diff options
Diffstat (limited to 'Documentation/cgroups')
-rw-r--r-- | Documentation/cgroups/blkio-controller.txt | 18 | ||||
-rw-r--r-- | Documentation/cgroups/cgroups.txt | 26 |
2 files changed, 20 insertions, 24 deletions
diff --git a/Documentation/cgroups/blkio-controller.txt b/Documentation/cgroups/blkio-controller.txt index 84f0a15fc21..b4b1fb3a83f 100644 --- a/Documentation/cgroups/blkio-controller.txt +++ b/Documentation/cgroups/blkio-controller.txt @@ -94,11 +94,11 @@ Throttling/Upper Limit policy Hierarchical Cgroups ==================== -- Currently none of the IO control policy supports hierarhical groups. But - cgroup interface does allow creation of hierarhical cgroups and internally +- Currently none of the IO control policy supports hierarchical groups. But + cgroup interface does allow creation of hierarchical cgroups and internally IO policies treat them as flat hierarchy. - So this patch will allow creation of cgroup hierarhcy but at the backend + So this patch will allow creation of cgroup hierarchcy but at the backend everything will be treated as flat. So if somebody created a hierarchy like as follows. @@ -266,7 +266,7 @@ Proportional weight policy files - blkio.idle_time - Debugging aid only enabled if CONFIG_DEBUG_BLK_CGROUP=y. This is the amount of time spent by the IO scheduler idling for a - given cgroup in anticipation of a better request than the exising ones + given cgroup in anticipation of a better request than the existing ones from other queues/cgroups. This is in nanoseconds. If this is read when the cgroup is in an idling state, the stat will only report the idle_time accumulated till the last idle period and will not include @@ -283,34 +283,34 @@ Throttling/Upper limit policy files ----------------------------------- - blkio.throttle.read_bps_device - Specifies upper limit on READ rate from the device. IO rate is - specified in bytes per second. Rules are per deivce. Following is + specified in bytes per second. Rules are per device. Following is the format. echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device - blkio.throttle.write_bps_device - Specifies upper limit on WRITE rate to the device. IO rate is - specified in bytes per second. Rules are per deivce. Following is + specified in bytes per second. Rules are per device. Following is the format. echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device - blkio.throttle.read_iops_device - Specifies upper limit on READ rate from the device. IO rate is - specified in IO per second. Rules are per deivce. Following is + specified in IO per second. Rules are per device. Following is the format. echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device - blkio.throttle.write_iops_device - Specifies upper limit on WRITE rate to the device. IO rate is - specified in io per second. Rules are per deivce. Following is + specified in io per second. Rules are per device. Following is the format. echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device Note: If both BW and IOPS rules are specified for a device, then IO is - subjectd to both the constraints. + subjected to both the constraints. - blkio.throttle.io_serviced - Number of IOs (bio) completed to/from the disk by the group (as diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt index a7c96ae5557..8e74980ab38 100644 --- a/Documentation/cgroups/cgroups.txt +++ b/Documentation/cgroups/cgroups.txt @@ -558,8 +558,7 @@ Each subsystem may export the following methods. The only mandatory methods are create/destroy. Any others that are null are presumed to be successful no-ops. -struct cgroup_subsys_state *create(struct cgroup_subsys *ss, - struct cgroup *cgrp) +struct cgroup_subsys_state *create(struct cgroup *cgrp) (cgroup_mutex held by caller) Called to create a subsystem state object for a cgroup. The @@ -574,7 +573,7 @@ identified by the passed cgroup object having a NULL parent (since it's the root of the hierarchy) and may be an appropriate place for initialization code. -void destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) +void destroy(struct cgroup *cgrp) (cgroup_mutex held by caller) The cgroup system is about to destroy the passed cgroup; the subsystem @@ -585,7 +584,7 @@ cgroup->parent is still valid. (Note - can also be called for a newly-created cgroup if an error occurs after this subsystem's create() method has been called for the new cgroup). -int pre_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp); +int pre_destroy(struct cgroup *cgrp); Called before checking the reference count on each subsystem. This may be useful for subsystems which have some extra references even if @@ -593,8 +592,7 @@ there are not tasks in the cgroup. If pre_destroy() returns error code, rmdir() will fail with it. From this behavior, pre_destroy() can be called multiple times against a cgroup. -int can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, - struct cgroup_taskset *tset) +int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) (cgroup_mutex held by caller) Called prior to moving one or more tasks into a cgroup; if the @@ -615,8 +613,7 @@ fork. If this method returns 0 (success) then this should remain valid while the caller holds cgroup_mutex and it is ensured that either attach() or cancel_attach() will be called in future. -void cancel_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, - struct cgroup_taskset *tset) +void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) (cgroup_mutex held by caller) Called when a task attach operation has failed after can_attach() has succeeded. @@ -625,23 +622,22 @@ function, so that the subsystem can implement a rollback. If not, not necessary. This will be called only about subsystems whose can_attach() operation have succeeded. The parameters are identical to can_attach(). -void attach(struct cgroup_subsys *ss, struct cgroup *cgrp, - struct cgroup_taskset *tset) +void attach(struct cgroup *cgrp, struct cgroup_taskset *tset) (cgroup_mutex held by caller) Called after the task has been attached to the cgroup, to allow any post-attachment activity that requires memory allocations or blocking. The parameters are identical to can_attach(). -void fork(struct cgroup_subsy *ss, struct task_struct *task) +void fork(struct task_struct *task) Called when a task is forked into a cgroup. -void exit(struct cgroup_subsys *ss, struct task_struct *task) +void exit(struct task_struct *task) Called during task exit. -int populate(struct cgroup_subsys *ss, struct cgroup *cgrp) +int populate(struct cgroup *cgrp) (cgroup_mutex held by caller) Called after creation of a cgroup to allow a subsystem to populate @@ -651,7 +647,7 @@ include/linux/cgroup.h for details). Note that although this method can return an error code, the error code is currently not always handled well. -void post_clone(struct cgroup_subsys *ss, struct cgroup *cgrp) +void post_clone(struct cgroup *cgrp) (cgroup_mutex held by caller) Called during cgroup_create() to do any parameter @@ -659,7 +655,7 @@ initialization which might be required before a task could attach. For example in cpusets, no task may attach before 'cpus' and 'mems' are set up. -void bind(struct cgroup_subsys *ss, struct cgroup *root) +void bind(struct cgroup *root) (cgroup_mutex and ss->hierarchy_mutex held by caller) Called when a cgroup subsystem is rebound to a different hierarchy |