summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/tracepoint.tmpl13
-rw-r--r--Documentation/HOWTO2
-rw-r--r--Documentation/RCU/NMI-RCU.txt39
-rw-r--r--Documentation/RCU/checklist.txt7
-rw-r--r--Documentation/RCU/lockdep.txt28
-rw-r--r--Documentation/RCU/whatisRCU.txt6
-rw-r--r--Documentation/block/biodoc.txt4
-rw-r--r--Documentation/input/multi-touch-protocol.txt23
-rw-r--r--Documentation/kernel-parameters.txt7
-rw-r--r--Documentation/networking/timestamping.txt76
-rw-r--r--Documentation/stable_kernel_rules.txt9
11 files changed, 142 insertions, 72 deletions
diff --git a/Documentation/DocBook/tracepoint.tmpl b/Documentation/DocBook/tracepoint.tmpl
index 8bca1d5cec0..e8473eae2a2 100644
--- a/Documentation/DocBook/tracepoint.tmpl
+++ b/Documentation/DocBook/tracepoint.tmpl
@@ -16,6 +16,15 @@
</address>
</affiliation>
</author>
+ <author>
+ <firstname>William</firstname>
+ <surname>Cohen</surname>
+ <affiliation>
+ <address>
+ <email>wcohen@redhat.com</email>
+ </address>
+ </affiliation>
+ </author>
</authorgroup>
<legalnotice>
@@ -91,4 +100,8 @@
!Iinclude/trace/events/signal.h
</chapter>
+ <chapter id="block">
+ <title>Block IO</title>
+!Iinclude/trace/events/block.h
+ </chapter>
</book>
diff --git a/Documentation/HOWTO b/Documentation/HOWTO
index f5395af88a4..40ada93b820 100644
--- a/Documentation/HOWTO
+++ b/Documentation/HOWTO
@@ -234,7 +234,7 @@ process is as follows:
Linus, usually the patches that have already been included in the
-next kernel for a few weeks. The preferred way to submit big changes
is using git (the kernel's source management tool, more information
- can be found at http://git.or.cz/) but plain patches are also just
+ can be found at http://git-scm.com/) but plain patches are also just
fine.
- After two weeks a -rc1 kernel is released it is now possible to push
only patches that do not include new features that could affect the
diff --git a/Documentation/RCU/NMI-RCU.txt b/Documentation/RCU/NMI-RCU.txt
index a6d32e65d22..a8536cb8809 100644
--- a/Documentation/RCU/NMI-RCU.txt
+++ b/Documentation/RCU/NMI-RCU.txt
@@ -34,7 +34,7 @@ NMI handler.
cpu = smp_processor_id();
++nmi_count(cpu);
- if (!rcu_dereference(nmi_callback)(regs, cpu))
+ if (!rcu_dereference_sched(nmi_callback)(regs, cpu))
default_do_nmi(regs);
nmi_exit();
@@ -47,12 +47,13 @@ function pointer. If this handler returns zero, do_nmi() invokes the
default_do_nmi() function to handle a machine-specific NMI. Finally,
preemption is restored.
-Strictly speaking, rcu_dereference() is not needed, since this code runs
-only on i386, which does not need rcu_dereference() anyway. However,
-it is a good documentation aid, particularly for anyone attempting to
-do something similar on Alpha.
+In theory, rcu_dereference_sched() is not needed, since this code runs
+only on i386, which in theory does not need rcu_dereference_sched()
+anyway. However, in practice it is a good documentation aid, particularly
+for anyone attempting to do something similar on Alpha or on systems
+with aggressive optimizing compilers.
-Quick Quiz: Why might the rcu_dereference() be necessary on Alpha,
+Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha,
given that the code referenced by the pointer is read-only?
@@ -99,17 +100,21 @@ invoke irq_enter() and irq_exit() on NMI entry and exit, respectively.
Answer to Quick Quiz
- Why might the rcu_dereference() be necessary on Alpha, given
+ Why might the rcu_dereference_sched() be necessary on Alpha, given
that the code referenced by the pointer is read-only?
Answer: The caller to set_nmi_callback() might well have
- initialized some data that is to be used by the
- new NMI handler. In this case, the rcu_dereference()
- would be needed, because otherwise a CPU that received
- an NMI just after the new handler was set might see
- the pointer to the new NMI handler, but the old
- pre-initialized version of the handler's data.
-
- More important, the rcu_dereference() makes it clear
- to someone reading the code that the pointer is being
- protected by RCU.
+ initialized some data that is to be used by the new NMI
+ handler. In this case, the rcu_dereference_sched() would
+ be needed, because otherwise a CPU that received an NMI
+ just after the new handler was set might see the pointer
+ to the new NMI handler, but the old pre-initialized
+ version of the handler's data.
+
+ This same sad story can happen on other CPUs when using
+ a compiler with aggressive pointer-value speculation
+ optimizations.
+
+ More important, the rcu_dereference_sched() makes it
+ clear to someone reading the code that the pointer is
+ being protected by RCU-sched.
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt
index cbc180f9019..790d1a81237 100644
--- a/Documentation/RCU/checklist.txt
+++ b/Documentation/RCU/checklist.txt
@@ -260,7 +260,8 @@ over a rather long period of time, but improvements are always welcome!
The reason that it is permissible to use RCU list-traversal
primitives when the update-side lock is held is that doing so
can be quite helpful in reducing code bloat when common code is
- shared between readers and updaters.
+ shared between readers and updaters. Additional primitives
+ are provided for this case, as discussed in lockdep.txt.
10. Conversely, if you are in an RCU read-side critical section,
and you don't hold the appropriate update-side lock, you -must-
@@ -344,8 +345,8 @@ over a rather long period of time, but improvements are always welcome!
requiring SRCU's read-side deadlock immunity or low read-side
realtime latency.
- Note that, rcu_assign_pointer() and rcu_dereference() relate to
- SRCU just as they do to other forms of RCU.
+ Note that, rcu_assign_pointer() relates to SRCU just as they do
+ to other forms of RCU.
15. The whole point of call_rcu(), synchronize_rcu(), and friends
is to wait until all pre-existing readers have finished before
diff --git a/Documentation/RCU/lockdep.txt b/Documentation/RCU/lockdep.txt
index fe24b58627b..d7a49b2f699 100644
--- a/Documentation/RCU/lockdep.txt
+++ b/Documentation/RCU/lockdep.txt
@@ -32,9 +32,20 @@ checking of rcu_dereference() primitives:
srcu_dereference(p, sp):
Check for SRCU read-side critical section.
rcu_dereference_check(p, c):
- Use explicit check expression "c".
+ Use explicit check expression "c". This is useful in
+ code that is invoked by both readers and updaters.
rcu_dereference_raw(p)
Don't check. (Use sparingly, if at all.)
+ rcu_dereference_protected(p, c):
+ Use explicit check expression "c", and omit all barriers
+ and compiler constraints. This is useful when the data
+ structure cannot change, for example, in code that is
+ invoked only by updaters.
+ rcu_access_pointer(p):
+ Return the value of the pointer and omit all barriers,
+ but retain the compiler constraints that prevent duplicating
+ or coalescsing. This is useful when when testing the
+ value of the pointer itself, for example, against NULL.
The rcu_dereference_check() check expression can be any boolean
expression, but would normally include one of the rcu_read_lock_held()
@@ -59,7 +70,20 @@ In case (1), the pointer is picked up in an RCU-safe manner for vanilla
RCU read-side critical sections, in case (2) the ->file_lock prevents
any change from taking place, and finally, in case (3) the current task
is the only task accessing the file_struct, again preventing any change
-from taking place.
+from taking place. If the above statement was invoked only from updater
+code, it could instead be written as follows:
+
+ file = rcu_dereference_protected(fdt->fd[fd],
+ lockdep_is_held(&files->file_lock) ||
+ atomic_read(&files->count) == 1);
+
+This would verify cases #2 and #3 above, and furthermore lockdep would
+complain if this was used in an RCU read-side critical section unless one
+of these two cases held. Because rcu_dereference_protected() omits all
+barriers and compiler constraints, it generates better code than do the
+other flavors of rcu_dereference(). On the other hand, it is illegal
+to use rcu_dereference_protected() if either the RCU-protected pointer
+or the RCU-protected data that it points to can change concurrently.
There are currently only "universal" versions of the rcu_assign_pointer()
and RCU list-/tree-traversal primitives, which do not (yet) check for
diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt
index 1dc00ee9716..cfaac34c455 100644
--- a/Documentation/RCU/whatisRCU.txt
+++ b/Documentation/RCU/whatisRCU.txt
@@ -840,6 +840,12 @@ SRCU: Initialization/cleanup
init_srcu_struct
cleanup_srcu_struct
+All: lockdep-checked RCU-protected pointer access
+
+ rcu_dereference_check
+ rcu_dereference_protected
+ rcu_access_pointer
+
See the comment headers in the source code (or the docbook generated
from them) for more information.
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index 6fab97ea7e6..508b5b2b028 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -1162,8 +1162,8 @@ where a driver received a request ala this before:
As mentioned, there is no virtual mapping of a bio. For DMA, this is
not a problem as the driver probably never will need a virtual mapping.
-Instead it needs a bus mapping (pci_map_page for a single segment or
-use blk_rq_map_sg for scatter gather) to be able to ship it to the driver. For
+Instead it needs a bus mapping (dma_map_page for a single segment or
+use dma_map_sg for scatter gather) to be able to ship it to the driver. For
PIO drivers (or drivers that need to revert to PIO transfer once in a
while (IDE for example)), where the CPU is doing the actual data
transfer a virtual mapping is needed. If the driver supports highmem I/O,
diff --git a/Documentation/input/multi-touch-protocol.txt b/Documentation/input/multi-touch-protocol.txt
index 8490480ce43..c0fc1c75fd8 100644
--- a/Documentation/input/multi-touch-protocol.txt
+++ b/Documentation/input/multi-touch-protocol.txt
@@ -68,6 +68,22 @@ like:
SYN_MT_REPORT
SYN_REPORT
+Here is the sequence after lifting one of the fingers:
+
+ ABS_MT_POSITION_X
+ ABS_MT_POSITION_Y
+ SYN_MT_REPORT
+ SYN_REPORT
+
+And here is the sequence after lifting the remaining finger:
+
+ SYN_MT_REPORT
+ SYN_REPORT
+
+If the driver reports one of BTN_TOUCH or ABS_PRESSURE in addition to the
+ABS_MT events, the last SYN_MT_REPORT event may be omitted. Otherwise, the
+last SYN_REPORT will be dropped by the input core, resulting in no
+zero-finger event reaching userland.
Event Semantics
---------------
@@ -217,11 +233,6 @@ where examples can be found.
difference between the contact position and the approaching tool position
could be used to derive tilt.
[2] The list can of course be extended.
-[3] The multi-touch X driver is currently in the prototyping stage. At the
-time of writing (April 2009), the MT protocol is not yet merged, and the
-prototype implements finger matching, basic mouse support and two-finger
-scrolling. The project aims at improving the quality of current multi-touch
-functionality available in the Synaptics X driver, and in addition
-implement more advanced gestures.
+[3] Multitouch X driver project: http://bitmath.org/code/multitouch/.
[4] See the section on event computation.
[5] See the section on finger tracking.
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index e4cbca58536..839b21b0699 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -320,11 +320,6 @@ and is between 256 and 4096 characters. It is defined in the file
amd_iommu= [HW,X86-84]
Pass parameters to the AMD IOMMU driver in the system.
Possible values are:
- isolate - enable device isolation (each device, as far
- as possible, will get its own protection
- domain) [default]
- share - put every device behind one IOMMU into the
- same protection domain
fullflush - enable flushing of IO/TLB entries when
they are unmapped. Otherwise they are
flushed before they will be reused, which
@@ -1199,7 +1194,7 @@ and is between 256 and 4096 characters. It is defined in the file
libata.force= [LIBATA] Force configurations. The format is comma
separated list of "[ID:]VAL" where ID is
- PORT[:DEVICE]. PORT and DEVICE are decimal numbers
+ PORT[.DEVICE]. PORT and DEVICE are decimal numbers
matching port, link or device. Basically, it matches
the ATA ID string printed on console by libata. If
the whole ID part is omitted, the last PORT and DEVICE
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index 0e58b453917..e8c8f4f06c6 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -41,11 +41,12 @@ SOF_TIMESTAMPING_SOFTWARE: return system time stamp generated in
SOF_TIMESTAMPING_TX/RX determine how time stamps are generated.
SOF_TIMESTAMPING_RAW/SYS determine how they are reported in the
following control message:
- struct scm_timestamping {
- struct timespec systime;
- struct timespec hwtimetrans;
- struct timespec hwtimeraw;
- };
+
+struct scm_timestamping {
+ struct timespec systime;
+ struct timespec hwtimetrans;
+ struct timespec hwtimeraw;
+};
recvmsg() can be used to get this control message for regular incoming
packets. For send time stamps the outgoing packet is looped back to
@@ -87,12 +88,13 @@ by the network device and will be empty without that support.
SIOCSHWTSTAMP:
Hardware time stamping must also be initialized for each device driver
-that is expected to do hardware time stamping. The parameter is:
+that is expected to do hardware time stamping. The parameter is defined in
+/include/linux/net_tstamp.h as:
struct hwtstamp_config {
- int flags; /* no flags defined right now, must be zero */
- int tx_type; /* HWTSTAMP_TX_* */
- int rx_filter; /* HWTSTAMP_FILTER_* */
+ int flags; /* no flags defined right now, must be zero */
+ int tx_type; /* HWTSTAMP_TX_* */
+ int rx_filter; /* HWTSTAMP_FILTER_* */
};
Desired behavior is passed into the kernel and to a specific device by
@@ -139,42 +141,56 @@ enum {
/* time stamp any incoming packet */
HWTSTAMP_FILTER_ALL,
- /* return value: time stamp all packets requested plus some others */
- HWTSTAMP_FILTER_SOME,
+ /* return value: time stamp all packets requested plus some others */
+ HWTSTAMP_FILTER_SOME,
/* PTP v1, UDP, any kind of event packet */
HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
- ...
+ /* for the complete list of values, please check
+ * the include file /include/linux/net_tstamp.h
+ */
};
DEVICE IMPLEMENTATION
A driver which supports hardware time stamping must support the
-SIOCSHWTSTAMP ioctl. Time stamps for received packets must be stored
-in the skb with skb_hwtstamp_set().
+SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with
+the actual values as described in the section on SIOCSHWTSTAMP.
+
+Time stamps for received packets must be stored in the skb. To get a pointer
+to the shared time stamp structure of the skb call skb_hwtstamps(). Then
+set the time stamps in the structure:
+
+struct skb_shared_hwtstamps {
+ /* hardware time stamp transformed into duration
+ * since arbitrary point in time
+ */
+ ktime_t hwtstamp;
+ ktime_t syststamp; /* hwtstamp transformed to system time base */
+};
Time stamps for outgoing packets are to be generated as follows:
-- In hard_start_xmit(), check if skb_hwtstamp_check_tx_hardware()
- returns non-zero. If yes, then the driver is expected
- to do hardware time stamping.
+- In hard_start_xmit(), check if skb_tx(skb)->hardware is set no-zero.
+ If yes, then the driver is expected to do hardware time stamping.
- If this is possible for the skb and requested, then declare
- that the driver is doing the time stamping by calling
- skb_hwtstamp_tx_in_progress(). A driver not supporting
- hardware time stamping doesn't do that. A driver must never
- touch sk_buff::tstamp! It is used to store how time stamping
- for an outgoing packets is to be done.
+ that the driver is doing the time stamping by setting the field
+ skb_tx(skb)->in_progress non-zero. You might want to keep a pointer
+ to the associated skb for the next step and not free the skb. A driver
+ not supporting hardware time stamping doesn't do that. A driver must
+ never touch sk_buff::tstamp! It is used to store software generated
+ time stamps by the network subsystem.
- As soon as the driver has sent the packet and/or obtained a
hardware time stamp for it, it passes the time stamp back by
calling skb_hwtstamp_tx() with the original skb, the raw
- hardware time stamp and a handle to the device (necessary
- to convert the hardware time stamp to system time). If obtaining
- the hardware time stamp somehow fails, then the driver should
- not fall back to software time stamping. The rationale is that
- this would occur at a later time in the processing pipeline
- than other software time stamping and therefore could lead
- to unexpected deltas between time stamps.
-- If the driver did not call skb_hwtstamp_tx_in_progress(), then
+ hardware time stamp. skb_hwtstamp_tx() clones the original skb and
+ adds the timestamps, therefore the original skb has to be freed now.
+ If obtaining the hardware time stamp somehow fails, then the driver
+ should not fall back to software time stamping. The rationale is that
+ this would occur at a later time in the processing pipeline than other
+ software time stamping and therefore could lead to unexpected deltas
+ between time stamps.
+- If the driver did not call set skb_tx(skb)->in_progress, then
dev_hard_start_xmit() checks whether software time stamping
is wanted as fallback and potentially generates the time stamp.
diff --git a/Documentation/stable_kernel_rules.txt b/Documentation/stable_kernel_rules.txt
index 5effa5bd993..e213f45cf9d 100644
--- a/Documentation/stable_kernel_rules.txt
+++ b/Documentation/stable_kernel_rules.txt
@@ -18,16 +18,15 @@ Rules on what kind of patches are accepted, and which ones are not, into the
- It cannot contain any "trivial" fixes in it (spelling changes,
whitespace cleanups, etc).
- It must follow the Documentation/SubmittingPatches rules.
- - It or an equivalent fix must already exist in Linus' tree. Quote the
- respective commit ID in Linus' tree in your patch submission to -stable.
+ - It or an equivalent fix must already exist in Linus' tree (upstream).
Procedure for submitting patches to the -stable tree:
- Send the patch, after verifying that it follows the above rules, to
- stable@kernel.org.
- - To have the patch automatically included in the stable tree, add the
- the tag
+ stable@kernel.org. You must note the upstream commit ID in the changelog
+ of your submission.
+ - To have the patch automatically included in the stable tree, add the tag
Cc: stable@kernel.org
in the sign-off area. Once the patch is merged it will be applied to
the stable tree without anything else needing to be done by the author