diff options
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r-- | Documentation/filesystems/Locking | 8 | ||||
-rw-r--r-- | Documentation/filesystems/adfs.txt | 18 | ||||
-rw-r--r-- | Documentation/filesystems/exofs.txt | 10 | ||||
-rw-r--r-- | Documentation/filesystems/ext4.txt | 207 | ||||
-rw-r--r-- | Documentation/filesystems/nfs/pnfs.txt | 7 | ||||
-rw-r--r-- | Documentation/filesystems/porting | 23 | ||||
-rw-r--r-- | Documentation/filesystems/romfs.txt | 3 | ||||
-rw-r--r-- | Documentation/filesystems/squashfs.txt | 28 | ||||
-rw-r--r-- | Documentation/filesystems/sysfs.txt | 16 | ||||
-rw-r--r-- | Documentation/filesystems/ubifs.txt | 4 | ||||
-rw-r--r-- | Documentation/filesystems/vfs.txt | 64 | ||||
-rw-r--r-- | Documentation/filesystems/xfs-delayed-logging-design.txt | 7 |
12 files changed, 326 insertions, 69 deletions
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index 4471a416c27..61b31acb917 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -128,7 +128,7 @@ alloc_inode: destroy_inode: dirty_inode: (must not sleep) write_inode: -drop_inode: !!!inode_lock!!! +drop_inode: !!!inode->i_lock!!! evict_inode: put_super: write write_super: read @@ -166,13 +166,11 @@ prototypes: void (*kill_sb) (struct super_block *); locking rules: may block -get_sb yes mount yes kill_sb yes -->get_sb() returns error or 0 with locked superblock attached to the vfsmount -(exclusive on ->s_umount). -->mount() returns ERR_PTR or the root dentry. +->mount() returns ERR_PTR or the root dentry; its superblock should be locked +on return. ->kill_sb() takes a write-locked superblock, does all shutdown work on it, unlocks and drops the reference. diff --git a/Documentation/filesystems/adfs.txt b/Documentation/filesystems/adfs.txt index 9e8811f92b8..5949766353f 100644 --- a/Documentation/filesystems/adfs.txt +++ b/Documentation/filesystems/adfs.txt @@ -9,6 +9,9 @@ Mount options for ADFS will be nnn. Default 0700. othmask=nnn The permission mask for ADFS 'other' permissions will be nnn. Default 0077. + ftsuffix=n When ftsuffix=0, no file type suffix will be applied. + When ftsuffix=1, a hexadecimal suffix corresponding to + the RISC OS file type will be added. Default 0. Mapping of ADFS permissions to Linux permissions ------------------------------------------------ @@ -55,3 +58,18 @@ Mapping of ADFS permissions to Linux permissions You can therefore tailor the permission translation to whatever you desire the permissions should be under Linux. + +RISC OS file type suffix +------------------------ + + RISC OS file types are stored in bits 19..8 of the file load address. + + To enable non-RISC OS systems to be used to store files without losing + file type information, a file naming convention was devised (initially + for use with NFS) such that a hexadecimal suffix of the form ,xyz + denoted the file type: e.g. BasicFile,ffb is a BASIC (0xffb) file. This + naming convention is now also used by RISC OS emulators such as RPCEmu. + + Mounting an ADFS disc with option ftsuffix=1 will cause appropriate file + type suffixes to be appended to file names read from a directory. If the + ftsuffix option is zero or omitted, no file type suffixes will be added. diff --git a/Documentation/filesystems/exofs.txt b/Documentation/filesystems/exofs.txt index abd2a9b5b78..23583a13697 100644 --- a/Documentation/filesystems/exofs.txt +++ b/Documentation/filesystems/exofs.txt @@ -104,7 +104,15 @@ Where: exofs specific options: Options are separated by commas (,) pid=<integer> - The partition number to mount/create as container of the filesystem. - This option is mandatory. + This option is mandatory. integer can be + Hex by pre-pending an 0x to the number. + osdname=<id> - Mount by a device's osdname. + osdname is usually a 36 character uuid of the + form "d2683732-c906-4ee1-9dbd-c10c27bb40df". + It is one of the device's uuid specified in the + mkfs.exofs format command. + If this option is specified then the /dev/osdX + above can be empty and is ignored. to=<integer> - Timeout in ticks for a single command. default is (60 * HZ) [for debugging only] diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt index 6ab9442d7ee..6b050464a90 100644 --- a/Documentation/filesystems/ext4.txt +++ b/Documentation/filesystems/ext4.txt @@ -367,12 +367,47 @@ init_itable=n The lazy itable init code will wait n times the minimizes the impact on the systme performance while file system's inode table is being initialized. -discard Controls whether ext4 should issue discard/TRIM +discard Controls whether ext4 should issue discard/TRIM nodiscard(*) commands to the underlying block device when blocks are freed. This is useful for SSD devices and sparse/thinly-provisioned LUNs, but it is off by default until sufficient testing has been done. +nouid32 Disables 32-bit UIDs and GIDs. This is for + interoperability with older kernels which only + store and expect 16-bit values. + +resize Allows to resize filesystem to the end of the last + existing block group, further resize has to be done + with resize2fs either online, or offline. It can be + used only with conjunction with remount. + +block_validity This options allows to enables/disables the in-kernel +noblock_validity facility for tracking filesystem metadata blocks + within internal data structures. This allows multi- + block allocator and other routines to quickly locate + extents which might overlap with filesystem metadata + blocks. This option is intended for debugging + purposes and since it negatively affects the + performance, it is off by default. + +dioread_lock Controls whether or not ext4 should use the DIO read +dioread_nolock locking. If the dioread_nolock option is specified + ext4 will allocate uninitialized extent before buffer + write and convert the extent to initialized after IO + completes. This approach allows ext4 code to avoid + using inode mutex, which improves scalability on high + speed storages. However this does not work with nobh + option and the mount will fail. Nor does it work with + data journaling and dioread_nolock option will be + ignored with kernel warning. Note that dioread_nolock + code path is only used for extent-based files. + Because of the restrictions this options comprises + it is off by default (e.g. dioread_lock). + +i_version Enable 64-bit inode version support. This option is + off by default. + Data Mode ========= There are 3 different data modes: @@ -400,6 +435,176 @@ needs to be read from and written to disk at the same time where it outperforms all others modes. Currently ext4 does not have delayed allocation support if this data journalling mode is selected. +/proc entries +============= + +Information about mounted ext4 file systems can be found in +/proc/fs/ext4. Each mounted filesystem will have a directory in +/proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or +/proc/fs/ext4/dm-0). The files in each per-device directory are shown +in table below. + +Files in /proc/fs/ext4/<devname> +.............................................................................. + File Content + mb_groups details of multiblock allocator buddy cache of free blocks +.............................................................................. + +/sys entries +============ + +Information about mounted ext4 file systems can be found in +/sys/fs/ext4. Each mounted filesystem will have a directory in +/sys/fs/ext4 based on its device name (i.e., /sys/fs/ext4/hdc or +/sys/fs/ext4/dm-0). The files in each per-device directory are shown +in table below. + +Files in /sys/fs/ext4/<devname> +(see also Documentation/ABI/testing/sysfs-fs-ext4) +.............................................................................. + File Content + + delayed_allocation_blocks This file is read-only and shows the number of + blocks that are dirty in the page cache, but + which do not have their location in the + filesystem allocated yet. + + inode_goal Tuning parameter which (if non-zero) controls + the goal inode used by the inode allocator in + preference to all other allocation heuristics. + This is intended for debugging use only, and + should be 0 on production systems. + + inode_readahead_blks Tuning parameter which controls the maximum + number of inode table blocks that ext4's inode + table readahead algorithm will pre-read into + the buffer cache + + lifetime_write_kbytes This file is read-only and shows the number of + kilobytes of data that have been written to this + filesystem since it was created. + + max_writeback_mb_bump The maximum number of megabytes the writeback + code will try to write out before move on to + another inode. + + mb_group_prealloc The multiblock allocator will round up allocation + requests to a multiple of this tuning parameter if + the stripe size is not set in the ext4 superblock + + mb_max_to_scan The maximum number of extents the multiblock + allocator will search to find the best extent + + mb_min_to_scan The minimum number of extents the multiblock + allocator will search to find the best extent + + mb_order2_req Tuning parameter which controls the minimum size + for requests (as a power of 2) where the buddy + cache is used + + mb_stats Controls whether the multiblock allocator should + collect statistics, which are shown during the + unmount. 1 means to collect statistics, 0 means + not to collect statistics + + mb_stream_req Files which have fewer blocks than this tunable + parameter will have their blocks allocated out + of a block group specific preallocation pool, so + that small files are packed closely together. + Each large file will have its blocks allocated + out of its own unique preallocation pool. + + session_write_kbytes This file is read-only and shows the number of + kilobytes of data that have been written to this + filesystem since it was mounted. +.............................................................................. + +Ioctls +====== + +There is some Ext4 specific functionality which can be accessed by applications +through the system call interfaces. The list of all Ext4 specific ioctls are +shown in the table below. + +Table of Ext4 specific ioctls +.............................................................................. + Ioctl Description + EXT4_IOC_GETFLAGS Get additional attributes associated with inode. + The ioctl argument is an integer bitfield, with + bit values described in ext4.h. This ioctl is an + alias for FS_IOC_GETFLAGS. + + EXT4_IOC_SETFLAGS Set additional attributes associated with inode. + The ioctl argument is an integer bitfield, with + bit values described in ext4.h. This ioctl is an + alias for FS_IOC_SETFLAGS. + + EXT4_IOC_GETVERSION + EXT4_IOC_GETVERSION_OLD + Get the inode i_generation number stored for + each inode. The i_generation number is normally + changed only when new inode is created and it is + particularly useful for network filesystems. The + '_OLD' version of this ioctl is an alias for + FS_IOC_GETVERSION. + + EXT4_IOC_SETVERSION + EXT4_IOC_SETVERSION_OLD + Set the inode i_generation number stored for + each inode. The '_OLD' version of this ioctl + is an alias for FS_IOC_SETVERSION. + + EXT4_IOC_GROUP_EXTEND This ioctl has the same purpose as the resize + mount option. It allows to resize filesystem + to the end of the last existing block group, + further resize has to be done with resize2fs, + either online, or offline. The argument points + to the unsigned logn number representing the + filesystem new block count. + + EXT4_IOC_MOVE_EXT Move the block extents from orig_fd (the one + this ioctl is pointing to) to the donor_fd (the + one specified in move_extent structure passed + as an argument to this ioctl). Then, exchange + inode metadata between orig_fd and donor_fd. + This is especially useful for online + defragmentation, because the allocator has the + opportunity to allocate moved blocks better, + ideally into one contiguous extent. + + EXT4_IOC_GROUP_ADD Add a new group descriptor to an existing or + new group descriptor block. The new group + descriptor is described by ext4_new_group_input + structure, which is passed as an argument to + this ioctl. This is especially useful in + conjunction with EXT4_IOC_GROUP_EXTEND, + which allows online resize of the filesystem + to the end of the last existing block group. + Those two ioctls combined is used in userspace + online resize tool (e.g. resize2fs). + + EXT4_IOC_MIGRATE This ioctl operates on the filesystem itself. + It converts (migrates) ext3 indirect block mapped + inode to ext4 extent mapped inode by walking + through indirect block mapping of the original + inode and converting contiguous block ranges + into ext4 extents of the temporary inode. Then, + inodes are swapped. This ioctl might help, when + migrating from ext3 to ext4 filesystem, however + suggestion is to create fresh ext4 filesystem + and copy data from the backup. Note, that + filesystem has to support extents for this ioctl + to work. + + EXT4_IOC_ALLOC_DA_BLKS Force all of the delay allocated blocks to be + allocated to preserve application-expected ext3 + behaviour. Note that this will also start + triggering a write of the data blocks, but this + behaviour may change in the future as it is + not necessary and has been done this way only + for sake of simplicity. +.............................................................................. + References ========== diff --git a/Documentation/filesystems/nfs/pnfs.txt b/Documentation/filesystems/nfs/pnfs.txt index bc0b9cfe095..983e14abe7e 100644 --- a/Documentation/filesystems/nfs/pnfs.txt +++ b/Documentation/filesystems/nfs/pnfs.txt @@ -46,3 +46,10 @@ data server cache file driver devices refer to data servers, which are kept in a module level cache. Its reference is held over the lifetime of the deviceid pointing to it. + +lseg +---- +lseg maintains an extra reference corresponding to the NFS_LSEG_VALID +bit which holds it in the pnfs_layout_hdr's list. When the final lseg +is removed from the pnfs_layout_hdr's list, the NFS_LAYOUT_DESTROYED +bit is set, preventing any new lsegs from being added. diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting index dfbcd1b00b0..6e29954851a 100644 --- a/Documentation/filesystems/porting +++ b/Documentation/filesystems/porting @@ -298,11 +298,14 @@ be used instead. It gets called whenever the inode is evicted, whether it has remaining links or not. Caller does *not* evict the pagecache or inode-associated metadata buffers; getting rid of those is responsibility of method, as it had been for ->delete_inode(). - ->drop_inode() returns int now; it's called on final iput() with inode_lock -held and it returns true if filesystems wants the inode to be dropped. As before, -generic_drop_inode() is still the default and it's been updated appropriately. -generic_delete_inode() is also alive and it consists simply of return 1. Note that -all actual eviction work is done by caller after ->drop_inode() returns. + + ->drop_inode() returns int now; it's called on final iput() with +inode->i_lock held and it returns true if filesystems wants the inode to be +dropped. As before, generic_drop_inode() is still the default and it's been +updated appropriately. generic_delete_inode() is also alive and it consists +simply of return 1. Note that all actual eviction work is done by caller after +->drop_inode() returns. + clear_inode() is gone; use end_writeback() instead. As before, it must be called exactly once on each call of ->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike before, if you are using inode-associated @@ -394,3 +397,13 @@ file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode. Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set, so the i_size should not change when hole punching, even when puching the end of a file off. + +-- +[mandatory] + +-- +[mandatory] + ->get_sb() is gone. Switch to use of ->mount(). Typically it's just +a matter of switching from calling get_sb_... to mount_... and changing the +function type. If you were doing it manually, just switch from setting ->mnt_root +to some pointer to returning that pointer. On errors return ERR_PTR(...). diff --git a/Documentation/filesystems/romfs.txt b/Documentation/filesystems/romfs.txt index 2d2a7b2a16b..e2b07cc9120 100644 --- a/Documentation/filesystems/romfs.txt +++ b/Documentation/filesystems/romfs.txt @@ -17,8 +17,7 @@ comparison, an actual rescue disk used up 3202 blocks with ext2, while with romfs, it needed 3079 blocks. To create such a file system, you'll need a user program named -genromfs. It is available via anonymous ftp on sunsite.unc.edu and -its mirrors, in the /pub/Linux/system/recovery/ directory. +genromfs. It is available on http://romfs.sourceforge.net/ As the name suggests, romfs could be also used (space-efficiently) on various read-only media, like (E)EPROM disks if someone will have the diff --git a/Documentation/filesystems/squashfs.txt b/Documentation/filesystems/squashfs.txt index 66699afd66c..2d78f191184 100644 --- a/Documentation/filesystems/squashfs.txt +++ b/Documentation/filesystems/squashfs.txt @@ -59,12 +59,15 @@ obtained from this site also. 3. SQUASHFS FILESYSTEM DESIGN ----------------------------- -A squashfs filesystem consists of a maximum of eight parts, packed together on a byte -alignment: +A squashfs filesystem consists of a maximum of nine parts, packed together on a +byte alignment: --------------- | superblock | |---------------| + | compression | + | options | + |---------------| | datablocks | | & fragments | |---------------| @@ -91,7 +94,14 @@ the source directory, and checked for duplicates. Once all file data has been written the completed inode, directory, fragment, export and uid/gid lookup tables are written. -3.1 Inodes +3.1 Compression options +----------------------- + +Compressors can optionally support compression specific options (e.g. +dictionary size). If non-default compression options have been used, then +these are stored here. + +3.2 Inodes ---------- Metadata (inodes and directories) are compressed in 8Kbyte blocks. Each @@ -114,7 +124,7 @@ directory inode are defined: inodes optimised for frequently occurring regular files and directories, and extended types where extra information has to be stored. -3.2 Directories +3.3 Directories --------------- Like inodes, directories are packed into compressed metadata blocks, stored @@ -144,7 +154,7 @@ decompressed to do a lookup irrespective of the length of the directory. This scheme has the advantage that it doesn't require extra memory overhead and doesn't require much extra storage on disk. -3.3 File data +3.4 File data ------------- Regular files consist of a sequence of contiguous compressed blocks, and/or a @@ -163,7 +173,7 @@ Larger files use multiple slots, with 1.75 TiB files using all 8 slots. The index cache is designed to be memory efficient, and by default uses 16 KiB. -3.4 Fragment lookup table +3.5 Fragment lookup table ------------------------- Regular files can contain a fragment index which is mapped to a fragment @@ -173,7 +183,7 @@ A second index table is used to locate these. This second index table for speed of access (and because it is small) is read at mount time and cached in memory. -3.5 Uid/gid lookup table +3.6 Uid/gid lookup table ------------------------ For space efficiency regular files store uid and gid indexes, which are @@ -182,7 +192,7 @@ stored compressed into metadata blocks. A second index table is used to locate these. This second index table for speed of access (and because it is small) is read at mount time and cached in memory. -3.6 Export table +3.7 Export table ---------------- To enable Squashfs filesystems to be exportable (via NFS etc.) filesystems @@ -196,7 +206,7 @@ This table is stored compressed into metadata blocks. A second index table is used to locate these. This second index table for speed of access (and because it is small) is read at mount time and cached in memory. -3.7 Xattr table +3.8 Xattr table --------------- The xattr table contains extended attributes for each inode. The xattrs diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt index 5d1335faec2..f806e50aaa6 100644 --- a/Documentation/filesystems/sysfs.txt +++ b/Documentation/filesystems/sysfs.txt @@ -39,10 +39,12 @@ userspace. Top-level directories in sysfs represent the common ancestors of object hierarchies; i.e. the subsystems the objects belong to. -Sysfs internally stores the kobject that owns the directory in the -->d_fsdata pointer of the directory's dentry. This allows sysfs to do -reference counting directly on the kobject when the file is opened and -closed. +Sysfs internally stores a pointer to the kobject that implements a +directory in the sysfs_dirent object associated with the directory. In +the past this kobject pointer has been used by sysfs to do reference +counting directly on the kobject whenever the file is opened or closed. +With the current sysfs implementation the kobject reference count is +only modified directly by the function sysfs_schedule_callback(). Attributes @@ -208,9 +210,9 @@ Other notes: is 4096. - show() methods should return the number of bytes printed into the - buffer. This is the return value of snprintf(). + buffer. This is the return value of scnprintf(). -- show() should always use snprintf(). +- show() should always use scnprintf(). - store() should return the number of bytes used from the buffer. If the entire buffer has been used, just return the count argument. @@ -229,7 +231,7 @@ A very simple (and naive) implementation of a device attribute is: static ssize_t show_name(struct device *dev, struct device_attribute *attr, char *buf) { - return snprintf(buf, PAGE_SIZE, "%s\n", dev->name); + return scnprintf(buf, PAGE_SIZE, "%s\n", dev->name); } static ssize_t store_name(struct device *dev, struct device_attribute *attr, diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt index 12fedb7834c..d7b13b01e98 100644 --- a/Documentation/filesystems/ubifs.txt +++ b/Documentation/filesystems/ubifs.txt @@ -82,12 +82,12 @@ Mount options bulk_read read more in one go to take advantage of flash media that read faster sequentially no_bulk_read (*) do not bulk-read -no_chk_data_crc skip checking of CRCs on data nodes in order to +no_chk_data_crc (*) skip checking of CRCs on data nodes in order to improve read performance. Use this option only if the flash media is highly reliable. The effect of this option is that corruption of the contents of a file can go unnoticed. -chk_data_crc (*) do not skip checking CRCs on data nodes +chk_data_crc do not skip checking CRCs on data nodes compr=none override default compressor and set it to "none" compr=lzo override default compressor and set it to "lzo" compr=zlib override default compressor and set it to "zlib" diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 94cf97b901d..80815ed654c 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -95,10 +95,11 @@ functions: extern int unregister_filesystem(struct file_system_type *); The passed struct file_system_type describes your filesystem. When a -request is made to mount a device onto a directory in your filespace, -the VFS will call the appropriate get_sb() method for the specific -filesystem. The dentry for the mount point will then be updated to -point to the root inode for the new filesystem. +request is made to mount a filesystem onto a directory in your namespace, +the VFS will call the appropriate mount() method for the specific +filesystem. New vfsmount refering to the tree returned by ->mount() +will be attached to the mountpoint, so that when pathname resolution +reaches the mountpoint it will jump into the root of that vfsmount. You can see all filesystems that are registered to the kernel in the file /proc/filesystems. @@ -107,14 +108,14 @@ file /proc/filesystems. struct file_system_type ----------------------- -This describes the filesystem. As of kernel 2.6.22, the following +This describes the filesystem. As of kernel 2.6.39, the following members are defined: struct file_system_type { const char *name; int fs_flags; - int (*get_sb) (struct file_system_type *, int, - const char *, void *, struct vfsmount *); + struct dentry (*mount) (struct file_system_type *, int, + const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; @@ -128,11 +129,11 @@ struct file_system_type { fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.) - get_sb: the method to call when a new instance of this + mount: the method to call when a new instance of this filesystem should be mounted kill_sb: the method to call when an instance of this filesystem - should be unmounted + should be shut down owner: for internal VFS use: you should initialize this to THIS_MODULE in most cases. @@ -141,7 +142,7 @@ struct file_system_type { s_lock_key, s_umount_key: lockdep-specific -The get_sb() method has the following arguments: +The mount() method has the following arguments: struct file_system_type *fs_type: describes the filesystem, partly initialized by the specific filesystem code @@ -153,32 +154,39 @@ The get_sb() method has the following arguments: void *data: arbitrary mount options, usually comes as an ASCII string (see "Mount Options" section) - struct vfsmount *mnt: a vfs-internal representation of a mount point +The mount() method must return the root dentry of the tree requested by +caller. An active reference to its superblock must be grabbed and the +superblock must be locked. On failure it should return ERR_PTR(error). -The get_sb() method must determine if the block device specified -in the dev_name and fs_type contains a filesystem of the type the method -supports. If it succeeds in opening the named block device, it initializes a -struct super_block descriptor for the filesystem contained by the block device. -On failure it returns an error. +The arguments match those of mount(2) and their interpretation +depends on filesystem type. E.g. for block filesystems, dev_name is +interpreted as block device name, that device is opened and if it +contains a suitable filesystem image the method creates and initializes +struct super_block accordingly, returning its root dentry to caller. + +->mount() may choose to return a subtree of existing filesystem - it +doesn't have to create a new one. The main result from the caller's +point of view is a reference to dentry at the root of (sub)tree to +be attached; creation of new superblock is a common side effect. The most interesting member of the superblock structure that the -get_sb() method fills in is the "s_op" field. This is a pointer to +mount() method fills in is the "s_op" field. This is a pointer to a "struct super_operations" which describes the next level of the filesystem implementation. -Usually, a filesystem uses one of the generic get_sb() implementations -and provides a fill_super() method instead. The generic methods are: +Usually, a filesystem uses one of the generic mount() implementations +and provides a fill_super() callback instead. The generic variants are: - get_sb_bdev: mount a filesystem residing on a block device + mount_bdev: mount a filesystem residing on a block device - get_sb_nodev: mount a filesystem that is not backed by a device + mount_nodev: mount a filesystem that is not backed by a device - get_sb_single: mount a filesystem which shares the instance between + mount_single: mount a filesystem which shares the instance between all mounts -A fill_super() method implementation has the following arguments: +A fill_super() callback implementation has the following arguments: - struct super_block *sb: the superblock structure. The method fill_super() + struct super_block *sb: the superblock structure. The callback must initialize this properly. void *data: arbitrary mount options, usually comes as an ASCII @@ -246,7 +254,7 @@ or bottom half). should be synchronous or not, not all filesystems check this flag. drop_inode: called when the last access to the inode is dropped, - with the inode_lock spinlock held. + with the inode->i_lock spinlock held. This method should be either NULL (normal UNIX filesystem semantics) or "generic_delete_inode" (for filesystems that do not @@ -865,7 +873,7 @@ struct dentry_operations { void (*d_iput)(struct dentry *, struct inode *); char *(*d_dname)(struct dentry *, char *, int); struct vfsmount *(*d_automount)(struct path *); - int (*d_manage)(struct dentry *, bool, bool); + int (*d_manage)(struct dentry *, bool); }; d_revalidate: called when the VFS needs to revalidate a dentry. This @@ -961,10 +969,6 @@ struct dentry_operations { mounted on it and not to check the automount flag. Any other error code will abort pathwalk completely. - If the 'mounting_here' parameter is true, then namespace_sem is being - held by the caller and the function should not initiate any mounts or - unmounts that it will then wait for. - If the 'rcu_walk' parameter is true, then the caller is doing a pathwalk in RCU-walk mode. Sleeping is not permitted in this mode, and the caller can be asked to leave it and call again by returing diff --git a/Documentation/filesystems/xfs-delayed-logging-design.txt b/Documentation/filesystems/xfs-delayed-logging-design.txt index 7445bf335da..5282e3e5141 100644 --- a/Documentation/filesystems/xfs-delayed-logging-design.txt +++ b/Documentation/filesystems/xfs-delayed-logging-design.txt @@ -791,10 +791,3 @@ mount option. Fundamentally, there is no reason why the log manager would not be able to swap methods automatically and transparently depending on load characteristics, but this should not be necessary if delayed logging works as designed. - -Roadmap: - -2.6.39 Switch default mount option to use delayed logging - => should be roughly 12 months after initial merge - => enough time to shake out remaining problems before next round of - enterprise distro kernel rebases |