diff options
Diffstat (limited to 'Documentation/networking')
-rw-r--r-- | Documentation/networking/bonding.txt | 96 | ||||
-rw-r--r-- | Documentation/networking/gianfar.txt | 30 | ||||
-rw-r--r-- | Documentation/networking/phy.txt | 9 | ||||
-rw-r--r-- | Documentation/networking/pktgen.txt | 24 | ||||
-rw-r--r-- | Documentation/networking/rxrpc.txt | 81 | ||||
-rw-r--r-- | Documentation/networking/tcp.txt | 2 |
6 files changed, 176 insertions, 66 deletions
diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index 5cdb22971d1..a383c00392d 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt @@ -270,16 +270,15 @@ arp_ip_target arp_validate Specifies whether or not ARP probes and replies should be - validated in the active-backup mode. This causes the ARP - monitor to examine the incoming ARP requests and replies, and - only consider a slave to be up if it is receiving the - appropriate ARP traffic. + validated in any mode that supports arp monitoring, or whether + non-ARP traffic should be filtered (disregarded) for link + monitoring purposes. Possible values are: none or 0 - No validation is performed. This is the default. + No validation or filtering is performed. active or 1 @@ -293,31 +292,68 @@ arp_validate Validation is performed for all slaves. - For the active slave, the validation checks ARP replies to - confirm that they were generated by an arp_ip_target. Since - backup slaves do not typically receive these replies, the - validation performed for backup slaves is on the ARP request - sent out via the active slave. It is possible that some - switch or network configurations may result in situations - wherein the backup slaves do not receive the ARP requests; in - such a situation, validation of backup slaves must be - disabled. - - The validation of ARP requests on backup slaves is mainly - helping bonding to decide which slaves are more likely to - work in case of the active slave failure, it doesn't really - guarantee that the backup slave will work if it's selected - as the next active slave. - - This option is useful in network configurations in which - multiple bonding hosts are concurrently issuing ARPs to one or - more targets beyond a common switch. Should the link between - the switch and target fail (but not the switch itself), the - probe traffic generated by the multiple bonding instances will - fool the standard ARP monitor into considering the links as - still up. Use of the arp_validate option can resolve this, as - the ARP monitor will only consider ARP requests and replies - associated with its own instance of bonding. + filter or 4 + + Filtering is applied to all slaves. No validation is + performed. + + filter_active or 5 + + Filtering is applied to all slaves, validation is performed + only for the active slave. + + filter_backup or 6 + + Filtering is applied to all slaves, validation is performed + only for backup slaves. + + Validation: + + Enabling validation causes the ARP monitor to examine the incoming + ARP requests and replies, and only consider a slave to be up if it + is receiving the appropriate ARP traffic. + + For an active slave, the validation checks ARP replies to confirm + that they were generated by an arp_ip_target. Since backup slaves + do not typically receive these replies, the validation performed + for backup slaves is on the broadcast ARP request sent out via the + active slave. It is possible that some switch or network + configurations may result in situations wherein the backup slaves + do not receive the ARP requests; in such a situation, validation + of backup slaves must be disabled. + + The validation of ARP requests on backup slaves is mainly helping + bonding to decide which slaves are more likely to work in case of + the active slave failure, it doesn't really guarantee that the + backup slave will work if it's selected as the next active slave. + + Validation is useful in network configurations in which multiple + bonding hosts are concurrently issuing ARPs to one or more targets + beyond a common switch. Should the link between the switch and + target fail (but not the switch itself), the probe traffic + generated by the multiple bonding instances will fool the standard + ARP monitor into considering the links as still up. Use of + validation can resolve this, as the ARP monitor will only consider + ARP requests and replies associated with its own instance of + bonding. + + Filtering: + + Enabling filtering causes the ARP monitor to only use incoming ARP + packets for link availability purposes. Arriving packets that are + not ARPs are delivered normally, but do not count when determining + if a slave is available. + + Filtering operates by only considering the reception of ARP + packets (any ARP packet, regardless of source or destination) when + determining if a slave has received traffic for link availability + purposes. + + Filtering is useful in network configurations in which significant + levels of third party broadcast traffic would fool the standard + ARP monitor into considering the links as still up. Use of + filtering can resolve this, as only ARP traffic is considered for + link availability purposes. This option was added in bonding version 3.1.0. diff --git a/Documentation/networking/gianfar.txt b/Documentation/networking/gianfar.txt index ad474ea07d0..ba1daea7f2e 100644 --- a/Documentation/networking/gianfar.txt +++ b/Documentation/networking/gianfar.txt @@ -1,38 +1,8 @@ The Gianfar Ethernet Driver -Sysfs File description Author: Andy Fleming <afleming@freescale.com> Updated: 2005-07-28 -SYSFS - -Several of the features of the gianfar driver are controlled -through sysfs files. These are: - -bd_stash: -To stash RX Buffer Descriptors in the L2, echo 'on' or '1' to -bd_stash, echo 'off' or '0' to disable - -rx_stash_len: -To stash the first n bytes of the packet in L2, echo the number -of bytes to buf_stash_len. echo 0 to disable. - -WARNING: You could really screw these up if you set them too low or high! -fifo_threshold: -To change the number of bytes the controller needs in the -fifo before it starts transmission, echo the number of bytes to -fifo_thresh. Range should be 0-511. - -fifo_starve: -When the FIFO has less than this many bytes during a transmit, it -enters starve mode, and increases the priority of TX memory -transactions. To change, echo the number of bytes to -fifo_starve. Range should be 0-511. - -fifo_starve_off: -Once in starve mode, the FIFO remains there until it has this -many bytes. To change, echo the number of bytes to -fifo_starve_off. Range should be 0-511. CHECKSUM OFFLOADING diff --git a/Documentation/networking/phy.txt b/Documentation/networking/phy.txt index ebf27071940..e602c6f347d 100644 --- a/Documentation/networking/phy.txt +++ b/Documentation/networking/phy.txt @@ -253,16 +253,25 @@ Writing a PHY driver Each driver consists of a number of function pointers: + soft_reset: perform a PHY software reset config_init: configures PHY into a sane state after a reset. For instance, a Davicom PHY requires descrambling disabled. probe: Allocate phy->priv, optionally refuse to bind. PHY may not have been reset or had fixups run yet. suspend/resume: power management config_aneg: Changes the speed/duplex/negotiation settings + aneg_done: Determines the auto-negotiation result read_status: Reads the current speed/duplex/negotiation settings ack_interrupt: Clear a pending interrupt + did_interrupt: Checks if the PHY generated an interrupt config_intr: Enable or disable interrupts remove: Does any driver take-down + ts_info: Queries about the HW timestamping status + hwtstamp: Set the PHY HW timestamping configuration + rxtstamp: Requests a receive timestamp at the PHY level for a 'skb' + txtsamp: Requests a transmit timestamp at the PHY level for a 'skb' + set_wol: Enable Wake-on-LAN at the PHY level + get_wol: Get the Wake-on-LAN status at the PHY level Of these, only config_aneg and read_status are required to be assigned by the driver code. The rest are optional. Also, it is diff --git a/Documentation/networking/pktgen.txt b/Documentation/networking/pktgen.txt index 5a61a240a65..0e30c7845b2 100644 --- a/Documentation/networking/pktgen.txt +++ b/Documentation/networking/pktgen.txt @@ -102,13 +102,18 @@ Examples: The 'minimum' MAC is what you set with dstmac. pgset "flag [name]" Set a flag to determine behaviour. Current flags - are: IPSRC_RND #IP Source is random (between min/max), - IPDST_RND, UDPSRC_RND, - UDPDST_RND, MACSRC_RND, MACDST_RND + are: IPSRC_RND # IP source is random (between min/max) + IPDST_RND # IP destination is random + UDPSRC_RND, UDPDST_RND, + MACSRC_RND, MACDST_RND + TXSIZE_RND, IPV6, MPLS_RND, VID_RND, SVID_RND + FLOW_SEQ, QUEUE_MAP_RND # queue map random QUEUE_MAP_CPU # queue map mirrors smp_processor_id() - IPSEC # Make IPsec encapsulation for packet + UDPCSUM, + IPSEC # IPsec encapsulation (needs CONFIG_XFRM) + NODE_ALLOC # node specific memory allocation pgset spi SPI_VALUE Set specific SA used to transform packet. @@ -233,13 +238,22 @@ udp_dst_max flag IPSRC_RND - TXSIZE_RND IPDST_RND UDPSRC_RND UDPDST_RND MACSRC_RND MACDST_RND + TXSIZE_RND + IPV6 + MPLS_RND + VID_RND + SVID_RND + FLOW_SEQ + QUEUE_MAP_RND + QUEUE_MAP_CPU + UDPCSUM IPSEC + NODE_ALLOC dst_min dst_max diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt index b89bc82eed4..16a924c486b 100644 --- a/Documentation/networking/rxrpc.txt +++ b/Documentation/networking/rxrpc.txt @@ -27,6 +27,8 @@ Contents of this document: (*) AF_RXRPC kernel interface. + (*) Configurable parameters. + ======== OVERVIEW @@ -864,3 +866,82 @@ The kernel interface functions are as follows: This is used to allocate a null RxRPC key that can be used to indicate anonymous security for a particular domain. + + +======================= +CONFIGURABLE PARAMETERS +======================= + +The RxRPC protocol driver has a number of configurable parameters that can be +adjusted through sysctls in /proc/net/rxrpc/: + + (*) req_ack_delay + + The amount of time in milliseconds after receiving a packet with the + request-ack flag set before we honour the flag and actually send the + requested ack. + + Usually the other side won't stop sending packets until the advertised + reception window is full (to a maximum of 255 packets), so delaying the + ACK permits several packets to be ACK'd in one go. + + (*) soft_ack_delay + + The amount of time in milliseconds after receiving a new packet before we + generate a soft-ACK to tell the sender that it doesn't need to resend. + + (*) idle_ack_delay + + The amount of time in milliseconds after all the packets currently in the + received queue have been consumed before we generate a hard-ACK to tell + the sender it can free its buffers, assuming no other reason occurs that + we would send an ACK. + + (*) resend_timeout + + The amount of time in milliseconds after transmitting a packet before we + transmit it again, assuming no ACK is received from the receiver telling + us they got it. + + (*) max_call_lifetime + + The maximum amount of time in seconds that a call may be in progress + before we preemptively kill it. + + (*) dead_call_expiry + + The amount of time in seconds before we remove a dead call from the call + list. Dead calls are kept around for a little while for the purpose of + repeating ACK and ABORT packets. + + (*) connection_expiry + + The amount of time in seconds after a connection was last used before we + remove it from the connection list. Whilst a connection is in existence, + it serves as a placeholder for negotiated security; when it is deleted, + the security must be renegotiated. + + (*) transport_expiry + + The amount of time in seconds after a transport was last used before we + remove it from the transport list. Whilst a transport is in existence, it + serves to anchor the peer data and keeps the connection ID counter. + + (*) rxrpc_rx_window_size + + The size of the receive window in packets. This is the maximum number of + unconsumed received packets we're willing to hold in memory for any + particular call. + + (*) rxrpc_rx_mtu + + The maximum packet MTU size that we're willing to receive in bytes. This + indicates to the peer whether we're willing to accept jumbo packets. + + (*) rxrpc_rx_jumbo_max + + The maximum number of packets that we're willing to accept in a jumbo + packet. Non-terminal packets in a jumbo packet must contain a four byte + header plus exactly 1412 bytes of data. The terminal packet must contain + a four byte header plus any amount of data. In any event, a jumbo packet + may not exceed rxrpc_rx_mtu in size. diff --git a/Documentation/networking/tcp.txt b/Documentation/networking/tcp.txt index 7d11bb5dc30..bdc4c0db51e 100644 --- a/Documentation/networking/tcp.txt +++ b/Documentation/networking/tcp.txt @@ -30,7 +30,7 @@ A congestion control mechanism can be registered through functions in tcp_cong.c. The functions used by the congestion control mechanism are registered via passing a tcp_congestion_ops struct to tcp_register_congestion_control. As a minimum name, ssthresh, -cong_avoid, min_cwnd must be valid. +cong_avoid must be valid. Private data for a congestion control mechanism is stored in tp->ca_priv. tcp_ca(tp) returns a pointer to this space. This is preallocated space - it |