diff options
Diffstat (limited to 'Documentation/powerpc/dts-bindings/fsl/mpc5200.txt')
-rw-r--r-- | Documentation/powerpc/dts-bindings/fsl/mpc5200.txt | 198 |
1 files changed, 0 insertions, 198 deletions
diff --git a/Documentation/powerpc/dts-bindings/fsl/mpc5200.txt b/Documentation/powerpc/dts-bindings/fsl/mpc5200.txt deleted file mode 100644 index 4ccb2cd5df9..00000000000 --- a/Documentation/powerpc/dts-bindings/fsl/mpc5200.txt +++ /dev/null @@ -1,198 +0,0 @@ -MPC5200 Device Tree Bindings ----------------------------- - -(c) 2006-2009 Secret Lab Technologies Ltd -Grant Likely <grant.likely@secretlab.ca> - -Naming conventions ------------------- -For mpc5200 on-chip devices, the format for each compatible value is -<chip>-<device>[-<mode>]. The OS should be able to match a device driver -to the device based solely on the compatible value. If two drivers -match on the compatible list; the 'most compatible' driver should be -selected. - -The split between the MPC5200 and the MPC5200B leaves a bit of a -conundrum. How should the compatible property be set up to provide -maximum compatibility information; but still accurately describe the -chip? For the MPC5200; the answer is easy. Most of the SoC devices -originally appeared on the MPC5200. Since they didn't exist anywhere -else; the 5200 compatible properties will contain only one item; -"fsl,mpc5200-<device>". - -The 5200B is almost the same as the 5200, but not quite. It fixes -silicon bugs and it adds a small number of enhancements. Most of the -devices either provide exactly the same interface as on the 5200. A few -devices have extra functions but still have a backwards compatible mode. -To express this information as completely as possible, 5200B device trees -should have two items in the compatible list: - compatible = "fsl,mpc5200b-<device>","fsl,mpc5200-<device>"; - -It is *strongly* recommended that 5200B device trees follow this convention -(instead of only listing the base mpc5200 item). - -ie. ethernet on mpc5200: compatible = "fsl,mpc5200-fec"; - ethernet on mpc5200b: compatible = "fsl,mpc5200b-fec", "fsl,mpc5200-fec"; - -Modal devices, like PSCs, also append the configured function to the -end of the compatible field. ie. A PSC in i2s mode would specify -"fsl,mpc5200-psc-i2s", not "fsl,mpc5200-i2s". This convention is chosen to -avoid naming conflicts with non-psc devices providing the same -function. For example, "fsl,mpc5200-spi" and "fsl,mpc5200-psc-spi" describe -the mpc5200 simple spi device and a PSC spi mode respectively. - -At the time of writing, exact chip may be either 'fsl,mpc5200' or -'fsl,mpc5200b'. - -The soc node ------------- -This node describes the on chip SOC peripherals. Every mpc5200 based -board will have this node, and as such there is a common naming -convention for SOC devices. - -Required properties: -name description ----- ----------- -ranges Memory range of the internal memory mapped registers. - Should be <0 [baseaddr] 0xc000> -reg Should be <[baseaddr] 0x100> -compatible mpc5200: "fsl,mpc5200-immr" - mpc5200b: "fsl,mpc5200b-immr" -system-frequency 'fsystem' frequency in Hz; XLB, IPB, USB and PCI - clocks are derived from the fsystem clock. -bus-frequency IPB bus frequency in Hz. Clock rate - used by most of the soc devices. - -soc child nodes ---------------- -Any on chip SOC devices available to Linux must appear as soc5200 child nodes. - -Note: The tables below show the value for the mpc5200. A mpc5200b device -tree should use the "fsl,mpc5200b-<device>","fsl,mpc5200-<device>" form. - -Required soc5200 child nodes: -name compatible Description ----- ---------- ----------- -cdm@<addr> fsl,mpc5200-cdm Clock Distribution -interrupt-controller@<addr> fsl,mpc5200-pic need an interrupt - controller to boot -bestcomm@<addr> fsl,mpc5200-bestcomm Bestcomm DMA controller - -Recommended soc5200 child nodes; populate as needed for your board -name compatible Description ----- ---------- ----------- -timer@<addr> fsl,mpc5200-gpt General purpose timers -gpio@<addr> fsl,mpc5200-gpio MPC5200 simple gpio controller -gpio@<addr> fsl,mpc5200-gpio-wkup MPC5200 wakeup gpio controller -rtc@<addr> fsl,mpc5200-rtc Real time clock -mscan@<addr> fsl,mpc5200-mscan CAN bus controller -pci@<addr> fsl,mpc5200-pci PCI bridge -serial@<addr> fsl,mpc5200-psc-uart PSC in serial mode -i2s@<addr> fsl,mpc5200-psc-i2s PSC in i2s mode -ac97@<addr> fsl,mpc5200-psc-ac97 PSC in ac97 mode -spi@<addr> fsl,mpc5200-psc-spi PSC in spi mode -irda@<addr> fsl,mpc5200-psc-irda PSC in IrDA mode -spi@<addr> fsl,mpc5200-spi MPC5200 spi device -ethernet@<addr> fsl,mpc5200-fec MPC5200 ethernet device -ata@<addr> fsl,mpc5200-ata IDE ATA interface -i2c@<addr> fsl,mpc5200-i2c I2C controller -usb@<addr> fsl,mpc5200-ohci,ohci-be USB controller -xlb@<addr> fsl,mpc5200-xlb XLB arbitrator - -fsl,mpc5200-gpt nodes ---------------------- -On the mpc5200 and 5200b, GPT0 has a watchdog timer function. If the board -design supports the internal wdt, then the device node for GPT0 should -include the empty property 'fsl,has-wdt'. Note that this does not activate -the watchdog. The timer will function as a GPT if the timer api is used, and -it will function as watchdog if the watchdog device is used. The watchdog -mode has priority over the gpt mode, i.e. if the watchdog is activated, any -gpt api call to this timer will fail with -EBUSY. - -If you add the property - fsl,wdt-on-boot = <n>; -GPT0 will be marked as in-use watchdog, i.e. blocking every gpt access to it. -If n>0, the watchdog is started with a timeout of n seconds. If n=0, the -configuration of the watchdog is not touched. This is useful in two cases: -- just mark GPT0 as watchdog, blocking gpt accesses, and configure it later; -- do not touch a configuration assigned by the boot loader which supervises - the boot process itself. - -The watchdog will respect the CONFIG_WATCHDOG_NOWAYOUT option. - -An mpc5200-gpt can be used as a single line GPIO controller. To do so, -add the following properties to the gpt node: - gpio-controller; - #gpio-cells = <2>; -When referencing the GPIO line from another node, the first cell must always -be zero and the second cell represents the gpio flags and described in the -gpio device tree binding. - -An mpc5200-gpt can be used as a single line edge sensitive interrupt -controller. To do so, add the following properties to the gpt node: - interrupt-controller; - #interrupt-cells = <1>; -When referencing the IRQ line from another node, the cell represents the -sense mode; 1 for edge rising, 2 for edge falling. - -fsl,mpc5200-psc nodes ---------------------- -The PSCs should include a cell-index which is the index of the PSC in -hardware. cell-index is used to determine which shared SoC registers to -use when setting up PSC clocking. cell-index number starts at '0'. ie: - PSC1 has 'cell-index = <0>' - PSC4 has 'cell-index = <3>' - -PSC in i2s mode: The mpc5200 and mpc5200b PSCs are not compatible when in -i2s mode. An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the -compatible field. - - -fsl,mpc5200-gpio and fsl,mpc5200-gpio-wkup nodes ------------------------------------------------- -Each GPIO controller node should have the empty property gpio-controller and -#gpio-cells set to 2. First cell is the GPIO number which is interpreted -according to the bit numbers in the GPIO control registers. The second cell -is for flags which is currently unused. - -fsl,mpc5200-fec nodes ---------------------- -The FEC node can specify one of the following properties to configure -the MII link: -- fsl,7-wire-mode - An empty property that specifies the link uses 7-wire - mode instead of MII -- current-speed - Specifies that the MII should be configured for a fixed - speed. This property should contain two cells. The - first cell specifies the speed in Mbps and the second - should be '0' for half duplex and '1' for full duplex -- phy-handle - Contains a phandle to an Ethernet PHY. - -Interrupt controller (fsl,mpc5200-pic) node -------------------------------------------- -The mpc5200 pic binding splits hardware IRQ numbers into two levels. The -split reflects the layout of the PIC hardware itself, which groups -interrupts into one of three groups; CRIT, MAIN or PERP. Also, the -Bestcomm dma engine has it's own set of interrupt sources which are -cascaded off of peripheral interrupt 0, which the driver interprets as a -fourth group, SDMA. - -The interrupts property for device nodes using the mpc5200 pic consists -of three cells; <L1 L2 level> - - L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3] - L2 := interrupt number; directly mapped from the value in the - "ICTL PerStat, MainStat, CritStat Encoded Register" - level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3] - -For external IRQs, use the following interrupt property values (how to -specify external interrupts is a frequently asked question): -External interrupts: - external irq0: interrupts = <0 0 n>; - external irq1: interrupts = <1 1 n>; - external irq2: interrupts = <1 2 n>; - external irq3: interrupts = <1 3 n>; -'n' is sense (0: level high, 1: edge rising, 2: edge falling 3: level low) - -fsl,mpc5200-mscan nodes ------------------------ -See file can.txt in this directory. |