b/include/linux/pm.h index abd81ffaba3..40f3f45702b 100644 --- a/include/linux/pm.h +++ b/include/linux/pm.h @@ -444,6 +444,9 @@ enum rpm_status { * * RPM_REQ_SUSPEND Run the device bus type's ->runtime_suspend() callback * + * RPM_REQ_AUTOSUSPEND Same as RPM_REQ_SUSPEND, but not until the device has + * been inactive for as long as power.autosuspend_delay + * * RPM_REQ_RESUME Run the device bus type's ->runtime_resume() callback */ @@ -451,6 +454,7 @@ enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE, RPM_REQ_SUSPEND, + RPM_REQ_AUTOSUSPEND, RPM_REQ_RESUME, }; @@ -482,9 +486,13 @@ struct dev_pm_info { unsigned int run_wake:1; unsigned int runtime_auto:1; unsigned int no_callbacks:1; + unsigned int use_autosuspend:1; + unsigned int timer_autosuspends:1; enum rpm_request request; enum rpm_status runtime_status; int runtime_error; + int autosuspend_delay; + unsigned long last_busy; unsigned long active_jiffies; unsigned long suspended_jiffies; unsigned long accounting_timestamp; diff --git a/include/linux/pm_runtime.h b/include/linux/pm_runtime.h index 8ca52f7c357..99ed1aa8f93 100644 --- a/include/linux/pm_runtime.h +++ b/include/linux/pm_runtime.h @@ -12,12 +12,15 @@ #include <linux/device.h> #include <linux/pm.h> +#include <linux/jiffies.h> + /* Runtime PM flag argument bits */ #define RPM_ASYNC 0x01 /* Request is asynchronous */ #define RPM_NOWAIT 0x02 /* Don't wait for concurrent state change */ #define RPM_GET_PUT 0x04 /* Increment/decrement the usage_count */ +#define RPM_AUTO 0x08 /* Use autosuspend_delay */ #ifdef CONFIG_PM_RUNTIME @@ -37,6 +40,9 @@ extern int pm_generic_runtime_idle(struct device *dev); extern int pm_generic_runtime_suspend(struct device *dev); extern int pm_generic_runtime_resume(struct device *dev); extern void pm_runtime_no_callbacks(struct device *dev); +extern void __pm_runtime_use_autosuspend(struct device *dev, bool use); +extern void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); +extern unsigned long pm_runtime_autosuspend_expiration(struct device *dev); static inline bool pm_children_suspended(struct device *dev) { @@ -74,6 +80,11 @@ static inline bool pm_runtime_suspended(struct device *dev) return dev->power.runtime_status == RPM_SUSPENDED; } +static inline void pm_runtime_mark_last_busy(struct device *dev) +{ + ACCESS_ONCE(dev->power.last_busy) = jiffies; +} + #else /* !CONFIG_PM_RUNTIME */ static inline int __pm_runtime_idle(struct device *dev, int rpmflags) @@ -113,6 +124,14 @@ static inline int pm_generic_runtime_suspend(struct device *dev) { return 0; } static inline int pm_generic_runtime_resume(struct device *dev) { return 0; } static inline void pm_runtime_no_callbacks(struct device *dev) {} +static inline void pm_runtime_mark_last_busy(struct device *dev) {} +static inline void __pm_runtime_use_autosuspend(struct device *dev, + bool use) {} +static inline void pm_runtime_set_autosuspend_delay(struct device *dev, + int delay) {} +static inline unsigned long pm_runtime_autosuspend_expiration( + struct device *dev) { return 0; } + #endif /* !CONFIG_PM_RUNTIME */ static inline int pm_runtime_idle(struct device *dev) @@ -125,6 +144,11 @@ static inline int pm_runtime_suspend(struct device *dev) return __pm_runtime_suspend(dev, 0); } +static inline int pm_runtime_autosuspend(struct device *dev) +{ + return __pm_runtime_suspend(dev, RPM_AUTO); +} + static inline int pm_runtime_resume(struct device *dev) { return __pm_runtime_resume(dev, 0); @@ -155,11 +179,22 @@ static inline int pm_runtime_put(struct device *dev) return __pm_runtime_idle(dev, RPM_GET_PUT | RPM_ASYNC); } +static inline int pm_runtime_put_autosuspend(struct device *dev) +{ + return __pm_runtime_suspend(dev, + RPM_GET_PUT | RPM_ASYNC | RPM_AUTO); +} + static inline int pm_runtime_put_sync(struct device *dev) { return __pm_runtime_idle(dev, RPM_GET_PUT); } +static inline int pm_runtime_put_sync_autosuspend(struct device *dev) +{ + return __pm_runtime_suspend(dev, RPM_GET_PUT | RPM_AUTO); +} + static inline int pm_runtime_set_active(struct device *dev) { return __pm_runtime_set_status(dev, RPM_ACTIVE); @@ -175,4 +210,14 @@ static inline void pm_runtime_disable(struct device *dev) __pm_runtime_disable(dev, true); } +static inline void pm_runtime_use_autosuspend(struct device *dev) +{ + __pm_runtime_use_autosuspend(dev, true); +} + +static inline void pm_runtime_dont_use_autosuspend(struct device *dev) +{ + __pm_runtime_use_autosuspend(dev, false); +} + #endif |