diff options
Diffstat (limited to 'Documentation/controllers/memcg_test.txt')
-rw-r--r-- | Documentation/controllers/memcg_test.txt | 342 |
1 files changed, 0 insertions, 342 deletions
diff --git a/Documentation/controllers/memcg_test.txt b/Documentation/controllers/memcg_test.txt deleted file mode 100644 index 08d4d3ea0d7..00000000000 --- a/Documentation/controllers/memcg_test.txt +++ /dev/null @@ -1,342 +0,0 @@ -Memory Resource Controller(Memcg) Implementation Memo. -Last Updated: 2008/12/15 -Base Kernel Version: based on 2.6.28-rc8-mm. - -Because VM is getting complex (one of reasons is memcg...), memcg's behavior -is complex. This is a document for memcg's internal behavior. -Please note that implementation details can be changed. - -(*) Topics on API should be in Documentation/controllers/memory.txt) - -0. How to record usage ? - 2 objects are used. - - page_cgroup ....an object per page. - Allocated at boot or memory hotplug. Freed at memory hot removal. - - swap_cgroup ... an entry per swp_entry. - Allocated at swapon(). Freed at swapoff(). - - The page_cgroup has USED bit and double count against a page_cgroup never - occurs. swap_cgroup is used only when a charged page is swapped-out. - -1. Charge - - a page/swp_entry may be charged (usage += PAGE_SIZE) at - - mem_cgroup_newpage_charge() - Called at new page fault and Copy-On-Write. - - mem_cgroup_try_charge_swapin() - Called at do_swap_page() (page fault on swap entry) and swapoff. - Followed by charge-commit-cancel protocol. (With swap accounting) - At commit, a charge recorded in swap_cgroup is removed. - - mem_cgroup_cache_charge() - Called at add_to_page_cache() - - mem_cgroup_cache_charge_swapin() - Called at shmem's swapin. - - mem_cgroup_prepare_migration() - Called before migration. "extra" charge is done and followed by - charge-commit-cancel protocol. - At commit, charge against oldpage or newpage will be committed. - -2. Uncharge - a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by - - mem_cgroup_uncharge_page() - Called when an anonymous page is fully unmapped. I.e., mapcount goes - to 0. If the page is SwapCache, uncharge is delayed until - mem_cgroup_uncharge_swapcache(). - - mem_cgroup_uncharge_cache_page() - Called when a page-cache is deleted from radix-tree. If the page is - SwapCache, uncharge is delayed until mem_cgroup_uncharge_swapcache(). - - mem_cgroup_uncharge_swapcache() - Called when SwapCache is removed from radix-tree. The charge itself - is moved to swap_cgroup. (If mem+swap controller is disabled, no - charge to swap occurs.) - - mem_cgroup_uncharge_swap() - Called when swp_entry's refcnt goes down to 0. A charge against swap - disappears. - - mem_cgroup_end_migration(old, new) - At success of migration old is uncharged (if necessary), a charge - to new page is committed. At failure, charge to old page is committed. - -3. charge-commit-cancel - In some case, we can't know this "charge" is valid or not at charging - (because of races). - To handle such case, there are charge-commit-cancel functions. - mem_cgroup_try_charge_XXX - mem_cgroup_commit_charge_XXX - mem_cgroup_cancel_charge_XXX - these are used in swap-in and migration. - - At try_charge(), there are no flags to say "this page is charged". - at this point, usage += PAGE_SIZE. - - At commit(), the function checks the page should be charged or not - and set flags or avoid charging.(usage -= PAGE_SIZE) - - At cancel(), simply usage -= PAGE_SIZE. - -Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y. - -4. Anonymous - Anonymous page is newly allocated at - - page fault into MAP_ANONYMOUS mapping. - - Copy-On-Write. - It is charged right after it's allocated before doing any page table - related operations. Of course, it's uncharged when another page is used - for the fault address. - - At freeing anonymous page (by exit() or munmap()), zap_pte() is called - and pages for ptes are freed one by one.(see mm/memory.c). Uncharges - are done at page_remove_rmap() when page_mapcount() goes down to 0. - - Another page freeing is by page-reclaim (vmscan.c) and anonymous - pages are swapped out. In this case, the page is marked as - PageSwapCache(). uncharge() routine doesn't uncharge the page marked - as SwapCache(). It's delayed until __delete_from_swap_cache(). - - 4.1 Swap-in. - At swap-in, the page is taken from swap-cache. There are 2 cases. - - (a) If the SwapCache is newly allocated and read, it has no charges. - (b) If the SwapCache has been mapped by processes, it has been - charged already. - - This swap-in is one of the most complicated work. In do_swap_page(), - following events occur when pte is unchanged. - - (1) the page (SwapCache) is looked up. - (2) lock_page() - (3) try_charge_swapin() - (4) reuse_swap_page() (may call delete_swap_cache()) - (5) commit_charge_swapin() - (6) swap_free(). - - Considering following situation for example. - - (A) The page has not been charged before (2) and reuse_swap_page() - doesn't call delete_from_swap_cache(). - (B) The page has not been charged before (2) and reuse_swap_page() - calls delete_from_swap_cache(). - (C) The page has been charged before (2) and reuse_swap_page() doesn't - call delete_from_swap_cache(). - (D) The page has been charged before (2) and reuse_swap_page() calls - delete_from_swap_cache(). - - memory.usage/memsw.usage changes to this page/swp_entry will be - Case (A) (B) (C) (D) - Event - Before (2) 0/ 1 0/ 1 1/ 1 1/ 1 - =========================================== - (3) +1/+1 +1/+1 +1/+1 +1/+1 - (4) - 0/ 0 - -1/ 0 - (5) 0/-1 0/ 0 -1/-1 0/ 0 - (6) - 0/-1 - 0/-1 - =========================================== - Result 1/ 1 1/ 1 1/ 1 1/ 1 - - In any cases, charges to this page should be 1/ 1. - - 4.2 Swap-out. - At swap-out, typical state transition is below. - - (a) add to swap cache. (marked as SwapCache) - swp_entry's refcnt += 1. - (b) fully unmapped. - swp_entry's refcnt += # of ptes. - (c) write back to swap. - (d) delete from swap cache. (remove from SwapCache) - swp_entry's refcnt -= 1. - - - At (b), the page is marked as SwapCache and not uncharged. - At (d), the page is removed from SwapCache and a charge in page_cgroup - is moved to swap_cgroup. - - Finally, at task exit, - (e) zap_pte() is called and swp_entry's refcnt -=1 -> 0. - Here, a charge in swap_cgroup disappears. - -5. Page Cache - Page Cache is charged at - - add_to_page_cache_locked(). - - uncharged at - - __remove_from_page_cache(). - - The logic is very clear. (About migration, see below) - Note: __remove_from_page_cache() is called by remove_from_page_cache() - and __remove_mapping(). - -6. Shmem(tmpfs) Page Cache - Memcg's charge/uncharge have special handlers of shmem. The best way - to understand shmem's page state transition is to read mm/shmem.c. - But brief explanation of the behavior of memcg around shmem will be - helpful to understand the logic. - - Shmem's page (just leaf page, not direct/indirect block) can be on - - radix-tree of shmem's inode. - - SwapCache. - - Both on radix-tree and SwapCache. This happens at swap-in - and swap-out, - - It's charged when... - - A new page is added to shmem's radix-tree. - - A swp page is read. (move a charge from swap_cgroup to page_cgroup) - It's uncharged when - - A page is removed from radix-tree and not SwapCache. - - When SwapCache is removed, a charge is moved to swap_cgroup. - - When swp_entry's refcnt goes down to 0, a charge in swap_cgroup - disappears. - -7. Page Migration - One of the most complicated functions is page-migration-handler. - Memcg has 2 routines. Assume that we are migrating a page's contents - from OLDPAGE to NEWPAGE. - - Usual migration logic is.. - (a) remove the page from LRU. - (b) allocate NEWPAGE (migration target) - (c) lock by lock_page(). - (d) unmap all mappings. - (e-1) If necessary, replace entry in radix-tree. - (e-2) move contents of a page. - (f) map all mappings again. - (g) pushback the page to LRU. - (-) OLDPAGE will be freed. - - Before (g), memcg should complete all necessary charge/uncharge to - NEWPAGE/OLDPAGE. - - The point is.... - - If OLDPAGE is anonymous, all charges will be dropped at (d) because - try_to_unmap() drops all mapcount and the page will not be - SwapCache. - - - If OLDPAGE is SwapCache, charges will be kept at (g) because - __delete_from_swap_cache() isn't called at (e-1) - - - If OLDPAGE is page-cache, charges will be kept at (g) because - remove_from_swap_cache() isn't called at (e-1) - - memcg provides following hooks. - - - mem_cgroup_prepare_migration(OLDPAGE) - Called after (b) to account a charge (usage += PAGE_SIZE) against - memcg which OLDPAGE belongs to. - - - mem_cgroup_end_migration(OLDPAGE, NEWPAGE) - Called after (f) before (g). - If OLDPAGE is used, commit OLDPAGE again. If OLDPAGE is already - charged, a charge by prepare_migration() is automatically canceled. - If NEWPAGE is used, commit NEWPAGE and uncharge OLDPAGE. - - But zap_pte() (by exit or munmap) can be called while migration, - we have to check if OLDPAGE/NEWPAGE is a valid page after commit(). - -8. LRU - Each memcg has its own private LRU. Now, it's handling is under global - VM's control (means that it's handled under global zone->lru_lock). - Almost all routines around memcg's LRU is called by global LRU's - list management functions under zone->lru_lock(). - - A special function is mem_cgroup_isolate_pages(). This scans - memcg's private LRU and call __isolate_lru_page() to extract a page - from LRU. - (By __isolate_lru_page(), the page is removed from both of global and - private LRU.) - - -9. Typical Tests. - - Tests for racy cases. - - 9.1 Small limit to memcg. - When you do test to do racy case, it's good test to set memcg's limit - to be very small rather than GB. Many races found in the test under - xKB or xxMB limits. - (Memory behavior under GB and Memory behavior under MB shows very - different situation.) - - 9.2 Shmem - Historically, memcg's shmem handling was poor and we saw some amount - of troubles here. This is because shmem is page-cache but can be - SwapCache. Test with shmem/tmpfs is always good test. - - 9.3 Migration - For NUMA, migration is an another special case. To do easy test, cpuset - is useful. Following is a sample script to do migration. - - mount -t cgroup -o cpuset none /opt/cpuset - - mkdir /opt/cpuset/01 - echo 1 > /opt/cpuset/01/cpuset.cpus - echo 0 > /opt/cpuset/01/cpuset.mems - echo 1 > /opt/cpuset/01/cpuset.memory_migrate - mkdir /opt/cpuset/02 - echo 1 > /opt/cpuset/02/cpuset.cpus - echo 1 > /opt/cpuset/02/cpuset.mems - echo 1 > /opt/cpuset/02/cpuset.memory_migrate - - In above set, when you moves a task from 01 to 02, page migration to - node 0 to node 1 will occur. Following is a script to migrate all - under cpuset. - -- - move_task() - { - for pid in $1 - do - /bin/echo $pid >$2/tasks 2>/dev/null - echo -n $pid - echo -n " " - done - echo END - } - - G1_TASK=`cat ${G1}/tasks` - G2_TASK=`cat ${G2}/tasks` - move_task "${G1_TASK}" ${G2} & - -- - 9.4 Memory hotplug. - memory hotplug test is one of good test. - to offline memory, do following. - # echo offline > /sys/devices/system/memory/memoryXXX/state - (XXX is the place of memory) - This is an easy way to test page migration, too. - - 9.5 mkdir/rmdir - When using hierarchy, mkdir/rmdir test should be done. - Use tests like the following. - - echo 1 >/opt/cgroup/01/memory/use_hierarchy - mkdir /opt/cgroup/01/child_a - mkdir /opt/cgroup/01/child_b - - set limit to 01. - add limit to 01/child_b - run jobs under child_a and child_b - - create/delete following groups at random while jobs are running. - /opt/cgroup/01/child_a/child_aa - /opt/cgroup/01/child_b/child_bb - /opt/cgroup/01/child_c - - running new jobs in new group is also good. - - 9.6 Mount with other subsystems. - Mounting with other subsystems is a good test because there is a - race and lock dependency with other cgroup subsystems. - - example) - # mount -t cgroup none /cgroup -t cpuset,memory,cpu,devices - - and do task move, mkdir, rmdir etc...under this. |