summaryrefslogtreecommitdiffstats
path: root/Documentation/controllers
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/controllers')
-rw-r--r--Documentation/controllers/memory.txt38
1 files changed, 18 insertions, 20 deletions
diff --git a/Documentation/controllers/memory.txt b/Documentation/controllers/memory.txt
index b5bbea92a61..866b9cd9a95 100644
--- a/Documentation/controllers/memory.txt
+++ b/Documentation/controllers/memory.txt
@@ -1,4 +1,8 @@
-Memory Controller
+Memory Resource Controller
+
+NOTE: The Memory Resource Controller has been generically been referred
+to as the memory controller in this document. Do not confuse memory controller
+used here with the memory controller that is used in hardware.
Salient features
@@ -152,7 +156,7 @@ The memory controller uses the following hierarchy
a. Enable CONFIG_CGROUPS
b. Enable CONFIG_RESOURCE_COUNTERS
-c. Enable CONFIG_CGROUP_MEM_CONT
+c. Enable CONFIG_CGROUP_MEM_RES_CTLR
1. Prepare the cgroups
# mkdir -p /cgroups
@@ -164,20 +168,20 @@ c. Enable CONFIG_CGROUP_MEM_CONT
Since now we're in the 0 cgroup,
We can alter the memory limit:
-# echo -n 4M > /cgroups/0/memory.limit_in_bytes
+# echo 4M > /cgroups/0/memory.limit_in_bytes
NOTE: We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
mega or gigabytes.
# cat /cgroups/0/memory.limit_in_bytes
-4194304 Bytes
+4194304
NOTE: The interface has now changed to display the usage in bytes
instead of pages
We can check the usage:
# cat /cgroups/0/memory.usage_in_bytes
-1216512 Bytes
+1216512
A successful write to this file does not guarantee a successful set of
this limit to the value written into the file. This can be due to a
@@ -185,9 +189,9 @@ number of factors, such as rounding up to page boundaries or the total
availability of memory on the system. The user is required to re-read
this file after a write to guarantee the value committed by the kernel.
-# echo -n 1 > memory.limit_in_bytes
+# echo 1 > memory.limit_in_bytes
# cat memory.limit_in_bytes
-4096 Bytes
+4096
The memory.failcnt field gives the number of times that the cgroup limit was
exceeded.
@@ -197,7 +201,7 @@ caches, RSS and Active pages/Inactive pages are shown.
The memory.force_empty gives an interface to drop *all* charges by force.
-# echo -n 1 > memory.force_empty
+# echo 1 > memory.force_empty
will drop all charges in cgroup. Currently, this is maintained for test.
@@ -233,13 +237,6 @@ cgroup might have some charge associated with it, even though all
tasks have migrated away from it. Such charges are automatically dropped at
rmdir() if there are no tasks.
-4.4 Choosing what to account -- Page Cache (unmapped) vs RSS (mapped)?
-
-The type of memory accounted by the cgroup can be limited to just
-mapped pages by writing "1" to memory.control_type field
-
-echo -n 1 > memory.control_type
-
5. TODO
1. Add support for accounting huge pages (as a separate controller)
@@ -262,18 +259,19 @@ References
3. Emelianov, Pavel. Resource controllers based on process cgroups
http://lkml.org/lkml/2007/3/6/198
4. Emelianov, Pavel. RSS controller based on process cgroups (v2)
- http://lkml.org/lkml/2007/4/9/74
+ http://lkml.org/lkml/2007/4/9/78
5. Emelianov, Pavel. RSS controller based on process cgroups (v3)
http://lkml.org/lkml/2007/5/30/244
6. Menage, Paul. Control Groups v10, http://lwn.net/Articles/236032/
7. Vaidyanathan, Srinivasan, Control Groups: Pagecache accounting and control
subsystem (v3), http://lwn.net/Articles/235534/
-8. Singh, Balbir. RSS controller V2 test results (lmbench),
+8. Singh, Balbir. RSS controller v2 test results (lmbench),
http://lkml.org/lkml/2007/5/17/232
-9. Singh, Balbir. RSS controller V2 AIM9 results
+9. Singh, Balbir. RSS controller v2 AIM9 results
http://lkml.org/lkml/2007/5/18/1
-10. Singh, Balbir. Memory controller v6 results,
+10. Singh, Balbir. Memory controller v6 test results,
http://lkml.org/lkml/2007/8/19/36
-11. Singh, Balbir. Memory controller v6, http://lkml.org/lkml/2007/8/17/69
+11. Singh, Balbir. Memory controller introduction (v6),
+ http://lkml.org/lkml/2007/8/17/69
12. Corbet, Jonathan, Controlling memory use in cgroups,
http://lwn.net/Articles/243795/